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1. SUMMARY





Summary 

The endocannabinoid system (eCBS) is composed of cannabinoid receptors, such as, 

cannabinoid type-1 (CB1), endogenous ligands (endocannabinoids, eCBs) and their 

synthesizing and degrading enzymes. CB1 receptors are expressed in different cell types 

(i.e., astrocytes, neurons) and intracellular compartments (i.e., mitochondria). In the 

brain, the eCBS is a crucial modulator of synaptic transmission and plasticity, regulating 

several physiological processes. Furthermore, activation of CB1 receptors by endogenous 

or exogenous ligands (cannabis derivatives, i.e. THC) has a wide variety of behavioral 

effects, both positive and negative. 

Different histological techniques have been crucial in defining the CB1 receptor expression 

and localization at the cellular level. However, it is extremely difficult to identify the 

subcellular distribution of CB1 receptors in some cell-types (i.e., astrocytes) due to its low 

expression level on those cells. Moreover, it remains a key question to know the pattern 

of the subcellular CB1 receptor expression and distribution under pathological states. 

Thus, the present work focuses on the description of new subcellular localizations of CB1 

receptors in normal brain and the study of the CB1 receptor expression in certain 

pathophysiological states. 

High resolution immunoelectron microscopy has shown to be an excellent approach for 

the fine detection of CB1 receptors in the brain. The single pre-embedding immunogold 

method for electron microscopy based on the use of specific primary CB1 receptor 

antibodies and silver-intensified 1.4 nm gold-labeled Fab' fragments, and the combined 

pre-embedding immunogold and immunoperoxidase method implies the additional use 

of biotinylated secondary antibodies and avidin-biotin complex for the simultaneous 

localization of CB1 receptors and protein markers of specific brain cells or synapses. 

CB1 receptors in astroglial mitochondria. 

In order to identify and characterize the presence of mitochondrial CB1 receptors (mtCB1) 

in astrocytes we used conditional knock-out mice lacking CB1 receptor specifically in glial 

fibrillary acidic protein (GFAP)-containing astrocytes (GFAP-CB1-KO) mice and rescue 

mice expressing CB1 receptors exclusively in astrocytes (GFAP-CB1-RS). Complementary, 

to identify astroglial structures by immunoelectron microscopy, an adeno-associated 

virus expressing humanized renilla green fluorescent protein (hrGFP) under the control 

of human GFAP promoter was injected in the hippocampus of CB1 knock-out (CB1-KO) 

mice and wild-type (CB1-WT) littermates to generate GFAPhrGFP-CB1-KO and -WT mice, 

respectively. 



Summary 

Double immunogold (for CB1) and immunoperoxidase (for GFAP, GLAST or hrGFP) 

revealed the presence of mtCB1 receptors in hippocampal astrocytes. Altogether, we 

demonstrated the existence of a precise molecular architecture of the CB1 receptor in 

astrocytes that will have to be taken into account in evaluating the functional activity of 

cannabinergic signaling at the tripartite synapse. 

CB1 receptors in pathophysiological states. 

1. Ethanol (EtOH) consumption heavily impacts on the structure and function of the brain, 

particularly in adolescence. It is currently unknown how CB1 receptor expression in 

astrocytes is affected by long-term exposure to EtOH. Here we examined EtOH-exposed 

adolescent mice to determine its effect on CB1 receptor localization and density in the 

hippocampal astrocytes. Our results revealed a significant reduction in CB1 receptor 

immunoparticles in astrocytic processes of EtOH-exposed mice when compared with 

controls. Such a decrease reveals a long lasting effect of EtOH on astrocytic CB1 receptors. 

This deficiency may also have negative consequences for synaptic function.  

2. Traumatic brain injury (TBI) and concussion (or mild TBI, mTBI) are major worldwide

health and socioeconomic concern. Repeated mTBI (r-mTBI) in juvenile populations can 

result in cumulative neuropathology and learning and memory deficits during adulthood. 

However, there is scarce preclinical data showing the extent of such these deficits. To 

examine this issue, we used a model of r-mTBI in juvenile male and female rats. The 

animals were sacrificed at different time points after injury (1, 10 or 40 days after). Pre-

embedding immunoelectron revealed a significant reduction in the proportion of CB1 

receptor immunopositive synaptic terminals in the adult dentate molecular layer (DML) 

after juvenile concussion. The loss of CB1 receptor indicate that r-mTBI may induce deficits 

that are progressive in nature, and that develop over a prolonged period of time following 

the cessation of injury.  

3. Cannabis is the most widespread illicit drug in the world and its main psychotropic

ingredient Δ9-tetrahydrocannabinol (THC) exerts psychoactive effects through the 

activation of CB1 receptors. Despite the fact that cannabis consumption often begins 

during adolescence, no much information is available on the fine anatomical changes 

potentially produced by the drug during this period. Moreover, the impact of adolescent 

THC consumption on the localization of CB1 receptor in adult brain remains unknown. 

To investigate this, adolescent WT mice were injected subcutaneously with THC or 

vehicle. After 30 min, animals were sacrificed for posterior pre-embedding immunogold 

technique in the hippocampus.



Summary 

The acute THC administration affected dendritic morphology and caused a sharp increase 

in the number of dendritic mitochondria. Also, CB1 receptor distribution was drastically 

reduced in inhibitory synapses, astrocytic processes and mitochondria. 

Altogether, the present data indicate the existence of changes in CB1 receptor expression 

and structural brain adaptations that support the behavioral alterations caused by 

pathological conditions such as adolescent binge drinking (BD), concussion and cannabis 

intoxication, consequently representing these changes novel pharmacological targets to 

palliate the structural, functional and behavioral consequences of these disorders. 
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2.1. DISTRIBUTION OF THE ENDOCANNABINOID COMPONENTS IN THE 
CENTRAL NERVOUS SYSTEM (CNS) 

The endocannabinoid system is a complex endogenous signalling system widely 

distributed throughout the mammalian organism that participates in multiple metabolic 

pathways regulating cell physiology. This system is made up of the cannabinoid receptors, 

endogenous ligands and their synthesizing and degrading enzymes, intracellular 

signalling pathways as well as transport systems (Piomelli, 2003, 2014; Marsicano & Lutz, 

2006; Kano et al., 2009; Katona & Freund, 2012; Lutz et al., 2015; Pertwee, 2015; Lu & 

Mackie, 2016). 

The eCBS, besides from being present in many other organs (Piazza et al., 2017), is widely 

distributed in the central and peripheral nervous system (Katona & Freund, 2012; Lu & 

Mackie, 2016), where it regulates brain functions by acting on different cell types and 

cellular compartments (Bénard et al., 2012; Katona & Freund, 2012; Busquets-Garcia et 

al., 2018; Gutiérrez-Rodríguez et al., 2017, 2018; Lu & Mackie, 2016). 

2.2. CB1 AND CB2 RECEPTORS IN THE CNS 

Cannabinoid receptors are membrane associated G protein-coupled receptors (Fig. 1) 

with two subtypes referred as cannabinoid type-1 (CB1) and cannabinoid type-2 (CB2) 

receptors. CB1 and CB2 are widely expressed throughout the body but CB1 receptors are 

concentrated within the brain, whereas CB2 receptors are largely expressed by cells of the 

immune system. The two cannabinoid receptors can be stimulated by eCBs (principal ones 

are anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) or exogenous cannabinoids 

(Fig.1). 
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Figure 1. The cannabinoid system. (Modified from Price & Baker, 2012). 

The CB1 receptor is one of the most abundant G protein-coupled receptor in the brain 

(Herkenham et al., 1991; Tsou et al., 1998; Moldrich & Wenger, 2000). Its expression is 

widespread, heterogeneous and has crucial roles in brain function, dysfunction and 

cognition (Marsicano et al., 2002; Monory et al., 2006; Marsicano & Kuner, 2008; 

Bellocchio et al., 2010; Puente et al., 2011; Castillo, 2012; Katona & Freund, 2012; Steindel 

et al., 2013; Ruehle et al., 2013; Soria-Gómez et al., 2014, 2015; Hu & Mackie, 2015; Katona, 

2015; Martín-García et al., 2015; Gutiérrez-Rodríguez et al., 2017, 2018; Bonilla-Del Rίo et 

al., 2019). 

The CB1 receptor distribution in the brain closely fits into the deleterious effects of 

cannabinoids on locomotion, perception, learning, memory or the cannabinoid-positive 

effects as anti-convulsant or food intake enhancers, and its low amount in the brainstem 

correlates with the low toxicity and lethality of marihuana (Bellocchio et al., 2010; Han et 

al., 2012; Katona & Freund, 2012; Hebert-Chatelain et al., 2014a,b, 2016; Soria-Gómez et 

al., 2014; Martín-García et al., 2015; Lu & Mackie, 2016; Mechoulam, 2016). CB1 receptors 

are abundant in the basal ganglia (substantia nigra reticulata, globus pallidus, striatum, 

entopeduncular nucleus), cortex, nucleus accumbens, cerebellum, hippocampus (Howlett 

et al., 1990; Tsou et al., 1998; Hu & Mackie, 2015; Martín-García et al., 2015) but they are 

poorly expressed in the hypothalamus, brainstem and spinal cord (Tsou et al., 1998).  

In order to achieve higher resolution on the distribution of the CB1 receptors, genetically 

modified animals are a useful model. Mice with CB1 receptor gene deletion (CB1-KO) lack 

CB1 receptor protein expression (Steiner et al., 1999; Zimmer et al., 1999; Marsicano et al., 

2002; Zimmer, 2015) and, therefore, only unspecific CB1 receptor immunolabeling is 
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observed in these mutants tissue. Conditional mutant mice lacking CB1 receptor mainly 

from cortical glutamatergic neurons (Glu-CB1-KO), and mainly from GABAergic neurons 

(GABA-CB1-KO) (Monory et al., 2006, 2007) show a selective decrease in the brain pattern 

of CB1 receptor staining but not in the same degree as in CB1-KO; in particular, the CB1 

receptor immunoreactivity is greatly reduced in the GABA-CB1-KO and less in the Glu-CB1-

KO compared with the wild-type (Monory et al., 2006, 2007; Marsicano & Kuner, 2008; 

Steindel et al., 2013; Martín-García et al., 2015) indicating that CB1 receptors are more 

abundantly expressed in GABAergic neurons than in glutamatergic neurons. An exception 

would be the great reduction in CB1 receptor staining observed in the granule cell layer of 

the Glu-CB1-KO olfactory bulb (Soria-Gómez et al., 2014). Substantia nigra pars reticulata 

lacks CB1 receptor immunoreactivity in GABA-CB1-KO, and a large decrease in CB1 

receptor staining is observed in the GABA-CB1-KO hippocampus but not at the zone of the 

glutamatergic commissural/associational synapses in the inner one-third of the DML 

(Monory et al., 2006, 2007; Marsicano & Kuner, 2008; Martín-García et al., 2015). 

Conversely, the weak pattern of CB1 receptor immunostaining in genetic rescue mice 

expressing CB1 receptors only in dorsal telencephalic glutamatergic neurons (Glu-CB1-RS) 

(Ruehle et al., 2013; Soria-Gómez et al., 2014; de Salas-Quiroga et al., 2015; Lange et al., 

2017; Gutiérrez-Rodríguez et al., 2017, 2018) relative to the rescue mice expressing CB1 

receptors only in GABAergic neurons (GABA-CB1-RS) (de Salas-Quiroga et al., 2015; Lange 

et al., 2017; Remmers et al., 2017; Gutiérrez-Rodríguez et al., 2017, 2018) correlates with 

the low CB1 receptor distribution in glutamatergic neurons and high in GABAergic cells, 

respectively. However, a conspicuous CB1 receptor staining in Glu-CB1-RS is observed in 

the striatum, cortex, olfactory tubercle, amygdala, hippocampus (strata oriens and 

radiatum of the hippocampal Ammon’s horn) and, remarkably, in the inner one-third of 

the DML of Glu-CB1-RS (Monory et al., 2006; Ruehle et al., 2013; Gutiérrez-Rodríguez et al., 

2017). In GABA-CB1-RS, strong CB1 receptor immunoreactivity is seen in the cortex, 

anterior olfactory nucleus, piriform cortex, globus pallidus, entopeduncular nucleus, 

amygdala, and substantia nigra, and moderate to strong in the striatum (Gutiérrez-

Rodríguez et al., 2017). In the hippocampus, heavy CB1 receptor immunoreaction is 

present throughout the hippocampus, particularly in the Ammon’s horn pyramidal cell 

layer, at the limit between the strata radiatum and the lacunosum-moleculare and in the 

inner one-third of the DML (Gutiérrez-Rodríguez et al., 2017; Remmers et al., 2017). 

When observed under the electron microscope the distribution of CB1 receptor correlates 

with the previously reported results. First, CB1 receptor expression is very high in 

inhibitory GABAergic synaptic terminals mostly in cortical and hippocampal 

cholecystokinin (CCK)-positive GABAergic interneurons (Kawamura et al., 2006; Ludányi 
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et al., 2008; Marsicano & Kuner, 2008; Katona & Freund, 2012; De-May & Ali, 2013; 

Steindel et al., 2013; Hu & Mackie, 2015; Lu & Mackie, 2016; Gutiérrez-Rodríguez et al., 

2017), low in excitatory glutamatergic synapses (Marsicano et al., 2003; Domenici et al., 

2006; Katona et al., 2006; Monory et al., 2006; Takahashi & Castillo, 2006; Kamprath et al., 

2009; Bellocchio et al., 2010; Puente et al., 2011; Reguero et al., 2011; Ruehle et al., 2013; 

Soria-Gómez et al., 2014; Gutiérrez-Rodríguez et al., 2017) and very low in brain 

astrocytes (Rodríguez et al., 2001; Navarrete & Araque, 2008, 2010; Stella, 2010; Han et 

al., 2012; Bosier et al., 2013; Metna-Laurent & Marsicano, 2015; Viader et al., 2015; Da 

Cruz et al., 2016; Kovács et al., 2017; Gutiérrez-Rodríguez et al., 2018). Brain CB1 receptors 

are mostly localized in axon terminals and preterminals away from the presynaptic active 

zones and are also localized at mitochondria in neurons (Bénard et al., 2012; Hebert-

Chatelain et al., 2014a,b, 2016; Koch et al., 2015) and astrocytes (Gutiérrez-Rodríguez et 

al., 2018). 

CB1 receptors also localize in adipose tissue, muscle, liver, heart, gastrointestinal tract, 

pancreas, spleen, tonsils, prostate, testicle, uterus, ovary, skin, eye, or presynaptic 

sympathetic nerve terminals (Galiegue et al., 1995; Ishac et al., 1996; Pertwee, 2001; 

Macarrone, 2016; Zou & Kumar, 2018). They are also present at mitochondria of skeletal 

(gastrocnemius and rectus abdominis) and myocardial muscles (Mendizabal-Zubiaga et 

al., 2016) whose activation by THC reduces mitochondria coupled respiration 

(Mendizabal-Zubiaga et al., 2016). 
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Figure 2. Distribution of CB1 receptors in the CNS of WT mice. (a) Overall distribution 
in parasagittal and (b) coronal brain sections of wild-type. CB1 immunoreactivity is 
highest along striatal output pathways, including the substantia nigra pars reticulata 
(SNR), globus pallidus (GP), and entopeduncular nucleus (EP). High levels are also 
observed in the hippocampus (Hi), dentate gyrus (DG), and cerebral cortex, such as the 
primary somatosensory cortex (S1), primary motor cortex (M1), primary visual cortex 
(V1), cingulate cortex (Cg), and entorhinal cortex (Ent). High levels are also noted in the 
basolateral amygdaloid nucleus (BLA), anterior olfactory nucleus (AON), caudate 
putamen (CPu), ventromedial hypothalamus (VMH), and cerebellar cortex (Cb) 
(modified from Kano et al., 2009). (c, c´) High-power views of the hippocampal formation 
(CA1 and DML). (c´) SP stratum pyramidale, SR stratum radiatum, SLM stratum 
lacunosum moleculare, OML: outer molecular layer, IML inner molecular layer GL 
granular layer. Scale bars: 1 mm (a, b), 500 µm (c) and 200 µm (c´). * Areas of interest in 
this doctoral thesis. 

The CB2 receptor was first described in spleen (Munro et al., 1993) and, in addition to this 

organ, it was believed to be only present in the immune system (tonsils, B and T 

lymphocytes, natural killer cells, macrophages and CD8 and CD4 T-lymphocytes) 

(Galiègue et al., 1995; Ameri, 1999; Cabral et al., 2015). However, CB2 receptors are also 

expressed in heart, endothelium, bone, liver, pancreas, testicle (Zou & Kumar, 2018). The 

localization of CB2 receptors in the CNS is a controversial issue as not specific CB2 receptor 

antibodies are available so far (Atwood & Mackie, 2010; Lu & Mackie, 2016). Therefore, 

new genetic strategies based on mouse lines expressing enhanced green fluorescent 

protein (EGFP) under the control of the CB2 promoter have been developed to circumvent 

this problem (López et al., 2018). 

In this regard, some authors have not found CB2 receptors in the intact CNS (Derocq et al., 

1995; Galiegue et al., 1995; Griffin et al., 1999; Schatz et al., 1997; Sugiura et al., 2000; 

Carlisle et al., 2002; López et al., 2018), while others have pointed to the CB2 receptor 

expression in the brain of several animal species, though at much lower levels than in the 

immune system (Benito et al., 2003; Maresz et al., 2005; Van Sickle et al., 2005; Gong et al., 

2006). Furthermore, some studies have reported neuronal CB2 receptor expression in 

healthy brain (Van Sickle et al., 2005; Ashton et al., 2006; Gong et al., 2006; Baek et al., 

2008; Onaivi et al., 2008b), but others only find CB2 receptors that are highly inducible by 

pathological conditions that elicit neuro-inflammatory responses (Benito et al., 2008; 

Atwood & Mackie, 2010; Dhopeshwarkar & Mackie, 2014; Di Marzo et al., 2015; Lu & 

Mackie, 2016; López et al., 2018), particularly, in activated microglia (Carlisle et al., 2002; 

Maresz et al., 2005; Benito et al., 2008; Cabral et al., 2008; Stella, 2010). Nevertheless, 

keeping in mind the point about antibody specificity, the presence of CB2 receptors has 
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been described in neural progenitors as well as in cortical, hippocampal, pallidal and 

mesencephalic neurons (Lanciego et al., 2010); in the cerebellar Purkinje and molecular 

layers (Van Sickle et al., 2005; Ashton et al., 2006; Gong et al., 2006; Baek et al., 2008; 

Onaivi et al., 2008b); in the brainstem dorsal motor nucleus of the vagus (Van Sickle et al., 

2005; Baek et al., 2008), parvocellular portion of the medial vestibular nucleus and dorsal 

and ventral cochlear nuclei (Baek et al., 2008), and in the hippocampus (Gong et al., 2006; 

Onaivi, 2006; Onaivi et al., 2006, 2008a,b; Brusco et al., 2008b). In addition, CB2 receptor-

like staining was detected in olfactory tubercle, islands of Calleja, frontal cortex, amygdala, 

striatum, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal 

nucleus, red nucleus and inferior colliculus (Gong et al., 2006; Onaivi, 2006; Onaivi et al., 

2006, 2008b; Liu et al., 2009; Kim & Li, 2015). Furthermore, the receptor has also been 

seen in striatal GABAergic neurons of non-human primates (Lanciego et al., 2011; Sierra 

et al., 2015). Only low levels of CB2 receptor mRNA, but not of CB2 receptor protein, was 

detected in the rat inferior olive and pontine nuclei (Viscomi et al., 2009); CB2 receptor-

like immunoreactivity, but not CB2 receptor mRNA, was seen in the thalamus (Gong et al., 

2006) and CB2 receptor mRNA was detected in striatum and hypothalamus, but not in 

olfactory bulb, cortex and spinal cord (Gong et al., 2006; Onaivi et al., 2008b). In human 

samples, CB2 receptors are highly expressed in testis, but also in spleen and leukocytes 

(Liu et al., 2009); it is also expressed in perivascular microglia in control brains (Nuñez et 

al., 2004) and in the amygdala, caudate, putamen, nucleus accumbens, cortex, 

hippocampus and cerebellum at low levels (Liu et al., 2009; Zou & Kumar, 2018). 

Subcellularly, CB2 receptors seem to be mainly in plasma membranes of pyramidal cell 

apical dendrites and some interneurons in the hippocampus (Gong et al., 2006; Brusco et 

al., 2008b; Onaivi et al., 2008b) and also associated to the rough endoplasmic reticulum 

and Golgi apparatus in cell bodies (Brusco et al., 2008a). 

2.3. ENDOCANNABINOIDS IN THE CNS 

The eCBs are lipid messengers considered as promiscuous molecules since they activate 

CB1 and CB2 receptors and other receptors such as the transient receptor potential 

channel V1 (TRPV1), peroxisome proliferator-activated receptors (PPARs), the glycine 

receptor α1 subunit and the GABAA receptor β2 subunit, among others (Piomelli, 2003; 

Kano et al., 2009; Pertwee et al., 2010; Katona & Freund, 2012; Lutz et al., 2015; Lu & 

Mackie, 2016; Zou & Kumar, 2018). The physiology and pharmacology of the eCBs are 

complex due to both the vast distribution of the numerous components and the features 
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of the system. The eCBs exert their influence in a paracrine and autocrine manner, and 

probably even in endocrine mode, because their lipid nature allows them to diffuse and 

cross membranes. They are cannabinoid receptor agonists that constitute a family of 

molecules that are not accumulated in secretory vesicles (though might be stored in 

adiposomes) but rather synthesized on demand and released right after to the 

extracellular space following physiological and pathological stimuli (Piomelli, 2003; Kano 

et al., 2009; Pertwee et al., 2010; Katona & Freund, 2012; Lutz et al., 2015; Lu & Mackie, 

2016; Zou & Kumar, 2018). 

The two main eCBs are derivatives of polyunsatured fatty acids, AEA (Devane et al., 1992) 

and 2-AG (Mechoulam et al., 1995). AEA produces the “tetrad” effects of cannabinoids (i.e., 

catalepsy, antinociception, hypolocomotion, and hypothermia) in rodents (Fride & 

Mechoulam, 1993) whereas 2-AG plays a key role in most of the CB1 receptor-dependent 

modulation of synaptic transmission and plasticity (Kano et al., 2009). 2-AG concentration 

in brain tissue is about 200-fold higher than AEA (Bisogno et al., 1999) and correlates well 

with the cannabinoid receptor density in the brain (Sugiura et al., 2006). However, this is 

not the case for AEA that accumulates in brain regions with high cannabinoid receptor 

density (hippocampus, cortex, striatum) and also in regions with low receptor expression 

(thalamus, brainstem) (Felder & Glass, 1998). 2-AG is an agonist with high efficacy on both 

CB1 and CB2 receptors (Lynn & Herkenham, 1994; Slipetz et al., 1995; Gonsiorek et al., 

2000; Sugiura et al., 2000), while the AEA efficacy is low at CB1 (partial agonist) and very 

low at CB2 receptors (weak partial agonist/antagonist) (Showalter et al., 1996; Gonsiorek 

et al., 2000; Sugiura et al., 2000; Luk et al., 2004). 

There is a great variety of biochemical pathways for the synthesis, transport, release and 

degradation of eCBs. Thus, the biosynthetic enzymes phospholipase D selective N-

acylphosphatidyl ethanolamine (NAPE-PLD) for AEA and diacylglycerol lipases (DAGL) α 

and β for 2-AG, as well as the hydrolytic enzymes fatty acid amide hydrolase (FAAH) for 

AEA inactivation and monoacylglycerol lipase (MAGL) for 2-AG, among others, are 

responsible for the distinctive physiological and pathophysiological roles of both eCBs 

(Kano et al, 2009; Fezza et al., 2014; Piomelli, 2014; Lu & Mackie, 2016; Zou & Kumar, 

2018). 

The production of AEA precursor, N-arachidonoyl phosphatidyl ethanolamine (NArPE), 

takes place by the arachidonic acid (AA) transfer from sn-1 position of phospholipids to 

the nitrogen atom of the phosphatidyl ethanolamine (PE) by the Ca2+ dependent N-acyl 

transferase (NAT) (Cadas et al., 1996; Kano et al., 2009; Fezza et al., 2014). Then, AEA is 

synthezised by the NAPE-PLD that hydrolyses NArPE localized in cell membranes 

(Okamoto et al., 2004; Kano et al., 2009). An alternative pathway for AEA synthesis is the 
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N-acylphosphatidyl ethanolamine (NAPE) hydrolysis by phospholipase C to 

phosphoanandamide followed by the protein tyrosine phosphatase PTPN22-mediated 

dephosphorylation (Liu et al., 2006). The AEA half-life is very short because of its quick 

uptake by a high affinity transporter (AMT, anandamide membrane transporter) 

distributed in neurons and glia (Di Marzo et al., 2015). AEA is inactivated by FAAH present 

in many organs and also in the brain (Dinh et al., 2002; Ueda, 2002; Kano et al., 2009) 

where its postsynaptic localization meets with presynaptic CB1 receptors (Egertová et al., 

2003; Kano et al., 2009; Hu & Mackie, 2015). FAAH is serine-hydrolase bound to 

intracellular membranes that catalyzes AEA into AA and ethanolamine (Fezza et al., 2014). 

It also degrades the bioactive N-acyl ethanolamines, N-palmitoyl ethanolamine (PEA) and 

N-oleoyl ethanolamine (OEA) (Di Marzo et al., 2001). There are two more hydrolases for 

AEA degradation: FAAH-2 and the lysosomal N-acyl ethanolamine cisteine-

amidohydrolase (NAAA). 

2-AG participates in the CB1-dependent retrograde signalling and is an intermediate 

metabolite for lipid synthesis providing AA for prostaglandin synthesis (Kano et al., 2009; 

Fezza et al., 2014; Lu & Mackie, 2016). Neuronal membrane depolarization or the 

activation of Gq-coupled GPCRs triggers the synthesis of 2-AG (Kano et al., 2009). The DAG 

precursors come from the hydrolysis of membrane phosphatidylinositol by 

phospholipase C, β or δ. The degradation of these precursors by DAGL-α and DAGL-β 

drives 2-AG synthesis (Kano et al., 2009; Gao et al., 2010; Tanimura et al., 2010; Lu & 

Mackie, 2016; Zou & Kumar, 2018). The DAGLα isoform synthesizes the greatest amount 

of 2-AG; DAGLβ synthesizes 2-AG under certain circumstances yielding the cannabinoid 

upon an immune response (Di Marzo et al., 2015). MAGL is a serine-hydrolase that 

catalyzes 2-AG into AA and glycerol (Dinh et al., 2002; Ueda, 2002; Kano et al., 2009); 

MAGL is mainly found in presynaptic terminals (Kano et al., 2009; Straiker et al., 2009; Hu 

& Mackie, 2015; Lu & Mackie, 2016). Also, the α/β-hydrolase domain 6 (ABHD6) and 

domain 12 (ABHD12) degrade 2-AG (Blankman et al., 2007; Kano et al., 2009; Fezza et al., 

2014). 

AEA and 2-AG are also metabolized by lipooxygenases and cyclooxygenase-2 (COX-2) 

(Kano et al., 2009; Lu & Mackie, 2016) and AEA is additionally the target of P450 

cytocrome. The degradation products obtained from AEA by lipooxygenases 

(hydroxyanandamides) are CB1, CB2, PPARs and TRPV1 receptor ligands and can also 

interact with enzymes of the eCBS. COX-2 shows more preference for AEA degradation 

than for other acyl ethanolamines, and generates prostamides (Kano et al., 2009; Iannotti 

et al., 2016; Lu & Mackie, 2016). The prostaglandine E2–glycerol esther generated by COX-

2 potentiates synaptic transmission and plasticity and produces hyperalgesia (Katona & 
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Freund, 2012). 

AEA inhibits presynaptic GABA and glutamate release under certain circumstances and 

activates TRPV1 which belongs to the transient receptor potential (TRP) channel family 

activated by noxious heat (>42ºC), low pH (<6.0) and capsaicin, the active component of 

the hot chilli pepper (Zygmunt et al., 1999; Ross, 2003; Chávez et al., 2010; Puente et al., 

2011; Lu & Mackie, 2016; Zou & Kumar, 2018). 2-AG also activates TRPV1, though a higher 

concentration is needed for reaching similar AEA effect. In vitro, AEA antagonizes TRP 

melastatin type 8 (TRPM8) channel responsible for the cold sensation induced by menthol 

and temperatures lower than 25ºC (Pertwee, 2015). Interestingly, other N-acyl 

etanolamines (NAE) such as OEA with appetite suppressant properties (Fu et al., 2003; 

Wang et al., 2005; Thabuis et al., 2008) and PEA with anti-inflammatory properties (Di 

Marzo et al., 2001; Costa et al., 2008) exhibit a variety of similar biological activities and 

share with the main eCBs certain metabolic routes potentiating their effects through 

competitive hydrolytic inhibition or allosteric modulation of binding to the receptor 

(Iannotti et al., 2016). The biological activity of these NAEs involves TRPV1 and PPARα 

activation as well as CB1 receptors (De Petrocellis & Di Marzo, 2009). OEA, PEA and 2-

oleoylglycerol (2-OG) also activate GPR119 receptor expressed mostly in human and rat 

pancreas; besides, OEA and PEA activate GPR55 at high concentrations. PEA does not act 

on CB1 receptors in the CNS. The N-stearoyl ethanolamine (SEA) is a NAE that controls cell 

growing and has anti-inflammatory, immunomodulator and antinociceptive with anorexic 

properties. There are more lipids such as N-arachidonoyl glicyne (NArGly) and N-

arachidonoyl serine (NArS). NArGly is a high affinity GPR18 ligand, GPR92 partial agonist, 

potent FAAH inhibitor and with neuroprotective effects through CB2 receptors and TRPV1 

(Pertwee, 2015). Further, the ω-6 fatty acids N-dihomo-γ-linolenoyl ethanolamine (weak 

cannabinoid receptors agonist); 2-AG ether (noladin ether; CB1 receptor agonist and very 

weak CB2 receptor agonist that interferes AEA reuptake); N-arachidonoyl dopamine 

(NADA) and the analogue N-oleoyl dopamine (TRPV1 y PPARγ agonists); O-arachidonoyl 

ethanolamine (virodhamine; in vitro: partial CB1 receptor agonist and CB2 receptor 

agonist; in vivo: CB1 receptor antagonist and weak AEA reuptake inhibitor). Like AEA, 

noladin ether and virodhamine interact with PPARα and GPR55. Two ethanolamines of ω-

3 (n-3) polyunsaturated fatty acids, N-eicosapentaenoyl ethanolamine (EPEA) and N-

docosahexaenoyl ethanolamine (DHEA), are cannabinoid receptors and PPARγ agonists 

(Pertwee, 2015). Finally, there are more structurally related endocannabinoid compounds 

such as N-acyl palmitic acid and N- and O-acyl oleic acid derivatives that are more 

abundant than AEA but lack affinity for cannabinoid receptors, though they are 

metabolized by the same synthesizing and degrading enzymes of the most common eCBs 
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(Fezza et al., 2014; Iannotti et al., 2016). 

2.4. THE ACTIVATION OF CB1 RECEPTORS 

CB1 expression, as already mentioned, is widespread, heterogeneous and has crucial roles 

in the brain during prenatal and postnatal development and participates outstandingly in 

many brain functions ranging from food intake to cognition, through the modulation of 

synaptic transmission and plasticity (Marsicano et al., 2002; Monory et al., 2006; 

Marsicano & Kuner, 2008; Bellocchio et al., 2010; Puente et al., 2011; Castillo, 2012; 

Katona & Freund, 2012; Ruehle et al., 2013; Steindel et al., 2013; Soria-Gómez et al., 2014, 

2015; Hu & Mackie, 2015; Katona, 2015; Martín-García et al., 2016; Gutiérrez-Rodríguez 

et al., 2017, 2018; Berger et al., 2018; Monday et al., 2018; Bonilla-Del Rίo et al., 2019; 

Terral et al., 2019; Peñasco et al., 2019, 2020). A wide variety of intracellular effects, such 

as modulation of kinases, ion channels and transcription factors are triggered by the 

activation of CB1 receptors (Bosier et al., 2010; Pertwee, 2015). One of the most known 

and important result of these intracellular events in neurons is the retrograde inhibition 

of transmitter release (Kano et al., 2009). 

There are three basic forms on endocannabinoid-mediated synaptic plasticity involving 

eCBs as retrograde messengers: (1) depolarization-induced suppression of inhibition 

(DSI)/depolarization-induced suppression of excitation (DSE), (2) metabotropic-induced 

suppression of inhibition (MSI)/metabotropic-induced suppression of excitation (MSE) 

(also known as synaptically-evoked suppression of inhibition/excitation (SSE/SSI) (Safo 

et al., 2006) or endocannabinoid-mediated short term depression (eCB-STD) (Kano et al., 

1992), and (3) endocannabinoid-mediated long term depression (eCB-LTD) (Lafourcade 

et al., 2007; Puente et al., 2011; Lu & Mackie, 2016; Peñasco et al., 2019). Consequently, 

the activation of CB1 receptors modulates the release of several neurotransmitters, such 

as glutamate, GABA, glycine, acetylcholine, norepinephrine, dopamine, serotonin and 

cholecystokinin (Kano et al., 2009). 
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Fig. 3. The localization of the eCBS at the synapse. Schematic representation of an inhibitory 
and excitatory terminal making synapses with the neuronal dendritic shaft and dendritic spine, 
respectively. Abbreviations: ABHD6, alpha/beta domain-containing hydrolase 6; CB1, CB1 
cannabinoid receptor; CCK, cholecystokinin; COX-2, cyclooxygenase-2; DAGLα, diacylglycerol 
lipase α; MAGL, monoacylglycerol lipase; mGluR5, metabotropic glutamate receptor 5; NAPE-
PLD, N-arachidonoyl phosphatidyl ethanolamine-preferring phospholipase D; PLCβ, 
phospholipase C β. The increased number of CB1 receptors on the GABAergic terminal 
represents the higher density of CB1 receptors found on these axon terminals (modified from 
Lu & Mackie, 2016). 

Nevertheless, the traditionally thought role of eCBS in synaptic function is not strictly 

limited to retrograde neurotransmission, as their CB1 receptors can also be found on 

astrocytes (Gutiérrez-Rodríguez et al., 2017, 2018). Indeed, endocannabinoid signaling 

has been demonstrated to play a key role in the potentiation of glutamatergic transmission 

through neuron-glia communication, also known as tripartite synapses, that includes the 

activation of astroglial CB1 receptors (Navarrete & Araque, 2008, 2010; Navarrete et al., 

2014; Metna-Laurent & Marsicano, 2015; Da Cruz et al., 2016). Finally, intracellular CB1 

receptors have been localized to neuronal mitochondria (Bénard et al., 2012; Hebert-

Chatelain et al., 2014a,b; Koch et al., 2015) where they regulate memory through the 

modulation of energy metabolism (Hebert-Chatelain et al., 2016), and CB1 receptors are 

also present in astroglial mitochondria (Gutiérrez-Rodríguez et al., 2018). 
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Thus, the eCBS acting on different cell types and cellular compartments (Katona & Freund, 

2012; Lu & Mackie, 2016; Gutiérrez-Rodríguez et al., 2017; Busquets-Garcia, et al., 2018) 

through the activation of CB1 receptors, plays an important role in normal brain function 

(Herkenham et al., 1990; Tsou et al., 1998; Kano et al., 2009; Castillo, 2012; Katona & 

Freund, 2012; Lutz et al., 2015; Pertwee, 2015; Lu & Mackie, 2016; Busquets-Garcia et al., 

2018; Robin et al., 2018). 

2.4.1. Glial cells and astroglial CB1 receptors 

Glial cells constitute the most abundant cell population in the CNS. Amongst glial cell types, 

astrocytes are excellent players in brain information processing (Volterra & Meldolesi, 

2005), due to the bidirectional communication established with neurons (Araque et al., 

2001; Bezzi & Volterra, 2011).  

Old and recent evidences indicate that astrocytes are crucial in the regulation of brain 

energy metabolism and brain activity by detecting central and peripheral metabolic 

changes that affect brain homeostasis (Bélanger et al., 2011; Barros et al., 2018; 

Magistretti et al., 2018). Their morphology is particularly complex, they are distributed in 

close apposition to the synaptic structures and contact tens of thousands of synapses 

(Halassa et al., 2007). Astrocytes interact with neurons at many different levels, ranging 

from physical support, protection and metabolic sustenance (Hansson et al., 1990; Allen 

et al., 2009; Bélanger et al., 2011; Oliveira et al., 2015; Bolaños et al., 2016). In particular, 

CB1 receptor activation is involved in energy supply to the brain through the control of 

leptin receptor expression in astrocytes (Bosier et al., 2013). In addition, it is well known 

that astrocytes produce and release lactate, which is one of the major fuel sources for 

neurons (Bélanger et al., 2011; Suzuki et al., 2011; Barros et al., 2018; Magistretti et al., 

2018). Actually, a large body of studies have shown that astroglial release and neuronal 

uptake of lactate play fundamental roles in a range of behaviors, such as sleep (Petit et al., 

2015; Haydon et al., 2017), learning and memory (Suzuki et al., 2011), between others 

(Carrard et al., 2016). Now is clear that the modulation of astroglial bioenergetics 

represents a powerful primary signaling contributor to brain activity, plasticity and 

behavior (Allen et al., 2009; Bélanger et al., 2011; Suzuki et al., 2011; Oliveira et al., 2015; 

Magistretti et al., 2018; Robin et al., 2018; García-Cáceres et al., 2019).  

Further, astrocytes are forming tripartite synapses, and play important roles in 

maintaining and regulating synaptic physiology (Araque et al., 2014; Pérez-Alvarez et al., 

2014), in metabolic processes (Magistretti & Allaman, 2015; García-Cáceres et al., 2019), 
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and in processing brain information (Volterra & Meldolesi, 2005). 

Although it is generally assumed that the high levels of CB1 receptor expression in neurons 

account for most of the cannabinoid-induced brain effects, recent studies have underlined 

the pivotal importance of astroglial CB1 receptors in modulating astrocyte-neuron 

communication at both the synaptic and the behavioural levels (Araque et al., 2017; 

Martín-Fernandez et al., 2017; Busquets-Garcia et al., 2018; Robin et al., 2018). In fact, 

low-frequency astrocytic activation, in the absence of presynaptic activity, is sufficient to 

induce postsynaptic AMPA receptor removal and LTD expression in the CA1 hippocampus 

(Gómez-Gonzalo et al., 2015; Navarrete et al., 2019). Thus, the activation of CB1 receptors 

in astrocytes, in addition to promote astroglial differentiation (Aguado et al., 2006), plays 

a role in synaptic plasticity, memory and behavior (Navarrete & Araque, 2008, 2010; Han 

et al., 2012; Araque et al., 2014; Navarrete et al., 2014; Gómez-Gonzalo et al., 2015; Metna-

Laurent & Marsicano, 2015; Da Cruz et al., 2016; Robin et al., 2018; Durkee & Araque, 

2019). However, the potential impact of pathological conditions on the astroglial CB1 is 

currently unknown. 

2.4.2. Mitochondria and mitochondrial CB1 receptors 

The brain accounts for 2% of body weight, but it consumes 20% of the energy of the body 

(Attwell & Lauglin, 2001; MacAskill & Kittler, 2010), which indicates that bioenergy 

processes play a special role in the brain. Thus, ensuring and regulating cellular energy 

supplies, mitochondria are key elements of eukaryotic cell functions (Nicholls & Ferguson, 

2002; MacAskill & Kittler, 2010) that are crucial for the regulation of brain functions 

(Mattson et al., 2008; MacAskill & Kittler, 2010). Mitochondrial oxidative phosphorylation 

converts most of the energy contained in nutrients into ATP, required for cellular 

reactions. These key organelles also regulate several other important physiological 

processes, including calcium homeostasis, oxidative stress, apoptosis, and 

steroidogenesis. Besides, mitochondrial structure and functions are constantly adjusted 

to maintain cellular metabolic homeostasis (Hebert-Chatelain et al., 2014). The 

involvement of neuronal energetics in brain physiology and pathology has been the focus 

of intensive research (Laughlin et al., 1998; Mattson et al., 2008; MacAskill & Kittler, 2010) 

but the molecular mechanisms linking mitochondrial activity to brain functions are still 

poorly documented.  

G protein–coupled receptors (GPCRs) represent one of the largest protein families 

controlling neuronal activity. However, there are also consistent evidences that 

mitochondria contain G proteins (Lyssand & Bajjalieh, 2007; Andreeva et al., 2008). 
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Moreover, several reports have shown the intramitochondrial localization of potential 

downstream effectors of G protein signaling, such as soluble adenylyl cyclase (Zippin et 

al., 2003), phosphodiesterase (Acin-Pérez et al., 2009, 2011) and protein kinase A (PKA) 

(Ryu et al., 2005). Accordingly, cAMP can be produced in mitochondria (Chen et al., 2004; 

Helling et al., 2008; Acin-Pérez et al., 2009, 2011). Besides, it has been described that the 

intra-mitochondrial Gαi protein activation by mtCB1 receptors leads to the inhibition of 

soluble adenylyl cyclase and, consequently, to a decrease in intra-mitochondrial PKA 

activity (Hebert-Chatelain et al., 2016).  

Therefore, the presence of functional mtCB1 receptors in different tissues (Aquila et al., 

2010; Benard et al., 2012; Koch et al., 2015; Hebert-Chatelain et al., 2016; Mendizabal-

Zubiaga et al., 2016; Gutiérrez-Rodríguez et al., 2018), underlies the contribution of 

cannabinoid signaling to key bioenergetics processes. Indeed, in mouse hippocampal 

neurons, the presence of CB1 receptors in mitochondria regulates the activation of cellular 

respiration and energy production (Benard et al., 2012; Hebert-Chatelain et al., 2016). 

Specifically, by modulating the activity of complex I in the electron transport chain, as well 

as mitochondrial respiration and mobility, brain mtCB1 receptors affect synaptic 

transmission, memory formation and behavior (Hebert-Chatelain et al., 2016). However, 

the upstream mechanisms regulating the intramitochondrial cAMP–PKA signaling 

cascade in neurons, and the mechanisms coupling mitochondrial activity and neuronal 

physiology, remain poorly understood (Mattson et al., 2008; MacAskill & Kittler, 2010). 

As mitochondria are directly involved in the vast majority of brain functions, 

mitochondrial dysfunction can cause neurodegenerative diseases, strokes or disorders 

associated with ageing (Hebert-Chatelain et al., 2016). Thus, determining the 

mitochondrial effects of cannabinoids would open new hopes for the specific use of the 

therapeutic potential of cannabinoids in CNS disease. Therefore, it is urgent to know the 

distribution of CB1 receptors in the healthy or diseased brain in certain specific neurone 

compartments, with a view to developing new therapeutic tools based on the most 

effective and safest cannabinoids in the treatment of certain brain diseases. However, the 

low CB1 receptor expression in astrocytes (Rodríguez et al., 2001; Han et al., 2012; Bosier 

et al., 2013; Kovács et al., 2017; Gutiérrez-Rodríguez et al., 2018 ) and mitochondria 

(Bénard et al., 2012; Hebert-Chatelain et al., 2014a,b and 2016) constrains a consolidated 

picture of the subcellular CB1 receptor distribution in the astroglial compartments that 

holds the anatomical substrate for a functional interaction with the nearby synapses 

under normal or pathological conditions. In this sense, rescue mutant mice are key tools 

for the detailed anatomical characterization of the subcellular distribution of the receptor 



Introduction 

17 

in specific cell types, independently of its level of expression. In an interesting way, the 

GFAP-CB1-RS mice expressing the CB1 receptor gene exclusively in the astrocytes and the 

GFAPhrGFP-CB1-WT mutant mice, which target to express hrGFP only into astroglial cells 

are ideal genetic tools to study if really intracellular CB1 receptors are present in astroglial 

mitochondria as observed in neuronal and muscular mitochondria (Bénard et al., 2012; 

Hebert-Chatelain et al., 2014 and 2016; Mendizabal-Zubiaga et al., 2016; Gutiérrez-

Rodríguez et al., 2018). 

2.5. HIGH RESOLUTION ELECTRON MICROSCOPY 

CB1 receptor density is not uniform through the regions expressing the receptor, which 

makes extremely difficult to identify low CB1 receptor expression in cell types and/or in 

subcellular compartments of wild-type brains (Busquets-Garcia et al., 2015). 

In the 1990´s, autoradiography of radioligand binding ([3H]CP55,940) was used to assess 

qualitatively and quantitatively brain cannabinoid receptors (Herkenham et al., 1990). 

With the cloning of the CB1 receptor, in situ hybridization techniques were routinely 

applied to study the CB1 mRNA distribution in brain somata (Mailleux & Vanderhaeghen, 

1992; Matsuda et al., 1993; Marsicano & Lutz, 1999). Later on, the Mackie laboratory 

raised polyclonal antibodies against a specific N-terminal amino acid sequence of the CB1 

receptor protein (Twitchell et al., 1997) and shortly after a new CB1 receptor antiserum 

was raised against a C-terminal amino acid sequence of the rat CB1 receptor (Egertova et 

al., 1998). These immunological tools combined with the appropriate histochemical 

techniques for light microscopy allowed visualizing the pattern of CB1 receptor-like 

immunoreactivity in the brain (Egertova et al., 1998; Tsou et al., 1998). This spring from 

the regional (autoradiography) and cellular distribution (in situ hybridization) to the CB1 

receptor immunohistochemistry was a great advance in the cannabinoid field as new 

localizations of the receptor were revealed. 

Yet, the subcellular distribution of the CB1 receptor expression was a pending matter until 

pre-embedding immunocytochemical technique for electron microscopy was applied as 

very valuable tool for the study of the precise CB1 receptor localization in brain tissue and 

peripheral organs. This method helped to demonstrate that CB1 receptors are not evenly 

distributed throughout brain cell types and subcellular compartments, since high CB1 

receptor concentrations at inhibitory GABAergic synaptic terminals (Katona et al., 1999, 

2000; Kawamura et al., 2006; Ludányi et al., 2008; Marsicano & Kuner, 2008; Katona & 

Freund, 2012; De-May & Ali, 2013; Steindel et al., 2013; Hu & Mackie, 2015), low at 

glutamatergic synaptic terminals (Marsicano et al., 2003; Domenici et al., 2006; Katona et 
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al., 2006; Monory et al., 2006; Takahashi & Castillo, 2006; Kamprath et al., 2009; Bellocchio 

et al., 2010; Puente et al., 2011; Reguero et al., 2011; Ruehle et al., 2013; Soria-Gómez et 

al., 2014) and in astrocytes were revealed (Navarrete & Araque, 2008, 2010; Stella, 2010; 

Han et al., 2012; Bosier et al., 2013; Metna-Laurent & Marsicano, 2015; Viader et al., 2015; 

Da Cruz et al., 2016). Furthermore, it turned out that the levels of CB1 receptor expression 

(Marsicano & Lutz, 1999) do not directly correlate with their importance in a physiological 

context, as low or very low CB1 receptor expression passing unaware in brain cell types or 

subcellular compartments (Katona et al., 1999, 2000; Hájos et al., 2000) even considered 

as background staining have been demonstrated to hold functional and behavioral 

relevance (Busquets-Garcia et al., 2018). 

There are certainly some limitations inherent to the pre-embedding immunogold method, 

mostly that labeling does not correlate with the exact localization of the antigen, therefore, 

is not quantitative (only semi-quantitative). Success of the pre-embedding detection 

method was improved by the development of ultra-small gold secondary conjugates 

(Nanogold®) in combination with gold particle enlarging chemistry, making it possible 

for probes to detect deeper into tissues, thus reducing the inherent limitation of antibody 

penetration and molecule detection while enhancing the resolution of receptor 

localization. However, it does not serve to multiple labeling for simultaneous visualization 

of several synaptic proteins unless other techniques are combined. In combination with 

immunoperoxidase and 3,3’-diaminobenzidine (DAB) reaction product 

immunochemistry, pre-embedding procedures can reveal protein co-localizations with 

cell specificity and at high resolution. 

2.6. LIMBIC SYSTEM 

The limbic system regulates a number of behaviors that are essential for the survival of all 

vertebrate species including humans (Sokolowski & Corbin, 2012). Predominantly, the 

limbic system (Fig. 4) plays a pivotal role in behavior by controlling appropriate responses 

to stimuli with social, emotional, or motivational salience. Moreover, the intricate 

functional neuroanatomy of limbic system with its diverse circuits may explain some of 

the manifestations of neuropsychiatric disorders. 

Research has identified the role of the amygdala in various anxiety disorders and 

emotional memory, the trisynaptic hippocampal circuitry underlying cognitive 

functioning and the significance of hypothalamus in various neurovegetative functions, 

facts that suggest the integral role of the limbic system in understanding human behavior 

and its aberrations (Rajmohan & Mohandas, 2007). 
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The limbic system in the human brain is compared to the rodent brain; due to the structural and 

functional similarities between the limbic areas, many studies have been carried out in rodents 

(Crews et al., 2000; Jones et al., 2008b; Coleman et al., 2011, 2014; Kwon et al., 2011a; Yu et al., 

2012; Forbes et al., 2013; Almeida-Suhett et al., 2014; Petraglia et al., 2014b, c; Vetreno et al., 

2016; Qin et al., 2018). 

2.7. THE HIPPOCAMPAL FORMATION 

The hippocampal formation (HF) plays an essential role in spatial and contextual memory, 

as well as in learning and mood regulation. In addition, disorders such as anxiety, 

depression, some of the neurodegenerative diseases and addiction, including cannabis 

and EtOH, are related to alterations in regions of the HF. Thus, for the purposes of this 

dissertation, I will focus on the hippocampus. 

The main flow of information in the hippocampus is the well-known trisynaptic circuit 

(Fig. 5). Briefly, the axons of layer II neurons in the entorhinal cortex (EC) project to the 

DG through the perforant pathway (PP) including the lateral perforant pathway (LPP) and 

medial perforant pathway (MPP). The granule cells of the DG send projections to the 

Figure 4. Main structures of the human and 
rodent limbic system. 

(a) Human brain showing the amygdala 
(green), bed nucleus of stria terminalis (BNST, 
blue), hypothalamus (yellow), and 
hippocampus (pink). 
The hippocampus (pink) attaches to the 
mamillary bodies (orange) through the 
fimbria-fornix. Olfactory inputs are received by 
the main olfactory bulbs (MOB, purple). Other 
structures include the nucleus accumbens 
(NuAc), Ventral tegmental area (VTA), and the 
periaqueductal gray (PAG). 

(b) Similar structures are found in rodents. 
Note the enlarged olfactory bulbs compared to 
humans, and the presence of the accessory 
olfactory bulbs (AOB, red). Together these 
structures facilitate the execution and 
reinforcement of innate behaviors (from 
Sokolowski & Corbin, 2012). 
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pyramidal cells in CA3 through mossy fibres. CA3 pyramidal neurons relay the 

information to CA1 pyramidal neurons through ipisilateral Schaffer collaterals. CA1 

pyramidal neurons send back-projections into deep-layer neurons of the EC. CA3 also 

receives direct projections from EC layer II neurons through the PP and CA1 gets a direct 

input from EC layer III neurons through the temporoammonic pathway (TA). The dentate 

granule cells also project to the mossy cells in the hilus and hilar interneurons, which send 

excitatory and inhibitory projections, respectively, back to the granule cells. 

Figure 5. The neural circuitry in the rodent hippocampus. (a) An illustration of the 
hippocampal circuitry. (b) Diagram of the hippocampal neural network. The excitatory 
trisynaptic pathway (entorhinal cortex (EC)–dentate gyrus–CA3–CA1–EC) is depicted by 
solid arrows (from Deng et al., 2010). 
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2.8. CB1 RECEPTORS IN NORMAL AND PATHOLOGICAL CONDITIONS 

2.8.1. Ethanol 

Ethyl alcohol or ethanol (CH3-CH2-OH) is probably the most commonly consumed 

addictive drug in the world (SAMHSA, 2011) and is an important health and social 

problem worldwide (WHO, 2019). 

Binge drinking is the typical pattern of alcohol consumption in youth. It is characterized 

by an intermittent consumption of large amounts of EtOH in short periods of time (3 or 

more drinks in 1-2 hours) followed by a period of abstinence (Courtney & Polich, 2009). 

This intake pattern causes large and rapid spikes in blood EtOH concentration (BEC) that 

brings serious consequences in terms of acute toxicity but also leads to vulnerability for 

later EtOH abuse and dependence (Amodeo et al., 2017). 

Despite of being a weak drug (it is needed a quantity of grams to produce a 

pharmacological effect), EtOH heavily impacts on the structure and function of the brain, 

particularly during adolescence (Pascual et al., 2007; Clark et al., 2012; Keshavan et al., 

2014; Liu & Crews, 2015; Vetreno & Crews, 2015; Adermark & Bowers, 2016; Montesinos 

et al., 2016; Spear, 2016a). Because EtOH modifies brain maturation, adolescent drinking 

associates with deficits in attention, learning, memory, intellectual development or visual-

spatial functions. (Brown & Tapert, 2004; Nagel et al., 2005; Zeigler et al., 2005; Lacaille et 

al., 2015). This correlates with loss of hippocampal, prefrontal cortex and cerebellar 

volumes as well as ventricular enlargement found in young people starting drinking at 

early age (Shear et al., 1992; De Bellis et al., 2000, 2005; Nagel et al., 2005; Medina et al., 

2008; Lisdahl et al., 2014). 

EtOH causes a significant loss of hippocampal neurons, astrocytes and microglia (Oliveira 

et al., 2015) and mitochondrial dysfunction that leads to brain inflammation, synaptic 

dysfunction and memory loss (Crews et al., 2000). Moreover, all these effects are long 

lasting (Coleman et al., 2011, 2014; Forbes et al., 2013). Actually, binge drinking alters 

brain volume in animal models that mimics the alteration found in young drinkers (Crews 

et al., 2000; Coleman et al., 2011, 2014; Forbes et al., 2013; Vetreno et al., 2016) and EtOH-

exposed adolescent animals are more sensitive and show memory and learning 

dysfunctions (Markwiese et al., 1998; White & Swartzwelder, 2005) which can extend into 

adulthood (Sircar & Sircar, 2005; Pascual et al., 2007). 

Given the incidence of binge drinking in adolescents and young adults and the lesion 

effects of EtOH in the CNS, it is critical to understand both the long-term consequences of 
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this exposure and methods by which this damage can be overcome by therapeutic 

interventions. The persistent behavioral effects of EtOH in adolescence are accompanied 

by disturbance of synaptic plasticity and neurotransmission. Thus, numerous studies have 

shown that EtOH alters several neurotransmitter and neuromodulatory systems, in 

particular, the eCB (Hungund et al., 2003; Basavarajappa, 2007; Mitrirattanakul et al., 

2007; Adermark et al., 2011; Talani & Lovinger, 2015; Varodayan et al., 2017), 

glutamatergic (Tabakoff & Hoffman, 1996; Fadda & Rossetti, 1998; Heinz et al., 2004; Alele 

& Devaud, 2005; Larsson et al., 2005), GABAergic (Mehta & Ticku, 2005; Fleming et al., 

2007, 2012, 2013; Centanni et al., 2014), and dopaminergic (Coleman et al., 2011; Boutros 

et al., 2015; Shnitko et al., 2014; Vetreno et al., 2014; Spoelder et al., 2015) systems in 

many brain areas. Moreover, it is well documented that the eCBS regulates the EtOH-

induced changes in excitatory and inhibitory transmission and participates in EtOH 

addictive behaviors of consumption, motivation, reinforcing and dependence (Rimondini 

et al., 2002; Colombo et al., 2005; Thanos et al., 2005; Economidou et al., 2006; 

Mitrirattanakul et al., 2007; Basavarajappa et al., 2008; Kelm et al., 2008; Vinod et al., 2008, 

2012; Roberto et al., 2010; Pava et al., 2012; Pava & Woodward 2012; Talani & Lovinger, 

2015) and, reciprocally, EtOH modulates the behavioral and neural eCB-dependent effects 

(Pava et al., 2012; Talani & Lovinger, 2015). 

However, how binge drinking affects receptor populations in the brain and impacts on the 

structure of the developing adolescent brain is not well understood. As already mentioned, 

there is considerable evidence for the involvement of the eCBS in alcohol consumption 

and motivation, reinforcing properties of EtOH and EtOH dependence (Pava & Woodward, 

2012). For instance, CB1 receptor agonists stimulate a dose-dependent increase in EtOH 

intake (Colombo et al., 2002), while antagonists reduce voluntary EtOH intake, preference 

and craving (Economidou et al., 2006). Moreover, CB1 receptor knock-out mice show a 

reduced EtOH preference and intake (Hungund et al., 2003). Interestingly, chronic EtOH 

exposure causes a decrease in CB1 receptor mRNA expression (Ortiz et al., 2004; 

Mitrirattanakul et al., 2007) as well as in CB1 receptor density and functionality 

(Basavarajappa et al., 1998; Vinod et al., 2006) associated with an eCB increase in the 

hippocampus (Mitrirattanakul et al., 2007), but not in amygdala or striatum (Rubio et al., 

2009), that persists after a long withdrawal period (Mitrirattanakul et al., 2007). 

Furthermore, an increase in AEA was detected in EtOH animal models (Vinod et al., 2006) 

and in the ventral striatum of postmortem human alcoholics (Vinod et al., 2010), together 

with a decrease in the anandamide-degrading enzyme FAAH and CB1 receptor expression 

(Vinod et al., 2010). A decrease in CB1 receptor expression and a reduced G-protein 

coupling of the receptor was also observed in the striatum, hippocampus, nucleus 
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accumbens and amygdala of FAAH knock-out mice (Vinod et al., 2008). The changes in 

hippocampal CB1 receptor expression have negative consequences on the CB1 receptor 

mediated inhibitory synaptic transmission, despite the recovery of the CB1 receptor 

expression after a prolonged withdrawal (Rimondini et al., 2002; Mitrirattanakul et al., 

2007; Vinod et al., 2012) probably due to a reduction in eCBs (Vinod et al., 2012). 

As to the astroglia, prolonged EtOH exposure alters the distribution and content of the 

glial fibrillary acidic protein (GFAP) that has a negative impact on the astrocytic 

intermediate filaments and, ultimately, on the astrocyte morphology eventually leading to 

brain dysfunction (Renau-Piqueras et al., 1989). As mentioned above in previous sections, 

activation of CB1 receptors expressed in astrocytes promotes astroglial differentiation, 

modulates synaptic transmission through the neuron-astrocyte crosstalk (Navarrete & 

Araque, 2010; Han et al., 2012; Bosier et al., 2013; Araque et al., 2014; Gómez-Gonzalo et 

al., 2015; Metna-Laurent & Marsicano, 2015; Da Cruz et al., 2016) and regulates leptin 

receptor expression in cultured cortical and hypothalamic astrocytes (Bosier et al., 2013). 

To our knowledge, however, there is no direct evidence on the effect of chronic EtOH 

exposure during adolescence on the CB1 receptor expression in astrocytes of the adult 

brain. 

2.8.2. Traumatic brain injury 

As it has elegantly been written in full detail in the doctoral thesis´ manuscript of Cristina 

Pinar PhD (supervisor: Dr. Brian Christie), Division of Medical Sciences, University of 

Victoria, Victoria (Canada), traumatic brain injury (TBI) is a brain damage resulting from 

impulsive force transmitted to the head by an external mechanical force (NCIPC, 2003; 

Frieden et al., 2015). This form of trauma is a major worldwide health and socioeconomic 

concern, as it represents the foremost cause of mortality and disability for individuals 45 

years of age and under (Ghajar, 2000; Cole, 2004). Globally, 10 million hospitalizations 

and/or deaths are the direct result of TBI with an estimate of 57 million people currently 

living having a history of TBI (Langlois et al., 2006). These prevalent injuries, most 

commonly caused by falls and motor vehicle crashes (Frieden et al., 2015), can lead to 

persistent structural and functional damage in the brain that alter behaviour such as 

learning and memory, emotion, anxiety and decision-making.  

A TBI can either be a penetrating injury or a closed-head injury. An injury classified as a 

penetrating TBI presents with damage to the skull, dura and brain parenchyma, while in 

a closed-head TBI, the skull and usually these other brain structures remain intact or do 
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not show evident alterations (Cassidy et al., 2004). The severity of the injury is determined 

based on: level of consciousness (duration and severity, if lost), memory and neurological 

deficits and brain imaging. Mild TBI, also referred to with the term “concussion”, 

represents the most common type of TBI. 

The clinical symptoms of mTBI may include, but are not limited to: headaches, confusion, 

nausea, balance problems, attention deficits, sleep disturbances, learning and memory 

problems, and emotional alterations (Kelly & Rosenberg, 1997; Caine et al., 2014) 

Symptoms are typically short-lived and resolve spontaneously in a matter of days or 

weeks; however, in a subset of individuals, mTBI symptoms can persist for over a year for 

undetermined reasons (McCrea et al., 2003b; Hall et al., 2005a). 

While a single mTBI may not cause evident or long-lasting structural or functional deficits, 

it may render the brain vulnerable to subsequent injuries, creating a window of 

susceptibility where the accumulation of multiple mild concussive events may lead to 

more severe cumulative damage and long-term cognitive dysfunction (Guskiewicz et al., 

2003; Prins et al., 2012; Fehily & Fitzgerald, 2017). Mild TBI accounts for up to 80% off all 

head injuries (Faul et al., 2010; Frieden et al., 2015). Based on those medically reported 

injuries, the incidence of mTBI is currently estimated to be 100 - 300 people per 100,000 

(Cassidy et al., 2004; Nguyen et al., 2016). However, mTBI is an under-reported injury as 

many people who sustain a mTBI do not seek medical care (Setnik & Bazarian, 2007). A 

more accurate estimate for the incidence of mTBI is likely to be approximately 600 people 

per 100,000, or roughly 42 million globally (Cassidy et al., 2004). 

Understanding how the mechanical energy from the external force is transferred to the 

brain and the effects of this physical stimulus on the living tissue and neural/glial 

networks is critical for understanding concussive injuries. 

Despite the protection that the skull and cerebrospinal fluid (CSF) provide, head injury—

even without skull fracture—can damage fragile brain tissue via acceleration and 

deceleration forces. Due to its physical properties, the brain tissue shows nonlinear 

behavior in response to the applied loading rate (Arbogast et al., 1997; Donnelly & Medige, 

1997; Miller & Chinzei, 1997; Prange-Kiel et al., 2003; Takhounts et al., 2003). Thus, as 

brain tissue is mostly composed of water, it is resistant to changing its shape when 

subjected to pressures. However, it deforms easily in response to shear forces compared 

with other biologic tissues. Several studies have investigated the impact of shear 

deformation in comparison to other forces and have led to the idea that shear deformation 

is the main cause of injury in concussion (Unterharnscheidt & Higgins, 1969; Adams et al., 

1982; Gennarelli et al., 1982). 

The anatomical location and structure of different brain regions can make certain areas 
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more susceptible to the shearing forces. For instance, clinical studies using magnetic 

resonance imaging (MRI) have reported the hippocampus as one of the most vulnerable 

regions to shearing forces after moderate and severe TBI (Kotapka et al., 1992; Tate & 

Bigler, 2000; Bigler et al., 2002; Tomaiuolo et al., 2004; Serra-Grabulosa et al., 2005; Bigler, 

2018).The biomechanical forces of mTBI generate intracranial pressure gradients that 

lead to shearing and tearing of neurons, glial cells, and blood vessels in the brain (Blennow 

et al., 2012; Pekna & Pekny, 2012). Therefore, the disruption of axonal fibers caused by 

mTBI mechanical forces can lead to synaptic transmission alterations and neuronal circuit 

dysfunction. In addition, blood vessels are also structures vulnerable to shear forces. 

Indeed diffuse axonal injury (DAI) is usually accompanied by microbleeds in the same 

locations which can be referred to as diffuse vascular injury (DVI) (Gentry et al., 1988; 

Onaya, 2002; Pittella & Gusmão, 2003). Rupture of several capillaries, a phenomenon 

known as multiple petechial hemorrhages, is commonly observed in TBI patients with 

different severities (Mckee & Daneshvar, 2015). The hypoxic event caused by this halt in 

blood flow can contribute to the immediate dysfunctions following mTBI. Moreover, it has 

been reported that following TBI, the cerebrovascular reactivity (brain ability to elevate 

blood flow above baseline) is compromised (Adams et al., 2018; Amyot et al., 2018). This 

means that the brain capacity to modulate metabolic demands caused by neuronal activity 

is deficient and can alter the normal functioning of the brain. Disruption of the axolemmas 

increases their permeability (Pettus et al., 1994; Povlishosk & Pettus, 1996), Ca2+ influx, 

and mitochondrial swelling (Maxwell et al., 1997; Mata et al., 1986). Microtubule 

disorganization post-injury has been identified as a consequence of axon stretching 

where ultrastructural analysis has shown breakage and folding of microtubules after TBI, 

triggering microtubule disassembly (Povlishosk & Pettus, 1996; Maxwell et al., 1997; 

Tang-Schomer et al., 2010). This causes accumulation of organelles in the axon and 

axonal swelling, with eventual disconnection and axotomy (Christman et al., 1994; 

Barkhoudarian et al., 2011; Johnson et al., 2013; Giza & Hovda, 2014). 

The biomechanical forces induced by the impact also cause pathophysiological changes 

like the opening of voltage-dependent potassium (K+) channels (Farkas et al., 2006). This 

disruption causes an unregulated amount of ion flux, specifically K+ efflux and sodium 

(Na+) influx at the cellular level, and a subsequent dysregulated release of 

neurotransmitters (NT), particularly the excitatory amino acid glutamate. In order to 

restore the ionic balance, the Na+/K+ ATP-dependent pumps activity is increased, which 

results in a depletion of the energy stores creating a metabolic crisis. In order to restore 

the energy reservoir, the system mobilizes intracellular glucose to generate more ATP 
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causing hyperglycolysis. Impaired oxidative metabolism may result in decreased ATP 

production, thereby exacerbating the energy crisis, ionic imbalance and further 

contributing to hyperglycolysis. Following this trauma induced hyperglycolysis, there is 

an accumulation of lactate, resulting in acidosis, increased membrane permeability and 

cerebral edema (Kalimo et al., 1981). Studies have shown an increase in glucose 

metabolism as early as 5 minutes post-TBI and lasting up to 4 hours in rats (Gardiner et 

al., 1982), and this is followed by a period of hypometabolism of variable duration 

dependent upon injury severity (Peskind et al., 2011). 

In addition to these energy perturbations, excessive extracellular glutamate binds to post-

synaptic N-methyl-D-aspartate (NMDA), AMPA and kainate receptors causing further 

regional depolarization (Faden, 1992). Consequently, activated NMDA receptors 

(NMDARs) flux Ca2+ into the cell. This Ca2+ acts as a second messenger triggering 

numerous pathways. For instance, increased Ca2+ following trauma may cause cell death 

via over activation of calpains (Roberts-Lewis & Siman, 1993; Kampfl et al., 1997), 

phospholipases (Farooqui & Horrocks, 1991), or protein kinases (Verity, 1992). Moreover, 

the large influx of Ca2+ via NMDARs accumulates in the mitochondria resulting in impaired 

oxidative metabolism (Xiong et al., 1997). This mitochondrial dysfunction leads to 

decreased production of ATP, thereby worsening the energy situation (Xiong et al., 1997; 

Vagnozzi et al., 2007). All these events following the initial insult are believed to be the 

cause of acute post-injury deficits (Giza & Hovda, 2014b; Barkhoudarian et al., 2016) and 

in the long run they could cause permanent alterations in the eCBS. 

2.8.3. Δ9-THC 

Marijuana (Cannabis sativa) used by adolescents has been on the rise since the early 

1990’s. It is the most commonly used illicit drug among young people in Europe (EMCDDA, 

2019). With recent legalization in certain countries and states of USA and 

decriminalization acts passed, cannabinoid exposure in adolescents will undoubtedly 

increase even more. The main psychotropic substance of the Cannabis sativa plant is Δ9-

tetrahydrocannabinol (Bossong & Niesink, 2010; Klein et al., 2011). As CB1 receptor is the 

target of THC, its distribution in the brain closely fits into the deleterious effects of 

cannabinoids on locomotion, perception, learning, memory or the cannabinoid-positive 

effects as anti-convulsant or food intake enhancers, and its low amount in the brainstem 

correlates with the low toxicity and lethality of marijuana (Bellocchio et al., 2010; Han et 

al., 2012; Katona & Freund, 2012; Hebert-Chatelain et al., 2014a,b, 2016; Soria-Gómez et 
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al., 2014; Lu & Mackie, 2016; Martín-García et al., 2016; Mechoulam, 2016). 

Even though, THC and other cannabinoid receptor agonists (CB1/CB2) seem to produce 

beneficial effects in conditions related to pain, inflammation, anxiety, muscle spasticity, 

feeding, or nausea (Di Marzo, 2008; Blankman & Cravatt, 2013; Mechoulam & Parker, 

2013; Pacher & Kunos, 2013). However, psychomimetic effects, memory-impairing 

actions, and dependence liabilities dampen enthusiasm for therapeutic development of 

CB1 receptor agonists (Schlosburg et al., 2014). These deficits are more evident when this 

substance is taken during critical developmental periods like adolescence (Viveros et al., 

2012). In fact, previous reports have shown that chronic adolescent administration of CB1 

receptor agonists induces alterations of the emotional behaviour, the cognitive function 

as well as psychotic-like symptomatology in adult rats (Biscaia et al., 2003; Schneider & 

Koch, 2003, 2007; O’Shea et al., 2004, 2006; Llorente-Berzal et al., 2011; 2013a; Mateos et 

al., 2011; Zamberletti et al., 2012). The administration of CB1 receptor agonists during 

adolescence also induces long-term neurochemical changes in the brain (Rubino et al., 

2008; Llorente-Berzal et al., 2013a) and sex-dependent changes in expression and 

functionality of hippocampal CB1 receptors (Mateos et al., 2011; López-Gallardo et al., 

2012). 

Human studies are also consistent with preclinical work implicating a regulatory role of 

THC in modulating emotional processing and fear learning. Acute THC administration 

reduces amygdala reactivity to social signs of threat, without affecting activity in primary 

visual cortex and motor cortex (Phan et al., 2008), and impairs recognition of facial fear 

and anger, but not sadness or happiness (Ballard et al., 2013). 

At the molecular level, activation of CB1 receptors on axon terminals by plant-derived 

compounds or synthetic agonists inhibits neurotransmitter release throughout the CNS 

(Lévénès et al., 1998; Szabo et al., 1998; Katona et al., 1999; Misner & Sullivan, 1999; 

Hoffman & Lupica, 2000; Gerdeman & Lovinger, 2001; Hoffman & Lupica, 2001). It is 

known that in the hippocampus, the endocannabinoids are released from hippocampal 

neurons in an activity-dependent fashion to initiate short- and long-term changes in 

synaptic efficacy following activation of CB1 receptors (Wilson & Nicoll, 2001; Alger, 2002; 

Freund et al., 2003). In the same way, the activation of CB1 receptors by acute or long-term 

exposure to THC, disrupts hippocampal function and impairs behaviorally and 

physiologically defined memory processes (Heyser et al., 1993; Misner & Sullivan, 1999; 

Ranganathan & D'Souza, 2006; Wise et al., 2009; Hoffman et al., 2010). These observations 
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were supported by human studies, in which THC impaired working and episodic memory 

(Curran et al., 2002; Ilan et al., 2004; Squire, 2004). In rats, both systemic and intra-

hippocampal injection of THC and synthetic CB1 agonists including WIN 55,212-2 (WIN-

2), HU-210 and CP 55,940 impairs hippocampal-dependent (i.e. short-term) memory 

across a variety of learning tasks (Lichtman et al., 1995; Lichtman & Martín, 1996; Ferrari 

et al., 1999; Hampson & Deadwyler, 2000; Hampson et al., 2003; Barna et al., 2007). 

In the hippocampus, the selective and dose-dependent effect of THC on synchronous firing 

is particularly interesting, as it suggests that temporal binding within local networks of 

CA3 and CA1 principal cells involving GABAergic feed-forward and feedback inhibition 

(Nitsch et al., 1990; Sargsyan et al., 2001) is more vulnerable to cannabinoids, while 

interregional synchrony (here possibly issued by the Schaffer collaterals) is more resilient 

to cannabinoid stimulation. A possible mechanistic underpinning may be the presence of 

CB1 and non-CB1 receptors at cholecystokinin containing GABAergic interneurons (Katona 

et al., 1999; Freund et al., 2003) with a seemingly higher sensitivity to exogenous 

cannabinoid than the glutamatergic neurons of Schaffer collaterals. Furthermore, the fact 

that a low dose of THC selectively de-synchronized principal neurons without having an 

effect on firing/bursting rates suggests that functional decoupling of principal neurons 

precedes alterations in their firing/bursting patterns. Interestingly, single cell burst 

characteristics appear intact as long as CA3→CA1 synchrony was maintained (Lisman, 

1997; Harris et al., 2001). 

The exact neuroanatomical substrates underlying each effect of THC are, however, not 

known. For example, mice lacking CB1 receptors in GABAergic neurons responded to THC 

similarly as wild-type littermates did, whereas deletion of the receptor in all principal 

neurons abolished or strongly reduced the behavioral and autonomic responses to the 

drug (Monory et al., 2007). Moreover, locomotor and hypothermic effects of THC depend 

on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of 

striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the 

cataleptic effect of the drug (Monory et al., 2007). These results indicate that one of the 

important pharmacological actions of THC do not depend on functional expression of CB1 

on GABAergic interneurons, but on other neuronal populations, and pave the way to a 

refined interpretation of the pharmacological effects of cannabinoids on neuronal 

functions (Monory et al., 2007). 

Regarding the involvement of the eCBS in the control of neuroinflammation, cannabinoid 

receptors expressed in astrocytes and microglia cells (Stella, 2010) seem to contribute to 

modulate the inflammatory response. In fact, THC is immunomodulatory, with the 
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majority of literature demonstrating immune suppressive and anti-inflammatory activity 

in vivo and in vitro (Croxford and Yamamura, 2005; Karmaus et al., 2011; Karmaus et al., 

2013; Katchan et al., 2016). In this sense, also, the synthetic CB1 agonist, WIN-2, decreased 

the number of activated microglia after treatment with the pro-inflammatory molecule 

lipopolysaccharide (LPS), suggesting that the cannabinoid system may play a role in the 

control of microglia reactivity in response to an insult (Marchalant et al., 2007). 

Furthermore, THC reduces methamphetamine (METH)-induced brain damage via 

inhibition of neural nitric oxide synthase (nNOS) expression and astrocyte activation 

through CB1-dependent and independent mechanisms, respectively (Castelli et al., 2014). 

Moreover, THC inhibits astroglial growth in vitro (Tahir et al., 1992) and affects the 

development of astroglia in vivo (Suárez et al., 2000). 

Regarding the mitochondria, early studies suggested that THC could affect mitochondrial 

functions (Bartova & Birmingham, 1976). Although, with the identification of cannabinoid 

receptors as typical plasma membrane GPCRs (Matsuda et al., 1990; Piomelli, 2003), 

mitochondrial effects of lipophilic cannabinoids on neurons were ascribed to nonspecific 

alterations of membrane properties (Martín, 1986). Later, it has been also described that 

CB1 receptor signaling to regulate mitochondrial biogenesis in peripheral non-neural 

tissues (Aquila et al., 2010; Tedesco et al., 2010). And the lipophilic nature of most 

cannabinoids (Piomelli, 2003) implies that receptor–ligand interactions might occur not 

only at plasma membranes, but also inside cells. Indeed, different intracellular 

compartments contribute to the regulation of endocannabinoid metabolism (Gulyas et al., 

2004; Marsicano & Kuner, 2008), and CB1 receptors have been shown to functionally 

signal in lysosomal or endosomal intracellular membranes (Rozenfeld & Devi, 2008) and 

in mitochondria (Hebert-Chatelain et al., 2014). At last, interestingly, Hebert-Chatelain et 

al. (2016) demonstrated that by genetic elimination of mtCB1 receptors, mice exposed to 

high doses of THC do not experience mitochondrial damage and were subsequently 

protected from cannbinoid-induced memory impairment. 

Despite all described before about the effects of THC consumption, nevertheless, no much 

information is available on the fine anatomical changes taken place in neurons and 

astrocytes after THC consumption during adolescence. In addition, the impact of 

adolescent THC consumption on the localization of CB1 receptors in the brain remains 

unknown. CB1 receptors are expressed in different cell types and/or in different 

subcellular compartments where THC is acting. Therefore, it is of special interest to study 

in detail if an acutely administered low-dose of THC alters the CB1 receptor localization or 
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expression in the brain, as well as if THC consumption during the adolescence produces 

structural adaptations in the brain that could be underlying the behavioural alterations 

caused by cannabis intoxication.  
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2.9. WORKING HYPHOTESIS 

CB1 receptor-mediated astrocytic functions are highly dependent on the CB1 receptor 

distribution in astrocytes relative to close neuronal compartments, particularly at the 

synapses. However, little is known about the expression and precise localization of the CB1 

receptor in astrocytes and their mitochondria relative to the synapses. We hypothesized that 

intracellular CB1 receptors are present in astroglial mitochondria as it has been previously 

described by our group in neuronal (Bénard et al., 2012; Hebert-Chatelain et al., 2016) and 

muscle mitochondria (Mendizabal-Zubiaga et al., 2016). The GFAP-CB1-RS mice expressing 

the CB1 receptor gene exclusively in the astrocytes and the GFAPhrGFP-CB1-WT mice will be 

ideal genetic tools to test this hypothesis. 

The adolescent brain is characterized by continuous maturation and structural development 

processes (Kyzar et al., 2016). Alcohol abuse during this critical period causes long-term 

alterations in neurotransmitter synthesis and release, signaling cascades, neuronal and 

astroglial morphology, gene expression, axonal outgrowth, dendritic pruning or synaptic 

transmission and plasticity (Keshavan et al., 2014). Based on this, we hypothesized that 

excessive EtOH consumption during the adolescence produces anatomical alterations in 

astrocytes and modifies their CB1 receptor expression in the CA1 hippocampus of adult mice, 

disrupting physiological processes in which the eCBS plays a key role, such as synaptic 

function and memory. 

Learning and memory impariments are the most commonly reported cognitive deficiencies 

following r-mTBI (Tabaddor et al., 1984; van Zomeren & van den Burg, 1985; Baddeley et al., 

1987; Dikmen et al., 1987; King et al., 1995; Ylvisaker & Szekeres, 2002). These processes are 

known to involve the hippocampal formation. Because the adolescent brain is particularly 

sensitive to experience and damage (Spear, 2000; Andersen, 2003) and taking into 

consideration the possibility that sex differences influences brain conditions, our working 

hypothesis is that r-mTBI would alters CB1 receptors distribution in the juvenile brain of 

both, male and female rodents. This fact could be due to the potencial physical damage 

produced by r-mTBI, which compromises the blood-brain barrier and microvasculature (Liu 

et al., 2014). 

Some studies have demonstrated in the hippocampus that the efficacy of THC is different at 

excitatory and inhibitory synapses. Thus, while THC acts as a partial agonist of CB1 receptors 

located in excitatory terminals (Shen & Thayer, 1999; Hoffman et al., 2010), CB1 receptors in 
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inhibitory terminals are more sensitive and completely antagonized by THC (Hájos et al., 

2000; Robbe et al., 2006). Also, the effects of THC in vivo show an alteration of the CB1-

dependent LTD of the inhibitory synaptic transmission in the hippocampus and of the 

excitatory synaptic transmission in the nucleus accumbens (Mato et al., 2004), and studies 

indicate that THC administered acutely produces a mismatch in cellular metabolism through 

the activation of CB1 receptors located in the mitochondria and, as a consequence, memory is 

altered (Hebert-Chatelain et al., 2016). Besides, long-term potentiation (LTP) is facilitated in 

the hippocampus of Glu-CB1-KO mice, which is accompanied by an increase in spine density 

and dendritic arborization. In contrast, the decrease in LTP in GABA-CB1-KO mice correlates 

with a decrease in both spine density and dendritic arborization (Monory et al., 2015). 

Therefore, while the behavioral and physiological effects of THC are well described, scarce 

anatomical studies have examined its actions on structural plasticity, i.e., the morphological 

changes that occur after THC exposure. Because the use of marijuana usually begins in the 

adolescence, we hypothesized that acute administration of cannabis during this time period 

produces modifications in the brain ultrastructure and alters the CB1 receptor expression in 

the CA1 hippocampus.  
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The general goal of my doctoral thesis was to investigate in the rodent brain by high 

resolution electron microscopy: 

First, the expression and precise localization of the CB1 receptor in astrocytes and their 

mitochondria relative to the synapses. 

Second, the subcellular pattern of the CB1 receptor distribution in rodents exposed to 

pathological insults sharing the common denominator of memory impairment, in order to 

provide insights of their impact on the CB1 receptor topography in distinct compartments and 

organelles of neurons and astrocytes involved in memory formation in the hippocampus. 

The specific objectives were to: 

1. Determine the CB1 receptor expression and distribution in the GFAPhrGFP-CB1-

WT and GFAPhrGFP-CB1-KO mutant mice, specifically:

1.1. Localization of CB1 receptors in astrocytes and astroglial mitochondria in 

the hippocampus. 

1.2. Topography of the CB1 receptors in astroglial mitochondria relative to the 

synapses in the hippocampus. 

1.3. Density of CB1 receptors in mitochondria of astrocytes and neurons in CA1 

stratum radiatum, prefrontal cortex, piriform cortex and accumbens. 

2. Study the impact of chronic EtOH intake during the adolescence (binge drinking)

on:

2.1. The cellular and subcellular localization and density of the CB1 receptor in 

adult CA1 neurons and astrocytes. 

2.2. The topography of the CB1 receptors in the adult CA1 hippocampal 

astrocytes relative to the synapses. 

2.3. The ultrastructure of the CA1 hippocampal astrocytes. 

3. Investigate in juvenile male and female rats the effects of mTBI at different time

points on:

3.1. The cellular and subcellular localization and density of CB1 receptors in the 

molecular layer of the hippocampal dentate gyrus. 

3.2. The ultrastructure of the DML astrocytes, neurons and mitochondria. 
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4. Assess the effects of an acute THC administration in the mature brain on:

4.1. The cellular and subcellular localization and density of CB1 receptors in the 

CA1 hippocampus. 

4.2. The ultrastructure of the CA1 astrocytes, neurons and mitochondria. 
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4.1. ETHICS STATEMENT 

Experiments were approved by the Committee of Ethics for Animal Welfare of the 

University of the Basque Country UPV/EHU (CEEA/M20/2015/093, 

CEEA/M20/2016/073, CEIAB/M30/2015/094, CEIAB/M30/2016/074) and the 

Committee on Animal Health and Care of INSERM and the French Ministry of Agriculture 

and Forestry (authorization number, A501350). All mice were used according to the 

European Community Council Directive of 22nd September 2010 (2010/63/EU) and the 

Spanish and French legislation (RD 53/2013, BOE 08-02-2013, Ley 6). 

The mTBI procedures applied to Long-Evans rats were approved by the Animal Care 

Committee at the University of Victoria (Victoria, BC, Canada) and were performed in 

accordance with the guidelines set by the Canadian Council for Animal Care. 

Maximal efforts were made in order to minimize the number and the suffering of the 

animals used. 

4.2. RESEARCH ANIMALS 

In my doctoral thesis, fifteen CB1-WT mice, nine CB1-KO mice and at least three animals 

of other conditional mice (GFAP-CB1-KO, GFAP-CB1-RS, CB1-STOP, GFAPhrGFP-CB1-WT 

and GFAPhrGFP-CB1-KO) were used, as it will be described below. In addition, the brains 

of twenty-one Long-Evans male and twenty-one female rats (three animals per group) 

were kindly provided by Dr. Brian R. Christie and Dr. Patrick Nahirney (Division of 

Medical Sciences, University of Victoria, Victoria BC, Canada). 

4.2.1.  C57BL/6 mice (hereafter CB1-WT) 

C57BL/6 mice (The Jackson Laboratory and Janvier labs) were received at the University 

of the Basque Country and after being in quarantine for one week, they were available to 

the experimenter. 
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4.2.2.  CB1 receptor mutant lines 

I. Conventional and conditional CB1-KO 

CB1-KO mice were generated and genotyped as previously described (Marsicano et 

al., 2002). In addition, conditional CB1 receptor mutant mice were obtained by 

crossing the respective Cre expressing mouse line with CB1 f/f mice (Marsicano et 

al., 2003), using a three-step breeding protocol (Monory et al., 2006). 

II. Generation of GFAP-CB1-KO

Transgenic mice expressing the inducible version of the Cre recombinase CreERT2 

under the control of the human glial fibrillary acid protein promoter, i.e. GFAP-

CreERT2 mice (Hirrlinger et al., 2006) were crossed with mice carrying CB1 receptor 

“floxed” sequence (Marsicano et al., 2003). As a result, transgenic mice CB1 

f/f;GFAPCreERT2 were obtained. This animal model allows the on-demand control of 

astroglial CB1 receptor recombination in adult mice (Han et al., 2012). 

III. Generation of GFAP-CB1-RS

STOP-CB1 mice were previously generated by inserting a loxP-flanked stop cassette into 

the 5’ untranslated (UTR) of the coding exon of the CB1 gene, 32 nucleotides upstream 

of the translational start codon (Ruehle et al., 2013). The STOP-CB1 mice were crossed 

with GFAP-CreERT2 mice (Hirrlinger et al., 2006) to obtain CB1 stop/stop; GFAP-

CreERT2 mice. 

Seven to nine-week-old CB1 f/f;GFAP-CreERT2 and CB1 f/f littermates, as well as CB1 
stop/stop; GFAP-CreERT2 and CB1 stop/stop littermates were treated daily for 8 

consecutive days with 1 mg/kg (i.p.) of either tamoxifen or 4OH-tamoxifen synthesized 

as previously reported (Detsi et al., 2002; Yu & Forman, 2003) to induce the Cre-

dependent astroglial deletion of CB1 (GFAP-CB1-KO and GFAP-CB1-WT littermate 

mice) or its exclusive astroglial reexpression (GFAP-CB1-RS and STOP-CB1 littermates). 

Mice were used for immunocytochemistry 3 to 5 weeks after the last day of tamoxifen 

or 4OH-tamoxifen injections. 

IV. Generation of GFAPhrGFP-CB1-WT and GFAPhrGFP-CB1-KO mice

Intrahippocampal injection of a recombinant adeno associated virus expressing 

humanized renilla green fluorescent protein (hrGFP) under the control of the human 

GFAP promoter (von Jonquieres et al., 2013) were performed in CB1-WT and CB1-KO 

mice to generate GFAPhrGFP-CB1-WT and GFAPhrGFP-CB1-KO, respectively. The vector 
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backbone was the pAAV-GFAP-hChR2(H134R)-EYFP kindly provided by Karl 

Deisseroth (Stanford University, CA, USA). The hChR2(H134R)-EYFP with the cDNA 

encoding for hrGFP was replaced using standard molecular cloning techniques. The 

virus production and purification, as well as the injection procedure were performed 

as previously described (Chiarlone et al., 2014). Coordinates for intrahippocampal 

injections were: anteroposterior -2.0mm, mediolateral +/- 1.5mm, dorsoventral -2mm 

relative from bregma. Mice were allowed to recover for at least 4 weeks after surgery 

before their anatomical characterization. 

4.2.3.  Long-Evans rats 

As mentioned above, brains of Long Evans rats were provided by Dr. Brian R. Christie and 

Dr. Patrick Nahirney (Division of Medical Sciences, University of Victoria, Victoria BC, 

Canada).  

Long-Evans female rats (Charles River Laboratories, St. Constant, PQ, Canada) were 

paired with proven male breeders (250-275 grams; post-natal day (pnd) 100-150) and 

plug checks were performed to confirm pregnancies. Care was taken not disturb the Dam 

and any new litter of pups for the first 24-36 hours post-partum to facilitate bonding. 

Pups were monitored to ensure they were thriving. At pnd 2, all litters were culled to 12 

pups to facilitate uniformity of maternal care across litters. Pups were weaned at pnd 21 

and at this time were re-housed in same-sex groups of 2-3 animals prior to experimental 

use. 

4.3. ANIMAL TREATMENT 

4.3.1.  Descriptive anatomical characterization 

C57BL/6N adult mice: CB1-WT, CB1-KO, GFAP-CB1-KO, CB1-STOP, GFAP-CB1-RS, GFAPhrGFP-

CB1-WT and GFAPhrGFP-CB1-KO mice (at least three animals of each condition) (between 

60 and 90 postnatal days) of either sex were habituated in their environment for at least 

1 week before experimental procedures were initiated. Animals were maintained at 

22°C with a 12:12-hour light:dark cycle and had food and water ad libitum. Then, mice 

were deeply anesthetized to carry out brain tissue processing, as noted later. 
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4.3.2.  Adolescent ethanol intake 

Three-week-old male C57BL/6J mice (three animals per group) were housed in standard 

Plexiglas cages (17 cm × 14.3 cm × 36.3 cm). Mice were habituated in their environment 

for at least 1 week before experimental procedures were initiated. Animals were 

maintained at 22°C with a 12:12-hour light:dark cycle (red light on at 9:00 hours) and had 

ad libitum access to food throughout all experiments and ad libitum access to water 

except during EtOH access. 

4.3.2.1. Drinking in the dark procedure 

Adolescent male mice from postnatal day 32 to 56 (4–8 weeks) were randomly assigned 

to either the water (control) or EtOH experimental group. Mice were subjected to a 4 

day BD in the dark procedure (Rhodes et al., 2007) over a period of 4 weeks. Each week, 

animals were weighed 1 hour before lights out on days 1–4. During these days, mice were 

separated and placed individually in standard Plexiglas cages (17 cm × 14.3 cm × 36.3 

cm). Three hours into the dark cycle, mice were either exposed to a single bottle of 

EtOH [20% EtOH (v/v) prepared from 96% EtOH and tap water (Alcoholes Aroca S. 

L., Madrid, Spain)] or a bottle of tap water (control group) for 2 hours and on day 4 for 4 

hours. After 4 days of EtOH or water exposure, EtOH bottles were removed and mice had 

access to only water for 3 days (food was always available). EtOH intake was calculated 

throughout treatment as grams of EtOH per kilogram of animal per hour (g/kg/hour). 

The average amount was 2.50 ± 0.15 g/kg/hour (Fig. 6a). At the end of the treatment, 

blood samples were collected from the lateral tail veins using a capillary tube (Sarstedt, 

Germany), and EtOH levels were measured with an EtOHassay kit  (Sigma-Aldrich). The 

averageblood EtOH concentration was 58.07 ± 6.04 mg/dl (Fig. 6b;***p < 0.001). 

Figure 6. Voluntary oral ethanol consumption and blood ethanol concentration (BEC). 
(a) Total ethanol intake (g/kg/h) and (b) BEC (mg/dl) in C57BL6 mice exposed to 4-day 
BD in the dark procedure over a period of 4 weeks during adolescence (pnd 30–58). Data 
are expressed as mean ± standard error mean (SEM). Data were analyzed by means 
unpaired t-test; ***p < 0.001. 

a b 
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Four weeks after cessation of EtOH exposure, control, EtOH-treated and CB1-KO mice (n 

= 3 each group) were deeply anesthetized to carry out brain tissue processing. 

Figure 7. Experimental timeline. EtOH mice had free EtOH access (20% (v / v)) during 
4 weeks in the adolescence (pnd 30-58). Each week, the mice were exposed to 2 or 4 
hours of free EtOH access. In the remaining 3 days of the week, animals were kept 
resting in their respective cages. After 4 weeks of withdrawal (adulthood), mice were 
sacrificed. 

4.3.3.  R-mTBI model 

Long-Evans rats (Charles River Laboratories, St. Constant, PQ, Canada) were housed in sex-

specific groups of 2-3 animals and were maintained at 22°C with a 12:12-hour light:dark 

cycle and had food and water ad libitum prior to experimental use. 

4.3.3.1. Awake closed head injury (ACHI) 

Repeat mild traumatic brain injuries were induced using the ACHI model (Meconi et 

al., 2018). This model was designed to produce a mild closed head injury in non 

anesthetized juvenile rats and its design was based on a similar model (Petraglia et al., 

2014b, 2014c). 

To produce the injury, rats were immobilized using a soft plastic restraint cone with 

an opening at the nostril to allow adequate ventilation (Model DC-200, Braintree 
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Scientific, Braintree, MA). Once the rats were properly positioned in the restraint, a 

3D printed helmet was placed over the head and held in place using a rubber elastic 

band and double sided tape. A circular flat disk on top of the helmet centered the impact 

site over the left parietal cortex. 

The animals were then placed on a soft foam platform (3” thick Super-Cushioning 

Polyurethane Foam Sheet, McMaster-Carr, OH) below the injury apparatus. The injury 

was induced using a modified CCI device (Impact One, Leica Biosystems Inc., ON, Canada) 

mounted on a stereotaxic frame. The impact tip, modified with the addition of a 7 

mm diameter flat rubber, was aligned vertically over the impact site on the helmet. 

Impact parameters were adjusted to an impact speed of 6 m/s, 10 mm of impact depth 

and 0.1 s of dwell time (or time to retraction). When the subject was motionless and 

the helmet and impactor were properly aligned, the impact was delivered using the 

control box. Animals were removed from the restraint bag immediately after the impact. 

Figure 8. Awake closed head injury model description. (a, b) A modified Leica Impact 
One controlled cortical impactor is used to produce a closed head injury. The control unit 
sets the velocity (6 m/s) and dwell time (10 ms) of an electromagnetic piston that is 
affixed to a stereotaxic frame. The piston drives a customized impact tip with a 7 mm 
diameter rubber tip. (b, c) The subject is placed in a soft plastic restraint bag, and a 3D 
printed helmet is placed on the head so the impact target is centred over the left 
parietal cortex. (c) The restrained subject is placed on a soft foam platform, and the 
stereotax is adjusted to centre the impact tip over the helmet target. The impact is 
initiated using the control unit, and then the subject is immediately moved from the 
platform and from restraint so that assessment can begin. (Figure adapted from Meconi et 
al., 2018). 

Rats were randomly assigned to one of two groups: uninjured or injured. In all 

experiments both sexes were included. At pnd 25 to 28, animals in the injured group 

received 2 or 4 impacts per day for 4 days (8 or 16 in total). Sham subjects underwent 

the exact same procedure as the injured animals, including being placed in the restraint 

bag and on the injury platform, wearing the helmet and hearing the piston sound, but 

b a c 
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without receiving the impact. To assess immediate neurological changes after each 

ACHI were developed a test battery and standardized scoring criteria: the neurological 

assessment protocol (NAP) (Shapira et al., 1988; Shohami et al., 1995; Schaar et al., 

2010; Ding et al., 2013). Animals were sacrificed at post-injury day (PID) 1, 10 and 

40 for immunocytochemistry experiments. 

The laboratory of Dr. Brian R. Christie and Dr. Patrick Nahirney (Division of Medical 

Sciences, University of Victoria, Victoria BC, Canada) performed this protocol and I 

describe it as a part of this thesis with their permission and approval. 

4.3.4.  Acute model of Δ9-tetrahydrocannabinol 

Nine-week-old male C57BL/6J mice (three animals per group) were housed in standard 

Plexiglas cages (17 cm × 14.3 cm × 36.3 cm). Mice were habituated in their environment 

for at least 1 week and maintained at 22°C with a 12:12-hour light:dark cycle and had food 

and water ad libitum before experimental procedures were initiated. 

4.3.4.1. Acute administration of THC 

At the time of investigation, six mice had a body weight of 21–26 g. They were 

j u s t  once injected intraperitoneally with Δ9-THC (5 mg/kg) or vehicle (Busquets-

Garcia et al., 2017). The solution was prepared with THC purchased from THC-

Pharm-GmbH (Frankfurt, Germany) and dissolved in 4% ethanol, 4% Cremophor-EL 

and 92% saline. The sham group was treated by injection of a matched saline and 

Cremophor (vehicle) mixture. After half an hour, mice were anesthetized to carry out 

brain tissue processing. 
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4.4. PRE-EMBEDDING IMMUNOLABELING FOR ELECTRON 
MICROSCOPY 

The protocol published by our laboratory was applied (Puente et al., 2019): 

4.4.1. Preservation of brain tissue 

1. Animals were anesthetized (at least n = 3) by intraperitoneal injection of

ketamine/xylazine (80 (for rat) or 100 (for mouse)/10 mg/kg body weight).

2. They were transcardially perfused at room temperature (20-25 °C ) through the left

ventricle with PBS (0.1 M, pH 7.4) for ~20 s at RT, followed by ice-cold fixative

solution made up of 4% formaldehyde (freshly depolymerized from

paraformaldehyde), 0.2% picric acid, and 0.1% glutaraldehyde in PB (0.1 M, pH 7.4).

The fixative solution was 250 ml per mouse and 500 ml per rat and the perfusion

time was 15 min per mouse and 30 min per rat.

3. The brains were removed from the skull and post-fixed in the fixative solution for ~1

week at 4 °C. Samples were stored in 0.1 M PB diluted fixative (1:10) containing

0.025% sodium azide at 4 °C until use.
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Figure 9. Timeline of the general steps for pre-embedding immunoelectron 
microscopy techniques. (Figure adapted with permission from Puente et al., 2019). 
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4.4.2. Single pre-embedding immunogold and double pre-embedding 
immunogold and immunoperoxidase method for electron microscopy 

The protocol published by our laboratory was used (Puente et al., 2019): 

1. Brains coronal sections were cut at 50 μm in a vibratome and collected in 12-well cell

culture plates in 0.1 M PB (pH 7.4) at RT. Sections from each brain were stored in

separate plates for storage at 4 °C in 0.1 M PB (pH 7.4) with 0.025% sodium azide.

Then, two or three sections per brain containing the area of interest were selected

and placed in a new plate. Total volume per well: 1 ml.

2. Pre-incubation in blocking solution (1 ml/well) containing 10% bovine serum

albumin (BSA), 0.02% saponin and 0.1% sodium azide in tris-hydrogen chloride

buffered saline (TBS) 1X, pH 7.4 on a shaker (300 rpm) for 30 min at RT.

3. Sections were incubated with goat polyclonal anti-CB1 receptor antibody or guinea

pig polyclonal anti-CB1 receptor antibody (diluted 1:100, 1 ml/well) alone, or in

double immunostaining in combination with either a mouse monoclonal anti-GFAP

antibody (1:1,000), rabbit polyclonal anti-GLAST antibody (0.3 µg/ml), rabbit

polyclonal anti-hrGFP antibody (1:500) or mouse monoclonal anti-gephyrin antibody

(1:250) prepared in 10% BSA/TBS 1X containing 0.004% saponin and 0.1% sodium

azide. Dish was placed on an orbital shaker for 2 days at 4 °C.

Note: The guinea pig polyclonal anti-CB1 antibody was used for double immunolabeling 

with the rabbit polyclonal anti-GLAST antibody. 

4. Several washes in 1% BSA/TBS (3 x 1 min and 2 x 10 min) to remove excess of the

antibody.

5. Incubation with 1.4 nm gold-conjugated secondary rabbit anti-goat IgG (Fab’

fragment, 1:100, Nanoprobes Inc., Yaphank, NY, USA) or 1.4 nm gold-conjugated

secondary goat anti-guinea pig IgG (Fab’ fragment, 1:100, Nanoprobes Inc.,

Yaphank, NY, USA) alone or in the case of double immunostaining along with the

corresponding biotinylated secondary antibody (1:200) diluted in 1% BSA/TBS with

0.004% saponin on a shaker for 3 h for single and 4 h for double immunostaining at

RT.

6. Several washes in 1% BSA/TBS (3 x 1 min and 2 x 10 min) on a shaker at RT.

7. In the case of double immunostaining, sections were incubated in avidin-biotin-

peroxidase complex (ABC) (1:50) prepared in washing solution (1 ml/well) for 1.5 h

at RT and washed three times in 1% BSA/TBS (10 min each).

8. The tissue was kept in 1% BSA/TBS on a shaker overnight at 4 °C.

9. Post-fixation with 1% glutaraldehyde in TBS (1 ml/well) for 10 min at RT.
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10. Several washes in double distilled water (3 x 10 min each).

11. Sections were transferred to test tubes.

12. Silver intensification of gold particles with the HQ Silver kit (Nanoprobes Inc., Yaphank,

NY, USA; 1 ml/tube) in the dark for 12 min.

13. Three washes in double distilled water (1 min each).

14. Three washes in 0.1 M PB (pH 7.4) (10 min each).

15. Sections were transferred to glass vials (15 ml, 3 x 5 cm).

16. In the case of double immunostaining, incubation in 0.05% DAB and 0.01%

hydrogen peroxide prepared in 0.1 M PB (1 ml/vial) for 3 min at RT and several

washes in 0.1 M PB (pH 7.4) (3 x 1 min and 2 x 10 min).

17. Samples were osmicated (1% osmium tetroxide in 0.1 M PB, pH 7.4; 1 ml/vial) in the

dark for 20 min.

18. Several washes in 0.1 M PB (pH 7.4) (3 x 1 min and 2 x 10 min).

19. Dehydration in graded ethanols (50%, 70%, 96%; 5 min/each) followed by three

times in 100% ethanol (5 min each) (1 ml/vial).

20. Clearing in propylene oxide (3 x 5 min, 1 ml/vial).

21. Embedding in a 1:1 mixture of propylene oxide and Epon resin 812 (1 ml/vial) on

a shaker overnight at RT.

22. Embedding in pure Epon resin 812 (1 ml/vial) for > 2 h at RT. 

23. Sections were placed between two glass slides and wrapped in aluminum foil.

24. Polymerization of resin-embedded sections in an oven at 60 °C for 2 days.

25. Blocks with the resin-embedded sections were trimed and then semi-thin sections

were cut into 1 μm on ultramicrotome with a histo diamond knife (Diatome USA)

and stained with 1 % toluidine blue to perceive the tissue.

26. Ultra-thin sections of 50 nm were cut with a diamond knife and collected on nickel

mesh grids.

27. Sections were stained with 2.5% lead citrate (1 drop/grid) for 20 min at RT.

28. Three washes in double distilled water (1 drop/grid) (10 min each).

29. Examination under a Philips EM208S transmission electron microscope and a JEOL

JEM-1400 Plus electron microscope (JEOL Canada).

30. Tissue was photographed by using a digital Morada camera (Olympus) and a Gatan

SC1000 digital camera (Gatan USA).
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Table 1. Antibodies. 

ANTIBODY Manufacturer; species; catalog 
number; RRID 

Anti-cannabinoid receptor type-1 (CB1) 
(2 µg/ml) 

Frontier Institute Co., ltd; goat 
polyclonal; CB1-Go-Af450; 
AB_2571592, AB-257130 

Anti-cannabinoid receptor type-1 (CB1) 
(2 µg/ml) 

Frontier Institute Co., ltd; guinea pig 
polyclonal; CB1-GP-Af530; 
AB_2571593 

Anti-glial fibrillary acidic protein 
(GFAP) 
(1:1000) 

Sigma-Aldrich; mouse monoclonal; 
G3893; AB_257130,AB_477010 

Anti-gephyrin (1:250) 
Synaptic Systems; mouse 
monoclonal; 147021; AB_2232546 

Anti-A522 (EAAT1 [GLAST]) 
(0.3 µg/ml) 

Gifted by Prof. Niels Christian Danbolt 
University of Oslo; rabbit polyclonal; 
Ab#314; AB_2314561 

Polyclonal humanized 
Renilla reniformis Green 
Fluorescence Protein 

  

Stratagene; rabbit polyclonal; #240142-
51, AB_10598674 

Biotinylated anti-mouse 
secondary antibody (1:200) Vector Labs; BA-2000; AB_2313581 

Biotinylated anti-rabbit 
secondary antibody (1:200) Vector Labs; BA-1000; AB_2313606 

1.4 nm gold-conjugated anti-
guinea pig IgG (Fab’ fragment) 
secondary antibody (1:100) 

Nanoprobes; goat; #2055 

1.4 nm gold-conjugated anti-
goat IgG (Fab’ fragment) 
antibody (1:100) 

Nanoprobes; rabbit; #2004 
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Figure 10. Immunolabeling methods u s e d  for high resolution electron 
microscopy. (Adapted with permission from Puente et al., 2019). 

The following images are representative images of the single pre-embedding immunogold 

and double pre-embedding immunogold and immunoperoxidase methods applied in the 

present doctoral thesis (Fig. 11), to study the subcellular CB1 localization in the different 

neuronal and astroglial compartments in the healthy or diseased brain, such as in 

GABAergic and glutamatergic synaptic terminals (ter), in astrocytes (as) and in 

mitochondria (m). 

A Bba 
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Figure 11. CB1 receptor immunolocalization in different subcellular compartments of 
the rodent brain. Single pre-embedding immunogold (a) and double pre-embedding 
immunogold and immunoperoxidase methods (b, c, d). (a) CB1 receptor labeling 
(arrows) at a presynaptic GABAergic terminal (ter, red) adjacent to a dendrite (den, blue). 
CB1 receptor particle is localized to a presynaptic glutamatergic terminal (ter, green) 
associated with a spine (sp, blue). Mitochondria (m, purple) exhibit CB1 receptor 
immunolabeling in both glutamatergic (ter, green) and GABAergic (ter, red) presynaptic 
terminals (CA1 stratum radiatum, adult mouse hippocampus). (b) CB1 receptor labeling 
(arrows) at a presynaptic GABAergic terminal (ter, red), glutamatergic terminals (ter, 
green) and in one astrocyte branch (as, orange) in the mouse piriform cortex. Astrocytes 
are labeled with anti-GLAST/immunoperoxidase/DAB method (black precipitate in as). 
(c) CB1 receptor labeling (arrows) at a presynaptic GABAergic terminal (ter, red) adjacent 
to a dendrite (den, blue) and in one astrocyte process (as, orange) in the molecular layer 
of the mouse DML. Astrocytes are labeled with anti-GFAP/immunoperoxidase/DAB 
method (black precipitate in as). (d) CB1 receptor labeling (arrows) at a presynaptic 
terminal (ter, red) combined with anti- gephyrin/immunoperoxidase/DAB method (black 
precipitate in den, blue) to positively identify the inhibitory postsynaptic membrane of a 
GABAergic synapse. Orange arrow: CB1 receptor labeling at a thin astrocytic process filling 
the intercellular space (rat prelimbic cortex). (Adapted with permission from Puente et al., 
2019). 

4.5. DATA ANALYSIS 

Semi-quantification of the CB1 receptor labeling obtained with the pre-embedding 
immunogold method 

It was performed according to the protocol published by our laboratory (Puente et al., 
2019). 

With the aim of maximizing the standard conditions, the pre-embedding immunogold 

method was applied simultaneously to all the sections obtained from the animals under 

study (at least n = 3). Three replicated experiments were done for each animal. 

Immunogold-labeled resin-embedded vibratome sections were first visualized under the 

light microscope in order to select portions of the region of interest with reproducible CB1 

receptor immunolabeling. Then, semi-thin sections from resin embedded tissue were cut 

and the first five ultra-thin sections were collected onto two grids. To further standardize the 

conditions between the different animals, only the first 1.5 µm from each specimen surface 

was collected and randomly photographed. Sampling was always performed carefully and in 

the same way for all the animals studied. To avoid bias, whenever possible, I remained blind 

when taking and analyzing the electron micrographs. 
The excitatory and inhibitory synapses were identified by their ultrastructural features 

(Fig. 12). In some cases a gephyrin/immunoperoxidase/DAB method was also applied to 

positively identify the inhibitory postsynaptic membrane of a GABAergic synapse (Puente et 
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al., 2019; Fig.11):  

-  Excitatory synapses are asymmetrical with postsynaptic densities and presynaptic 

axon terminals containing abundant, clear and spherical synaptic vesicles.  

-  Inhibitory synapses are symmetrical with slender postsynaptic membranes and axon 

terminals containing pleomorphic synaptic vesicles. Because of the lack of postsynaptic 

membrane density, the inhibitory nature of the synapse might be misleading unless serial 

sections were done. An alternative to circumvent this is to use the antibody against 

gephyrin, a postsynaptic anchor protein marker of inhibitory synapses which can be used 

to unequivocally identify inhibitory synapses. CB1 receptors in astrocytes were assessed 

in astrocytic processes containing hrGFP, GFAP or GLAST DAB immunodeposits. 

The proportion of the CB1 receptor labeling on different compartments identified as 

described above was then tabulated. Positive labeling was considered when at least one 

CB1 receptor immunoparticle was within ~30 nm of the membrane of the specific 

compartment under study, and ≥ 80 nm from other membranes in the case of 

mitochondrial labeling. Metal particles were then counted and CB1 receptor density 

(particles/µm membrane) in the positive compartments was determined with Image-J 

software (NIH; RRID:SCR_003070) by measuring their membrane length. I also estimated 

the proportion of CB1 receptor immunoparticles in different profiles versus the total CB1 

receptor expression. This gives information about the CB1 receptor distribution throughout 

different compartments of a particular brain region (excitatory and inhibitory synapses, 

astrocytes, mitochondria, other cellular compartments). As for astrocytes, the distance from 

astrocytic and astrocytic mitochondria CB1 receptor immunoparticles to the nearest 

synapse was also calculated to determine how the receptors were distributed in the context 

of the tripartite synapse. To do this, the nearby synapses surrounding the CB1 receptor 

positive astrocytic elements were identified, distances measured (ImageJ software), the 

nearest synapse to the astrocytic immunoparticle selected, and data from all the nearest 

synapses tabulated and analyzed. 

All values are given as mean ± S.E.M. using a statistical software package (GraphPad 

Prism 5, GraphPad Software Inc., San Diego, USA). The normality test (Kolmogorov-

Smirnov normality test) was always applied before running statistical tests. Data were 

analyzed using parametric or non-parametric two-tailed Student’s t-test or one-way 

ANOVA with subsequent post-hoc analysis (Bonferroni post-test). A potential variability 

between mice of the same group of mutant lines was analyzed statistically. Since there 

were no differences between them, all data from each line were pooled. 

Minor adjustments in contrast and brightness were made to the figures using Adobe 

Photoshop (Adobe Systems, San Jose, CA, USA). Gimp and Adobe Photoshop were used 
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to blend the electron micrographs into the serial photocomposition. 

Figure 12. Ultrastructural features of excitatory and inhibitory synapses in the electron 
microscope. Pre-embedding immunogold method. (a) Typical presynaptic axon terminals of 
excitatory nature (exc, green) contain abundant, clear and spherical synaptic vesicles and form 
asymmetric synapses which have postsynaptic densities (black arrowheads) in dendritic spines (sp). 
Inhibitory (inh) presynaptic terminals (red) contain pleomorphic synaptic vesicles and make symmetric 
synapses with dendrites (den) which have no postsynaptic densities (black arrowheads). (b) An 
excitatory terminal (exc) making an asymmetric synapse with a dendritic spine (sp) shows CB1 labeling 
(green arrow). (c) A typical inhibitory terminal (inh) making a symmetric synapse (arrowheads) with a 
dendrite (den) is decorated with numerous CB1 receptor immunoparticles (red arrows) (m: 
mitochondria) (Scale bars: 200 µm). 
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5.1. CB1 RECEPTORS IN ASTROCYTES

Astrocytes and their processes were identified by DAB immunodeposits of GFAP or hrGFP 

or GLAST and the CB1 receptor was detected by immunogold labeling. As expected, the CB1 

receptor was mainly localized on neuronal terminals, preterminal membranes and, to a 

lesser extent, on labeled astrocytes (Gutiérrez‐Rodríguez et al., 2018). In the GFAP-CB1-KO 

hippocampus, the CB1 receptor particles were only on synaptic terminals but not in 

astrocytic processes (Figs. 13c, 14c and 15). In addition, CB1 receptor immunoparticles 

were found in neuronal mitochondria but not in mitochondria of astrocytes in GFAP-CB1-

KO (Fig. 13c and 16). Conversely, in the GFAP-CB1-RS hippocampus, immunolabeling was 

restricted to the DAB-containing astrocytic elements and astrocytic mitochondria but no 

labeling was found on axon boutons (Figs. 13d, 14d, 15 and 16) (Gutiérrez‐Rodríguez et 

al., 2018). Finally, the subcellular distribution of the CB1 receptor on astrocytic 

mitochondria and in general, on astrocytic elements of the GFAPhrGFP-CB1-WT resembled 

the CB1-WT hippocampus (Figs. 13f and 14f, 15 and 16). Importantly, this CB1 receptor 

staining pattern was absent in CB1-KO, STOP-CB1 and GFAPhrGFP-CB1-KO mice (Figs. 13b, 

e, g; 14b, e, g; 15 and 16). 
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Figure 13. CB1 receptor localization in identified astrocytes and astrocytic 
mitochondria in the CA1 stratum radiatum of wild-type and mutant mice. Pre-
embedding immunogold and immunoperoxidase method for electron microscopy. (a, d 
and f) Mitochondrial CB1 receptor labeling is visualized in identified astrocytes. (a, c, f) 
As expected, CB1 receptor immunoparticles are also on membranes of synaptic terminals 
and preterminals. (b) No CB1 receptor immunolabeling is detected in CB1-KO confirming 
the specificity of the CB1 receptor antibody, (c) CB1 receptor particles are found in 
synaptic terminals and neuronal mitochondria, but not in astrocytes and astrocytic 
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mitochondria of GFAP-CB1-KO. (d) Astrocytic processes and astrocytic mitochondria, but 
not axon terminals, are CB1 receptor immunopositive in GFAP-CB1-RS. (e) No CB1 
receptor immunoparticles are observed in STOP-CB1. (f) In GFAPhrGFP-CB1-WT, 
presynaptic terminals and astrocytic mitochondria are CB1 receptor positive. (g) No CB1 
receptor immunolabeling is detected in GFAPhrGFP-CB1-KO. CB1 receptor labeling 
(arrows), presynaptic GABAergic terminal (ter, red), presynaptic glutamatergic terminal 
(ter, green), dendrite (den, blue), spine (sp, blue), mitochondria (m, purple) and astrocyte 
branch (as, orange) Scale bars: 1 µm. 
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Figure 14. CB1 receptor localization in identified astrocytes and astrocytic 
mitochondria in the DML of wild-type and mutant mice. Pre-embedding immunogold 
and immunoperoxidase method for electron microscopy. (a, d) Mitochondrial CB1 
receptor labeling is visualized in identified astrocytes. (a, c, f) As expected, CB1 receptor 
immunoparticles are also on membranes of synaptic terminals and preterminals. (b) No 
CB1 receptor immunolabeling is detected in CB1-KO confirming the specificity of the CB1 
receptor antibody, (c) CB1 receptor particles are found in synaptic terminals but not in 
astrocytes of GFAP-CB1-KO. (d) Astrocytic mitochondria, but not axon terminals, are CB1 
receptor immunopositive in GFAP-CB1-RS. (e) No CB1 receptor immunoparticles are 
observed in STOP-CB1. (f) In GFAPhrGFP-CB1-WT, presynaptic terminals and astrocytic 
processes are CB1 receptor positive. (g) No CB1 receptor immunolabeling is detected in 
GFAPhrGFP-CB1-KO. CB1 receptor labeling (arrows), presynaptic GABAergic terminal 
(ter, red), presynaptic glutamatergic terminal (ter, green), dendrite (den, blue), spine (sp, 
blue), mitochondria (m, purple) and astrocyte branch (as, orange) Scale bars: 1 µm. 

5.1.1. CB1 receptor immunolabeling assessment in astrocytes of the CA1 
stratum radiatum and DML 

Regarding the proportion of the astrocytic CB1 particles in the CA1 stratum radiatum, 5.31 

± 0.84% of the total CB1 receptor labeling in the CB1-WT, 11.97 ± 2.17% in the GFAPhrGFP-

CB1-WT (p > 0.05; Fig. 15a) and 95.31 ± 1.87% in the GFAP-CB1-RS were in astrocytic 

processes (***p < 0.001; Fig. 15a). Only background immunoparticles were detected in 

astrocytic processes of the STOP-CB1, GFAP-CB1-KO, CB1-KO and GFAPhrGFP-CB1-KO (***p 

< 0.001; Fig. 15a). 

Similarly, in DML, of the total CB1 receptor labeling, 5.35 ± 1.00% in the CB1-WT, 13.13 ± 

2.60% in the GFAPhrGFP-CB1-WT (p > 0.05; Fig. 15b) and 95.61 ± 1.56% in the GFAP-CB1-

RS was in astrocytes (***p < 0.001; Fig. 15b). Non-specific CB1 receptor immunoparticles 

were found on astrocytic processes in the STOP-CB1, GFAP-CB1-KO, CB1-KO and GFAPhrGFP-

CB1-KO mice (***p < 0.001; Fig. 15b). 
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Figure 15. Statistical assessment of the CB1 receptor distribution on astrocytes in the 
CA1 stratum radiatum and DML of wild-type and mutant mice. (a) Proportion of CB1 
receptor gold particles on astrocytic membranes versus total CB1 receptor expression on 
plasmalemma: 5.31 ± 0.84% of the total CB1 receptor immunoparticles are located in 
astrocytes of CB1-WT and 95.31 ± 1.87% in astrocytes of GFAP-CB1-RS. Only residual CB1 
immunoparticles are in astrocytic processes of STOP-CB1 (1.76 ± 1.29%), GFAP-CB1-KO 
(1.96 ± 1.28%), CB1-KO (1.02 ± 0.72%) and GFAPhrGFP-CB1-KO (1.62 ± 0.94%). (b) 
Proportion of CB1 receptor immunoparticles on astrocytic membranes versus total CB1 
receptor expression on plasmalemma: 5.35 ± 1.00% (CB1-WT), 95.61 ± 1.56% (GFAP-CB1-
RS). Almost null non-specific immunoparticles are found in STOP-CB1 (1.65 ± 0.66%), 
GFAP-CB1-KO (1.45 ± 1.45%), CB1-KO (1.43 ± 1.43%) and GFAPhrGFP-CB1-KO (1.37 ± 
1.37%). Data are expressed as mean ± SEM of three different animals. Data were analyzed 
by means of Kruskal-Wallis test and the Dunn’s multiple comparison post-hoc test. ***p < 
0.001; **p < 0.01; *p < 0.05. As: astrocytic processes; part: particles. 

5.1.2. CB1 receptor localization in astroglial mitochondria 

CB1 receptor labeling was observed in mitochondria (mtCB1 receptors) of astrocytes 

distributed throughout the CA1 stratum radiatum (Fig. 13a, d, f) and DML (Fig. 14a, d). In 

CB1-WT mice, 11.12 ± 1.80% of the mitochondrial sections in astrocytes of the CA1 stratum 

radiatum and 11.56 ± 2.33% of the DML were CB1 receptor immunopositive (Figs. 16a, b). 

The percentage was roughly similar in GFAP-CB1-RS (CA1: 12.39 ± 1.81% (p > 0.05; Fig. 

16a); DML: 11.48 ± 1.76% (p > 0.05; Fig. 16b) and GFAPhrGFP-CB1-WT (CA1: 13.12 ± 2.53% 

(p > 0.05; Fig. 16a); DML: 13.74 ± 3.20% (p > 0.05; Fig. 16b). Non-specific mitochondrial 

particles were detected in STOP-CB1 (CA1: 4.66 ± 1.55%, **p < 0.01; Fig. 16a; DML: 5.38 ± 

1.22%, *p < 0.05; Fig. 16b), GFAP-CB1-KO (CA1: 3.97 ± 1.70%, **p < 0.01; Fig. 16a; DML: 3.04 

± 1.04%, **p < 0.01; Fig. 16b), CB1-KO (CA1: 2.97 ± 1.15%, ***p < 0.001; Fig. 16a; DML: 2.49 

± 0.80%, ***p < 0.001; Fig. 16b) and GFAPhrGFP-CB1-KO mice (CA1: 0.95 ± 0.95%, ***p < 

0.001; Fig. 16a; DML: 1.98 ± 0.91%, ***p < 0.001; Fig. 16b). 
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Figure 16. Proportion of CB1 receptor immunopositive astrocytic mitochondria in 
the CA1 and DML of wild-type and mutant mice. (a) Values of the CB1 receptor 
immunopositive astrocytic mitochondria in GFAP-CB1-RS (12.39 ± 1.81%) and 
GFAPhrGFP-CB1-WT (13.12 ± 2.53%) are closely similar to CB1-WT (11.12 ± 1.79%) in the 
CA1 stratum radiatum. The background in astroglial mitochondria is: STOP-CB1 (4.66 ± 
1.55%), GFAP-CB1-KO (3.97 ± 1.71%), CB1-KO (2.97 ± 1.15%) and GFAPhrGFP-CB1-KO 
(0.95 ± 0.95%). The number of total mitochondria examined is in parentheses on the top of 
each column. (b) In the DML, the values of CB1 receptor immunopositive astrocytic 
mitochondria in GFAP-CB1-RS (11.48 ± 1.76%) and GFAPhrGFP-CB1-WT (13.74 ± 3.20%) 
are comparable to the CB1-WT (11.56 ± 2.33%). Background in astroglial mitochondria is: 
STOP-CB1 (5.38 ± 1.22%), GFAP-CB1-KO (3.05 ± 1.04%), CB1-KO (2.49 ± 0.80%), 
GFAPhrGFP-CB1-KO (1.98 ± 0.91%). The number of total mitochondria examined is in 
parentheses on the top of each column. Data are expressed as mean ± SEM of three different 
animals. Data were analyzed by means of Kruskal-Wallis test and the Dunn’s multiple 
comparison post-hoc test. ***p < 0.001; **p < 0.01; *p < 0.05. As: astrocytic processes; mito: 
mitochondria. 

5.1.3. Distance from the astroglial mtCB1 receptors to the nearest 
synapse 

The distance between the astrocytic mtCB1 receptor particles and the midpoint of the 

nearest synapse was assessed in CB1-WT, GFAP-CB1-RS and GFAPhrGFP-CB1-WT 

hippocampi (Fig. 17; table 2). 

In the CA1, 10.55 ± 4.01% of the total synapses analyzed were in a range of 0–400 nm from 

the astrocytic mtCB1 receptor particles in CB1-WT, 2.67 ± 2.67% in GFAP-CB1-RS and 7.41 ± 

3.70% in GFAPhrGFP-CB1-WT. 38.54 ± 8.32% of the synapses were located between 400 

and 800 nm in CB1-WT, 49.28 ± 2.87% in GFAP-CB1-RS and 51.85 ± 3.70% in GFAPhrGFP-

CB1-WT. 29.51 ± 6.85% of the synapses were detected between 800 and 1,200 nm in CB1-

WT, 37.26 ± 2.02% in GFAP-CB1-RS and 29.63 ± 7.41% in GFAPhrGFP-CB1-WT. Finally, 21.40 
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± 5.56% of the synapses were found at more than 1,200 nm from the astrocytic mtCB1 

receptor in CB1-WT, 10.79 ± 2.94% in GFAP-CB1-RS and 14.81 ± 7.41% in GFAPhrGFP-CB1-

WT (Fig. 17; Table 2). 

In the DML, 11.11 ± 6.42% of the total synapses analyzed were at 0–400 nm in CB1-WT, 2.82 

± 1.48% in GFAP-CB1-RS and 1.52 ± 1.52% in GFAPhrGFP-CB1-WT. 50 ± 3.21% of the 

synapses were located at a distance of between 400 and 800 nm from the astrocytic mtCB1 

immunoparticle in CB1-WT, 47.57 ± 4.81% in GFAP-CB1-RS and 57.37 ± 6.26% in 

GFAPhrGFP-CB1-WT. 23.15 ± 0.93% of them were located between 800 and 1,200 nm in CB1-

WT, 43.79 ± 3.13% in GFAP-CB1-RS and 35.86 ± 2.53% in GFAPhrGFP-CB1-WT. Finally, 18.52 

± 3.70% of the synapses in CB1-WT, 11.82 ± 3.51% in GFAP-CB1-RS and 5.25 ± 2.72% in 

GFAPhrGFP-CB1-WT were observed at more than 1,200 nm from the astrocytic mtCB1 

receptor particles (Fig. 17; Table 2). 

Figure 17. Distance from the mitochondrial CB1 receptor particles in astrocytes to 
the synapses in the hippocampus. The distance between the CB1 receptor particles on 
mitocondrial membranes in astrocytic processes and the midpoint of the nearest synapse 
surrounded by them was assessed in the CA1 (a) and DML (b) of CB1-WT, GFAP-CB1-RS and 
GFAPhrGFP-CB1-WT (see Table 2 for values). 
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Table 2. Proportion of synapses visualized in 400 nm bit ranges from the CB1 
receptor labeling in astroglial mitochondria. 

CA1 CB1-WT 
(1,790 µM2) 

GFAP-CB1-RS 
(2,100 µM2) 

GFAPhrGFP-CB1-WT 
(784 µM2) 

< 400 nm 10.55 ± 4.01% 2.67 ± 2.67% 7.41 ± 3.70% 
400-800 nm 38.54 ± 8.32% 49.28 ± 2.87% 51.85 ± 3.70% 

800-1,200 nm 29.51 ± 6.85% 37.26 ± 2.02% 29.63 ± 7.41% 
> 1,200 nm 21.40 ± 5.56% 10.79 ± 2.94% 14.81 ± 7.41% 

DML CB1-WT 
(784 µm2) 

GFAP-CB1-RS 
(1,708 µm2) 

GFAPhrGFP-CB1-WT 
(1,512 µm2) 

< 400 nm 11.11 ± 6.42% 2.82 ± 1.48% 1.52 ± 1.52% 
400-800 nm 50.00 ± 3.21% 41.57 ± 4.81% 57.37 ± 6.26% 

800-1,200 nm 23.15 ± 0.93% 43.79 ± 3.13% 35.86 ± 2.53% 
> 1,200 nm 18.52 ± 3.70% 11.82 ± 3.51% 5.25 ± 2.72% 

5.1.4. Density of CB1 receptors in mitochondria of astrocytes and 
neurons 

Immunogold electron microscopy revealed that, in addition to the presence of 

mitochondrial-associated CB1 receptors in neurons (Benard et al., 2012; Hebert-Chatelain 

et al., 2014, 2016; Koch et al., 2015), CB1 protein staining can also be detected in close 

juxtaposition to astroglial mitochondrial membranes from the hippocampus (Gutiérrez‐

Rodríguez et al., 2018), prefrontal cortex, piriform cortex and nucleus accumbens (Fig. 18a, 

c, e and g) (Jimenez-Blasco et al., (submitted to Nature). Negative control tissues from global 

CB1-KO mice displayed just background staining in both neurons and astrocytes (Fig. 18b, d, 

f and h) (Gutiérrez‐Rodríguez et al., 2018). Interestingly, despite the generally lower 

absolute levels of CB1 receptors in astrocytes than in neurons (Metna-Laurent et al., 2015), 

the proportion of mtCB1 over the total CB1 receptors density in each cell type was slightly 

larger in astroglial mitochondria of hippocampus and prefrontal cortex than in neuronal 

mitochondria (Fig. 19a, b, c and d). 
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Figure 18. CB1 receptor localization in identified astrocytes, neurons and 
mitochondria in the CA1 stratum radiatum, prefrontal cortex, nucleus accumbens 
and piriform cortex of wild-type and CB1-KO mice. Pre-embedding immunogold and 
immunoperoxidase method for electron microscopy. Representative electron 
immunogold images of the detection of CB1 receptors on mitochondrial membranes of 
astrocytes (identified with anti-GLAST immunoperoxidase staining) and neurons in the 
hippocampus (a, b), prefrontal cortex (c, d), nucleus accumbens (e, f) and piriform cortex 
(g, h) of WT and CB1-KO mice, respectively. CB1 receptor labeling (arrows), presynaptic 
GABAergic terminal (ter, red), presynaptic glutamatergic terminal (ter, green), dendrite 
(den, blue), spine (sp, blue), mitochondria (m, purple) and astrocyte branch (as, orange) 
Scale bars: 1 µm. 

Note: In this case (Fig. 18), the rabbit polyclonal anti-GLAST antibody was used to detect the 

astrocytic processes. As cited in the literature, neurotransmitter uptake is one of the 

important functions of astrocytes (Haydon, 2001). In the vast amount of brain excitatory 

synapses, astrocytes uptake excess amount of glutamate from synaptic clefts through 

glutamate transporters such as GLT-1 and GLAST (Chaudhry et al., 1995; Rothstein et al., 

1996; Tanaka et al., 1997). Since GFAP immunoreactivity is not uniformly detected in the 

whole brain (Tatsumi et al., 2018), we used the GLAST antibody as a good and reliable 

astrocytic marker. 
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Figure 19. CB1 density in astrocytic and neuronal mitochondria. The CB1 density in 
astrocytic mitochondria of CA1 (3.24 ± 0.94 part/µm2), prefrontal cortex (2.45 ± 0.49 
part/µm2), nucleus accumbens (1.16 ± 0.44 part/µm2) and piriform cortex (1.35 ± 0.57 
part/µm2), is statistically higher than in neuronal mitochondria of CA1 (0.76 ± 0.09 
part/µm2), prefrontal cortex (1.04 ± 0.13 part/µm2), nucleus accumbens (0.42 ± 0.12 
part/µm2) and piriform cortex (0.82 ± 0.12 part/µm2). Only residual particles were found 
in neuronal mitochondria in CA1 (0.09 ± 0.04 part/µm2), prefrontal cortex (0.13 ± 0.02 
part/µm2), nucleus accumbens (0.03 ± 0.03 part/µm2) and piriform cortex (0.14 ± 0.02 
part/µm2) of CB1-KO. Data are expressed as mean ± SEM. Data were analyzed by means 
of non-parametric or parametric tests (Mann–Whitney U test or unpaired t-test, *p<0.05; 
**p < 0.01 (WT astros vs. WT neurons); #p < 0.05; ##p < 0.01; ###p < 0.001 (WT vs. CB1-KO). 



Results 

74 

5.2. ADOLESCENT ETHANOL INTAKE 

5.2.1. Cellular and subcellular localization of the CB1 receptor in adult 
CA1 hippocampus after adolescent EtOH intake 

The DAB immunostaining was used to identify GFAP-containing astrocytes and their 

processes, which then allowed individual immunogold-labeled CB1 receptors on 

astrocytes to be counted. To determine whether EtOH intake during adolescence caused a 

global change in CB1 receptor expression in the adult CA1 stratum radiatum, the 

proportion of CB1 receptor immunoparticles in different cellular compartments was 

examined. Metal particles were localized on inhibitory and excitatory axon terminals 

which formed synapses with dendrites and dendritic spines, respectively (Fig. 20). As 

expected, the highest proportion of the total CB1 receptor particles counted in 110 μm2 

(control: 74.59 ± 13.72 particles; EtOH: 68.67 ± 6.72 particles) (p > 0.05) was found on 

inhibitory axon terminal membranes making symmetric synapses with dendrites. Overall, 

there was no significant difference between the CB1 receptor expression on inhibitory 

terminals in control (Figs 20a, a´; Fig. 21a: 52.66 ± 3.59% particles) and EtOH (Figs. 20b, 

b´; Fig. 21a: 53.80 ± 2.89% particles) (p > 0.05). Furthermore, 82.69 ± 4.28% of the 

inhibitory terminals in control and 76.44 ± 4.49% in EtOH-treated mice were CB1 receptor 

immunopositive (p > 0.05; Fig. 21b). The concentration of immunogold particles was low 

in the asymmetric (excitatory) synapses in control (11.02 ± 0.75% particles) and even 

lower in EtOH (8.61 ± 0.46% particles) (*p < 0.05; Fig. 21a). In this case, 19.48 ± 2.23% of 

the excitatory boutons in control and 15.94 ± 1.67% in EtOH animals were CB1 receptor 

positive (p > 0.05; Fig. 21b). In astrocytes, scattered metal particles were observed on thin 

and thick processes of GFAP-immunoreactive astrocytes in the CA1 stratum radiatum of 

control mice (Figs. 20a, a´). Immunoparticles were less frequently observed in astrocytic 

processes following EtOH exposure (Figs. 20b, b´, c). The proportion of the total CB1 

receptor particles found on astrocyte membranes in control (5.72 ± 0.96% particles) and 

EtOH treated mice (2.73 ± 0.44% particles) was very low relative to the terminals, 

mitochondria (control: 13.92 ± 1.57% particles; EtOH: 13.95 ± 1.63% particles) and other 

membrane compartments (control: 9.95 ± 1.55% particles; EtOH: 12.35 ± 1.70% particles) 

(Fig. 21a). Remarkably, the decrease in CB1 receptor labeling in astrocytes was statistically 

significant after EtOH exposure (*p < 0.05; Fig. 21a). Furthermore, the differences 

between the CB1 receptor immunopositive astrocytic processes in control (37.22 ± 3.12%) 

and after EtOH exposure (21.49 ± 2.28%), as well as the density of receptor labeling 

(particle/μm of astrocytic membrane) in astrocytes of control and EtOH-exposed mice 
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(control: 0.35 ± 0.02; EtOH: 0.24 ± 0.02), were significantly different (***p < 0.001, **p < 

0.01, respectively; Figs. 21c, d). CB1 receptor density in the other CB1 receptor-containing 

profiles remained statistically unchanged after EtOH (p > 0.05; Fig. 21c). Importantly, the 

CB1 receptor immunolabeling pattern disappeared in the CA1 stratum radiatum of CB1-KO 

mice (Fig. 20d) hence demonstrating the specificity of the anti-CB1 receptor antibody used. 

Figure 20. Subcellular CB1 receptor localization in the adult CA1 stratum radiatum 
of control and EtOH-treated mice using a combined pre-embedding 
immunogold/immunoperoxidase labeling methods. (a) In control, CB1 receptor 
immunogold labeling is observed on both excitatory (ter, green arrows) and inhibitory 
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terminals (ter, red arrows), and on astrocytic membranes (as, orange arrows). Note the 
presence of CB1 receptor labeling on mitochondria (m, purple arrows). (a´) Higher 
magnification view showing CB1 receptor labeling on inhibitory terminals (ter; red 
arrows) as well as on astrocytic membranes (as, orange arrows) in control. In EtOH mice 
(b, c), CB1 receptor particles are also observed on excitatory terminals (ter, green 
arrows), inhibitory terminals (ter, red arrows), mitochondrial membranes (m, purple 
arrows) and astrocytes (as, orange arrows). (b´) Enlargement of the enclosed area in b. 
(c) An astrocytic end-foot (as) around a capillary with CB1 receptor labeling (orange 
arrow). Note gold particles on excitatory terminals (ter, green arrows) and mitochondria 
(m, purple arrows). (d) No CB1 receptor immunolabeling is detected on terminals (ter), 
astrocytes (as) and mitochondria in CB1-KO mice, indicating the specificity of the CB1 
receptor antibody used. Scale bars: 1 µm. 

Figure 21. CB1 receptor distribution in the adult CA1 stratum radiatum of control 
and EtOH-treated mice. (a) Proportion of CB1 receptor labeling in different 
compartments normalized to the total CB1 content in control and EtOH mice (analyzed 
area: ~2,000 µm2). (b) Percentage of CB1 receptor-immunopositive excitatory and 
inhibitory synaptic terminals in control and EtOH mice. The number of synaptic 
terminals studied is in parentheses on the top of each column. (c) CB1 receptor density 
(particles/µm) in CB1 receptor positive profiles in control versus EtOH treated mice. (d) 
Percentage of labeled astrocytic processes in control and EtOH mice. The number of 
astrocytic portions studied is in parentheses on the top of the columns. Data are 
expressed as mean ± SEM. Data were analyzed by means of non-parametric or parametric 
tests (Mann–Whitney U test or unpaired t-test *p < 0.05; **p < 0.01; ***p < 0.001). 
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5.2.2. Ultrastructural changes in CA1 astrocytes after EtOH exposure 
during adolescence 

First, we assessed the astrocyte morphology. There were fewer processes in astrocytes of 

EtOH exposed animals (control: 5.80 ± 0.45; EtOH: 3.93 ± 0.23 astrocytic 

processes/electron micrograph; ***p < 0.001; Fig. 22a), however, their area was 

significantly larger in EtOH (1.06 ± 0.15 μm2) than in control (0.90 ± 0.15 μm2; **p < 0.01; 

Fig. 22b). No statistical differences were found in the astrocytic perimeter (control: 4.63 ± 

0.26 μm; EtOH: 4.78 ± 0.25 μm; p > 0.05; Fig. 22c). Taken together, these data indicate that 

the astrocytes in the adult hippocampus have a swollen morphology after EtOH exposure 

during adolescence. 

Figure 22. Ultrastructural assessment of the astrocyte morphology in the adult CA1 
stratum radiatum of control and EtOH-treated mice. (a) Number of astrocytes per 
110 µm2 in control and EtOH mice. (b) Area (in µm2) of the astrocytes in control (n = 292) 
and EtOH (n = 289) mice. (c) Perimeter (µm) of the astrocytes in control (n = 292) and 
EtOH (n = 289) mice. Data are expressed as mean ± SEM. Data were analyzed by means 
of non-parametric or parametric tests (Mann–Whitney U test or unpaired t-test **p < 
0.01; ***p < 0.001). 

5.2.3. Distance from the astroglial CB1 receptors to the synapses in adult 
CA1 stratum radiatum of control and after EtOH exposure during 
adolescence 

To determine how CB1 receptor distribution was affected in the swollen astrocytes 

surrounding the synapses following adolescent EtOH exposure, the distance between the 

astroglial CB1 receptors and the midpoint of the nearest synapse was measured in adult 

CA1 stratum radiatum. In control, while only 12.21 ± 1.41% of the synapses from the total 

analyzed (n = 123) were localized at a distance 0–400 nm from the closest astrocytic CB1 

receptor particles (Fig. 23a), the majority of them (46.34 ± 0.69%) were at 400–800 nm. 
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The second most frequent distance occurred between 800 and 1,200 nm (25.27 ± 1.46% 

of the synapses), while numbers were again reduced (16.18 ± 2.66% of the synapses) at 

distances more than 1,200 nm from the nearest astrocytic CB1 receptor labeling. In EtOH-

treated mice, 13.57 ± 5.22% of the total synapses (n = 73) was within 400 nm from the 

astroglial CB1 receptor particles. The distribution was fairly equivalent between 400–800 

nm (33.04 ± 4.61%), and 800–1,200 nm (33.16 ± 6.92%), while 20.23 ± 6.73% of the 

synapses were localized beyond 1,200 nm (Fig. 23a). No statistical differences were 

observed between control and EtOH-treated mice in the astrocytic CB1 receptor 

distribution with respect to neighboring synapses (p > 0.05; Fig. 23a) nor in the 

proportion of asymmetric/excitatory versus symmetric/inhibitory synapses relative to 

the CB1 receptor positive astrocytes (control: excitatory 6.38 ± 0.72%, inhibitory 8.66 ± 

1.00%. EtOH: excitatory 4.44 ± 0.61%, inhibitory: 4.50 ± 0.74%) (p > 0.05; Fig. 23b). 

However, the proportion of inhibitory synapses closely related to the astrocytic CB1 

receptor labeling was significantly lower in EtOH- exposed mice than in control (*p < 0.05; 

Fig. 23b) with no differences detected at the excitatory synapses (p > 0.05; Fig. 23b). 

Figure 23. Distance from the astrocytic CB1 receptors to the nearest synapse in the 
adult CA1 stratum radiatum of control and EtOH-treated mice. (a) Proportion of 
synapses in 400 nm bin distances from the astrocytic CB1 receptor particles to the 
midpoint of the nearest synapse in control (n = 123 synapses) and EtOH (n = 73 
synapses) mice. (b) Percentage of synapses (asymmetric/excitatory versus 
symmetric/inhibitory synapses) surrounding CB1 receptor positive astrocytes in control 
(n = 936 synapses) and EtOH (n = 731 synapses) mice. Data are expressed as mean ± 
SEM. Data were analyzed by means of non-parametric or parametric tests (Mann–
Whitney U test or unpaired t-test; *p < 0.05). 
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5.3. R-mTBI MODEL 

5.3.1. Cellular and subcellular localization of the CB1 receptor in the 
molecular layer of the rat dentate gyrus 

CB1 receptor immunogold particles in the DML of uninjured and injured rats were mainly 

localized on inhibitory and excitatory axon terminals forming synapses with dendrites and 

dendritic spines, respectively, and to a lesser extent, on astrocytic processes and 

mitochondria (Figure 24, 25 and 27). 

To determine whether juvenile concussion (8 hits) caused a global change in CB1 receptor 

expression immediately or after the cessation of the repeated ACHI procedures in the mature 

hippocampus, the proportion of CB1 positive profiles and CB1 density was examined in both 

sexes at post injury day (PID) 1, 10 and 40. Although the CB1 receptor immunolabeling was 

not severely impacted on PID 1, the CB1 receptor expression was significantly reduced in both 

sexes at PID 10, and even more at PID 40. Thus at PID 10, injured male rats showed a 

significant reduction in CB1 positive excitatory terminals (sham: 34.05 ± 3.45%, 8 hits: 21.01 

± 3.74%), astrocytes (sham: 18.01 ± 2.21%, 8 hits: 11.98 ± 1.51%) and mitochondria (sham: 

12.05 ± 1.22%, 8 hits: 8.69 ± 0.96%) (**p < 0.01; Fig. 26b). Moreover, a remarkable decrease 

in CB1 density in inhibitory terminals was observed (sham: 7.69 ± 0.46 part/µm, 8 hits: 4.53 

± 0.56 part/µm) (***p < 0.001; Fig. 27b). Interestingly, only the latter change could be 

detected in injured female rats at PID 10 (CB1 density in inhibitory terminals in sham: 7.10 

± 0.48 part/µm, 8 hits: 4.56 ± 0.33 part/µm) (**p < 0.01; Fig. 27e). 

There were significant changes in both sexes at PID 40. In males, the proportion of CB1 

receptor-labeled excitatory terminals (sham: 33.14 ± 3.38%, 8 hits: 24.69 ± 3.36%) and 

inhibitory terminals (sham: 85.55 ± 1.40%, 8 hits: 76.81 ± 3.04%) decreased significantly, 

but increased the CB1 receptor-positive astrocytes (sham: 16.58 ± 1.29%, 8 hits: 22.48 ± 

3.39%) (*p < 0.05, *p < 0.05 and **p < 0.01; Fig. 26c). Likewise, significant reductions in CB1 

receptor immunopositive excitatory terminals (sham: 32.86 ± 3.30%, 8 hits: 16.09 ± 1.75%), 

inhibitory terminals (sham: 84.94 ± 3.46%, 8 hits: 76.06 ± 1.91%) and mitochondria (sham: 

13.68 ± 0.68%, 8 hits: 9.41 ± 1.04%) (***p < 0.001, *p < 0.05 and **p < 0.01; Fig. 26f) were 

seen in females. Finally, the CB1 immunoparticle density dropped significantly in inhibitory 

terminals of both males (sham: 7.50 ± 0.73 part/µm, 8 hits: 4.85 ± 0.67 part/µm) (*p < 0.05; 

Fig. 27c) and females (sham: 6.69 ± 0.41 part/µm, 8 hits: 4.84 ± 0.76 part/µm) (**p < 0.01; 

Fig. 27f). 
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Figure 24. Subcellular localization of CB1 receptors in DML of injured (8 hits) and 
uninjured male rats. Combined pre-embedding 
immunogold/immunoperoxidase method. (a, c and e) In sham at post-injury day 1, 10 
and 40 respectively, CB1 receptor immunolabeling is observed on excitatory terminals 
(ter, green arrows), inhibitory terminals (ter, red arrows), astrocytic membranes (as, 
orange arrows) as well as neuronal and astrocytic mitochondria (m, purple arrows). (b) 
In mTBI at post-injury day 1, CB1 receptor labeling is also observed on excitatory (ter, 
green arrows) and inhibitory terminals (ter, red arrows), astrocytic membranes (as, 
orange arrows) and mitochondria (m, purple arrows). (d) At post-injury day 10, CB1 
receptors are localized to astrocytes (as, orange arrows) and mitochondrial membranes 
(m, purple arrows) but CB1 receptor labeling decreases in excitatory (ter, green arrows) 
and inhibitory terminals. (f) Similarly, at post-injury day 40, CB1 gold particles are 
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observed on astrocytes (as, orange arrows) and on mitochondrial membranes (m, purple 
arrows) but the labeling of excitatory terminals appears to be lower (ter, green arrows) 
and even more in inhibitory terminals. Scale bars: 1 µm. 

Figure 25. Subcellular localization of CB1 receptors in DML of injured (8 hits) and 
uninjured female rats. Combined pre-embedding 
immunogold/immunoperoxidase labeling method. (a, c and e) CB1 receptor 
immunolabeling in sham rats is observed in excitatory (ter, green arrows) and inhibitory 
terminals (ter, red arrows), astrocytic membranes (as, orange arrows) as well as 
neuronal and astrocytic mitochondria (m, purple arrows). (b) 1 day after TBI injury, CB1 
receptor immunolabeling is also observed in excitatory (ter, green arrows) and 
inhibitory terminals (ter, red arrows), astrocytic membranes (as, orange arrows), and 
mitochondria (m, purple arrows). (d) 10 days after TBI injury, CB1 receptors are in 
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astrocytes (as, orange arrows) and mitochondrial membranes (m, purple arrows). Gold 
particle labeling is reduced in excitatory (ter, green arrows) and inhibitory terminals. (f) 
Similarly, 40 days post-TBI injury, CB1 receptors are localized in astrocytes (as, orange 
arrows) and mitochondrial membranes (m, purple arrows) and appear to be reduced in 
excitatory terminals (ter, green arrows) and some inhibitory terminals. Scale bars: 1 µm. 

Figure 26. Percentage of CB1 receptor immunopositive profiles in the DML of  
injured (8 hits) versus uninjured rats. Males and females at post-injury days 1 (a), 10 
(b) and 40 (c). Data are expressed as mean ± SEM and were analyzed by non-parametric 
or parametric tests (Mann–Whitney U test or unpaired t-test *p < 0.05; **p < 0.01; ***p < 
0.001), (see Table 3 for values). 



Results 

83 

Table 3. CB1 receptor immunolabeled profiles in injured (8 hits) and uninjured rats. 

MALES EXCITATORY 
TERMINALS 

INHIBITORY 
TERMINALS 

ASTROCYTES NEURONAL 
MITOCHONDRIA 

ASTROCYTIC 
MITOCHONDRIA 

1 DAY sham 32.68 ± 6.97% 88.54 ± 1.45% 19.80 ± 4.83% 10.43 ± 0.89% 8.21 ± 6.45% 
8 hits 26.32 ± 4.01% 83.74 ± 3.17% 17.79 ± 2.97% 9.81 ± 0.82% 12.72 ± 2.59% 

10 DAYS sham 34.05 ± 3.45% 88.95 ± 1.47% 18.01 ± 2.21% 12.05 ± 1.22% 10.32 ± 4.96% 
8 hits 21.01 ± 3.74% 86.91 ± 2.52% 11.98 ± 1.51% 8.69 ± 0.96% 15.82 ± 4.81% 

40 DAYS sham 33.14 ± 3.38% 85.55 ± 1.40% 16.58 ± 1.29% 16.76 ± 1.84% 14.40 ± 3.62% 
8 hits 24.69 ± 3.36% 76.81 ± 3.04% 22.48 ± 3.39% 13.71 ± 0.72% 20.62 ± 5.53% 

FEMALES EXCITATORY 
TERMINALS 

INHIBITORY 
TERMINALS 

ASTROCYTES NEURONAL 
MITOCHONDRIA 

ASTROCYTIC 
MITOCHONDRIA 

1 DAY sham 32.57 ± 6.95% 90.82 ± 2.22% 21.63 ± 4.45% 8.85 ± 1.09% 8.21 ± 4.09% 
8 hits 27.07 ± 5.03% 89.07 ± 2.63% 21.59 ± 2.64% 9.03 ± 1.15% 7.65 ± 2.67% 

10 DAYS sham 28.16 ± 4.67% 93.85 ± 1.98% 16.23 ± 1.55% 13.12 ± 1.47% 11.61 ± 2.91% 
8 hits 23.82 ± 4.67% 88.00 ± 2.33% 16.29 ± 1.83% 9.29 ± 1.57% 9.05 ± 2.82% 

40 DAYS sham 32.86 ± 3.30% 84.94 ± 3.46% 16.01 ± 1.09% 13.68 ± 0.68% 15.50 ± 6.77% 
8 hits 16.09 ± 1.75% 76.06 ± 1.91% 10.05 ± 1.70% 9.41 ± 1.04% 16.17 ± 3.99% 

5.3.2.  Density of CB1 receptors in the DML after mTBI 

Figure 27. CB1 receptor density (particles/µm) in the DML of injured (8 hits) and 
uninjured rats. Males and females at post-injury days 1(a, d) 10 (b, e) and 40 (c, f). Data 
are expressed as mean ± SEM and were analyzed by non-parametric or parametric tests 
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(Mann–Whitney U test or unpaired t-test *p < 0.05; **p < 0.01; ***p < 0.001), (see Table 
4 for values). 

Table 4. CB1 receptor density (particles/µm) in the DML of injured (8 hits) versus uninjured 

rats. 

MALES EXCITATORY 
TERMINALS 

INHIBITORY 
TERMINALS 

ASTROCYTES 

1 DAY sham 0.61 ± 0.04 part/µm 6.84 ± 0.60 part/µm 0.32 ± 0.12 part/µm 
8 hits 0.63 ± 0.05 part/µm 6.12 ± 0.75 part/µm 0.39 ± 0.06 part/µm 

10 DAYS sham 0.56 ± 0.04 part/µm 7.69 ± 0.46 part/µm 0.32 ± 0.03 part/µm 
8 hits 0.53 ± 0.03 part/µm 4.53 ± 0.56 part/µm 0.27 ± 0.07 part/µm 

40 DAYS sham 0.57 ± 0.05 part/µm 7.50 ± 0.73 part/µm 0.38 ± 0.09 part/µm 
8 hits 0.47 ± 0.04 part/µm 4.85 ± 0.67 part/µm 0.29 ± 0.05 part/µm 

FEMALES EXCITATORY 
TERMINALS 

INHIBITORY 
TERMINALS 

ASTROCYTES 

1 DAY sham 0.57 ± 0.04 part/µm 6.86 ± 0.57 part/µm 0.38 ± 0.05 part/µm 
8 hits 0.62 ± 0.06 part/µm 5.58 ± 0.77 part/µm 0.41 ± 0.05 part/µm 

10 DAYS sham 0.55 ± 0.05 part/µm 7.10 ± 0.48 part/µm 0.35 ± 0.06 part/µm 
8 hits 0.57 ± 0.05 part/µm 4.56 ± 0.33 part/µm 0.39 ± 0.05 part/µm 

40 DAYS sham 0.61 ± 0.08 part/µm 6.69 ± 0.41 part/µm 0.33 ± 0.06 part/µm 
8 hits 0.62 ± 0.04 part/µm 4.84 ± 0.76 part/µm 0.30 ± 0.04 part/µm 
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Overall, these results show that r-mTBI male and female rats have a significant reduction in 

CB1 receptor immunopositive excitatory and inhibitory terminals after 40 days as well as in 

CB1 receptor density in inhibitory terminals after 10 days relative to shams. We next wanted 

to investigate the net effect of more severe mTBI conditions, i.e. 16 hits, on CB1 receptor 

expression with no distinction between males and females in order to minimize the number 

of rats used, as no great differences in CB1 receptor expression could be detected between 

both sexes after 8 head impacts. 

Figure 28. Subcellular CB1 receptor localization in the DML 40 days after TBI (16 
hits) and in sham rats. Combined pre-embedding immunogold/immunoperoxidase 
method. (a, c) As expected in shams, CB1 receptor labeling is localized to both excitatory 
(ter, green arrows) and inhibitory terminals (ter, red arrows), astrocytes (as, orange 
arrows) and astrocytic mitochondria (m, purple arrows). (b, d) In TBI, CB1 receptors are 
also in astrocytes (as, orange arrows) and astrocytic mitochondria (m, purple arrows), 
but seem to be less abundant in excitatory (ter, green arrows) and inhibitory terminals. 
Scale bars: 1 µm. 
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The proportion of CB1 receptor immunolabeled excitatory terminals (sham: 39.80 ± 5.05%, 

16 hits: 15.97 ± 3.93%) and inhibitory terminals (sham: 91.94 ± 3.40%, 16 hits: 64.56 ± 

5.79%) (**p < 0.01; Fig. 29a) decreased significantly after 16 hits, as well as the density of 

CB1 receptors in inhibitory terminals (sham: 6.58 ± 0.42 part/µm, 16 hits: 4.66 ± 0.32 

part/µm) (**p < 0.01; Fig. 29b) (represented in Fig. 28). 

Figure 29. (a) Percentage of CB1 receptor positive profiles and (b) CB1 receptor 
density (particles/µm) in the DML after 40 days of TBI (16 hits) . Data are expressed 
as mean ± SEM and were analyzed by non-parametric or parametric tests (Mann–
Whitney U test or unpaired t-test **p < 0.01). 

5.3.3. Ultrastructural changes in the morphology of astrocytes, neurons 
and mitochondria in the DML 40 days after TBI (16 hits) 

The areas of different cellular compartments and the distance between the astrocytic CB1 

receptor immunoparticles and the midpoint of the nearest synapse surrounded by the 

immunopositive astrocytic element was measured in the DML to elucidate the possible 

morphological adaptations following a cumulative effect of 16 head impacts. 

First, the size of the excitatory terminals, inhibitory terminals, astrocytic processes and 

mitochondria did not significantly change after TBI. Second, in sham rats, 15.60 ± 4.26% 

of the synapses (total analyzed = 70) were localized at 0–400 nm from the closest CB1 

receptor particle in the astrocyte, 42.09 ± 2.23% were at 400–800 nm, 23.72 ± 4.48% at 

800-1,200 nm, and 18.59 ± 3.21% were at more than 1,200 nm (Fig. 30b). In injured rats, 

21.01 ± 4.20% of the total synapses (n = 70) was within 400 nm from the nearest astroglial 

CB1 receptor particle, 40.18 ± 6.50% were at 400–800 nm, 26.81 ± 6.81% at 800–1,200 

nm, and 11.99 ± 1.65% were beyond 1,200 nm (Fig. 30b). Furthermore, the statistical 

analyses of these values revealed that there were not differences in the distribution of CB1 
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receptors in astrocytes relative to the synapses of uninjured and TBI rats (p > 0.05; Fig. 

30b). 

Figure 30. Assessment of the cellular and subcellular architecture in DML 40 days 
after TBI (16 hits) versus uninjured rats. (a) Area of excitatory terminals (sham: 0.27 
± 0.02 µm2, 16 hits: 0.33 ± 0.03 µm2), inhibitory terminals (sham: 0.38 ± 0.05 µm2, 16 hits: 
0.40 ± 0.04 µm2), astrocytic processes (sham: 0.40 ± 0.07 µm2, 16 hits: 0.30 ± 0.05 µm2) 
and mitochondria (sham: 0.10 ± 0.01 µm2, 16 hits: 0.08 ± 0.01 µm2). (b) Proportion of 
synapses within 400 nm bits from the astrocytic CB1 particles to the midpoint of the 
nearest synapse. Data are expressed as mean ± SEM. They were analyzed by non-
parametric or parametric tests (Mann–Whitney U test or unpaired t-test). 
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5.4. EFFECTS OF ACUTE THC EXPOSURE ON CB1 RECEPTOR 
EXPRESSION AND HIPPOCAMPAL ULTRASTRUCTURE 

5.4.1. Cellular and subcellular localization and density of the CB1 

receptor in CA1 hippocampus after acute THC administration 

Hippocampal tissue from sham and THC-treated mice were used to investigate the cellular 

and subcellular localization of the CB1 receptor in the CA1 stratum radiatum (Fig. 31). As 

expected in sham mice, presynaptic inhibitory terminal membranes forming symmetric 

synapses with postsynaptic dendrites were decorated with a high density of CB1 receptor 

immunoparticles, whereas a much lower labeling was observed in excitatory terminals 

making asymmetric synapses with dendritic spines (Fig. 31a, b, d, e, f and g). Once again, 

the CB1 receptor pattern virtually disappeared in CB1-KO meaning that the CB1 receptor 

antibody used was highly specific (Fig. 31c). 

Notably, the total of CB1 receptor particles counted in 31.5 μm2 on plasma membranes 

decreased significantly after THC exposure versus sham (sham: 34.23 ± 3.24 particles; 

THC: 21.85 ± 3.39 particles; ***p < 0.001). In particular, the highest proportion of the total 

CB1 receptor particles found in sham was on inhibitory axon terminal membranes, as 

expected (17.50 ± 3.09 particles) but was remarkably low in THC treated mice (7.64 ± 2.98 

particles) (***p < 0.001). Likewise, a great particle decrease was also detected after acute 

THC exposure in excitatory terminals (sham: 2.77 ± 0.24 particles; THC: 1.71 ± 0.26 

particles) (**p < 0.01) and mitochondria (sham: 3.38 ± 0.30 particles; THC: 2.63 ± 0.23 

particles) (*p < 0.05; Fig. 32d). Furthermore, 78.40 ± 0.81% of the inhibitory terminals 

and 21.91 ± 2.06% of the excitatory terminals in CA1 hippocampus were CB1 receptor 

immunopositive in sham mice. In contrast, in acute THC treated mice, the values of CB1 

immunopositive inhibitory terminals decreased significantly (47.74 ± 13.27%; ***p < 

0.001), but no significant differences were found in the proportion of CB1 receptor-labeled 

excitatory terminals (17.55 ± 2.39%; p > 0.05; Fig. 32a). Finally, there was a significant 

decrease in the density of CB1 receptors in inhibitory terminals (sham: 7.03 ± 0.52 

part/µm; THC: 3.68 ± 0.28 part/µm) (***p < 0.001) and mitochondria (sham: 0.96 ± 0.02 

part/µm; THC: 0.88 ± 0.02 part/µm) (*p < 0.05). However, the receptor density in 

excitatory terminals did not vary after acute THC exposure (sham: 0.55 ± 0.019 part/µm; 

THC: 0.60 ± 0.028 part/µm) (p > 0.05; Fig. 32c). There was also a significant reduction in 

the CB1 receptor immunopositive astrocytic processes in acute THC (23.05 ± 3.99%) 

relative to sham (35.13 ± 4.29%) (**p < 0.01; Fig. 32a), associated with a significant 

increase in CB1 receptor particle density (sham: 0.20 ± 0.02 part/μm; THC: 0.40 ± 0.06 

part/µm) (**p < 0.01; Fig. 32c). Additionally, CB1 receptor immunopositive mitochondria 
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in neurons (18.66 ± 1.06%) and astrocytes (13.49 ± 2.28%) were significantly reduced 

after acute THC administration (11.32 ± 0.68% in neurons; ***p < 0.001, and 6.08 ± 1.39% 

in astrocytes; *p = 0.049; in detail, Fig. 32b). 

Figure 31. Double pre-embedding immunogold (CB1 receptor) and 
immunoperoxidase (GFAP) method for electron microscopy. (a, b) As expected in 
sham mice, CB1 receptors are observed in excitatory (ter, green arrows) and inhibitory 
terminals (ter, red arrows), astrocytic membranes (as, orange arrows), as well as 
neuronal and astrocytic mitochondria (m, purple arrows). (c) No CB1 receptor 
immunolabeling is detected in terminals (ter), astrocytes (as) and mitochondria in CB1-
KO mice, indicating the specificity of the CB1 receptor antibody used. (d, e) Serial 
ultrathin sections showing a GFAP positive (DAB immunodeposits) astrocytic process 
with a few CB1 receptor immunoparticles on the astrocytic membrane (as, orange 
arrows). A CB1 receptor positive excitatory terminal (ter, green arrow) and a CB1 
receptor negative inhibitory terminal (ter, red) are also closely associated to this 
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astrocytic process. In addition, CB1 receptor labeling is observed in astrocytic 
mitochondria, another inhibitory terminal (ter, red arrows), and neuronal mitochondria 
(m, purple arrows). (f) Usual CB1 receptor metal particles on an inhibitory terminal (ter, 
red arrows) and mitochondria (m, purple arrows) of sham mice; however, CB1 receptor 
labeling decreases in inhibitory terminals (ter, red arrows) after acute THC treated mice 
(g). (h) Notice that dendritic spines (sp, blue) and (i) and mitochondria (m, purple) seem 
to be more numerous after acute THC with respect to sham (j). Scale bars: 1µm. 

Figure 32. CB1 receptor distribution in the CA1 stratum radiatum of acute THC 
treated mice. (a) Percentage of CB1 receptor immunopositive excitatory and inhibitory 
synaptic terminals as well as astrocytes in sham and after THC. (b) Percentage of labeled 
mitochondria in cellular and subcellular compartments in sham and acute THC: in 
excitatory terminals, sham: 19.27 ± 1.57% vs. THC: 8.69 ± 0.98%; in inhibitory terminals, 
sham: 23.64 ± 5.02% vs. THC: 22.35 ± 3.39%; in dendrites, sham: 19.05 ± 1.67% vs. THC: 
12.66 ± 1.07%; in astrocytes, sham: 13.49 ± 2.28% vs. THC: 6.08 ± 1.39%). The number 
of mitochondria studied is in parentheses on the top of each column. (c) CB1 receptor 
density (particles/µm) in CB1 receptor positive profiles in sham and acute THC treated 
mice. (d) Proportion of CB1 receptor labeling in different compartments per photo (31.5 
μm2) (analyzed area: ~2000 µm2). (d) Data are expressed as mean ± SEM and were 
analyzed by non-parametric or parametric tests (Mann–Whitney U test or unpaired t-test 
*p < 0.05; **p < 0.01; ***p < 0.001).
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5.4.2. Ultrastructural changes in CA1 astrocytes, neurons and 
mitochondria after acute THC exposure 

The ultrastructural analysis revealed that 49.57 ± 1.39% of the total area analyzed 

corresponded to dendritic profiles in sham mice, whereas 67.80 ± 1.13% was occupied by 

dendrites in THC treated mice (***p < 0.001; Fig. 33a). Furthermore, an increase in the 

number of dendritic spines was observed in acute THC treated (11.63 ± 0.30 spines/31.5 

μm2) versus sham mice (8.08 ± 0.25 spines/31.5 μm2;***p < 0.001; Fig. 33e). Alike, a great 

increase in the number of mitochondria was detected particularly in dendrites (*p < 0.05, 

**p < 0.01, ***p < 0.001; Fig. 33b). However, not statistically significant differences were 

found in the number of excitatory terminals in THC and sham mice (p > 0.05; Fig. 33e). 

Interestingly, the area of the dendritic spines (sham: 0.12 ± 0.00 µm2; THC: 0.11 ± 0.00 

µm2), synaptic terminals (sham: 0.21 ± 0.01 µm2; THC: 0.15 ± 0.00 µm2) (***p < 0.001; Fig. 

33d) and mitochondria (sham: 0.13 ± 0.00 µm2; THC: 0.08 ± 0.00 µm2) (***p < 0.001; in 

detail, Fig. 33c) decrease significantly in THC with respect to sham. The area of astrocytes 

was also significantly smaller in THC (1.51 ± 0.51 μm2) than in sham (2.19 ± 0.51 μm2) 

(***p < 0.001) as well as the astrocytic perimeter (sham: 5.87 ± 0.49 μm; THC: 4.25 ± 0.54 

μm) (***p < 0.001; Fig. 33f). These observations suggest that the increase in CB1 receptor 

density in astrocytes after acute THC exposure might be due to the reduced astrocytic size 

induced by this harm condition. 

Figure 33. Ultrastructural assessment of the neuronal and astroglial morphology 
in the CA1 stratum radiatum of sham and THC treated mice. (a) Proportion of the 
area of dendrites and terminals normalized to the total neuronal area. (b) Number of 
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mitochondria segments per 31.5 μm2 (in dendrites, sham: 6.38 ± 0.23, THC: 16.11 ± 0.36; 
vs. in terminals, sham: 6.52 ± 0.27, THC: 7.68 ± 0.24) (Data, mean ± SEM. *p < 0.05, ***p < 
0.001 (sham postsynaptic mitochondria vs. THC mitochondria), ###p < 0.001 (THC 
postsynaptic mitochondria vs. presynaptic mitochondria), ++p < 0.01 (THC postsynaptic 
mitochondria vs. THC presynaptic mitochondria), Dunn's Multiple Comparison Test). (c) 
Area of mitochondria (in dendrites, sham: 0.16 ± 0.00 µm2, THC: 0.10 ± 0.00 µm2; vs. in 
terminals, sham: 0.09 ± 0.00 µm2, THC: 0.07 ± 0.00 µm2) (***p < 0.001, Mann–Whitney 
test). (d) Area of dendritic spines (sham: 0.12 ± 0.00 µm2, THC: 0.11 ± 0.00 µm2), and 
terminals (sham: 0.21 ± 0.01 µm2, THC: 0.15 ± 0.00 µm2) (***p < 0.001, Mann–Whitney 
test). (e) Number of dendritic spines (sham: 8.08 ± 0.25 spines, THC: 11.63 ± 0.30 spines) 
(***p < 0.001, Mann–Whitney test) and number of excitatory terminals per 31.5 μm2. (f) 
Area of astrocytes (sham: 2.19 ± 0.51 μm2, THC: 1.51 ± 0.51 μm2) and astrocytic 
perimeter (sham: 5.87 ± 0.49 μm, THC: 4.25 ± 0.54 μm) (***p < 0.001, Mann–Whitney 
test). 
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6.1. CB1 RECEPTORS IN ASTROCYTES OF THE HIPPOCAMPUS 

Hippocampal sections of CB1-WT, CB1-KO, conditional CB1 receptor rescue mice re-

expressing CB1 receptor exclusively in astrocytic GFAP expressing cells (GFAP-CB1-RS), 

STOP-CB1 (carrying a loxP-flanked stop cassette inserted in the 5’UTR upstream of the CB1 

receptor translational start codon) and conditional mutant mice bearing a selective 

deletion of CB1 in astrocytes expressing GFAP (GFAP-CB1-KO) were used in this doctoral 

thesis to investigate the localization of the CB1 receptor. Besides, CB1-WT and CB1-KO mice 

expressing the humanized isoform of the Green Fluorescence Protein (hrGFP) from the 

sea pansy Renilla (Ward et al., 1978; Ward and Cormier, 1979; Navarro-Galve et al., 2005; 

Hadaczek et al., 2009; De Francesco et al., 2015; Kerr et al., 2015) under the control of the 

promoter of GFAP [GFAPhrGFP-CB1-WT and GFAPhrGFP-CB1-KO, respectively] were also 

studied. The low CB1 receptor expression in astrocytes could be accurately detected by 

high resolution immunocytochemical techniques for electron microscopy (Puente et al., 

2019), and a combined pre-embedding immunogold and immunoperoxidase method has 

previously been shown in our laboratory (Puente et al., 2019) to be an excellent approach 

for the localization of the CB1 receptors in astrocytes (Han et al., 2012; Bosier et al., 2013; 

Gutiérrez-Rodríguez et al., 2018). 

My results showed that the CB1 particles localized on astrocytic profiles versus the total 

CB1 receptor particles on plasmalemmal structures of the GFAP-CB1-RS hippocampus 

were almost all on astrocytic elements. Furthermore, no expression of the CB1 receptor 

was observed in astrocytes of STOP-CB1, and only background levels were on astrocyte 

mitochondria despite previous findings of CB1 receptor mRNA expression in CB1-STOP 

mice (Ruehle et al., 2013; de Salas-Quiroga et al., 2015). The CB1 receptor expression 

restored in astrocytes of the GFAP-CB1-RS knock-in mice can provide good insights into 

the sufficiency of the CB1 receptor in these cells for specific brain functions and 

behaviours, as it was demonstrated recently for the neuronal CB1 receptors of rescue mice 

expressing the gene exclusively in dorsal telencephalic glutamatergic neurons (Glu-CB1-

RS) or GABAergic neurons (GABA-CB1-RS) (Ruehle et al., 2013; Soria-Gómez et al., 2014; 

de Salas-Quiroga et al., 2015). 

6.1.1. CB1 receptor expression in GFAPhrGFP-CB1-WT mutant mice 

Additionally, mutant mice target to express hrGFP in astroglial cells were used in my 
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doctoral thesis. The proportion of the total CB1 receptor particles (particles/μm) that was 

localized in astrocytic elements was higher in GFAPhrGFP-CB1-WT than in the WT. These 

results suggest that the CB1 receptor expression in astrocytes could actually be higher than 

previously reported using the astrocytic GFAP marker (Han et al., 2012; Bosier et al., 2013; 

Gutiérrez-Rodríguez et al., 2018). A plausible explanation could be due to the different 

molecular nature of the GFAP and the hrGFP proteins. GFAP is a cytoskeletal protein 

assembled in intermediate filament packet (Inagaki et al., 1994; Eng et al., 2000; Hol & 

Pekny, 2015) whereas hrGFP is a diffusible protein, which fills all the cytoplasmic regions 

of the cell. Thus, GFAP immunostaining is mostly restricted to the main radial processes 

of the astrocyte, while hrGFP extends into the fine processes of the astrocytes that 

normally lack GFAP (Nolte et al., 2001) therefore accomplishing a better detection of the 

astrocyte processes. 

The CB1 receptors in astrocytes play a key role in the communication between neurons 

and astrocytes through an astrocytic calcium rise that triggers a potentiation of the 

excitatory synaptic transmission at distant synapses (Navarrete & Araque, 2008, 2010; 

Navarrete et al., 2012, 2014; Gómez-Gonzalo et al., 2015). CB1 receptor activation in 

astrocytes contributes to the brain´s energy supply through the control of the leptin 

receptor expression in these cells (Bosier et al., 2013) and regulates D-aspartate uptake 

by astrocytes (Shivachar, 2007). Furthermore, the CB1 receptor expression increases in 

astrocytes of the sclerotic hippocampus (Meng et al., 2014) and blockade of the astroglial 

receptor modulates the intracellular calcium signaling reducing hippocampal epileptiform 

seizures (Coiret et al., 2012). The subcellular compartmentalization of the CB1 receptors 

in astrocytes suggests the existence of a molecular architecture that may be crucial for the 

functional role of the CB1 receptors at the tripartite synapse (Navarrete & Araque, 2008, 

2010; Han et al., 2012; Araque et al., 2014; Pérez-Alvarez et al., 2014; Belluomo et al., 2015; 

Metna-Laurent & Marsicano, 2015; Da Cruz et al., 2016). 

6.1.2. CB1 receptors in astroglial mitochondria and the nearby synapses 

Recent consensus has been reached (Harkany & Horvath, 2017; Mancini & Horvath, 2017) 

confirming that a low but significant proportion of CB1 receptors in the brain are 

functionally associated to mitochondrial membranes, where they mediate cannabinoid 

effects on cellular mitochondrial activity and on behavioral food intake and memory 

consolidation (Koch et al., 2015; Hebert-Chatelain et al., 2016). However, whether these 

effects are due to specific cell-type dependent mechanisms is not known. Immunogold 
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electron microscopy revealed CB1 receptors in astroglial mitochondrial membranes from 

the hippocampus (Gutiérrez-Rodríguez et al., 2018), prefrontal cortex, piriform cortex and 

nucleus accumbens. Importantly, negative control tissues from global CB1-KO mice 

displayed just background staining in both neurons and astrocytes. Despite the generally 

lower absolute levels of CB1 receptors in astrocytes than in neurons (Metna-Laurent & 

Marsicano, 2015), the proportion of mtCB1 receptors over the total CB1 receptors density 

in each cell type was slightly larger in astroglial mitochondria of the hippocampus and 

prefrontal cortex than in neuronal mitochondria. Stimulation of astroglial mtCB1 receptors 

impairs brain glucose metabolism through a molecular signaling cascade involving 

destabilization of the N-module of mitochondrial complex I, decreased production of 

mitochondrial reactive oxygen species (ROS) and attenuation of the hypoxia‑induced 

factor‑1 (HIF-1) pathway. In turn, these signaling events reduce lactate production in 

astrocytes and induce bioenergetic stress in neurons, which eventually leads to 

impairment of social interactions in mice (Jimenez-Blasco et al., Nature, under review). 

Furthermore, the findings that astrocytes contain CB1 receptors in mitochondria and that 

the cannabinoid-induced reduction of oxygen consumption (Bénard et al., 2012) is absent 

in mitochondria isolated from the forebrain of GFAP-CB1-KO mice (Jimenez-Blasco et al., 

Nature, under review) suggest that astroglial mtCB1 receptors play a prominent role in the 

global effects of cannabinoids on brain mitochondrial respiration. Considering that 

neurons express much larger absolute levels of CB1 receptor protein than astrocytes 

(Busquets-Garcia et al., 2018) and they contain mtCB1 receptors (Bénard et al., 2012), we 

can speculate that neuronal mtCB1 receptors might mediate other specific effects of 

cannabinoids, such as reduction of mitochondrial mobility and synaptic transmission 

(Hebert-Chatelain et al., 2016). In addition, it is also likely that the respiratory effects of 

cannabinoids on neuronal mitochondria are limited to specific brain regions, subcellular 

domains and/or neuronal types. Data seem to indicate that the cell types involved in the 

effects of mtCB1 receptors depend on the functions and the behavioral tasks under 

scrutiny, as well as on the state of subjects (Busquets-Garcia et al., 2015). 

As the CB1 receptors in astrocytes (Gutiérrez-Rodríguez et al., 2018), the most common 

distance observed between the astroglial mtCB1 receptors and the nearest synapses was 

400-800 nm in the CA1 stratum radiatum and the DML. Thus, it is tempting to suggest that 

this distance would represent the average distance crossed by the eCBs generated on 

demand in postsynaptic neurons to the CB1 receptors localized to the mitochondrial 

astrocytes. 
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6.1.3. Conditional CB1 receptor mutants 

Loss of function of mutant mice lacking the CB1 receptor in specific cell types allowed 

better identifying the anatomical localization and defining the necessary role of the 

receptor for several brain functions (Marsicano et al., 2003; Monory et al., 2006, 2015; 

Han et al., 2012; Bénard et al., 2012; Lutz, 2014; Soria-Gómez et al., 2014; Koch et al., 2015; 

Martín-García et al., 2015). As to the astrocytes, conditional mutant mice without CB1 

receptors in these cells lack the spatial working memory impairment and in vivo 

hippocampal long-term depression induced by acute cannabinoids (Han et al., 2012). The 

demonstration that the hippocampus of the GFAP-CB1-RS mutant mice maintain the 

normal anatomical distribution and expression levels of CB1 receptors in the astrocytes 

and their mitochondria with restored receptors (Gutiérrez-Rodríguez et al., 2018), make 

these mutants ideal for the study of the CB1 receptor function in astrocytes, as it was 

recently shown for Glu-CB1-RS (Ruehle et al., 2013; Soria-Gómez et al., 2014; de Salas-

Quiroga et al., 2015; Gutiérrez-Rodríguez et al., 2017) and GABA-CB1-RS mice (de Salas-

Quiroga et al., 2015; Gutiérrez-Rodríguez et al., 2017). In fact, the rescue strategies have 

the advantage of the re-establishment and visualization of existing CB1 receptors levels in 

cell types with sparse CB1 receptors (as the astrocytes), allowing a more comprehensive 

functional characterization of the (endo)cannabinoid system based on the precise cellular 

and subcellular localization of the CB1 receptor, and improving the fundamental 

knowledge for the development of innovative therapeutics against complex brain 

diseases. Altogether, these observations confirm the high specificity of the CB1 receptor 

genetic rescue approach carried out in the astrocytes of the mutant mice, and emerge as 

excellent models for studying the contribution of the CB1 receptors in astrocytes to brain 

function and dysfunction. 
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6.2. BINGE DRINKING AND CB1 RECEPTORS IN ADULT CA1 
HIPPOCAMPUS 

I examined the effect of the adolescent intermittent binge drinking in the dark, a model of 

chronic alcohol intake, on the CB1 receptor expression in adult brain astrocytes, for two 

main reasons: first, the adolescent brain is highly vulnerable to ethanol having a 

tremendous impact on the brain´s cellular structure and function, including the astrocytes 

(Pascual et al., 2007; Vetreno & Crews, 2015; Adermark & Bowers, 2016); second, the 

astroglial CB1 receptors at the tripartite synapse play a key role in brain functions such as 

synaptic plasticity, memory and behavior (Navarrete & Araque, 2010; Han et al., 2012; 

Araque et al., 2014; Navarrete et al., 2014; Gómez-Gonzalo et al., 2015; Metna-Laurent & 

Marsicano, 2015; Da Cruz et al., 2016) that are altered upon ethanol intake (Lovinger & 

Roberto, 2013; Lovinger & Alvarez, 2017). 

The adolescent EtOH intake has been shown to cause a significant decrease in the relative 

CB1 receptor protein and mRNA (Basavarajappa et al., 1998; Mitrirattanakul et al., 2007; 

Steindel et al., 2013; Peñasco et al., 2020). To determine whether EtOH intake during 

adolescence elicited a global change in CB1 receptor expression in the adult CA1 stratum 

radiatum, the proportion of CB1 receptor immunoparticles in different cellular 

compartments was examined. Metal particles were localized on inhibitory and excitatory 

axon terminals forming synapses with dendrites and dendritic spines, respectively. As 

expected, the highest proportion of the total CB1 receptor particles was found on 

inhibitory axon terminal membranes making symmetric synapses with dendrites. Overall, 

there was no significant difference between the CB1 receptor expression on inhibitory 

terminals in control and EtOH. The concentration of immunogold particles was low in the 

excitatory synapses in control and even lower in EtOH. 

I used the DAB immunostaining to identify GFAP-containing astrocytes and their 

processes, which then allowed individual CB1 receptors on astrocytes to be detected using 

immunogold labeling. My results showed that adolescent mice subjected to a 4-day model 

of binge drinking have a 40% decrease in astroglial processes expressing CB1 receptors 

and a 30% drop in receptor density in adult CA1 stratum radiatum astrocytes relative to 

control. In addition, the proportion of total CB1 receptor particles found on astrocytes in 

EtOH was much lower than in control. Interestingly, the measurements taken (perimeter, 

area) indicate that astrocytes were swollen in adult CA1 upon cessation of ethanol intake 

in adolescence. Because of the disrupted cell morphology, the astroglial CB1 receptor 

expression was analyzed on a similar number of astroglial processes that were counted 
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up in about 30% larger area in EtOH than in control. Astrocytic swelling seems to be a 

phenomenon associated with EtOH consumption that leads to astroglial dysfunction 

(Adermark & Bowers, 2016) upon disruption of the glial fibrillary acidic protein found in 

the astrocyte intermediate filaments (Renau-Piqueras et al., 1989). Furthermore, long-

term behavioral and cognitive impairments, synaptic plasticity disturbance, late alcohol 

abuse and addiction related to binge drinking during the adolescence have been 

associated with neuroinflammatory mechanisms (Nestler, 2001; Montesinos et al., 2016). 

Astrocytes participate in the inflammatory response through their capacity to release pro-

inflammatory molecules (Farina et al., 2007) that can be diminished by anti-inflammatory 

reactions mediated by eCBs acting on astroglial CB1 receptors (Metna-Laurent & 

Marsicano, 2015). Hence, because of the drastic reduction in CB1 receptors in adult 

astrocytes it is reasonable to expect an impairment of the astroglial anti-inflammatory 

reaction in response to the adolescent EtOH intake. Furthermore, the altered astroglial 

morphology should affect the extracellular matrix components and the perineuronal nets 

sat between the astrocytes and the synapses, so impairing the homeostasis at the tripartite 

synapse. The supposedly resulting disturbance of neurotransmitter clearance and 

gliotransmission may lead to deficits in synaptic plasticity (Dzyubenko et al., 2016) that 

ought to underlie the brain dysfunction observed after chronic ethanol consumption (Pava 

& Woodward, 2012; Lovinger & Roberto, 2013; Lovinger & Alvarez, 2017). Interestingly, 

the astroglial glutamate transporter GLAST (EAAT1) appears to be up-regulated upon 

ethanol exposure (Rimondini et al., 2002) which should favor glutamate clearance from 

the synaptic cleft. However, this compensation seems not to be relevant for the ethanol 

effects, as mice lacking GLAST but equipped with functional presynaptic CB1 receptors 

show less alcohol consumption, motivation, and reward (Karlsson et al., 2012). It remains 

to be determined in our model whether the reduction in CB1 receptors in astrocytes 

correlates with changes in GLAST expression. 

I observed that adolescent binge drinking does not alter the distribution of the remaining 

CB1 receptors in astrocytes relative to neighboring synapses, except the proportion of 

inhibitory synapses closely related to the astrocytic CB1 receptors that was significantly 

lower in EtOH-exposed mice. However, the drastic decrease in astrocytic CB1 receptors 

distributed on swollen astrocytes may not be effective in sensing the eCBs produced on 

demand by neural activity, compromising gliotransmitter availability elicited by 

cannabinoids at the synapses (Han et al., 2012; Araque et al., 2014). 

The CB1 receptor expression on glutamatergic synaptic terminals was affected too, as a 

slight but significant decrease in CB1 receptor immunolabeling (but not the proportion of 
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CB1 receptor positive terminals nor the labeling density) was noticed in adult CA1 stratum 

radiatum upon adolescent binge drinking. This is in line with our recent observations in 

the DML that ethanol consumption during adolescence negatively impacts on the adult 

CB1 receptor-dependent long-term depression of excitatory synaptic transmission, a form 

of synaptic plasticity (Peñasco et al., 2020). Under normal conditions, CB1 receptor 

immunogold particles localized to inhibitory and excitatory axon terminals forming 

synapses with dendrites and dendritic spines, respectively, and several other cell 

compartments in the middle one-third of the DML. The proportion of the total CB1 receptor 

gold particle distribution was determined in excitatory terminals (12.03 ± 0.91%), 

inhibitory terminals (54.90 ± 2.18%), mitochondria (8.72 ± 0.22%), dendrites (10.39 ± 

1.90%) and other membranes (13.94 ± 1.03%) in this sublayer of the DML (Peñasco et al., 

2019). Furthermore, 26.31 ± 1.19% of the excitatory terminals were CB1 receptor-positive 

with a density of 0.64 ± 0.04 CB1 receptor particles/µm (Peñasco et al., 2019). To assess 

whether adolescent EtOH intake caused a global change in CB1 receptor expression in the 

mature hippocampus after the same adolescent binge drinking model applied in my 

doctoral thesis, the CB1 receptor immunoparticle distribution (% of CB1 immunoparticles 

distributed in different compartments taken from the total CB1 particles counted in the 

middle one-third DML) was compared between sham and EtOH-treated mice. The values 

in sham mice were: excitatory terminals (14.56 ± 2.45%), inhibitory terminals (46.08 ± 

4.96%), mitochondria (11.65 ± 1.31%), dendrites (10.69 ± 1.35%), other membranes 

(17.02 ± 2.26%). In EtOH-treated mice: excitatory terminals (9.52 ± 0.93%), inhibitory 

terminals (49.70 ± 5.08%), mitochondria (11.80 ± 1.38%), dendrites (12.84 ± 1.54%), 

other membranes (17.19 ± 2.08%) (Peñasco et al., 2020). Furthermore, the percentage of 

CB1 receptor-labeled excitatory terminals was significantly reduced after EtOH exposure 

(17.78 ± 1.95% in EtOH vs 26.98 ± 3.15% in sham) (Peñasco et al., 2020). Interestingly, no 

statistical differences were found in CB1 receptor immunoparticle density (particles/µm) 

between excitatory boutons of sham (0.63 ± 0.05) and EtOH-treated mice (0.58 ± 0.03) 

(Peñasco et al., 2020). Hence, the reduction in CB1 receptors in excitatory terminals could 

account for at least part of the deficits in the adult CB1 receptor-dependent synaptic 

plasticity after adolescent EtOH intake (Peñasco et al., 2020). Thus, field excitatory 

postsynaptic potentials (fEPSPs) evoked by MPP stimulation in the DML were inhibited 

upon CB1 receptor activation in adult sham, but not in EtOH-exposed mice. In addition, 

MPP but not mossy cell fiber stimulation triggered a novel CB1 receptor-dependent 

excitatory long-term depression (CB1-eLTD) that was absent in adult mice after 

adolescent EtOH consumption (Peñasco et al., 2020). Furthermore, the CB1-eLTD was 

group I metabotropic glutamate receptor (mGluR)-dependent, required intracellular 



Discussion 

104 

calcium influx and 2-AG synthesis. Also, adolescent EtOH intake significantly decreased 

the [35S]guanosine-5*-O-(3-thiotriphosphate) ([35S] GTPγS) basal binding and the 

guanine nucleotide-binding (G) protein Gαi2 subunit, and significantly increased the 

monoacylglycerol lipase (MAGL) mRNA and protein in the adult hippocampus. 

Interestingly, MAGL inhibition recovered the CB1-eLTD and the significant loss of 

recognition memory in EtOH-treated mice (Peñasco et al., 2020). However, whether there 

are also any glial cell-associated changes in CB1 receptor expression in the medial DML 

remains unknown. 

The expression and localization of CB1 receptors in GABAergic synaptic terminals was 

unaffected, meaning that the proportion of the CB1 receptor-immunopositive inhibitory 

synaptic terminals in control and EtOH coincided with the CB1 receptor distribution 

pattern described for rodent interneurons in CB1-WT (Nyíri et al., 2005; Gutiérrez-

Rodríguez et al., 2017). However, the percentage of the CB1 receptor-immunopositive 

excitatory terminals in this doctoral thesis and in our preceding study (Gutiérrez-

Rodríguez et al., 2017) was to a certain extent lower than the values formerly reported 

(Katona et al., 2006; Uchigashima et al., 2011), most likely attributable to the different 

immunocytochemical protocols and antibodies used (Katona et al., 2006; Uchigashima et 

al., 2011). Furthermore, the proportion of CB1 receptor particles on mitochondria in 

control (13.92% ± 1.57%) was similar to our previous reports (Bénard et al., 2012; 

Hebert-Chatelain et al., 2016) and no changes in the CB1 receptor expression could be 

detected in this organelle upon EtOH exposure. 

The eCBS participates in ethanol behaviors (Economidou et al., 2006) and, reciprocally, 

ethanol has effects on the eCB-dependent neural activity and behavior (Pava & 

Woodward, 2012; Talani & Lovinger, 2015). This system prevents the ethanol-induced 

potentiation of GABA release (Roberto et al., 2010; Talani & Lovinger, 2015) and supresses 

the glutamatergic transmission elicited by ethanol (Basavarajappa et al., 2008). 

Furthermore, CB1 receptor antagonism reduces ethanol self-administration and seeking 

while CB1 receptor activation has opposite effects during the relapse and maintenance 

phase of alcohol drinking (Getachew et al., 2011). Sardinian alcohol preferring rats, a 

genetic model of alcoholism, exhibit a higher CB1 receptor density, coupling to G-proteins 

and endocannabinoid levels associated with lower expression of FAAH (Vinod et al., 

2012). Upon alcohol consumption, however, CB1 receptor coupling was reduced. This 

effect was attenuated during alcohol withdrawal and reversed by CB1 receptor 
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antagonism that appeared to be associated with reduced alcohol intake (Vinod et al., 

2012). In this line, the CB1 receptor expression tends to normalize after a prolonged 

withdrawal (Rimondini et al., 2002; Mitrirattanakul et al., 2007; Vinod et al., 2012) 

probably due to a reduction in endocannabinoid levels (Vinod et al., 2012). However, the 

rapid CB1 receptor internalization and lysosomal degradation of CB1 receptors due to the 

endocannabinoid increase upon ethanol intake, and the ultimate membrane reinsertion 

upon alcohol intake cessation (Pava & Woodward, 2012), seem to differently operate in 

neuronal and astroglial compartments. In our model of adolescent intermittent alcohol 

intake, a drastic decrease in CB1 receptor immunoparticles, proportion of CB1 receptor-

expressing profiles and receptor density were only observed in adult CA1 astrocytes, 

suggesting that some differences should exist between CB1 receptors located at neuronal 

and astroglial compartments. Actually, CB1 receptors signal in neurons through coupling 

to Gαi/o proteins (Kano et al., 2009) and mitochondrial CB1 receptors have been shown 

to signal through Gαi proteins, as pertussis toxin blocks the decrease in mitochondrial 

cAMP, protein kinase A, complex I activity and respiration induced by cannabinoids 

(Hebert-Chatelain et al., 2016). Interestingly, no changes in the mitochondrial CB1 

receptors in adult upon adolescent intermittent ethanol intake were observed in my thesis 

work. In astrocytes, there are pieces of evidence indicating that CB1 receptors, in addition 

to Gαi/o proteins, also signal through Gαq proteins enabling astroglial CB1 receptors to 

couple to different intracellular signaling pathways (Metna-Laurent & Marsicano, 2015). 

These biochemical differences might also have consequences on CB1 receptor-binding 

proteins, like the G-protein-associated sorting protein 1 (GASP1) responsible for linking 

CB1 receptors to degradation, or the cannabinoid receptor associated protein 1a (CRIP1a) 

involved in the CB1 receptor function modulated by antagonists (Vinod et al., 2012). Taken 

together, coupling of the CB1 receptor to different G-proteins might be behind the distinct 

effect of adolescent EtOH exposure on the CB1 receptor expression in astrocytes of adult 

brain. 

The long-lasting effects of adolescent binge drinking on astroglial CB1 receptors and 

astroglial morphology suggest the existence of an architectural breakdown of the neuron-

astrocyte crosstalk at the tripartite synapse of the adult brain. Yet, the effects of these 

drastic changes on the adult synaptic function and behavior remain to be elucidated. 

Lastly, the reciprocal interactions between the eCBS and the acute and chronic effects of 

ethanol have been taken as targets for treatment of ethanol addiction. Therefore, the 

changes observed in astroglial CB1 receptors might represent a novel target of interest to 

palliate the structural, functional and behavioral consequences of the adolescent binge 
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drinking at later periods of life. 
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6.3. REPEATED MILD TRAUMATIC BRAIN INJURY IN JUVENILE RATS 
AND CB1 RECEPTORS IN THE DML OF THE ADULT BRAIN 

Part of these results was obtained during my research stay in the laboratory of Dr. Brian 

Christie and Dr. Patrick Nahirney, Division of Medical Sciences, University of Victoria 

(British Columbia, Canada). As fully described in the Results section, to determine whether 

juvenile r-mTBI (8 hits) caused in the mature hippocampus a global change in CB1 receptor 

expression immediately or after the cessation of the repeated ACHI, I examined in both 

sexes the proportion of CB1 receptor positive profiles and CB1 receptor density in the DML 

at PID 1, 10 and 40. The CB1 receptor expression was not affected at PID 1 but was 

significantly reduced in males and females at PID 10. At this post-injury time, male rats 

had a significant decrease in CB1 positive excitatory terminals, astrocytes and 

mitochondria. Importantly, a remarkable decrease in CB1 receptor density in inhibitory 

terminals was also observed. Interestingly, injured female rats showed no significant 

differences in CB1 receptor expression at PID 10 except that the CB1 receptor density in 

inhibitory terminals was significantly lower than in sham rats. At PID 40, there were 

significant changes in CB1 receptors in both sexes: a) in males, the proportion of CB1 

receptor-labeled excitatory and inhibitory terminals was lower after r-mTBI, however, 

there was a significant increase in CB1 receptor-positive astrocytes; b) in females, the 

proportion of CB1 receptor immunopositive excitatory and inhibitory terminals as well as 

mitochondria were affected. Also 40 days after injury, the CB1 immunoparticle density 

only dropped significantly in inhibitory terminals of both males and females. Also under 

more severe conditions (16 hits), the proportion of CB1 receptor immunolabeled 

excitatory and inhibitory terminals as well as the density of CB1 receptors in inhibitory 

terminals decreased significantly 40 days after injury.  

The expression of CB1 receptor mRNA and CB1 receptor protein have been shown to 

decrease 24 h and 72 h after a closed-head trauma induced by a 50 g weight dropped from 

a 36 cm height, with the recovery to normal levels 2 weeks later (López-Rodríguez et al., 

2015). Furthermore, these changes in CB1 receptor expression negatively correlates with 

edema formation and behavioral impairments (López-Rodríguez et al., 2015). However, 

this weight-drop model causes a limited contra-coup lesion, functional deficits and 

mortality (5–15%) within the first 5 min following the impact (Homsi et al., 2009, 2010; 

Siopi et al., 2013). Many of the models used to study mTBI are associated with disturbing 

factors. For instance, animal models that feature a non-penetrating mechanical impact, a 

lack of focal damage, and that incorporate linear and rotational forces are now preferred 

(Shultz et al., 2017). Indeed, confirming the absence of skull fracture, hemorrhage and 
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significant cell death following mTBI are becoming common (DeWitt et al., 2013; Shultz et 

al., 2017; Meconi et al., 2018). Dr. Christie laboratory has recently introduced the ACHI as 

a model for r-mTBI studies. The ACHI creates linear and rotational forces, and has a 

demonstrated capacity for reliably producing r-mTBI (Meconi et al., 2018; Wortman et al., 

2018; Christie et al., 2019; Pham et al., 2019). My results clearly show no changes in the 

subcellular expression of CB1 receptors 24 h after ACHI. However, changes in CB1 

receptors were evident 10 days and even more obvious 40 days after r-mTBI. These 

changes correlate with small microbleeds throughout the brain which associate with 

activated microglia, an inflammation mechanism observed in r-mTBI (Triviño Paredes JS, 

unpublished observations). In my doctoral thesis, CB1 receptor expression has not been 

assessed in microglia, but we have some ultrastructural evidences indicating that CB1 

receptors might indeed be expressed in these cells under normal conditions at very low 

levels. Thus, we have been able to visualize CB1 receptors in about 9% of the microglial 

processes (subtracted the background already) in the hippocampus of a transgenic mouse 

expressing the EGFP in microglia under the C-X3-C motif of the chemokine 1 receptor, by 

a high resolution immunocytochemical tecnique for electron microscopy (the same used 

in my thesis work). This percentage might change under pathological conditions. In this 

sense, we are carrying a colaborative work with Dr. Julián Romero and his laboratory 

(Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 

Spain) using a transgenic mouse model expressing EGFP under the control of the gen cnr2 

promoter preceded by the insertion of an IRES (internal ribosomal entry site) sequence in 

the 3´UTR region of the cnr2 gen. These mice were crossed with mice expressing 5 familial 

Azheimer´s disease mutations (5xFAD) (López et al., 2018). We used specific antibodies 

against the ionized calcium binding adaptor molecule 1 (Iba1) as microglial marker, as it 

labels all types of microglial subpopulations (Ito et al., 1998; Okere & Kaba, 2000; 

Hirayama et al., 2001; Shapiro et al., 2008). Our preliminary results indicate that CB1 

receptors are localized in 15-20% of the microglial processes in the subiculum of 10-

month-old wild-type mice as well as of mice with amyloid plaques. Therefore, it doesn´t 

seem to happen a significant change in CB1 receptor expression in microglia in the 

Alzheimer´s condition. Nevertheless, the number of CB1 immunoparticles in the microglial 

processes in Alzheimer´s is higher than in control (Terradillos et al., 2019). Altogether, it 

is plausible that changes in microglial CB1 receptor expression could also take place in r-

mTBI conditions. Of course, we should also keep in mind that the CB2 receptor expression 

increases in activated microglia as a response to certain neuropathological and neuro-

inflammatory conditions (Guzmán et al., 2001; Benito et al., 2003, 2005; Zhang et al., 2003; 

Maresz et al., 2005; Yiangou et al., 2006). The activation of CB2 receptors in microglia by 
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cannabinoids regulates immune functions in these cells, stimulating microglial 

proliferation and migration and reducing neurotoxic factors such as TNFα or free radicals 

(Walter et al., 2003; Carrier et al., 2004; Ramírez et al., 2005; Eljaschewitsch et al., 2006; 

Dirikoc et al., 2007), having the microglia lower harmful effects at the lesion sites (Stella, 

2010). However, it remains to be discovered the levels of CB2 receptor expression and 

localization in microglia under r-mTBI conditions, and how its expression could affect 

neuro-inflammation, synaptic plasticity and behavior. 

Long-term changes in CB1 receptors in the DML may underlie modifications in synaptic 

plasticity that is at the base of learning and memory in the hippocampus (Younts et al., 

2016; Monday & Castillo, 2017; Monday et al., 2018). Indeed, the laboratory of Dr. Christie 

have previously shown a significant effect of a single mTBI on LTP in this region (White et 

al., 2017), and their preliminary data indicate that r-mTBI (8 hits) can impair LTD 

induction (900 pulses @ 1 Hz) at 7 days post-injury (Pinar, unpublished). Actually, a 

decrease in CB1 receptors in the excitatory MPP synapses, as we have observed in the DML 

10 and 40 days after r-mTBI (8 hits), suggests that an impairment in eCB-eLTD might also 

be happening in r-mTBI, as it occurs in adult MPP synapses after binge drinking during 

adolescence (Peñasco et al., 2020). In this latter study, the disruption of the adult CB1 

receptor-mediated excitatory transmission and eCB-eLTD after adolescent EtOH intake 

was associated with a defect in recognition memory in adulthood which correlated with a 

cannabinoid signaling disturbance, as the loss of excitatory synaptic plasticity and the 

novel object recognition test (NOR) deficits were reversible by the inhibition of MAGL 

(Peñasco et al., 2020). Moreover, these changes went with 34% decrease in CB1 receptor 

immunolabeling in excitatory terminals and 35% reduction in the proportion of CB1 

receptor immunopositive excitatory boutons in the middle one-third of the DML of EtOH-

treated versus sham (Peñasco et al., 2020). Hence, the CB1 receptor reduction in excitatory 

terminals could account for at least part of the deficits in the adult eCB-eLTD after 

adolescent EtOH intake. 

Another angle to be considered is that CB1 receptor signaling might also be affected after 

r-mTBI, as CB1 receptor coupling to G protein signaling is very efficient in glutamatergic 

synapses (Steindel et al., 2013). In this sense, the specific reduction in the Gαi2 subunit 

observed in EtOH-treated mice might be responsible for the reduction in [35S] GTPγS 

basal binding and the impairment in CB1 receptor signaling, which may be related to the 

absence of eCB-eLTD and deficits in the NOR test in the EtOH (Peñasco et al., 2020). In fact, 

a lack of Gαi2 subunit leads to abnormalities in learning efficiency, sociability and social 
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recognition (Hamada et al., 2017). Upon agonist (2-AG)-induced stimulation of Gαi/o 

subunits, inhibition of MAGL could overcome the loss of CB1 receptors in glutamatergic 

terminals due to the high coupling efficiency of this CB1 receptor population (Steindel et 

al., 2013), leading to functional (eCB-eLTD) and behavioral (recognition memory) 

recovery in adult mice after EtOH treatment during adolescence. 

MAGL inhibition in vivo may primarily act by suppressing GABAA receptor-mediated 

inhibition; therefore, CB1 receptors localized in GABAergic terminals might also be 

contributing indirectly to the eCB-eLTD recovery in EtOH-treated mice. In our r-mTBI 

model, drastic reductions in the CB1 receptor density in inhibitory terminals have been 

observed in males and females 10 and 40 days after 8 hits. These results suggest that an 

increase in GABAergic signaling might be contributing to reduce DG output following TBI 

(Johnson et al., 2014). 

6.3.1. Functional context of the eCB-eLTD at MPP-granule cell synapses 
in r-mTBI 

Brain functions regulated by the eCBS rely on its distribution in cerebral tissue (Castillo et 

al., 2012; Katona & Freund, 2012; Hu & Mackie, 2015; Busquets-Garcia et al., 2018). The 

hippocampus is required for declarative/episodic memory and is involved in spatial and 

context-dependent learning (Eichenbaum et al., 2012). Inputs from the postrhinal cortex 

convey spatial information to the dorsolateral medial entorhinal cortex that projects to 

the dorsal hippocampus through the MPP (Fyhn et al., 2004; Hargreaves et al., 2005). On 

the other hand, the perirhinal cortex projects to the lateral entorhinal cortex which gives 

rise to the LPP (Burwell, 2000). The LPP pathway transmits non-spatial information, and, 

together with information about spatial clues forwarded by the MPP into the DG, 

representations for object-place or event-place scenarios are thought to be built (Suzuki 

et al., 1997; Gaffan, 1998; Hargreaves et al., 2005). At the same time, signal integration by 

granule cells related to environment or context is under control of hilar mossy cells which 

are critical in the learning of information sequences (Lisman et al., 2005). The mossy cells 

receive glutamatergic granule mossy fiber collaterals, and in turn send 

commissural/associational fibers that travel long distances giving innervation to multiple 

DG cells forming mossy-granule cell synapses (Amaral & Witter, 1989; Scharfman & 

Myers, 2013). The glutamatergic synapses of the three excitatory pathways targeting the 
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dentate granule cells contain CB1 receptors (Marsicano & Lutz, 1999; Katona et al., 2006; 

Kawamura et al., 2006; Monory et al., 2006; Uchigashima et al., 2011; Katona & Freund, 

2012; Wang et al., 2016; Gutiérrez-Rodríguez et al., 2017) and display different forms of 

eCB dependent-synaptic plasticity (Chiu & Castillo, 2008; Chávez et al., 2010; Wang et al., 

2016, 2018) which correlate with the distinct information processed by each pathway. As 

previously shown in single BNST neurons (Puente et al., 2011), either the 2-AG and CB1 

receptor-dependent eLTD (Peñasco et al., 2020), or the AEA and TRPV1-dependent eLTD 

at the MPP synapses (Chávez et al., 2010) might each be switched on by distinct patterns 

of neural activity conveying spatial information. At the same time, high frequency 

stimulation of the LPP in the outer one-third of the DML leads to 2-AG production and CB1 

receptor-dependent eLTP at these LPP synapses associated with memories related to odor 

discrimination, and semantic information and representation (Wang et al., 2016, 2018). 

Altogether, the spatial and non-spatial information transmitted by granule cells to CA3 

pyramidal neurons that provides sequence learning and sequence prediction (Hunt et al., 

2013) would involve PP inputs and different forms of cannabinoid-dependent plasticity 

recruited upon the type of information processed, all being modulated by mossy cell 

activity. Learning and memory processes that involve the hippocampus can be affected by 

some pathological conditions. For instance, impaired recognition, spatial, and associative 

memories can be observed in the adult brain after high ethanol exposure (binge 

drinking) during adolescence (Rico-Barrio et al., 2019). This also correlates with a 

decrease in CB1 receptor expression in astrocytes (Bonilla-Del Río et al., 2019), as well 

as with changes in CB1 receptor expression at the PP synapses (Peñasco et al., 

2020). Interestingly, the memory impairment observed after adolescent binge 

drinking is recovered in adults exposed to enriched environmental conditions (Rico-

Barrio et al., 2019). It is plausible that changes in different forms of CB1 receptor-

dependent plasticity in the DG underlie the memory deficits observed in adults after r-

mTBI. 
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6.4. ACUTE THC ADMINISTRATION, ULTRASTRUCTURAL 
ARCHITECTURE AND CB1 RECEPTORS IN CA1 HIPPOCAMPUS OF 
THE ADULT MOUSE BRAIN 

Although THC acts on CB1 and CB2 receptors, the tetrad composed of antinociception, 

hypothermia, hypolocomotion and catalepsy induced by THC (Pertwee, 1997; Felder & 

Glass, 1998; Ameri, 1999) is mediated by CB1 receptors, as these effects are not observed 

in CB1 receptor knock-out mice (Ledent et al., 1999; Zimmer et al., 1999), or in animals 

pretreated with the CB1 receptor antagonist SR141716A (Lichtman & Martín, 1997; Welch 

et al., 1998), However, not much is known about changes in CB1 receptor expression in 

cellular and subcellular compartments as well as about modifications in brain 

ultrastructure taking place after acute THC exposure in the young adulthood. 

In this study, I have shown that the total CB1 receptors decrease significantly in acutely 

THC-exposed young adult mice. In particular, CB1 receptors were remarkably low in 

inhibitory terminals and also decreased in excitatory terminals and mitochondria. 

Furthermore, the percentage of CB1 receptor immunopositive inhibitory terminals 

decreased significantly, but not the proportion of CB1 receptor-labeled excitatory 

terminals. 

CB1 receptor expression is very high in inhibitory synaptic terminals, mostly in cortical 

and hippocampal CCK-positive GABAergic interneurons (Kawamura et al., 2006; Ludányi 

et al., 2008; Marsicano & Kuner, 2008; Katona & Freund, 2012; De-May & Ali, 2013; 

Steindel et al., 2013; Hu & Mackie, 2015; Lu & Mackie, 2016; Gutiérrez-Rodríguez et al., 

2017), low in excitatory glutamatergic synapses (Marsicano et al., 2003; Domenici et al., 

2006; Katona et al., 2006; Monory et al., 2006; Takahashi & Castillo, 2006; Kamprath et al., 

2009; Bellocchio et al., 2010; Puente et al., 2011; Reguero et al., 2011; Ruehle et al., 2013; 

Soria-Gómez et al., 2014; Gutiérrez-Rodríguez et al., 2017) and very low in brain 

astrocytes (Rodríguez et al., 2001; Navarrete & Araque, 2008, 2010; Stella, 2010; Han et 

al., 2012; Bosier et al., 2013; Metna-Laurent & Marsicano, 2015; Viader et al., 2015; Da 

Cruz et al., 2016; Kovács et al., 2017; Gutiérrez-Rodríguez et al., 2018). Brain CB1 receptors 

are mostly localized in axon terminals and preterminals away from the presynaptic active 

zones and are also localized at mitochondria in neurons (Bénard et al., 2012; Hebert-

Chatelain et al., 2014a,b, 2016; Koch et al., 2015) and in astrocytes (Gutiérrez-Rodríguez 

et al., 2018). We assessed the CB1 receptor distribution in subcellular compartments of the 

CA1 hippocampus as the proportion of CB1 receptor-dependent silver-intensified gold 

particles in GABAergic terminals (~56%), glutamatergic terminals (~12%), astrocytes 
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(~6%) and mitochondria (~15%) (Gutiérrez-Rodríguez et al., 2018; Bonilla-Del Río et al., 

2019). Noticeably, 11% of the immunoparticles were localized to other compartments, 

and, importantly, the labeling disappeared in the CB1-KO (Gutiérrez-Rodríguez et al., 2018; 

Bonilla-Del Río et al., 2019). 

Long-term exposure to cannabinoids causes down-regulation of CB1 receptors in the brain 

(Romero et al., 1998; Sim-Selley & Martín, 2002; Sim-Selley et al., 2006) which is at the 

base of receptor desensitization and tolerance (Breivogel et al., 1999; Sim-Selley & Martín, 

2002; Martini et al., 2007; Tappe-Theodor et al., 2007). Chronic THC administration 

uncouples CB1 receptors from G proteins (Sim et al., 1996) likely through receptor 

phosphorylation by a G protein-coupled receptor kinase (Jin et al., 1999). CB1 receptor 

desensitization is also due to changes in presynaptic membrane dynamics: 

endocannabinoid signaling may be limited by the rise of receptor immobilization at 

extrasynaptic sites and a progressive decrease in the number of CB1 receptors at the 

synapse (Mikasova et al., 2008). Furthermore, as classical G protein-coupled receptors, 

prolonged agonist treatment triggers CB1 receptor internalization via both caveolae/lipid-

rafts- and clathrin-coated-pits-mediated pathways in a dynamin-dependent manner 

(Hsieh et al., 1999; Jin et al., 1999; Wu et al., 2008) with distinct domains of the receptor 

being involved (Jin et al., 1999). Interestingly, THC and AEA are low CB1 receptor endocytic 

agonists but induce a faster desensitization and slower resensitization than the high 

endocytic agonists WIN and 2-AG (Wu et al., 2008). 

Acute activation of CB1 receptors by a relatively high dose of THC as used in this study (5 

mg/Kg) causes a drastic decrease in CB1 receptors in CA1 hippocampus probably due to 

receptor internalization. This scenario would lead to an increase in GABA release. At the 

same time, glutamate release would also be affected, as CB1 receptor expression is also 

reduced (but not the density) in excitatory terminals resulting in an excitation/inhibition 

imbalance. A low dose of THC (0.002 mg/kg) reduces injury-induced cognitive deficits in 

mice (Assaf et al., 2011) through the biphasic effects of THC which produces analgesia, 

acute hypothermia, and decreased locomotion at high doses (10 mg/kg), and 

hyperalgesia, hyperthermia, and increased locomotion at low doses (0.002 mg/kg) (Sarne 

et al., 2011). Also, a low dose of THC potentiates calcium entry into cells in vitro (Okada et 

al., 1992) and increases glutamate release (Schurman & Lichtman, 2017). 

Both GABAergic and glutamatergic systems have been shown to be altered by cannabis 

exposure (Skosnik et al., 2014; Zamberletti et al., 2014; Cortes-Briones et al., 2015; 
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Radhakrishnan et al., 2015; Colizzi et al., 2016; Melis et al., 2017). As to the excitatory 

transmission, an increase in the NMDA receptor subunit GluN2B, the AMPA subunits 

GluA1 and GluA2 (Zamberletti et al., 2016), the presynaptic marker synaptophysin and 

the postsynaptic marker PSD95 have been observed in hippocampal synaptosomes from 

adult rats after their THC exposure during adolescence (Zamberletti et al., 2016; Melis et 

al., 2017). However, only an increase in GluN2B and GluA1 subunits in the prefrontal 

cortex was observed in females after adolescent THC (Rubino et al., 2015), suggesting that 

there are sex differences in the adult brain regions affected after THC exposure during the 

adolescence. It has also been postulated that activated astrocytes promoting a pro-

inflammatory phenotype might contribute to the alterations in glutamatergic synapses 

induced by adolescent THC (Melis et al., 2017). The excess of glutamate resulting of the 

decrease in CB1 receptors at the glutamatergic terminals might activate microglia and/or 

astrocytes that trigger inflammatory IL-1b, TNF-α or iNOS which cause learning 

impairment (Cutando et al., 2013; Zamberletti et al., 2015). On the other and, the drop of 

CB1 receptors in GABAergic terminals might also favor glia activation following cannabis 

use, as the increase in neuro-inflammatory molecules was seen to depend on CB1 

receptors in GABAergic neurons (Albayram et al., 2011). 

I also performed an ultrastructural analysis in the CA1 hippocampus to determine the 

impact of acute THC administration during adolescence on the size of dendrites and the 

distribution of neuronal mitochondria. The results of my doctoral thesis indicate that CA1 

dendrites after acute THC exposure occupy a significantly larger area than in sham mice. 

Also, an increase in the number of dendritic spines and mitochondrial profiles were 

observed particularly in dendrites. However, not statistically significant differences were 

found in the number of excitatory terminals. However, the area of the dendritic spines, 

synaptic terminals, mitochondria as well as of the astrocytes and their perimeter decrease 

significantly in THC. Cannabis abuse has been associated with morphological changes in 

different brain regions of male and females. Interestingly, alterations predominate in the 

hippocampus in males (Solowij et al., 2013) and in prefrontal cortex and amygdala in 

females (Medina et al., 2009; McQueeny et al., 2011). The changes in the CA1 

ultrastructure induced by acute THC might be related to the CB1 receptor internalization. 

It has been shown that mice with the global lack of CB1 receptors do not show drastic 

changes neither at the cellular/phenotypic level (Mulder et al., 2008) nor in motor 

coordination (Bilkei-Gorzo et al., 2005; Kishimoto & Kano, 2006). In cerebellum, CB1 

receptors are expressed at the glutamatergic parallel fiber (PF) terminals of the granule 

cells that make excitatory synapses with the Purkinje cell (PC) dendritic spines 
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(Kawamura et al., 2006). The laboratory of Dr. Grandes has demonstrated recently that 

ultrastructural changes at the PF-PC synapses occur in CB1-KO mice (Buceta et al., 2019). 

Thus, the spinocerebellar lobule V of the vermis, but not the vestibulocerebellar lobule X, 

of CB1-KO had significantly less and longer synapses than in CB1-WT. PF terminals were 

significantly larger in both lobules of CB1-KO with no changes in PC dendritic spines. The 

PF terminals in lobule V of CB1-KO contained less synaptic vesicles and lower vesicle 

density; by contrast, vesicle density in lobule X of CB1-KO remained unchangeable relative 

to CB1-WT. There were as many vesicles in lobule V of CB1-KO as in CB1-WT, but their 

distribution decreased drastically at 300 nm of the active zone. In lobule X of CB1-KO, less 

vesicles were found within 150 nm from the presynaptic membrane; however, no vesicles 

were at 450-600 nm of the active zone. A significant higher amount of synaptic vesicles 

close to the active zone in lobule V and X of CB1-KO was observed (Buceta et al., 2019). In 

conclusion, the absence of CB1 receptors strikingly and distinctively impacts on the 

ultrastructural architecture of the PF-PC synapses located in cerebellar lobules that differ 

in vulnerability to damage and motor functions. Thus, a similar phenomenon could 

account for the ultrastructural changes observed in neuronal and astrocytic 

compartments in the CA1 hippocampus after the drop of CB1 receptors induced by the 

acute administration of THC. 

CB1 receptors are also reduced in CA1 mitochondria after acute THC administration. Both 

the percentage of CB1 immunopositive mitochondria in neurons and astrocytes were 

significantly reduced. Acute cannabinoid intoxication is known to induce amnesia in 

humans and animals (Marsicano & Lafenêtre, 2009; Broyd et al., 2016) and the mtCB1 

activation alters energy production by mitochondria (Bénard et al., 2012; Hebert-

Chatelain et al., 2014; Koch et al., 2015). Interestingly, acute cannabinoid-induced memory 

impairment in mice requires activation of hippocampal mtCB1 receptors, as removal of 

CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction 

of mitochondrial mobility, synaptic transmission and memory formation (Hebert-

Chatelain et al., 2016). Signaling of mitochondrial CB1 receptors through intra-

mitochondrial Gαi protein activation inhibits soluble-adenylyl cyclase and PKA-

dependent phosphorylation of specific subunits of the mitochondrial electron transport 

system, which dampens cellular respiration (Hebert-Chatelain et al., 2016). Thus, the drop 

of CB1 receptors in mitochondria seen in this doctoral thesis would represent a brain´s 

compensatory mechanism to palliate the negative consequences of the acute THC 

intoxication. 
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There was also a significant reduction in the percentage of CB1 receptor immunopositive 

astrocytic processes and a simultaneous increase in CB1 receptor immunoparticle density 

in astrocytes after acute THC, probably due to the reduced astrocytic size induced by this 

harm condition (see below). Some years ago was demonstrated that the impairment of 

spatial working memory and in vivo LTD at hippocampal CA3-CA1 synapses induced by 

an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant 

mice lacking CB1 receptors in astrocytes, but is conserved in mice lacking CB1 receptors in 

glutamatergic or GABAergic neurons (Han et al., 2012). Blockade of neuronal NMDA 

receptors and of synaptic trafficking of AMPA receptors also abolishes cannabinoid effects 

on spatial working memory and LTD. Thus, the impairment of working memory by acute 

marijuana and cannabinoids in vivo is due to the sequential activation of astroglial CB1 

receptors and postsynaptic NR2B-containing NMDA receptors, which elicits AMPA 

receptor endocytosis-mediated expression of in vivo LTD at CA3-CA1 synapses, resulting 

in working memory impairment (Han et al., 2012). Astrocytes produce eCBs (Stella, 2010) 

and CB1 receptors in astrocytes control endocannabinoid turnover in the brain (Belluomo 

et al., 2015). Adolescent THC exposure increases GFAP expression in the DG of male and 

female rats (López-Rodríguez et al., 2014) and astrocyte activation is associated with an 

increase in the pro-inflammatory TNF-α and iNOS and reduction in the anti-inflammatory 

cytokine IL-10 (Melis et al., 2017). To mention that the long-term effects of THC 

administration on glial cells is sex- and region-dependent, as the hippocampus and 

cerebellum are the more affected brain regions in males and cerebral cortex in females. 

In conclusion, the acute low-dose THC administration affects dendritic morphology and 

causes an increase in dendritic spines and mitochondria. Also, the CB1 receptor 

distribution is drastically reduced in inhibitory synapses. The ultrastructure and receptor 

modifications observed in CA1 hippocampus after acute THC administration indicate the 

existence of fast brain adaptations that support morphologically the behavioral 

alterations provoked by cannabis intoxication. 
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The conclusions of my doctoral thesis are: 

1. The expression levels of CB1 receptors in hippocampal astrocytes of the

mutant GFAPhrGFP-CB1-WT mice are similar to the wild type.

2. Almost all CB1 receptors in the GFAP-CB1-RS mutant mice that re-express the

CB1 receptors only in GFAP-positive cells localize to astrocytes.

3. The CB1 receptor expression in astroglial mitochondria of the GFAP-CB1-RS

and GFAPhrGFP-CB1-WT hippocampus maintains the same values and

localization of the CB1-WT mice.

4. The density of the mitochondrial CB1 receptors in the hippocampus and

prefrontal cortex is higher in astrocytes than in neurons.

5. Adolescent ethanol intake (binge drinking) causes a drastic decrease in CB1

receptors in astrocytes and changes in the CB1 receptor distribution in the CA1 

hippocampus of the adult mouse. Also, ethanol decreases the number of

astroglial processes and alters their morphology.

6. A significant reduction in the CB1 receptor immunopositive excitatory and

inhibitory synaptic terminals takes place in the adult DML after juvenile

concussion. These changes start in males 10 days after repeated mild TBI and

are well established 40 days after mTBI in males and females.

7. The CB1 receptor density is severely reduced in inhibitory terminals 10 days

after the last concussive impact and is maintained low at least up to 40 days

after mTBI in males and females.

8. Acute low-dose of THC affects dendritic morphology and causes an increase

in the number of dendritic spines and dendritic mitochondria. However, the

size of the dendritic spines, synaptic terminals, astrocytes and mitochondria

decreases significantly.

9. The CB1 receptor expression is drastically reduced in inhibitory synapses,

astrocytic processes and in neuronal and astroglial mitochondria after acute

THC administration.

10. Altogether, this doctoral thesis has shown the existence of changes in CB1

receptor expression and structural brain adaptations that support the

behavioral alterations caused by pathological conditions such as adolescent

binge drinking, concussion and acute THC consumption.
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