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1 Introduction

Eleven dimensional supermembrane [1, 2], presently also known under the name of M2-

brane, is one of the most important fundamental objects of the hypothetical underlying

M-theory. Its consistency in curved superspace background subject this to the equations

of motion of the 11-dimensional supergravity [3–5], which is believed to provide the low

energy limit of the M-theory.

The simpler 4D cousin of M2-brane also attracted an interest already in late 80-th [6].

Different aspects of its interaction with N = 1 D = 4 supergravity and matter multiplets

were the subject of study in [7–15]. The selfconsistency of nontrivial interaction with super-

membrane requires matter and supergravity supermultiplets to include three form fields,

thus leading naturally to the so-called variant superfield representations [7, 9–13, 16–22].

In particular the interaction of closed supermembrane with supergravity and matter

in the models of the type appearing in string theory compactifications was studied in [14]

while [15] considered supermembrane interaction with supersymmetric SU(N) Yang-Mills
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(SU(N) SYM) theory and its effective description by Veneziano-Yankelovich (VY) ac-

tion [23]. In the latter case the accounting for the presence of supermembrane allowed

to solve a long-standing problem [24] of the missing contribution to the tension of BPS

saturated domain-wall configurations, for which the membrane serves as a core. This also

allowed us to find in [15] the explicit BPS domain wall solutions in this theory.

In [15] also the interacting action for open supermembrane carrying string on its

boundary and rigid supersymmetric theories: generalized Wess-Zumino models includ-

ing VY/SYM model, was briefly discussed. To our best knowledge the generic case of

D=4 interacting system of open supermembrane, superstring on its end, supergravity and

p-form matter has not been studied yet. The aim of this paper is to create a basis to

feel this gap.1 We present the complete superfield action for such an interacting system

and prove its κ-symmetry which is an important property indicating that the ground state

of this dynamical system preserves a part of supersymmetry (and hance is a stable BPS

state). The complete interacting action can be split on the sum of the terms describing

supergravity plus matter system (Ssugra+matter), supermembrane (Sp=2) and superstring at

the end of open supermembrane (Sp=1)

S = Ssugra+matter + Sp=2 + Sp=1 . (1.1)

We will describe these ingredients step by step for the case of coupling to different formu-

lations of supergravity and different types of matter system. Clearly, Sp=2 and Sp=1 can

be treated as actions of supermembrane and superstring at the end of supermembrane in

the background of supergravity and matter multiplets.

Our action can be used to describe an effective field theories of string compactifications

with open branes and branes at the boundary of open branes2 and to study the role of open

and intersecting supermembranes in supersymmetric generalizations and/or deformations

of the constructions from [35–39]. It will be interesting to search for the supersymmetric

domain wall junction solutions (see [40, 41]) of the equations of motion with open membrane

sources which follow from our interacting actions.

In string theory the system of 4D open supermembranes with superstrings at the

boundary of their wordlvolume can be obtained from the network of higher p-branes on

flux vacua of the type considered in [42] and [43]. In particular, the systems of con-

nected domain walls and strings which appear from networks of D7-, D5- and D3-branes

in compactifications on wrapped Calabi-Yau manifolds are described in the approach of

calibrations in [42] were the explicit examples in the case of toroidal orientifold vacua and

the Klebanov-Strassler geometry [44] have been discussed in more detail. In [43] the au-

thors classify the particles, strings and membranes arising from wrapped p-branes which

1The actions for open M2 brane (D=11 supermembrane) ending on M9-brane (the Horava-Witten end-

of-world nine-brane) and M5-brane were found in [25, 26] and [27]. However, as the off-shell superfield

description of the 11D supergravity and 10D matter was not known (and is still unknown), the 11D su-

pergravity and 10D matter (E8 SYM) at the boundary of 11D spacetime were considered as a background

obeying the ‘free’ equations of motion without superbrane sources. Probably a bypass to the complete but

gauge fixed Lagrangian description of the dynamical system including, besides open 11D supermembrane,

also 11D supergravity and 10D matter, can be reached on the line of [28–30].
2See for instance [31–33] and [34] and refs. therein for the description of a (not always direct) way from

10D branes and supergravity to 4D effective theories.
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have a charges conserved modulo some integer number q, and discuss the catalyses of their

annihilation by fluxes and Zq gauge symmetry associated with those. The actions of the

type considered in this paper can be used to describe the effective field theory of such

compactifications with networks of Dp-branes.

The rest of this paper is structured as follows. In section 2 we present the interacting

action of the dynamical system of open supermembrane, supergravity and a single three

form matter multiplet which is the master system used later as a basis to construct the

actions for more complicated interacting systems. The closed supermembrane action and

its κ-symmetry is described in section 2.1, the interaction of dynamical supergravity with

closed supermembrane is the subject of section 2.2.

In section 2.3 we discuss the breaking of the κ-symmetry in the case of open superme-

mbrane and show that it can be partially restored by adding to the open supermembrane

action a certain boundary term which can be interpreted as an action for closed super-

string at the end of open supermembrane. The additional projection conditions on the

κ-symmetry parameter at the worldsheet presented there suggest that the open superme-

mbrane (and supermembrane junctions) can preserve not more than one quarter of the

spacetime supersymmetry. The spontaneous breaking of the three form gauge symmetry

by superstring at the boundary of supermembrane and gauge fixed form of the boundary

superstring action is also discussed in section 2.3. This section is finished by describing the

most general form of the interacting action for the dynamical system under consideration,

which includes, in particular, the mass term for the single 3-form multiplet.

The interacting system of open supermembrane, double three form supermultiplet and

supergravity is described in section 3. In section 4 we present an action for quite generic

interacting system including, besides open supermembrane with superstring at its ends

and double 3-form supergravity, a nonlinear interacting system of n double-three form

multiplets. This system is constructed with the use of special geometry and possesses

symplectic Sp(2n + 2|n) invariance provided the 2(n + 1) charges carried by the open

supermembrane transform as symplectic vector. This interacting action, generalizing the

action for the system with closed supermembrane studied in [14], can be used to investigate

the role of open branes and branes at the boundary of open branes in the effective actions

of the models originating in string compactifications. We conclude in section 5. Some

useful equations are collected in the appendices.

2 Open supermembrane interacting with single 3-forms matter and su-

pergravity

2.1 Supermembrane action in the background of 3-form supergravity and 3-

form matter

The action for a supermembrane in a supergravity background and also in the background

of supergravity and 3-form matter multiplet(s) can be written in the following form

Sp=2 =

∫

W 3

d3ξ
√

|h| |Z|+
∫

W 3

C3 . (2.1)
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In the first, Dirac-Nambu-Goto term of this action ξm = (ξ0, ξ1, ξ2) are local coordinates

on the worldvolume W 3 of the supermembrane, which is defined as a surface in superspace

Σ(4|4) with coordinates zM = (xµ, θα̌, θ̄
ˇ̇α) with the use of coordinate functions zM (ξ) =

(xµ(ξ), θα̌(ξ), θ̄
ˇ̇α(ξ)),

W 3 ∈ Σ(4|4) : zM = zM (ξ) . (2.2)

h = dethmn is the determinant of the induced metric

hmn = Ea
mηabE

b
n , Ea

m = ∂mzM (ξ)Ea
M (z(ξ)) (2.3)

which is constructed from the pull-back Ea(z(ξ)) = dξmEa
m of the bosonic supervielbein

of the supergravity superspace,

EA(z) = (Ea, Eα, Ēα̇) = dzMEA
M (z) . (2.4)

Finally, Z denotes the pull-back Z(z(ξ)) of a covariantly chiral superfield Z(z) of a special

type which we describe below. Now we just notice that, as any covariantly chiral superfield,

Z(z) obeys the constraint

D̄α̇Z = 0 , (2.5)

where D̄α̇ = −(Dα)
∗ is the spinor covariant derivative defined by decomposition of the

covariant differential on supervielbein,

D = EADA = EaDa + EαDα + Ēα̇D̄α̇ . (2.6)

Supervielbein (2.4) is restricted by minimal supergravity constraints which we present in

the appendix A (see also [45] and refs therein).

In the second, Wess-Zumino term of the supermembrane action (2.1), C3 is the pull-

back of a 3-form potential defined in curved superspace and having the field strength 4-form

expressed in terms of the above chiral superfield Z by3

H4 = dC3 =
1

2
Eb ∧ Ea ∧ Eα ∧ Eβσab αβZ̄ +

1

2
Eb ∧ Ea ∧ Eα̇ ∧ Eβ̇σ̃ab α̇β̇Z +

+
1

12
Ec ∧ Eb ∧ Ea ∧ ǫabcdE

ασd
αβ̇

D̄β̇Z̄ +
1

12
Ec ∧ Eb ∧ Ea ∧ ǫabcdE

β̇σd
αβ̇

DαZ +

+
i

192
Ed ∧ Ec ∧ Eb ∧ Eaǫabcd

(

(D̄D̄ − 3R)Z̄ − (DD − 3R̄)Z
)

. (2.7)

Here R = (R̄)∗ and Ga = (Ga)
∗ are main superfields of minimal (and variant) off-shell

supergravity (see appendix A).

The form H4 is closed, dH4 = 0, when the supervielbein obeys the minimal supergrav-

ity constraints. However, the requirement that it is exact, i.e. that there exists a 3-form C3

3To our best knowledge, the closed 4-form (2.7) in supergravity superspace was first presented in [18]

and its super-Weyl invariance was noticed in [13].
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such that H4 = dC3, requires the chiral superfield Z to be special, namely to be constructed

in terms of real superfield prepotential P = P∗,

Z = −1

4

(

D̄α̇D̄α̇ −R
)

P . (2.8)

As a result, the component content of Z is different from that of the usual chiral superfield

Φ = −1
4

(

D̄α̇D̄α̇ −R
)

K constructed from the complex potential K 6= K
∗: the F -component

of that superfield is given by a complex linear combination of real scalar and a divergence

of a real vector instead of two real scalars (scalar and pseudoscalar) in the case of Φ

(see e.g. [15] and refs. therein for more details). Hence the name of single three form

supermultiplet for the field content of the special chiral superfield (2.8) with an arbitrary

superfield P.

Now, the real 3-form potential C3, the pull-back of which enters the second term

in (2.1), is expressed in terms of the same real superfield P by

C3 =−iEa ∧ Eα ∧ Ēα̇σaαα̇P − 1

4
Eb ∧ Ea ∧ Eασab α

βDβP +

+
1

4
Eb∧ Ea∧ Ēα̇σ̃ab

β̇
α̇D̄β̇P +

1

48
Ec ∧ Eb ∧ Eaǫabcd

(

σ̃dα̇α[Dα, D̄α̇]P + 2GdP
)

. (2.9)

Of course, (2.9) is the gauge fixed form of the potential corresponding to the field

strength (2.7). However, there exists a residual gauge invariance with respect to additive

transformations of real prepotential superfield P with real linear superfield L,

δP = L , (2.10)
(

D̄α̇D̄α̇ −R
)

L = 0 ,
(

DαDα − R̄
)

L = 0 . (2.11)

Such transformation of the prepotential results in the gauge transformation of the super-

space 3-form (2.9)

δC3 = dα2 (2.12)

by closed 3-form dα2 constructed from the real linear superfield L (2.11) as follows

dα2 =−iEa ∧ Eα ∧ Ēα̇σaαα̇L− 1

4
Eb ∧ Ea ∧ Eασab α

βDβL+

+
1

4
Eb∧ Ea∧ Ēα̇σ̃ab

β̇
α̇D̄β̇L+

1

48
Ec∧ Eb∧ Eaǫabcd

(

σ̃dα̇α[Dα, D̄α̇]L+ 2Gd
L

)

. (2.13)

Clearly, dα2 = C3|P7→L.

The closed supermembrane action is invariant under local fermionic κ-symmetry trans-

formations of the coordinate functions

iκE
a := δκz

MEa
M = 0 , iκE

α := δκz
MEα

M = κα , iκE
α̇ := δκz

MEα̇
M = κ̄α̇ (2.14)

the fermionic parameters of which obey the conditions

κα = −i
Z
|Z| Γαα̇κ̄

α̇ , κ̄α̇ = −i
Z̄
|Z| κ

αΓαα̇ , (2.15)
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where

Γαα̇ =
i

3!
√
h
σa
αα̇ǫabcdǫ

mnkEb
mEc

nE
d
k , (2.16)

is imaginary, (Γαα̇)
∗ = −Γαα̇, and obeys Γαα̇Γ

α̇β = δα
β .

Finally let us comment on the dimension of special chiral superfield Z. If we read

eq. (2.1) literally, we should conclude that the dimension of Z is 3 in the mass units,

[Z] = M3. This is because the tension of the supermembrane, T2, is included in Z as a

multiplier. To make its presence explicit we should redefine Z 7→ T2Z and consider Z to

be dimensionless, [Z] = M0. We can also consider (2.1) as an action with T2 formally set

to be 1 and containing a dimensionless Z. We will prefer such interpretation of our action.

2.2 Supergravity interacting with closed supermembrane

As we have already stated, the action (2.1) can describe the supermembrane moving in the

background of a three-form supergravity as well as in the background of supergravity and

3-form matter multiplet(s). In the first case the above special chiral superfield Z should

be treated as conformal compensator of a 3-form supergravity.

The name of 3-form supergravity is attributed to two variant formulations of minimal

supergravity [16, 17], presently referred to as single three form supergravity and double

three form supergravity [22]. In the (super–)Weyl invariant formulation of these versions

of N = 1 supergravity the conformal compensator of minimal supergravity Z has a special

form: it is expressed in terms of real prepotential superfield P as in (2.8). In the case when

this prepotential is an independent (’fundamental’) superfield, we arrive at single three

form supergravity [7, 10, 12, 17, 20, 21, 47] in its Weyl invariant formulation of [20]. If the

chiral compensator is expressed in terms of composite real prepotential given by real or

imaginary part of a complex linear superfield Σ,

P = ℑmΣ :=
i

2
(Σ̄− Σ) , (DαDα − R̄)Σ = 0 , (D̄α̇D̄α̇ −R)Σ̄ = 0 , (2.17)

we are dealing with double three form supergravity, which was actually described already

in [49] and [50]. Its coupling to matter and application to the effective theory of string

compactifications was the subject of recent [22].

The action for the interacting system of double three form supergravity and closed

supermembrane was presented in [13]. The dynamical system including also a set of

nonlinearly self interacting double 3-form matter multiplets was described and studied

in [14]. The single three form supergravity interacting with supermembrane was the sub-

ject of [7, 10, 12]. Here we will consider the case of supergravity interacting with open

supermembrane and superstring at the boundary of the open supermembrane.

But first let us write the action for the interacting system of supergravity and closed

membrane in super-Weyl invariant formulation of supergravity. It reads

S = Ssugra + Sp=2 , (2.18)

– 6 –
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where Sp=2 has the form of (2.1), with (2.8) and (2.9), and4

Ssugra = − 3

4κ2

∫

d8z E (ZZ̄)
1

3 − m

2κ2

(
∫

d6ζL E Z + c.c.

)

. (2.19)

Here E = sdet(EA
M (z)) is the superdeterminant (Berezenian) of the supervielbein, m is the

gravitino mass, proportional to the cosmological constant (m = 0 for the case of Poincaré

supergravity) and d6ζL E is the chiral measure (see [51] and refs. therein). This is related

to the complete superspace measure d8zE by
∫

d8z EY = −1

2

∫

d6ζL E
(

D̄D̄ −R
)

Y , (2.20)

where Y is an arbitrary superfield.

The super-Weyl transformations leaving invariant the action (2.18), (2.19), (2.1) are

described in appendix B (see eqs. (B.2)–(B.5)and (B.1)). This can be used to set the chiral

superfield Z equal to unity. The super-Weyl symmetry of the action (2.19) is thus realized

by Stückelberg mechanism with a pure gauge superfield Z. Hence the name of conformal

compensator used for Z superfield in the action (2.19).

2.3 Interaction with supergravity and single 3-form matter multiplet

The case of simplest interacting system of supergravity, supermembrane and a 3-form

matter multiplet is described by the action

S = Ssugra+matter + Sp=2 , (2.21)

where Sp=2 has the form of (2.1) and

Ssugra+matter = − 3

4κ2

∫

d8z E Ω(Z, Z̄)− 1

2κ2

(
∫

d6ζL E W(Z) + c.c.

)

. (2.22)

Here W(Z) is superpotential,

Ω(Z, Z̄) = e−
κ2

3
K(Z,Z̄) , (2.23)

and K(Z, Z̄) is the Kähler potential. The action (2.22) is invariant under the super-Weyl

transformations (B.2), (B.3), (B.4) with Υ = Υ(Z), Ῡ = Ῡ(Z̄), supplemented by the

Kähler trasformations of the Kähler potential,

K(Z, Z̄) 7→ K(Z, Z̄) + 6Υ(Z) + 6Ῡ(Z̄)

and W(Z) 7→ W(Z)e−6Υ(Z). In the case of nonvanishing superpotential, these transforma-

tions can be used to gauge this to a constant m,

K(Z, Z̄) 7→ K(Z, Z̄) = K(Z, Z̄) +
2

κ2
ln |W(Z)| − 2

κ2
ln |m| , W(Z) 7→ m . (2.24)

In the case of W(Z) = mZ and K(Z, Z̄) = − 2
κ2 ln |Z|, in which (2.22) reduces to (2.19),

the transformation (2.24) removes the chiral superfield Z from the action. This indicates

that, as stated, the action (2.19) describes the (3-form) supergravity only.

4As super-Weyl invariant action for three-form supergravity eq. (2.19) was discussed in [20]. See [46]

for the description of new minimal and nonminimal off-shell formulations of supergravity as super-Weyl-

invariant couplings of the old minimal supergravity to a compensating supermultiplet.
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2.4 Superstring at the boundary of open supermembrane coupled to super-

gravity and single 3-form matter multiplet

When the supermembrane worldvolume is not closed, ∂W 3 = W 2 6= ©
/

, its action (2.1) is

not invariant under the above described κ-symmetry,

δκSp=2 =

∫

W 2=∂W 3

iκC3 , (2.25)

iκC3 = −iEa ∧ Eασaαα̇κ̄
α̇P − iEa ∧ Ēα̇ κασaαα̇P −

−1

4
Eb ∧ Ea

(

κασab α
βDβP − σ̃ab

β̇
α̇κ̄

α̇ D̄β̇P
)

. (2.26)

Neither the open supermembrane action (2.1) is invariant under the gauge transforma-

tions (2.10): we find (2.12) and

δgaugeSp=2 =

∫

W 2=∂W 3

α2 , (2.27)

where α2 is defined by (2.13).

To compensate these nonvanishing variations, it is necessary to put at the boundary

of supermembrane a superstring. For the gauge symmetry the mechanism of compensation

refers to the Wess-Zumino term of the superstring action which is given by integral over

the worldsheet of a 2-form potential B2,

−
∫

W 2

B2 = −
∫

W 3

dB2 ≡ −
∫

W 3

H3 . (2.28)

The sum of the Wess-Zumino terms of string and membrane

∫

W 3

C3 −
∫

W 2

B2 =

∫

W 3

(C3 − dB2) (2.29)

will be invariant under 3-form gauge transformations (2.12), (2.13) if 2-form potential

transforms under these as a Stückelberg field,

δC3 = dα2 , δB2 = α2 . (2.30)

This is possible if B2 in (2.28) is the pull-back of the superspace 2-form with the field

strength expressed by

H3 = dB2 = −iEa ∧ Eα ∧ Ēα̇σaαα̇L− 1

4
Eb ∧ Ea ∧ Eασab α

βDβL+

+
1

4
Eb∧ Ea∧ Ēα̇σ̃ab

β̇
α̇D̄β̇L+

1

48
Ec∧ Eb∧ Eaǫabcd

(

σ̃dα̇α[Dα, D̄α̇]L+ 2GdL
)

(2.31)

(H3 = C3|P7→L) in terms of the real tensor multiplet L

(

D̄α̇D̄α̇ −R
)

L = 0 ,
(

DαDα − R̄
)

L = 0 (2.32)
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which is transformed as Stückelberg superfield under (2.10),

δP = L , δL = L . (2.33)

In the absence of open supermembrane, the action of closed superstring with Wess-

Zumino term (2.28) contains also a Nambu-Goto term including the pull-back to worldline

of the real linear superfield L,

1

2

∫

W 2

d2σ
√−γ |L| . (2.34)

Here d2σ = dσ0 ∧ dσ1, σi = (σ0, σ1) are local worldsheet coordinates and γ = det γij is the

determinant of the metric induced on the worldsheet W 2,

γij = Ea
i ηabE

b
j , Ea

i = ∂iz
M (σ)Ea

M (z(σ)) . (2.35)

When the string is situated at the end of membrane, the term (2.34) should be modified

to 1
2

∫

W 2

d2σ
√−γ |P − L| as, after such a modification, the Nambu-Goto term will respect

the gauge symmetry (2.33) which also leaves invariant the sum of the Wess-Zumino terms

of the superstring and the supermembrane as well as the Dirac-Nambu-Goto term of the

supermembrane action. Thus we arrive at the following action for superstring at the

boundary of supermembrane

Sp=1 =
1

2

∫

W 2

d2σ
√−γ |P − L| −

∫

W 2

B2, (2.36)

where the field strength of B2 has the form of (2.31), L is the pull-back of a real linear

superfield obeying (2.32). Finally P in (2.36) is the pull-back to the worldsheet of the real

prepotential superfield defining the special chiral superfield through eq. (2.8) and the three

form potential through eq. (2.9).

The actions given by the sum of (2.36) and (2.1) is also invariant under the local

fermionic κ-symmetry (2.14) with parameters restricted, besides (2.15), by the projection

conditions

κα =
P − L

|P − L| Pα
βκβ , κ̄α̇ =

P − L

|P − L| P̄α̇
β̇κ̄β̇ (2.37)

where

Pβ
α =

1

2
√−γ

ǫijEa
i E

b
jσabβ

α, P̄α̇
β̇ = (Pα

β)∗ = − 1

2
√−γ

ǫijEa
i E

b
j σ̃ab

β̇
α̇ (2.38)

obey

P 2 = I , P̄ 2 = I . (2.39)

For a particular case of superstring at the boundary of open supermembrane interact-

ing with Veneziano-Yankelovich effective description of the SYM theory the (flat super-

space version of the) action (2.36) was found in [15] where the above κ-symmetry was also

presented.
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The new property of the interacting system including supergravity, which follows from

its the diffeomorphism gauge invariance, is that the superstring and supermembrane Gold-

stone fields, this is to say bosonic and fermionic coordinate functions, become Stückelberg

(pure gauge) fields which do not carry degrees of freedom. This allows to fix their values

by imposing, e.g.

xi(σ) = σi , x2(σ) = 0 , x3(σ) = 0 , θα̌(σ) = 0 , θ̄
ˇ̇α(σ) = 0 (2.40)

in the case of superstring and

xm(ξ) = ξm , x3(ξ) = 0 , θα̌(ξ) = 0 , θ̄
ˇ̇α(ξ) = 0 (2.41)

in the case of supermembrane.

Let us stress that, when dynamical supergravity described by the superfields which

are varied in the action, is not present, like in flat superspace system discussed in [15],

eqs. (2.41) and (2.40) describe a particular configuration of open supermembrane and

superstring at the boundary of this supermembrane. In contrast, when supergravity is

dynamical the diffeomorphism invariance is the gauge symmetry of the system and (2.41)

and (2.40) describe just gauge fixed conditions for such a symmetry spontaneously broken

by open supermembrane and superstring at its boundary.

The superstring at the boundary of supermembrane also breaks the gauge symme-

try (2.10), (2.12), (2.13), characteristic for the three form potential. When action is writ-

ten with the use of the Stückelberg real linear superfield L, as in (2.36), this symmetry is

formally maintained (realized dynamically) as P−L is invariant under (2.33). However, we

can fix the gauge under this symmetry by setting L=0 and in this gauge (2.36) reduces to

Sp=1|L=0
=

1

2

∫

W 2

d2σ
√−γ |P|. (2.42)

Notice that the Wess-Zumino term of the superstring vanishes in this gauge. The remaining

Nambu-Goto type term (2.42) is sufficient to compensate (2.27) with (2.26) provided the

κ-symmetry parameter is restricted, besides (2.15), also by the condition (cf. (2.37))

κα =
P
|P| Pα

βκβ , κ̄α̇ =
P
|P| P̄α̇

β̇κ̄β̇ , (2.43)

where Pα
β = (P̄α̇

β̇)∗ is defined in (2.39).

When restoring the membrane tension in the gauge fixed action (2.42), it takes the

form Sp=1|L=0
= T2

2

∫

W 2

d2σ
√−γ |P| which makes manifest that the effective tension of the

string at the end of supermembrane is defined by the supermembrane tension: T1(σ) =

T2|P(z(σ)|. To stress this, it is instructive to write once the action of open supermembrane

and the superstring at its boundary with the membrane tension written explicitly:

Sp=2 + Sp=1 = T2

∫

d3ξ
√

|h| |Z|+ T2

∫

W 3

(C3 −H3) +
T2

2

∫

W 2=∂W 3

d2σ
√−γ |P − L| . (2.44)
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Notice that in the L = 0 gauge the form of the action looks like a counterpart of

the Fayet-Iliopoulos term, but with the real prepotential superfield V of the U(1) SYM

model replaced by the real prepotential superfield P of the three form multiplet, and with

superspace integration replaced by the integration over the worldsheet. This later results

in the explicit breaking of the three-form gauge symmetry (2.10) in the (gauge fixed) action

including (2.42), while when the action contains (2.36), the three form gauge symmetry is

maintained but realized with Stückelberg mechanism as in (2.33).

As far as the breaking of the three form gauge symmetry is allowed, we can add one

more term to the supergravity plus matter part (2.22) of the action (1.1). These is the

mass term for the 3-form matter multiplet,
∫

d8z E P2

(ZZ̄)1/3
[19]. As we have already intro-

duced the Stückelberg real linear superfield L in the bulk, thus stressing the spontaneous

character of the breaking of the 3-form gauge symmetry by superstring at the bound-

ary of supermembrane, we can write this term with maintaining formal gauge invariance

as
∫

d8z E (P−L)2

(ZZ̄)1/3
. Then the most general (up to inclusion of higher derivative terms)

Ssugra+matter part of the action (1.1) reads

Ssugra+matter = − 3

4κ2

∫

d8z E Ω(Z, Z̄)− 1

2κ2

(
∫

d6ζL E W(Z) + c.c.

)

−

−m
4

∫

d8z E
(P − L)2

(ZZ̄)1/3
. (2.45)

Here m is a constant of dimension of mass. The remaining parts of the interacting ac-

tion (1.1) are given in eq. (2.44). (This latter clearly indicates that the mass dimension of

Z and P in (2.45) is 0 and -1, respectively).

One might observe the possibility to add to the action a true counterpart of the Fayet-

Iliopoulos term constructed from the real prepotential superfield:
∫

d8z E P. However,

taking into account the relation of the chiral and full superspace integration measure (2.20)

it is easy to observe that actually this is an equivalent form of the F-term with linear

superpotential for the special chiral superfield Z (2.8),
∫

d8z E P =
∫

d6ζL E Z + c.c..

Notice that the form of the mass term in (2.45) is fixed by the requirement of the

super-Weyl invariance under (B.2)–(B.5) with (B.1). For the case of Veneziano-Yankelovich

effective theory of SYM such a term was considered in [19] and [15].

3 Interacting system of double three form multiplets, supergravity and

open supermembrane

The open supermembrane part of the action for the interacting systems including a number

of different 3-form matter multiplets and supergravity can be easily obtained from the above

action for the case of supergravity interacting with a single three form multiplet. The

key point is to define the composite special chiral superfield Z and its real prepotential

superfield P in terms of several ‘fundamental’ superfields. No need to stress that such a

redefinition generically would result in a possible changes of the superfield matter part of

the action and in any case would produce a different set of the equations of motion.
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Below we would like to discuss the actions and symmetry of such interacting systems

beginning from the case of open supermembrane coupled to the double three form matter

and supergravity.

A particular case of composite special chiral superfield Z is reached when the prepo-

tential in (2.8) is constructed as

P = ℑmΣ :=
i

2
(Σ̄− Σ) (3.1)

from the complex linear superfield Σ obeying

(DαDα − R̄)Σ = 0 . (3.2)

Eq. (3.2) is solved by

Σ = DαΞ
α (3.3)

with an independent spinor superfield Ξα.

A special chiral superfield Z defined in (2.8) and (3.1), which we denote below by i
2S,

S =
1

4

(

D̄α̇D̄α̇ −R
)

Σ , S̄ =
1

4

(

DαDα − R̄
)

Σ̄ , (3.4)

has as its F-component a linear combination of two divergences of real vectors (instead of

two scalars in the case of usual chiral superfield Φ, see [22] and refs. therein for details).

Hence the name of double three form multiplet for the component content of the special

chiral superfield S.
There is also a related superspace reason for such a name. With Z = i

2S defined

in (2.8) and (3.1), the real exact form (2.7) is equal to doubled real part of the complex

exact form

H4 = dC3 = 2ℜeH̄4 , (3.5)

H̄4 = dĀ3 = − i

4
Eb ∧ Ea ∧ Eα ∧ Eβσab αβS̄ −

− i

4!
Ec ∧ Eb ∧ Ea ∧ ǫabcdE

ασd
αβ̇

D̄β̇S̄ +

+
1

384
Ed ∧ Ec ∧ Eb ∧ Eaǫabcd(D̄D̄ − 3R)S̄ . (3.6)

The complex three form potential for (3.6) can be chosen to be

Ā3 =
1

2
Ea ∧ Eα ∧ Ēα̇σaαα̇Σ− i

8
Eb ∧ Ea ∧ Eασab α

βDβΣ+

+
i

8
Eb ∧ Ea ∧ Ēα̇σ̃ab

β̇
α̇D̄β̇Σ+

1

3!
Ec ∧ Eb ∧ EaĀabc (3.7)

with

Āabc =
i

16
ǫabcd

(

σ̃dα̇αDαD̄α̇Σ− 2iDdΣ+GdΣ
)

=
i

32
ǫabcd

(

σ̃dα̇α[Dα, D̄α̇]Σ + 2GdΣ
)

. (3.8)
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The real 3-form potential for (2.7) is now given by (twice the) real part of the complex

potential,

C3 = 2ℜeĀ3 = A3 + Ā3 , (3.9)

and we actually have two gauge invariances of the type (2.12), a one-parametric combina-

tion of which should act on our Stückelberg two-form,

δA3 = dβ2 , δĀ3 = dβ̄2 , δB2 = 2ℜeβ2 = β2 + β̄2 . (3.10)

The expression (3.7) is clearly gauge fixed and the residual gauge symmetry preserving

this form of the complex 3-form potential is generated by the following transformations of

complex linear and real linear superfields

δΣ = L̃+ iL , δΣ̄ = L̃− iL , δL = L . (3.11)

The transformations ‘parametrized’ by the second real linear multiplet, L̃, leave invariant

the real 3-form C3 which enters the supermembrane action. However, it is convenient to

introduce the Stückelberg real linear multiplet superfield L̃ also for these transformations,

δL̃ = L̃ , (3.12)

so that (Σ− L̃− iL) and its c.c. are gauge invariant.

The simplest action for the supergravity and double three form matter supermulti-

plet(s) can be obtained by substituting (3.1) for P and (i/2) S for Z into (2.45). However,

with the above described Stückelberg realization of the two three form gauge symmetries

we can write the action with a more general mass term, thus arriving at

Ssugra+matter = − 3

4κ2

∫

d8z E Ω(S, S̄)− 1

2κ2

(
∫

d6ζL E W(S) + c.c.

)

−

−m
4

∫

d8z E

(

Σ− L̃− iL
)(

Σ̄− L̃+ iL
)

(SS̄)1/3 . (3.13)

Thus the coupling of open supermembrane to the simplest double three form matter

and supergravity is described by the action (1.1) with (3.13), and

Sp=2 + Sp=1 =
T2

2

∫

d3ξ
√

|h| |S|+ T2

∫

W 3

(A3 + Ā3 −H3) +

+
T2

4

∫

W 2=∂W 3

d2σ
√−γ |Σ− Σ̄− 2iL| . (3.14)

4 Open supermembrane, nonlinearly self-interacting double 3-form mat-

ter multiplets and supergravity

In this section we would like to consider a coupling of open supermembrane and super-

string at the boundary of supermembrane to the dynamical system of n self-interacting

double three form multiplets and supergravity [22] which is of the type appearing in string

compactifications. The interaction of closed supermembrane with such a system was stud-

ied in [14].
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Let us consider a set of (n+ 1) special chiral superfields SI , I = 0, 1, . . . , n which are

defined by a nonlinear interacting generalization of the above discussed (3.4). We describe

them below in eq. (4.4) and now just state that each of them carry two three form fields

among their components.

Following [22] and [14], let us consider SI as coordinates of a special Kähler manifold

with holomorphic prepotential G(S) homogeneous of order two,

G(wS) = w2G(S) . (4.1)

Then

GI(S) = ∂IG(S) = GIJ(S)SJ (4.2)

and

GIJ(S) := ∂I∂JG(S) (4.3)

are homogeneous of degrees one and zero, respectively. We define our special chiral super-

fields by [14, 22]

SI =
1

4

(

D̄α̇D̄α̇ −R
)

MIJ(ΣJ − Σ̄J)

=
i

2

(

D̄α̇D̄α̇ −R
)

MIJℑmΣJ , (4.4)

where ΣJ = (Σ̄J)
∗ are complex linear superfields,

(DαDα − R̄)ΣJ = 0 ,
(

D̄α̇D̄α̇ −R
)

Σ̄J = 0 , (4.5)

and the real symmetric matrix MIJ is the inverse of the imaginary part of (4.3),

MIJMJK = δIK , MIJ := ℑmGIJ . (4.6)

Generically, the relation (4.4) is nonlinear, while in a particular case of GIJ(S) = iδIJ ,

MIJ = δIJ and it reduces to the set of n+ 1 independent relations (3.4). Notice that the

homogeneity of the holomorphic prepotential implies that

GI = GIJ(S)SJ =
1

4

(

D̄α̇D̄α̇ −R
)

GIKMKJ(ΣJ − Σ̄J)

=
i

2

(

D̄α̇D̄α̇ −R
)

ℑm(GIKMKJΣJ) , (4.7)

so that the composite chiral superfield GI(S) in (4.2) is also special, of the type define in

eq. (3.4).

This observation makes manifest that the composite chiral superfield

S = qISI − pIGI(S) (4.8)

with constants qI and pI is also special. Namely, it can be defined by equation (2.8) with

Z = i
2S and real prepotential given by a linear combination

P = qIPI − pIP̃I (4.9)
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of the composite real superfields

PI ≡ ℑm(MIJΣJ) , P̃I ≡ ℑm(GIJMJKΣK) (4.10)

which serve as prepotentials for SI and GI(S) (see (4.4) and (4.7)),

SI =
i

2
(D̄2 −R)PI , GI(S) =

i

2
(D̄2 −R)P̃I . (4.11)

The composite superfield (4.8) has been used in [14] to couple the closed super-

membrane to double three form matter and supergravity. Here we will be using it in

the open supermembrane action (2.1) setting −2iZ 7→ S = qISI − pIGI(S) (4.8) and

P 7→ qIPI − pIP̃I (4.9).

The supermembrane action in the background of nonlinearly self-interacting three form

matter and supergravity reads

Sp=2(qI , p
I) =

1

2

∫

d3ξ
√

|ĝ| |qISI − pIGI(S)|+ qI

∫

W 3

CI
3 − pI

∫

W 3

C̃3I (4.12)

where CI
3 and C̃3I have the form of (2.9) with PI and P̃I from eqs. (4.10), SI is given

by (4.4) and GI(S) is defined in (4.2) and has the form of (4.7) due to (4.1).

It is not difficult to check that the special chiral superfield (4.4) does not change under

the transformations

δΣI = L̃I + GIJL
J , δΣ̄I = L̃I + ḠIJL

J , (4.13)

with real linear superfields LI and L̃I ,

(

D̄α̇D̄α̇−R
)

L
I = 0 =

(

DαDα−R̄
)

L
I ,

(

D̄α̇D̄α̇−R
)

L̃I = 0 =
(

DαDα−R̄
)

L̃I . (4.14)

As in a simpler cases discussed in previous section, (4.13) generate a particular case of the

gauge transformations of super-3-forms,

δCI
3 = dβI

2 , δC̃3I = dβ̃2I (4.15)

with dβI
2 and dβ̃2I expressed in terms of LI and L̃I as in (2.13).

Thus for closed supermembrane the above action (4.12) is invariant under (4.13). To

reach the same for an open supermembrane we should add to (4.12) with ∂W 3 6= ∅ the ac-

tion of superstring the worldsheet of which is the boundary of the worldvolume, W 2=∂W 3,

Sp=1(qI , p
I) =

1

2

∫

W 2

d2σ
√−γ |qI(PI − LI)− pI(PI − L̃I)| − qI

∫

W 2

BI
2 + pI

∫

W 2

B̃2I . (4.16)

In this boundary term of the supermembrane action PI and PI are ‘electric’ and ‘magnetic’

parts of the composite real prepotentials (4.9) defined by eqs. (4.10), and HI
3 = dBI

2 and

H̃3I = dB̃2I are expressed in terms of the real linear superfields LI and L̃I as in (2.31).

The sum of the open supermembrane and superstring actions (4.12) and (4.16) is

invariant under the κ-symmetry (2.14) provided the parameters obey

κα = −i
qISI − pIGI(S)
|qISI − pIGI(S)|

Γαα̇κ̄
α̇ , κ̄α̇ = −i

qI S̄I − pI ḠI(S̄)
|qISI − pIGI(S)|

καΓαα̇ , (4.17)
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and

κα =
qI(PI − LI)− pI(PI − L̃I)

|qI(PI − LI)− pI(PI − L̃I)|
Pα

βκβ ,

κ̄α̇ =
qI(PI − LI)− pI(PI − L̃I)

|qI(PI − LI)− pI(PI − L̃I)|
P̄α̇

β̇κ̄β̇ , (4.18)

with the projectors defined in (2.16) and (2.39).

The sum of the open supermembrane and superstring actions is also invariant under

the gauge symmetry (4.13) supplemented by the Stückelberg-type transformations of the

real linear superfields:

δΣI = L̃I + GIJL
J , δLI = L

I , δL̃I = L̃I . (4.19)

These leave invariant the chiral superfields (4.4) as well as the combinations

ΣI − L̃I − GIJL
J . (4.20)

A quite general action for nonlinearly self interacting system of the 3-form multiplets

and supergravity, of a kind which appear in string compactifications, with a spontaneously

broken (realized by Stückelberg mechanism) 3-form gauge symmetry reads

Ssugra+matter = − 3

4κ2

∫

d8z E Ω(SI , S̄I)− 1

2κ2

(
∫

d6ζL E W(SI) + c.c.

)

−

−c2

∫

d8z E
MIJ

(

ΣI − L̃I − ḠIKLK
)(

Σ̄J − L̃J − GILL
L
)

(SPMPQS̄Q)
1

3

. (4.21)

This can be included as matter plus supergravity part in the interacting action (1.1) to-

gether with the open supermembrane and superstring at the boundary of supermembrane

actions (4.12) and (4.16). Such an action will be invariant under the Sp(2n+2|Z) symme-

try, characteristic for string compactifications, provided Ω(SI , S̄I) and W(SI) are invariant

and the supermembrane charges (pI , qI) in (4.12) and (4.16) are transformed as symplec-

tic vector. Actually the quantization of these charges breaks the possible Sp(2n + 2|R)

symmetry of the supergravity plus matter (super)field system to its discrete subgroup

Sp(2n+2|Z) (see [14] for a discussion of quantization of (pI , qI) without a reference to the

higher dimensional origin of the D=4 domain wall system).

5 Conclusion

In this paper we present the actions describing the interacting dynamical system of open

supermembrane, quite generic 3-form matter and supergravity. The similar interacting

system containing closed supermembrane was studied in [14]. The action of open super-

membrane in Veneziano-Yankelovich effective theory of N = 1 SYM was discussed in [15].

We have begun by writing the action for the most general interacting system of open

supermembrane, single three form matter and supergravity, which serves as a master case
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for the derivation of the actions for more complicated systems. A particular case of this

action describes the interacting system of open supermembrane and single three form su-

pergravity.

Then we describe the interacting actions for the open supermembrane interacting with

double 3-form matter multiplet and supergravity. Finally, we present the action for a quite

generic system of open supermembrane, a number of nonlinearly interacting double three

form multiplets and supergravity which has a special Kähler structure and possesses an

invariance under symplectic transformations; the dynamical field theoretical systems of

such a type appear in string theory compactifications.

To preserve the κ-symmetry, the open supermembrane action should include a bound-

ary term which have a natural interpretation of the action for superstring at the boundary

of supermembrane. In contrast with the κ-symmetry, the three form gauge symmetry is

broken when the supermembrane is open. This breaking can be interpreted as spontaneous

and the 3-form gauge symmetry can be formally maintained with the use of Stückelberg

mechanism. To this end we have to introduce the pure gauge real linear superfield(s) L

(LΛ = (LI , L̃I)) and the Wess-Zumino term of the action of superstring at the end of su-

permembrane is constructed with the use of this (these) supermultiplet(s). The gauge fixed

version of this superstring action contains the Nambu-Goto-type term only and the ten-

sion of superstring at the end of supermembrane is expressed in terms of real prepotential

superfield(s) P (PΛ), either fundamental or composite, of the special chiral superfield(s)

describing 3-form matter supermultiplet(s) and/or conformal compensator of the 3-form

supergravity interacting with the open supermembrane.

As 3-form gauge symmetry is broken due to the presence of open supermembrane, or

realized by Stückelberg mechanism, we find natural to consider also the terms breaking the

3-form gauge symmetry in the supergravity plus matter part of the action: the generalized

mass terms.

The inclusion of the actions of open supermembranes with closed strings at the bound-

ary of supermembranes into effective field theories (EFT) of string theory flux compacti-

fications is inline with the completeness conjecture [52].5 The EFT action of such a type

can be obtained e.g. from type IIB compactifications on wrapped Calabi-Yau manifolds of

the dynamical systems including the networks of D7-, D5- and D3-branes discussed in [42]

and [43]. In recent [53], appearing on the net slightly after the first version of the present

paper, the actions for network of open supermembranes and strings were obtained inde-

pendently and completed by an interesting actions for spacetime filling 3-branes which are

given by a Wess-Zumino-type terms only and do not break any supersymmetry.

To resume, we believe that the actions presented in this paper as well as its generaliza-

tions discussed in [53] will be useful to construct the effective actions for phenomenologically

interesting models of string theory compactifications with open branes and branes at the

5Actually in [52] Polchinski proposed two completeness principles, the second of which, most relevant

for our discussion, states that “in any fully unified theory, for every gauge field there will exist electric and

magnetic sources” obeying the Dirac quantization conditions eg = 2πn “with the minimum relative Dirac

quantum n = 1 (more precisely, the lattice of electric and magnetic charges is maximal)” [52]. The first of

the completeness principles relate any charge quantization to the existence of magnetic monopoles.
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boundary of open branes. The natural next step in development of our formalism is to ob-

tain equations of motion for 3-form matter and supergravity from our action and to search

for their solution describing open supermembrane systems and supermembrane junctions.
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A Torsion constraints of minimal supergravity

Our notations are those of [11, 12, 45]; they are close but not identical to that of [51]. In

particular we use the mostly minus metric conventions, ηab = diag(+,−,−,−) and the set

of our superspace constraints contains Rαβ̇
cd = 0 instead of Tab

c = 0 in [51].

The superspace constraints of minimal supergravity and their consequences can be

collected in the following expressions for superspace torsion and curvature 2-forms

T a = DEa = −2iσa
αα̇E

α ∧ Ēα̇ − 1

8
Eb ∧ EcεabcdG

d , (A.1)

Tα = DEα =
i

8
Ec ∧ Eβ(σcσ̃d)β

αGd − i

8
Ec ∧ Ēβ̇ǫαβσcββ̇R+

1

2
Ec ∧ Eb Tbc

α , (A.2)

T α̇ = DEα̇ =
i

8
Ec ∧ Eβǫα̇β̇σcββ̇R̄− i

8
Ec ∧ Ēβ̇(σ̃dσc)

α̇
β̇ G

d +
1

2
Ec ∧ Eb Tbc

α̇ , (A.3)

Rab =
1

2
Rαβ(σaσ̃b)αβ − 1

2
Rα̇β̇(σ̃aσb)α̇β̇ , (A.4)

Rαβ ≡ 1

4
Rabσab

αβ = −1

2
Eα ∧ EβR̄− i

8
Ec ∧ E(α σ̃c

γ̇β)D̄γ̇R̄+ (A.5)

+
i

8
Ec ∧ Eγ(σcσ̃d)γ

(βDα)Gd − i

8
Ec ∧ Ēβ̇σcγβ̇W

αβγ +
1

2
Ed ∧ EcRcd

αβ ,

Rα̇β̇ = (Rαβ)∗, and in the following equations for main superfields

DαR̄ = 0 , D̄α̇R = 0 , (A.6)

D̄α̇Gαα̇ = −DαR , DαGαα̇ = −D̄α̇R̄ , (A.7)

D̄α̇W
αβγ = 0 , DαW̄

α̇β̇γ̇ = 0 , (A.8)

DγW
αβγ = D̄γ̇D(αGβ)γ̇ , D̄γ̇W̄

α̇β̇γ̇ = DγD̄(α̇|Gγ|β̇) . (A.9)

As a consequence, the superalgebra of superspace covariant derivatives DA (2.6) in the

case of minimal supergravity contains the following anticommutators of fermionic covariant

derivatives

{Dα, D̄α̇} = 2iσa
αα̇Da , (A.10)

{Dα,Dβ} Vγ = −R̄ǫγ(αVβ) , (A.11)

{D̄α̇, D̄β̇} Vγ̇ = Rǫγ̇(α̇Vβ̇) . (A.12)
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B Super-Weyl symmetry of the minimal supergravity constraints

The super-Weyl transformations with covariantly chiral superfield parameter Υ,

D̄α̇Υ = 0 , (B.1)

which leave invariant minimal (and 3-form) supergravity constraints, as well as, for in-

stance, the action (2.18) with (2.19) and (2.1), are defined by [54]

Ea 7→ Ẽa = eΥ+ῩEa , (B.2)

Eα 7→ Ẽα = e2Ῡ−Υ

(

Eα − i

2
EaD̄α̇Ῡσ̃α̇α

a

)

, (B.3)

Ēα̇ 7→ ˜̄Eα̇ = e2Υ−Ῡ

(

Ēα̇ − i

2
Eaσ̃α̇α

a DαΥ

)

, (B.4)

Z 7→ e−6ΥZ . (B.5)

It is useful to notice that under these transformations

(D̄D̄ −R) . . . 7→ e−4Υ(D̄D̄ −R)e2Ῡ . . . , (B.6)

P 7→ e−2Υ−2ῩP , (B.7)

E 7→ e2Υ+2ῩE , (B.8)

E 7→ e6ΥE , (B.9)

W 7→ e−6ΥW . (B.10)

C Useful equations on supermembrane worldvolume

The orientation of the volume element of W 3 is defined by

dξm ∧ dξn ∧ dξk = d3ξǫmnk , ǫ012 = 1 , (C.1)

The invariant measure with induced metric on W 3 can be written in the following equiva-

lent form

d3ξ
√
h = −1

3
∗ Ea ∧ Ea , d3ξδ

√
h = − ∗ Ea ∧ δEa (C.2)

with the Hodge star operation defined by

∗Ea =
1

2
dξn ∧ dξm

√
hǫmnkh

klEa
l . (C.3)

The definition of the κ-symmetry projector in (2.16) implies

d3ξ
√
hΓαα̇ =

i

3!
σa
αα̇ǫabcdE

b ∧ Ec ∧ Ed , (C.4)

∗3Ea ∧ Eβ(σaΓ̃)β
α = −1

2
Eb ∧ Ec ∧ Eβ(σbc)β

α . (C.5)
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