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Laburpena 

Zahartzea definitzean, gure gorputzak denboran zehar jasaten duen aldaketa multzoa dela 

esaten dugu, gaitasun funtzionalaren galera eta baita gaixotasunekiko eta kanpoko erasoekiko 

zaurgarritasun handiagoa dakarrena. 

Bizi kalitatearen hobekuntzei eta azken hamarkadetan medikuntzan eman diren aurrerapen 

handiei esker, adinekoen kopurua nabarmen igo da. Batez besteko bizi-itxaropenaren 

hazkuntza honen eta jaiotza-tasaren beherakadaren ondorioz, biztanleria zentsu gero eta 

desorekatuagoa daukagu. Gainera, bizi-itxaropena igo den arren, osasuntsu bizi garen urte 

kopurua ez da hazi eta, beraz, luzeago bizi gara, baina ez hobeto. Horrenbestez, zahartzea 

orokorrean, eta menpekotasuna bereziki, gure gizartearen erronka bihurtu dira, eta gero eta 

baliabide gehiago bideratzen dira hauetara. Gauzak horrela, esparru honetan burutzen diren 

ikerketa medikuen helburu nagusia menpekotasuna murriztea izan behar da, zahartze 

osasuntsu bat lortzeko. 

Zahartze osasuntsuaren bidean, hauskortasun kontzeptuarekin egiten dugu lan. 

Hauskortasuna adinarekin erlazionatutako sindrome medikoa da, eta bere ezaugarri nagusiak 

erreserba funtzionalaren galera, sistema fisiologikoen egokitze gaitasun murriztua eta 

zaurgarritasunaren areagotzea dira. Hauskortasuna hainbat ondorio negatibo garatzeko 

arriskuarekin erlazionatuta dago, hala nola, erorketak, hausturak, infekzioak, desgaitasuna, 

ospitalizazioa, menpekotasuna eta heriotza. Beraz, hauskortasuna daukaten pertsonen 

identifikazioa beharrezkoa da neurriak hartu ahal izateko eta etorkizuneko arazoak saihesten 

saiatzeko. Baina, orain arte ezin izan da hauskortasuna detektatzeko metodo eraginkorrik 

garatu, eta hainbat test eta proba funtzional badauden arren, hauek ez dira gai pertsona 

hauskor guztiak identifikatzeko. Gaur egun eskuragarri dauden tresnak osatu eta emaitza 

hobeak lortzeko asmoz, hauskortasunaren biomarkatzaileak aurkitzeko ikerketak burutzen ari 

dira, aurrerago eztabaidatuko dugun moduan. Biomarkatzaileen bilaketa azaldu aurretik, 

ordea, zahartze prozesuaren oinarri biologikoa laburtuko dugu. 

Zahartzea prozesua unibertsala, progresiboa eta heterogeneoa da, eta beraz, modu oso 

desberdinetan garatzen da. Zahartzearen jatorri molekularrak eta zelularrak ulertzea 

biologiaren erronka nagusietako bat da, eta helburu horrekin lan ugari egin dira. Ikerketa 

horiei esker, orain dela urte batzuk zahartzearen 9 ezaugarri nagusiak zehaztu ziren, 

ondorengoak direlarik: ezegonkortasun genomikoa, aldaketa epigenetikoak, telomeroen 

laburtzea, disfuntzio mitokondrialak, zelula amen agortzea, zelulen seneszentzia, zelulen 

arteko komunikazio desberdina, proteostasiaren galera eta mantenugaien hautemate 



18 | Laburpena 

 

okerragoa. Hauetariko ezaugarri bakoitza sakonki ikertu da komunitate zientifikoan, baina, 

jarraian tesi honetan landu direnak azalduko ditugu laburki. 

Zahartzaroarekin gertatzen den ezegonkortasun genomikoa, neurri batean, DNAren egituran 

aldaketak metatzeari zor zaio, hala nola mutazioak, delezioak edo DNAren hausturak harizpi 

batean edo bietan. Zelulek badauzkate akats horiek kontrolatzeko eta konpontzeko 

mekanismoak, baina hauek ere adinarekin huts egiten dutela ikusi da. Bestalde, geneen 

adierazpena aldatu egiten da zahartzean, eta hau beste gene batzuen adierazpena erregulatzen 

duten transkripzio faktoreetan gertatzen bada, eragina are handiagoa izango da. Gene ez 

kodifikatzaileen adierazpena ere aldatu egin daiteke, eta transkripzio osteko erregulazioan 

eragina eduki, mikroRNA molekulen kasuan bezala. 

Seneszentziak zelulen proliferazioaren galera dakar, jarduera metabolikoa, bideragarritasuna 

eta haien berezko funtzio batzuk mantentzen dituzten bitartean. Zelula kaltetu eta potentzialki 

arriskutsuak izan daitezkeenak seneszentzian sartzea defentsa mekanismoa dela deskribatu 

da, hauen proliferazioa ekiditen baita. Era berean, badirudi zelula seneszenteek jariatutako 

seinaleek ehunen birsorkuntzan laguntzen dutela: zelula seneszenteen digestioa eta zelula 

amen diferentziazioa sustatzen dute, zelula berri helduek ehuna berritzen dutelarik. Adinean 

aurrera egin ahala, ordea, prozesu honek ere huts egiteko joera dauka, zelula seneszenteak 

pilatu egiten dira eta kalteak eragin ditzakete. Lan honetan bereziki immunitate-sistemaren 

seneszentzian (immunoseneszentzian) zentratu gara, adineko pertsonen zaurgarritasunean 

eragina baitauka.  

Aztertu dugun beste ezaugarri bat zelula amen agortzea da. Hau oso lotuta dago 

seneszentziarekin, izan ere, ehunen birsorkuntza ezin da osatu zelula amarik ez badago edo 

behar bezala diferentziatzen ez badira. Zelula amak kieszentzia egoeran mantentzen dira eta 

beharrezkoa denean bakarrik aktibatu, proliferatu eta diferentziatzen dira. Gainera, zelula 

amek auto-berrikuntza gaitasuna dute, zelula alabetako bat zelula ama moduan mantendu eta 

bestea bakarrik diferentziatzen bada. Baina zelula amen agortzea zelulak simetrikoki banatzen 

direnean eman daiteke, edo zahartzearekin lotutako arazoak direla medio kieszentzia 

egoeratik irten eta aktibatzea lortzen ez dutenean. Izan ere, kieszentziatik irtetzeko prozesua 

konplexua da eta oso erregulatuta dago, eta zenbait egoerek, hala nola, telomeroen laburtzeak, 

estres oxidatzaileak edota DNAn eman diren kalteek prozesua eragotzi dezakete.  

Azkenik, zahartzaroan ematen den zelulen arteko komunikazio desberdinaren inguruan ere 

ikertu dugu. Zahartzaroko ezaugarri hau bereziki garrantzitsua da guretzat bi arrazoirengatik. 

Alde batetik, zahartzerakoan ematen diren aldaketek inflamazio basal kronikoa garatzera 

eramaten baitute, inflammaging izenez ezagutzen dena. Inflamazioa sustatzen duten molekula 
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hauen jariatzea hainbat zelula motek burutzen dute, eta adinarekin ematen den immunitate-

sistemaren funtzionamendu txarra areagotzen dute. Bestalde, zelulaz kanpoko besikulak 

(EVak, ingeleseko laburdurarekin) dauzkagu, zelula mota gehienek ekoiztu eta jariatzen 

dituzten partikulak eta zelulen arteko komunikaziorako bide bat direnak. EVak duela 50 urte 

baino gehiago aurkitu ziren, baina hasieran ez zitzaien garrantzirik eman eta zelulen “zaborra” 

ateratzeko” modu bat zela pentsatu zen. Azken hamarkadetan hauen funtzioak sakonago 

aztertzen hasi zen, eta oraindik ere, urtero EVen funtzio berriren bat deskribatzen da. Hala ere, 

zahartzearen ezaugarri nagusien artean zelulen arteko komunikazio desberdina izendatu 

zenean, ez ziren EVak kontuan hartu, eta horregatik zahartze prozesuan daukaten inplikazioa 

erakusten jarraitu beharra daukagu.  

Hauskortasun sindromearen biomarkatzaileen gaiari berriro eutsita, lan asko egin izan dira 

zahartzearen ezaugarri orokorrak hauskortasunarekin erlazionatzen saiatzeko. Ikerketa 

hauen hipotesia zera da: adinarekin aldaketa edo prozesu kaltegarriak gertatzen dira, eta 

hauek neurri handiago batetan eman daitezke hauskortasuna edo menpekotasuna pairatzen 

duten pertsonetan, gaitasun funtzionala mantentzen dutenetan (sendoetan) baino. Ildo 

horretatik, inflamazioa edo estres oxidatzailearekin lotutako molekulen igoerak, eta hormonen 

edo metabolismoaren erregulazio galerak hauskortasunarekin izan ditzaketen loturak aztertu 

dira, adibidez. DNA sekuentzia espezifikoek, geneen erregulazioak edo geneen adierazpen 

aldaketek hauskortasuna garatzeko joerarekin izan ditzaketen erlazioak ere ikertu izan dira. 

Biomarkatzaile hauei eta bestelako batzuei buruzko artikulu zientifiko ugari kaleratu dira. 

Horietako batzuek hauskortasunarekin edo hau garatzeko arriskuarekin harremanak aurkitu 

dituzte, baina badaude ere proposatutako biomarkatzaileak balioztatu ez dituzten ikerketak, 

eta horregatik, gaur egun oraindik ez da hauskortasunaren identifikazioan lagundu dezakeen 

biomarkatzailerik aplikatzen praktika klinikoan. 

Gauzak horrela, tesi honen lehenengo kapituluan hauskortasun biomarkatzaileak aurkitzen 

saiatu gara. Horretarako, adineko pertsonen odol laginak eskuratu ditugu, eta hauek sendo eta 

hauskor taldeetan banatu ditugu test desberdinetan lortutako emaitzen arabera. Lehenik, 

inflamazioaren ezaugarri diren molekulak neurtu ditugu. Hauekin emaitza positiboak lortu 

izan dira aurreko ikerketa batzuetan, baina badaude hauskortasunarekin erlaziorik aurkitu ez 

duten lanak ere, eta horien antzera, gure laginetan ez dugu inflamazio molekulen kontzentrazio 

handiagorik topatu pertsona hauskorretan. Gure bigarren estrategia azterketa 

transkriptomikoa egitea izan da. Horren bidez, pertsona sendoak eta hauskorrak bereizten 

dituzten 35 gene identifikatu ahal izan ditugu. Hasteko, gene horietako 3ren adierazpena 

neurtu dugu kohorte zabalago batetan eta EGR1 genearen gainadierazpena balioztatu dugu 

pertsona hauskorretan. EGR1 prozesu zelular garrantzitsuetan parte hartzen duen 
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transkripzio faktorea da, hala nola mitogenoekiko erantzunean, proliferazioan, apoptosian eta 

hainbat zelula moten diferentziazioan, eta estimulu desberdinen ondorioz aktibatua izan 

daiteke. Gainera, adineko pertsonen hauskortasun egoerari buelta eman edo murrizten 

saiatzeko esku-hartze bat burutu da, eta 3 hilabetez ariketa fisikoa egin dute partaideek. Esku-

hartzearen ondoren, 12 partaideetatik 9k EGR1 genearen adierazpena jaitsi dutela aurkitu 

dugu. Emaitza nabarmen hauekin, EGR1en adierazpen altua hauskortasun biomarkatzaile 

bezala proposatzen dugu, eta etorkizuneko ikerketetan kontuan hartu beharrekoa dela 

deritzogu. 

Hauskortasun biomarkatzaileen ikerketan, EVen kontzentrazio plasmatikoa izan da gure azken 

hurbilketa. Izan ere, zenbait inflamazio prozesuetan, minbizia eta gaixotasun autoimmuneak 

esaterako, EVen kontzentrazio altua aurkitu da, eta gure helburua hau adinean ematen den 

inflammaging-arekin ere gertatzen ote den aztertzea izan da. Gure emaitzek erakutsi dutenez, 

nahiz eta inflamazio basala adineko pertsonetan konfirmatu den, hauek ez dute EV 

kontzentrazio plasmatiko handiagorik, eta ez dago ezta ere sendo eta hauskorren arteko 

diferentziarik. Emaitza hauek adierazten dutenez, beraz, ez da EVen kontzentrazio igoera 

ematen inflamazio prozesu guztietan. 

Lan honen bigarren kapituluan EVek zelulen diferentziazioan duten eragina aztertu dugu. 

Osteogenesi eta miogenesian zentratu gara, zahartzaroan kaltetutako prozesuak baitira eta 

osteoporosian eta sarkopenian eragina baitute, hurrenez hurren. Adinarekin ohikoak diren bi 

prozesu hauek ikuspegi desberdinetatik sakonki aztertu izan dira, baina oso gutxik ikertu dute 

EVen inplikazioa. Gantz ehunetik eratorritako zelula ama mesenkimalekin burututako gure 

lanak erakusten duenez, plasmako EVek osteogenesi prozesuan laguntzen dute, eta eragin hau 

nabarmenagoa da helduetatik eskuratutako EVekin, adineko emaileekin alderatuta. Era 

berean, plasmako EVek miogenesian duten eragina aztertzeko protokolo bat garatzen saiatu 

gara, eta lehen emaitzek adierazten dutenez, mioblastoen diferentziazio prozesua bultzatzen 

dute EVek, berriro ere adineko pertsonetatik eskuratuko EVek efektu murriztuagoa dutelarik.  

Hirugarren kapituluan immunoseneszentziaren fenomenoari jarri diogu arreta, eta helduak 

(20-49 urte) eta pertsona adindunak (70-104 urte) aztertu ditugu. Lehenik, seneszentzia zelula 

mailan neurtu da, eta ikusi dugu CD8 T linfozito seneszenteen proportzioa hazi egiten dela 

adinarekin. Zahartzaroaren lehen hamarkadetan berdina gertatzen da CD4 T linfozitoetan, 

baina 90. urtetik gorako pertsonetan zelula seneszente mota honen kantitatea murriztuagoa 

dela aurkitu dugu. Ondoren, EVek linfozito seneszenteen ezaugarri berdinak erakusten ote 

dituzten aztertu dugu. Zelula hauen markatzaile berdinak EVen mintzean aurkitu ditugu, baina 

ez, ordea, “EV seneszenteen” igoerarik adinak aurrera egin ahala. Azkenik, linfozitoen eta EVen 

in vitro esperimentuak burutu ditugu, EVek zelula hauen aktibazioan eragina duten 
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ebaluatzeko. Emaitzek erakutsi dute EVek ez dela erantzun immunologikorik eragiten, eta are 

gehiago, zelulen bideragarritasuna hobetzen dutela. Baina, estimulu immunogeniko baten 

aurrean erantzuteko orduan, EVek T linfozitoen aktibazioa areagotzen dute. Gainera, 

aktibazioa areagotzeko gaitasun hau ahulagoa da EVak emaile zaharretatik isolatuak badira. 

Horrela, gure emaitzek adierazten dute, nahiz eta EVen mintzeko molekuletan 

desberdintasunik ez egon, EVek gaitasun funtzional desberdinak dauzkatela isolatu izan diren 

emailearen adinaren arabera.  

Tesi honen laugarren eta azken kapituluan, immunoseneszentzia aztertu dugu esklerosi 

anizkoitza duten gaixoetan. Izan ere, proposatu izan da gaixotasun autoimmuneetan ematen 

den etengabeko immunitate-sistemaren aktibazioa dela eta azken honen agortzea eman 

daitekeela, eta ondorioz, immunoseneszentzia goiztiarra. Hipotesi hau ebaluatzeko, esklerosi 

anizkoitza duten pertsonen eta heldu osasuntsuen laginak alderatu ditugu. Esklerosi 

anizkoitza daukaten gaixoek, tratamendu immunomodulatzaileak hartzen eta erremisioan 

egon arren, pertsona osasuntsuek baino inflamazio markatzaile kontzentrazio altuagoak 

dauzkatela aurkitu dugu. Honek inflamazio basala daukatela adierazten du, inflammaging-

arekin erlazionatuta egon litekeena. Bestalde, T linfozitoen analisian, esklerosi anizkoitza 

daukaten gaixoek zelula seneszente gehiagorik ez dutela ikusi dugu, baina gaixo hauen T 

linfozitoek erantzun desberdina daukate in vitro jasotako estimulu baten aurrean, aktibazio 

murriztuagoa erakusten dutelarik pertsona osasuntsuen zelulekin alderatuta.  

Bukatzeko, laburpen modura, doktoretza tesi honek zahartze prozesuaren hainbat alderdiri 

buruzko ezagutza aurreratzen lagundu duela esan dezakegu. Hauskortasun biomarkatzaileak 

ikertu ditugu, EGR1 genearen adierazpena etorkizunean kontuan hartu beharreko markatzaile 

bezala proposatuz. Plasmatik isolatutako EVen ezaugarriak ere aztertu ditugu, osteogenesia 

eta miogenesia bezalako zelulen diferentziazio prozesuetan lagundu dezaketela erakutsiz, 

baita T linfozitoen aktibazioa sustatzen dutela estimulu immunogenikoen aurrean, eta EVen 

funtzio hauek zahartzearekin ahuldu egiten direla. Emaitza hauek guztiek erakusten digutenez, 

EVek paper garrantzitsuak betetzen dituzte hainbat prozesuetan, eta aintzat hartu beharko 

lirateke zahartzearen ezaugarri nagusietan. Azkenik, esklerosi anizkoitzaren inguruan 

burututako esperimentuek adierazten digute gaixotasun hau daukaten pertsonek inflamazio 

kronikoa badaukatela, eta immunoseneszentzia goiztiarra esklerosi anizkoitzean eta bestelako 

gaixotasun autoimmuneetan garatzen ote den ikertzen jarraitu behar dugula.  



 

 

 



 

Resumen 

El envejecimiento se define como el conjunto de modificaciones que sufre nuestro organismo 

con el tiempo y que resulta en una pérdida de capacidad funcional, así como una mayor 

susceptibilidad a enfermedades y vulnerabilidad frente a agresiones externas.  

Gracias a la mejora de la calidad de vida y a los grandes avances de la medicina en las últimas 

décadas, el número de personas de edad avanzada ha incrementado de manera excepcional. 

Este aumento de la esperanza de vida media y el descenso de la natalidad están produciendo 

cambios profundos en la pirámide poblacional clásica del último siglo. Además, aunque la 

esperanza de vida es mayor, no se ha dado un incremento en los años de vida saludable y, por 

lo tanto, vivimos más pero no mejor. Como resultado, el envejecimiento en general y la 

dependencia en particular, se han convertido en retos sociales y sanitarios a los que cada vez 

se dedican más recursos. El principal objetivo de los proyectos de investigación sanitaria que 

se desarrollan en este ámbito debe ser siempre reducir la incidencia de dependencia para 

lograr un envejecimiento saludable. 

En este contexto, se trabaja con el concepto de fragilidad. La fragilidad se considera un 

síndrome médico relacionado con la edad que se caracteriza por una pérdida de reserva 

funcional, una peor capacidad de adaptación de diversos sistemas fisiológicos y un aumento de 

la vulnerabilidad. La fragilidad resulta en un mayor riesgo de múltiples problemas como caídas, 

fracturas, infecciones, discapacidad, hospitalización, dependencia y muerte. La identificación 

de sujetos frágiles es por lo tanto una de las claves para poder tomar medidas a tiempo y tratar 

de revertir este estadio y futuros problemas. Pero, hasta la fecha, no se ha conseguido dar con 

un método eficaz de discriminación, y aunque existen diversos formularios y pruebas 

funcionales, estos no son capaces de reconocer a todos los sujetos frágiles. Para complementar 

las herramientas disponibles y conseguir mejores resultados, se está investigando la 

posibilidad de encontrar un biomarcador de fragilidad, como comentaremos más adelante. 

Pero para poder entender la búsqueda de biomarcadores, debemos primero, repasar la 

biología del envejecimiento.  

El envejecimiento es un proceso universal y progresivo, que tiene una gran heterogeneidad y 

se desarrolla de maneras muy diferentes. Entender las causas moleculares y celulares del 

envejecimiento es uno de los retos centrales de la biología, y son muchos los trabajos que se 

han realizado con este objetivo. Gracias a estos estudios se han podido definir las principales 

características del envejecimiento: inestabilidad genómica, alteraciones epigenéticas, 

acortamiento de los telómeros, disfunción mitocondrial, agotamiento de las células madre, 

senescencia celular, comunicación intercelular alterada, perdida de la proteostasis y alteración 
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en la percepción de nutrientes. Cada una de ellas ha sido investigada en profundidad por la 

comunidad científica, pero a continuación vamos a describir brevemente las características 

sobre las que hemos trabajado en el presente estudio.  

La inestabilidad genómica que se observa en el envejecimiento se debe, en parte, a la 

acumulación de cambios en la estructura del ADN, como mutaciones, deleciones o roturas en 

una o las dos cadenas de ADN. La célula dispone de mecanismos de control y reparación para 

estos fenómenos, pero se ha visto que los mecanismos también fallan con la edad. Además, la 

expresión génica se ve alterada en el envejecimiento, y si esto ocurre en factores de 

transcripción que regulan la expresión de otros genes, el efecto es todavía mayor. Por otro lado, 

también se puede ver afectada la expresión de genes no codificantes que influyen en la 

regulación postranscripcional, como en el caso de los microARNs. 

La senescencia se define como la pérdida de capacidad proliferativa de las células, mientras 

estas mantienen actividad metabólica, viabilidad y algunas de sus funciones. La entrada en 

senescencia se ha descrito como un mecanismo de defensa que se activa en las células dañadas 

y potencialmente perjudiciales para evitar su proliferación. Asimismo, se ha visto que las 

señales producidas por las células senescentes inducen la regeneración de tejidos, un proceso 

en el que primero se produce la digestión de las células senescentes y después, la diferenciación 

de células madre a células adultas que renuevan el tejido. Con el envejecimiento este proceso 

tiende a fallar, las células senescentes se acumulan y terminan por contribuir al daño. En este 

trabajo, nos hemos centrado en la senescencia del sistema inmune (llamada 

inmunosenescencia), un fenómeno que incrementa la vulnerabilidad de las personas mayores. 

Otra característica con la que hemos trabajado es el agotamiento de las células madre con la 

edad. Ese proceso está estrechamente relacionado con la senescencia, puesto que la 

regeneración de tejidos tampoco puede ser completada si no hay células madre o si no se 

diferencian de manera adecuada. Las células madre se mantienen en un estado de quiescencia 

y solo se activan, proliferan y diferencian cuando es necesario. Además, tienen capacidad de 

autorrenovación, si se dividen en una célula que mantendrá en nicho y en otra que se 

diferenciará. El problema puede surgir cuando las células madre se dividen y diferencian de 

manera simétrica y no mantienen el nicho, o cuando debido a problemas relacionados con el 

envejecimiento, como el acortamiento de los telómeros, el estrés oxidativo o el daño en el ADN 

no consiguen llevar a cabo el complejo proceso de salida de quiescencia y activación. 

Por último, estudiamos la alteración de comunicación intercelular en el envejecimiento. Esta 

característica nos es de interés por dos razones diferentes. Por un lado, por los cambios que se 

dan al envejecer conducen a un estado de inflamación basal crónico que se conoce como 



Resumen | 25 

 

inflammaging, en el que la secreción de moléculas proinflamatorias es producida por una gran 

diversidad de células y que contribuye al malfuncionamiento del sistema inmune. Por otro 

lado, por las vesículas extracelulares (EVs, por sus siglas en inglés). Estas partículas son 

secretadas por la mayoría de los tipos celulares y participan en la comunicación intercelular. 

Fueron descubiertas hace más de 50 años y actualmente, se sigue profundizando en su 

importante papel en el envío y recepción de mensajes entre células y en las funciones biológicas 

en las que participan. Aun así, cuando se definió la comunicación intercelular alterada en el 

envejecimiento no se incluyó a las EVs, puesto que su estudio en ámbito del envejecimiento no 

estaba muy desarrollado, y debemos seguir profundizando en su implicación en los cambios 

que acontecen durante este proceso.  

Volviendo a la búsqueda de biomarcadores de fragilidad, son muchos los trabajos que se han 

realizado para tratar de relacionar características del envejecimiento con el síndrome de 

fragilidad. La hipótesis de estos estudios es que si hay modificaciones o procesos perjudiciales 

que ocurren con la edad, y que éstos pueden tener más peso en los sujetos frágiles o que 

desarrollan dependencia que en personas que mantienen la capacidad funcional (robustos). En 

este sentido se ha investigado la posible relación de la fragilidad con un incremento de 

moléculas relacionadas con la inflamación o el estrés oxidativo y con desregulaciones 

hormonales o metabólicas. También con cambios a nivel génico como modificaciones en la 

regulación y expresión de genes, o con la incidencia de polimorfismos de nucleótido único que 

pudieran predisponer a la fragilidad. Aunque las publicaciones sobre estos y otros posibles 

biomarcadores son abundantes y han encontrado relaciones con la fragilidad o el riesgo de 

desarrollarla, también hay estudios que no han validado los biomarcadores propuestos y, a día 

de hoy, no se ha implementado en la clínica ninguno de ellos. 

En el primer capítulo de esta tesis hemos tratado de identificar biomarcadores de fragilidad. 

Para ello hemos contado con muestras de sangre de personas de edad avanzada clasificadas 

como robustas o frágiles. Primero comparamos en nuestra cohorte los marcadores clásicos de 

inflamación que han sido estudiados en otros trabajos. En contra de lo indicado en algunos de 

ellos, no hemos encontrado un aumento de la concentración de estas moléculas inflamatorias 

con la fragilidad. Nuestra segunda estrategia ha sido la realización de un estudio 

transcriptómico, mediante el que hemos podido identificar 35 genes candidatos que están 

diferencialmente expresados entre robustos y frágiles. En una primera aproximación, hemos 

comparado la expresión de 3 de ellos en una cohorte más amplia, y hemos validado el aumento 

de expresión en sujetos frágiles del gen EGR1, un factor de transcripción implicado en 

importantes procesos celulares (respuesta a mitógenos, proliferación, apoptosis y 

diferenciación de varios tipos celulares, entre otros) y que puede ser activado en repuesta a 
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diversos estímulos. Además, se ha llevado a cabo un estudio piloto en el que se trataba de 

revertir o reducir la fragilidad mediante una intervención física de 3 meses, y hemos visto que 

en 9 de los 12 participantes se redujo la expresión de EGR1 después de los 3 meses de ejercicio 

físico. Por ello, proponemos la expresión elevada de EGR1 como un potencial biomarcador de 

fragilidad que debe seguir siendo estudiado en futuros experimentos. 

Como última aproximación a la búsqueda de biomarcadores de fragilidad, investigamos la 

concentración de las EVs en plasma. Estudios previos han propuesto que la concentración de 

las EVs aumenta en procesos inflamatorios como el cáncer o las enfermedades autoinmunes, y 

por lo tanto nuestro objetivo era analizar si este aumento también sucedía en el inflammaging. 

Nuestros resultados han demostrado que la concentración plasmática de las EVs no incrementa 

en todos los procesos inflamatorios, puesto que los participantes de edad avanzada mostraban 

signos de inflamación basal crónica o inflammaging, pero no tenían mayores concentraciones 

de EVs que los adultos.  

En el segundo capítulo de este trabajo hemos estudiado el efecto de las EVs en la diferenciación 

celular. Nos hemos centrado en la osteogénesis y la miogénesis, procesos que se ven afectados 

durante el envejecimiento y que pueden dar lugar a dos de sus principales problemas: la 

osteoporosis y la sarcopenia. Estos procesos han sido estudiados en profundidad desde 

diferentes perspectivas, pero son muy pocos los que han investigado la implicación de las EVs. 

Nuestro trabajo realizado en células madre mesenquimales derivadas de tejido adiposo indica 

que las EVs de plasma ayudan en el proceso de osteogénesis, y que este efecto es mayor 

aplicando EVs provenientes de donantes adultos, respecto a las provenientes de donantes de 

edad avanzada. De manera similar, hemos tratado de poner a punto un protocolo para testar 

el efecto de las EVs plasmáticas en la miogénesis, y nuestros resultados apuntan a una 

promoción del proceso de diferenciación en presencia de las EVs, que se ve mermado si las EVs 

son de personas de mayor edad. El trabajo en este campo parece prometedor, puesto que las 

EVs podrían ayudar a inducir la diferenciación y regeneración de tejidos, y se podrían aplicar 

con mayor seguridad y menos efectos secundarios que las terapias celulares.   

En el tercer capítulo hemos centrado la pregunta en el fenómeno de la inmunosenescencia, y 

para ello hemos estudiado individuos adultos (20-49 años) y mayores (70-104 años). Primero 

se ha medido la senescencia a nivel celular, y hemos visto que las células T CD8 senescentes 

aumentan con la edad. La misma acumulación se da en las células T CD4, aunque los 

nonagenarios y centenarios muestran niveles menores de senescencia que los octogenarios en 

este subtipo de células. También hemos evaluado si las EVs mostraban las mismas 

características de senescencia que los linfocitos T. La identificación de los mismos marcadores 

nos indica que las EVs llevan en su membrana algunas de las moléculas características de las 
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células T, pero que no se observa un aumento de las “EVs senescentes” con la edad. Por último, 

hemos realizado experimentos de cocultivo de linfocitos y EVs para evaluar el efecto de estas 

últimas en la activación de las células. Los resultados obtenidos demuestran que la presencia 

de las EVs no induce respuesta inmune y, en cambio, mejora la viabilidad celular en cultivo. 

Pero, por otro lado, observamos que las EVs sí promueven la activación de los linfocitos T en 

presencia de un estímulo inmunogénico. Además, este efecto sobre la activación es mayor en 

presencia de EVs aisladas de donantes adultos que con las obtenidas de donantes envejecidos. 

Estos resultados nos indican que, aunque no haya diferencias en las moléculas de membrana 

estudiadas, las EVs provenientes de participantes de diferentes edades tienen capacidades 

funcionales distintas.  

En el último estudio de esta tesis, que se presenta en el cuarto capítulo, hemos evaluado la 

inmunosenescencia en la esclerosis múltiple. Este estudio viene motivado por la hipótesis de 

que la constante activación del sistema inmune en las enfermedades autoinmunes puede llevar 

a un agotamiento prematuro del mismo y por tanto, a desarrollar una inmunosenescencia 

prematura. Para evaluar esta hipótesis hemos comparado muestras de pacientes adultos con 

esclerosis múltiple y donantes sanos de la misma edad. Aunque los pacientes estaban en 

remisión y bajo tratamientos inmunomoduladores, hemos detectado una mayor concentración 

de moléculas proinflamatorias en suero respecto a los donantes sanos, lo que indica la 

presencia de inflamación basal, que podría estar relacionada con el inflammaging. Al analizar 

las células T, hemos visto que los pacientes con esclerosis múltiple no tienen más células T 

senescentes que los controles sanos, pero, en cambio, sí muestran una activación menor que 

las células de controles sanos bajo el mismo estímulo en cultivos.  

Finalmente, a modo de resumen podemos decir que la presente tesis ha contribuido al avance 

del conocimiento de diversos aspectos del envejecimiento. Hemos investigado los 

biomarcadores de fragilidad, proponiendo la expresión de EGR1 como un nuevo candidato que 

tener en cuenta. También hemos estudiado las características de las EVs aisladas de plasma, 

observando que pueden ayudar a la diferenciación celular en procesos como la osteogénesis y 

la miogénesis, así como que promueven la activación de las células T bajo estímulos 

inmunogénicos, y que estas capacidades de las EVs se ven reducidas con el envejecimiento. 

Estos resultados nos muestran que las EVs juegan un papel importante en diversos procesos y 

que deben ser incluidas dentro de las principales características del envejecimiento. Por 

último, nuestros resultados en esclerosis múltiple indican que los pacientes tienen una 

inflamación crónica y que tenemos que seguir estudiando la posible incidencia de una 

inmunosenescencia prematura en esta y otras enfermedades autoinmunes.
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1. Aging 

The process of getting old affects each of us and our society as a whole. Aging is defined as the 

accumulation of time-related modifications that lead to decreased functional capacity, as well 

as increased susceptibility and vulnerability to disease or external insults [1]. It is a universal, 

complex and heterogeneous process. The present work is focused on biological aspects of 

aging, but we consider we should first outline some general characteristics to better 

understand the implications and motivations of our research.  

Regarding demographics, a dramatic change in the proportions of young and elder people is 

observed in most of the countries. On one side, the improvements in social, medical and 

economic conditions have resulted in reduced mortality, better quality of life and consequent 

increase in life expectancy. On the other side, the reduced birth rate contributes to the overall 

increase of the population age. In Figure 1 the population pyramids of the European Union in 

2003 and 2018 are depicted, showing a clear drop of the inhabitants younger than 44 years 

and a rise of the ones over 45 years. 

Figure 1. Population pyramids of the 28 member states of the European Union in the years 2003 and 

2018. The percentage of people of all age ranges up to 40-44 years has decreased, while all the age ranges 

over 45-40 years have increased, demonstrating the aging of the population. Source: Eurostat. 

“Population structure and ageing”. Available at: https://ec.europa.eu/eurostat/ 

https://ec.europa.eu/eurostat/
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Moreover, the current picture will continue evolving and the population is projected to age 

notably more. In Figure 2 the present population structure and future projections are shown. 

Interestingly, we can observe that the proportion of people aged more than 80 years is 

expected to increase from 5.6% to 14.6% in the year 2100.  

Figure 2. Population structure by major age groups of the 28 member states of the European Union in 

the year 2018 and the projections for the next decades. The proportion of children (0-14 years) will have 

only a minor decrease, while a marked decrease of the adults (15-64 years) and increase of elders (65-

79 years and 80+ years) is expected. Source: Eurostat. “Population structure and ageing”. Available at: 

https://ec.europa.eu/eurostat/  

However, the reports from the European Union also show that life expectancy at birth is 

increasing, while the healthy life years at birth (also called disability-free life expectancy) is not 

rising. For instance, in 2016 life expectancy at birth was 83.6 years for women and 78.2 years 

for men and healthy life years were 64.2 and 63.5 years respectively. This indicates that a 

woman born in 2016 will live the approximately 77% of her life without disability, while it 

would be an 81% of his life for a man (https://ec.europa.eu/eurostat/). Furthermore, these 

percentages would continue to decline as long as life expectancy increases, but no reduction of 

disability is achieved.  

https://ec.europa.eu/eurostat/
https://ec.europa.eu/eurostat/
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In light of the commented demographic changes and disability data, the importance of taking 

appropriate and effective actions becomes evident. Moreover, as stated by the World Health 

Organization, the aging of our societies is one of the major challenges of the 21st Century [2], 

as it reaches not only sanitary but also many socioeconomic aspects. In consequence, decisions 

coordinated by experts of different fields should be taken, aiming to achieve the well-being and 

healthy aging of the population while maintaining financial sustainability.  

One of the key actions to face the aging challenge is research. Research on the underlying 

mechanisms, the age-associated diseases and loss of functions, the interventions and the 

outcomes are essential to better understand the aging process and to be able to implement 

innovative treatments and/or interventions. Besides, the primary objective of biomedical 

research on aging should not be focused on the extension of life, it should aim to improve the 

quality of life of the elderly, reducing disability and prolonging healthy aging.  

1.1. Frailty and other relevant age-related health concepts 

Many works have previously studied the loss of functions associated with aging. Notably, there 

have been different approaches to investigate the age-related dysfunctions, and consequently, 

multiple terms have also been proposed. In the next lines, the main concepts are presented, 

and their principal characteristics explained. 

1.1.1. Frailty and robustness 

Frailty is a common age-related medical syndrome, characterized by a reduced functional 

reserve, impaired adaptive capacity across multiple physiological systems and increased 

vulnerability to stressors [3]. The accentuated vulnerability results in high risk of negative 

outcomes, such as falls, fractures, infections, disability, hospitalization, dependency and death 

[4]. Frailty syndrome has been widely studied for decades, but still, no consensus has been 

reached on its definition and identification tools.  

Regarding the concept of frailty, a work by Rodríguez-Mañas and colleagues gathered the 

definitions of experts in the field and presented a list of accepted statements that define frailty 

[5]. This list included aspects of physical performance, nutritional status, mental health, and 

cognition. However, they concluded that, even if some concepts of frailty are widely agreed, 

there is no consensus on an operational definition of frailty.  

Despite the lack of a complete definition, as mentioned before, frailty implies a reduced 

functional capacity of an individual that results in an increased risk of developing dependence. 

The opposite situation to frailty is most of the times termed robustness. An elder is classified 

as robust when her/his functional capacity is conserved, and besides, phenotypic stability is 
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also maintained after the occurrence of a clinical stressor [6]. It is generally accepted that 

frailty is reversible, and pharmacological, nutritional and physical interventions have been 

proposed to recover robustness [7]. Taken together, the main objective of frailty identification 

tools is to detect a person when she/he is at risk of developing dependence, and intervene to 

improve the functional capacity and to prevent negative outcomes (Figure 3).  

Figure 3. Representation of possible functional capacity progressions with age. Each line represents an 

individual. The subject 1 has a good function and maintains it after the occurrence of stressors (robust). 

In contrast, the subjects 2 and 3 lose function after the first stressor. At this point the subjects become 

frail. If we are able to identify the frail individuals and intervene with a pharmacological, nutritional 

and/or physical program, functional capacity could be improved, and robustness recovered (subject 2). 

In contrast, if we fail to identify frailty or we do not perform an intervention, the occurrence of another 

stressor can result in a more prominent loss of function and subsequent dependence (subject 3). 

1.1.2. Frailty scales 

As mentioned above, frailty is a complex concept that includes physical, phycological and 

cognitive aspects. Similar to the open discussions regarding the definition of frailty, the tools 

and clinical scales applied to identify frail individuals are also debated by geriatricians and 

researchers. Throughout the last decades, more than one thousand works that studied frailty 

have been published and tens of frailty screening tools have been proposed [4,8,9].  

Each tool has a different approach and focuses on different aspects: clinical score, activities of 

daily living (ADL), physical performance, self-reported health status, or a combination of 

several of them. Besides, some of the tools classify individuals as frail or no-frail, while others 

also distinguish pre-frailty, an intermediate state between robustness and frailty [10,11]. For 

instance, the systematic literature review performed by Sternberg and colleagues [8] analysed 
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22 publications describing original frailty screening tools and found that physical function was 

the most commonly assessed aspect. Moreover, they reported that ADLs were included as 

identifying components of frailty more frequently in the earlier years of this review, while gait 

speed and cognition became more common in later years. 

The most cited tool for the identification of frailty is the one proposed by Linda Fried and 

collaborators in 2001 [10] (2635 citation in PubMed, accessed on October 7, 2019) and it is 

also estimated to be the most applied instrument [12]. It measures 5 aspects: unintentional 

weight loss, exhaustion or fatigue, physical activity, walking time or walking speed and grip 

strength. Individuals having none of these components are considered robust, those having 1 

or 2 prefrail and those with 3 or more are classified as frail. This tool has been shown to have 

good predictive value for the incidence of falls, worsening mobility and ADL, hospitalization 

and death.  

However, even if hundreds of studies have applied the classification proposed by Fried et al., 

many geriatricians and researchers consider that it is a complex tool that cannot be applied in 

the everyday clinics. In fact, to complete the 5 components of the test, simple measures 

including body mass index, walking speed and grip strength have to be performed, but also a 

detailed questionnaire to measure physical activity and to calculate kcal expenditure per week, 

making it time-consuming and complicating its application in the clinic.    

Similarly, the Canadian Study of Health and Aging (CSHA) Frailty Index, which was also 

published in 2001, has shown good predictive values and it has been cited 259 times (PubMed, 

accessed on October 7, 2019). It is a continuous scale from 0 to 1, reflecting the proportion of 

accumulated deficits detected, based on 20 items [13]. Besides, a simpler tool called CSHA 

Clinical Frailty Scale was published in 2005 by the same research group. They demonstrated 

that the predictive validity of the CSHA Clinical Frailty Scale was as good as the one of the 

Frailty Index. This second tool is a 7-point scale based on clinical judgement [14] and it has 

been cited by 639 works (PubMed, same date). Notably, we can see that when the two 

identically valid screening tools from the same research group are compared, the one that is 

simpler and easier to apply has been more widely reproduced.  

So, in the last years, several works have been carried out to find easier and faster tools to 

evaluate frailty. This is the case, for instance, of the Tilburg Frailty Indicator, a user-friendly 

questionnaire based on a multidimensional approach, composed by a physical, a psychological 

and a social domain [15]. Another example is the Gerontopole Frailty Screening Tool, which is 

based on clinical judgement. This test is composed of 6 yes/no questions that help the 

physician to evaluate the existence of frailty [16]. Other works have evaluated the use of a 
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single functional measure, such as gait speed or timed up-and-go, for the identification of frail 

subjects [17,18]. Besides, the Short Physical Performance Battery (SPPB), which was published 

already in 1994 by Guralnik and colleagues [19], is gaining importance in the last years for the 

identification of frailty. It has a total of 1651 citations in PubMed, and 220 of them are from 

works published in the last year (October 2018 - October 2019). It is a functional capacity test 

composed of gait speed, a test of balance and a measure of the time needed to stand up from a 

chair 5 consecutive times. It measures function in three different ways, but it is still a fast and 

simple test to apply in the clinic.  

These examples represent the main trends in frailty assessment: based on the clinical 

judgement, on self-reported health status and on physical function. All of them seem to be valid 

for the identification of frail individuals, taking into consideration the wide concept of frailty. 

However, a single person would be classified as frail by some of the tests, while robust by 

others. In this context, the use of molecular biomarkers could be helpful, and many researchers 

are investigating their potential to identify frailty. Indeed, molecular biomarkers could be used 

in combination with functional tests, questionnaires or the clinical status, to complement the 

identification process. The current state of the art regarding biomarkers of frailty will be 

commented in a later section, after the biological aspects of aging are introduced.  

1.1.3. Resilience 

The concept of resiliency has been widely used in other fields such as ecology, psychology and 

engineering for a long time, and lastly, it has also been applied to medicine and aging [20]. 

Resilience is defined as the human ability to adapt in the face of tragedy, trauma, adversity, 

hardship, and ongoing significant life stressors. More specifically, in the field of aging, resilience 

is described as the ability to resist or recover from functional decline following the adverse 

effects of a stressor [6]. The concept of resiliency is closely related to robustness, but there is 

one relevant difference between them: a robust subject maintains the phenotype 

quantitatively, while a resilient subject retains the phenotype qualitatively, but there could be 

some decrease in function. This distinction was nicely represented in a publication by 

Varadhan and colleagues [6], as shown in Figure 4.  

Moreover, frailty and resilience are also related, but they are not opposite concepts [6,21]. As 

explained before, a frail individual has increased vulnerability to stressors. However, in 

combination with the proposed definition of resilience, a frail person could still be resilient 

when she/he suffers only a subtle loss of function and maintains the phenotype, whereas a frail 

person that has a substantial and lasting loss of function would be considered non-resilient. 

Besides, some authors state that the concept of frailty has a negative connotation, while 

resilience has been proposed as a more positive term [21,22]. Frailty is seen as the 
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accumulation of deficits with age, while resilience focuses on the ability to adapt. The negative 

essence of frailty and the more positive definitions of age-related processes are further detailed 

in the next section.    

Figure 4. Representation of the possible responses of a system to a stressor. The system is robust when 

it maintains its functionality intact under the new equilibrium, it is resilient when it maintains its 

essential functionality under the new equilibrium, and it is nonresilient when it loses its essential 

functionality under the new equilibrium. Adapted from [6].  

1.1.4. Intrinsic capacity 

The World Health Organization introduced the concept of intrinsic capacity, defined as the 

composite of all physical and mental capacities that an individual can draw upon during 

her/his life, in the World report on ageing and health published in 2015 [2]. Intrinsic capacity 

is a new model that aims to capture all the individual’s functions and capacities. Furthermore, 

intrinsic capacity is a dynamic construct and should be longitudinally assessed. In this way, the 

clinician may identify deviations from normality before the onset of clinical manifestations and 

preventively act to maintain healthy aging. Besides, the longitudinal measures would also serve 

to evaluate the effectiveness of interventions to improve health status [22].  

However, intrinsic capacity is still a theoretical concept. The World Health Organization is 

coordinating activities to promote its clinical implementation and it is expected that they will 

soon provide an international validation of the definition and tools to measure intrinsic 

capacity [23]. For now, the five domains defining intrinsic capacity have been defined: 

locomotion, vitality, sensory, cognition, and psychological [24]. These domains are 

interconnected and they are also influenced by environmental factors. In addition, all the 

mentioned domains are composed of subdomains, increasing the complexity of the system. The 

possible subdomains of intrinsic capacity were described by Cesari and collaborators [24] and 

are presented in Figure 5.  



42 | Introduction 

 

Figure 5. Schematic representation of the five domains of intrinsic capacity and the possible subdomains 

of each of them [24].  

Again, the connections between the aforementioned concepts and intrinsic capacity become 

evident. Frailty, resilience and intrinsic capacity are multidomain constructs aiming to 

comprehensively evaluate the individual and implement personalized strategies to prevent, 

slow or reverse losses. However, frailty is focused on deficits, while resilience and intrinsic 

capacity concentrate on adaptability and function respectively. In consequence, the two newer 

concepts have a positive connotation when compared to frailty. In addition, as we mentioned, 

intrinsic capacity is a longitudinal concept and could be monitored throughout the life course, 

whereas frailty is an age-related status, reinforcing the idea of the link between aging and 

negative outcomes. As proposed by Belloni and Cesari, frailty and intrinsic capacity might be 

complementary, as the monitoring of intrinsic capacity could support the detection of a 

person’s fragilization [22]. Certainly, the accumulation of deficits and reduced function is one 

of the characteristics of aging, and it should be faced as a natural process, while we will try to 

minimize it to maintain the quality of life with advancing age.  

In any case, frailty is to date the best described term and, we consider that until holistic 

constructs such as intrinsic capacity could be implemented, we should continue trying to 

improve the identification of frail individuals.  

1.1.5. Healthy aging, successful aging and related concepts 

There are also other terms related to aging that are commonly used. For instance, adjectives 

such as healthy, successful, positive, productive or active are applied to describe the aging 

process. All of them have a similar meaning, which can be resumed as “aging well”. Depending 
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on the publication, the aim of the work and the authors, the word of choice and the 

interpretation are slightly different [25].  

The World Health Organization, for example, focuses on the definition of the concept of healthy 

aging, but also employs the successful and active aging terms [2,23]. They define healthy aging 

as the process of developing and maintaining the functional ability that enables wellbeing in 

older age. Indeed, the functional ability of a person is determined by intrinsic capacity, the 

environment and the interactions between the two of them.  

With regard to nonagenarians and centenarians, they are typically considered as examples of 

successful aging. In fact, it has been shown that they have distinct transcriptomic features when 

compared to septuagenarians and octogenarians [26,27]. However, not all the individuals that 

reach 90 years are in the same health condition and, for instance, we have previously reported 

that healthy nonagenarians have longer telomere lengths and lower amyloid  levels in blood 

when compared to functionally impaired nonagenarians [28]. Moreover, as described before, 

even if life expectancy is increasing, no changes have been achieved in the healthy life years. 

Consequently, we can expect rising numbers of nonagenarians and centenarians in our society, 

but, unfortunately, the successful aging of all of them could not be assumed.  

1.2. The biology of aging 

To understand the whole process of aging of an individual it is essential to identify and describe 

the biological alterations that the organism experiences as time goes by. Aging has attracted 

our curiosity for centuries, but it has been only in the last decades, with the development of 

modern medical, scientific and technical resources, that the study of the biological aspects of 

aging has rapidly advanced [29]. Due to the complexity of the aging process, and to the fact that 

it affects all the tissues and systems of the organism, thousands of investigations have been 

published, with completely different research approaches and study focuses.  

Consequently, to enable a better understanding of the current knowledge, the classification or 

categorization of the biological aspects of aging becomes important. The characteristics of 

aging can be categorized, for instance, depending on the organ of study. Indeed, it has been 

extensively reported that aging affects in a distinct manner and to a different extent to organs, 

such as the bone marrow, the brain or the bone among others [30–32]. Similarly, the diversity 

of aging can also be compared between the different cell types that compose an organism. This 

could be exemplified by contrasting the effects of aging on muscle cells and on lymphocytes: 

they are radically distinct cells, with disparate maturation, function, regulation and renewal 

rates, and therefore, the modifications they suffer with advancing age are not the same.  
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A few years ago, in 2013, a noteworthy classification of the cellular and molecular aspects of 

aging was proposed by López-Otín and collaborators [33]. They distinguished 9 hallmarks of 

aging, and further categorized them as primary, antagonistic and integrative hallmarks (Figure 

6). It is important to mention that the authors proposed this categorization because the 

hallmarks are tightly interconnected and they cannot be understood individually.  

In the next sections, the main characteristics of the proposed hallmarks of aging are explained, 

with a special focus on the 4 hallmarks that have been investigated in this thesis. Besides, we 

complemented these sections with information that was not included in the original 

description of the hallmarks, but that we consider relevant both in the context of this work and 

for the general understanding of the biology of aging.  

Finally, we should bear in mind that thanks to new findings the knowledge about aging is 

rapidly evolving. The hallmarks proposed in 2013 represented the current state of the art, but 

probably, modifications such as the inclusion of new categories or further explanations on their 

connexions and implications will be made in the near future.  

Figure 6. The hallmarks of aging and their interconnections. Genomic instability, telomere attrition, 

epigenetic alterations and loss of proteostasis are considered the primary hallmarks, the primary causes 

of cellular damage. Deregulated nutrient sensing, mitochondrial dysfunction and cellular senescence are 

part of compensatory or antagonistic responses to the damage. These responses are proposed to initially 

mitigate the damage, but eventually, they become deleterious themselves. Stem cell exhaustion and 

altered intercellular communication compose the integrative hallmarks, they are the end result of the 

previous two groups and are ultimately responsible for the functional decline associated with aging. The 

black arrows indicate the hallmarks that have been investigated in the present work. Adapted from [33]. 

 



Introduction | 45 

 

1.2.1. Genomic instability and gene expression 

There is extensive evidence showing that genomic damage accompanies aging. The 

accumulation of DNA damage is caused by both endogenous and exogenous threats, such as 

reactive oxygen species (ROS) and ultraviolet radiation respectively [34]. Examples of DNA 

damage include mutations, single- and double-strand breaks or interstrand crosslinks [33]. 

The cell has multiple mechanisms for genome maintenance and error repair, which illustrate 

the importance of genome stability. Whether the accumulation of DNA damage is a cause or a 

consequence of aging was long debated, but the description of genome instability in diseases 

of accelerated aging demonstrated the causality, as extensively reviewed by Niedernhofer et 

al. [35]. Indeed, in the same publication, they also reviewed the current data showing that 

mutations increase and DNA repair capacity decreases with age.  

Apart from genomic instability, but directly related to it, gene expression modifications have a 

relevant role in aging. It has been widely shown that the expression of protein-coding genes 

changes with age [36–38]. Importantly, transcription factors and related signalling pathways 

have also been found to affect cell senescence and aging. The insulin and insulin-like growth 

factor 1 (IIS) pathway is the best studied one, and it would be commented in the section of 

deregulated nutrient sensing, along with other relevant systems. The interconnections 

between the proposed hallmarks of aging become evident, as the modification of transcripts 

leads to deregulated nutrient sensing.   

Besides, not only the protein-coding transcripts are affected by aging. Several works have 

investigated the post-transcriptional regulation of gene expression by microRNAs (miRNAs) 

and other small non-coding RNAs (sncRNAs). Differentially expressed miRNAs have been 

found in various organs as well as in the circulatory system of both humans and model animals 

[39,40]. We also studied the expression of sncRNAs in human leukocytes with age and 

identified a subset of 69 sncRNAs that gradually increase or decrease. Interestingly, we 

reported an accelerated change in sncRNA expression between 47-54 years, suggesting that at 

this age relevant gene expression modifications occur [41]. Notably, works by Borrás and 

colleagues recently showed that both mRNA and miRNA expression are different when 

octogenarians and centenarians are compared, and moreover, the data from centenarians are 

more similar to the ones obtained from adults [26,27]. Furthermore, a longitudinal study 

performed by Smith-Vikos et al. evaluated the expression of serum miRNAs in 16 subjects and 

identified differentially expressed miRNAs between the short-lived and long-lived subgroups 

[42]. There is still a long way to get to understand the function of all sncRNAs in aging, but the 

available data highlight their implication in the process and their potential use as biomarkers 

of age-related modifications. 
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In addition, in the last years, a new player has entered the game: circular RNA (circRNA). 

circRNAs are covalently closed transcripts formed through an RNA back-splicing event and 

characterized by the presence of a back-splicing junction that makes them distinguishable from 

their linear counterparts [43]. Although the function of most of the circRNAs remains 

unknown, it has been found that they can act as miRNA sponges and that they are also involved 

in gene expression regulation, as circRNAs can regulate the transcription of their parental 

genes. Moreover, ribosome profiling studies have recently shown that circRNAs can be 

translated both in vitro and in vivo, which challenge the stereotypic view of circRNAs as non-

coding RNAs [44]. With regard to aging, several studies have investigated these molecules and 

differential expression of a large number of circRNAs during aging has been found in a wide 

range of organisms. In humans, for instance, they have been proposed to play a role in 

Alzheimer’s disease and immunosenescence [45]. Even if there are still few reports on the 

functions of circRNAs, this is an emerging field that will continue developing and circRNAs have 

to be considered as another piece of the complex puzzle of aging.  

Finally, it is worth mentioning that several investigations have been carried out in the last 

decades to try to find genetic variants related to healthy aging. Studies conducted on 

exceptionally long-lived individuals and genome-wide association studies revealed many 

candidate loci and single nucleotide polymorphisms (SNPs) that could be linked to healthy 

aging and longevity. However, there are controversial results and most of the candidates 

identified in some works have not been confirmed in other studies. These differences could be 

due to different study designs, phenotype definitions and inter-ethnic characteristics, as well 

as by the effects of epigenetics, environmental factors and lifestyle differences [46].  

1.2.2. Telomere attrition and epigenetic alterations 

As mentioned before, alterations in the sequence of genomic DNA are common in aging, but 

there are other relevant modifications that affect the structure and transcription of DNA, which 

include telomere shortening (or attrition) and epigenetic alterations (Figure 7).  

The shortening of telomeres is caused by the incomplete replication of the terminal ends of 

genomic DNA. The replication of chromosomes is conducted by replicative DNA polymerases 

that lack the capacity to replicate completely the ends of DNA molecules. This function is 

carried out by a specialized DNA polymerase called telomerase. However, most somatic cells 

do not express telomerase, leading to a progressive and cumulative loss of telomeres in each 

replication cycle, and consequently, with increasing age [47]. 

Telomeres are implicated in essential biological functions: they protect chromosomes from 

recombination, end-to-end fusion, and recognition as damaged DNA, contribute to the 
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functional organization of chromosomes within the nucleus, participate in the regulation of 

gene expression, and serve as molecular clocks that control the replicative capacity of human 

cells and their entry into replicative senescence [48]. Defects in telomerase, telomeres or 

shelterin (the protein complex that protects telomeres), are linked to diverse problems, 

including pulmonary fibrosis, premature aging and cancer [49]. Besides, it has been found that 

telomerase-deficient mice exhibit premature aging, which can be reverted by genetically 

reactivating telomerase [50].  

Figure 7. Schematic representation of age-related modifications in DNA structure. Aging affects DNA 

organization at the chromosome level (telomere attrition) and at the chromatin level (disorganized 

heterochromatin). In addition, epigenetic alterations, such as methylations or deacetylations can affect 

both DNA sequences and histones. Adapted from [51].  

In humans, the telomere length of leukocytes has been widely studied, and it has been 

proposed that longer leukocyte telomeres are linked to longevity [52]. However, several 

authors have investigated the rate of leukocyte telomere attrition and found that telomere 

length is highly variable at birth, and besides, their shortening is very high during the first years 

of life, while it slows down considerably during adulthood [53,54]. Moreover, a publication that 

evaluated the ranking of leukocyte telomere length of four longitudinal studies demonstrated 

that, despite the interindividual differences in telomere attrition per year, most subjects 

maintain their classification with respect to their age-matched pairs, meaning that the ones 

that have shorter telomeres at the age of 30 are the ones that have shorter telomeres one 

decade later [55]. These results indicate that telomere length is mostly predetermined and 

environmental or lifestyle changes have only minor effects on telomere attrition. In 

consequence, the measurement of telomere length early in life is useful for the identification of 

telomeropathies and as an age-related risk factor, while its utility for intervention monitoring 

in the elderly is not promising.  
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On the other hand, the age-associated epigenetic alterations have been found to be partially 

reversible. The best described epigenetic modification that occurs during aging are 

methylations, histone modifications and chromatin remodelling [33].  

Regarding DNA methylation, only a small fraction of the CpG sites have shown age-related 

modifications (around 2%), but this fraction represents between 2 and 3 million cytosines in 

the genome, denoting the complexity of the system. In addition, both hypo- and 

hypermethylation of the CpG sites happen with age, and the modifications can occur in certain 

tissues or cell types, or even affect only one part of a specific cell population, adding further 

complexity [56]. Despite this, robust mathematical methods have been developed and there 

are reliable algorithms that interpret the methylation pattern of selected CpG sites of an 

individual and predict chronological age with high accuracy [57]. These tools are called 

epigenetic clocks, and recent publications indicate that they could also be useful for the 

detection of accelerated epigenetic aging related to several problems or diseases, including 

cancer, Alzheimer’s disease, frailty and the prediction of mortality risk [56].  

Besides, modifications in histones affect the organization of the DNA, as well as gene 

transcription. Histones can also be methylated, but the best studied characteristic of these 

structures is the deacetylation performed mainly by sirtuins. Sirtuins are a family of NAD-

dependent enzymes able to post-translationally deacetylate histones, which is associated with 

transcription repression. The increased expression of sirtuins has been related to longevity in 

humans and model organisms, and moreover, overexpression studies in these animal models 

resulted in elongated lifespan and healthier aging, while the downregulations of sirtuins 

increased senescence and accelerated aging [58]. 

The organization of histones influences in a more general view, the packaging of chromatin 

into heterochromatin and euchromatin. This organization is coordinated by sirtuins and many 

other DNA- and histone- modifying enzymes. The proper assembly of histones ensures a 

packaged heterochromatin, which is, however, partially lost and redistributed with aging [33]. 

Interestingly, the age-associated chromatin remodelling deeply influences the transcription of 

multiple genes, as the coding sequence of generally repressed genes can then be accessible for 

the binding of transcription factors, or the other way around. Indeed, as explained in the 

previous section, the gene expression modifications that occur with aging are diverse, and 

chromatin reorganization is just one of the changes that affect it. Interestingly, epigenetic 

modifications have been found to play a role in inflammaging and immunosenescence [51,59], 

two of the problems linked to aging that will be addressed later in this work.  
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Finally, it has to be mentioned that, in contrast to telomere attrition, epigenetic changes are 

reversible. For instance, several investigations have demonstrated that caloric restriction 

affects DNA methylation, attenuating some age-related CpG modifications and showing 

deaccelerated epigenetic aging in mice. Besides, the mTOR inhibitor rapamycin also affects 

methylation and reduce epigenetic age in treated mice [56]. Similarly, other studies evaluating 

caloric restriction reported sirtuin mediated slower aging and extended lifespan [60]. Again, 

compounds that mimic the positive effect of caloric restriction regarding sirtuin modulation 

are being tested, such as resveratrol and curcumin [58]. In summary, the data from animal 

models indicate that epigenetic modifications are promising targets, and nutritional or 

pharmacological interventions could potentially be applied to attenuate age-related changes in 

humans.  

1.2.3. Loss of proteostasis 

Proteostasis is defined as the proper control of proteins, including their biogenesis, folding, 

trafficking, function and degradation. All the mentioned steps are essential for maintaining the 

correct functioning of each cell and the organism as a whole. Therefore, the processes 

implicated in proteostasis are tightly regulated, but they can suffer modifications that lead to 

misfunctioning during aging [61]. For instance, the previously described genomic instability or 

epigenetic alterations have a direct impact on protein biosynthesis, as coding sequences can 

be inaccessible, damaged or inappropriately copied.  

Besides, even if the biogenesis is completed, many proteins require a specific folding to be 

functional. Chaperones are a class of heat shock proteins (HSPs) implicated in protein folding 

and stabilization. The HSPs, and specifically chaperones, have been widely studied in the field 

of aging. Indeed, chaperones are involved in the response mechanisms against stressors, and 

have been shown to fail in elders [62]. Furthermore, many studies have been conducted in 

model organisms, and reports from worms, flies or mice among others have demonstrated the 

accelerated aging in chaperone deficient animals, while their overexpression elongated 

lifespan and reduced the accumulation of protein aggregates [62].  

The degradation of proteins is another important step to maintain proteostasis. In fact, 

misfolded, aggregated or non-functional proteins must be removed from the system to prevent 

the accumulation of toxicity. There are two major pathways for protein degradation: the 

ubiquitin-proteasome system (UPS) and autophagy. Both pathways have hundreds of different 

components, including chaperones, and this complexity demonstrates the investment of the 

cell on proper protein degradation [61]. However, the function of UPS and autophagy declines 

with age, and despite the defect of one of the pathways can be partially compensated by the 

other, many cell types accumulate defective proteins [63]. The protein degradation, in 
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combination with the previously mentioned defects in biosynthesis and folding, are 

responsible for the age-related loss of proteostasis. Indeed, the deficits of each step contribute 

to the final failure of the system.  

1.2.4. Deregulated nutrient sensing 

As presented before, the hallmark describing deregulated nutrient sensing in aging is tightly 

connected to the gene expression modifications. In this sense, the genetic polymorphisms or 

mutations that reduce the function of the IIS pathway have been associated with longevity. 

These include the growth hormone, insulin-like growth factor-1 (IGF-1) receptor, or 

downstream effectors such as AKT, mTOR and FOXO [64–66]. However, the components of the 

IIS pathway are multiple and its regulation and interconnections with other signalling 

pathways are complex. Indeed, apart from being related to longevity, reduced levels of the IIS 

components are also reported during normal aging and in animal models of premature aging 

[67]. This could seem contradictory, but it has been proposed that depending on the duration 

and extent of downregulation the elicited results could be beneficial or deleterious. Thus, the 

constitutively decreased IIS functioning implies lower cell growth and metabolism, and 

consequently reduced rates of cellular damage, while acute decreases or extremely low levels 

lead to premature aging [33]. This process is comparable to other defensive responses that can 

become deleterious when not properly controlled, as in the case of inflammatory responses.  

Other nutrient sensing systems tightly connected to IIS and also associated with aging include 

mTOR and sirtuins. The mTOR kinases are implicated in anabolic metabolism and the genetic 

as well as pharmacologic attenuation with rapamycin of this system have been linked to 

increased longevity in distinct animal models [68,69]. On the other hand, as described in the 

section of epigenetic alterations, sirtuins are enzymes implicated in the organization of 

histones and they play a role in the age-associated transcriptional regulation. Notably, sirtuins 

also respond to nutrient availability, and they get activated under nutrient scarcity. We 

previously commented the relation between the elevated expression of sirtuins and longevity, 

and the positive results obtained with caloric restriction or treatments with resveratrol or 

curcumin and associated with sirtuins [58,60]. Similarly, apart from the pharmacological 

interventions, the beneficial results of caloric restriction have also been found to be mediated, 

at least in part, by the reduction of mTOR activity. This link has been demonstrated in animal 

models under caloric restriction, in which the downregulation or deletion of mTOR genes 

prevented the otherwise observed extension of lifespan [70].  
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1.2.5. Mitochondrial dysfunction 

The wellbeing of mitochondria is essential for the appropriate functioning of cells. Despite this, 

there are hundreds to thousands of mitochondria in a single cell (the number depends on the 

organism, tissue and cell type), and thus, single or small numbers of mutations or deficits can 

be managed by a cell and maintain proper functioning [71]. However, as we age, the increased 

damage, reduced respiratory chain functioning, imbalanced fusion and fission, and defective 

clearance of mitochondria (mitophagy) contribute to cellular and organismal aging [72]. In the 

last years, the potentially beneficial effects of mild deficiencies in mitochondria have been 

proposed. Indeed, the elicited mitochondrial defensive response and the low energy state have 

been found to induce beneficial compensatory responses, and even to extend lifespan in model 

organisms [33]. This could seem paradoxical, but it is in line with other age-related 

characteristics, such as cell senescence or inflammation, that could be beneficial when 

effectively controlled, but detrimental when maintained or abnormally increased. 

Mitochondrial dysfunction is closely related to other characteristics of aging. The case of 

genomic instability becomes evident, as mutations in mitochondrial DNA (mtDNA) are one of 

the main causes of the severe impairment on energy conversion. Even if only around 1% of the 

mitochondrial proteome is encoded by mtDNA, these include critical components of the 

oxidative phosphorylation complexes [71]. And besides, apart from the mutations or deletions 

in mtDNA, the accumulation of changes in nuclear sequences, also affect the components and 

dynamics of mitochondria. In addition to the defects in mtDNA that accumulate during the 

organismal life, it has been demonstrated that single SNPs and mitochondrial haplogroups can 

influence the aging process. For instance, SNPs in mitochondrial uncoupling protein genes have 

been related to healthy aging [73], the individuals with mitochondrial H haplogroup showed 

distinct mitochondrial dynamics [74,75] and the D4, D5 and J haplogroups have been 

associated with longevity. Moreover, studies performed in mice have shown that the mtDNA 

haplotype profoundly influences mitochondrial proteostasis and function, as well as ROS 

generation, insulin signalling and telomere length, resulting in differences in the aging process 

and median lifespan between conplastic strains [76].  

With regard to senescence, the issue of whether mitochondrial dysfunction is causative or just 

part of the consequences of the entrance of a cell in senescence is still debated. However, the 

bidirectional link between senescence and mitochondria could be too simple to explain the 

complex underlying processes, and this interplay could be best outlined as a vicious circle, 

involving a number of feedback loops between the players. In spite of the triggering 

mechanisms, it has been widely described that senescent cells have mitochondrial deficits both 

in genome and proteome maintenance, and consequently present dynamic changes and 
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dysfunctions [77]. On the other hand, the age-associated problems in mitochondria can also 

affect stem cells. The accumulation of somatic mtDNA mutations alter stem cell homeostasis 

and can induce defects such as imbalanced biogenesis, abnormal mitophagy or increased ROS 

production, which can eventually accelerate stem cell senescence [78,79]. 

There is also a tight connexion between mitochondrial deficits and the chronic inflammatory 

state (inflammaging) with aging. The defective or dysfunctional mitochondria can release 

molecules that promote the activation of the immune system, including mtDNA and ROS among 

others. The mitochondrial components can boost the immune response through different 

pathways, as the activation of the inflammasome, the recognition by the cytosolic sensor of 

dsDNA cyclic GMP-AMP synthase, or the activation of immune cells with secreted metabolites 

like succinate, as comprehensively reviewed by Jang and collaborators [72]. Remarkably, the 

contribution of mitochondrial component to inflammaging can result in further injury, as in the 

case of inflammasome and caspase-1 mediated mitochondrial damage [80].  

1.2.6. Cellular senescence 

More than half a century ago, the senescence of human cells was described in in vitro cultures 

of fibroblasts [81]. Hayflick and Moorehead found that after a certain number of passages 

cultured cells lose proliferative capacity. Besides, it was long described that cellular senescence 

happens also in vivo [82]. Furthermore, thanks to all the investigations that have been 

conducted, nowadays we know that apart from the replicative arrest, senescent cells show 

many other features distinct from non-senescent cells. Some of the features associated with 

senescent cells, and commonly used as senescence biomarkers, include the increased activity 

of lysosomal -galactosidase, as well as the elevated expression of p53 and p16INK4a [83,84].  

Interestingly, senescence can be induced as a controlled mechanism to prevent the 

proliferation of damaged cells, before they lose the replicative control and develop tumorigenic 

features. Similarly, the entrance of cells into senescence can be triggered by telomere attrition, 

accumulation of DNA damage, or ROS, which induce the activation of the DNA damage response 

mechanism and lead to senescence mainly through the p53 pathway [85,86]. Thus, these 

processes are linked to the mentioned characteristic expression of p53 and p16INK4a by 

senescent cells. Indeed, they are tumour suppressor proteins, part of complex signalling 

pathways that respond to the expression of oncogenes, and consequently induce cellular 

senescence or apoptosis [87]. This indicates the protective role to prevent the formation of 

tumours, even if contributing to the accumulation of senescent cells. In consequence, the 

positive or negative impact of senescent cells is still discussed.  
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The induction of senescence in damaged and potentially hazardous cells is undoubtedly 

beneficial. In addition, senescence has been proposed to trigger tissue renewal, but in contrast, 

this process may not be efficiently completed in aged tissues or pathological contexts, resulting 

in the accumulation of senescent cells (Figure 8) [86]. Therefore, increasing evidence indicates 

that both pro-senescent and antisenescent therapies can be favourable. For example, in cancer, 

during active tissue repair and even to prevent age-related damage, controlled pro-senescent 

therapies could be beneficial, limiting proliferation, accumulation of defective cells and fibrosis 

[88]. Conversely, antisenescent therapies may help to eliminate the already accumulated 

senescent cells and to recover tissue function in aged individuals [89]. 

Figure 8. Proposed model of senescence. Senescence initiates a tissue remodelling process by recruiting 

immune cells through the senescence-associated secretory phenotype (SASP, explained in the section 

1.2.8). Macrophages clear the senescent cells, and progenitor cells regenerate the damaged tissue. This 

sequence is impaired under persistent damage, pathological states or aging. In these cases, senescent 

cells are not efficiently cleared, the tissue is not fully regenerated, and its functionality diminishes. 

Resolution of the damage in these cases involves a fibrotic scar with senescent cells, inflammatory cells 

and fibrotic tissue. Adapted from [86].  

Moreover, even if some molecular features –like replication arrest or elevated -galactosidase 

activity– are reproduced in most senescent cells, senescence affects in a different manner to 

distinct animals, individuals, tissues and cell types [89–91]. In this work, we have focused on 

the senescence of the human immune system, and consequently, in the next lines the 

alterations of this system are presented.  

1.2.6.1. Immunosenescence 

The term immunosenescence is used to refer to all the changes that occur to the immune 

system during aging leading to its dysfunction. However, immunosenescence is not only caused 
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by the age-associated alterations, as the chronic activation of the immune system associated 

with virus infections, inflammatory and autoimmune diseases, cancer or organ transplantation 

also influence the exhaustion of the immune system, in a process called “early” or “premature” 

immunosenescence [92].  

Immunosenescence reaches the components of both the innate and adaptive immune system. 

In fact, the two subsystems are closely related and the modifications occurring in innate 

immunity affect the adaptive immunity, and the other way around [93–95]. Regarding the 

innate immune system, a comprehensive review by Solana and collaborators pointed that 

aging is associated with changes in the cell numbers and with a decrease in the main functions 

of these cells, such as antigen presentation or phagocytosis, as a consequence of modifications 

in the expression of a variety of innate immune cell receptors. These alterations result in a 

reduced capacity to respond to bacterial and viral pathogens and in an impaired ability of the 

innate system components to collaborate in the initiation of the adaptive immune response 

[94]. 

In the adaptive immune system aging affects the rate at which naïve B and T cells are produced, 

as well as the composition and quality of the mature lymphocyte pool. Actually, with increasing 

age, the number of lymphoid-biased hematopoietic stem cells (HSCs) declines, contributing to 

the reduction of lymphoid progenitors and to oligoclonal expansion. In addition, B cell 

progenitors in the bone marrow and T cell progenitors in the thymus exhibit reduced 

proliferation and increased apoptosis and the decline in primary lymphopoiesis results in a 

reduced number of naïve cells that migrate to secondary lymphoid tissues [96]. 

In the case of mature B cells, late memory cells (IgD-/CD27-) have been found to be increased 

in the elderly. Moreover, this subset of B cells is elevated in patients with rheumatoid arthritis, 

multiple sclerosis, HIV or Alzheimer’s disease among others. They represent the most 

proinflammatory B cell subset, with activated immune phenotype and transcriptionally active, 

but with low proliferative capacity, decreased B cell receptor signalling and impaired antibody 

production [97].  

T cells are probably the most dramatically affected immune components, with a decrease in 

naïve T cells and an accumulation of terminally differentiated T cells with age. Terminally 

differentiated T cells exhibit features of replicative senescence and lose the expression of the 

costimulatory molecule CD28 from their membrane [98–101]. Indeed, CD28 plays an essential 

role in T cell function, taking part in activation, proliferation and survival processes. Hence, 

CD28 negative T cells present altered molecular features, as well as distinct cytokine 
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production and effector molecules [102]. The loss of CD28 affects earlier and primarily CD8 T 

cells, but it has also been described to reach CD4 T cells later in life [103,104].  

In consequence, T lymphocytes have a reduced capacity to react against new stimuli, 

contributing to the aforementioned immune dysfunction. Another feature found in senescent 

T cells is the enhanced cytotoxicity. Expression of NK cell characteristic receptors such as CD56 

and CD57 membrane molecules have been widely reported in these cells, which promote their 

cytotoxic capacity [105–109]. Additionally, in CD4 T cells, it has been shown that aged cells 

preferentially differentiate into the Th17 subset, a subset identified by the capacity to generate 

cytokines of the IL-17 family. This imbalance toward Th17 polarization is thought to account 

for the general proinflammatory state and autoimmune response in the elderly [110–112] 

(Figure 9). Furthermore, when comparing the numbers of CD4 and CD8 T cells, many authors 

have found a higher prevalence of an inverted CD4/CD8 ratio among the elders, a feature 

known as immune risk phenotype, that predicts shorter survival [113–116]. 

Figure 9. The strength of the immune response declines with age. Multiple age-related changes affect 

the composition and function of lymphocytes. The number of late memory B cells increases, and 

consequently, the overall proliferative capacity and antibody production is diminished. CD8 T cells 

undergo an oligoclonal expansion, lose the expression of CD28 and gain compensatory cytotoxicity, but 

exhibit impaired function, similar to CD4 cells. Besides, CD4 cells exhibit activation defects and increased 

differentiation into Th17 cells. In addition, there is an increased concentration of inflammatory 

cytokines, which may be produced by stromal elements, dendritic cells, or aging B and T cells. Adapted 

from [96].  

1.2.7. Stem cell exhaustion 

Similar to the previously addressed cell senescence, stem cell exhaustion is another major 

cause of tissue and organ dysfunction. Indeed, we presented in Figure 10 a schematic model 
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of senescence, in which the accumulation of senescent cells leads to tissue dysfunction. In 

contrast, senescent cells contribute to the renewal of tissues, when they are properly removed. 

In this process, the last step for the appropriate regeneration of the tissue is the development 

of new and functional cells, which is achieved by the differentiation and maturation of stem 

cells. However, the exhaustion of stem cells is a general problem in aged subjects, contributing 

to the age-associated loss of function.  

Stem cells are tightly regulated and maintained in the protective state of quiescence. This 

reversible state of temporary cell cycle arrest has been identified in various systems including 

HSCs, muscle stem cells (MuSCs), neural stem cells (NSCs), intestinal stem cells and 

mesenchymal stem cells (MSCs) [117,118]. In response to certain intrinsic and extrinsic 

signals, stem cells can get activated, exit quiescence and perform symmetric or asymmetric 

divisions. When symmetrically divided, stem cells conduct self-renewal, while asymmetric 

divisions allow the maintenance of a population of quiescent cells and also yield daughter 

progenitor cells. Then, a multistep process of controlled proliferation of these progenitor cells 

leads to the formation of fully differentiated cells [119].  

The activation of quiescent stem cells is a highly complex process involving epigenome 

modulations and the activation of transcription, RNA processing, protein synthesis, DNA 

replication, mitochondrial biogenesis, and shifts in metabolic pathways among others. All these 

processes are affected during organismal aging, and therefore, contribute to the age-related 

stem cell exhaustion [117]. Specifically, it has been described that telomere shortening, 

oxidative stress, DNA damage, upregulation of p16INK4a and epigenetic changes contribute to 

the quiescence-to-senescence transition observed in aged stem cells [120,121]. For instance, 

as mentioned before, the dysfunction of HSCs is one of the causes of immunosenescence. 

Similarly, NSCs show a reduced proliferation and result in limited numbers of progenitor cells 

as well as impaired neurogenesis in aged individuals [122]. In the case of skeletal muscles, the 

reduced self-renewal and exhaustion of MuSCs are also major contributors to age-associated 

sarcopenia, in which reduced muscle mass with changes in muscle composition and function 

are observed [119,123] (Figure 10). Regarding bone regeneration, the defective osteogenesis 

has been to shown to be influenced by the preferential commitment of MSCs in the bone 

marrow to adipogenesis [124]. Besides, MSCs derived from the adipose tissue (ASCs) also have 

the potential to differentiate into osteoblasts, but the ASCs from elders show a reduced 

osteogenic potential [125].  

All the research studies conducted in the stem cell field and the changes of these cells with 

aging have improved our knowledge about stem cell exhaustion. This topic is of central 

interest, as the defects on tissue regeneration are one of the major difficulties of the elderly. 
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Neurodegenerative diseases, sarcopenia, bone fractures or osteoporosis and immune-related 

problems have a high prevalence among the aged people, and in most of the cases they result 

in diminished health status and can even give rise to frailty and dependency. To try to 

overcome these situations, many studies are being carried out to improve tissue regeneration 

in elders. They focus both on the potentiation of endogenous factors, as well as on 

pharmacological interventions or the possible transplantation of functionally active stem cells, 

for instance for neurogenesis, osteogenesis and myogenesis [122,125,126].  

In a different approach, and linked to the accumulation of senescent cells, the use of senolytic 

drugs for the killing and clearance of senescent cells is proposed. Indeed, the use of senolytics 

has been demonstrated to selectively target and eliminate senescent cells and rejuvenate HSCs 

and MuSCs [127], as well as to improve physical function and lifespan in mice [128].  

Figure 10. Representation of stem cell exhaustion with aging. Muscle tissue has been taken as an 

example of an age-related affected tissue. In the upper panel, the optimal situation of a muscle from a 

young individual is presented. A balance between stem cell self-renewal (green cells) and commitment 

to myogenic progenitors (orange cells) is maintained. In advanced age (middle panel) muscles show 

increased lineage commitment (solid arrows) to myogenic progenitors and a lack of self-renewal 

(dashed arrows), resulting in impaired regeneration and slow exhaustion of the stem cell reserve. 

Besides, muscle mass starts to decrease. Finally, in the very old or geriatric individuals, most stem cells 

enter senescence and lose their ability to re-enter the cell cycle. In consequence, the muscle mass 

continues to decrease and cannot be regenerated. Adapted from [119].  
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1.2.8. Altered intercellular communication 

Finally, to complete the list of the proposed hallmarks of aging, and tightly linked to all the 

previous characteristics, there is the altered intercellular communication. As its name 

indicates, this hallmark encompasses all the changes that occur during aging and result in a 

different communication between cells. The differential communication between cells can be 

caused both by changes on the secreting cell or by modifications in the receptibility or 

conditions of the receptor cell. As an example, a cell that enters senescence suffers profound 

modifications on its inner conditions and its secretome, while the same secreted molecules will 

produce different effects when received by a non-senescent or a senescent cell.  

There are some studies that investigated the differential reception and the elicited cellular 

changes depending on the characteristics of receptor cells [129,130], but to date, most of the 

efforts have focused on the description of the changes on secretion during aging. Specifically, 

the term senescence-associated secretory phenotype (SASP), which was proposed only a 

decade ago [131], is widely used and includes all the signalling changes that senescent cells 

suffer. Notably, as seen before, the entrance of a cell into senescence can be influenced by many 

molecular and functional changes, from genome instability to oxidative stress or loss of 

proteostasis. In consequence, even if some generally common features have been found, the 

particular components of the SASP are highly variable depending on the tissue, cell type and 

surrounding environment [132].  

The components of SASP were classified into three major groups: soluble signalling factors 

(interleukins, chemokines, and growth factors), secreted proteases, and secreted insoluble 

proteins/extracellular matrix components. In the last years, a new player in cellular 

senescence and SASP has been proposed: the extracellular vesicles (EVs) [133]. EVs have been 

found to be secreted by most cells types and to be implicated not only in senescence, but in 

many other cellular processes. Furthermore, these secreted particles are of central interest in 

our research, and for that reason, we have included a dedicated section (introduction section 

2) to describe their characteristics and functions.  

Coming back to the SASP, it is important to mention that it is not necessarily a deleterious 

process. Indeed, the SASP is a cause of cellular senescence, and as explained before, senescence 

can have both beneficial effects for example for tissue regeneration and detrimental effects 

when it is not resolved and senescent cells accumulate [134]. Similarly, SASP can help tumour 

suppression or promotion. The antitumorigenic role can be driven by the entrance of cells into 

senescence before losing proliferation control and producing SASP components that will 

promote cellular clearance. In contrast, some senescent cells can secrete immunosuppressive 

components that can help tumour progression or relapse [135].   
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A relevant proportion of the SASP components influence the immune system regulation, and 

consequently, they are also related to immunosenescence. Particularly, the soluble signalling 

factors secreted during aging give rise to an inflammatory state termed inflammaging.  

1.2.8.1 Inflammaging 

The systemic and chronic low-grade inflammation observed in elders is generally referred to 

as inflammaging. Inflammaging is considered as an “sterile” inflammatory state, as it is present 

even in the absence of overt infection. Besides, it has been reported that inflammaging is a 

significant risk factor for morbidity and mortality in aged individuals [136].  

There are several potential sources for the increased concentration of inflammatory molecules 

with aging. For instance, the production of inflammatory mediators can be driven by damaged 

cells or debris that are not properly eliminated or by the increased number of senescent cells 

[137]. Furthermore, immunosenescence can be considered both a cause and a consequence of 

inflammaging: the chronic low-grade inflammation keeps a pressure for immune cell 

activation, exhaustion and senescence, while the senescent immune cells contribute to 

inflammation by secreting elevated amounts of inflammatory cytokines. In addition, all the age-

associated damages and loss of functions described before, also play a role in the development 

of inflammaging [33].  

Cytokines are one of the major regulators of inflammation. These small proteins are secreted 

by a wide range of cell types and they can promote or inhibit immune responses. A 

comprehensive work published by Minciullo and collaborators reviewed the role of 

proinflammatory and anti-inflammatory cytokines in aging and longevity [138]. Interestingly, 

the balance between the promoters and inhibitors of immune responses has been related to 

healthy aging and longevity. On the contrary, the destabilization of the system and the increase 

of proinflammatory cytokines results in inflammaging (Figure 11).  

Most cytokines interact with cell surface receptors to initiate intracellular signalling cascades 

that ultimately activate transcription. One of the targets of inflammatory cytokines is the 

transcription factor NF-κB. Besides, the NF-κB protein positively regulates many genes that 

encode proinflammatory cytokines and genes involved the SASP, which can result in a positive 

feedback loop that enhances inflammation [110,137,139].  

Among inflammaging, the most widely studied feature is the circulating concentration of 

interleukin-6 (IL-6). The concentration of this interleukin is normally low (or non-detectable) 

in healthy adults, while elevated levels of IL-6 have been reported in the elderly, with 

increasing concentrations in the very old [138,140]. Moreover, elevated IL-6 has also been 

associated with disability and mortality in the elderly [141,142]. Other inflammatory 
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mediators such as tumour necrosis factor alpha (TNF-) and C-reactive protein (CRP) have also 

been investigated by many authors, and their concentration have also been found to be 

elevated in elders [143–145]. 

Figure 11. The benefits of maintaining balance. The importance of keeping a functional immune system 

and a balanced inflammatory state has been shown be related with healthy aging and longevity. On the 

other hand, when the proinflammatory molecules accumulate and the balance is lost during aging, 

chronic low-grade inflammation or inflammaging develops.   

However, with regard to the roles of cytokines, we should always bear in main the complexity 

of their functions. Actually, molecules such as the mentioned IL-6 and TNF- have 

proinflammatory but also anti-inflammatory functions [146–150]. Their effect depends on the 

surrounding environment, on the membrane molecules expressed in receptor cells and on the 

signalling cascaded they elicit. Thus, even if IL-6 and TNF- are in most of the cases indicators 

of inflammaging among the old individuals, in some cases there could be other underlying 

processes and the presence of these molecules could be beneficial [95].  

1.3. Molecular biomarkers of frailty 

When defining frailty and the main characteristics of the people affected by this syndrome 

(introduction section 1.1), we commented about the complexity of its identification. Due to the 

lack of consensus on an operational definition of frailty, many different tests are employed 

nowadays at primary care services. The physical, cognitive or psychological characteristics that 

the frailty scales measure, are considered functional biomarkers [151,152]. In this sense, the 

aim of molecular biomarkers is to complement the already applied tests to help the 

identification of frail individuals.  
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Many efforts are being made to try to identify and validate molecular biomarkers of frailty, and 

even if some have been proposed, to our knowledge none of them are applied in the clinic. In 

the search of frailty biomarkers, several studies have investigated molecules implicated in the 

biology of aging and, therefore, included in the hallmarks of aging, aiming to find differences 

between healthy aging and frailty. In the next, lines we will comment some of the biomarkers 

that have been suggested to be implicated. A graphical representation of the biological 

characteristics and biomarkers of frailty is shown in Figure 12.   

Figure 12. Schematic representation of the main biological processes, their interconnections, the 

implicated molecules and their relation to frailty syndrome [153].  

The current knowledge points, for instance, to a role of oxidative stress in the development of 

frailty. In this sense, most works have shown increases in oxidative damage indicators, while 

reduced levels in antioxidant micronutrients, in frail individuals, which gave rise to the 

recently proposed free radical theory of frailty [154]. This theory suggests a change in the focus 

of oxidative stress, as diverse studies showed that oxidative damage does not correlate with 

chronological age, but rather with frailty. 

One of the oxidative stress biomarkers of frailty is the elevated levels of circulating protein 

carbonyls, a well-established indicator of protein oxidative damage. For example, high protein 

carbonylation correlated to poor grip strength, particularly among older women [155]. 

Besides, low levels of circulating antioxidants like vitamin E have been found to be associated 

with frailty [156,157]. However, other authors did not find differences between vitamin E 

levels and frailty [158], and the fact that vitamin levels can be easily altered with diet or during 
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disease, complicates even more the interpretation of results. Another vitamin that has been 

studied in many diseases and processes, including frailty, is vitamin D. Lower levels of this 

hormone have been linked to frailty, but the normal ranges of vitamin D are highly variable 

depending on the geographical area and among seasons, and the effects of long-term 

supplementation with vitamin D are still controversial [3,159,160].  

The levels of other hormones have also been investigated as potential biomarkers. Most of the 

endocrine markers proposed in the context of frailty are those related to the decline in muscle 

mass and function. During aging, there is a progressive switch from anabolic to catabolic 

metabolism that affects muscle proteostasis, which has been related to variations in certain 

hormone levels. Indeed, dehydroepiandrosterone sulfate (DHEAS) is an important regulator of 

muscle mass and strength that decreases with age and it has been related to sarcopenia [161]. 

Besides, DHEAS stimulates the production of IGF-1, which is required to muscle regeneration. 

Some publications have reported lower levels of DHEAS in frail subjects and improved physical 

function with DHEAS supplementation and exercise [162,163]. In contrast, other authors did 

not find significant correlations between frailty and the levels of testosterone, DHEAS or IGF-1 

individually, while the accumulation of multiple anabolic deficiencies was a good predictor if 

frailty [164].  

Another characteristic generally associated with aging and widely investigated in frailty is 

metabolic imbalance, and specially glucose and insulin dysregulation. Elevated basal levels of 

glucose and insulin, insulin resistance and abnormal insulin-glucose dynamics have been 

related to higher rates of baseline frailty and greater odds of frailty onset [153,165–167]. 

Notably, it should be mentioned that even if most of the works found some alterations, not all 

of them obtained the same results. For example, the basal levels of glucose were reported to be 

elevated in frail subject in some works, while they were not significantly different from non-

frails in other publications. In addition, as epidemiological studies indicate that diabetes is a 

risk factor for developing frailty, and some frail elders without diabetes have elevated levels of 

glucose, the question of whether this imbalance could be a cause or a consequence of frailty 

remains open.  

The link between chronic inflammation and frailty has been extensively investigated. The 

concentration of inflammatory mediators in circulation has been measured in many different 

cohorts aiming to test whether proinflammatory molecules are specially increased in frail 

individuals when compared to robusts. Certainly, an elevated concentration of IL-6, TNF- and 

CRP, among others, have been reported in most of the cohorts in frail elders [144,168–172], 

but there are also some studies that did not find significant differences between robust and 

frail individuals [159,173]. Moreover, these three molecules are increased in a vast range of 
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inflammatory or infectious conditions, so they could not be used as a single measure, and 

should be combined with other biomarkers that provide information about additional 

variables related to frailty, such as muscle loss or bone degeneration [174].  

Also, the coagulation activity is related to inflammation. Indeed, hypercoagulability both 

reflects and contributes to enhanced inflammation [153]. Hypercoagulability is generally 

observed during aging, and elevated levels of coagulation markers, such as fibrinogen, factor 

VIII, D-dimer and tissue plasminogen activator have also been linked to higher rates of frailty 

[165,173,175]. However, similar to the previously mentioned biomarkers that have been 

proposed for frailty, not all the authors obtained the same results. For instance, elevated 

fibrinogen was related to a higher risk of frailty in women and men by Walston and 

collaborators [165], while it was only associated with frailty risk in women by Gale and co-

workers [175], and the study performed only in women by Reiner et al. found no associations 

between fibrinogen and the risk of incident frailty [173].  

Another remarkable source of frailty biomarkers is linked to brain changes. This organ is 

markedly affected by aging and indeed, the incidence of many brain diseases increases notably 

in elders. A study by Buchman and collaborators followed nearly 800 aged people and showed 

that frailty progresses with age, and an accelerated decline was reported in the participants 

that were found to have brain pathologies in the postmortem evaluation [176]. In an attempt 

to identify easily measurable brain biomarkers, reduced cerebellar grey matter volume 

assessed by magnetic resonance imaging have been found in frail elders when compared to 

robusts [177]. Similarly, the neuroprotective brain-derived neurotrophic factor (BDNF), which 

protects adult neurons from death during stress and promotes the development of immature 

neurons, can be measured in plasma, and decreased levels of this protein were linked to higher 

rates of frailty in women. Moreover, a physical intervention elevated the concentration of 

BDNF both in robust and pre-frail participants, suggesting its implication in the 

pathophysiology of frailty [178]. 

In a different approach, alterations at the genetic level are evaluated. This is the case of 

telomere length, epigenetic changes and gene expression modifications or even 

posttranscriptional regulation. With regard to telomere length, many authors have 

investigated whether there are associations between shorter telomers and frailty syndrome. A 

systematic review and meta-analysis that was published recently, identified 155 publications 

on this topic [179]. Interestingly, they selected 9 studies that measured telomere length in 

leukocytes and concluded that, in accordance with previous reports, telomere length might not 

be a meaningful biomarker of frailty. In fact, they reported no significant differences in 8 of the 

selected studies and found only shorter telomeres in the study that was performed in Hispanic 
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individuals. As discussed in one of the works that investigated the association between 

telomere length and frailty, even if some aspects that are related to frailty, such as oxidative 

stress or inflammation contribute to telomere shortening, they may not represent the 

predominant factors influencing the complex and multicomponent syndrome of frailty [180].  

The regulation of gene expression by epigenetics was already commented to be implicated in 

the biology of aging. Some authors are also working on the question of whether epigenetic 

modifications, such as DNA methylation influences the incidence of frailty. The investigations 

performed on the DNA methylation patterns indicate that frailty could be related to accelerated 

epigenetic aging [181,182], and even specific differences could be observed between twins 

with a distinct frailty index [183]. However, the cost and complexity of DNA methylation 

pattern studies in comparison to directed gene expression analyses should be taken into 

account to evaluate the applicability of these methods in the clinics. Another study approach 

that focuses on the factors that influence gene expression and function is the identification of 

SNPs associated with frailty. In this sense, polymorphisms in genes involved in inflammation, 

muscle biogenesis or apoptosis regulation among others have been related to frailty [7,184].  

Notably, the association between gene expression and frailty is probably one of the most 

widely investigated features, as it englobes all the cellular pathways as well as the studies that 

measure the expression of thousands of transcripts or only a single one. In consequence, there 

are hundreds of publications that investigated the expression of certain genes or pathways, 

and now also ‘omics’-based approaches are being developed [185,186]. Recently, a 

comprehensive review of the biomarkers of frailty was published, in which genes but also 

proteins and secreted factors related to aging were included [187]. They differentiated the 

biomarkers in seven categories: inflammation, mitochondria and apoptosis, calcium 

homeostasis, fibrosis, neuromuscular junction and neurons, cytoskeleton and hormones, and 

other principles. The authors also classified the biomarkers depending on their priority, with 

highest scores being attributed to the factors associated with frailty and with more than one 

hallmark of aging, and with a considerable amount of evidence that the marker is not equally 

expressed in frail versus non-frail individuals. Finally, they proposed a panel of frailty 

biomarkers composed of 19 high priority, plus 22 medium priority and 3 low priority markers. 

Most were proteins or genes, but other emerging biomarker candidates such as miRNAs and 

microparticles were also included (Figure 13). Importantly, the investigation of the emerging 

biomarkers of frailty continues to develop, as illustrated by the publication of a work focused 

on miRNAs nearly at the same time that the commented review [188]. Besides, as mentioned 

before, the case of microparticles (or extracellular vesicles) in age-related processes and also 
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in frailty is of central interest in our work, and therefore, the following section is dedicated to 

these particles (introduction section 2).  

Figure 13. The proposed biomarkers of frailty. The panel is composed of a core of high priority factors 

and complemented by medium and low priority markers [187].  
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2. Extracellular vesicles 

EVs are membrane-coated particles secreted by almost all cell types. Their first identification 

was already reported in 1946, as procoagulant platelet-derived particles in normal plasma 

[189] and more than 20 years later, in 1967, they were referred as “platelet-dust” [190]. Since 

then, several publications started to report novel particle sources and functions and by the end 

of the 20th century they were already known to play a role in relevant processes, such as 

antigen presentation [191]. Importantly, at the beginning of the present century, the research 

on EVs gained interest among the scientific community, as they were also found to the 

implicated in other central issues, including the immune system mediated antitumor response 

[192], and due to the discovery that EVs transfer mRNAs and miRNAs from the donor cell that 

can induce functional changes in recipient cells [193].  

In the last decade, thousands of works have continued describing the characteristics, functions 

and implications of EVs in intercellular communication. Thanks to all of them, we can now state 

that EVs are important players in most biological processes. However, as it usually happens in 

scientific research, the more we know, the more complex the picture is, and the more we need 

to investigate to understand the molecular processes that govern ourselves and the rest of 

living organisms.  

2.1. Biological characteristics of extracellular vesicles 

The term EVs is used to refer to all the particles that cells secrete to the extracellular media. 

There are two main categories of EVs: exosomes and microvesicles. Besides, apoptotic bodies 

are also considered EVs. Indeed, apoptotic bodies play an essential role in the proper clearance 

of the dying cell as well as for the signalling of this programmed cell death to surrounding cells 

and for the regeneration of the tissue [194]. However, most of the works studying EVs are 

focused on exosomes and microvesicles, due to their multiple functions and implications.  

Exosomes are secreted particles originated by the fusion of a multivesicular body and the 

plasma membrane, while microvesicles are formed by the direct budding and fission of the 

plasma membrane. Moreover, apart from their distinct biogenesis, exosomes and 

microvesicles have also classically been differentiated based on their size. Exosomes were 

defined to be around 50-100 nm in diameter, and microvesicles from 100 nm up to 1 m [195]. 

However, even if this classification was formerly accepted, nowadays we know that there are 

larger particles originated at multivesicular bodies, as well as smaller vesicles that evaginate 

from the plasma membrane. Consequently, the International Society of Extracellular Vesicles 

(ISEV) discourages the use of these terms if the biogenesis pathway of the vesicles is not 
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known, and recommends the use of EVs or just small, medium or large EVs if we want to refer 

to their size [196].  

With regard to the molecules carried by EVs, we have to consider both their membrane and 

inner cargo. The membrane of EVs consists mainly of proteins and lipids, but each EV has 

distinct types of proteins and lipids depending on their origin and function. Furthermore, the 

composition of the EV membrane influences the fate and internalization by recipient cells 

[197]. The components of the EV lumen are even more diverse and include proteins and many 

different nucleic acids. Apart from the above-mentioned mRNA and miRNAs, EVs carry other 

types of small and long ncRNAs, circRNAs and dsDNA fragments [198,199] (Figure 14). 

Importantly, the investigations about EV secretion and their cargo revealed more than a decade 

ago, that the sorting of components into a forming particle is a controlled mechanism and not 

a random packaging of the available molecules in the secreting cell [193,200].  

Similarly, the uptake of EVs is thought to be a controlled process. Many authors have studied 

the binding and internalization of EVs by recipient cells and multiple molecules, such as 

tetraspanins, integrins, lipids and lectins, have been identified to mediate the uptake. Besides, 

the integration of EVs can be performed by the fusion of the EV and cellular membranes, or by 

distinct endocytic pathways (Figure 14). An extensive and complete review on the biogenesis, 

release and targeting mechanisms of EVs was recently published by Niel and co-authors, and 

it is a recommended read to go into this subject more in depth [197].  

Figure 14. Simplified representation of the secretion (microvesicles and exosomes) and uptake of EVs. 

For the internalization, EVs can (1) dock and (2) fuse with the plasma membrane, or (3) get endocytosed 

and (4) eventually fuse with a membrane of the endocytic compartment [195]. 
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Due to the focus of this work, we present here the main characteristics and functions of EVs 

from human cells, but the intercellular communication mediated by EVs is also present in many 

other organisms. Furthermore, it has been found that unicellular organisms like bacteria also 

secrete EVs. Interestingly, the bacteria produce EVs for multiple purposes, including horizontal 

transfer between intra-species cells, stress response, or biofilm formation. In addition, in 

mammals, the communication between host and bacterial cells of the microbiota is mediated, 

at least in part, by EVs [201].  

2.2. Isolation and characterization of extracellular vesicles 

The first step to take into consideration to obtain EVs is to decide the sample from which we 

want to isolate the particles, and to perform a proper collection, handling and storage. EVs can 

be isolated from biological fluids, including blood, urine or cerebrospinal fluid and from cell 

culture media [202–205]. Depending on the selected source, specific recommendations have 

been proposed [206]. However, there are many variables that can influence EV secretion and 

that cannot be completely controlled. For example, when taking blood samples, it has been 

described that age, sex, diet, infections, treatments or even circadian variations can affect the 

EVs in circulation [196]. Besides, as we will describe below, there are plenty of EV isolation 

methods and the choice would depend on the sample characteristics, study objective and 

available techniques. Thus, it is essential to collect and report all the possible information about 

the donors, samples and applied steps so that we can take into consideration all our variables, 

and also to enable the potential replication by other authors.  

Regarding EV isolation, it is important to mention that in most of the cases, if not in all of them, 

it is not possible to achieve a complete separation of the vesicles of interest. Therefore, we have 

to consider that even if the term isolation is commonly applied, we are probably enriching our 

samples for EVs. Moreover, this issue is not exclusive for EVs, as other techniques also used for 

cells, such as sorting, precipitation or immunocapture present good but not perfect yields.  

The methods for EV separation are diverse, and besides, each technique can have distinct 

settings depending on the subtype of EVs aimed to enrich. For instance, differential 

centrifugation is one of the most widely applied methods, but the centrifugation sequences, 

forces and times vary among studies. The first steps are usually similar, with centrifugations at 

low centrifugal forces (< 10,000 g) to pellet cells and debris. Then, some investigators apply 

middle force centrifugations (15,000-30,000 g) and recover the EVs from the pellet, while the 

ones that focus on small EVs take the supernatant and perform high speed centrifugations, or 

ultracentrifugations (usually 100,000-200,000 g). Besides, there are authors that complement 

differential centrifugations with density gradient centrifugations [206,207]. 
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Ultracentrifugation has been one of the most used methods, but some authors have reported 

that it can coprecipitate protein aggregates or viruses and can even induce EV clumping and 

damage [206,208].  

There are other classically applied techniques for EV isolation that include size exclusion 

chromatography, precipitation, filtration and immunocapture. For size exclusion and filtration, 

the pore size of the matrix and of the membrane, respectively, can be selected. In addition, in 

the last years, a different filtration method has been introduced: tangential flow filtration 

(TFF). In contrast to the common filtrations that pressure the sample perpendicularly to the 

filter, TFF consists on the application of a tangential force, which minimizes pressure and 

enables the recirculation of the sample into the system. Besides, the pore size of the 

membranes applied for TFF can also be chosen depending on the desired EVs. The use of TFF 

is particularly beneficial when large volumes of samples are handled, as cell culture media or 

urine [209,210]. However, TFF can only separate the EVs based on their diameter.  

On the other hand, the immunocapture methods are attractive when a specific subpopulation 

of EVs want to be separated. This system is based on the use of immobilized antibodies that 

recognize and bind EV-specific molecules, usually proteins exposed at their membrane. The 

selected antibodies can be immobilized on a plate, a chip or a magnetic bead, and there are 

many commercial kits available [207]. Nevertheless, when using immunocapture protocols 

unwanted soluble ligands can also be recovered, or part of the desired EVs lost if there are 

more ligands than antibodies available. In addition, immunocapture will always separate a 

subpopulation of EVs, as no universal marker has been found. For this reason, as an example, 

we cannot claim to isolate all exosomes from a complex sample when applying an anti-CD63 

antibody because not all the exosomes are positive for this tetraspanin. To illustrate the 

complexity of EVs, a representation of some of the most common molecules identified to be 

carried by EVs can be seen in Figure 15.   

Interestingly, new methods are being developed for the isolation of EVs. The microfluidic and 

acoustic settings are promising techniques, and even the combination of both of them have 

been shown to be effective to isolate EVs from whole blood [211]. In any case, the election of 

the EV separation method (or combination of methods) is strongly influenced by the objective 

of the study, as well as by the required time, costs and applicability, if it is directed for a 

potential clinical application [202].  

With regard to the characterization of EVs, and despite their small size, there are multiple 

methods available: the ones that could be applied to characterize cells that have been adjusted 

for EVs, and the ones that have been specially developed for EVs. On one side, we can describe 
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general features of the obtained sample such as the number, concentration, size or morphology 

of the particles, among others. For this purpose, two of the most applied techniques are 

nanoparticle tracking analysis (NTA) and electron microscopy (EM) [212,213]. Furthermore, 

the advances conducted in the last years have enabled the detection of labelled particles with 

these techniques.  

On the other side, for the more exhaustive characterization of EVs, we try to describe their 

composition and cargo. For the detection of the membrane markers of EVs, flow cytometry is 

a reliable technique. The use of flow cytometers is also applied for the quantification of EVs, 

but besides, it has the potential to detect and differentiate a complex mixture of fluorescently 

labelled particles. However, the classical flow cytometers were developed for the detection of 

cells, and cannot accurately identify vesicles smaller than ∼500 nm. Aiming to overcome this 

issue, bead-based detection methods for EVs have been developed [214,215], but also new 

generation flow cytometers with higher sensitivities able to discriminate individual small 

vesicles [216] and even imaging flow cytometers [217]. Notably, apart from the new 

instruments, relevant efforts are being conducted for the analysis and standardization of EV 

flow cytometry [218].  

Figure 15. Composition of extracellular vesicles. The two main subtypes of EVs (exosomes and 

microvesicles) carry hundreds or thousands of molecules. Even if some of the molecules have only been 

found in one of the subtypes, most of them can be present in both exosomes and microvesicles [197]. 
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There are many other methods for the characterization of EVs. Western blotting is the most 

widely used method for the identification of selected proteins in EV samples, most of the times 

just as a targeted approach to demonstrate the enrichment of EV-associated proteins in a given 

sample [196]. However, the use of ‘omics’-based approaches give us the opportunity to study 

the composition and cargo of EVs, and more and more authors are conducting these 

experiments to characterize the particles of interest. This approach is used not only for 

proteins, but also for the identification of nucleic acids and lipids [219–221].  

Finally, other aspects of EVs like their biodistribution or functionality can be studied [206,222]. 

In the next section, the current knowledge about the functions of EVs is presented.  

2.3. Extracellular vesicles in physiological and pathological processes 

As introduced before, it is long known that EVs are functional particles. However, in the 

beginning, it was thought that the secretion of particles could be a mechanism of cells to 

dispose of cellular waste or components no longer needed. Years later, but already more than 

60 years ago, EVs were described to play a role in blood coagulation [189,190], and similarly, 

submicron particles were also observed in the nervous system and particularly in neuron 

synapses [223,224]. Then, EVs were described to be implicated in immune-related processes 

[189–192], and the knowledge about the functions of EVs continued to increase. By now, EVs 

have been found to be secreted by almost all cell types and to play a role in diverse biological 

processes.  

EVs are secreted in physiological and pathological conditions, and depending on their cargo 

and on the conditions of receptor cells, they can have beneficial or detrimental effects [225]. 

For example, in the central nervous system (CNS) neurons, microglia, astrocytes, 

oligodendrocytes and neural stem cells secrete EVs. EVs have been shown to mediate the 

communication between these cells and to be part of neurogenesis, homeostasis maintenance, 

neuronal activity control and myelin sheath biogenesis processes [226–228]. In contrast, EVs 

have been related to Alzheimer’s disease, Parkinson’s disease or glioma, promoting processes 

such as neurotoxicity, protein aggregation, inflammation and tumour growth [229]. 

Similarly, EVs have been studied in many cancer types and hundreds of publications have 

demonstrated their roles in these pathologies. For instance, EVs secreted by breast cancer cells 

have been described to help angiogenesis, EVs from hepatocellular carcinoma or ovarian 

cancer cells promote tumorigenesis and MSC-derived EVs from gastric cancer tissue promote 

proliferation and migration of recipient cancer cells, as nicely reviewed by Smith and 

collaborators [230]. Furthermore, one of the most important discoveries about EVs in cancer 

was probably their implication in the “education” of non-cancer cells and the preparation of 
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premetastatic niches for the establishment of new metastases [231,232]. This is an essential 

feature that needs to be taken into account for the treatment and the prevention of new tumour 

formation.  

Another system that perfectly represents the beneficial and detrimental faces of EVs, is the 

immune system. The implication of EVs in the immune system functioning is one of the most 

exhaustively investigated fields, and dedicated reviews are perfect to get a deep knowledge on 

this topic [233,234]. Making a long story short, we will mention some examples that illustrate 

the relevant roles of EVs. With regard to immune system activation, EVs can carry major 

histocompatibility complex (MHC) molecules loaded with antigens and perform direct antigen 

presentation by binding to TCR receptors of T cells. On the other hand, they can mediate 

indirect antigen presentation if the EV loaded with the MHC-antigen complex is transferred to 

an antigen-presenting cell, that then presents this complex to a T cell. The EV mediated 

activation reaches not only T cells, but also B cells, NK cells and macrophages [200,235–237].  

In contrast, EVs can also help immune inhibition or regulation. For instance, EVs secreted by 

activated T cells can induce the apoptosis of other T cells, participating in a regulatory prosses 

know as activation-induced cell death. Besides, particles secreted by neutrophils and 

erythrocytes can prevent the secretion of inflammatory cytokines by macrophages and the 

maturation of dendritic cells, and the EVs secreted by MSCs have also been shown to be 

immunosuppressive in vitro and in animal models (reviewed in [233,234]). Both the activating 

and suppressing examples mentioned can be beneficial for controlling and conducting 

appropriate immune system responses.  

The harmful effects exerted by EVs through the immune system can be exemplified by their 

link to cancer and autoimmune diseases, like multiple sclerosis (MS). In the case of cancer, 

tumour-derived EVs have been shown to be able to suppress T cell response, or even promote 

their apoptosis by the interaction of T cells with the Fas ligands carried by EVs [238,239]. In 

MS, EVs are implicated in the blood-brain barrier (BBB) disruption and consequent 

transendothelial migration of autoimmune cell into the CNS, as well as in the spread of 

neuroinflammation [240–242].  

Finally, the role of EVs in aging and age-associated processes is being investigated. When cell 

senescence and SASP were described, the implication of EVs was not considered, but the works 

performed in the last years have shed light on their participation. Indeed, stressed and 

senescent cells have been shown to secrete more EVs [133,243]. Moreover, we know that the 

cargo of EVs depends on the condition of the secreting cell, and consequently, these particles 

bear at least some distinct molecules than the ones secreted from non-senescent cells. As a 
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representative example, the EVs from senescent endothelial cells are enriched on miR-31 and 

reduce the osteogenic differentiation capacity on MSCs, which could contribute to the age-

associated osteoporosis [244]. Furthermore, the same reduction on osteogenesis was reported 

when the effect of plasma EVs from aged donors was compared to plasma EVs from young 

adults, and in this case, the vesicular galectin-3 protein was shown to be implicated [245].   

In a different approach, EVs secreted by senescent cells have been found to carry miR-433, 

promote senescence and prevent apoptosis of surrounding cells, inducing chemoresistance in 

a model of ovarian cancer [246]. In contrast, experiments performed with non-senescent 

endothelial cells demonstrated that endothelial EVs suppress senescence and promote 

angiogenesis in target cells both in vitro and in vivo, which is mediated by vesicular miR-214 

[247]. Again, these works illustrate that the cargo and effects of EVs depend on the status of 

secreting and receiving cells, and thus, EVs are implicated in physiologic and pathologic 

processes. 

2.4. Potential clinical applications of extracellular vesicles 

The use of EVs in the clinic has two main applications. On one side, they can be used as 

biomarkers. EVs can be obtained from distinct body fluids by minimally invasive techniques 

and can be used for disease diagnosis or treatment monitoring, among others. On the other 

side, EVs are promising therapeutic agents. They have been suggested as a good alternative for 

cellular therapies, due to their potential to carry the molecules of interest while preventing the 

negative effects that could arise from cell therapy. Moreover, they could outperform 

nanoparticles and other synthetic particles, as EVs are biologically prepared to be received by 

target cells.  

With regard to EV-based biomarkers, they have been studied in several cancer types. 

Interestingly, in patients with glioblastoma multiforme, tumour derived-EVs cross the BBB and 

can be found in the blood. Besides, tumour-specific mRNA mutations and characteristic 

miRNAs could be detected. These examples show the potential to get molecular information 

about a CNS cancer with a blood test [248]. In the case of pancreatic cancer, EVs secreted by 

the tumour are also found in circulation, and importantly, a signature of 5 markers carried by 

these EVs have shown good accuracy for cancer detection, even better than the commonly used 

serum marker [249]. Similarly, the plasma EV protein profiling has been suggested to be a 

promising tool for all stage and histological subtypes of lung cancer [250]. In addition, the 

potential of EVs for disease and therapy monitoring has been investigated in many other 

diseases. For example, the investigations about EVs on the two main age-associated 

neurodegenerative diseases, Alzheimer’s and Parkinson’s disease, and on the other hand, on 
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cardiovascular diseases have been recently reviewed [251,252]. In our group, previous works 

focused on MS patients blood also pointed to the biomarker potential of EVs, as we showed a 

different EV concentration and cargo depending on MS subtype and treatment [253,254]. 

The use of EVs as therapeutic agents is the other main proposed application. It is worth 

mentioning that there are several different approaches, depending on the clinical objective and 

the EV production procedure. The administration of EVs is directed to improve an specific 

characteristic of the selected disease or condition: tumour progression inhibition [255], axonal 

regeneration following peripheral nerve injury [256], remyelination of axons [257], reduction 

of chronic inflammation [258], muscle regeneration [259] or bone regeneration [260] after 

traumatic injury. These and other applications are closely related to common age-associated 

problems, including inflammaging, neurodegeneration, reduced cell differentiation and 

regeneration capacity, sarcopenia or osteoporosis. For this reason, the study of EVs as 

therapeutic agents is of central importance.  

The use of cell therapies, particularly the ones based on stem cells, was proposed to have great 

potential. However, in the last years, the possibility of administering EVs have gained interest, 

because they maintain the beneficial effects of progenitor cells while reducing their risks, such 

as uncontrolled proliferation or transplant rejection [261]. Furthermore, the use of EVs has 

other benefits, including the easier storage and distribution, as well as the multitude of possible 

routes of administration and modes of application [262]. 

Another advantage of the use of EVs is that they are formed from cells and thus, biologically 

designed for being taken up by recipient cells. In contrast, other constructs like liposomes or 

nanoparticles are easily loaded with the molecule or drug of interest, but they could face 

biodistribution or targeting problems, reducing their efficacy [263]. Moreover, there are 

several techniques for obtaining EVs enriched in a particular compound. On one side, we can 

modify the EV producing cell by transfection or transduction, by culturing them under a 

particular stress or condition, or by incubating them with the molecule of interest. On the other 

side, EVs can be modified after their production, by electroporation, sonication, extrusion or 

other methods [263–265] (Figure 16).  

In summary, EVs have a great potential for future clinical applications. We should continue 

developing new techniques and standardized protocols for describing their basic 

characteristics, functions and implications, and consequently, advance our understanding in 

these promising biological particles. 



Introduction | 75 

 

Figure 16. Potential therapeutic approaches with EVs. The producing cells are selected and EVs are 

produced in controlled cell cultures for the treatment of different disease patients. The cargo of EVs can 

be modified by controlling the cell culture conditions, by introducing the molecules of interest in 

producing cells or directly in the EVs. Reviewed in [265].  
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3. Multiple sclerosis 

MS is a chronic autoimmune disease of the CNS, characterized by pathologic demyelination of 

axons and subsequent neurodegeneration. It is a heterogeneous disease and, clinically, it can 

follow relapsing-remitting or progressive forms. The relapsing-remitting forms are 

characterized by outbreaks of neurological disability symptoms lasting at least 24h (relapses) 

followed by recovery periods (remissions) in which symptoms improve partially or 

completely. This is the most common disease course at the time of diagnosis, with 

approximately 85% of patients initially diagnosed with a relapsing-remitting form of MS. In the 

progressive forms, the disease develops steadily and results in a rapid accumulation of 

disability. Approximately 50% of patients with relapsing-remitting forms, convert to a 

secondary progressive phase within 10 years of disease onset [266]. 

3.1. Etiopathology of multiple sclerosis 

MS is a complex disease, and its etiology is not completely understood. It has been found that 

a combination of genetic, epigenetic and environmental factors, increase the risk of developing 

MS. Among the genetic factors, the HLA-DRB1*15:01 allele in the MHC class II is the earliest, 

and most dominant risk factor identified, while cigarette smoking, higher latitudes, low sun 

exposure, low vitamin D levels and Epstein-Barr virus infection are the principal 

environmental risk factors. Besides, in the last years, the implication of the microbiome is being 

investigated, as several studies have shown its influence on the immune system regulation, and 

some differences in the gut microbiome between MS patients and healthy controls have also 

been reported [267].  

The pathological process of MS is initiated by an inflammatory process mediated by 

autoreactive T cells. The trigger of the autoimmune attack is thought to be an autoantigen, but 

it has not been identified yet.  The autoreactive T cells get activated in the periphery, start to 

produce proinflammatory molecules and to express adhesion molecules that favour their 

attachment to endothelial cells of the BBB. In addition, the BBB is usually damaged in MS 

patients and, as a result, the autoreactive cells are able to first firmly adhere to endothelial cells, 

and then migrate through the BBB into the CNS [268]. Once in the CNS, T cells are reactivated 

by astrocytes or microglia, inflammation spreads and finally, effector T cells damage the myelin 

sheath of axons, and macrophages and glial cells participate in the digestion process. As a 

result, there is an impaired isolation of axons and abnormally slow action potential 

transmission [269]. An illustration of this process is presented in Figure 17.   
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Figure 17. Proposed mechanisms and implicated cells and molecules in demyelination and 

remyelination processes [269].  

In the first stages of MS, the neurologic function is partially or completely restored after a 

demyelinating event. This process is mediated by oligodendrocyte precursor cells that get 

activated, migrate to the lesion, proliferate and differentiate to mature myelin-producing 

oligodendrocytes. However, the newly produced myelin sheath is usually thinner than the 

original, and besides, the regenerative process becomes less efficient with increasing age. 

Consequently, the pathologic autoimmune attacks can result in a axonal degeneration and 

subsequent neurodegeneration, which affects the neurologic function of MS patients and 

increases disability [270].  
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3.2. Multiple sclerosis and premature aging 

Most of MS patients experience the first symptoms at their 20s or 30s, but it should be 

mentioned that there are also paediatric or juvenile [271] and late-onset MS cases [272]. 

Importantly, in the last decades, effective disease-modifying treatments that slow the 

progression of MS have been developed [267]. Thanks to the beneficial effects of these 

treatments, MS patients have a slower rate of disability accumulation and thus, a better quality 

of life than MS patients of previous generations [273]. In consequence, and following the same 

trend as the general population, the life expectancy of MS patients is increasing, and with it, the 

mean age of MS patients is also getting higher. The reports of the MSBase registry [274] show 

that already more than 20% of MS patients are aged ≥60 years (msbase.org). Therefore, an 

elevated number of patients suffer from the interactions between the MS disease and the aging 

process. 

However, in most of the cases, it is not possible to distinguish between the characteristics of 

MS and aging in a patient of advanced age. This is due to similarities between the typical 

features of the two processes, which include cognitive and cardiovascular problems, bowel and 

bladder dysfunction, or reduced mobility, among others. Of course, not all the MS patients or 

elders present these problems, but they are common in the two cases. The similarities between 

MS and aging are also reported at the biological level, as immune system exhaustion and 

chronic inflammation occur in both processes [275]. Furthermore, it would not the possible to 

discriminate between the causes of each feature, as the organism has to be understood as a 

whole entity, in which the dysfunctions accumulate and can influence the other systems (like 

explained for the biologic hallmarks of aging). 

In a different approach, the possible development of premature aging in patients with 

autoimmune diseases like MS, type 1 diabetes or rheumatoid arthritis has been proposed [276–

279]. Particularly for MS patients, the chronic and intense implication of the immune system 

during MS pathology, as well as the effects of immunomodulatory drugs prescribed, have been 

suggested to promote the premature exhaustion of the immune system [279]. Indeed, some of 

these works also alluded to the possibility of an inverse relation, with increased risk of 

developing autoimmune diseases under premature immunosenescence.  

With regard to immunosenescence, some works reported increased levels of CD4+CD28- T 

cells [280,281], thymic involution [282], altered T cell homeostasis [283] and disturbed 

regulatory T cell development and function [284] in adult MS patients. In relation to 

inflammation, elevated levels of TNF- and IL-6 among other inflammatory markers have been 

found in the cerebrospinal fluid and serum of MS patients during remission, indicating that 
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some signs of chronic inflammation, similar to the ones observed the age-associated 

inflammaging could be present [285,286]. 

These publications point to the possible premature immune decline in MS. In contrast, there 

are other works that did not find immunosenescent features in MS patients, or that reported 

differences in immune characteristics depending on the immunomodulatory drug received by 

the MS patient [277,287,288]. In any case, the link between premature aging and MS should be 

further investigated to elucidate whether there is a causative relation, and if such, which steps 

could be taken to prevent or appropriately treat this situation. 
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One of the major concerns of our society is the aging of the population. The rapid increase of 

life expectancy and the consequent rising incidence of age-associated diseases and dependency 

have made us aware of the interdisciplinary challenge we face.  

Many efforts are conducted in numerous fields to manage the socioeconomic impact of aging 

and we, as part of the scientific community, are working to describe and understand this 

complex process from the biological, biochemical and biomedical point of view. 

In this context, the present project was outlined in 2015, aiming to advance knowledge and 

contribute to the ultimate goal of improving the quality of life during the natural process of 

aging. 
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Hypothesis 

- There are several tests and scales that are applied for the identification of frail 

individuals at primary care services. Moreover, many biomarkers have been proposed. 

However, frailty is a heterogeneous process and they do not identify all frail 

individuals. Blood is an accessible biofluid, and it is an interesting source of frailty 

biomarkers that should be explored.  

- EVs circulating in blood are in contact with many tissues and cell types, and they can 

influence diverse cellular processes in receptor cells. As EVs from adults and elders are 

different, they could have distinct effects on cell differentiation. 

- It has been described that immunosenescence is a progressive process, but it has not 

been extensively investigated in nonagenarians and centenarians. Besides, EVs have 

been shown to play an important role in immune system functioning and we 

hypothesize that they are also implicated in age-related changes.  

- In autoimmune diseases, such as MS, the immune system of affected patients is 

aberrantly stimulated and activated. These episodes are repeated over the years and 

they could lead to the exhaustion and premature aging of the immune system.  

 

Objectives 

- To find a biomarker that could complement the cognitive and functional tests and help 

the identification of frailty. 

- To test the effect of plasma EVs on the differentiation process of different cell types and 

the influence of age in these processes.  

- To describe and compare the immunosenescence status and the implication of plasma 

EVs in adults and elders. 

- To characterise immunosenescence and inflammaging in multiple sclerosis patients 

and evaluate the presence of premature aging.
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Biomarkers of frailty 
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General introduction 

Life expectancy has increased notably in the last decades, but in most of the cases the last years 

of life are accompanied by comorbidities, disability and dependency [289]. These problems 

worsen the quality of life, increase the risk of hospitalization and institutionalization and, 

consequently, social and healthcare spending. Disability and dependency are usually preceded 

by frailty, a syndrome characterised by a reduced functional reserve, impaired adaptive 

capacity across multiple physiological systems and increased vulnerability [3]. Importantly, 

frailty is the main risk factor for the development of disability among the community-dwelling 

elders and can precede the deleterious outcomes by several years [290]. Therefore, the 

identification of frail individuals and the consequent interventions are a key point for 

preventing dependency.  

However, frailty is a heterogeneous state comprising physical, psychological and cognitive 

impairment, and there is no consensus on the best tool to identify frailty. Several tests based 

on clinical and functional measures are applied in primary care services, but they fail to identify 

all frail individuals [8]. Aiming to complement these tests and to understand the biology of 

frailty, research on biomarkers of frailty is being conducted [186]. Distinct sources of 

biomarkers, including endocrine, inflammatory, metabolic, genetic and epigenetic markers 

among others have been proposed, with controversial results [174]. Hence, we should continue 

investigating new potential biomarkers that could help the identification of frailty. Blood is an 

interesting biofluid for this search, as it is accessible, can be processed and stored easily and it 

is routinely obtained at clinical settings.   

In this work, we studied three different sources of biomarkers in the blood: 

1. Inflammation 

2. Gene expression 

3. Extracellular vesicles 

Each biomarker source is presented in a separate subchapter and the main objective of all of 

them was to test whether differences between robust and frail elders are present. 
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Common methods 

Participants and Frailty classification 

For the present study, samples from 3 different cohorts of elder donors and samples from 

healthy adults were used. We obtained the samples of the elder cohorts in collaboration with 

the Primary Care Unit of Biodonostia Health Research Institute and the Neurology department 

of Donostia University Hospital. Participants are from the province of Gipuzkoa (Basque 

Country, Spain) and meet the criteria shown in Table 1. 

Table 1. Inclusion criteria of the cohorts.  

 

All participants completed a questionnaire and donors with acute illness were excluded. The 

study was approved by the hospital’s ethics committee and all participants provided written 

informed consent before blood sampling. Frailty status of elder participants was assessed by 

primary care services. A battery of tests was conducted. The translated version of frailty tests 

was applied. A short description of frailty tests is shown in Table 2 and the main characteristics 

of each cohort in Table 3. 

  

Cohort Description

Participants from Errenteria and Pasaia

Survivors of a previous study were contacted and invited to participate

No further inclusion criteria

Samples obtained July 2014 – May 2015

Participants form Errenteria, Irun and Hondarribia

Aged 70 or over, community-dwelling and autonomous (Barthel > 90)

Samples obtained May 2015 – July 2016

Participants from Getaria, Urnieta, Zumaia and Zestoa

Aged 70 or over, community-dwelling, including autonmomus and 

non-autonomous

Samples obtained August 2016 – May 2017

Cohort 1

Cohort 2

Cohort 3
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Table 2. Short description of the tests applied to measure frailty. 

Frailty assessment test Description 

Tilburg Frailty Indicator (TFI) [15] A user-friendly questionnaire based on a 
multidimensional approach. It is composed of a physical, a 
psychological and a social domain. 

Gait speed (GS) [17] Expressed in meters per second (m/sec). Participants 
were asked to walk at their usual pace. The test was 
performed twice and GS was calculated based on the 
shorter time. 

Timed up-and-go (TUG) [18] The time needed to stand up from a chair, walk 3 meters, 
turn around, walk back and sit down, with the help of 
their usual walking aid, if any. 

Short Physical Performance Battery 
(SPPB) [19] 

A functional capacity test composed of gait speed, test of 
balance and time needed to stand up from a chair 5 
consecutive times. 

Gerontopole Frailty Screening Tool 
(GFST) [16] 

Based on clinical judgement. 6 yes/no questions that help 
the physician to evaluate the existence of frailty. 

Barthel Index (Barthel) [291] A multiparametric test measuring the performance in 
activities of daily living and mobility. 

 

 

Table 3. Information of study participants. 

 

 

  

Adults

Cohort 1 Cohort 2 Cohort 3 -

Participants 53 295 91 57

Female/Male 30/23 153/142 56/32 30/27

Age (mean) 79-92 (82.51) 71-91 (79.83) 70-96 (76.98) 24-46 (33.51)

Frailty assesment -

TFI X X

GS X X X

TUG X X X

SPPB X X

GFST X

Barthel X X X

Elders
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Blood sampling 

Peripheral blood was collected by experienced nurses by venipuncture with a 21-gage needle 

in 8 ml serum separator tubes and 4 ml EDTA tubes (Vacutainer, BD Biosciences) and directly 

deposited in the Basque Biobank for their processing and storage. Serum separator tubes were 

allowed to clot for 30 min and centrifuged at 1258 g for 20 min to recover serum from the 

supernatant. EDTA tubes were kept upright and centrifuged at 1258 g for 20 min to recover 

plasma. To obtain RNA, samples from EDTA tubes were incubated with Buffer EL (Qiagen) for 

erythrocyte lysis and then RNA from leukocytes was extracted with QIAamp RNA Blood Mini 

Kit (Qiagen) following manufacturer’s instructions. For DNA, a second EDTA tube was used and 

the extraction was performed with FlexiGene DNA Kit (Qiagen) following the manufacturer’s 

instructions. RNA and DNA quantity and quality were assessed with a Nanodrop 1000 

spectrophotometer (Thermo Fisher). The obtained serum, plasma, RNA and DNA samples were 

aliquoted and stored at -80 °C. When needed, corresponding request forms were fulfilled to 

obtain the samples from the Basque Biobank.  
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Inflammation 

 

Introduction 

Chronic low-grade inflammation is one of the best described characteristics of aging. It has 

been widely shown that elders present elevated levels of inflammatory markers in circulating 

blood, in the absence of overt infection [137,138,292]. This accumulation of proinflammatory 

molecules, termed inflammaging, has also been proposed as a potential biomarker of frailty.  

Previous studies have measured the concentration of proinflammatory markers such as IL-6, 

TNF- and CRP among others in donors with different degrees of dependency. However, the 

obtained results are controversial, and even if some researchers have found an increased 

concentration in frail and non-autonomous elders, other studies did not report significant 

differences [159,169,171,174]. Other molecule related to inflammation and proposed as a 

frailty biomarker is albumin. The rate of albumin synthesis is affected by both nutrition and 

inflammation, and inflammation alone is associated with a greater catabolic rate of albumin. 

Decreased albumin levels have been proposed as a risk factor for frailty, but similar to the 

above-mentioned inflammatory markers, there is no consensus on its validity [293,294].  

The aim of our study is to investigate the validity of inflammatory mediators as biomarkers 

that could complement the functional and clinical evaluation of elders for the identification of 

frailty. To that end, we first compared the concentration of the above cited molecules between 

adults and elder donors, and then, based on the frailty classification of elders, evaluated 

whether these molecules show different levels with frailty and dependency in our cohorts.  

Materials and methods 

CRP ELISA and TNF- Luminex 

Plasma samples from elders (cohort 2, n=111) and adults (n=39) were thawed on ice. CRP 

concentration was measured with Quantikine ELISA (R&D) following the manufacturer’s 

instructions. Plasma samples were diluted 1:150 to fit the standard curve of the kit. On the 

other side, a panel of 6 interleukins was designed for luminex measurement: IL-6, IL-10, IL-2, 

IL-1, IL-1Ra and TNF-. The Milliplex Map #HCYTOMAG-60K kit (Merck) was used. 

Manufacturer’s instructions were followed and plasma samples were assayed undiluted, but 

only the measurements of TNF- were above the lowest point of the standard curve. We 

performed a second trial with the same kit and obtained similar results. In order to solve this 

issue, we repeated the assays using the high sensitivity kit #HSTCMAG-28SK (Merck) provided 
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by the manufacturer, but most of the samples were still non-detectable. Lastly, we also tried a 

high sensitivity luminex kit from another brand, #FCSTM09-04 (R&D) for IL-6, IL-10, IL-2 and 

IL-1. With this kit the measurement of analytes was also non-detectable in many samples 

(65/160). After the obtained negative results, we decided not to measure more plasma samples 

with the luminex technique and we analysed only the results from TNF- the only analyte that 

obtained detectable and reliable results (elders n=37 and adults n= 39).  

CRP, TNF-, IL-6 and albumin ELISA 

With the objective to test serum samples and to strengthen our results, samples from elders 

(cohort 3, n=91) and adults (n=18) were used. Samples were thawed on ice, CRP, TNF- and 

IL-6 were measured with Quantikine ELISAs (R&D) and albumin with an ELISA kit (Invitrogen, 

Thermo) following the manufacturer’s instructions. Serum samples were diluted to fit the 

standard curves of each kit: diluted 1:100 for CRP, undiluted for TNF-, undiluted for IL-6 and 

diluted 1:500000 for albumin.  

Statistical analysis 

Statistically significant differences between the study groups and correlations between 

variables were tested with GraphPad Prism version 6.01 for Windows (GraphPad Software, 

www.graphpad.com). D’Agostino-Pearson normality test was applied and non-Gaussian 

distribution was confirmed for all samples. Consequently, Mann-Whitney tests were applied to 

evaluate differences between two study groups. For correlation analysis, Spearman coefficient 

was calculated. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. 

Results 

Inflammatory markers in plasma 

To evaluate the inflammatory status differences between the study groups, CRP and TNF- 

were measured in plasma samples from cohort 2. First, results from elders were compared to 

healthy adults, and we confirmed an increased concentration of both CRP and TNF- in aged 

individuals (Figure 18A and Figure 19A). Then, the correlation between age and 

inflammatory markers was evaluated, but no significant correlations were found (Figure 18B 

and Figure 19B). Similarly, no differences were found based on gender (Figure 18C and 

Figure 19C). Considering other possible confounder factors and taking advantage of the 

available data about the drug number prescribed to the donors in this cohort, we also evaluated 

the correlation between the number of drugs each participant takes and the concentration of 

CRP and TNF-. We found a significant positive correlation between CRP and the drug number 

– which was corrected by linear regression before further analysis –, while no correlation was 

found for TNF- (Figure 18D and Figure 19D).  

http://www.graphpad.com/
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Finally, the concentration of both inflammatory markers was compared between robust and 

frail individuals. The recorded frailty scales for cohort 2 were: TFI, GS, TUG, SPPB and GFST. 

The classification of each frailty scale was considered, and we did not find any significant 

differences (Figure 18E-I and Figure 19E-I). To perform a more robust comparison, the 

participants that are classified as robust or frail for all the tested scales (n=40) were compared, 

but no differences were reported (Figure 18J and Figure 19J). In the last approach, the elders 

with the same classification for the 3 scales that evaluate the functional status (GS, TUG, SPPB, 

n=63) were brought into comparison, and as for the previous analyses, no differences were 

found (Figure 18K and Figure 19K).  

Figure 18. Concentration of CRP in plasma. (A) There is elevated CRP in elders compared to adults. (B) 

Among elders, CRP concentration has no correlation to age and (C) there is no significant difference 

between females and males. (D) A positive correlation between CRP concentration and drug number 

was found and corrected. (E-I) No differences in CRP levels between robust and frail individuals were 

found for the 5 analysed frailty scales. (J) We also compared the individuals classified as robust or frail 

with all the available tests or (K) with the 3 functional scales (GS, TUG, SPPB), but no differences were 

found.  
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Figure 19. Concentration of TNF- in plasma. (A) There is elevated TNF- in elders compared to adults. 

(B) Among elders, CRP concentration has no correlation to age, (C) there is no significant difference 

between females and males and (D) no correlation between TNF- concentration and drug number was 

found. (E-I) No differences in TNF- levels between robust and frail individuals were found for the 5 

analysed frailty scales. (J) We also compared the individuals classified as robust or frail with all the 

available tests or (K) with the 3 functional scales (GS, TUG, SPPB), but no differences were reported.  

 

Inflammatory markers in serum 

For the characterization of inflammatory markers in serum, samples from cohort 3 were used. 

We studied the previously measured CRP and TNF-, as well as IL-6 and albumin. We obtained 

the same results as in plasma, confirming that there is an elevated chronic inflammation in 

elders when compared to adults: increased CRP, TNF- and IL-6, while reduced albumin 

(Figure 20A, Figure 21A, Figure 22A and Figure 23A).  Moreover, CRP, TNF- and IL-6 

showed a positive correlation to age among elders (Figure 20B, Figure 21B and Figure 22B), 

which was corrected by linear regression for each analyte. On the other hand, no correlation 

with age was found for albumin (Figure 23B). Regarding gender, no differences were found 
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for any of the analytes (Figure 20C, Figure 21C, Figure 22C and Figure 23C). At last, we made 

use of the available data of Barthel and TUG scales, performing the comparison between the 

different dependency statuses of participants in cohort 3: robust, frail and non-autonomous. 

We found no significant differences for any of the molecules between the analysed groups 

(Figure 20D, Figure 21D, Figure 22D and Figure 23D), following the same trend as the 

analyses in plasma samples. 

  

Figure 20. Concentration of CRP in serum. (A) There is elevated CRP in elders compared to adults. (B) 

Among elders, serum CRP concentration has a positive correlation to age and (C) there is no significant 

difference between females and males. (D) When compared based on Barthel and TUG scales, no 

differences in CRP levels between robust, frail and non-autonomous individuals were found.  

 

Figure 21.  Concentration of TNF- in serum. (A) There is elevated TNF- in elders compared to adults. 

(B) Among elders, serum TNF- concentration has a positive correlation to age and (C) there is no 

significant difference between females and males. (D) When compared based on Barthel and TUG scales, 

no differences in TNF- levels between robust, frail and non-autonomous individuals were found. 



100 | Chapter one 

 

Figure 22. Concentration of IL-6 in serum. (A) There is elevated IL-6 in elders compared to adults. (B) 

Among elders, serum IL-6 concentration has a positive correlation to age and (C) there is no significant 

difference between females and males. (D) When compared based on Barthel and TUG scales, no 

differences in IL-6 levels between robust, frail and non-autonomous individuals were found.  

Figure 23. Concentration of albumin in serum. (A) There are reduced albumin levels in elders compared 

to adults. (B) Among elders, serum albumin concentration has no correlation to age and (C) there is no 

significant difference between females and males. (D) When compared based on Barthel and TUG scales, 

no differences in albumin levels between robust, frail and non-autonomous individuals were found.  

Discussion 

Inflammaging is one of the main biological characteristics of human aging. This term was 

proposed in 2000 by Franceschi et al. [136], although a work showing the accumulation of 

inflammation with age and its relation to mortality was already published in 1991 by 

Mooradian et al. [295]. Since this term was introduced, many works have investigated the 

relationship between inflammatory markers and aging, dependency and mortality. However, 

the obtained results are diverse and many times discordant, so no consensus has been reached 

[138,144].  
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The studies investigating the potential role of molecules linked to inflammation as frailty 

biomarkers encounter the same problem. Many works have been carried out, but no clear 

association has been found, as some found increased concentrations of proinflammatory 

markers in frail subjects, whereas others did not report any significant differences 

[170,173,296]. It should also be considered that the study designs, techniques and the 

characteristics of included participants are distinct in each investigation. Moreover, the 

published studies have been carried out in different countries, hence distinctive genetic and 

environmental aspects should be considered. In addition, the tests employed for frailty 

assessment evaluate the status of participants based on different aspects, and therefore, the 

same person can be considered frail based on one scale and robust based on another one. For 

example, there are tests that focus on clinical aspects [16], while others give more importance 

to the psychologic domain [15] or the functional performance [19]. This diversity of tests 

shows the heterogeneity of the “frailty” term, which makes it even more difficult to identify a 

biological marker of the syndrome.  

Regarding the techniques available for the quantification of the molecules of interest, we 

decided to apply ELISA and Luminex. We obtained good results with the ELISA kits for plasma 

and serum samples, while we encountered detection problems with Luminex kits. We chose 

Luminex because it is a technique that enables the detection of a panel of analytes in the same 

experiment, saving time and reducing the amount of sample needed. Moreover, we have 

applied this protocol in previous experiments for other projects, and we obtained good results 

with cell culture supernatants. However, when plasma samples were tested, all the selected 

analytes, except TNF-, did not reach detectable levels in most of the samples. We thought that 

the concentration of our analytes could be lower than the detection limit of the kits, but we 

dismissed this possibility at least for IL-6, as we have previously measured it with ELISA in 

samples of the same characteristics and the obtained concentrations are notably higher than 

the detection limit of the Luminex kits used. Due to this, we decided to continue analysing our 

plasma and serum samples with ELISA. 

We reliably measured CRP, TNF-, IL-6 and albumin in our cohorts, that include aged subjects 

from the region of Gipuzkoa (Basque Country, Spain) who have been evaluated with several 

frailty scales. In these cohorts, our results confirmed the presence of inflammaging by the 

increased low-grade inflammation in elders when compared to adults. But regarding frailty, 

which was the main objective of this work, none of the analysed molecules showed significant 

differences based on the dependency status.  

Moreover, to try to overcome the above-mentioned issue of the heterogeneity between frailty 

tests, and taking advantage of the available data in cohort 2, we also compared the 
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concentrations of the inflammatory molecules between the participants that were classified as 

robust or frail for all the recorded scales. Still, no differences were found when the participants 

that obtained the same classification for the 5 applied scales were considered. Additionally, 

and following recent recommendations of the WHO [23,297], we focused on the results of the 

tests that evaluate functional performance (GS, TUG and SPPB), comparing the individuals that 

obtained the same results for those 3 frailty scales. Again, no differences were reported under 

these conditions. Therefore, we conclude that in our samples, robust and frail individuals have 

no differences for the measured inflammatory markers, and they cannot help the identification 

of frailty. 

To our knowledge, this is the first work studying inflammaging and frailty in the region of the 

Basque Country. Different results were previously reported in other regions of Spain: 

increased levels of CRP, TNF-a and IL-6 in frails were found in Galicia [298,299], while no 

differences for IL-6, IL-8 and IL-10 and increased levels only for TNF- were found in Granada 

[188], when frailty was evaluated following Fried’s criteria.  

In short, we think that the utility of inflammatory molecules as biomarkers of frailty needs to 

be reconsidered since a robust biomarker should be valid in all cohorts. We believe that other 

approaches such as the development of longitudinal studies would be of great interest, as they 

enable the follow-up of participants as they age and the loss of functional capacity begins, and 

the correlation with the levels of inflammatory markers could be evaluated. With this 

experimental setup, the changes in the concentration of inflammatory molecules could be 

measured in each participant, and it could be tested individually whether the progression of a 

specific molecule is related to frailty. 
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Transcriptomics 

 

Introduction 

In a clinical setting, the analysis of gene expression is widely used for the identification of 

changes induced by diseases or treatments, including the ones that are related to human aging. 

Additionally, gene expression analysis has been applied to investigate the molecular changes 

that occur during normal aging, aiming to identify characteristic expression profiles and the 

mechanisms responsible for the aging process [36].  

In the last years, a similar approach is being conducted for the identification of genes related 

to frailty. In Europe, the FRAILOMICS initiative aims to develop validated biomarkers, which 

can predict the risk of frailty, improve the accuracy of its diagnosis in clinical practice and 

provide a prognosis on the evolution from frailty to disability [186]. Studies within this 

initiative and others, have proposed expression differences, single nucleotide polymorphisms 

and epigenetic modifications related to frailty, and many different tissues, systems and 

processes have been shown to be affected, such as the control of inflammation, oxidative stress 

or hormones [7,183,185,187]. However, the proposed features still need to be further 

investigated in other cohorts to test their validity, before they could be applied in the clinic.  

Taking all these into account and in line with the mentioned applications of gene expression 

analysis, the aims of our study were to perform a transcriptomic study in a set of robust and 

frail community-dwelling individuals of our cohort from the Basque Country, identify the most 

promising transcripts differentially expressed in frail subjects, and try to validate them. 

Moreover, we also intended to measure the most promising transcripts in the elder 

participants of a pilot physical intervention study.  

Materials and methods 

RNA expression arrays 

RNA samples of 25 donors from cohort 1 were used for microarray analysis. 300 ng of RNA 

were labelled with the GeneChip WT reagent kit and hybridized to the HuGene-2_0-st-v1 array, 

which covers the expression of 48226 transcripts (Affymetrix, Thermo), following 

manufacturer’s instructions. Hybridized arrays were washed and stained in a GeneChip 

Fluidics Station 450 and scanned in a GeneChip Scanner 7G (Affymetrix, Thermo).  

Raw data was analysed with Expression Console software v1.4.1 and Transcriptome Analysis 

software v4.0 (TAC) (Affymetrix, Thermo). After the quality control check, data was 
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normalized by robust multi-array average (RMA) and analysed by TAC and BRB-Array Tools 

software v4.6.0 (https://brb.nci.nih.gov/BRB-ArrayTools). Principal component analysis 

(PCA) and hierarchical clustering were performed to visualize the data.  

To analyse the differential expression between the study groups univariate parametric tests 

were performed. The inclusion criteria were the p-value (< 0.05) and the fold change (> |1.5|) 

between the analysed groups. 

As a complementary approach, we focused the analysis on the search of classifiers that can be 

used as biomarkers. We used the class prediction approach that built predictors for classifying 

experiments into phenotype classes based on expression levels. Six methods of prediction were 

used: compound covariate predictor (CCP), diagonal linear discriminant analysis (DLDA), 

Bayesian compound covariate predictor (BCCP), k-nearest neighbors (using k=1 and 3), 

nearest centroid and support vector machines. 

RT-qPCR 

Expression of candidate transcripts was measured by quantitative real-time PCR (RT-qPCR). 

First, technical validation of the selected 12 samples from cohort 1 was performed. Secondly, 

120 samples from cohort 1 (n=23) and cohort 2 (n=97) were measured. Finally, the expression 

was evaluated in the 12 participants of the physical intervention (explained below). A 

schematic representation of the study workflow is presented in Figure 24. Briefly, 200 ng of 

total RNA was retrotranscribed to cDNA using the miScript II Reverse Transcription kit using 

the HiSpec buffer (Qiagen) following the manufacturer´s protocol. cDNA samples were stored 

at -20°C until used. Reactions were prepared with 10 ng of each target cDNA, 5 µl SYBR Green 

PCR Master Mix (Qiagen) and 1 µl of commercial gene-specific QuantiTect primer assays 

(Qiagen). RT-qPCR reactions were performed on a CFX384 thermal cycler (BioRad). Beta-2-

microglobulin (B2M; QT00088935 assay from Qiagen) was used as the endogenous gene to 

calculate the relative expression of target transcripts. 

Physical Intervention  

A subsample of 12 individuals from cohort 2 was invited to participate in a pilot study aimed 

to assess the impact in terms of physical performance improvement of a community-based 

physical training program. The program was performed in groups in the sport and leisure 

facilities of the municipality. Participants received 36 sessions of training including strength, 

flexibility and aerobic exercises. Blood samples of participants were obtained prior to the start 

of the training and at the end of the 36 sessions (3 months). This study is coordinated by Itziar 

Vergara MD PhD and Ander Matheu PhD from the Biodonostia Health Research Institute and 

the follow up is still ongoing. 

https://brb.nci.nih.gov/BRB-ArrayTools
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Figure 24. The workflow of the study. (A) First, transcriptomic analysis was performed with 25 samples 

from cohort 1. The samples were separated based on the results of the frailty tests (TFI, GS and TUG). 

The 12 participants that were classified as robust of frail with the 3 tests were compared, and the 

technical validation of differentially expressed candidates was performed by RT-qPCR. (B) Next, aiming 

to evaluate the expression of the candidates in a larger sample, we selected 120 participants from Cohort 

1 and Cohort 2 that obtained the same result for the TFI, GS and TUG tests and performed an RT-qPCR 

analysis. (C) Finally, a pilot physical intervention study was performed for 3 months. 12 of the donors of 

Cohort 2 were included in the study, and we measured the expression of the candidate transcripts by 

RT-qPCR before the intervention and at the end of the 3 months. 

Statistical analysis 

For the microarray analysis sensitivity and specificity values, as well as Receiver Operating 

Characteristic (ROC) curves were calculated as part of the class prediction tool by BRB-Array 

Tools. 

For the RT-qPCR analysis, 2-ΔCq values were calculated for each sample and transcript. The 

differences between robust and frail groups were evaluated with GraphPad Prism version 6.01 

for Windows (GraphPad Software, www.graphpad.com). D’Agostino-Pearson normality test 

was applied, and non-Gaussian distribution was confirmed. Mann-Whitney test was applied to 

evaluate differences between the two study groups. For the analysis of the physical 

intervention results, Wilcoxon matched-pairs signed rank test was applied. *p<0.05 and         

**p<0.01. 

 

 

http://www.graphpad.com/
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Results 

Identification of a pattern of 35 transcripts differentially expressed in frailty 

Expression arrays were performed and the transcriptome of the 25 participants analysed. For 

the comparative expression analysis, we aimed to separate the individuals classified as frail or 

robust. However, not all the participants obtained the same classification in the 3 frailty tests 

employed (TFI, GS and TUG). For this reason, we separated the donors on 3 groups: the ones 

that were “frail” for all the tests, the ones that were classified as “robust” by all the tests, and 

the “mixed” ones that got different results depending on the frailty test performed. The PCA of 

these 3 groups showed that frail and robust groups had a more similar expression pattern, 

while the mixed group was very heterogeneous (Figure 25A). Consequently, only those 

individuals classified as frail (n=7) or robust (n=5) by the 3 tools considered in this study were 

compared, in the search of frailty biomarkers.  

Next, applying the class prediction approach to obtain the best genes to discriminate between 

frail and robust, 35 genes were selected (Figure 25B). This set of 35 transcripts includes a 

wide variety of protein-coding genes, pseudogenes and regulatory non-coding RNAs, mainly 

miRNAs (Table 4). Interestingly, a number of these genes are linked to inflammation- and 

hypoxia-related pathways (EGR1, CXCL8, CISH, LOC644172/MAPK8IP1P2 or CD40LG), 

immune response (TIA1, IGHV2-26, TRBV3-1 and several members of the T cell receptor alpha 

locus at 14q11.2 chromosome location) and apoptosis (G0S2). The panel of 35 genes showed 

an area under the curve of 0.943 with 85.7% sensitivity and 80% specificity (Figure 25C), 

which indicate the potential for detecting frailty of this panel. 

Figure 25. Transcriptomic analysis of robust and frail individuals. (A) The PCA of the 25 samples 

measured were coloured depending on the classification of the frailty tests (TFI, GS and TUG): Frail 

(classified as frail with the 3 tools), Robust (classified as robust with the 3 tools), Mixed (obtained 

distinct results depending on the tool). (B) Heatmap of the 35 differentially expressed transcripts 

between frails (n=7) and robusts (n=5). (C) ROC curves of the 35 identified transcripts with the best 

three class prediction approaches (CCP, DLDA and BCCP).  
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The expression of EGR1 is increased in frail individuals 

From the 35 genes identified, we chose 3 genes to start with the validation: early growth 

response 1 (EGR1), DEAD/H-box helicase 11 like 1 (DDX11L1) and hsa-miRNA-454 (MIR454). 

First of all, we performed the technical validation of microarray expression data by RT-qPCR 

in the original cohort (n= 12), which confirmed the downregulation of DDX11L and MIR454, 

and the upregulation of EGR1 with frailty, while only the expression of EGR1 obtained 

statistically significant differences (Figure 26).  

 

Figure 26. Technical validation of 3 of the candidates. (A) The expression of DDX11L1 is reduced in frail 

elders, but statistical significance was not reached. (B) EGR1 is significantly upregulated in frailty. (C) 

MIR454 is downregulated in frailty, but statistical significance was not reached. 
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Table 4. The 35 genes identified to be differentially expressed between robust and frail elders.  

 

 

 

 

Gene symbol Entrez Gene ID Frail Avg (log2) Robust Avg (log2) Fold Change p-value

EGR1 1958 8.08 6.66 2.66 0.0014

DDX11L1 100287102 7.73 9.32 -3.01 0.0039

MIR454 768216 3.13 3.94 -1.63 0.0004

CISH 1154 6.82 7.99 -2.25 0.0033

DDX11L10 100287029 6.25 8.28 -4.11 0.0013

LOC101929775 101929775 5.82 7.22 -2.62 0.0004

LOC644172 644172 5.82 7.22 -2.62 0.0004

NSF 4905 5.58 7.43 -3.59 0.0002

TRAJ17 28738 7.18 8.57 -2.62 0.0017

TRAJ19 28736 6.52 7.6 -2.11 0.0037

TRAV8-3 28683 7.42 8.86 -2.71 0.0004

CD40LG 959 7.14 8.15 -2.01 0.0098

CLDN12 9069 3.13 4.51 -2.6 0.0151

CNTNAP3 79937 6.8 8.18 -2.6 0.0479

CNTNAP3B 728577 6.95 8.21 -2.39 0.0310

CSRNP1 64651 8.01 6.94 2.1 0.0307

CTSLP8 1518 2.14 3.25 -2.16 0.0260

CXCL8 3576 10.17 9.06 2.15 0.0190

G0S2 50486 8.89 7.46 2.69 0.0318

GCNT4 51301 5.8 6.82 -2.02 0.0217

GJB6 10804 5.18 4.09 2.12 0.0057

IGHV2-26 28455 3.63 4.88 -2.38 0.0291

LOC100505530 100505530 5.35 6.64 -2.45 0.0224

LOC105378916 105378916 6.36 7.72 -2.56 0.0333

MIR3941 100500866 3.16 4.43 -2.4 0.0059

MIR487A 619555 2.42 3.62 -2.29 0.0275

MIR626 693211 2.96 4.04 -2.11 0.0244

MTRNR2L2 100462981 5.58 6.84 -2.39 0.0334

RLN1 6013 4.65 5.71 -2.08 0.0092

TIA1 7072 7.46 8.49 -2.05 0.0462

TRAJ14 28741 8.14 9.17 -2.04 0.0128

TRAJ16 28739 7.77 8.78 -2.01 0.0300

TRAJ48 28707 7.83 8.9 -2.09 0.0185

TRAV16 28667 5 6.58 -2.98 0.0172

TRBV3-1 28619 7.21 8.39 -2.26 0.0058
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Next, we evaluated whether the expression of the selected candidates is altered in a larger 

cohort. For this purpose, we selected 120 RNA samples from cohort 1 and cohort 2. To maintain 

the previously set criteria, only the participants that obtained the same classification in the TFI, 

GS and TUG tests were selected (robusts n=103, and frails n=17). The RT-qPCR analysis of 

these 120 samples confirmed the increased expression of EGR1 in frail elders, while no 

differences were found for DDX11L1 and MIR454 (Figure 27).  

Figure 27. Expression of 3 of the candidates in a validation cohort. (A) The expression of DDX11L1 is 

not different in robust and frail participants. (B) EGR1 is significantly upregulated in frailty. (C) MIR454 

is downregulated in frailty, but statistical significance was not reached. 

 

Physical intervention and EGR1 expression 

Some of the donors of cohort 2 were invited to participate in a physical intervention study for 

3 months. Blood samples were collected before and after the intervention, and the expression 

of DDX11L1, EGR1 and MIR454 were determined by RT-qPCR. No clear trends were observed 

for DDX11L1 and MIR454 (Figure 28A and 28C). In contrast, EGR1 levels were reduced in 9 

out of the 12 donors with a p-value of 0.06, reinforcing the potential of this gene as a biomarker 

of frailty (Figure 28B). Furthermore, when the changes in EGR1 expression and TUG 

performance were compared, we observed that 8 out of the 12 participants obtained 

concordant results: a reduction of EGR1 accompanied by a better TUG score, or increased EGR1 

accompanied by a worse TUG score (Figure 28D). 
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Figure 28. Physical intervention, gene expression and physical performance. (A) No differences were 

reported for DDX11L1 expression. (B) EGR1 expression is reduced in 9 out of the 12 participants and a 

p-value of 0.06 was obtained with the paired-samples statistical analysis. (C) No differences were 

reported for MIR454 expression. (D) When the expression of EGR1 and TUG scores were compared, 8 

out of the 12 participants obtained concordant results: reduction in EGR1 expression and TUG 

performance time, or increased EGR1 expression and TUG performance time. 

 

Discussion 

In the present study, we have performed a transcriptomic analysis of community-dwelling 

individuals from the Basque Country. A set of 35 differentially expressed transcripts was found 

between robust and frail elders. Among them, there were genes linked to inflammation and 

hypoxia-related pathways, immune response, apoptosis and several members of the T cell 

receptor alpha locus. These processes have also been related to frailty in several previous 

studies, but however, our set of genes was different from a recently proposed panel of potential 

frailty biomarkers [187].  

Within the 35 transcripts, we selected 3 for the first validation approach: DDX11L1, EGR1 and 

MIR454. The technical validation confirmed the microarray results, while when we measured 

them in a larger cohort, only the increased expression of EGR1 in frail subjects was confirmed. 

Moreover, we determined the levels of EGR1 in 12 donors before and after a 3-month physical 
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intervention study, and 9 of the participants reduced the expression of EGR1. Again, no 

differences were reported for DDX11L1 and MIR454. Our results indicate that EGR1 is a 

promising biomarker of frailty that should be further investigated.  

Indeed, EGR1 is a transcription factor activated in response to a broad range of stimuli that 

affects directly or indirectly the expression of multiple signalling pathways and tumour 

suppressors, and it modulates and participates in multiple cellular processes such as mitogen 

response, growth, proliferation, apoptosis or differentiation of several cell types [300–302]. 

Besides, some studies also found EGR1 changes to be associated with aging and age-related 

phenomena, like senescence or immune response regulation [303–306]. Thus, the role of EGR1 

in frailty is probably complex and depending on the tissue and context its target genes and the 

elicited functions may differ.  

Moreover, as discussed before, the identification of biomarkers of frailty is challenging due to 

the lack of consensus its definition and the multiple frailty screening tools available. Thanks to 

the work performed at primary care services, were had the data of 3 different tests (TFI, GS 

and TUG) for each of the participants in our study, and after the microarray analysis and the 

results of the PCA, we decided to focus on the subjects that obtained the same classification in 

all of the tests, reducing heterogeneity. In addition, it should be mentioned that despite this, 

the expression levels reported by RT-qPCR were highly variable. In this sense, one of the main 

advantages of longitudinal studies is that the expression of single participants can be measured 

over time and the evolution of each of them determined. Indeed, our results from the physical 

intervention pilot study show that even if the expression of EGR1 was different, most of the 

subjects reduced the levels of EGR1 after only 3 months. This is an interesting point also from 

the perspective of the reversibility of frailty. It is generally accepted that frailty is a reversible 

state [7,307], and the expression of EGR1 could be used as a biomarker of this process. 

Finally, we have to point out that the present study was the only first step and we focused on 

the validation of 3 of the transcripts identified. We are now analyzing more candidates from 

the presented list of 35 differentially expressed genes between our robust and frail individuals. 

Our aim is to continue evaluating the expression differences and besides, to try to understand 

the functions or effects that these changes could be inducing in frail elders. 
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Extracellular vesicles 

 

Introduction 

EVs are membrane-coated particles of endosomal or plasma membrane origin that are 

secreted to the extracellular environment. They play an essential role in indirect intercellular 

communication as their membrane and cytosolic proteins, lipids and genetic material can be 

transferred between cells [195]. Moreover, almost all cell types release EVs and they can be 

isolated from plasma and other body fluids.  

EVs are released both in physiological and pathological conditions and they are implicated in 

many cellular processes. In particular, EVs play a role in various stages of the immune response 

and they have been related to inflammatory, autoimmune and infectious disease pathology. 

EVs can carry and display antigenic material and are able to trigger antigen presentation and 

modulate immune responses [192]. It has also been reported that there are increased 

concentrations of EVs in plasma during inflammatory processes, such as in cancer or 

autoimmune diseases [234,242].  

One of the hallmarks of human aging is the chronic low-grade inflammation, the so called 

inflammaging [136], a phenomenon that modulates intercellular communication. The age-

associated immune dysfunction and accumulation of senescent cells promote inflammatory 

signals, such as elevated secretion of proinflammatory cytokines and activation of NF-κB 

transcription factor. Among inflammaging, the most widely studied feature is the circulating 

concentration of IL-6. The concentration of this interleukin is normally low (or non-detectable) 

in healthy adults, while elevated levels of IL-6 have been reported in the elderly, with 

increasing concentrations in the very old [138,140]. Moreover, elevated IL-6 has also been 

associated with mortality in the elderly [142].  

Despite all this knowledge, there are many aspects of inflammaging that have not been 

elucidated, as the implication of EVs in the process. In the present study, and based on the 

previously mentioned increase of circulating EVs during inflammatory episodes, we proposed 

that this could also be observed in aged individuals as a result of inflammaging. Furthermore, 

we also designed an approach to evaluate if the concentration of EVs in plasma could be related 

to the frailty status of old people—frailty status as defined by the Barthel Index [308] and the 

Tilburg Frailty Index [15]. These tests are applied to evaluate and measure the frailty and 

dependence status of the elderly, which could also be related to an increased chronic 

proinflammatory condition. 
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Materials and methods 

Study participants 

Samples from 19 aged individuals (from Cohort 1: 8 males and 11 females, mean age 83.73 

years) and 18 adults – classified in three age ranges: 21–30, 31–40, and 41–50 years (3 males 

and 3 females in each group) were used. Plasma and serum samples were obtained as 

described above.  

EV Isolation  

EVs were isolated as described before by our group [202]. Briefly, plasma was centrifuged at 

13,000 g for 2 min and supernatant centrifuged again at 20,000 g for 20 min to pellet EVs. The 

pellet was resuspended with 100 µL of filtered DPBS (GIBCO, Thermo Fisher Scientific), filtered 

twice through a 0.22 µm-pore filter. Resuspended EVs and serum samples were stored at -80 

°C. 

Serum IL-6 ELISA Assay  

IL-6 concentration was analysed by ELISA (BD Biosciences) following the manufacturer’s 

instructions. Samples were measured in duplicate and results obtained with a microplate 

reader (Thermo Scientific Appliskan, Thermo Fisher Scientific). IL-6 concentrations were 

calculated and values above the first standard (>4.7 pg/mL) were considered detectable. 

Nanoparticle Tracking Analysis (NTA) 

The size distribution and concentration of EVs were measured using a NanoSight LM10 device 

(Malvern) as described elsewhere [212]. Samples were diluted to appropriated levels to get 

accurate acquisitions (200–900 recorded tracks) [212] and camera settings were fixed and 

maintained for all samples. Filtered DPBS was tested and no background signal was detected. 

For each sample, two videos of 1 min were recorded and analysed with NanoSight NTA 

software 2.2 (Malvern). Data are shown as the average count of the two duplicates. 

Statistical Analysis  

Statistical analysis was performed with R version 3.2.2 (R Core Team (2015) [309] in RStudio 

v0.99.486 (RStudio Team (2015) [309]). A Shapiro-Wilk test was applied to assess normality. 

As samples did not follow a normal distribution, Wilcoxon signed-rank test and non-

parametric Kruskal–Wallis one-way analysis of variance were conducted to evaluate IL-6 and 

EV concentration differences between groups. 
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Results 

Frailty Status Classification of Aged Individuals  

For the present study, adults of different age ranges and elder people were enrolled. 

Participants were classified based on their age. Additionally, aged individuals (79–92 years) 

were asked to complete the Barthel and Tilburg Frailty Index questionnaires and were further 

classified as Robust, Frail or Non-autonomous, as shown in Table 5. 

Table 5. Classification of enrolled individuals based on their age and frailty status. Samples of a total number 

of 18 adults and 19 elders were analysed. 

IL-6 Concentration Is Increased in the Elderly  

The level of IL-6 in serum was measured and, obtained results demonstrated a very low, nearly 

non-detectable concentration in adults of different ages, while an elevated concentration in the 

elderly (p<0.001) (Figure 29A). This result confirms the low-grade inflammatory condition of 

aged individuals. Additionally, when IL-6 levels of the elderly were compared depending on 

their frailty status, an increasing tendency with dependence was found (Figure 29B). 

Figure 29. An elevated concentration of IL-6 is observed in aged subjects. IL-6 levels were measured by 

ELISA and concentration values above 4.7 pg/mL were considered detectable. (A) Elderly individuals 

have a higher concentration of IL-6 than adults (***p<0.001); and (B) there is a high variability among 

Robust, Frail and Non-autonomous elderly, but an increasing concentration with dependency can be 

observed. 



116 | Chapter one 

 

The Concentration of EVs Is Not Affected by Age and Frailty Status  

To assess the size profile and concentration of circulating EVs, NTA was conducted for all 

samples. Results showed that, regardless of particle concentration, all samples followed a 

similar EV size distribution, with most vesicles ranging between 50 and 300 nm in all instances 

(Figure 30A). This result demonstrated that our EV isolation protocol efficiently isolates small 

EVs, removing larger particles and platelets that can be found in plasma samples. When 

comparing the EV number, no significant differences were found between groups (p = 0.505), 

indicating that EV concentration is not increased with age (Figure 30B). Moreover, the 

concentration of EVs is also not affected by the frailty status of elder donors (p = 0.424), as 

shown in Figure 30C. 

Figure 30. Particle size and EV concentration were measured by NTA. (A) Size distribution of EVs. Each 

line represents one sample. Despite the particle concentration difference, all samples have a similar size 

distribution—they are enriched in small EVs (50–300 nm); (B) EV concentration of different age ranges 

were compared and samples from elder people (79–92 years) do not show an increased EV number; and 

(C) among elder individuals, the frailty status does also not alter EV concentration.  
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Discussion 

During human aging, a chronic low-grade inflammatory state called inflammaging has been 

reported [138,140,142], and to our knowledge, this is the first report investigating, specifically, 

EV concentration in this process. The results presented in this work demonstrate that there 

are elevated IL-6 levels in the elderly, confirming the basal inflammaging. In contrast to what 

we hypothesized, and despite inflammaging, EV concentration in circulation is not affected by 

human aging. Moreover, frailty or dependence did also not alter the EV number. Many authors 

have previously studied the implication of EVs in diverse inflammatory processes, including 

cellular senescence, neurodegenerative diseases and cancer, indicating that both the total 

number of EVs in circulation and also EVs from specific cell origins can be increased 

[192,230,310]. Our results present a chronic inflammatory process—inflammaging—in which 

circulating EV levels are not affected. In this work, and when studying EVs, there are several 

factors that should be taken into consideration. 

In our cohort, a high inter-individual EV concentration variability has been found within the 

same group. Similarly, previous experiments have demonstrated that the protein 

concentration and content of EVs differ depending on the donor [311]. On the other hand, 

specific medications may also affect EVs, as there are compounds that can modify EV 

production and release. For instance, immunomodulatory treatments can affect EV production 

by immune cells and modulate EV concentration in circulation [241,253,312]. This kind of 

effects should be considered when measuring EV levels specially in aged people, because 

nearly all of them have chronic medications. In this study, a representative sample of 

community-dwelling aged people was analysed and, as expected, all were under chronic 

treatment. It was ethically not possible to ask the participants in the study to interrupt their 

medications. Furthermore, the aim of our study was to evaluate whether the low-grade 

proinflammatory status was sufficient to alter EV concentration in the elderly, despite their 

medication. Moreover, even if the total number of EVs is not altered, EVs secreted from specific 

cell types could be affected, both in their concentration and cargo, modulating their function 

and effect in target cells, as described for other biological processes [230]. Finally, the limited 

number of samples in the study must be taken into account and results should be validated in 

a larger cohort. In brief, these results represent a first report and demonstrate that there is no 

correlation between inflammaging and EV concentration in circulation. More extensive 

experiments are required to study the specific changes that occur to EVs in regard to human 

aging, and to further elucidate their role in the process. 
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General introduction 

EVs are important mediators of indirect cell communication. In the last years, the study of EVs 

has increased notably, and consequently, their implication in many biological processes is 

being described. Cell differentiation has been found to be one of the processes in which EVs 

have an effect. Recent publications found that EVs enhance or inhibit cell differentiation in 

many tissues, depending on the particle source and the components they carry [259,313]. 

However, it should be mentioned, that even if some molecules carried by EVs have been shown 

to be implicated, the underlying mechanisms in target cells leading to cell differentiation 

modification are still not completely understood.  

On the other hand, as commented before, aging is a multifactorial process that reaches all 

tissues and affects cell communication, including EVs [133,230]. Moreover, it has been widely 

shown that cell differentiation is reduced or defective in elders [119,122,125]. Besides, some 

authors have also found that circulating EVs from aged donors have distinct effects when 

compared to young donors, such as reduced osteogenic differentiation promotion [245] and 

CNS myelination [257].  

Taking all this into consideration, the aim of the present chapter was to evaluate the potential 

role of EVs from plasma to induce cell differentiation and to compare the different outcomes of 

young and aged EVs. We decided to study the influence of plasma EVs on osteogenesis and 

myogenesis, as the differentiation of both osteoblasts and myoblasts occur in tight 

communication with the circulatory system. Furthermore, they are active processes 

throughout the individual’s life and defective cell differentiation can result in bone and muscle 

problems, two of the most common age-related features. 

The following two sections describe the study designs, experiments and results obtained in 

collaboration with: 

1. Osteogenesis: The research group led by Prof. Johannes Grillari PhD, Christian Doppler 

Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU ‐ 

University of Natural Resources and Life Sciences, Vienna (Austria). 

2. Myogenesis: The research group led by Prof. Adolfo López de Munain MD PhD and 

Amets Sáenz PhD, Neuromuscular Diseases Group, Neurosciences Area, Biodonostia 

Health Research Institute, San Sebastian (Spain).  
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Osteogenesis 

 

Introduction 

The bone is a highly dynamic organ. The coordinated bone formation by osteoblasts and bone 

resorption by osteoclasts ensures its constant remodelling and maintenance. However, this 

balance is compromised in aged individuals, as reduced numbers and dysfunctions of 

osteoblasts have been found [120]. One of the main causes of impaired osteogenesis with age 

is thought to be the increased commitment of MSCs in the bone marrow to adipogenesis. 

Besides, this process has been shown to be influenced by the bone marrow microenvironment 

[124].  

Taking into account the reduced osteogenesis, as well as the increasing incidence of age-

associated bone defects and fractures, in the last years, regenerative treatments to enhance 

osteogenesis have been proposed [125]. Due to the difficult obtention and poor yield of MSCs 

from bone marrow, most of the regenerative therapies are based on ASCs. Similar to stem cells 

in bone marrow, ASCs can differentiate into several cell types, including osteoblasts [314]. 

Moreover, it is easier to obtain a high number of ASCs from lipoaspirates, they can be taken for 

autologous transplantations and reduce the donor site morbidity [315]. Many studies have 

demonstrated the efficiency of ASCs for bone regeneration in animal models, and clinical trials 

are now ongoing [125].   

Regarding the previously mentioned importance of the microenvironment for osteogenesis 

enhancement, several researchers have reported beneficial effects of the combination of 

platelet-rich plasma (PRP) with ASCs [125,316], including a recent case report of an early stage 

avascular necrosis resolution in a 43-aged patient [317]. However, the molecules present in 

PRP that help the differentiation process are still not understood.  

In this line, a study published by Weilner et al. found that EVs from plasma enhance osteogenic 

differentiation of ASCs. Interestingly, they also reported age-related differences, as EVs from 

elders had a reduced differentiation capacity [245]. We found this work as an important report 

demonstrating the implication of EVs from plasma in osteogenesis and, consequently, we 

established a collaboration with the authors. The aim of this collaboration was to try to confirm 

the effect of plasma EVs on osteogenic differentiation of ASCs with our EV samples, which are 

obtained with a distinct protocol and come from donors of different ages.  
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Materials and methods 

Obtention and isolation of plasma EVs 

Peripheral blood was collected by experienced nurses by venipuncture with a 21-gage needle 

in 4 ml EDTA tubes (Vacutainer, BD Biosciences). Samples from 5 adults (mean age 37.8 years, 

2 females and 3 males) and 5 elders (mean age 85.4 years, 3 females and 2 males) were 

obtained. Tubes were kept upright and centrifuged at 1258 g for 20 min to recover plasma. To 

isolate EVs, plasma was centrifuged at 13,000 g for 2 min and obtained supernatant (1 ml 

platelet free plasma) was centrifuged again at 20,000 g for 20 min to pellet EVs. 900 l of 

supernatant were transferred to another tube and the bottom 100 l with the EV pellet were 

resuspended with 100 µl of filtered DPBS (GIBCO, Thermo Fisher Scientific, filtered twice 

through a 0.22 µm-pore filter). The 200 l of resuspended EVs were stored at -80 °C and 

thawed on ice when needed.  

Obtention and culture of ASCs 

Abdominal liposuction was performed in a female donor aged 49 years. With the patient’s 

informed consent, subcutaneous adipose tissue was obtained by outpatient tumescence 

liposuction under local anesthesia by an experienced physician. ASCs were isolated according 

to Wolbank et al. [318] and cultured in control medium consisting of DMEM-low 

glucose/HAM´s F-12 (GE-Healthcare) supplemented with 4mM L-glutamine (Sigma-Aldrich) 

and 10% fetal calf serum (Sigma-Aldrich) at  37°C, 5% CO2 and 95% air humidity. Culture 

medium was changed three times a week and cells were passaged once a week at a split ratio 

of 1:2 to 1:6 according to the growth characteristics. 

Coculture of ASCs with plasma EVs and induction of osteogenic differentiation 

ASCs were seeded in 24-well culture dish wells. 3 days after seeding, osteogenic differentiation 

was induced by switching the medium to osteogenic differentiation medium consisting of 

DMEM-low glucose (GE-Healthcare), 10% fetal calf serum (Sigma-Aldrich), 4mM L-glutamine 

(Sigma-Aldrich), 10nM dexamethasone (Sigma-Aldrich), 150μM ascorbate-2-phosphate 

(Sigma-Aldrich), 10mM β-glycerolphosphate (Sigma-Aldrich) and 10nM 1.25 

Dihydroxyvitamine D3 (Sigma-Aldrich) in a final volume of 1 ml/well. 

Before performing coculture experiments to investigate the effect of EVs, culture conditions 

were optimized. Three different cell concentrations were assayed (4,000/9,000/14,000) and 

14,000 ASC cells/well was chosen as the best for osteogenic differentiation measurement. 

Regarding osteogenic differentiation duration, 10 and 17 days were tested, and 10 days were 

chosen for subsequent experiments. When investigating the effect of EVs, 4 IU heparin/ml were 
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added to prevent culture medium jellification. Taken together, the final experimental setup to 

test the effect of plasma EVs on osteogenic differentiation is presented below and schematically 

represented in Figure 31. Besides, all the experiments performed and obtained results for the 

optimization of culture conditions are presented in the results section.  

▪ 14,000 ASCs/well were seeded in 24-well culture dishes with 950 l control medium 

supplemented with 4 IU heparin. 

▪ 3 hours after seeding the cells, 50 l of EVs (or 50 l of DPBS) were added to 

corresponding wells, reaching a final volume of 1 ml/well, and carefully mixed to 

ensure a homogeneous EV distribution. 

▪ 3 days after seeding the cells, the culture medium was changed. Osteogenic 

differentiation  (OD) medium or control medium was added to corresponding wells.  

▪  Cells were maintained in culture for 10 days more with media changes every 3 days.  

▪ Alizarin Red or Alkaline phosphatase staining was performed to measure osteogenesis.  

 

 

 

 

 

 

 

Figure 31. Cell culture conditions to test the effect of EVs from plasma on osteogenic differentiation of 

ASCs. (A) Schematic representation of the culture protocol. ASCs were seeded in 24-well culture dishes 

in 950 l control medium and 3 hours later, when cells were attached 50 l of EVs or DPBS were added. 

69 hours later (3 days after seeding) culture media were changed, switched to OD medium or to fresh 

control medium in corresponding wells. Cells were maintained in culture for 10 days more (13 days after 

seeding) with media changes every three days. Finally, osteogenic differentiation was evaluated by 

Alizarin Red or Alkaline phosphatase (ALP) staining. (B) Schematic representation of the 6 different 

study conditions. EV samples from 5 adults and 5 elders were tested, and all conditions were assayed in 

duplicate.  

 

 



126 | Chapter two 

 

Alizarin Red staining 

For quantification of calcified structures, cells were washed 3 times with PBS and then, fixed 

for 2 h in 70% ethanol (500 l/well) at -20°C. Then, cells were washed 3 times with dH2O and 

stained for 10 minutes with 40mM Alizarin Red S solution (pH 4.2, 500 l/well, Sigma-Aldrich) 

in an orbital shaker at room temperature. Subsequently, the remaining dye was removed by 

rinsing the cells with PBS. Finally, the residual dye was extracted by 0.1M HCL/0.5% SDS 

solution (200 l/well) for 30 min. The dye signal was quantified in a microplate reader by 

determining the absorbance at 425 nm. 

Alkaline phosphatase (ALP) staining 

To determine the activity of ALP, cells were washed 3 times with PBS and then, lysed by 

incubating with lysis buffer for 1 h (0.25% Triton X-100, 100 l/well) at room temperature. 

Next, samples were transferred to 1.5 ml tubes, centrifuged at 13,000 rpm 10 min at 4°C and 

90 l of supernatant transferred to a new tube. Subsequently, a buffer containing 20mM 4-

nitrophenyl phosphate disodium salt hexahydrate, 0.5 M 2-amino-2-methyl-1-propanol and 

0.2 mM MgCl2 (pH 10.3, 50 l/tube) was added to each cell lysate and incubated for 20 minutes 

at room temperature in the dark. The reaction was stopped by adding 50 µl of 0.2M NaOH and 

ALP activity quantified by determining the absorbance at 405nm (620nm ref). 

Statistical analysis 

Statistically significant differences between the study groups were tested with GraphPad Prism 

version 6.01 for Windows (GraphPad Software, www.graphpad.com). Mann-Whitney test was 

applied to evaluate differences between EVs from adults and elders. **p<0.01. 

Results  

Osteogenic differentiation settings 

The first experiments were directed to establish the best culture conditions to investigate the 

effect of EVs on osteogenesis. To this end, we tested 3 cell densities (4,000/9,000/14,000 ASCs) 

and two different end points (10/17 days after osteogenic differentiation induction). 

Triplicates were performed for all the conditions.  

Calcification was measured by Alizarin Red staining and the obtained results are presented in 

Figure 32. We confirmed the induction of osteogenesis in all the tested conditions, as calcium 

deposition was higher under OD medium than under control medium (basal calcium 

deposition by ASCs). Moreover, a higher concentration of cultured cells resulted in an 

increased staining and a higher difference between control and OD medium. Regarding the two 

tested end points, an elevated differentiation was shown with the prolongation of osteogenesis 

(17 days).  

http://www.graphpad.com/
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With these results, we decided to perform the following experiments with 14,000 ASCs/well 

and to measure osteogenesis 10 days after the induction. We based our decision about the cell 

density on the prominent differences observed between control and OD medium. On the other 

hand, for the osteogenesis duration, we took into consideration the possible effects of plasma 

EVs: previous studies have reported an enhanced differentiation in the presence of EVs, so to 

be able to see the influence of EVs, we should measure osteogenesis at an intermediate point 

when an increase of calcification or ALP activity could be reported by the absorbance 

measurement.  

 Figure 32. Osteogenic differentiation settings assessed by Alizarin Red staining. 3 different cell 

densities were seeded and calcium deposition measured 10 days (A) or 17 days (B) after osteogenic 

differentiation induction. Wells with control medium in which osteogenesis was not induced were 

maintained and assayed to measure basal calcium deposition by ASCs. Increasing staining was observed 

with more cells and with prolonged culture times.  

Coculture of ASCs with plasma EVs results in the formation of jelly structures 

After establishing the cell culture conditions for ASCs, in the next step we performed the first 

experiments in which EVs from plasma were added to ASCs. Cells were seeded in 24-well 

dishes and 3 hours after seeding the cells, 50 l of thawed EVs were added to each well. 3 days 

after seeding the cells, culture media were changed and control or OD medium added to 

corresponding wells. Unexpectedly, at the bottom of the wells where ASCs and EVs were 

cocultured a jelly layer had formed. Medium change was done by carefully pipetting, but even 

so, when aspirating the medium, the jelly layer was partially detached in some wells. We still 

decided to continue with the osteogenesis protocol and try to measure the effect of EVs on 

calcium deposition.  

10 days after osteogenic differentiation induction, Alizarin Red staining was performed. 

Despite the careful pipetting, we observed that the jelly-like layers were detached and it was 

not possible to rinse the wells after Alizarin staining (Figure 33), so no result was obtained 

from this assay. 
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Figure 33. Formation of jelly structures and cell detachment. ASCs were cocultured with EVs isolated 

from plasma and a jelly layer had formed at the bottom of the wells. (A) Representative image of a well 

where the jelly layer was detached and flipped on top of other cells. (B) A picture taken from 2 wells 

cocultured with EVs. Alizarin Red staining was performed, but no concluding results could be obtained.  

After observing this phenomenon, we performed an experiment to investigate the formation 

of jelly structures and whether heparin could prevent them in our cocultures with plasma EVs. 

We prepared a 24-well dish as shown in Figure 34: EVs alone, ASCs + EVs, EVs in heparin 

containing medium and ASCs + EVs in heparin containing medium were tested. In all cases, 

14,000 ASCs and 4 U of heparin/ml were used, while different EV volumes were added.  

Figure 34. Schematic representation of the 24-well culture dish plan. In row A control medium and EVs 

were mixed, while in row B 14,000 ASCs/well were also added. In row C control medium with 4 IU 

heparin and EVs were mixed, while in row D 14,000 ASCs/well were also added.  

3 days later the formation of gels was evaluated. Culture medium was carefully pipetted and 

we observed no jelly layers in row A and C, confirming that the interaction between control 

medium and EVs do not produce the jelly structures. When medium in row B was aspirated, 

jelly layers were found in all wells, with thicker structures in the wells cocultured with higher 

volumes of EVs. In contrast, medium pipetting was performed normally in row D, 

demonstrating that the addition of 4 IU heparin/ml prevents the formation of the gel for all the 

EV volumes tested. Consequently, we decided to incorporate heparin to the control medium 

for coculture experiments. 
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Effect of plasma EVs on osteogenesis 

Finally, we tested the effect of EVs isolated from plasma of adult and elder donors on osteogenic 

differentiation. EV samples from 5 adults and 5 elders were assayed, each of them in duplicate. 

Our results show that, in all cases, the coculture of ASCs with plasma EVs enhance osteogenesis, 

and this effect is stronger with EVs from adults (Figure 35).  

Figure 35. Osteogenesis enhancement by plasma EVs. ASCs were cocultured with EVs for 3 days and 

then, osteogenic differentiation was induced. 10 days after induction ALP activity was measured. Results 

are presented in fold change versus the control condition in which no EVs were cocultured. (A) Graph 

showing the results obtained for each EV donor. In all cases, ALP activity was higher than the control. 

(B) Box plot representation of results obtained for EVs from adult and elder donors. EVs from adults 

enhance ALP activity significantly more than EVs from elders. A = adult and E = elder. 

Besides, we also tested whether EVs alone were able to induce osteogenesis. To this end, we 

cultured ASCs in control medium. The coculture with EVs was performed as before, but instead 

of inducing osteogenesis with OD medium, control medium was maintained. The obtained 

results demonstrate that the presence of EVs alone does not induce osteogenesis (Figure 36). 

 

 

 

Figure 36. Effect of EVs under control medium. ASCs were cocultured with EVs for 3 days and then, 

cultured for 10 days more with control medium. Two wells without EVs were cultured with OD medium 

for 10 days as a positive control of osteogenesis. ALP activity was measured and no differences were 

reported, indicating that EVs alone do not induce osteogenic differentiation of ASCs. A=adult and 

E=elder. 
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Discussion 

In this project, we have set the cell culture conditions and investigated the effect of EVs from 

plasma on the osteogenic differentiation of ASCs. The starting point of this work was based on 

a publication by the group of Grillari [245], in which they reported an increased osteogenesis 

enhancement with EVs isolated from plasma of young donors (less than 25 years) when 

compared to older ones (more than 55 years). Besides, they focused on galectin-3 protein and 

showed the important role of this molecule during the osteogenic process. Regarding the EV 

experiments performed by the group, to isolate EVs from plasma they filtered the samples 

through 0.22 m pore filters and then applied ultracentrifugation at 100,000 g for 1 hour. With 

this protocol, they isolated small EVs and discarded bigger EVs. Moreover, when considering 

potential future applications, their protocol could be difficult to implement in the clinic, as most 

of the hospitals do not have ultracentrifuges. Taken together, the main objectives of our work 

were to test the effect of EVs isolated with an easily applicable protocol [202] and to compare 

the effect of samples coming from adult and elder donors.  

First, we obtained ASCs from a healthy donor and conducted experiments to establish the 

appropriate cell culture settings. In our hands, seeding 14,000 cells/well and maintaining 

osteogenic induction for 10 days resulted in adequate differentiation. When adding EVs to 

cultured ASCs, a jelly layer was formed. The addition of only 5 l of plasma EVs was enough to 

induce the formation of this structure. On the other hand, a culture medium prepared with 4 

IU heparin/ml prevented jellification. The use of human plasma for cell culture has been widely 

investigated before, and medium clotting was also reported in many cases [319]. Here we 

applied EVs isolated from plasma, and even if we have demonstrated that our protocol 

efficiently isolates EVs, when handling a complex fluid as plasma, other small components are 

probably coprecipitated. In accordance with previous reports, the addition of a low 

concentration of heparin to our cultures prevented media clotting. It should be mentioned that 

some authors reported impaired cell proliferation and differentiation of ASCs under high doses 

of heparin [320], but we applied only 4 IU heparin/ml for 3 days and then, osteogenic 

differentiation was induced and no issues were reported.   

We performed coculture experiments with EVs from 10 different donors: 5 adults and 5 elders. 

Interestingly, all EV samples boosted osteogenic differentiation, but none of them induced 

differentiation if OD medium was not used, demonstrating that plasma EVs alone do not induce 

the differentiation of ASCs to osteoblasts. Moreover, the positive effect of EVs was more 

prominent when samples from adults were applied. These results indicate that EVs favour 

osteogenesis, but an age-related exhaustion could be present. Our results are in accordance 

with the previous study by the group of Grillari, and importantly, we tested more samples, 
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coming also from older donors (> 80 years, instead > 55 years), and with EVs isolated with a 

different protocol (final pelleting at 20,000 g, instead 100,000 g).  

This work reinforces previous studies and demonstrate the potential application of EVs for 

osteogenesis enhancement. Furthermore, other authors showed that EVs secreted by ASCs 

[260,313], or by a specific subset of plasma EVs promote osteogenesis [245], but their 

application would need in vitro cultures of ASCs to produce EVs or complicated protocols to 

isolate EVs from plasma, respectively. In contrast, our results indicate that EVs easily isolated 

from plasma, alone or in combination with cell therapies, could help osteogenesis. 

Furthermore, other authors that applied PRP and ASCs for osteogenesis with positive results 

were probably also administering EVs, as they would be present in PRP samples [316,317].  

Regarding the possible clinical applications to promote osteogenesis, it should be mentioned 

that, similar to our results with EVs, ASCs from elders have a reduced osteogenic potential 

[125]. We hypothesize that to overcome the age-associated dysfunction and to avoid allogeneic 

cell transplantations, regenerative therapies in aged patients could be carried out with 

autologous ASCs and plasma EVs from a young donor. This combination could boost 

osteogenesis while preventing potential problems associated with allogeneic cells.  

In summary, ASCs are an easily accessible source of MSCs and they can be differentiated into 

different cell types, including osteoblasts. Due to their therapeutic potential, many efforts are 

being made to understand the underlying mechanisms of osteogenesis [321]. In parallel, the 

implication of EVs in osteogenic differentiation is still starting to be investigated. The first 

reports, including ours, indicate that EVs play an important role and help ASC differentiation, 

and we consider that they should be taken into consideration for future clinical applications.  
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Myogenesis 

 

Introduction 

The skeletal muscle is the largest organ in the human body. It is a highly adaptable tissue that 

responds to environmental conditions and physiological challenges by changing fibre size and 

composition. However, the incidence of skeletal muscle injuries as a consequence of trauma, 

inherited genetic diseases, pathology or aging is very high and represents relevant socio-

economic costs. In the case of aging, muscle wasting, defined by marked muscle mass loss and 

weakening, is one of the major problems leading to increased risk of falls and development of 

physical disability [123,322].  

It is well known that the skeletal muscle has regenerative potential, which, however, becomes 

compromised in the case of severe or extended damage as well as with aging [123,126]. In this 

context, several methods are nowadays applied in the clinic to promote muscle repair and 

regeneration and, besides, many investigations are being conducted to improve the present 

techniques or implement new and more effective methods [126]. Among these potential new 

methods, we are specially interested in the ones investigating the role of EVs in myogenesis.  

Indeed, in the last years, many authors have investigated the composition and functions of EVs 

secreted by myoblasts and myotubes [323]. Regarding their functions, a work by Forterre et 

al. reported that EVs secreted by myotubes reduce proliferation and induce myoblast 

differentiation [324], while a study by Guescini et al. did not obtain the same results [325]. 

However, the EV concentrations and differentiation endpoint were distinct, which could 

account for the observed differences. Besides, it should be mentioned that most of the works 

focusing on the effects of EVs on myogenesis were carried out in the C2C12 immortalized 

mouse myoblast line, which is an interesting and useful model for studying many processes, 

but it also presents some differences when compared to humans.  

To our knowledge, no works have studied the influence of EVs from human plasma on 

myogenesis. Nevertheless, many researchers have indirectly applied EVs in their 

investigations, as EVs are part of the components of PRP and platelet-poor plasma (PPP). These 

preparations have been widely tested for muscle regeneration, as nicely reviewed by Chellini 

and colleagues [326]. In any case, they did not consider the presence of EVs and their effects as 

part of PRP and PPP are still unknown. 
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Consequently, and taken into consideration the positive effect of plasma EVs reported before 

for osteogenesis, we wondered whether they could also help myogenesis. To try to solve this 

question, we collaborated with the group led by López de Munain and Sáenz and tested our EV 

samples on their human primary myoblasts.  

Materials and methods 

Obtention and isolation of plasma EVs 

Peripheral blood was collected by experienced nurses by venipuncture with a 21-gage needle 

in 4 ml EDTA and 2.8 ml citrate tubes (Vacutainer, BD Biosciences). Samples from 12 adults 

(mean age 34.5 years, 5 females and 7 males) and 9 elders (mean age 81.8 years, 5 females and 

4 males) were obtained. EDTA tubes were kept upright and centrifuged at 1,258 g for 20 min 

to recover plasma. To obtain plasma from citrate tubes, we followed they were centrifuged at 

2,500 g for 15 min. We isolated EVs coming from both extraction tubes as previously described 

by our group [202]. Plasma was centrifuged at 13,000 g for 2 min and this supernatant 

centrifuged again at 20,000 g for 20 min to pellet EVs. The pellet was resuspended with filtered 

DPBS (GIBCO, Thermo Fisher Scientific). Resuspended EVs were stored at −80 ºC. 

Obtention and culture of myoblasts 

The skeletal muscle biopsy was obtained at Donostia University Hospital after the donor gave 

written informed consent, using forms approved by the Ethics Committee. The sample was 

taken from the triceps brachii of a healthy donor (male, 26 years) that underwent surgery due 

to bone fracture. The muscle sample was processed, primary myoblasts isolated as previously 

described by the Neuromuscular Diseases Group [327] and cultured in proliferation medium 

consisting of DMEM (Lonza) and M-199 (Lonza) supplemented with 10% FBS (Thermo Fisher), 

1% insulin 1 mg/ml (Sigma Aldrich), 1% glutamine 200 mM (Life Technologies), 0.5% 

fibroblast grow factor 5 μg/ml (Prepotech), 0.1% epidermal grow factor 10 μg/ml (Prepotech) 

and 1% penicillin/streptomycin + amphotericin B (9:1, Thermo Fisher) in 0.5% gelatin-coated 

plates at  37°C, 5% CO2 and 95% air humidity. Culture medium was changed three times a week 

and cells were passaged when 70-75% confluence was reached.   

Coculture of myoblasts with plasma EVs and induction of myogenic differentiation 

To test the effect of EVs on myogenesis, two coculture experiments were performed. In both of 

them, myoblasts were seeded in 24-well culture dish wells (previously coated with 0.5% 

gelatine) with proliferation medium. Then, EVs were added to a final volume of 1 ml/well. 

When 80-90% confluence was achieved, myogenic differentiation was induced by switching 

the medium to myogenic differentiation medium consisting of DMEM and M-199 
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supplemented with 2% FBS, 1% insulin 1 mg/ml, 1% glutamine 200 mM and 1% 

penicillin/streptomycin + amphotericin B (9:1). Finally, we proceeded to RNA extraction.  

The following lines describe the procedure of each of the two experiments, which are also 

illustrated in Figure 37.  

Experiment 1: 

▪ 20,000 myoblasts/well were seeded in 24-well culture dishes with 970 l proliferation 

medium. 

▪ 3 hours or 24 hours after seeding the cells, 30 l of EVs (or 30 l of DPBS) were added 

to corresponding wells, reaching a final volume of 1 ml/well, and carefully mixed to 

ensure a homogeneous EV distribution. EVs isolated from EDTA tubes were used. EVs 

from 9 adults were pooled and assayed in triplicate. EVs from 6 elders were pooled and 

assayed in triplicate. 

▪ 2 days after seeding the cells, the culture medium was changed. Differentiation (MD) 

medium or proliferation medium was added to corresponding wells.  

▪  Cells were maintained in culture for 6 days more with media changes every 3 days.  

Experiment 2: 

▪ 150,000 myoblasts/well were seeded in 24-well culture dishes with 970 l 

proliferation medium supplemented with 4 IU heparin. 

▪ 2 days after seeding the cells, 30 l of EVs (or 30 l of DPBS) were added to 

corresponding wells, reaching a final volume of 1 ml/well, and carefully mixed to 

ensure a homogeneous EV distribution. EVs isolated from citrate tubes were used. EVs 

from 3 adults and 3 elders were individually tested and each of them was assayed in 

duplicate. 

▪ 5 days after seeding the cells, the culture medium was changed. MD medium or 

proliferation medium was added to corresponding wells.  

▪  Cells were maintained in culture for 8 days more with media changes every 3 days.  
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Figure 37. Cell culture conditions to test the effect of EVs from plasma on myogenic differentiation. (A) 

Schematic representation of the culture protocol. Myoblasts were seeded in 24-well culture dishes in 

970 l control medium and then, when cells were attached 30 l of EVs or DPBS were added. When cells 

reached 80-90% confluence culture media were changed, switched to myogenic differentiation (MD) 

medium or to fresh proliferation medium in corresponding wells. Cells were maintained in culture with 

media changes every three days. Finally, myogenic differentiation was evaluated by extracting RNA from 

cultures and measuring gene expression by qPCR. (B) Schematic representation of the 6 different study 

conditions.  

RNA extraction, cDNA synthesis and qPCR 

For the quantification of myogenesis-related genes, we extracted RNA from cultured cells. To 

this end, wells were washed 2 times with cold PBS and then, 750 l of TRIzol Reagent 

(Invitrogen, Thermo Fisher) were added. Cells were detached with cell scrapers, collected on 

RNase-free tubes and subjected to 1 min vortex. Total RNA extraction was performed following 

the manufacturer’s instructions and resuspended in 20 l of RNase-free water. The RNA 

concentration was measured in a NanoDrop ND-1000 spectrophotometer.  

RNA was reverse transcribed into cDNA with random primers using High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems) according to the manufacturer’s instructions. 

For the qPCR analysis, 384 well-plates were used. In each well, 5 l TaqMan Gene Expression 

Master Mix (Thermo Fisher) and 25 ng cDNA were mixed, together with 0.5 l of TaqMan 

probes in a final reaction volume of 10 μl (completed with RNase-free water). GAPDH was 

chosen as the housekeeping gene for internal control and the expression of desmin (DES, probe 

ref: Hs00157258_m1), myogenic differentiation 1 (MYOD1, probe ref: Hs00159528_m1) and 
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myogenin (MYOG, probe ref: Hs01072232_m1) were measured. All the components were 

maintained on ice and protected from light. Plates were sealed and centrifuged to remove 

possible bubbles. Then, the cDNA was amplified using a CFX384 Touch Real-Time PCR 

Detection System (Bio-Rad). Each sample was run in triplicate and measures with a coefficient 

of variation higher than 3% were discarded. The presence of a single-peak in the melting curve 

indicated the specificity of the amplification. For relative expression calculation, the 2-Cq 

method was used, where Cq was calculated by the normalization of the gene of interest with 

respect to the housekeeping gene.  

Statistical analysis 

Statistically significant differences between the study groups were tested with GraphPad Prism 

version 6.01 for Windows (GraphPad Software, www.graphpad.com). Mann-Whitney test was 

applied to evaluate differences between the study groups. *p<0.05 and **p<0.01. 

Results 

Effect of plasma EVs on myogenesis – Experiment 1 

In the first approach, we cultured 20,000 myoblasts/well. Due to the novelty of our 

experimental setup, and aiming not to interfere in the attachment of myoblasts to the plate, we 

decided to try different EV addition times: 3 hours after seeding and 24 hour after seeding. We 

checked the cells and when they reached the appropriated confluence (48 hours after seeding), 

we changed the medium to induce cell differentiation with MD media. On the other hand, 

another set of wells was maintained in proliferation medium, to evaluate the effect of plasma 

EVs under this medium. At this point, when the media change was performed after the 

coculture, we noticed the formation of a jelly layer in the wells with EVs (similar to the one 

described in the osteogenesis experiments). We carefully removed these structures and 

noticed that, even if some cells could have been removed, most myoblasts were still normally 

attached. We only lost one of the wells where EV samples from elders were added at 24 hours, 

as the jelly layer could not be completely removed. We decided to continue with the experiment 

and 6 days later (8 days after seeding) we extracted RNA from samples and performed the 

qPCR analysis. Two representative pictures of cells before RNA extraction are shown in Figure 

38.  

  
Figure 38. Representative 10x images of the cells at the end of the experiment. (A) Proliferation medium 

and (B) differentiation medium. 

http://www.graphpad.com/
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We could not obtain RNA from the wells where EV samples from adults were added at 24 hours. 

For the rest of the conditions tested, the obtained results are presented in Figure 39 and 

Figure 40. As expected, the expression of the myogenic differentiation markers MYOD1, MYOG 

and DES was higher in the cells where differentiation medium was applied (upper panel vs 

lower panel). Interestingly, when we evaluated the effect of adding EVs, we observed that the 

expression of the three markers was increased in the cells cocultured with EVs from plasma 

and this effect was present under both proliferation and differentiation medium (Figure 39). 

Moreover, a more robust enhancement is obtained with EVs from adults when compared to 

elders (Figure 40), but due to the limited sample size, no statistical analysis was performed.  

Figure 39. Expression of myogenic differentiation markers analysed by qPCR. The control wells were 

compared to the ones in which EVs were added. (A-C) The coculture of myoblasts and EVs results in 

higher levels of MYOG, MYOD1 and DES. (D-F) The differentiation medium increases the expression of 

MYOG, MYOD1 and DES, and this effect is enhanced when cells are stimulated with EVs. 
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Figure 40. Expression of myogenic markers depending on the EVs added. EVs from adults and elders 

are compared, and the hours in brackets indicate the time between myoblast seeding and EV addition. 

EVs from adults stimulate more the expression of myogenic markers, but due to the limited sample 

size, no statistical analysis was performed. 

Effect of plasma EVs on myogenesis – Experiment 2 

For the second approach, and aiming to improve the experimental settings, we decided to seed 

150,000 myoblasts per well and added 4 IU heparin/ml to prevent clotting. The EVs isolated 

from plasma were added 2 days after seeding and the coculture was prolonged for 3 days, when 

myoblasts presented an appropriate confluence to induce differentiation. We changed to MD 

medium in half of the wells and continued with proliferation medium in the others, to test again 

the influence of EVs on both conditions. 6 days later, and 13 days after seeding, we extracted 

RNA from samples and performed the qPCR analysis. Representative pictures of cells before 

RNA extraction are shown in Figure 41.  

Figure 41. Representative 10x images of the cells at the end of the experiment. (A) Proliferation medium 

and (B) differentiation medium. 
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We satisfactorily isolated RNA from all samples and performed cDNA synthesis and qPCR as 

usual. However, we did not obtain cDNA amplification for some of the samples, specifically for 

the ones corresponding to controls and to EVs from adults under differentiation medium. 

Consequently, no results could be obtained from these samples and, besides, the samples 

cocultured with EVs from elders with differentiation medium were also not analysed, as there 

was not any control to compare them with. The results from the rest of the conditions, which 

included all the samples maintained in proliferation medium, were analysed and the results 

are shown in Figure 42. Similar to the results obtained in the first experiment, we saw that 

myoblast cocultured with EVs from adults have elevated levels of myogenic differentiation 

markers when compared to EVs from elders (significant for MYOD1 and tendency for MYOG 

and DES). In contrast, in this second experiment, we did not observe a significant increase of 

the myogenic markers between the control wells and the ones cocultured with EVs.  

Figure 42. Expression of myogenic differentiation markers. Myoblasts were maintained in proliferation 

medium and they were cocultured with EVs from adult or elder donors. The samples with EVs from 

adults showed a higher expression of MYOD1, and the same tendency for MYOG and DES, while these 

two did not reach statistical significance.  

Discussion 

The objective of this section was to investigate the effect of EVs isolated from plasma on 

myogenesis. This is a field that has not been investigated, but it could have potential benefits 

for muscle regeneration, which is of particular interest for the age-associated sarcopenia.  We 

decided to perform the experiments based on our previous results on osteogenesis, as well as 

on the literature about myogenic differentiation. Interestingly, a work by Nakamura et al. 

studied the effects of EVs secreted by MSCs [259] and, on the other hand, many investigations 

have evaluated the effect of PRP and PPP (that contain EVs) on myogenesis [326]. However, 

none of them specifically evaluated the potential role of EVs from plasma, which we consider 

that could also be playing a role.  
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With this in mind, we collaborated with a group from Biodonostia that works with primary 

myoblasts and performed two experiments with different setups. We tested different cell 

concentrations, coculture times and endpoints. As in our previous experiments, we evaluated 

the effect of EVs not only under differentiation medium, but also under proliferation medium, 

to investigate whether EVs could influence in both conditions. Notably, in the first experiment, 

we reported an elevated expression of MYOG, MYOD1 and DES myogenic differentiation 

markers under proliferation and differentiation medium. Besides, when EVs isolated from 

adult and elder donors were compared in our two experiments, a higher expression of the 

differentiation markers was observed with EVs from adults, with statistically significant 

differences for MYOD1 in the second experiment.  

Our results are a first report indicating that EVs from plasma could play a role in myogenesis 

and, moreover, that EVs from adults could have a more robust effect than the ones isolated 

from elders. Further, we performed the experiments on human primary myoblasts, while most 

works are performed in murine immortalized myoblasts [323–325]. To our knowledge, one 

publication investigated before the influence of EVs on myogenesis with human primary 

myoblasts, but they had a completely different objective, as they studied the effect of EVs 

present on the foetal bovine serum used for cell culture [328].  

In any case, regarding the effects of EVs, we should keep in mind the complexity of biological 

processes and the limitations of the systems that we and all researchers apply. For instance, 

we try to model and study myogenic differentiation in vitro, by plating myoblasts, coculturing 

them with EVs from plasma and evaluating the expression of certain genes. We consider that 

this is a good approach to investigate whether EVs have an effect on the process, which is a 

novel field that is still in its infancy. However, we do not replicate the microenvironment 

present when a skeletal muscle of an individual is regenerating, and we would probably never 

be able to reproduce it exactly. With regard to the potential use EVs, the advantage of EVs with 

respect to cells is that we can first evaluate their effects in in vitro models, and then, test their 

potential efficacy in vivo with less safety concerns.  

As discussed in the previous section for osteogenesis, we hypothesize that plasma EVs could 

be applied in the future alone or in combination with autologous stem cells to enhance 

myogenesis. However, and even if some treatments with PRP have already been applied to 

patients with injured skeletal muscles with positive results [326], we are still far from 

understanding the implications of EVs. Our approach was just the first step and many more 

should be taken to describe the roles of plasma EVs on myogenesis and whether aging affects 

them.
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Introduction 

Human aging is a complex and heterogenic process, in which several cellular mechanisms are 

affected and modulated, leading to functional decline [33]. One of the most determining 

consequences of aging is the dysfunction of the immune system, and the subsequent poor 

response to vaccination, increased susceptibility to infections and age-related diseases 

observed in the elderly [329]. 

The molecular and cellular changes that lead to immune dysfunction have been extensively 

investigated and are generally referred to as immunosenescence [92]. T cells are the most 

dramatically affected immune components, with a decrease in naïve T cells and an 

accumulation of terminally differentiated T cells with age. Terminally differentiated T cells 

exhibit features of replicative senescence and lose the expression of the costimulatory 

molecule CD28 from their membrane [98–101,330]. CD28 plays an essential role in T cell 

function, taking part in activation, proliferation and survival processes. Hence, CD28 negative 

T cells present altered molecular features, as well as distinct cytokine production and effector 

molecules [102]. The loss of CD28 affects earlier and primarily CD8 T cells, but it has also been 

described to reach CD4 T cells later in life [103,104]. In consequence, T lymphocytes have a 

reduced capacity to react against new stimuli, contributing to the aforementioned immune 

dysfunction. Another feature found in immunosenescent T cells is the enhanced cytotoxicity. 

Expression of NK cell characteristic receptors such as CD56 and CD57 membrane molecules 

have been widely reported in these cells, which promote their cytotoxic capacity [105–108]. 

Additionally, many authors have found a higher prevalence of an inverted CD4/CD8 ratio in 

the elderly, a feature known as immune risk phenotype, that predicts shorter survival [113–

115].  

The immunosenescent process and the changes that occur in other cell types during aging 

result in an altered secretion of molecules by cells, termed SASP [131]. The SASP components 

have been classically divided into three groups: i) soluble signalling factors (ILs, chemokines, 

and growth factors), ii) secreted proteases, and iii) secreted insoluble proteins/extracellular 

matrix components [132]. One of the consequences of SASP is the chronic low-grade 

inflammation seen in the elderly, the so called inflammaging [136]. The age-associated immune 

dysfunction and accumulation of senescent cells promote inflammatory signals, such as 

elevated secretion of proinflammatory cytokines like IL-6 [138,140,331]. Another remarkable 

aspect that is affected by the SASP is intercellular communication. Apart from the three 

classical SASP components mentioned before, in the last decades EVs have been shown to play 

a central role in intercellular communication and immune system function [234]. 
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EVs are membrane-coated particles that are secreted by almost all cell types and are present 

in most body fluids, including plasma. They can be of endosomal or plasma membrane origin 

and they carry proteins, lipids and genetic material that can be incorporated by the target cell. 

EVs are released in physiologic and pathologic conditions and are implicated in many cellular 

processes [195]. As stated before, EVs are also implicated in the immune system function, as 

they can carry antigenic material and modulate immune responses [234].  

Regarding EVs in aging and senescence, the expression of p53 transcription factor have been 

related to increased EV production [332]. However, some works have studied the 

concentration of plasma EVs with age, with contradictory results [331,333]. One of these works 

also examined the EV protein cargo and internalization by immune cells and showed proteins 

differentially expressed with age and that EVs from older donors are more readily internalized 

by B cells [333].  

In spite of that, there are still many aspects of EVs that have not been elucidated. Similarly, even 

if immunosenescence at a cellular level has been widely investigated, only a few works have 

analysed samples from nonagenarians and centenarians [98,334]. It is important to note that 

only a small percentage of people reach these advanced ages, making it even more difficult to 

include their samples in study cohorts. Works that studied nonagenarians and centenarians 

showed that their PBMCs have distinct features at transcriptional and functional levels when 

compared to septuagenarians and octogenarians [26,27,335].  

Taking all this into account, the aims of the present work were to characterize the 

immunosenescence status of our cohort (donors of 20-49 and 70-104 years), comparing 

different age ranges at the cellular and EV level and to try to describe the possible immune 

functions of plasma EVs. 

Materials and methods 

Participants and blood sampling 

For the present study, donors of different age ranges were enrolled. Healthy adults between 

20-49 years and elders of 70-104 years were included. Elders were assessed at primary care 

services and by an experienced neurologist. Both community-dwelling and institutionalized 

participants and with distinct functional capacities were enrolled, aiming to have a 

representative sample of age-related heterogeneity. All participants completed a questionnaire 

and donors with acute illness or immunological disorders were excluded. Samples from 51 

donors (29 females and 22 males), 18 healthy adults and 33 aged individuals were collected at 

Donostia University Hospital. Participants were classified based on their age range: 20-29 

(n=6), 30-39 (n=5), 40-49 (n=7), 70-79 (n=6), 80-89 (n=10), 90-99 (n=13) and ≥100 (n=4) 
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years. The study was approved by the hospital’s ethics committee and all participants provided 

written informed consent before blood sampling.  

Peripheral blood was collected by venipuncture with a 21-gage needle. The first millilitre was 

discarded and then blood collected in a 2.8 ml citrate tube and 4 heparin tubes of 4 ml 

(Vacutainer, BD Biosciences).  

PBMC isolation and storage 

Within 1 hour of sampling, peripheral blood collected in heparin tubes (16 ml) was processed. 

PBMCs were isolated by density gradient centrifugation with LymphoprepTM (Abbott), 

following the manufacturer’s instructions. Cells were frozen in RPMI medium 1640 with L-

Glutamine (Gibco, Thermo Fisher) supplemented with 10% foetal bovine serum, 10,000 U/ml 

penicillin, 10,000 μg/ml streptomycin and 10% DMSO and stored in liquid nitrogen until used. 

For flow cytometry and cell culture experiments PBMCs were thawed and immediately washed 

and resuspended in the fresh RPMI medium to remove DMSO. 

EV isolation 

Citrate tubes were immediately processed after blood collection. EVs were isolated as 

previously described by our group [202]. Briefly, tubes were centrifuged at 2,500 g for 15 min, 

and the obtained plasma was then centrifuged at 13,000 g for 2 min and this supernatant 

centrifuged again at 20,000 g for 20 min to pellet EVs. The pellet was resuspended with filtered 

DPBS (GIBCO, Thermo Fisher), filtered twice through a 0.22 m-pore filter. Resuspended EVs 

were stored at -80 ºC. 

Cryo-electron microscopy (cryoEM) 

EVs were vitrified following standard protocols [336]. Glow-discharged Quantifoil holey 

carbon film grids (Orthogonal Array of 2µm Diameter Holes - 2µm Separation, mounted on a 

300M Cu grid, #657-300-CU, Ted Pella) were vitrified in liquid ethane in Vitrobot after 

deposition of 3 µL of the sample.  Cryo-transfer sample holders of the type GATAN Model 626 

were used to keep the sample vitrified during electron microscopy analysis. The sample was 

observed in a JEM-2100F UHR (80-200kV, JEOL) field emission gun transmission electron 

microscope at different magnifications.  Micrographs were recorded on a state of the art TVIPS 

F216 CMOS camera (2k x 2k). 

Nanoparticle tracking analysis 

The size distribution and concentration of isolated plasma EVs were measured using a 

ZetaView (Particle Metrix) instrument following manufacturer instructions. Samples were 

thawed on ice and diluted with filtered DPBS to get accurate acquisitions. Settings were fixed 

and maintained for all samples. Filtered DPBS was tested and no background signal was 
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detected. For each sample, two cycles of analysis at 11 positions were performed and results 

were analysed with ZetaView 8.04.02 software (Particle Metrix).  

PBMC and EV culture 

Thawed cells were cultured in 96-well flat-bottom plates in RPMI medium supplemented with 

10% exosome-depleted FBS (Gibco, Thermo Fisher), 10,000 U/ml penicillin and 10,000 μg/ml 

streptomycin. 105 cells were plated in each well and immediately after, 100 μg of thawed EVs 

(measured by protein quantification with Bio-Rad Protein Assay) were added to the 

corresponding wells. Cells were cultured in 200 μl medium, at a final density of 106 cells per 

ml and incubated for 3 h at 37 °C and 5% CO2. Then, activation of cells was induced by adding 

10 μg/ml phytohemagglutinin (PHA) (Sigma-Aldrich) in corresponding wells. All cultured cells 

were incubated for 72 h at 37 °C and 5% CO2. A schematic representation of the coculture 

protocol is presented in Figure 43. PHA was chosen to induce a polyclonal, nonspecific and 

significant lymphocyte activation, similar to the one produced against infection agents [337]. 

The 10 μg/ml concentration of PHA was established after titration. In a sample from a healthy 

adult 8 different concentrations of PHA (1.25-50 μg/ml) were tested and 10 μg/ml was chosen 

as the best stimulation (Figure 44).  

Figure 43. Cell culture protocol to test the influence of EVs on T cell activation. (A) 105 PBMCs were 

plated in 96-well dishes and then, 100 μg of EVs were added, while DPBS was added in control wells. 3 

hours later, 10 μg/ml PHA were added to induce T cell activation in half of the wells, while the rest was 

maintained with no stimulation. 3 days after plating, T cell activation was evaluated by flow cytometry. 

(B) Schematic representation of the different study conditions. 
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Figure 44. T cell activation under PHA stimulation, measured by flow cytometry. PHA was titrated with 

a healthy adult lymphocyte sample and the 10 μg/ml concentration was chosen as the best stimulation. 

Flow cytometry 

For the flow cytometric analysis of PBMCs, the following fluorochrome-conjugated anti-human 

monoclonal antibodies were used: anti-CD3 APC-Fire750, and anti-CD56 APC from Biolegend; 

Anti-CD8 FITC, anti-CD28 PE, anti-CD4 PE-Cy7 and anti-CD25 PE from BD Biosciences; for cell 

viability assessment 7-aminoactinomycin D (7-AAD) dye (Thermo Fisher). Different antibody 

panels were designed. To assess the T cell population percentages and the senescence state of 

T cells, the combination of anti-CD3 APC-Fire750, anti-CD56 APC, anti-CD8 FITC, anti-CD28 PE, 

anti-CD4 PE-Cy7 and 7-AAD was used. T cells were identified by CD3+ staining, NK cells by 

CD3-/CD56+ staining and B cells as double negative CD3-/CD56-. The same panel without 7-

AAD was applied for the flow cytometry of plasma EVs. For cultured PBMC activation 

measurement anti-CD8 FITC, anti-CD4 PE-Cy7, anti-CD25 PE and 7-AAD were combined. 

Directly thawed PBMCs and PBMCs from cell culture were stained following the same protocol. 

Cells were washed and resuspended in DPBS with 5 % bovine serum albumin (BSA) (Sigma-

Aldrich) to block Fc receptor before staining. Corresponding antibodies were added and 

samples incubated for 20 min at room temperature in the dark. Then, cells were washed to 

remove unbound antibodies and acquired in a FACS Canto II flow cytometer (BD Biosciences) 

or in a Guava EasyCyte 8HT flow cytometer (Millipore, Merck). Single staining and fluorescence 

minus one (FMO) control tubes were used to adjust compensations and set the gating strategy. 

After gating for singlets, lymphocytes were gated based on FSC and SSC and 20,000 

lymphocytes were acquired for each sample. Then, lymphocyte populations were 

distinguished based on fluorescence and analysis of obtained results was performed with FACS 

Diva 8.0.1 (BD Biosciences) and InCyte 3.1 (Millipore, Merck) software respectively. The gating 

strategy for senescent T cells and representative dot plots are presented in Figure 45. 
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Figure 45. Gating strategy for senescent T cells. After gating the singlets (FSC-H vs FSC-A), and 

lymphocytes (SSC-A vs FSC-A), events were separated as shown above: negative for 7-AAD, positive for 

CD3, positive for CD4 or CD8. Finally, senescent CD4+ or CD8+ events were measured by CD28 and CD56 

expression. 

For the flow cytometry analysis of EVs, samples were thawed on ice, the same staining 

procedure was applied (starting from 50ul of resuspended EVs) and filtered DPBS was used as 

staining buffer. An antibody combination of the above-mentioned anti-CD3 APC-Fire750, anti-

CD56 APC, anti-CD8 FITC, anti-CD28 PE, anti-CD4 PE-Cy7 was applied to identify senescence 

markers. For the detection of characteristic EV markers a panel of anti-CD63 FITC, anti-CD81 

APC and anti-CD9 PE antibodies (Biolegend) was used. Single staining and FMO control tubes 

were used to adjust compensations and set the gating strategy. A tube with a combination of 

DPBS and antibodies (without EVs) was included to discard false positives due to antibody 

aggregates (Figure 46).  
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Figure 46. Gating strategy for EVs. The upper panel shows representative dot plots of the Megamix-Plus 

beads, DPBS and a plasma EV sample. The EV gate was established based on the beads. The middle panel 

shows the acquisition of a sample with DPBS and antibodies for EV markers, demonstrating that there 

is no positive signal due to DPBS particles or antibody aggregates. The lower panel shows the positive 

events for CD63, CD9 and CD81 markers of plasma EVs. 
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The acquisition was performed in a CytoFLEX flow cytometer (Beckman Coulter) and 500,000 

EVs were acquired for each sample. The EV gate was established with a mixture of FITC 

fluorescent Megamix-Plus SSC and Megamix-Plus FSC beads (100-900 nm) (BioCytex) and the 

side scatter detector of the violet laser. The analysis was performed with CytExpert 2.1 

software (Beckman Coulter). EV samples from nonagenarians and centenarians were obtained 

several months later, and due to technical reasons, these samples were measured with another 

CytoFLEX flow cytometer. The staining protocol and parameters were maintained, and as a 

control for possible technical bias, some samples from adults acquired in the first batch were 

analysed again. As the fluorescence intensities obtained for these reacquired samples were 

slightly different with the second CytoFLEX instrument, the samples from the second batch 

were analysed separately and differences between groups were only assessed among the 

samples of each batch. Representative dot plots of EV gating and EV markers are presented in 

Figure 46. The gating strategy for EVs with senescent features and representative dot plots 

are shown in Figure 47. 

Figure 47. Gating strategy for senescent EVs. After gating the EVs (Violet SSC-A vs FSC-A), events were 

separated as shown above: positive for CD3, and then positive for CD4 or CD8. Finally, senescent CD4+ 

or CD8+ events were measured by CD28 and CD56 expression. 
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Interleukin production measurement 

Cell culture supernatants were analysed to measure IL production by PBMCs. The whole 

content of each well was collected in a microcentrifuge tube, centrifuged at 400 g for 5 min and 

the supernatant recovered and stored in a new tube.  

The concentration of IL-1, IL-2, IL-6, IL-10 and TNF- were measured with Milliplex MAP 

Human Cytokine/Chemokine Multiplex Immunoassay (Millipore, Merck) and Human Magnetic 

Luminex Assay LXSAHM (R&D systems) following manufacturer’s instructions. RPMI culture 

medium was applied as background. A MAGPIX device with xPONENT software (Luminex 

Corporation) was used for fluorescence measurement and median fluorescent intensity data 

were analysed using the 5-parameter logistic method for calculating cytokine concentrations. 

Statistical Analysis 

Statistical analysis was performed with R version 3.2.2 (R Core Team (2015) [309]) and 

GraphPad Prism version 6.01 for Windows (GraphPad Software, www.graphpad.com). For 

assessing lymphocyte population proportions, CD8+CD28-CD56+ cells and T cell activation 

after coculture with EVs in the whole cohort the Jonckheere-Terpstra test was applied. To 

probe the increase and subsequent decrease of senescent CD4 cells with age the quadratic 

effect of the series was tested. Non-parametric Kruskal–Wallis one-way analysis of variance 

and Wilcoxon rank-sum tests were conducted to evaluate differences between groups. 

Statistical significance was defined as follows:  *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001. 

Results 

Aging results in altered lymphocyte proportions and T cell senescence 

First, we tested whether lymphocyte populations were altered by age. To this end, PBMCs from 

donors were analysed by flow cytometry. Results showed a significant increasing trend in T 

cell (p<0.001) and a decreasing trend in B cell (p<0.001) and NK cell (p=0.0017) proportions 

with increasing age (Figure 48A).  

Next, the senescence of T cells was assessed. The gating strategy was set to identify senescent 

cells based on their loss of CD28 and gain of CD56 expression. Both CD4 and CD8 T cells were 

analysed. The results demonstrate a marked increase in the abundance of CD28- cells with age. 

Moreover, a proportion of CD28- T cells also gained CD56 expression (Figure 48B-E). This 

accumulation of senescent cells affects more severely CD8 than CD4 lymphocytes, reaching 

nearly 80% of CD28- cells (Figure 48D). Interestingly, an increase and subsequent decrease in 

nonagenarians and centenarians was found for senescent CD4 cells (Figure 48B), while the 

accumulation of senescent cells was gradually occurring with age in CD8 cells (Figure 48D).  
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Figure 48. The effect of age on lymphocytes. Lymphocyte subpopulations and T cell senescence were 

assessed by flow cytometry (n=51 donors). (A) The proportion of T cells (CD3+) gradually increases and 

NK cells (CD3-/CD56+) and B cells (CD3-/CD56-) have a decreasing trend with age (Jonckheere test). 

(B) Among CD4 cells, CD28- cells accumulate in old individuals, while there is a partial reduction in the 

very old (quadratic effect **). (C) A small proportion of CD28- cells express CD56, but some differences 

are found with age. (D) CD28 loss is more pronounced in CD8 cells and a gradual accumulation with age 

was found (Jonckheere test ***). (E) The gain of CD56 is also more pronounced in CD8 cells and increased 

proportions were found with age. Age range in years. 

Circulating extracellular vesicles do not reflect the senescent T cell expression pattern 

Isolated plasma EVs were characterized by cryoEM, NTA and flow cytometry. The typical 

rounded shape was observed (Figure 49A) and most EVs were in the size range of 100-200 

nm (Figure 49B). Moreover, we showed by flow cytometry that a proportion of isolated 

particles bear EV surface markers CD9, CD63 and CD81 tetraspanins (Figure 49C). The 
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presence of T cell characteristic membrane markers on plasma EVs was assessed by flow 

cytometry and the same gating strategy applied for cells was followed to identify EVs with 

senescent features. Among CD3+ EVs, CD4+ and CD8+ were distinguished and then, the 

presence of CD28 and CD56 was evaluated. Our results show that EVs from the bloodstream 

carry T cell markers, but contrary to PBMCs, EVs with senescent markers do not accumulate 

with age (Figure 49D-G). Still, a significant decrease of senescent CD4+ EVs was found 

between nonagenarians and centenarians (Figure 49D right panel). Besides, for all age 

ranges, a higher percentage of senescent markers was observed among CD8+ EVs when 

compared to CD4+ EVs (Figure 49D and F). 

Figure 49. Plasma extracellular vesicle characterization. T cell and senescence markers are present on 

plasma EVs, but no differences were found between EVs from different age ranges (n=49 donors). (A) 

Representative cryoEM image of isolated EVs. (B) Representative figure of particle size distribution of 

EVs obtained by NTA. (C) Percentage of particles positive for EV characteristic markers assessed by flow 

cytometry. (D-E) Senescence markers on CD3+CD4+ and (F-G) on CD3+CD8+ EVs assessed by flow 

cytometry. Age range in years. 
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The coculture of PBMCs and EVs improves viability and influences cytokine secretion 

Next, coculture experiments of PBMCs and plasma EVs were performed. Cell and EV samples 

of all ages were tested. Four different conditions were assayed: PBMCs alone, PBMCs + EVs, 

PBMCs + PHA and PBMCs + EVs + PHA. The PHA was applied to stimulate T cell activation, and 

to test the effect of EVs both under non-stimulated and stimulated conditions. To test whether 

the addition of EVs affects cell viability, we analysed cells by flow cytometry and compared the 

7-AAD negative events between groups after three days in culture. The different conditions of 

each PBMC donor were normalized to the control wells where only cells were plated. 

Interestingly, we observed that cell viability improves when EVs are present (Figure 50A). 

Moreover, PHA stimulation significantly reduces viability and this effect is partially rescued 

when EVs are added (Figure 50A). In a further analysis of these results, we compared the effect 

of plasma EVs on cells of adult (20-49 years) and aged (>80 years) donors. The positive effect 

of EVs is stronger in PBMCs from adults for all conditions tested (Figure 50B).  

In order to check whether the coculture with EVs could also affect cytokine production in vitro, 

we performed a luminex assay for TNF-α, IL-6, IL-10, IL-1β and IL-2. Cell conditioned media 

from all conditions of 2 different individuals (one adult and one aged cell donor, cocultured 

with EVs from adults and elders) were tested. Importantly, cytokine concentrations were non-

detectable in the two conditions where PHA was not added, demonstrating that the only 

addition of EVs does not induce cytokine production. When compared to PHA stimulation 

alone, we observed that EV addition influences cytokine production. The secretion of the 

proinflammatory TNF-α, IL-6 and IL-1β cytokines was reduced, while anti-inflammatory IL-10 

was increased and IL-2 not significantly affected (Figure 50C).  
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Figure 50. (Previous page) Effect of extracellular vesicles from plasma on PBMC viability and cytokine 

secretion in vitro. PBMCs from donors of all age ranges were cultured for 72h in the presence or not of 

PHA or/and plasma EVs and then analysed by flow cytometry. (A) Cell viability is reduced after 

stimulation with PHA, while the coculture with EVs improves viability. (B) The positive effect of plasma 

EVs on cell viability is stronger in cells from adults (20-49 years) than aged (80-101 years) individuals. 

(C) The analysis of conditioned media by luminex showed a reduced secretion of proinflammatory 

cytokines TNF-α, IL-6 and IL-1β and an increased secretion of anti-inflammatory IL-10 by stimulated 

cells cocultured with EVs compared to stimulated cells without EVs. 

T cell activation under PHA stimulation is affected by the coculture of plasma EVs and 

depends on the age of the EV donor 

Finally, the effect of plasma EVs on lymphocyte activation was assessed. Polyclonal activation 

of T cells was induced with PHA and measured by CD25 expression by flow cytometry. The 

coculture of lymphocytes with plasma EVs for 72h did not induce T cell activation (Figure 51C-

D) demonstrating that plasma EVs alone are not immunogenic for non-stimulated cells. PBMC 

samples of 22 individuals (12 adults and 10 elders) were tested, and each cell donor was 

assayed with different EV donors (up to 12 different EVs for one PBMC donor, each one in 

different wells and always in duplicate). The percentage of T cells activated under the same 

PHA stimulation (and without EVs) was highly heterogeneous for each PBMC donor (33-92 % 

of CD25+, Figure 51A-B). For normalization, control wells with PBMCs + PHA without EVs 

were used and fold change was calculated. 

Figure 51. T cell activation measured by flow cytometry. (A-B) PBMCs were stimulated with 10 μg/ml 

PHA and 72h later CD25+ cells measured. The percentage of activated CD4 and CD8 cells is 

heterogeneous and not correlated to age. (C-D) PBMCs were cocultured with plasma EVs. The coculture 

of EVs alone do not induce T cell activation. 
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Our results show that EVs modulate T cell activation, but the effect is very heterogeneous and 

is influenced by the age of the EV donor (Figure 52A-D). Taking this into consideration, we 

performed a separated analysis for plasma EVs from each age range. EVs from adults 

significantly increase CD4 cell activation, while the ones from nonagenarians and centenarians 

reduce the activation (Figure 53A). In the case of CD8 cells, EVs from adults also enhance cell 

activation (Figure 53B). Importantly, when the tendency of the whole cohort was analysed, 

we saw that the activation enhancement capacity of EVs significantly decreases with age 

(Figure 53). 

Figure 52. Analysis of activated lymphocytes under PHA stimulation and the influence of the EV donor 

age. (A-B) The coculture of PBMCs with EVs under PHA stimulation affects cell activation in a 

heterogeneous manner. For each cell donor, wells without EVs were taken as reference for fold change 

calculation. (C-D) Both CD4 and CD8 cells get more activated in the presence of EVs from adult donors 

when compared to EVs from elder donors. Adults 20-49 and elders 70-104 years. 
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Figure 53. T cell activation under PHA stimulation and the effect of plasma extracellular vesicles. PBMCs 

from donors of all age ranges were cultured for 72h in the presence of PHA and plasma EVs and then 

analysed by flow cytometry. Wells without EVs were taken as reference for fold change calculation and 

Wilcoxon tests. (A) The presence of EVs from adult donors resulted in the promotion of CD4 cell 

activation, an effect that decreases gradually with EV donor age (in red, Jonckheere test ****). (B) In a 

similar way, CD8 cells cocultured with EVs from adults get more activated, but this effect decreases with 

EV age (in red, Jonckheere test ****). Age range in years. 

Discussion 

The present study analysed peripheral blood samples from adults and elders of different age 

ranges, 20-49 and 70-104 years. First, the lymphocyte subsets were compared and an 

increased T cell and decreased B cell and NK cell proportions were found with age. Several 

works have studied the lymphocyte subsets with aging, both at the total number and 

percentage level. Distinct aging patterns have been found between countries and populations, 

pointing out the complexity and heterogeneity of the immune system and immunosenescence 

[334,338–342]. To our knowledge, our work is the first investigating lymphocyte populations 

with age in the Basque Country (in the north of Spain).  

On the other hand, some aging-related features have been widely reported, such as the loss of 

the costimulatory molecule CD28 from T cell membrane and a subsequent gain of NK 

characteristic markers [100,102,107,343]. This process has been shown to affect both CD8 and 

CD4 T cells, but earlier and to a greater extent to CD8 cells [104,344,345]. Our results are in 

accordance with previous reports. Nevertheless, previous studies reported a gradual 

accumulation of CD4 CD28- cells with age [98,103,346] and here we showed a higher senescent 

CD4 cell percentage in the 80-89 age range, and interestingly a lower percentage in 

nonagenarians and centenarians, following a quadratic effect. We hypothesize that rather than 

CD28 expression recovery, individuals reaching >90 years could be the ones that presented 

lower senescent cell proportions also earlier in life. However, a longitudinal study with a larger 
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sample size would be needed to confirm this progression. As mentioned above, other works 

previously described the loss of CD28 expression in CD4 cells in elders, but to our knowledge, 

our study is the first one analysing this effect in nonagenarians and centenarians and 

demonstrates that they follow a distinct aging progression in some aspects.   

To further characterize immunosenescence, we focussed on plasma EVs. They are known to 

carry many molecules in their membrane and among them, EVs can also bear markers of the 

secreting cell [347]. To test whether plasma EVs resemble the senescence status of T cells, we 

measured T cell membrane markers on EVs. Our results showed that plasma EVs carry T cell 

specific molecules, while there is not an increased proportion of “senescent-like EVs” with age. 

Even if no significant differences were found between age ranges, a higher percentage of CD28- 

EVs was observed among CD8 EVs when compared to CD4 EVs, which could be linked to the 

increased CD28- CD8 T cells. Importantly, we also identified the characteristic tetraspanins 

CD9, CD63 and CD81 of EVs by flow cytometry. A small percentage of circulating EVs in plasma 

carry these molecules, but it should be noted that observed numbers could be underestimated 

by other co-isolated particles and that EVs expressing a single or few copies of the surface 

antigen of interest cannot be detected, as described in previous studies [218,348]. Moreover, 

it should be mentioned that the detection of EV proteins by flow cytometry is a direct measure 

that identifies proteins at their physiologic state – at the EV membrane in this case –, in contrast 

to techniques such as western blotting or proteomics approaches where vesicles are lysed, and 

the numbers of positive particles for each protein cannot be measured.  

Regarding coculture experiments of PBMCs and plasma EVs, we showed that EVs from a 

different donor are not immunogenic for receptor lymphocytes, and in contrast, they affect cell 

viability and cytokine secretion. Specifically, plasma EVs enhance cell viability and partially 

rescue the deleterious effect of PHA, the well-known activation-induced cell death [349]. This 

positive effect is stronger on cells from adults, when compared to elders. Our results indicate 

for the first time that the presence of plasma EVs in culture can partially rescue the activation-

induced cell death and moreover, that EVs enhance T cell viability when compared to the 

culture of cells alone. Further, plasma EVs reduce the secretion of TNF-α, IL-6 and IL-1β 

proinflammatory cytokines and increase anti-inflammatory IL-10 in PHA stimulated cells, but 

EVs alone do not alter cytokine secretion of PBMCs. It has been widely described that PHA 

stimulates cytokine production [350], but the effect of EVs is still not understood. A previous 

study reported a similar effect of mesenchymal cell-derived EVs on IL-10 production [351], 

and some authors have also studied the effect of EVs on lymphocytes and ILs [333,352]. 

However, they worked with EVs from other tissues or produced in culture, which can lead to 

distinct outputs.  
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And even if plasma EVs are not immunogenic, they influence T cell activation under PHA 

stimulation, and this effect is different depending on the age of the EV donor. EVs from adults 

promote T cell activation and this effect decreases with age. These results highlight the 

influence of circulating EVs on T cells and interestingly, also demonstrate the distinct effects of 

plasma EV and T cell interactions depending on age. The coculture experiments enable us to 

more closely resemble the interaction between circulating cells and EVs. Much work is still 

needed to elucidate the complex pool of particles present in plasma and the triggers of 

observed effects, but the present work gives a first description of the role that EVs from plasma 

have on T cells during aging.  

In short, our work describes the reduced CD28 loss of CD4 cells in nonagenarians and 

centenarians, the presence but no accumulation of senescent markers on plasma EVs and the 

distinct interactions between T cells and plasma EVs with age. 
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Introduction 

Aging is a universal process. It affects both healthy individuals as well as the ones that present 

other syndromes and/or diseases. Importantly, aging and the concomitant health problems 

interact and influence each other. These interactions are observed in diseases that develop in 

elder people, such as cancer, but the influence of aging also reaches chronic diseases as patients 

age, like in the case of MS [275]. 

MS is a chronic autoimmune disease of the CNS characterised by pathologic demyelination of 

axons and subsequent neurodegeneration. It is a heterogeneous disease and, clinically, it can 

follow relapsing-remitting or progressive forms [353]. Most of MS patients experience the first 

symptoms at their 20s or 30s, but there are also paediatric or juvenile [271] and late-onset MS 

cases [272]. In the last decades, effective disease-modifying treatments that slow the 

progression of MS have been developed [267], and thanks to them, patients present increasing 

age at disability milestones [273]. Consequently, the mean age of MS patients is increasing, 

with already more than 20% of them aged 60 years or over (msbase.org [274]). Therefore, an 

elevated number of patients suffer from the aforementioned interactions between MS and 

aging processes.  

It should be noted, that the characteristic features of MS are very similar to the ones observed 

during aging, as inflammation, and immune alterations. Moreover, the consequences such as 

mobility and cognitive problems are also found in both processes, which makes it very 

complicated to separate the effects of MS and aging [275].  

In addition, some authors have suggested that several autoimmune diseases, including MS, 

show premature aging, specially with regards to the immune system. They observed reduced 

numbers of naïve CD4 T cells in pediatric MS [354] and increased levels of  CD4+CD28- T cells 

in adult MS patients [280,281]. Moreover, the characteristic loss of the costimulatory molecule 

CD28 from CD4 T cells due to the repeated stimulation and activation is proposed as a sign of 

senescence and terminal differentiation, but it has been shown that in MS patients these cells 

remain functional and show increased cytotoxicity [355]. Furthermore, CD4+CD28- T cells 

have also been found in MS lesions in the CNS, suggesting that they could be implicated in MS 

pathogenesis [356]. Regarding inflammation, elevated levels of TNF- and IL-6 among other 

inflammatory markers have been found in the cerebrospinal fluid and serum of MS patients 

during remission, indicating that some signs of chronic inflammation are present [285,286]. 

The aim of this work was to perform a pilot study to evaluate whether differences are found in 

age-related features due to the presence of MS disease. We tested the above-mentioned 

inflammaging (by measuring TNF-, IL-6 and CRP concentrations) and T cell senescence (by 
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quantifying CD28 and CD56 in T cells) in MS patients and age-matched healthy controls. 

Besides, and considering the results obtained in the previous chapter, we also performed 

coculture experiments of PBMCs and plasma EVs from MS patients and controls, to test the 

influence of EVs on T cell activation. 

Materials and methods 

Participants and blood sampling 

For this study, samples from MS patients and age- and sex-matched healthy controls (HCs) 

were used. MS patients aged 23-49 years and HCs aged 24-50 years were included. Aiming to 

have a representative sample of the heterogeneity observed among MS, patients with diverse 

EDSS scores, treatments and disease evolution times were included. All MS patients were in 

remission at the time sample obtention.  

The study was approved by the Donostia University Hospital’s ethics committee and all 

participants provided written informed consent before blood sampling. Peripheral blood was 

collected by experienced nurses by venipuncture with a 21-gage needle in 8 ml serum 

separator tubes, 2.8 ml citrate tubes and 4ml heparin tubes (Vacutainer, BD Biosciences). 

Obtention of serum and EV isolation from plasma 

Serum separator tubes were allowed to clot for 30 min and centrifuged at 1258 g for 20 min to 

recover serum from the supernatant. Serum was aliquoted and stored at -80°C. 

Citrate tubes were processed immediately after blood collection. EVs were isolated as 

previously described by our group [202]. Briefly, tubes were centrifuged at 2,500 g for 15 min, 

and the obtained plasma was then centrifuged at 13,000 g for 2 min and this supernatant 

centrifuged again at 20,000 g for 20 min to pellet EVs. The pellet was resuspended with filtered 

DPBS (GIBCO, Thermo Fisher), filtered twice through a 0.22 m-pore filter. Resuspended EVs 

were stored at -80 °C. 

PBMC isolation and storage 

Within 1 hour of sampling, peripheral blood collected in heparin tubes (16 ml) was processed. 

PBMCs were isolated by density gradient centrifugation with LymphoprepTM (Abbott), 

following the manufacturer’s instructions. Cells were frozen in RPMI medium 1640 with L-

Glutamine (Gibco, Thermo Fisher) supplemented with 10% fetal bovine serum, 10,000 U/ml 

penicillin, 10,000 μg/ml streptomycin and 10% DMSO and stored in liquid nitrogen until used.  

CRP, TNF- and IL-6 ELISAs 

The concentration in serum of CRP, TNF- and IL-6 was measured with Quantikine and 

Quantikine High Sensitivity ELISA kits (R&D), following manufacturer’s instructions. 38 serum 
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samples were studied, 19 MS patients (mean age 37.5 years) and 19 HCs (mean age 38.5 years) 

and the three analytes were measured for all samples. Table 6 shows the main characteristics 

of MS patients. Serum samples were assayed undiluted for TNF- and IL-6 and diluted 1:100 

for CRP ELISA.  

Table 6. Characteristics of the 19 samples from MS patients used for the analysis of serum.  

 

Characterization of senescent T cells by flow cytometry 

For the flow cytometric analysis of senescent T cells, the following fluorochrome-conjugated 

anti-human monoclonal antibodies were used: anti-CD3 APC-Fire750 and anti-CD56 APC from 

Biolegend; anti-CD8 FITC, anti-CD28 PE, anti-CD4 PE-Cy7 and from BD Biosciences; for cell 

viability assessment 7-AAD dye (Thermo Fisher).  

PBMCs were thawed, washed and resuspended in DPBS with 5 % BSA (Sigma-Aldrich) to block 

Fc receptor before staining. Corresponding antibodies were added and samples incubated for 

20 min at room temperature in the dark. Then, cells were washed to remove unbound 

antibodies and acquired in a FACS Canto II flow cytometer (BD Biosciences). Single staining 

and FMO control tubes were used to adjust compensations and set the gating strategy. After 

gating for singlets, lymphocytes were gated based on FSC and SSC and 20,000 lymphocytes 

were acquired for each sample. Then, lymphocyte populations were distinguished based on 

fluorescence and analysis of obtained results was performed with the FACS Diva 8.0.1 software 

(BD Biosciences). 13 samples from MS patients (mean age 42.4 years and characteristics in 

Sex Age (years)
Years since 

MS diagnosis
EDSS Treatment

Female 23 6 0 Natalizumab

Female 29 5 2.5 Natalizumab

Female 30 10 3.5 Natalizumab

Female 33 15 5.5 Fingolimod

Male 33 7 4 Natalizumab

Female 34 19 1 IFN -1a

Male 35 11 2.5 Glatiramer acetate

Female 35 9 2.5 Fingolimod

Female 38 8 4.5 Fingolimod

Female 39 15 0 Fingolimod

Female 40 9 1 Natalizumab

Female 41 14 4.5 Fingolimod

Female 42 21 2.5 Glatiramer acetate

Female 42 5 4.5 Natalizumab

Female 42 13 3 Fingolimod

Female 43 7 1 IFN -1b

Male 43 16 4 Natalizumab

Male 44 16 4.5 IFN -1a

Female 47 27 3 IFN -1b
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Table 7) were measured. The obtained results were compared to the age-matched HCs 

measured in the previous chapter (12 samples, mean age 39 years).  

Table 7. Characteristics of MS patients’ samples used for the analysis of senescent T cells. 

 

Coculture of PBMCs and EVs, activation and flow cytometry analysis 

PBMCs were thawed, washed and cultured in 96-well flat-bottom plates in RPMI medium 

supplemented with 10% exosome-depleted FBS (Gibco, Thermo Fisher), 10,000 U/ml 

penicillin and 10,000 μg/ml streptomycin. 105 cells were plated in each well and immediately 

after, 100 μg of thawed EVs (measured by protein quantification with Bio-Rad Protein Assay) 

were added to the corresponding wells. Cells were cultured in 200 μl medium, at a final density 

of 106 cells per ml and incubated for 3 h at 37 °C and 5% CO2. Then, activation of cells was 

induced by adding 10 μg/ml PHA (Sigma-Aldrich) in corresponding wells. All cultured cells 

were incubated for 72 h at 37 °C and 5% CO2. Then, cells were taken from culture, transferred 

to 1.5 ml tubes and stained for flow cytometry.  

To investigate the effect of EVs on T cell activation and whether the samples from MS patients 

show distinct features, cells and EVs obtained from HCs and MS patients were used. Cells 

isolated from both HCs and MS patients were tested, and each of them was cocultured with EVs 

from the two donor types. A schematic representation of the culture protocol and the assayed 

combinations are shown in Figure 54. PBMC samples from 14 donors (7 HCs and 7 MS 

patients) and EV samples from 8 donors (4 HC and 4MS patients) were used for the cell culture 

experiments.  

  

Sex Age (years)
Years since 

MS diagnosis
EDSS Treatment

Female 30 4 3.5 IFN -1a

Female 33 10 0 Glantimer acetate

Male 35 11 4.5 Glantimer acetate

Female 36 7 4.5 IFN -1a

Female 36 17 3.5 Glantimer acetate

Female 40 9 1 IFN -1a

Female 40 12 2 IFN -1b

Female 41 21 2.5 Glatiramer acetate

Female 43 7 1 IFN -1b

Male 45 18 4 Natalizumab

Female 46 27 3 IFN -1b

Female 47 18 3 Fingolimod

Female 49 20 4 Glatiramer acetate
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Figure 54. Cell culture protocol to test the influence of EVs on T cell activation. (A) 105 PBMCs were 

plated in 96-well dishes and then, 100 g of EVs were added, while DPBS was added in control wells. 3 

hours later, 10 μg/ml PHA were added to induce T cell activation in half of the wells, while the rest was 

maintained with no stimulation. 3 days after plating, T cell activation was evaluated by flow cytometry. 

(B) Schematic representation of the 12 different study conditions. EV samples from 5 adults and 5 elders 

were tested, and all conditions were assayed in duplicate.   

For the flow cytometric analysis, the following fluorochrome-conjugated anti-human 

monoclonal antibodies were used: anti-CD8 FITC, anti-CD4 PE-Cy7 and anti-CD25 PE from BD 

Biosciences; for cell viability assessment 7-AAD dye (Thermo Fisher). Cells were stained 

following the same protocol as the one explained above for senescent T cells. Samples were 

acquired in a Guava EasyCyte 8HT flow cytometer (Millipore, Merck). Single staining and FMO 

control tubes were used to adjust compensations and set the gating strategy. After gating for 

singlets, lymphocytes were gated based on FSC and SSC and 10,000 lymphocytes were acquired 

for each sample. Then, lymphocyte populations were distinguished based on fluorescence and 

analysis of obtained results was performed with the InCyte 3.1 software (Millipore, Merck).  

Statistical analysis 

Statistically significant differences between groups were tested with GraphPad Prism version 

6.01 for Windows (GraphPad Software, www.graphpad.com). The nonparametric Mann-

Whitney test was applied. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. 

 

http://www.graphpad.com/
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Results 

Inflammatory markers in serum 

The first approach to compare MS patients and HCs was to measure 3 of the most relevant 

inflammatory markers: CRP, TNF- and IL-6. We performed ELISA assays with serum samples 

of 19 MS and 19 HCs. Before performing the statistics to compare the two groups of interest, 

we proved that there was no correlation between the analytes and donor age. Finally, the 

results obtained demonstrate that there are no significant differences for CRP concentration, 

while MS patients have an increased concentration of TNF- and IL-6 in circulation when 

compared to controls (Figure 55).  

Figure 55. Analysis of inflammatory markers in serum. (A) The concentration of CRP shows no 

differences between HCs and MS patients. (B-C) An elevated concentration of TNF- and IL-6 was 

reported for MS patients.  

Characterization of senescent T cells 

We wondered whether there could also be different proportions of senescent T cells in MS 

patients. To test this, we analysed the PBMCs isolated from MS patients and healthy controls, 

comparing them by flow cytometry.  The absence of the costimulatory molecule CD28 and the 

gain of CD56 expression in T cells was evaluated.  

The obtained results are shown in Figure 56. We did not find any significant difference 

between HCs and MS patients regarding CD4 senescent cells (Figure 56A-B). On the other 

hand, when CD8 senescent cells were compared, a reduced proportion of CD28- CD56+ cells 

were found in MS patients of 40-49 years with respect to the age-matched controls (Figure 

56D). A similar trend was reported for the CD28- CD56- CD8 cells of both age ranges, but they 

did not reach statistical significance (Figure 56C). Notably, the proportion of senescent cells 

was higher for CD8 cytotoxic cells than for CD4 helper cells.  
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Figure 56. Characterization of senescent T cells. PBMC samples from HCs and MS patients were stained 

and analysed by flow cytometry. Among the CD3 cells, CD4 and CD8 were distinguished and the 

expression of CD28 and CD56 molecules evaluated. (A-B) For CD4 T cells, no differences were reported 

among the analysed groups. (C) Even if no statistical significance was reached, a reduced proportion of 

CD28- cells is shown for MS patients. (D) There is an accumulation of CD28- CD56+ cells in HCs aged 40-

49 when compared to the ones aged 30-39 years. When HCs and MS patients were compared, a reduced 

percentage of CD28- CD56+ cells was found for 40-49 MS patients compared to the age-matched 

controls. Age range in years.  

Effect of the coculture of PBMCs and EVs on cell viability 

Aiming to compare the effect of plasma EVs on T cell activation in controls and MS patients, we 

performed coculture experiments following the same protocol as in the previous chapter. This 

experimental setup and the design of the flow cytometry staining panel, with the cell viability 

marker 7-AAD, also gave us the opportunity to test the effect of EVs on cell viability.  

The percentage of viable cells in all the tested culture conditions (PBMCs alone, PBMCs + EVs, 

PBMCs + PHA and PBMCs + EVs + PHA), were measured for cells from 4 MS and 4 HCs. Each 

cell donor was assayed in different replicates and cocultured with several EV donors, so the 

average of viable cells on each condition was calculated for every cell donor.  Consequently, the 

mean values of the 4 culture conditions for each cell donor were plotted and compared. We 
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showed that the percentage of viable cells is heterogeneous depending on the donor, but all of 

them improve cell viability in the presence of plasma EVs (Figure 57). Moreover, as reported 

in the previous chapter, PHA reduces viability, and this effect is partially rescued in the 

presence of EVs.  

Figure 57. Cell viability differences based on cell culture conditions. The percentage of viable cells after 

3 days in culture was assessed by 7-AAD staining in a flow cytometer. PBMCs cultured alone were taken 

as reference. The coculture of cells with plasma EVs resulted in an elevated proportion of viable cells, 

while the stimulation with PHA reduced cell viability. In addition, a partial rescue of viability was found 

when cells were stimulated with PHA in the presence of EVs.  

Effect of the coculture of PBMCs and EVs on T cell activation 

As mentioned above, we cultured PBMCs and EVs from MS patients and age-matched controls, 

in order to evaluate whether they present a different T cell activation pattern. We performed 

several experiments with all the possible combinations: we cultured HC or MS cells, and we 

stimulated them EVs from HC or MS patients. We tested multiple cell and EV donors for each 

condition. As explained in the previous section, all culture conditions were tested (PBMCs 

alone, PBMCs + EVs, PBMCs + PHA and PBMCs + EVs + PHA) and none of the samples assayed 

showed T cell activation in the presence of EVs alone (without PHA stimulation), 

demonstrating no immunogenic effect of EVs. In consequence, cells with PHA alone or with 

PHA + EVs were compared. In all the cases, the wells stimulated with PHA (and without EVs) 

were taken as reference and fold change differences were calculated with respect to them.  

The analysis was performed separately for CD4 and CD8 T cells. For CD4 cells, no differences 

on cell activation were found between the tested coculture conditions (Figure 58A). In 

contrast, when CD8 T cells were evaluated, we found activation differences between cells from 

HCs and MS patients (Figure 58B). Specifically, CD8 cells from HCs get more activated than 

cells from MS patients. This difference is statistically significant when cells are cocultured with 

EVs from HCs, while the observed difference does not reach statistical significance when cells 
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are cocultured with EVs from MS patients (p = 0.08). Notably, the coculture of cells with PHA + 

EVs resulted in enhanced activation of both CD4 and CD8 T cells in all conditions, when 

compared to cells stimulated with PHA alone (fold change > 1). 

Figure 58. T cell activation under PHA stimulation and EV coculture. (A) The activation of CD4 cells was 

compared depending on the cell donor and the EVs that were added to cultured cells, and no differences 

were found between any of the conditions. (B) When CD8 cells were measured, a reduced activation of 

cells from MS patients was reported when compared to cells from HCs. This reduction was statistically 

significant for cells cocultured with EVs from HCs. The results for cells cocultured with EVs from MS 

patients follow the same trend, but the analysis did not reach statistical significance. 

Discussion 

MS is a complex disease, in which many systems, tissues and cell types are affected. The main 

consequence of MS is the demyelination of axons, and even if the triggering factor initiating the 

damaging cascade is still unknown, the implication of the immune system has been widely 

reported [357]. Taking into consideration the chronic and intense implication of the immune 

system during MS pathology, as well as the effects of immunomodulatory drugs prescribed to 

patients, the possible premature exhaustion of the immune system was proposed [279]. 

However, as mentioned before, due to the pathology of MS it is not easy to separate the features 

of the disease from the ones caused by aging.  

This is the case, for example, of inflammation. Elevated concentrations in circulation of 

proinflammatory markers are found in MS patients [286] as well as in aged subjects [138]. In 

accordance with previous reports, here we showed that in our samples, MS patients have 

increased IL-6 and TNF- concentrations in serum when compared to age-matched controls. 

In contrast, we did not report elevated CRP levels in MS patients. Interestingly, the differences 

for IL-6 and TNF- concentrations are found even if MS patients were in remission and despite 
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the immunomodulatory drugs they take. Other authors also found elevated inflammatory 

markers in MS patients during relapse when compared to HCs [358,359]. On the other hand, 

recent studies reported that treatments with Natalizumab, Fingolimod or hormones such as 

vitamin D or melatonin reduce the concentration of inflammatory mediators (including IL-6 

and TNF-) in MS patients [360–363]. Taken together, and considering that the participants of 

our study were treated with immunomodulatory drugs, it seems that treatments could 

partially reduce inflammation, but differences can still be observed when compared to healthy 

controls.  

With the obtained results, we demonstrated that chronic inflammation is present both in elders 

and MS patients, but we hypothesize that the leading causes and molecular mechanisms are 

probably different. Moreover, we also consider it should be kept in mind that the observed 

differences are based on the mean differences between groups, but not all MS patients present 

elevated inflammation, reflecting disease heterogeneity.  

Our second approach was to measure the proportion of T cells with features associated with 

senescence (loss of CD28 and gain of CD56) in MS patients and compare the results to the ones 

obtained for HCs. First, we evaluated CD4 T cells and we did not find differences between the 

studied groups. In contrast, when CD8 T cells were compared, a reduced percentage of CD28-

CD56+ cells was found in MS patients aged 40-49 years with respect to age-matched controls. 

Notably, even if no statistical significance was reached, CD28-CD56- CD8 cells showed the same 

trend for both 30-39 and 40-49 age ranges. Our results for CD8 T cells are in line with previous 

reports, in which less CD8+CD28- cells were found in the blood of MS patients with different 

disease phase and treatments [277,287,288]. Regarding CD4, other authors reported elevated 

proportions of CD28- cells in the blood of untreated MS patients, while they did not find 

differences in patients treated with interferon-1b [355,364]. These results point out the 

influence of treatments and therefore, could explain the results we obtained, as all samples we 

tested were from patients treated with different drugs.  

Besides, we should consider that even if little differences are found for the analysed membrane 

molecules, there could be other features that result in distinct functions of T cells. For instance, 

one of the research groups that found elevated CD28- CD4 T cells in untreated MS patients also 

demonstrated that both CD28+ and CD28- cells from MS patients express less CD95 Fas death 

receptor, which could probably contribute to MS pathogenesis by preventing apoptosis and 

prolonging T cell survival [355]. Moreover, CD4 CD28- cells were found to accumulate in MS 

lesions and have cytotoxic effects, evidencing that the loss of CD28 expression does not mean 

lack of function or anergy [356,365]. Therefore, we consider that future experiments in MS 
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patients should investigate both the characteristic membrane molecules as well as the 

functions of T cells.  

The last objective of this work was to study the influence of EVs on T cell activation. We 

previously evaluated this effect on samples from healthy controls, and now we wanted to test 

whether samples from MS patients present different interactions between T cells and plasma 

EVs. To this end, we followed the same coculture protocol as in the previous chapter and we 

assayed cells and EVs from MS and HCs. First, taking advantage of the staining panel, we 

measured the proportion of living cells after 3 days in culture. Interestingly, we replicated our 

previous results, demonstrating that the coculture of PBMCs with plasma EVs enhances cell 

viability. Moreover, this effect was shown for cells of MS patients and controls, as well as the 

partial recovery of cell viability in the presence of PHA stimulation. As commented before, no 

previous works have investigated the influence of EVs on cell viability so, importantly, we 

reported an effect of EVs that was not known. Consequently, our results open new questions 

that should be further investigated in future studies to try to understand the responsible 

mechanisms.  

Then, we evaluated T cell activation by CD25 expression. Importantly, in line with our previous 

results, the coculture of cells and plasma EVs did not result in T cell activation in any of the 

cocultures tested, so we can conclude that EVs from controls or MS patients do not induce an 

immune response. However, EVs influence T cell activation under PHA stimulation, as they 

enhance CD25 expression in both CD4 and CD8 cells. We investigated the effect of EVs on T cell 

activation depending on the source of the cell and EV donor. No differences were found 

between EVs from controls and MS patients. In contrast, when PBMCs from controls and MS 

patients were compared, we showed that CD8 T cells from MS donors have a reduced activation 

enhancement than age-matched HCs. This difference was observed when cells were cocultured 

with EVs from HCs and from MS patients, but it reached statistical significance only for cells 

cocultured with EVs from HCs. We hypothesize that with advancing age, CD8 T cells of MS 

patients could have a reduced capacity to respond to new stimulus or insults when compared 

to healthy individuals.  

These last results describe novel features of both T cells and EVs from plasma. We showed that 

CD4 and CD8 T cell activation is increased in the presence of EVs, but CD8 cells from MS 

patients have a milder response to the same EV coculture. Linking this to the previous 

discussion about senescent T cells, in this study we evaluated both T cell membrane 

characteristics as well as their functioning in MS patients. Moreover, we highlight that EVs must 

be taken into consideration when trying to understand the immune system, as it has been 
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shown by us and many other researchers that EVs secreted by different types of cells are 

present in plasma and influence the immune response [234].  

In summary, in this work we have investigated different aspects of the immune system in adult 

MS patients, aiming to evaluate the presence of features related to premature aging. Despite 

the effect of immunomodulatory treatments, individuals with MS have elevated levels of 

inflammatory markers, similar to the ones reported in elders. In contrast, when T cells were 

analysed, no accumulation of senescence markers was reported. Lastly, the coculture of PBMCs 

and plasma EVs under PHA stimulation promotes T cell activation, but this effect is reduced in 

MS patients.   

Therefore, there are still many aspects that are not completely understood and the implications 

between MS and aging, including the possible occurrence of premature aging during MS need 

to be further investigated. We should first describe and comprehend the molecular changes 

and consequences that occur, to then be able to apply this knowledge and make the best 

treatment decisions during the aging of MS patients.
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The aim of these lines is to provide a general overview of the presented data from a personal 

point of view. I would go through the chapters and comment about what we got and where are 

we going. Besides, when introducing my opinion, I will try to summarize some of the thoughts 

that crossed my mind during the writing of this thesis, and also the ones that were there for 

the last four years. 

First, and importantly, a comment about growing old. Aging affects all of us. During the first 

couple of decades of our life, we notice this process in the people around us: close relatives and 

people that is a reference for us start to get old. Then, we realize that aging is a universal 

process, and we have to learn how to face it in our own body. Of course, growing older has both 

positive and negative sides. On one hand, the older we are, the more we know, the more 

conscious we are, and the more we appreciate our time. On the other hand, the older we are, 

the more ailments we have.  

The universality of aging makes the research on this field different from other biomedical 

issues. It is of course very rewarding to investigate any disease and to try to describe the 

underlying biological processes, contributing to the better understanding and to the possible 

development of new treatments. Indeed, the principal aim of biomedical research is to advance 

the knowledge and consequently, to help the affected people. In addition, in the particular case 

of aging, as commented before, we research on a process that we feel socially closer and that 

will undoubtedly also reach us (if it has not yet).  

Secondly, I would also like to comment on the two main approaches in the research of aging. 

There are studies that focus on living longer, or lifespan [69,128]. In this field, there are 

investigations, for instance, trying to describe why some humans live more years than others 

or attempting to find longevity-related genes in model organisms. In contrast, the other 

principal strategy focuses on living better, or health span [2]. This approach aims to describe 

age-associated defects and problems that lead to reduced functional capacity and thus, worsen 

our quality of life. In fact, we have mentioned previously in this work that we live longer than 

previous generations, but the health span is not simultaneously increasing. And in the end, why 

would we want to live longer, if it just means to live more years but with disability? For this 

reason, I believe that we should first focus on living our last years better, and then we could 

investigate how to live longer.  

With regard to the loss of functional capacity and dependency, a previous state of frailty has 

been defined. Due to the diverse pathways that can lead to dependency, frailty is comprised of 

a wide range of symptoms and indicators [5]. The tests that have been developed and are now 

applied in the clinic identify a part of the frail elders, but fail to accurately identify all of them. 
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The complementation of the available tests with an easily measurable biomarker is a promising 

possibility that it is worth exploring. We and many others have tried to find blood biomarkers 

of frailty, and some interesting candidates have been proposed. However, the validity of the 

proposed biomarkers has still not been proved in large cohorts of different regions [187]. For 

instance, some inflammatory mediators like IL-6 or TNF-α have been measured in many works, 

but not all of them, including ours, found increased levels in frail individuals.  

In my view, the differences between studies may be influenced by the inclusion criteria and the 

frailty screening tool selected. When data was available, we have compared the classification 

of our participants by several frailty scales and shown that there is a high proportion of people 

that are identified as frail by only some of the tests. In consequence, it is not easy to search for 

molecular biomarkers, and the inclusion of participants classified as frail by all the tests could 

improve the outcomes, as shown in our transcriptome profiling study. On the other hand, I 

consider that longitudinal studies would be more useful to monitor the proposed biomarkers 

for several years and evaluate whether they change in accordance with the loss of function and 

the development of frailty.  

However, I am aware of the complexity of performing longitudinal studies, and specially in 

people of advanced age. Another possibility that I consider that could be useful, is to study the 

changes of potential biomarkers after an intervention aimed to reverse or reduce frailty, as we 

did with the pilot physical intervention study and the expression of candidate genes. Indeed, 

this is a longitudinal approach that can be followed by only several months and provide 

valuable data. Moreover, longitudinal studies, including an intervention or not, are an 

interesting tool to follow the progression of biomarkers in a single individual, which could be 

more useful than the establishment of a single cut-off value, as we have seen that there is high 

interindividual variability in the concentration or expression levels of biomarkers. 

In this work, a special focus has also been set on EVs. In the last decades EVs have cleared their 

name, and now we know that they are much more than cellular trash. These secreted particles 

have been found to be produced by almost all cell types and to be implicated in many 

physiological and pathological processes. In addition, the communication between cells by EVs 

is not a particular feature of humans or mammals, and a wide range of organisms use these 

communication media. Furthermore, it has been described that EVs can also mediate inter-

organismal communications, as seen between different bacteria, but also between the 

microbiota and human cells in our bodies. So, we should admit that EVs are relevant mediators 

of intercellular communication that have not been taken into consideration until recently 

[201]. 
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This fact, as well as the other new discoveries about molecules, structures or functions that are 

made every year in the biological field, demonstrate the complexity of the system and the long 

way we still have to get to understand the complete picture. For instance, there could probably 

be other molecules or particles that participate in intercellular communication, and even if no 

other components await to be discovered, we will need time to get to describe all the features 

and functions of EVs.   

One of the main challenges for the investigation of EVs is their small size. In contrast to cells, 

EVs cannot be easily visualized or measured. Besides, the term EV is applied for vesicles of 

diverse size, with a diameter that ranges from few nanometres to more than a micrometre. In 

consequence, some techniques classically designed for cells, like flow cytometry, can only 

detect large EVs, while other dedicated machines, including NTA, better identify small EVs but 

do not accurately recognize some of the larger particles. In the last years, thanks to the 

increasing interest of EVs, novel instruments have been developed. For example, there are new 

flow cytometers and imaging flow cytometers that detect particles of around 100 nm, and there 

are protocols to detect and track several fluorescently labelled or engineered EVs in vivo 

[217,366]. These are relevant advances that have enabled the description of previously 

unknown characteristics of EVs.  

On the other hand, the EV cargo has also been studied by many authors and in EVs from 

different sources. As recorded by dedicated databases like Vesiclepedia, thousands of proteins, 

lipids and nucleic acids have been reported to be transported by EVs [367]. Some studies have 

been carried out by evaluating the presence or concentration of just the molecules of interest, 

while others performed omic approaches and identified hundreds of EV components. 

Interestingly, the presence of both specific and common molecules has been reported in 

several works. The molecules found in all the analysed samples have been suggested to be the 

components that are constitutively secreted in the studied EV subtypes.  

However, the issue of whether some of the molecules identified in EV samples could actually 

be outside and co-isolated is still discussed. Representative examples of this phenomena are 

the free circulating miRNAs that can get attached to EVs, or the proteins, which are thought to 

form a protein corona around the EVs in body fluids. Indeed, when isolating EVs from 

controlled conditions like cell culture, we can get very enriched samples. Specifically, we can 

ensure the obtention of EVs produced by a single cell type if we perform a monoculture and 

apply EV-depleted culture media. On the contrary, when handling complex biological fluids 

such as blood or urine, the isolation of a single type EV or the complete separation from other 

components is very complicated.  
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From my point of view, however, complexity is one of the features we have to assume when 

analysing biological samples. Cell culture experiments are very useful for the characterization 

of certain aspects of EVs, but we have to keep in mind that EVs are found and operate in a much 

more complex environment. For this reason, I consider that when working with samples 

isolated from humans we should focus on the applications EVs can have, even if we do not 

exhaustively know the components of our samples. An illustrative example of the proposed 

approach, as commented in the second chapter of this work, is the use of PRP and PPP for 

skeletal muscle regeneration. Many authors have applied PRP and PPP in animal models and 

in human patients with positive results, and they were not aware of the presence of EVs in 

these plasma preparations [326]. Also, the use of some drugs shares some similarities, as there 

are approved and commercially available drugs for the treatment of distinct diseases, even if 

their mechanism of action resulting in the desired effect is not fully understood – for instance, 

interferon beta treatment for MS [368]. Of course, it would be desirable to describe and get to 

understand all the molecules and their effects, but we should not downplay the significance of 

an EV discovery if the isolation is not perfect or the description of the sample is not complete.  

Thus, I think that the experiments performed in the second chapter show promising effects of 

EVs from plasma for improving cell differentiation in two of the tissues more affected by aging: 

skeletal muscles and bones. Additionally, the variance found between EVs from adults and 

elders point to an age-dependent decline in differentiation promotion capacity that should be 

further studied. In a different approach, we have also shown that plasma EVs affect T cell 

activation under PHA stimulation, and our results are in line with previous works that have 

demonstrated the implication of EVs in the immune system functioning. Finally, and even if it 

was not the main objective of our experiments, we found that the coculture of plasma EVs 

improved T cell viability. I believe that this is an exciting result because it indicates that T cells 

are “happier” and survive more in culture when EVs are present. Furthermore, and knowing 

that a wide range of EVs circulates in the blood, we hypothesize that probably only some of 

them are taken up by each cell type and for this reason, EVs isolated from plasma can influence 

different systems.   

Importantly, we characterized our EV samples by cryoEM, NTA and flow cytometry. Probably, 

the confirmation of EV enrichment does not imply the absence of other molecules from plasma 

that could be co-isolated in our samples, but as discussed, we consider that our results are 

relevant despite other components could be present. Indeed, we established our EV isolation 

protocol more than five years ago [202], and apply it always strictly in the same way, ensuring 

that the reported differences have a biological basis and are not due to technical or procedural 

discrepancies. Moreover, we are now trying to characterize the cargo of our plasma EV samples 
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by proteomics and microarrays. These analyses will provide extensive information and could 

give us a hint about the responsible molecules for the observed effects.   

Another multifaceted and intricate system of central importance in this thesis is the immune 

system. During the last years, and thanks to the expertise of my supervisors on immunology 

and multiple sclerosis disease, I have learned a lot about the immune system functioning and 

misfunctioning. I must admit that the more I learn, the more fascinated I feel about the 

complexity of this system. I think that I have acquired just basic knowledge and I continue 

learning new things every day. Particularly in this work, we focused on the relevant role of the 

immune system functioning during aging. Chronic low-grade inflammation or inflammaging is 

present in most elders and besides, T cell senescence also increases with age. Interestingly, we 

had the opportunity to analyse T cell senescence in participants of different ages, and we found 

lower levels in nonagenarians and centenarians, contributing to the description of the 

distinctive features of in the very old. However, our results should be confirmed in a larger 

cohort and, moreover, we should continue investigating to try to find the possible links 

between these features and longevity.   

Regarding the possible incidence of premature aging characteristics in patients with 

autoimmune diseases, we performed a small study in MS patients. The hypothesis that the 

chronic activation of the immune system could lead to its premature exhaustion was evaluated 

in our patients. Despite the MS patients were in remission and under immunosuppressive 

treatment, they had elevated levels of inflammatory markers, which indicates a state of chronic 

inflammation and could be linked to inflammaging. In contrast, these same MS patients did not 

have increased proportions of senescent T cells (CD28-), or even have reduced numbers, when 

compared to age-matched healthy controls. As discussed before, this feature was observed in 

previous studies, and some of them also demonstrated the cytotoxic capacity of CD28- T cells 

in MS patients [356,365]. These findings show again the complexity of the immune system and 

suggest that CD28- T cell could be implicated in MS pathology. In addition, the strong effect of 

the immunomodulatory drugs applied for the treatment of MS influence not only the picture 

we get when performing a cross-sectional study, but they could also contribute to 

contradictory activating and suppressing signals and elevated immune stress in the patients.  

Finally, I would like to finish this general discussion by giving my personal view about 

completing a PhD thesis in biomedical research. Two of the conclusions that I draw are the 

importance of study participants and the eager to answer unsolved questions. With regard to 

the participants, I have to point out that this work would not have been possible if donors were 

not enrolled. I really appreciate the people that decide to take part in research by donating a 

biological sample, in our case blood. It might just seem a small puncture, but it can be a great 
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effort for a person with more than 90 years or with a chronic disease. About the eager to 

answer questions, I have to acknowledge the colleagues and researchers that have directly or 

indirectly contributed to this work. This thesis was developed as a consequence of the previous 

works, and thanks to the collaboration of many researchers around us. We all dedicate our time 

to try answer questions and to generate new ones.  

Getting a PhD might seem long and difficult when we start, but years go fast, and we never have 

enough time to complete that never ending “to-do list” that is stuck at our lab desk. So, we will 

have to continue working…. 
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1. Frailty is a heterogeneous syndrome and molecular biomarkers could help its 

identification. 

 

2. The concentration of CRP, TNF-α and IL-6 is elevated in elders, while albumin is 

decreased, and the concentration of EVs is not altered.  

 

3. Despite inflammaging, there are no differences in inflammatory markers between 

robust and frail elders.   

 

4. The expression of EGR1 in circulating leukocytes is a potential biomarker of frailty. 

 

5. EVs isolated from plasma promote osteogenesis and myogenesis in vitro. This effect is 

reduced when EV samples from elder donors are applied. 

 

6. Senescent CD8 T cells increase with age. Similarly, senescent CD4 T cells increase with 

age, but in contrast, there is a decrease in nonagenarians and centenarians. 

 

7. EVs isolated from plasma improve lymphocyte viability in vitro, both unstimulated or 

under PHA stimulation. The positive effect of EVs is stronger in cells from adults. 

 

8. Plasma EVs boost T cell activation in vitro. This effect is produced only under PHA 

stimulation, and it gradually decreases with the age of the EV donor.  

 

9. Adult MS patients have increased inflammatory markers in circulation despite being in 

remission and under immunomodulatory treatments, which indicates a chronic 

inflammatory state that could be related to inflammaging. 

 

10. Plasma EVs also boost the activation of T cells from MS patients. In the case of CD8 T 

cells, this effect is stronger in cells from healthy controls than from MS patients. 
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