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Black metal hydrogen above 360 GPa
driven by proton quantum fluctuations

Lorenzo Monacelli,1 Ion Errea,2 Matteo Calandra,3 and Francesco Mauri1

Hydrogen metallization under stable conditions is a ma-
jor quest for realizing the first room temperature su-
perconductor. Recent low-temperature experiments1–3
report different metallization pressures, varying from
360GPa to 490GPa. In this work, we simulate struc-
tural properties, vibrational Raman, IR and optical spec-
tra of hydrogen phase III accounting for proton quantum
effects. We demonstrate that nuclear quantum fluctua-
tions downshift the vibron frequencies by 25%, introduce
a broad line-shape in the Raman spectra, and reduce the
optical gap by 3eV. We show that hydrogen metallization
occurs at 380GPa in phase III due to band overlap, in
good agreement with transport data2. Our simulations
predict this state is a black metal - transparent in the
IR - so that the shiny metal observed at 490GPa1 is not
phase III. We predict the conductivity onset and the opti-
cal gap will substantially increase if hydrogen is replaced
by deuterium, underlining that metallization is driven by
quantum fluctuations and is thus isotope dependent. We
show how hydrogen acquires conductivity and brightness
at different pressures, explaining the apparent contradic-
tions in existing experimental scenarios1–3.

Solid hydrogen at high pressures exhibits a very rich
phase diagram with the presence of five different insulat-
ing molecular phases, labeled from I to V4–6, before un-
dergoing a transition into the long-sought atomic metallic
state proposed by Wigner and Huntington7, expected to
be a room temperature superconductor8. The structural
characterization of these phases is challenging since both
neutron and X-ray scattering require sample sizes compat-
ible with a pressure lower than 250 GPa9. The experimen-
tal structural information must be inferred indirectly from
vibrational spectroscopy (Raman and IR) and/or optical
measurements (transmittance and reflectivity). The ex-
perimental difficulties in collecting data and the different
probes used have led to apparently contradicting results
about the metallization of hydrogen at low temperatures
in the solid-state as shown in Figure 1. Optical reflec-
tivity measurements suggest metallization of hydrogen in
an atomic state at 495 GPa from an unidentified opaque
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Figure 1. Sketch of the physical properties of low-temperature
hydrogen. Optical data and reflectivity measurements1 argue
that hydrogen is black above 320GPa and seem to indicate it is
shiny at 490GPa. Conductivity measurements2 show that phase
III is a conductor above 360GPa. IR absorption data3 show a
transparency window at low frequency until 420GPa, where the
transmission abruptly drops to zero. This is a qualitative sketch,
as there are mismatches on the pressure calibration between
different experiments3 and the results are highly debated10.

phase1, electrical measurements observe semimetallic be-
havior in phase III above 360 GPa2, while infrared trans-
mission experiments suggest that hydrogen metallizes from
phase III after a first-order transition to a metallic phase
at 420 GPa3.

Numerical ab initio simulations play consequently a
crucial role in understanding the structures that form
the phase diagram of hydrogen. Ab initio structural
searches successfully elucidated the crystalline morphology
of phase II11 and provided good candidates for phases III12,
IV13, and V14. However, different theoretical approxima-
tions yield to distinct low-energy structures, and, thus, a
strong debate on the correct identification of the phases
is ongoing15. All structure searches performed so far on
hydrogen assume that nuclei are classical particles. The
Born-Oppenheimer energy landscape is explored looking
for the global minimum of the energy. However, as hy-
drogen is the lightest element, its nucleus is subject to
huge quantum fluctuations that can largely affect struc-
tural properties. For instance, nuclear quantum effects have
been shown to completely reshape the energy landscape in
the hydrogen-rich H3S16 and LaH10

17 compounds as well
as in metallic hydrogen18, invalidating the phase-diagram
obtained with classical simulations. Only recently struc-
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tural searches were constrained to search for high-symmetry
groups, in order to find saddle-point structures that could
be stabilized by entropic or quantum effects14. Further-
more, many competing structures differ in enthalpy by less
than 1 meV per atom in a broad range of pressures19. This
makes the identification of the ground state very sensitive
to errors difficult to control, like the choice of a particular
exchange-correlation functional in density functional the-
ory (DFT) calculations.

The presence of strong quantum fluctuations is not only
crucial for the structures of hydrogen, but it also implies
that large anharmonic effects shift and deform the phonon
spectral functions observed with Raman and IR probes.
Considering that most of the experimental signatures used
to distinguish between hydrogen phases rely on the char-
acterization of the H2 vibron, it is mandatory to perform a
fully quantum and anharmonic description of vibrational
properties. Classical molecular dynamics simulations of
Raman and IR spectra performed so far20, which do con-
sider anharmonicity but not quantum effects, strongly un-
derestimate nuclear fluctuations and may yield to strong
errors in vibron energies. In fact, vibrons, with energies
above 3500 cm−1, require approximately 5000 K to be ther-
mally populated so that their quantum fluctuations are
completely missed in any classical molecular dynamics sim-
ulation in the solid-state.

The difficulties in dealing with quantum nuclei lead to
the existence of strange twists in the recent theoretical lit-
erature: where different exchange-correlation functionals
are chosen to describe energetics14,15,19,21,22 or vibrational
features12–14,20,23. This is a clear sign that current the-
oretical methods lack the precision necessary to compare
with experiments, and this is compensated with the ad hoc
choice of the exchange-correlation functional that best fits
with experimental data. However, in this way, calculations
cannot be predictive and the correct assessment of the crys-
talline phase is built on the hope of a big error cancellation
between exchange-correlation and quantum nuclear effects.

In this work we focus on hydrogen’s metallization, explor-
ing the scenario of the direct/indirect band gap closure of
phase III, recently observed experimentally2,3, as well as its
Raman and IR spectra. This phase is stable above 150 GPa
at low temperatures (under 200 K) and is characterized by
the presence of a high infrared activity above 4000 cm−1.
Both the IR and the Raman vibrons are well-defined peaks
that become softer and broader with increasing pressure.
To include quantum and anharmonic effects on nuclei we
employ the stochastic self-consistent harmonic approxima-
tion (SSCHA)24–26. The SSCHA performs a quantum vari-
ational minimization of the Gibbs free energy assuming
that the quantum wave-functions of the nuclei can be rep-
resented as a multidimensional Gaussian, parametrized by
centroid positions, which determine the maximum of the
ionic wave-functions, and effective force constants, which
determine the mean squared displacement of atoms around
the centroids. By evaluating the stress tensor associated
with the SSCHA energy26, we relax the crystal structures
including also lattice parameters in a fully quantum and
anharmonic description. To simulate vibrational properties
we exploit the dynamical extension of the SSCHA25. Thus,

we can compute all the experimentally accessible data in a
consistent way both for the structural and spectral proper-
ties.

The most supported candidate for phase III is a base-
centered monoclinic structure with C2/c space group and
24 atoms in the primitive unit cell (labeled C2/c-24). The
structure consists of four different layers of imperfect hexag-
onal rings formed by H2 molecules (see Fig. 2, panels d-e).
Despite its monoclinic character, the cell has a very slight
distortion with respect to the hexagonal one (α = 89.9o,
γ = 119o, the whole structures with quantum effects are
reported in the Extended Data Figure 9).We performed a
constant pressure quantum relaxation at 155 GPa, 260 GPa,
355 GPa, and 460 GPa to cover the whole experimental
pressure range. We report the structural modification in-
duced by quantum fluctuations in Figure 2. Quantum fluc-
tuations generate a volume expansion at fixed pressure of
about 1.5% (1% at 460 GPa), but do not modify qualita-
tively the equation of state (panel a). The volume expan-
sion is nonisotropic and acts mainly on the out-of-plane
lattice parameter c, pushing away the layers as pressure is
increased (panel b). The most important effect is on the
H2 bond length, which increases up to 6 % in comparison
to the classical result (panel c). A similar extreme stretch-
ing was also shown in Cmca-4 hydrogen27. The equation
of state agrees well with the experimental data from X-ray
diffraction9, while the c/a ratio is slightly underestimated
(this could be related to the different temperatures of the
experiment and our simulations), see Extended Data Fig-
ure 10. The classical treatment of the nuclei completely
misses the dependence of the H2 bond length with pres-
sure in C2/c-24 hydrogen: while the bond length appears
to be pressure independent in the classical calculation, it
increases with pressure in the quantum calculation, show-
ing the tendency imposed by pressure towards molecular
dissociation. Considering that the molecular bond length
has a huge impact both on the energy of molecular phases
of hydrogen and their vibrational frequencies, no classical
calculation is expected to determine accurately the phase
diagram and the spectroscopic properties of high-pressure
hydrogen.

We report in Figure 3 the simulation of the Raman and
IR vibrons. Quantum fluctuations trigger the anharmonic-
ity of the vibron by shifting the position of the peaks and
introducing a finite life-time with respect to the harmonic
result. The Raman vibron (panels c,d) acquires a very
broad linewidth with increasing pressure due to anhar-
monic phonon-phonon scattering, in good agreement with
experiments. On the other side, the IR linewidth does not
increase as much as the Raman, and the broadening at
355 GPa is dominated by the LO-TO splitting. In fact,
thanks to the effective charges on the IR vibron, the real
part of the dielectric function remains negative above the
transverse optical (TO) frequency, causing the sample to
absorb in a band between the TO and longitudinal opti-
cal (LO) frequencies. This underlines the importance of
considering the full dielectric tensor (summing optical and
vibrational contributions) to simulate the vibrational spec-
trum (see Methods). The slope of the vibron energy versus
pressure increases when quantum effects are considered for
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Figure 2. Crystal structure with and without quantum effects of hydrogen phase III (C2/c-24). (a) the equation of state. (b) the
c/a ratio as a function of pressure. It quantifies the anisotropy of the quantum contribution to the stress tensor, more pronounced
in the c direction (out-of-plane) with respect to the a vector (in-plane). (c) The H2 bond length as a function of pressure. (d) Top
view of a single layer of C2/c-24. (e) Primitive cell of the C2/c-24 phase.

both Raman and IR simulations (panels e,f). This is a
consequence of the tendency towards dissociation of the H2
molecules, whose increasing bond-length with pressure is
missed by the static theory (Figure 2, panel c). At 300 GPa
we predict a slope for the IR vibron of −1.96 cm−1 GPa−1

(harmonic −0.71 cm−1 GPa−1) increasing the match with
the experimental one of−2.46 cm−1 GPa−1. Also the agree-
ment of the Raman vibron slope is improved: we predict a
value of −3.49 cm−1 GPa−1 (harmonic −1.32 cm−1 GPa−1)
versus the experimental one of −3.02 cm−1 GPa−1. All the
spectra that include quantum fluctuations show a quan-
titative improvement with respect to the harmonic simu-
lation. The vibron gets much closer to the experimental
value, and the line-shape is very well reproduced. Even if

we are slightly underestimating the vibrational energy, our
results support C2/c-24 as phase III of hydrogen. We be-
lieve this slight underestimation is a residual consequence
of the choice of the exchange and correlation functional,
even if the BLYP functional we use is recognized among
the most accurate for predicting energies of high-pressure
hydrogen21 and it is commonly chosen for the calculation
of the hydrogen phase-diagram14,19. The huge peak shift
and the change in the slope of the vibron frequency caused
by the zero-point motion question the validity of previous
calculations that do not include both anharmonicity and
quantum nuclear fluctuations12–14,20,28.

Even if our quantum anharmonic calculations support
C2/c-24 as phase III of hydrogen, it is not obvious if it
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Figure 3. Vibrational spectra at 0K. Panels (a-b): Simulation of the IR absorbance within the harmonic approximation (classical
nuclei), full quantum anharmonic theory and experimental data (Ref.3 at 251GPa and 351GPa at 80K). A small smearing has
been added to the harmonic spectrum for presentation purposes. Panel (c-d): Simulation of the Raman spectra, experimental data
from Ref.10 (248GPa at 140K) and Ref.2 (360GPa and 100K). Panel (e): Position of the IR vibron peak vs pressure. Exp. data
from3 (80K). Panel (e): Raman vibron peak vs pressure. Exp. data from2.

can explain the apparent contradictions between different
experiments on the metallization. To clarify this issue, we
compute the optical properties of C2c-24 hydrogen includ-
ing the electron-phonon interaction beyond perturbation
theory. We use the SSCHA quantum wave-function to ex-
tract a supercell phonon-distorted configuration to compute
the dielectric properties (see Methods). We use supercells
with 432 atoms, that are much larger than those used in
prior studies (96 atoms)15,29. The impact of the electron-
phonon interaction on electronic and optical properties con-
verges slowly with the cell size. The use of a small cell leads
to overestimating the DOS at the Fermi energy, the plasma
frequency, and underestimating the metallization pressure
(see Extended Data Figure 1 and 2). To correct the sys-
tematic underestimation of the DFT band gap in the opti-
cal properties, we went beyond DFT employing the TB09
meta-GGA30, a functional esplicitly developed to calculate
the electronic band structure, which is known to reach al-
most the GW accuracy on a broad data-set of materials31.

To estimate the error on the choice of the functional for
the band gap, we repeated the same calculations within
DFT correcting the gap with a constant scissor value as
described in ref.32, showing a discrepancy of about 0.3 eV
(see Extended Data Figure 6).

The closure of the gap in the density of states (DOS)
coincides with the onset of conductivity. Here this oc-
curs at 380 GPa (see Figure 4, panels a,d) at 0 K, in good
agreement with the conductivity measurements in Ref.2
(360 GPa at 200 K). However, after the fundamental gap
closes, the Drude peak is small (due to the small value of
the DOS), as we show in panel (e). Thus, the sample re-
mains transparent within an IR window that extends up
to the direct gap energy associated with interband opti-
cal transitions (panel b). The low DOS around the Fermi
level of phase III (panel a of Figure 4) indicates that this
phase will not be a high-temperature superconductor. The
closure of the predicted optical gap matches nicely with
the measurements of Ref.3 (panel d), and it is in agree-
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ment with another recent theoretical work which employed
a different methodology33. Finally, even above the metallic
transition and the optical gap closure, reflectivity in the
optical range is very flat and small because of interband
transitions (panel c). This gives a dark appearance to the
sample, as observed in experiments.

From the remarkable agreement with experiments, our
calculations support the C2/c-24 structure as the phase
III also from optical properties, at odds with previous
results15. Interestingly, we find quantum fluctuations to
have a stronger impact on the optical gap, downshifted
by more than 3 eV, while the fundamental indirect gap is
downshifted by about 2 eV.

In Figure 4 (d) we predict the metallization of deuterium.
The indirect gap increases by 1 eV and the optical by about
1.2 eV with respect to protium at 0 K. However, since deu-
terium has lower phonon energy modes, its band structure
is expected to be more affected by temperature than pro-
tium. This isotope effect on the electronic properties is
the largest we are aware of in a solid crystal. If no phase-
transitions occurs, deuterium should become a black metal
at 450 GPa, 70 GPa higher than protium.

Our calculations show that there is no contradiction be-
tween the existence of a conducting metallic state, an IR
transparent window, and a black appearance of the sam-
ple. As our results predict a low reflectivity at 460 GPa, we
rule out the hypothesis of C2/c-24 becoming shiny at very
high pressure, and the claimed metallization observed at
490 GPa must be related to a first-order phase-transition1,
probably to an atomic metallic phase34.
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Methods

To include quantum fluctuations and anharmonicity at a
non-perturbative level, we use the stochastic self-consistent
harmonic approximation (SSCHA)24–26. The SSCHA is a
variational method: it looks for the density matrix that
minimizes the Gibbs free energy:

G(P, T ) = min
ρ̃

Tr [ρ̃H + kbT ρ̃ ln ρ̃+ PΩ(ρ̃)] , (1)

where Ω(ρ) is the crystal volume, H is the ionic Hamilto-
nian in the Born-Oppenheimer approximation,

H = T + V, (2)

with T the ionic kinetic energy and V the energy land-
scape. The trial density matrix ρ̃ is chosen among all pos-
sible Gaussians. In this way, the only variational parame-
ters are the average centroid positions and the fluctuations
around the average.

The energy landscape V is calculated within density
functional theory (DFT) using the generalized gradient ap-
proximation (GGA) BLYP35, as implemented in Quantum
ESPRESSO36,37. The static and dynamical SSCHA calcu-
lations were performed in a 2× 2× 1 supercell of the prim-
itive unit cell, which consists of 96 atoms. Each supercell
configuration was computed with a uniform grid of 4×4×4
for the Brillouin zone integrals, with a wave-function cutoff
of 60 Ry (240 Ry for the electronic density). The conver-
gence of results was checked with a 6×6×6 grid and a wave-
function cutoff of 80 Ry (320 Ry for the density). We gener-
ated a norm-conserving pseudo-potential with no pseudized
electrons using the settings from the Pseudo Dojo38 library
and the ONCVPSP software39. In all calculations, Marzari-
Vanderbilt smearing of 0.03 Ry was used to account for the
enhanced gap closure in the 96 atom cell when the phonon-
distorted configuration is considered (see SI).

The indirect band gap is computed from the electron
DOS, as shown in Figure 4 (panel a). The DOS is ob-
tained simulating a configuration with 432 atoms (3×3×2
supercell) with ions randomly distributed according to the
SSCHA nuclear wave-function. The electronic states are
obtained through a DFT calculation with TB09 functional
as implemented in Quantum ESPRESSO40, with a Bril-
louin zone sampling of 8 × 8 × 6. Interestingly, we find
TB09 to reproduce the fundamental band gap for the ideal
crystal (open squares in Figure 4, panel d) in very good
agreement with G0W0 calculations of Ref.22 and Quan-
tum Monte Carlo of Ref.32, with a computational cost re-

https://gitlab.com/mesonepigreco/q-e


6

250 300 350 400 450
Pressure [GPa]

1

0

1

2

3

4

5

6

7

B
an

d 
ga

p 
[e

V
]

(d)

Exp. metal
transition

Indirect gap (Deuterium)
Optical gap (Deuterium)
Indirect gap (Protium)
Optical gap (Protium)

Indirect gap (Classical)
Optical gap (Classical)
Optical gap (Exp. data)

0 1 2 3
F [eV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
O

S 
[e

V
1  a

to
m

s
1 ]

(a)

Indirect gap

0 1 2 3 4
 [eV]

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

(b)

Optical gap

460 GPa
355 GPa
260 GPa

0 1 2 3
 [eV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
ef

le
ct

iv
ity

visibleIR

(c)

0 1 2 3
 [eV]

104

105

106

 [
1 m

1 ]

(e)
Drude peak

Figure 4. Optical properties of phase III of hydrogen, including quantum nuclear fluctuations, sampled in a supercell with 432
atoms. (a) Electron DOS at three pressures (protium). The indirect gap is measured as the region where the DOS per atom drops
below 0.001 eV−1. (b) Transmittance over a sample of 1.5 µm (protium). The transmittance is used to compute the direct (optical)
gap as shown by the bars for the case of 260GPa. (c) Reflectivity of hydrogen at different pressures (protium). Even if the phase
is a metal above 375GPa, the reflectivity in the IR remains very low (under 20% at 460GPa) in the whole visible range (marked
with a rainbow). So we predict the phase to be transparent at 250GPa, black at 355GPa and remaining black even at higher
pressures, where also the optical gap is closed. (d) The indirect and direct gap for protium, deuterium and the classical nuclei
(infinite mass), compared with the experimental results3. The metallic transition due to indirect gap closure occurs experimentally
(protium) at 360GPa at 200K2. We refer to “classical” the gaps computed in the static equilibrium configuration, while for protium
and deuterium (hydrogen-1 and 2) the optical properties computed in a snapshot sampled from the quantum nuclei wave-function
(see Methods). (e) Optical conductivity (protium). For clarity, in panels (b,c,e) we report the data considering only the electronic
contribution to the susceptibility (see Methods).

duced of many orders of magnitude. Our optical calcula-
tions differ from Ref.33: we employed a bigger simulation
cell, accounted for non vertical electronic transition due to
electron-phonon coupling, and neglected dynamical effects.
The direct gap is computed from the simulated transmit-

tance over a sample of 1.5 µm, as illustrated in Figure 4
(panel b). The dielectric tensor and the optical conductiv-
ity,

ε(tot)(ω) = 1 + 4πχ(tot)(ω) (3)
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and

σ(tot)(z) = −izχ(tot)(z), (4)

are computed from the total susceptibility. This is divided
into an electronic and a ionic contribution:

χ(tot) = χ+ χ(ion). (5)

All the quantities with (tot) are computed accounting for
both the ionic and electronic contribution, otherwise only
the electronic contribution is included. The electronic sus-
ceptibility is computed within the independent particle ap-
proximation framework on the same phonon-displaced con-
figuration as the DOS. We checked that the results did not
change if the operation is repeated in 5 different configura-
tions.

χαβ(z) = − 2e2

m2NkΩ

∑
kmn

f(ξkm)− f(ξkm)

ξkm − ξkn
〈km|pα|kn〉 〈kn|pβ |km〉

(εkm − εkn)2 − z2
, (6)

ξkm = εkm − εf z = ω + iη, (7)

where Nk is the number of k points used in the sum, Ω the
simulation cell volume, f the Fermi occupation function,
εkn and εf , respectively, the energy of the state |kn〉 and
the Fermi energy, η the smearing, and 〈km|pα|kn〉 is the
momentum matrix element along the Cartesian direction
α for the optical transition between the m and n states at
the k point in the reciprocal space. Eq. (6) includes both
interband and intraband terms, enabling to correctly simu-
late the disordered phonon displaced configurations in the
supercell even when interband and intraband transitions
are not well defined. We implemented Eq. (6) into the ep-
silon.x code of Quantum Espresso. We used a smearing η
of 0.1 eV (this is the reason for the non zero conductivity
of the insulating phase of Figure 4). To account for all
possible orientations of the crystal we take

ε(ω) =
1

3

∑
α=x,y,z

εαα(ω). (8)

The refractive index of the material is

n(ω) =
√
ε(ω). (9)

The reflectivity of Figure 4 (panel c) is computed as

R =

∣∣∣∣n(ω)− nd
n(ω) + nd

∣∣∣∣2 , (10)

where nd is the diamond anvil cell refractive index, that is
assumed constant in the simulated interval to 2.33. The
transmittance across a sample of thickness d = 1.5 µm is
simulated as

T = (1−R)2 exp

(
−2ω=nd

c

)
, (11)

(we neglected multiple reflections inside the sample). The
optical band gap is considered as the first value for which
the transmittance drops below 2% (excluding the absorp-
tion due to the vibrational modes). In Figure 4, the ionic
contribution to conductivity, transmittance, and reflectiv-
ity was neglected. However, it is important to simulate
the vibrational spectrum. The ionic susceptibility is the
dipole-dipole correlation function:

χ
(ion)
αβ (ω) =

∫ ∞
−∞

e−iωt 〈Mα(t)Mβ(0)〉 dt. (12)

The average 〈·〉 must be performed on the quantum nuclear
ground state. The dipole induced by a ionic displacement
is approximated as linear:

Mα(t) = |e|
3N∑
b=1

Zαb[Rb(t)−R(0)
b ], (13)

where Zαb is the Born effective charge, Rb(t) is the position
operator of the b atom and R(0)

b is the average position of
the b atom (b runs over both atomic and Cartesian indices).
In Figure 3 (panels a,b), we report the IR vibron signal
computed as the difference of the transmittance with and
without the ionic contribution. This quantity correctly ac-
counts for electrostatic effects neglected by just considering
the imaginary part of the susceptibility. In particular, the
sample absorbs where the refractive index (Eq. 9) has an
imaginary part. When the ionic contribution is negligible
with respect to the electronic one, the complex refractive
index may be approximated as:

n(tot)(ω) ≈ n+
2π

n
χ(ion) 4πχ(ion) � 1 + 4πχ (14)

For a transparent material (i.e. the imaginary part of n
is zero: =n = 0), the absorption is directly related to the
imaginary part of the ionic susceptibility:

=n(tot)(ω) ≈ 2π

n
=χ(ion)(ω) (15)

However, in the presence of strong effective charges, the
ionic susceptibility can be greater than the electronic one.
In this case also the real part of χ(ion) gives a contribu-
tion to the absorption. In particular, ε becomes negative
between the LO and the TO frequencies. This induces ab-
sorption (see Eq. (9)) in a finite region even in the presence
of a phonon with an infinite lifetime. This is a dominant
contribution to the IR vibron at 355 GPa (see Extended
Data Figure 3).

The Raman spectrum is assumed proportional to the po-
larizability correlation function:

IRaman(ω) ∝ =
∫ ∞
−∞

dte−iωt 〈α(t)α(0)〉 , (16)
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αab(t) =

3N∑
c=1

Aαβc[Rc(t)−R(0)
c ], (17)

here, A is the Raman tensor. The position operator in both
Eq. (13) and (17) can be written using phonon creation-
annihilation operators. The resulting phonon correlation
functions of Eq. (12) and Eq. (16) are computed using
the SSCHA dynamical Green function25, accounting for
phonon-phonon interactions non perturbatively. For the
IR we get:

χ
(ion)
αβ (ω) = e2

∑
ab

ZαaZβb√
mamb

Gab(ω), (18)

Gab(t)√
mamb

= 〈[Ra(t)−R(0)
a ][Rb(0)−R(0)

b ]〉 , (19)

G−1ab (ω) = ω2 −Dab −Πab(ω), (20)

D is the SCHA dynamical matrix, Π is the phonon self-
energy (Ref.41 equation A12), ma is the atomic mass of the
a-th atom.Eq. (20) has been computed using a Lanczos al-
gorithm that will be discussed elsewhere in detail. Noten
Eq. (18) we trace the Green function Gab(ω) contracted
with the effective charges and we keep both the real and

imaginary part to study the absorption, after summing the
electronic contribution to it (Eq. 6). For the Raman calcu-
lation, we instead take the imaginary part of the response
function:

IRaman(ω) ∝ −
3∑

α=1

∑
ab

AααaAααb√
mamb

=Gab(ω). (21)

Here, we consider only the Raman contribution arising by
incoming and outcoming radiation with the same polariza-
tion vector. Also in this case, the Green function is con-
tracted with the Raman tensor.

In the self-energy expression Π(ω), we compared the re-
sults with and without the 4 phonon scattering vertex (the
(4)

Φ of Ref.41 equation A12), obtaining no significative differ-
ence. Thus, all the simulations have been performed setting
(4)

Φ= 0 (Π(ω) reduces to equation A14 of Ref.41). The ef-
fective charges and the Raman tensor of Eq. (13) and (17)
are computed with Quantum ESPRESSO phonon packages
in the SSCHA average centroid position. The Raman ten-
sor was computed within the LDA approximation42. For
the 460 GPa calculation, we computed the Raman tensor
and effective charges forcing the system to be an insulator,
thus our results are indicative. A more sophisticated time-
dependent approach should be used for metals to correctly
describe them43.
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Extended Data Figure 1. Comparison of the electronic density of states with different simulation

boxes (compared with the classical nuclei). The use of a small simulation cell (like the one of 96

atoms), leads to a strong underestimation of the metallic transition, as it introduces metallic states

inside the gap. These simulations have been performed using the BLYP functional, thus the overall

gap differs from the one of TB09 reported in the main text.

[1] P. Borlido, T. Aull, A. W. Huran, F. Tran, M. A. L. Marques, and S. Botti, Journal of Chemical

Theory and Computation 15, 5069 (2019).

[2] S. Azadi, N. D. Drummond, and W. M. C. Foulkes, Physical Review B 95, 035142 (2017).

[3] C. Ji, B. Li, W. Liu, J. S. Smith, A. Majumdar, W. Luo, R. Ahuja, J. Shu, J. Wang, S. Sino-

geikin, Y. Meng, V. B. Prakapenka, E. Greenberg, R. Xu, X. Huang, W. Yang, G. Shen, W. L.

Mao, and H.-K. Mao, Nature 573, 558 (2019).

2



0.0 0.2 0.4 0.6 0.8 1.0
Energy [eV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Tr
an
sm

itt
an
ce

0 1 2 3 4 5
Energy [eV]

0.1

0.2

0.3

0.4

0.5

0.6

R
ef
le
ct
iv
ity

Quantum nuclei (432 atoms)
Quantum nuclei (96 atoms)

P = 360 GPa

Extended Data Figure 2. Comparison of the optical properties with two different simulation cells,

containing 96 and 432 atoms respectively. Also, in this case, the optical gap is completely missed

by using a small simulation cell. This effect is due to the combination of the overestimation of

the Drude peak in the small cell that results from the higher DOS close on the Fermi level (see

Extended Data Figure 1) and a subsequent increment of the plasma frequency and the reflectivity

at low energy that kills the absorption profile. Moreover, the optical gap is also strongly affected

by optical transitions involving phonons with q points not commensurate with the cell of 96 atoms.

These simulations are performed using the BLYP functional using the structures at 355 GPa.
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Extended Data Figure 3. The IR vibron at 355 GPa computed as the absorbance and the imaginary

part of the ionic green function only. The IR vibron linewidth cannot be explained by anharmonic-

ity alone, but requires properly accounting for the absorbance induced by the negative dielectric

function between the TO mode (the pole of the susceptibility) and the LO one (induced by the

effective charges)
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Extended Data Figure 4. Imaginary part of the conductivity at the simulated pressures. Combining

these data with the real part if the conductivity reported in Extended Data Figure 4 of the main

text, it is possible to compute the dielectric function and the all the optical properties (reflectivity

and transmittance). These data are computed with quantum nuclei using the TB09 functional.
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Extended Data Figure 5. Comparison of the band structure at 260 GPa for the average centroid

position with different DFT exchange-correlation functionals. TB09 is the functional we used for

computing optical properties in the main text. Since the structure is very close to a hexagonal cell,

we adopt the typical k-path along high symmetry lines for hexagonal crystals. Both HSE06 and

TB09 go beyond DFT, employing, respectively, hybrid and meta-GGA functionals. HSE06 is a

general-purpose functional that provide very good electronic bands, at a much high computational

cost required by the calculation of the exact exchange. On the other side, TB09 is aimed only to

compute electronic properties, present a lot of limitations on isolated atoms, but it has a compu-

tational cost comparable to that one of BLYP (allowing calculation with more atoms in the cell).

The precision of TB09 and HSE06 in the band structure calculation is comparable. By assuming

a similar accuracy of TB09 and HSE06[1] we can estimate an error of 0.4 eV in the band-gap of

each functional on static configurations.
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Extended Data Figure 6. The direct gap with quantum fluctuations estimated with the BLYP

functional plus a constant scissor correction as discussed in[2], to match the value of the QMC

results. As clearly shown, the difference with the results reported by using TB09 (main text, figure

3 panel d) provides an estimation of the error on the band-gap due to the exchange-correlation

functional of about 0.3 eV. This is a bit lower than what we obtained by comparing TB09 and

HSE06 on a static snapshot in Extended Data Figure 5. This probably indicates that the choice

of the DFT functional for the band gap is less sensitive in the ionic displaced configurations than

in the static ones.
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Extended Data Figure 7. Comparison between the Raman spectrum at 360 GPa computed with

quantum nuclei (anharmonic) and experimental data. The simulated spectrum has been shifted to

match the vibron energy of experiments to compare the lineshape.
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Extended Data Figure 8. Comparison between reflectivity and transmittance obtained with differ-

ent configurations extracted by the nuclear density matrix with 432 atoms. The stochastic error

for each configuration on the gap is about 0.1 eV
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Pressure

155 GPa 90 90.0779 90 B̂C, ÂC, ÂB

3.14545 5.44694 5.65907 A,B,C

0.08567 0.42309 0.37493 H

-0.28381 0.02837 0.37506 H

-0.31564 0.29502 0.38737 H

-0.41136 0.41238 0.37962 H

0.10180 0.17811 0.36305 H

0.32473 0.16163 0.37004 H

260 GPa 90 90.1981 90 B̂C, ÂC, ÂB

2.93362 5.07765 5.23661 A,B,C

0.07224 0.41153 0.37507 H

-0.28350 0.02592 0.37457 H

-0.31687 0.29765 0.39083 H

-0.42629 0.42424 0.37910 H

0.10805 0.17792 0.35891 H

0.35134 0.16296 0.37160 H

(a)

Pressure

355 GPa 90 90.1665 90 B̂C, ÂC, ÂB

2.80707 4.85289 4.99180 A,B,C

0.06582 0.40343 0.37493 H

-0.28505 0.02670 0.37442 H

-0.31753 0.29794 0.39023 H

-0.43276 0.43269 0.37835 H

0.10813 0.17763 0.35940 H

0.36675 0.16318 0.37255 H

460 GPa 90 90.0255 90 B̂C, ÂC, ÂB

2.69999 4.66242 4.80103 A,B,C

0.05831 0.39507 0.37462 H

-0.28856 0.02931 0.37475 H

-0.31170 0.29847 0.38701 H

-0.44174 0.44058 0.37721 H

0.10605 0.17449 0.36245 H

0.38264 0.16452 0.37395 H

(b)

Extended Data Figure 9. Average nuclear positions of phase III (C2/c symmetry group) after

the relaxation with quantum effects, both on the cell and the atoms within the BLYP functional.

All the Wyckoff positions are 8f. Only symmetry nonequivalent atoms in crystal coordinates are

given. The lattice parameters are given in Å and angles in degrees. The structures are in the

conventional monoclinic cell. The data in the primitive cell of Fig. 1 in the main text are obtained

as a = 1
2

√
A2 +B2, c = C and γ = 2 arctan(A/B)
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Extended Data Figure 10. Structural data of phase III compared with the X-Ray diffraction

experiments computed by[3]. The discrepancies on the c/a ratio is probably due to the different

temperature between the simulation (0 K) and the experiment (room temperature). The c and

a parameter, as well as the unit cell volume, have been resized to account for the fact that Xray

diffraction does not distinguish the single atoms in the molecule, and thus identifies a different cell

periodicity. a′ = a/
√

3, c′ = c/2 and V ′ = V/6
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