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Abstract

The successful application of estimation of distribution algorithms
(EDAs) to solve different kinds of problems has reinforced their candidature
as promising black-box optimization tools. However, their internal behavior
is still not completely understood and therefore it is necessary to work
in this direction in order to advance their development. This paper
presents a new methodology of analysis which provides new information
about the behavior of EDAs by quantitatively analyzing the probabilistic
models learned during the search. We particularly focus on calculating the
probabilities of the optimal solutions, the most probable solution given by
the model and the best individual of the population at each step of the
algorithm. We carry out the analysis by optimizing functions of different
nature such as Trap5, two variants of Ising spin glass and Max-SAT. By
using different structures in the probabilistic models, we also analyze the
influence of the structural model accuracy in the quantitative behavior
of EDAs. In addition, the objective function values of our analyzed key
solutions are contrasted with their probability values in order to study
the connection between function and probabilistic models. The results not
only show information about the EDA behavior, but also about the quality
of the optimization process and setup of the parameters, the relationship
between the probabilistic model and the fitness function, and even about
the problem itself. Furthermore, the results allow us to discover common
patterns of behavior in EDAs and propose new ideas in the development
of this type of algorithms.

1 Introduction

Estimation of distribution algorithms (EDAs) [33, 25, 38] are a population-
based optimization paradigm in the field of evolutionary computation [15] that
has acquired special relevance in the last decade. Nowadays, they are a strong
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alternative to solve optimization problems from different domains such as engineering
[53], biomedical informatics [1, 46] or robotics [54]. However, despite their
successful application there are a wide variety of open questions [47] regarding
the behavior of this type of algorithms.

The main characteristic of EDAs is the use of probabilistic models to lead
the search towards promising areas of the space of solutions. By making use
of a subset of promising solutions belonging to the population, the employed
probabilistic models allow to estimate a new probability distribution over the
search space at each step of the algorithm. Thus, each of the possible solutions
has an associated probability of being sampled which varies during the optimization
process. The probability values assigned to the solutions are the main source
to determine which solutions will be returned by the algorithm. Consequently,
given a problem, the fundamental objective is to get higher probability values
for the highest quality solutions throughout an iterative process. Naturally,
to reach the optimal solution is an inherent challenge and a reference in the
development of both theoretical [55] and practical [42] EDAs.

In order to better understand how these algorithms solve the problems, the
characteristics of the probabilistic models used are a rich source of information
which has been studied in several works [20, 3, 5, 14, 22, 27, 29]. Particularly, one
class of models that has been extensively applied in EDAs are Bayesian networks
[37], which allow to encode probability distributions through a structure, that
expresses explicit independence relations among variables, and a set of parameters.
There exist different implementations of EDAs based on this type of models [16,
40, 30]. When Bayesian networks are used, a straightforward form of analysis
is through the explicit interactions among the variables that they provide.
Thus, it has been shown how different parameters of the algorithm influence
the structural model accuracy [27], how the dependences of the probabilistic
models change during the search [22] and moreover how the networks learned
can provide information about the problem structure [14, 22, 12].

In order to continue the study of EDAs, we take a different but complementary
path which was initiated in a preliminary version [13] of this work. Specifically,
we propose a new methodology based on a quantitative analysis of the probabilistic
models. As we have argued, the particular probability values assigned to the
solutions during the search are the raw material from which EDAs obtains the
results. Therefore, studying such probabilities provide new useful information
to better understand the behavior of this type of algorithm. Following this
criterion, our quantitative analysis of EDAs is based on monitoring the probability
of certain distinguished solutions during the search: 1) the optimal solution of
the function, 2) the solution with the highest probability in the distribution and
3) the best individual at each population. In order to complete the quantitative
analysis, we also record the fitness function values for the solutions 2) and 3)
during the search. The proposed analysis is carried out when the estimation
of Bayesian network algorithm (EBNA) [16] solves problems of different nature
which can have a unique or several optimal solutions. We use different structural
models which can be learned from the population or created by reproducing
interactions among the variables of the solved problem. And finally, we also
use different population sizes in order to analyze the influence of this parameter
in the algorithm. Basically, throughout this analysis we are able to study open
issues in EDAs such as: 1) how the probability assigned to the optimal solutions
evolve during the search, 2) how the structural model accuracy influences their
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behavior and 3) how the relationship between the fitness function and probability
values is.

The results obtained in the study not only provide information on these
key issues but also show a different perspective of EDAs that is able to reveal
clear patterns of behavior inside the algorithm. Furthermore, both probability
and function values analyzed are able to capture the quality of the probabilistic
models in terms of their use within EDAs. Throughout the analysis proposed
it is also possible to observe how the convergence of the algorithm occurs and
detect multimodality in the problems solved. Finally, based directly on the
results, we are able to propose different ideas in order to assist in the use of
EDAs in real problems and contribute to their development. The main proposals
are related to 1) bringing forward premature convergence, 2) measuring the
quality of different components and their impact in the search when the optimal
solution is unknown, 3) on-line monitoring of the optimization process allowing
certain automatic decision making and 4) how to take advantage of the available
information of the problem.

The rest of the paper is organized as follows. Section 2 explains the motivations
for this work and raises specific open questions that we want to investigate.
Section 3 presents estimation of Bayesian network algorithm (EBNA), and
introduces Bayesian networks and abductive inference. Section 4 explains the
experimental design. Sections 5, 6, 7 and 8 discuss Trap5, Gaussian Ising, ±J
Ising and Max-SAT problems respectively, quantitatively analyzing the behavior
of EDAs for each problem when different structural models and population sizes
are used. Section 9 discusses relevant previous works. Section 10 draws the
conclusions obtained during the study. Finally, Section 11 points out possible
future studies.

2 Motivation

The motivation of this work is twofold. Firstly, our main target is to shed
light on certain basic questions of great interest that still remain open in EDAs.
Secondly, we argue that, by collecting the new information provided by the
proposed analysis, it is possible to discover patterns of behavior and draw
general conclusions which will allow us to better understand EDAs and help
with their development.

We focus our work on raising the following open questions:

• How does the probability assigned by the probability distributions to the
optimal solution evolve during the search?

This first question plays a very important role in this work and it is related
with a number of assumptions currently made in the application of EDAs. For
example, whether in order to solve a problem, it is a necessary condition that
the probability associated by the algorithm to the optimal solution steadily
increases at each generation or whether the optimum has assigned the highest
probability during the search.

Another important and related question is the following:

• Which probabilistic dependences should the model take into account in
order to reach the optimum?
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Regarding the structural models, we want to study to what extent it is
necessary to represent the original interactions between the variables of the
function to achieve an efficient search. By using different structural models
in EDAs, we can study the effect that introducing more information of the
problem into the structural model has in the behavior of EDAs in general and
in the previously mentioned assumptions about the probability of the optimum
in particular.

Finally, we complete our quantitative analysis by raising this last question:

• How does the function value for the most probable solution given by the
probabilistic models evolve during the search?

A contribution of this work is the exact calculation and analysis of the
solution with the highest probability in the distributions generated by an EDA
at each generation. Thus, by obtaining its fitness function value and comparing
it with the best individual of the population during the search, we can study
how the probabilistic model is capturing the properties of the function. It would
be desirable that the function value of the solution with the highest probability
increases during the search.

3 Background

3.1 Notation

Let X be a random variable, a value of X is denoted x. X = (X1, . . . , Xn) will
denote a vector of random variables. We will use x = (x1, . . . , xn) to denote an
assignment to the variables. Each variable Xi has ri possible values, x1

i , . . . , x
ri

i .
We will work with discrete variables. The joint probability distribution of X is
represented as p(X = x) or p(x). We use p(Xi = xi|Xj = xj) or, in a simplified
form, p(xi|xj), to denote the conditional probability distribution of Xi given
Xj = xj .

3.2 Bayesian networks

Formally, a Bayesian network is a pair (S, θ) representing a graphical factorization
of a probability distribution. The structure S is a directed acyclic graph which
reflects the set of conditional (in)dependences among the variables. On the other
hand, θ is a set of parameters for the local probability distributions associated
with each variable.

The factorization of the probability distribution is codified as:

p(x) =

n
∏

i=1

p(xi|pai) (1)

where pai denotes a value of the variables Pai, the parent set of Xi in the
graph S.

With reference to the set of parameters θ, if the variable Xi has ri possible
values, the local distribution p(xi|pa

j
i , θi) is an unrestricted discrete distribution:

p(xk
i |pa

j
i , θi) ≡ θijk (2)
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where pa1
i , . . . , pa

qi

i denote the qi possible values of the parent set Pai. In
other words, the parameter θijk represents the probability of variable Xi being
in its k-th value, knowing that the set of its parents’ variables is in its j-th
value. Therefore, the local parameters are given by θi = ((θijk)ri

k=1)
qi

j=1. The
introduction of Bayesian networks in EDAs requires appropriate methods of
learning and sampling. As has been shown, to complete the network learning it
is necessary to obtain the structure S and the set of parameters θ.

When the structure is not given, it can be learned from a data set. We
use a structural learning algorithm based on a “score+search” technique [25].
Particularly, the search is carried out using B algorithm [6] and the score is
the Bayesian Information Criterion (BIC) [48]. Regarding the second step, the
parameters θ of the Bayesian network are calculated by maximum likelihood
using Laplace correction [25]. Finally, to sample the Bayesian network, a forward
sampling method is used. A variable is sampled only when all its parents have
been sampled. This method is known as probabilistic logic sampling (PLS) [7].

3.3 EDAs based on Bayesian networks

Algorithm 1: EBNA

1 BN0 ← (S0, θ
0) where S0 is an arc-less structure, and θ0 is uniform

2 D0 ← Sample N individuals from BN0

3 t ← 1
4 do {

5 Dt−1 ← Evaluate individuals

6 DSe
t−1 ← Select N/2 individuals from Dt−1

7 S∗

t ← Obtain a network structure

8 θt← Calculate θt
ijk using DSe

t−1 as the data set

9 BNt ← (S∗

t , θt)

10 Dt ← Sample N − 1 individuals from BNt and create the new
population

11 } until Stop criterion is met

Following the main scheme of EDAs, EBNA [16] works with populations
of N individuals that constitute sets of N candidate solutions. The initial
population is generated according to a uniform distribution, and hence, all
the solutions have the same probability to be sampled. Each iteration starts
by selecting a subset of promising individuals from the population. Although
there are different selection methods, in this case we use truncation selection
with threshold 50%. Thus, the N/2 individuals with the best fitness value
are selected. The next step is to learn a Bayesian network from the subset of
selected individuals. Once the Bayesian network is built, the new population
can be generated. At this point there are different possibilities. We use an
elitist criterion. From the Bayesian network, N − 1 new solutions are sampled
and then mixed with the N individuals of the current population. The N best
individuals, among the 2N − 1 available, constitute the new population. The
procedure of selection, learning and sampling is repeated until a stop condition
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is fulfilled. A pseudocode of EBNA is shown in Algorithm 1.

3.4 Abductive inference in Bayesian networks

In general, abductive reasoning tries to find the hypothesis that would best
explain a set of facts or observations. In the probabilistic network context, the
abductive inference [18] consists of finding the maximum a posteriori probability
state of the network variables, given an evidence (observed variables).

Formally, the total abductive inference involves all the problem variables and
is defined as follows. Given a probability distribution over the vector of random
variables X and an evidence e, that is an instance of the observed variable
set E ⊆ X, we want to obtain the assignment x∗

U
to the unobserved variables

XU = X \E such that,

x∗

U
= arg max

xU

p(xU |e) (3)

Usually x∗

U
is known as the most probable explanation.

However, when this technique is applied to the probability distributions
associated to Bayesian networks in EDAs, there is no evidence. In this case, the
objective is to look for the assignment x∗ with the highest probability for the
whole set of variables X. Knowing that P (XU |E) = P (X |E) and having an
empty evidence set E = ∅, Equation 3 can be directly converted into our target,

x∗ = arg max
x

p(x) (4)

In our context of EDAs, x∗ will be called the most probable solution (MPS). As
it is proven in [52], this kind of inference is an NP-hard problem. Therefore, its
exact resolution is only feasible in problems of limited length.

In this work, the point with the highest probability is exactly calculated using
probability propagation in junction trees [7] or variable elimination techniques
[11], as they are implemented in Bayes Net Toolbox [34].

4 Experimental design

The experiments are mainly designed in order to shed light on questions and
assumptions mentioned in Section 2. Specifically, at each generation of EBNA,
we record the probability and fitness values of distinguished solutions of the
search space: the optimum, the most probable solution and the best individual
in the population. We analyze these values throughout the search process
completed by EBNA for different functions, structural models and population
sizes. We also take into account both successful (the optimum is reached) and
unsuccessful runs (the optimum is not reached).

In addition to our distinguished solutions, we also introduce useful information
into the analysis. Particularly, at each step of the algorithm we calculate the
accumulated entropy of the population by means of adding the entropy of each
variable belonging to the function,
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H(X) = −
n

∑

i=1

ri
∑

j=1

p(xj
i ) · log2p(xj

i ) (5)

This metric allows to reflect how the population managed by the algorithm is
converging and also provides interesting information when EBNA solves multimodal
problems. We show the close relationship between our analyzed probability
values and the accumulated entropy of the population. Some works have already
studied these types of measurements in EDAs [36, 35] in detail.

In the following section we will explain the different problems, structural
models and parameters used for the experiments. In [44], the necessary tools to
reproduce the experiments or to carry out similar analysis are implemented.

4.1 Problems

The whole set of problems is based on additively decomposable functions (ADFs)
defined as,

f(x) =

m
∑

i=1

fi(si) (6)

where Si ⊆ X. Trying to cover a wide spectrum of applications and observe
the behavior of EDAs in different scenarios, we chose the following four test
problems: Trap5, Gaussian Ising, ±J Ising and Max-SAT. The exact details of
each one are introduced in the following sections. These problems are selected
for several reasons. Firstly, in order to investigate the influence of multimodality
in the behavior of EDAs, we deal with problems that have different numbers
of optimal solutions. The first two problems have a unique optimum and the
last two problems have several optima. Secondly, all of them are optimization
problems which have been widely used to analyze EDAs [22, 39, 4]. And
finally, all the problems have a different nature. Trap5 [10] is a deceptive
function designed in the context of genetic algorithms [19] aimed at finding their
limitations. It is a separable function and in practice can be easily optimized if
the structure is known. Gaussian Ising and ±J Ising come from statistical
physics domains and are instances of the Ising model proposed to analyze
ferromagnetism [24]. The variables are disposed on a grid and the interactions
do not allow dividing the problem into independent subproblems of bounded
order [32] efficiently. It is a challenge in optimization [22, 39] and in its general
form is NP-complete [2]. Max-SAT is a variation for optimization of a classic
benchmark problem in computational complexity, the propositional satisfiability
or SAT. In fact, SAT was the first problem proven to be NP-complete [9] in its
general form. An instance of this problem can contain a very high number of
interactions among variables and in general, it can not be efficiently divided in
subproblems of bounded size in order to reach the optimum. Except for the
function Trap5, we are dealing with five instances for each type of problem.

Regarding the information store at each generation, when the functions
with a unique optimum are optimized, we only record our three distinguished
solutions. However, in the functions with several optima, EBNA reaches a
subset of them and the analysis of the probability of the optimum must be
extended. Thus, we calculate the probabilities during the search for all optima
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reached by EBNA in the last generation. It leads us to see how the probability is
distributed when there are different optimal solutions. In order to gain clarity in
the results, we only show the maximum and minimum probabilities assigned by
the probability distribution to the reached optimal solutions at each generation.

4.2 Structural models

In the literature, several works have been presented showing the influence of the
structure of the probabilistic model in the behavior of the algorithm [12, 21].
In this paper, we also take into account this important fact creating structures
which try to represent the dependences among the variables in each problem.
In this sense, a utopian objective could be to find structures with the lowest
computational complexity (maximum number of independence relations among
variables) which would allow to reach the optimum with the maximum certainty.

Particularly, we use two approaches in order to obtain structural models.
On the one hand, we use an approximate structural learning algorithm (B
algorithm) which obtains a new structure from the selected individuals at each
generation. This is a common way of solving optimization problems by means
of EDAs for which there is no structural information available. On the other
hand, we use two fixed structures related to the nature of the function and
from which only parametric learning is carried out. Since all the functions
are ADFs, an intuitive way to create a related structural model is by means
of linking variables belonging to the same subfunction with arcs. In order to
analyze the influence of the structural model accuracy, we use two structures
with different amounts of information. The first structure tries to reflect all
the interactions among the variables of the function. As a general method
we connect two variables (representing nodes in the graph) by an edge in the
structure if the corresponding variables are contained in the same sub-function.
Thus, by providing direction to the edges without creating cycles, we obtain a
Bayesian network structure which will be called complete structure. The second
structure reproduces interactions among the variables of the function but only
considering bivariate dependences. Depending on the problem, we select which
dependences are introduced in the model. This structure has less information
but it is always related with the nature of the problem. It will be called bivariate
structure.

4.3 Parameter configuration

The sample size is very important in order to learn Bayesian networks [17]
and, hence, in the behavior of EDAs based on this type of models. Thus,
we use two different population sizes in order to analyze their influence in the
algorithm. Firstly, we have used the bisection method [38] to determine an
adequate population size to reach the optimum (with high probability). This
size is denoted by m. The stopping criterion for bisection is to obtain the
optimum in 10 out of 10 independent runs. The final population size is the
average over 20 successful bisection runs. The population size m is always
obtained from EBNA executions with B algorithm. The second population size
is half of the bisection, m/2. With this size we try to create a more realistic
scenario in which achieving the optimum is less likely. Thus, we can analyze the
probability of the optimum when it is not reached.

8



We have observed through the analysis that the population size is less
influential in the behavior of the algorithm when the structural model is fixed
during the search. Thus, in these cases we only show the results for a unique
population size because analyzing the difference between sizes does not provide
relevant information. Depending on the problem, we show the analysis for the
population size with the most useful information.

The experiments have been performed with problems of dimension n = 100.
The stopping criterion for EBNA is a fixed number of iterations and it is
independent of obtaining the optimum. Each execution will run n generations,
that is, as many as the number of problem variables. This number of generations
is enough to observe the convergence of the algorithm in most of the experiments.

4.4 Details of the results

We usually report the probability values in logarithmic scale in order to smoothen
the probability slopes and better observe their behavior from the beginning of
the run. In some cases, we also report the original probability values because
this helps to better show the EDA behavior. This is especially useful in problems
with several optimal solutions.

The number of runs which have reached the optimum at each generation
is indicated with bars on the top of the charts where the probability values in
logarithmic scale are shown. Although we have made runs with a fixed number
of generations, the charts presented usually are cut when all runs have reached
the optimum or the curves shown are stabilized.

Finally, for each experiment type i.e. EBNA solving a problem with a given
structural learning approach and a given population size, 50 independent runs
have been carried out. Each set of 50 executions is divided into successful and
unsuccessful executions which will be analyzed separately.

The whole set of results can not be presented in this paper for the sake of
simplicity. Therefore, we only show the most relevant and informative results
for each problem. The complete analysis is available on the website of the
Intelligent Systems Group1.

5 EDA behavior solving Trap5

5.1 Trap5 description

Our first function, Trap-5 [10], is an additively separable (non overlapping)
function with a unique optimum. It divides the set X of n variables, into
disjoint subsets XI of 5 variables. It can be defined using a unitation function
u(y) =

∑p
i=1 yi where y ∈ {0, 1}p as,

Trap-5(x) =

n

5
∑

I=1

trap5(xI) (7)

where trap5 is defined as,

trap5(xI) =

{

5 if u(xI) = 5
4− u(xI) otherwise

(8)

1http://www.sc.ehu.es/ccwbayes/members/carlos/eda probs/
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and xI = (x5I−4, x5I−3, x5I−2, x5I−1, x5I) is an assignment to each trap partition
XI . This function has one global optimum in the assignment of all ones for X

and a large number of local optima, 2n/5 − 1.
Trap5 function has been used in previous works [22] to study the structure

of the probabilistic models in EDAs based on Bayesian networks as well as the
influence of different parameters [27]. It is important to note that this function is
difficult to optimize if the probabilistic model is not able to identify interactions
between variables [13].

5.2 Structures related to the problem

(a) Complete structure (b) Bivariate structure

Figure 1: Fixed structural models related with the dependences among the
variables in Trap5.

In this section we propose two fixed structures related with the Trap5 function.
The complete structure is created by linking all the variables in each sub-
function trap5. Thus, by providing direction to the arcs without creating
cycles, we obtain the Bayesian network structure shown in Fig. 1(a). With this
structure, there are no independences between variables of the same subgroup
and variables in different partitions are independent. For this function, the
complete structure provides an exact factorization [32]. On the other hand, the
bivariate structure is formed by a chain for each subgroup of 5 variables. As can
be seen in Fig. 1(b), the graph contains the minimum number of arcs necessary
to connect all the variables belonging to each partition.

5.3 Using structural learning

In this section, we present and discuss the results obtained when EBNA tries
to optimize the Trap5 function using B algorithm for the structural learning at
each generation.

The results for successful runs are presented in Fig. 2. When the population
size m (given by bisection) is used, EBNA reaches the optimum in 49 runs out
of 50. Fig. 2(a) shows the probability values for the successful executions in
logarithmic scale and Fig. 2(b) illustrates the original growth of the probability
values. Theoretically, a convergence of the algorithm to the global optimum
implies an increase in its probability value as the generations advance and this
is reflected in the results. The probability values for the optimum and the
most probable solution (MPS) grow simultaneously and very closely when the
executions are successful. When the population size is decreased to m/2 the
results drastically change and only 4 runs have reached the optimum. However,
the behavior of the probability values in Fig. 2(d) are analogous to Fig. 2(a).
Thus, when the optimum is achieved, its probability tends to 1 (Fig.2 (e)) and

10



0 5 10 15 20 25 30

−70

−60

−50

−40

−30

−20

−10

0

Generations

Lo
g 

P
ro

ba
bi

lit
y

 

 

MPS

Optimum

Best Ind

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Generations

P
ro

ba
bi

lit
y

 

 

MPS

Optimum

Best Ind

0 5 10 15 20 25

60

70

80

90

100

Generations

F
itn

es
s 

fu
nc

tio
n

 

 

MPS

Best Ind

0 5 10 15 20 25 30
−80

−70

−60

−50

−40

−30

−20

−10

0

Generations

Lo
g 

P
ro

ba
bi

lit
y

 

 

MPS

Optimum

Best Ind

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Generations

P
ro

ba
bi

lit
y

 

 

MPS

Optimum

Best Ind

0 5 10 15 20 25

60

70

80

90

100

Generations

F
itn

es
s 

fu
nc

tio
n

 

 

MPS

Best Ind
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Figure 2: Successful runs when EBNA is applied to Trap5 using Algorithm B.
We have 49 out of 50 successful runs with population size m and 4 out of 50
with population size m/2
.

converges with the MPS. However, we can observe that the probability curves
for the MPS and the optimum are clearly more distant with size m/2. Another
important observation is that the executions start to reach the optimum (bars
on the top of Fig. 2(a) and 2(d)) when its probability is approximately −10 in
logarithmic scale.

The results for the executions where the optimum was not reached are shown
in Fig. 3. Fig. 3(a) only represents the probability values for 1 execution but
there are no oscillations in the curve. This indicates that the behavior of the
probability values has a constant pattern. In Fig. 3(a) and 3(d) we can see
the joint growth of the probability values for the MPS and the optimum at the
beginning of the run. However, after a certain generation, both values start
to diverge and the optimum is not obtained. If we observe Fig. 3(b) and 3(e),
we can see that the rapid decline in the probability of the optimum takes place
when the exponential growth of the probability values for the MPS and the best
individual occur. Furthermore, there is a clear difference between the runs with
population size m and m/2. For this last population size, the probability of the
optimum clearly decreases to lower values. Even at the beginning of the run,
its probability values are far from the highest probability in the distribution. In
Fig. 4 we present the accumulated entropies of the population during the search.
How this measure is related with the exponential growth of the probability values
can be seen. Moreover, we can observe how the population converges to a unique
solution when EBNA uses Algorithm B since the entropy tends to 0.

Concerning the fitness function value, in Fig. 2(c) we show the results when
the population size m, given by bisection, is used in EBNA. The MPS value
increases at each generation and it is better than the best individual in almost
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Figure 3: Unsuccessful runs when EBNA is applied to Trap5 using Algorithm
B. We have 1 out of 50 unsuccessful runs with population size m and 46 out of
50 with population size m/2.

0 10 20 30 40 50 60 70
0

20

40

60

80

100

Generations

A
cc

um
ul

at
iv

e 
E

nt
ro

py

 

 

Succ. m, B
Succ. m/2, B
Unsucc. m, B
Unsucc. m/2, B
Succ. m/2, Comp
Succ. m/2 chain
Unsucc. m/2 chain

Figure 4: Accumulated entropies of the population when EBNA solves Trap5

all generations. However, by looking at Fig. 2(f) we can observe that the MPS
has a lower growth with population size m/2. Moreover, the best individual of
the population is better than the MPS after generation 12 approximately. For
unsuccessful runs, the curves of fitness function values presented in Fig. 3(c)
and 3(f) are similar to those shown for successful executions. This behavior is
constant in all the problems analyzed in this work. It is also interesting to note
that the fitness function value for MPS never decreases in the results presented.

5.4 Using fixed structures

In this section, we show the behavior of the algorithm when a different amount
of information is introduced in the structural model. We only show the analysis
with population size m/2 because it is sufficient to provide relevant results in
this group of experiments.
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Figure 5: Successful runs when EBNA is applied to Trap5 using the complete
structure with population size m/2. The optimum is reached for the 50
executions.

The probability and fitness values when the complete structure is introduced
in EBNA are shown in Fig. 5. In this case we obtain an ideal behavior for an
optimization process with EDAs because the optimum has the highest probability
during the whole run and it is found in all executions. Furthermore, in Fig. 5(c)
we can observe that the function values for MPS are close to the optimum from
the first steps of the algorithm.

The behavior of the algorithm changes drastically when the bivariate structure
(Fig. 1(b)) is introduced. Although EBNA has a good performance because
it reaches the optimum 38 out of 50 runs, the evolution of the probability
values in Fig. 6(a) is particular. The probability of the optimum decreases
at the beginning of the run and when the algorithm seems to converge to a
local optimum, it suddenly recovers. This fact also occurs for the unsuccessful
executions in Fig. 7 where the probability of the optimum increases in the last
generations. In this case, the optimum has a high probability at the end of the
run, which supports the belief that waiting for more generations, the algorithm
would be able to reach the optimum.
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Figure 6: Successful executions when EBNA is applied to Trap5 using the
bivariate structure with population size m/2. We have 38 out of 50 successful
executions.

The reason for such an uncommon behavior is as follows. In the first part
of the run, when the probability of the optimum decreases, the algorithm is
deceived by the function and most of the individuals in the population become
the local optimum. This local optimum is the assignment of zeros for all the
set of variables X because it is the suboptimal value that trap5 function gives
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to each trap partition XI . We can observe in Fig. 4 how the curves of entropy
for the bivariate model (Succ. m/2 chain and Unsucc. m/2 chain) tend to 0
when the probability of the optimum is minimum in Fig. 6(a) and 7. After
this stage, the algorithm recovers and the probability of the optimum starts
to increase. The curves of the bivariate model in Fig. 4 shows how different
individuals are included in the population just when the algorithm seems to
converge to the local optimum. It indicates that the algorithm samples better
individuals and it is reflected in the the fitness function values in Fig. 6(c). This
fact can be explained through the Laplace correction and the fixed structure of
chain subgraphs. This quantitative analysis justifies why it is possible to reach
the optimum for this function with a simple bivariate structure.
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Figure 7: Logarithm of the probabilities for 12 unsuccessful executions when
EBNA is applied to Trap5 using the bivariate structure with population size
m/2.

6 EDA behavior solving Gaussian Ising

6.1 2D Ising spin glass description

Ising spin glass is an optimization problem which has been solved and analyzed
in different works related with EDAs [22, 39, 41]. A classic 2D Ising Spin Glass
can be formulated in a simple way. The set of variables X is seen as a set
of n spins disposed on a regular 2D grid L with n = l × l sites and periodic
boundaries (see Fig. 8). Each node of L corresponds to a spin Xi and each edge
(i, j) corresponds to a coupling between Xi and Xj. Thus, each spin variable
interacts with its four nearest neighbors in the toroidal structure L. Moreover,
each edge of L has an associated coupling strength Jij between the related spins.
For the classical Ising model each spin takes the value 1 or −1. The target is,
given couplings Jij , to find the spin configuration that minimizes the energy of
the system computed as,

E(x) = −
∑

(i,j)∈L

xiJijxj −
∑

i∈L

hixi (9)

where the sum runs over all coupled spins. In our experiments we take hi = 0
∀i ∈ L. The states with minimum energy are called ground states.

Depending on the range chosen for the couplings Jij we have different versions
of the problem. Thus, the problem is called Gaussian Ising when the couplings
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Figure 8: A 3 × 3 grid structure L showing the interactions between spins for
a 2D Ising Spin Glass with periodic boundaries. Each edge has an associated
strength Jij .

Jij are real numbers generated following a Gaussian distribution. For this type
of couplings, the problem has only one optimum. A specified set Jij of coupling
defines a spin glass instance. We generated 5 Gaussian Ising instances using the
Spin Glass Ground State server2 for the experiments. The minimum energy of
the system is also provided in this server.

6.2 Structures related to the problem

(a) Complete structure (b) Bivariate structure

Figure 9: Fixed structural models for 2D Ising spin glass.

In order to create a complete structure for this problem, we reproduce the
undirected graph L in the model, which represents all the interactions among
variables in the function, and direct the edges without creating cycles to obtain a
Bayesian network. Starting from the first spin (variable X1) we give a westward
and southward direction to the edges as can be seen in Fig. 9 (a).

For this problem the direction of the arcs could modify the behavior of EBNA
because we would have different Bayesian networks and therefore different independence
relations among the variables [7]. In this problem, the complete structure does
not provide an exact factorization [32].

2http://www.informatik.uni-koeln.de/ls juenger/index.html
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The second structure is a simple model which connects all variables using a
chain. This structure introduces very few interactions related with the problem,
as can be seen in Fig. 9 (b).

6.3 Using structural learning
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(a) Instance 1 with population size m (b) Instance 4 with population size m

(c) Instance 1 with population size m/2 (d) Instance 4 with population size m/2

Figure 10: Logarithm of the probabilities in successful runs when EBNA is
applied to Gaussian Ising using B algorithm.

The results obtained when EBNA solves Gaussian Ising problem by learning
a new structural model at each generation are shown and discussed in this
section. In Table 1 we summarize the number of runs that have reached the
optimum for each instance and probabilistic model. Firstly, if we look at the
number of successful runs with Algorithm B, we can see that the population
size is less decisive than in Trap5. In this problem, we achieve a relatively high
number of successful runs when population size m/2 is used (compare 4 out of
50 in Trap5 with m/2). We will see how this fact is reflected in the analysis.
Particularly, in this section we present the results for instances 1 and 4 because
they are sufficiently representative of the EBNA behavior.

In order to show the probability curves in successful runs we present Fig. 10.
In general, we can observe that the behavior is analogous to that in Trap5: the
probability of the optimum increases during the search being the most probable
solution at the end of the run, and for an adequate population size m, the curves
for the MPS and the optimum are closer than for m/2. However, in Gaussian
Ising, this difference between the probability curves for both population sizes is
lower than for Trap5 (Fig. 2(a) and 2(d)). Therefore, the population size is less
critical for Gaussian Ising and it is reflected in the performance of the algorithm
(Table 1). The curves of probability with the population size given by bisection
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Table 1: Number of EBNA runs that have reached the optimum from 50
executions of different Gaussian Ising instances. We report the results for
different structural models and population sizes

Instances B alg. Complete Bivariate
G. Ising m m/2 m m/2 m m/2

I1 46 34 50 47 1 0
I2 47 31 44 37 0 0
I3 49 36 37 29 0 0
I4 46 20 50 46 7 5
I5 48 28 10 6 0 3

makes another difference between these two problems. In Trap5 (Fig. 2), the
probability of the optimum is approximately the highest in the distribution from
the beginning of the run. However, in Gaussian Ising (Fig. 10(a) and 10(b)),
despite using an adequate population size, the probability of the optimum keeps
a visible distance from the MPS throughout the generations.

For these problems, the runs do not reach the optimum (bars on the top of
the charts in Fig. 10 and 2) before their probability value exceeds approximately
the threshold of −20 in logarithmic scale.
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(a) Instance 1 with population size m (b) Instance 4 with population size m

(c) Instance 1 with population size m/2 (d) Instance 4 with population size m/2

Figure 11: Logarithm of the probabilities in unsuccessful runs when EBNA is
applied to Gaussian Ising using B algorithm.

The analysis of the probability values for unsuccessful runs is presented in
Fig. 11. For instance 1, the probability of the optimum with population size m
(Fig. 11(a)) and m/2 (Fig. 11(c)) decreases to similar values at the end of the
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runs. On the other hand, the results for instance 4 with different population sizes
(Fig. 11(b) and 11(d)) show a difference in the final probability value reached by
the optimum between m and m/2. For the second size, these probability values
are clearly lower. This fact reflects that for instance 4 the population size is more
decisive in the EBNA performance (Table 1). In general, in unsuccessful runs
we observe the same behavior as in Trap5: the growth in the probability of the
optimum at the beginning of the runs and its subsequent fall in few generations.
Moreover, in this type of executions, the probability of the optimum decreases
before reaching approximately the value of -20 in logarithmic scale.

In Gaussian Ising the probability values have a similar exponential increase
after a certain generation as in Trap5. This moment of the run is also related
with the marked decrease in the probability of the optimum in unsuccessful
runs. In the same way, the accumulated entropy reflects the convergence of the
algorithm to a unique solution. However, these charts are not presented here
because they do not provide new relevant information.
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(a) Instance 1 with population size m (b) Instance 4 with population size m

(c) Instance 1 with population size m/2 (d) Instance 4 with population size m/2

Figure 12: Fitness function values in successful runs when EBNA is applied to
Gaussian Ising using B algorithm.

Regarding the fitness function values, the results for this type of analysis
are similar between successful and unsuccessful runs. This fact was shown for
Trap5 and is repeated in the rest of the problems. Therefore, from now on, we
only show the results for successful runs when the analysis of function values
is discussed. For Gaussian Ising, these results are presented in Fig. 12. An
important fact is the different behavior of EBNA between population size m
given by bisection (Fig. 12(a) and 12(b)) and with the half m/2 (Fig. 12(c)
and 12(d)). When we use an adequate population size to reach the optimum,
the difference in function value between the MPS and the best individual is
bigger at the beginning of the runs.

18



However, as we previously discussed, EBNA has a different behavior depending
on the problem that it is solving and this is also reflected in the analysis of the
function values. We can compare Gaussian Ising (Fig. 12) with Trap5 (Fig. 2(c)
and 2(f)) in order to see the difference. This analysis of the function values
shows that: (1) the population size is less influential in Gaussian Ising than in
Trap5 and (2) with the population size given by bisection the difference between
MPS and the best individual is less marked in Gaussian Ising.

6.4 Using fixed structures

At this point we analyze the probabilistic behavior of EBNA when it uses the
proposed fixed structures to solve the Gaussian Ising problem. As we discussed
in Section 4, the population size is less influential when EBNA works with fixed
structures. This fact is reflected in the number of successful runs shown in
Table 1. In this section we only present the results for the population size m
given by bisection.
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(a) Instance 1 with population size m (b) Instance 5 with population size m

Figure 13: Logarithm of the probabilities in successful runs when EBNA is
applied to Gaussian Ising using the complete structure.

First for all, by looking at Table 1, we can see that the complete structure
does not always reach the optimum as in Trap5. In fact, for instance 5, EBNA
with this structure provides a poor performance which can be explained with the
quantitative analysis. In order to illustrate the behavior of EBNA in successful
runs with the complete structure, we use instances 1 and 5. In Fig. 13(a) we
report the analysis of the probability values for the instance 1 where EBNA
always reaches the optimum. In this case, the complete structure has a high
performance but it is not perfect as in Tra5 (Fig. 5(a)) because the optimum is
not the MPS during the run.

However, we must say that the difference between the probability curves of
the optimum and the MPS is really small. On the other hand, in Fig. 13(b)
we report a poor behavior of EBNA based on the complete structure solving
instance 5. At the beginning, the probability of the optimum is very close to
the probability of the MPS but in a few generations both probabilities start
to be clearly separated. This is probably due to the criterion for directing the
arcs. Different directions can create different independence relations among the
variables. Therefore, depending on the instance, one selected direction could be
better than another.

In Fig. 14 we report the results when EBNA has not reached the optimum
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Figure 14: Logarithm of the probabilities in unsuccessful runs when EBNA
solves instance 5 of Gaussian Ising using the complete structure with population
size m
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Figure 15: Fitness function values in successful runs when EBNA is applied to
instance 5 of Gaussian Ising using the complete structure with population size
m.

with the complete structure, for instance 5. The behavior is similar to other
unsuccessful executions. It is very interesting to note that the probability of
the optimum is never higher than −20 and starts to decrease after generation
10 following a similar pattern than in the rest of the analysis.

The function values for the MPS and the best individual at each population
can be seen in Fig. 15. We only show the results for instance 5 where EBNA has
a low performance. However, in spite of this performance, the function value for
the MPS is close to the optimum from the beginning of the run. It indicates that
the search could be improved by using, for example, a more accurate sampling
when information about the problem is available. The behavior of these function
values is always similar for the different instances when a complete structure is
used.

In this problem, our bivariate structure of chain has not had an outstanding
behavior but it is very important to observe that with these simple structures the
optimum has sometimes been reached (Table 1). Fig. 16 shows the analysis for
instance 4, where EBNA has achieved the best performance using the bivariate
structure. We can see that the probability of the optimum is separated from
the highest probability during the run. This fact is related to the low number
of successful runs. As regards to the unsuccessful runs shown in Fig. 16(b), we
observe that the probability of the optimum does not reach high probability
values before decreasing. Its probability starts to decrease when the probability
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of the best individual has the value of, approximately −30.
In this case, the function value for the MPS, presented in Fig. 17, is again

better than the best individual of the population at the beginning of the run.
Moreover, the behavior of these values is comparable with the corresponding
values obtained with Algorithm B and population size m/2 in Fig. 12(d).

To conclude this section we want to highlight an interesting pattern of
behavior. We have observed that the curves of probability values for the best
individual and the MPS increase in the same way with different structural
models and population sizes.
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(a) Successful runs (b) Unsuccessful runs

Figure 16: Logarithm of the probabilities when EBNA is applied to instance 4
of Gaussian Ising problem using the bivariate structure.
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Figure 17: Fitness function values in successful runs when EBNA is applied to
instance 4 of Gaussian Ising problem using the bivariate structure.

7 EDA behavior solving ±J Ising

7.1 ± J Ising description

As explained in Section 6, the main difference between both version of 2D Ising
spin glass that we use, is the range of values chosen for the couplings Jij . In this
second type Ising problem, the couplings Jij are set randomly to either +1 or
−1 with equal probability. This version, that will be called ±J Ising, could have
different configurations of the spins that reach the ground state (lowest energy)
and therefore many optimal solutions may arise. As for the previous case, 5 ±J
Ising instances were generated using the Spin Glass Ground State server. This
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server also provided the value of the minimum energy of the system. Concerning
the fixed structural models, we use the same structures as in Gaussian Ising
because the problem has the same nature.

7.2 Using structural learning
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(a) Population size m (b) Population size m (c) Population size m

(d) Population size m/2 (e) Population size m/2 (f) Population size m/2

Figure 18: Successful runs when EBNA is applied to instance 5 of ±J Ising
using B algorithm.

Firstly, in Table 2 we report the performance of EBNA given by the number
of successful runs for each±J Ising instance and structural model. By comparing
this table with Table 1, where the successful runs are shown for Gaussian Ising,
we can observe a similar pattern when a structural learning is introduced in
the algorithm. However, clear differences appear in the probability values for
our distinguished solutions showed in Fig. 18 when EBNA uses Algorithm B. In
this case, we selected instance 5 because its results are representative. For this
problem, we also report the probability values in addition to the logarithmic
scale. It allows us to show the influence of multimodality in the algorithm
during the search. In addition, we also show in Table 3 the number of optimal
solutions that EBNA has reached on average at the end of the runs.

By looking at Fig. 18(a) and 18(d) we can verify that the probabilities for
the reached optima increase during the generations. Moreover, the highest
probability assigned to the set of optima tends to be the highest in the distribution.
We can observe a close relationship between the maximum and minimum probabilities
assigned to the optimal solutions where both have a similar increase during
the search. In this sense, its behavior is analogous to problems with a single
optimum. However, in this case we can clearly see that the probability of
the MPS does not tend to 1 (Fig. 18(b) and 18(e)). This indicates that the
probability distribution is shared out among different optimal solutions at the
end of the run. This fact is verified by the accumulated entropy of the population
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Table 2: Number of EBNA runs that have reached the optimum out of 50
executions of different ±J Ising instances. We report the results for the different
structural models and population sizes

Instances B alg. Complete Bivariate
±J Ising m m/2 m m/2 m m/2

I1 47 30 33 27 10 8
I2 47 25 49 42 4 1
I3 48 30 26 17 0 0
I4 50 18 46 42 4 4
I5 49 27 50 47 17 20

Table 3: On average, number of optimal solutions that EBNA has reached at
the end of 50 executions when it is applied to ±J Ising. We report the results
for the different structural models and population sizes

Instances B alg. Complete Bivariate
±J Ising m m/2 m m/2 m m/2

I1 18 11 6 6 9 8
I2 121 63 134 60 22 17
I3 78 42 49 52 0 0
I4 54 33 32 22 12 10
I5 75 39 107 54 36 26

shown in Fig. 20. It is greater than 0 in the last generations and therefore the
population contains different solutions. In this case, the exponential growth of
the probability values after a certain generation can also be seen and it is related
with the accumulated entropy.

By looking at Table 3, it can be seen that when the population size is reduced,
EBNA reaches a lower number of optima. This fact can be seen mainly in
two aspects in the analyzed probability values. Firstly, with population size
m (Fig. 18(a)), the maximum probability assigned to the optima is closer to
the highest in the distribution than with m/2 (Fig. 18(d)). Secondly, the final
probability values for the MPS are lower with population size m (Fig. 18(b))
than with m/2 (Fig. 18(e)) because EBNA reaches a higher number of optimal
solutions. In ±J Ising, the behavior of the curve for the maximum probability
assigned to the optima is similar to the curve of the optimum in problems with
only one. In this case, the runs do not reach any optimal solution before the
maximum probability values does not exceed, approximately −20 in logarithmic
scale.

We also show an example of the probabilistic behavior of EBNA when no
optimum is reached. In this case, we only can record the probability of the
optima found by the algorithm in the successful runs because the whole set
of optima is unknown. Fig. 19 shows the analysis when EBNA is applied to
instance 5 with population size m/2. We can observe an analogous pattern
to that in problems with a unique optimum. The probabilities of the optima
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Figure 19: Logarithm of the probabilities in unsuccessful runs when EBNA is
applied to instance 5 of ±J Ising using Algorithm B and population size m/2
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Figure 20: Accumulated entropy of the population when EBNA solves different
instances of ±J Ising using our three types of structural models

increase at the beginning of the run and after a certain generation they decrease
quickly. In this case, the optimal solutions analyzed have a very low probability
at the end of the search. If we look at the entropy curve for this type of runs
(Unsucc. I5, m/2, B) in Fig. 20, we can see that this curve does not tend to 0
and therefore, there are different solutions in the population at the end of the
run. This indicates that for unsuccessful runs the probability is also distributed
among different solutions at the end of the run. For the problems with several
optima we will not discuss more results for unsuccessful runs because their
analysis does not provide new relevant information.

Regarding the function values presented in Fig. 18(c) and 18(f), the MPS has
a similar behavior as in the rest of the analyzed problems. At the beginning of
the run it is better than the best individual of the population and this difference
is lower when the population size is reduced. However, after a certain generation
the curve of the MPS crosses the curve of the best individual of the population,
and the fitness function for the MPS is lower during some generations.

7.3 Using fixed structures

Here, we present the EDA analysis when the structures related with the Ising
problem (Fig. 9) are employed. Firstly, by looking at Table 2 we can see that
the complete structure does not always have a good performance. This fact
also happened in Gaussian Ising problem. Again, it is probably due to the
direction assigned to the arcs. For this problem, it is interesting to point out
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Figure 21: Successful runs when EBNA is applied to±J Ising using the complete
structure with population size m.

the number of successful executions obtained with the bivariate structure. This
simple structure is able to reach the optimum in a significant number of runs
for some instances. Clearly, it obtains a higher number of successful executions
than for Gaussian Ising.

In order to show the behavior of EBNA with our fixed structures, we show
instances 3 and 5 with the population size m given by bisection. In Fig. 21 we
report the analysis when the complete structure is introduced in the algorithm.
In Fig. 21(a) and 21(b) we can observe that at the beginning of the run
the probabilities for the optima and MPS are really close for a high number
of generations. This fact is more noticeable when EBNA is executed with
the complete structure than with Algorithm B. This indicates that correctly
introducing information related with the problem could be beneficial. By looking
at Table 2, we can observe that EBNA with the complete structure performs
better for the instance 5 and this is reflected in the probability values. In
Fig. 21(a) we can see that the maximum probability assigned to the set of
optima is very close to the MPS. On the other hand, EBNA does not achieve a
good performance (Table 2) when it is applied to instance 3 and the assigned
probabilities to the set of optima are more distant from the highest probability
(Fig. 21(b)). Fig. 21(b) and 21(e) show that the probability of the MPS is
lower than 0.1 at the end of the run. This indicates that the probabilities are
shared among different solutions as in the case of using the structural learning
in EBNA. The accumulated entropy of the population in Fig. 20 confirms that
the populations contain different solutions at the end of the run.

Regarding the function values (Fig. 21(c) and 21(e)), once again the MPS
is very close to the optimum value of the function from the beginning of the
run when the complete structure is used. This behavior is kept in all analyzed
problems when EBNA introduce this type of structure regardless of the performance
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of the algorithm in terms of number of successful runs. However, the function
values for the best individual of the population have not had a clear improvement.
Therefore, the sampling method could be losing valuable information collected
by the probabilistic model.
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Figure 22: Successful runs when EBNA is applied to instance 5 of ±J Ising
using the bivariate structure with population size m.

In Fig. 22 we show the results obtained when EBNA uses the bivariate
structural model in order to solve instance 5. In this case, we can observe a
different behavior of the probability values. Firstly, although the probabilities
for the optima increase during the search, there is a notable distance between
the curves of the maximum and minimum probability. Secondly, this structural
model with little information assigns lower probabilities to the optima than
a complete structure. Therefore, these probabilities are more distant from
the highest in the distribution. However, it is also possible to reach optimal
solutions. Lastly, the final probabilities for the MPS are higher than in runs
with Algorithm B or the complete structure. Accordingly, Table 2 shows that
EBNA with the bivariate structure reaches the lowest number of optima for
instance 5. Nevertheless, EBNA with this structure is generally able to reach
less optimal solutions and therefore the entropy of the population (Fig. 20) is
lower than in the rest of cases.

In Fig. 22(c) we report the function values when EBNA solves this problem
with the chain structure. It is very interesting to note that in the first generation
the MPS is clearly better than the best individual in the population. Moreover,
at the beginning of the run, its difference is even more notable that in the case
of EBNA using Algorithm B.

8 EDA behavior solving Max-SAT

8.1 Max-SAT description

The last problem in our analysis is the maximum satisfiability or Max-SAT
problem, which has often been used in different works about EDAs [39, 4]. In a
simple way, without going into details, given a set of Boolean variables X and
a Boolean expression φ, SAT problem asks if there is an assignment x of the
variables such that the expression φ is satisfied. In a Boolean expression we
can combine the variables using Boolean connectives such as ∧ (logical and), ∨
(logical or) and ¬ (negation). An expression of the form xi or ¬xi is called a
literal.
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Every Boolean expression can be rewritten into an equivalent expression in a
convenient specialized style. In particular, we use the conjunctive normal form
(CNF) φ =

∧q
i=1 Ci. Each of the q Cjs is the disjunction of two or more literals

which are called clauses of the expression φ. We work with clauses of length
k = 3. When k ≥ 3, the SAT problem becomes NP-Complete [9]. An example
of a CNF expression with 5 Boolean variables X1, X2, X3, X4, X5 and 3 clauses
would be, φ = (x1 ∨ ¬x3 ∨ x5) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x1 ∨ ¬x4 ∨ ¬x2).

The Max-SAT problem has the same structure as SAT, but the result, for
an assignment x, is the number of satisfied clauses instead of a truth value. In
order to solve Max-SAT, the assignment for X that maximizes the number of
satisfied clauses must be found. Thus, the optimization function can be written
as,

fMax−SAT (x) =

q
∑

i=1

φ(Ci) (10)

where each clause Ci of three literals is evaluated as a Boolean expression that
returns 1 if the expression is true or 0 if it is false. Since Ci is a disjunction, it
is satisfied if at least one of its literals is true. The variables of X can overlap
arbitrarily in the clauses.

Particularly, we work with 3-CNF SAT problems obtained from the SATLIB
[23] repository which provides a large number of SAT instances. All the instances
used are satisfiable and our test-set comprises 5 instances with 100 variables and
430 clauses. It is important to note that there could be several assignments for
X that satisfy all clauses and therefore this problem could have different optimal
solutions.

8.2 Structures related to the problem

(a) (b) (c)

Figure 23: Structures for MAX-SAT given a SAT expression φ. (a) Related
undirected graph, (b) related Bayesian network where σ is the ancestral order
and (c) related tree structure where σ is an order to add edges in the tree.

In this problem, a more elaborate procedure to create the structures was
needed. It is mainly because different Max-SAT instances have different interactions
among variables and therefore there are different structures for the problem. In
this case, we have designed particular methods to create either the complete
structure or the bivariate structure.
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In order to create the complete structure, we join the variables belonging to
same clause Ci with edges. This step is illustrated in the example of Fig. 23(a)
where a SAT formula is proposed. Now, in order to create the structure for a
Bayesian network, we must direct the edges without creating cycles. However,
depending on the ancestral order chosen to direct the edges, the complexity of
the Bayesian network can suffer important variations. In fact, we could have
an optimization problem in which, given an undirected graph, the objective is
to find a directed graph with a minimum number of parents per variable and
hence a Bayesian network with a minimum number of parameters. Nevertheless,
this is out of the scope of our work. To solve this problem we use a heuristic
ancestral order to get a directed acyclic graph. Thus, the variables are ordered
from the highest to the lowest number of neighbors in the undirected graph,
or in other words, from the highest to lowest the number of overlaps in the
clauses of the SAT instance. This type of structure is illustrated in Fig. 23(b)
where σ1 is the defined ancestral order. However, there is a problem with these
complete structures generated to solve Max-SAT problems and it is related
to the calculation of the MPS given by the Bayesian network. The size of
the cliques used to complete this task is too big and therefore the calculation
has an extremely high computational cost. To solve this new problem, we
were forced to reduce the complexity of the structure by deleting some edges.
The criterion is to remove, for each variable, the parents that correspond with
interactions that appear less frequently in the clauses. In this way, two is the
maximum number of parents that allows a successful calculation of the MPS in
all instances. Although in this case we are not able to use all the interactions
of the problem in our analysis, this structure will also be called complete.

To create the bivariate structure, we have used a tree instead of a chain
because we consider it a more appropriate option. To create the tree we have
followed a procedure similar to the Chow-Liu algorithm [8]. In Fig. 23(c) we
illustrate a possible final result for a particular SAT formula. Firstly, we create
an order σ2, from highest to lowest, related to the number of times that each
couple of variables appear together in the SAT clauses. This is the scoring
criterion for the arcs. Starting with an empty structure and following such an
order, at each step we add an undirected edge without creating cycles. If there
are ties, the selection is random. At the end of the procedure, the root of the
tree is the most over-lapped variable in the SAT formula taken from the most
frequent couple.

8.3 Using structural learning

In this section we report the obtained results when EBNA solves Max-SAT
using Algorithm B to learn a new structure at each step. In this point of the
analysis, we have made many comments about our results, and therefore, for this
last problem we only present the new relevant information. As in the previous
problems, in Table 4 we report the performance of the algorithm in terms of the
number of successful executions for each instance and structural model. In this
table we can see that when EBNA uses Algorithm B, the population size has
little influence on the number of successful runs. Consequently, the analyzed
probability values have a similar behavior with both population sizes and hence,
only the results for the size given by bisection are reported. Particularly, we
show the results for instance 3.
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Figure 24: Successful runs when EBNA is applied to instance 3 of Max-SAT
using Algorithm B with population size m.

Table 4: Number of EBNA runs that have reached the optimum out of 50
executions of different Max-SAT instances. We report the results for the
different structural models and population sizes

Instances B alg. Complete Bivariate
Max-SAT m m/2 m m/2 m m/2

I1 47 39 45 41 49 41
I2 46 45 41 33 3 8
I3 44 42 19 16 31 32
I4 47 41 46 41 32 22
I5 48 45 19 26 47 40

In Table 5 we report the number of optima that EBNA has reached on
average at the end of the successful runs. In this problem, EBNA is generally
able to reach a high number of optima and this fact is also reflected in our
analyzed probability values (Fig. 24). Firstly, we can observe that there is a
noticeable distance between the maximum and minimum probability assigned
to the set of optima during the search. Secondly, the probability for the MPS
reaches lower values than in ±J Ising problem for which EBNA achieves fewer
optimal solutions. The accumulated entropy of the population in Fig. 25 confirms
that there are different solutions in the population at the end of the run. Despite
the probability curves reaching lower values at the end of the run in Max-
SAT, we can observe an exponential growth after generation 20. As with the
rest of the problems, this fact occurs when the probability of the MPS or the
best individual in the population reaches probability values in logarithmic scale
around approximately −20.

For this problem, the fitness function for the MPS shown in Fig 24(c), does
not differ greatly from the best individual of the population. The MPS is a little
better at the beginning of the run but in some generations the best individual
overcomes the MPS and at the end of the run both curves converge.

8.4 Using fixed structures

As we discussed previously, for this particular problem, is not feasible to calculate
the MPS if all interactions of the problem are reproduced in the probabilistic
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Table 5: On average, number of optimal solutions that EBNA has reached at
the end of 50 executions when it is applied to Max-SAT. We report the results
for the different structural models and population sizes

Instances B alg. Complete Bivariate
Max-SAT m m/2 m m/2 m m/2

I1 273 116 220 85 263 147
I2 1346 704 428 356 293 263
I3 879 338 71 50 136 119
I4 149 86 58 54 42 50
I5 882 401 123 99 165 124
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Figure 25: Accumulated entropy of the population when EBNA solves different
instances of Max-SAT using our three types of structural models
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Figure 26: Successful runs when EBNA is applied to Max-SAT using the
complete structure with population size m.
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Figure 27: Successful runs when EBNA is applied to Max-SAT using the tree
structure with population size m.

model. For this reason, in Table 4 we can see that between our complete
structure and the bivariate model there is not much difference. In fact, the
tree structure performs better than the complete structure in some instances
in terms of number of successful runs. Again, it shows that EDAs with simple
structures can achieve a good performance.

In this section we report the results with population size m for instance 4,
where EBNA has a better performance with the complete structure, and for
instance 5 where the bivariate structure performs better (Table 4).

In Fig. 26 and 27 we report the results for EBNA with the complete structures
and with the bivariate structures respectively. For instance 4, when the complete
structure is introduced in EBNA (Fig. 26(a) and 26(b)), the probability of the
optimum is closer to the highest probability from the beginning and it tends to
be the MPS in an earlier generation than when the bivariate structure is used
(Fig. 27(a) and 27(b)). However, for instance 5, the optimum becomes the MPS
in an earlier generation with the bivariate structure. It is important to note
that the probability values reached for the MPS and the best individual at the
end of the run are closely related with the number of optimal solutions achieved
by EBNA. For instance 4, the complete structure achieves few more successful
runs, therefore the final probability values are slightly lower. On the other
hand, for instance 5, the bivariate structure has a higher number of successful
runs and its final probability values are clearly lower. In general, when fixed
structures are used in EBNA, the accumulated entropy (Fig. 25) is lower than
with B algorithm. Furthermore, if we look at Table 5, the number of reached
optima is also lower with these fixed structures.

Regarding the fitness function values, we show the corresponding results in
Fig. 26(c) and 26(f) for the complete structure and in Fig. 27(c) and 27(f) for
the bivariate structure. In the rest of the problems when the complete structure
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is used, the fitness function for the MPS is close to the optimum from the
beginning of the run. In Max-SAT, both structures manage a similar behavior
in terms of fitness function values.

9 Related work

In [32], an analysis of the probability assigned by EDAs to the optimum solution
is carried out for the Boltzmann EDA (BEDA) and factorized distribution
algorithms (FDAs) that use valid and invalid factorizations. The analysis of
the probabilities, which was carried out for a toy example, served to illustrate
that, under the infinite population assumptions made by BEDA, the use of
a valid factorization is a sufficient but not necessary condition for a steady
increase, until convergence, of the probability given by BEDA to the optimum.
Our work can be seen as an extension of the work presented in [32] in the
sense that we investigate the probabilities of EDAs that apply in structural and
parametric learning of a more complex class of models and across a range of
different problems. We also provide a method to determine exactly the most
probable solution given by the model.

Most of the research done in the investigation of the models learned by EDAs
that use Bayesian networks [16, 40, 31] has focused on structural descriptors of
the networks, in particular on the type (i.e. correct or spurious) and number
of the network edges [20, 14, 22, 27, 12, 26]. The analysis of the Bayesian
network edges learned by EDAs have allowed to study the effect of the selection
and replacement [22, 27] as well as the learning method [14, 12, 26] in the
accuracy of the models learned by EDAs and the efficiency of these algorithms.
A more recent work [26] considers the likelihood given to the selected set during
the model learning step as another source of information about the algorithm’s
behavior. In this case, not only the structure but also the probabilities are taken
into consideration to compute the model descriptor. Nevertheless, none of the
previously mentioned papers uses the probabilities given by the models to some
distinguished solutions (e.g. most probable explanation, known optimum, etc.)
as a means to reveal information about EDAs. In no case there is a reference
to the most likely solution that could be sampled from the learned model.

For EDAs that use Markov models [50, 43, 49], different issues related
with the relationship between the fitness function and the probabilistic models
learned by EDAs (the Markov models) have been investigated. Relevant to the
work presented in this paper, is the use of the models learned by the distribution
estimation using Markov network algorithm (DEUM) [51, 50, 49] as predictors
of the fitness function.

In [5], the product moment correlation coefficient between the Markov model
learned by DEUM and the fitness function is used to measure the quality of the
model as a fitness function predictor. For a given solution, the prediction is
the value given by the Markov model to the solution. The quality of the model
is measured using the correlation computed from samples of the search space.
Furthermore, the prediction accuracy of Markov models with different structural
complexity is investigated for different selection strategies and population sizes.

A substantial difference between the work presented in [5] and the results
introduced in this paper is that the analysis of the prediction given by the
models is constrained to the solutions taken from the selected population or
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random samples. The most probable explanation given by the model is not
computed. Another difference is that the evolution of the models throughout
the generations is not analyzed. By computing the most probable individual
given by the model at each generation we are able to obtain a dynamic view of
the quality of the probability model.

10 Conclusions

In this work we have analyzed EDAs from a quantitative point of view in order to
better understand their internal behavior. Through the recording of probability
and function values for a set of distinguished solutions during the search, we
have studied directly the probability distributions generated by this type of
algorithms. More specifically, the proposed analysis has allowed us to investigate
basic open issues raised in Section 2, whose study entails a deeper understanding
and development of EDAs. Now, we are going to look into these questions again,
this time providing the new knowledge that we have obtained during the study.
Thus, our first and main question was:

• How does the probability assigned to the optimal solution by the probability
distributions evolve during the search?

We can distinguish different scenarios depending on the number of optimal
solutions of the function to be optimized and the success of the search. Nevertheless,
the probability of an optimal solution must always exceed a certain threshold
in order to be reached. On one hand, when EBNA is applied to the unimodal
problems (Trap5 and Gaussian Ising) and the optimal solution is found, its
probability continuously increases until it reaches the value of 1. One exception
is function Trap5 and the bivariate structure where the probability of the
optimum decreases at the beginning of the run and it increases in the last
generations. On the other hand, when EBNA successfully solves the multimodal
problems (±J Ising and Max-SAT), it is able to reach a subset of the optimal
solutions and their probability values also increase during the search. In these
problems, the probability is distributed among different solutions at the end
of the run (note that the number of generations is limited). Thus, the non-
convergence to 1 of the probability values of the MPS or the best individual of
the population (both probability curves always rise simultaneously) reflects the
multimodality of the function.

In unsuccessful runs, the probability of the optimum always has a similar
pattern: at the beginning of the run it increases with the probability of the MPS
and the best individual of the population but after a certain generation, before
reaching a determined probability threshold, it decreases rapidly. This moment
of the run is fully connected with the exponential growth of the probability of
the MPS and the best individual which causes the stagnation of the search
in a few generations. We believe that it is possible to bring forward this
convergence by using probability values of solutions readily available such as
the best individual of the population. In our experiments, after this probability
approximately reaches the value of −20 in logarithmic scale, the algorithm
converges very quickly (both the probability curves and the entropy curves
finally stabilize). This probability threshold also could be useful to distinguish
between an exploration and exploitation phase. Thus, we could stop the search
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at the right time (before the probability of the optimum starts to decrease) and
take advantage of the information contained in the probabilistic model by using
exploitation techniques.

Finally, the population size also influences the probability assigned to the
optimum during the search. Therefore, this is reflected in the number of successful
runs. When the population size given by bisection is used, the probability
values for the optimum are closer to the highest in the distribution and this
is beneficial in order to solve the problem. When EBNA solves ±J Ising
with several optima, the maximum probability assigned to the set of optima
is also closer to the highest in the distribution when an adequate population
size is used. However, in Max-SAT, the probability curves for the maximum
probability are very similar for both population sizes and hence, also the number
of successful runs. We have observed that the performance of the algorithm in
terms of number of successful runs is closely related to the difference between
the probability of the optimum and the MPS during the search.

• Which probabilistic dependences should the model take into account in
order to reach the optimum?

As in other works [32, 22], the results shows that it is not strictly necessary
to have all the interactions in the model between the variables of the function
in order to reach optimal solutions. Nevertheless, the probability curve of an
optimum is clearly influenced by the amount of information introduced in the
model.

When the complete structure is used in EBNA in order to solve Trap5, we
obtain a perfect behavior: the optimum is the most probable solution during
the search and it is always quickly reached. However, in general, the use of
a complete structure in the terms explained in this work, does not always
guarantee successful runs although the probability of the optimum is very close
to the highest in the distribution (at least in the first generations). We believe
that this fact is due to the selected direction for the arcs which can create
different independence relations among variables and hence influence the behavior
of the algorithm. It supports the conclusion obtained in [22] about the difficulty
of efficiently creating structural models by hand even with complete knowledge
of the problem. Nevertheless, it would be interesting to take advantage of the
high probability assigned to the optimum when these types of structures are
used in order to improve the search. For example, if we know the interactions
among the variables of a problem, we could reproduce them in an undirected
graph and, at each step of an EBNA, look for the best direction for the edges
according to a score. This could be a way to exploit knowledge of the problem.

On the other hand, when structures with little information about the problem
are used in EBNA, the probability of the optimum is clearly more distant from
the highest in the distribution and the algorithm has a poor performance in
general. However, through these types of structures we can also achieve good
results such as in the case of Trap5 or Max-SAT. Although in Trap5 we found an
unusual behavior, in the Max-SAT problem the maximum probability assigned
to the set of optima is close to the highest in the distribution. Furthermore, in
this problem, a model with few interactions performs at least as well as a model
with more interactions.

34



• How does the function value for the most probable solution evolve during
the search?

The function value for the MPS always increases during the search until it
stabilizes in the last generations. At the beginning of the run, it is usually better
than the best individual in the population. Furthermore, the MPS increases
this difference in function value when the structural model is complete or an
adequate population size is used in EBNA. This difference in function value
could be used, 1) to improve the setup of EDA parameters in real problems
where the optimum is not known, 2) to measure the quality of the information
introduced about the problem in the model and 3) to measure the quality of
sampling methods.

Particularly, when we reproduce all the interactions between the variables of
the problem in the probabilistic model, the function value for the MPS is very
close to the optimum from the beginning of the run. Therefore, if we use the
structure of the problem, a sampling based on inference of the most probable
solution [28] could be very beneficial in EDAs, at least in the first generations.
This is another way to exploit the knowledge that we could have about the
problem.

11 Future work

There are a number of trends where it is worth extending the results presented
in this paper.

Firstly, a direct extension of this work is to reproduce the proposed analysis
in problems with different characteristics as for example non-binary discrete
problems. Another direct extension is to study the influence of different parameters
such as selection or replacement in the descriptors of the probabilistic models
introduced in this paper. Similarly, the influence in these descriptors of the
model learning algorithm used (e.g. exact vs approximate learning of Bayesian
networks [14]) is worth further investigation.

Secondly, it would be interesting to extend this type of quantitative analysis
by calculating the k most probable solutions in the probability distributions
generated by an EDA during the search. For instance, we can take k as a
parameter and evaluate the change in the correlation probability-fitness value
as a function of k. Similarly, we can evaluate the way in which the probability
values are concentrated around the k most probable configurations. Furthermore,
we can compare each model in terms of the average fitness of its k most probable
configurations.

Thirdly, some of the ideas collected in the conclusions can be used in the
development of adaptive EDAs [45]. For example: 1) by using the probability
value of the best individual of the population to anticipate the convergence
and take on-line decisions and 2) by using the relation between MPS and best
individual in order to self-adjust the population size or to use an adequate
sampling method during the search. In the second point, we could study the
use of approximate techniques such as loopy belief propagation [37] to calculate
the MPS, because in general, its computation is very hard.

Lastly, it would be possible to theoretically model the dependence between
probability curves and parameters such as the number of variables, the population
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size and the generation. We believe that our experimental results could help to
further develop this type of theoretical models.
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[1] R. Armañanzas, I. Inza, R. Santana, Y. Saeys, J. L. Flores, J. A. Lozano,
Y. Van de Peer, R. Blanco, V. Robles, C. Bielza, and P. Larrañaga. A
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