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Abstract

Haplotype data is especially important in the study of complex dis-
eases since it contains more information than genotype data. However,
obtaining haplotype data is technically difficult and expensive. Computa-
tional methods have proved to be an effective way of inferring haplotype
data from genotype data. One of these methods, the haplotype inference
by pure parsimony approach (HIPP), casts the problem as an optimization
problem and as such has been proved to be NP-hard. We have designed
and developed a new preprocessing procedure for this problem. Our pro-
posed algorithm works with groups of haplotypes rather than individual
haplotypes. It iterates searching and deleting haplotypes that are not
helpful in order to find the optimal solution. This preprocess can be cou-
pled with any of the current solvers for the HIPP that need to preprocess
the genotype data. In order to test it, we have used two state-of-the-art
solvers, RTIP and GAHAP, and simulated and real HapMap data. Due to
the computational time and memory reduction caused by our preprocess,
problem instances that were previously unaffordable can be now efficiently
solved.

1 Introduction

The genetic material of humans is organized in 23 pairs of chromosomes. In
each pair, one of the chromosomes is inherited from the mother and the other
from the father. The sequence of DNA in contiguous positions along a chro-
mosomal region is called a haplotype, while mixed data of both chromosomes
is called a genotype. In order to trace the structure of the human population
and improve our ability to map disease genes, haplotype information is more
relevant than genotype information. However, due to technology limitations,
haplotype information is harder to obtain than genotype data: instruments can
identify whether an individual is heterozygous at a site (alleles in both hap-
lotypes are equal) or homozygous (alleles are different in the two haplotypes).
Therefore, if the two alleles are different at a given site, we do not know which
allele belongs to which haplotype. Hence, computational methods have been
designed to obtain haplotype data from genotype data. This problem has been
called haplotype inference (HI). There are several approaches to this problem:
combinatorial, statistical, etc. Reviews about the haplotype inference problem



can be found in [1], [2], [3].

This paper focuses on one of the most popular approaches to the haplo-
type inference problem which is known as haplotype inference by pure parsimony
(HIPP) [4]. This approach is based on the fact that, due to the process of genetic
inheritance, the number of haplotypes in a given population is vastly smaller
than the number of possible haplotypes. The goal is, therefore, to explain a
given set of genotypes with the minimum possible number of haplotypes. This
problem can be posed as a combinatorial optimization problem and it has been
proved to be NP-hard [3] [5]. Although some authors have noticed the need to in-
troduce additional properties for the model [6] the HIPP still is a lively approach
to HI as shown in the number of recently published papers [7], [8], [9]. In the lit-
erature we can find several solvers for the problem, particularly those based on
integer linear programming (TIP [4], RTIP [4], PolyIP, [10], [11], HybridIP [10],
SM, RM and SMM [7]), branch and bound (HAPAR [12]), genetic algorithms
(GAHAP [13]), local search [14], boolean satisfiability, SAT (SHIPs [15]) and
pseudo boolean optimization (PolyPB, RPoly and NRPoly [16], [17]).

Many of the previously cited solving methods carry out a search over the
space of possible resolving haplotype pairs of the genotypes. Therefore, be-
fore running the optimization algorithm, these solvers have to preprocess the
genotype data by expanding all possible pairs of haplotypes for each genotype.
Unfortunately, the number of resolving pairs for a genotype grows exponentially
with respect to the number of heterozygous positions it has. Therefore, due to
memory and computational time limitations, these optimization methods can
not be applied to medium-large instances. Particularly, this problem affects
some of the most widely applied algorithms such as TIP [4] and its optimized
version RTIP [4], which cast the problem as an integer linear program (ILP).
These formulations generate an exponential number of constraints on the num-
ber of ambiguous positions of the genotypes. It is also the case of GAHAP [13],
the genetic algorithm, which requires an exponential amount of memory.

In this paper we propose a new preprocessing step for the HIPP problem.
This preprocess drastically reduces the subset of resolving pairs generated for
each genotype by detecting, before running the optimization algorithm, that
some groups of haplotypes are not relevant. In other words, for every solution
that includes elements of these groups, another solution can be built that does
not include these elements and has, at most, the same number of different hap-
lotypes. From now on we will refer to these haplotypes as irrelevant haplotypes.

We have tested our preprocessing algorithm with simulated and real data
obtained from the HapMap project [18]. For small instances our preprocess
shows quite a similar time performance to those in the literature. However, for
medium-big instances when starting with the reduced subset of resolving pairs
generated with our preprocess, the ILP formulation used in TIP and RTIP can
deal with HI problems that were previously unaffordable. Moreover, for those
problems of large size that can be solved with the original RTIP, we show a
dramatic decrease in the computational time when departing from our reduced
set of resolving pairs. Similar performance improvements are achieved when the
applied solver is GAHAP.

The rest of the paper is organized as follows: in the next section we give a
more detailed description of the HIPP, providing the background of the problem
and presenting the RTIP and GAHAP algorithms. Our proposed algorithm is
explained in Section 3. The results are presented and discussed in Section 4.



Genotype Resolving pairs
221120 (110110, 111010)
(110010, 111110)

201002 (100001, 101001)
211120 (100010, 111110)
( )

( )

( )

100110, 111010
101010, 111010
101110, 110010

Table 1: Three genotypes and every possible resolving pair for it
The paper ends with the conclusions and future work.

2 Haplotype inference by pure parsimony, TIP
formulation and GAHAP algorithm

Humans share about 99% of the DNA, so, in order to study human genome,
researches usually focus on the mutations. The most common form of variation
is the Single Nucleotide Polymorphism (SNP) which affects one single base in
a DNA region. Therefore, HI studies just consider the positions of the SNPs.
When we look at a collection of members of a population and focus on a partic-
ular SNP position, it usually occurs that only two out of four bases appear in
a significant percentage of the population. Formally, we represent haplotypes
as length m binary vectors (h[1], ..., h[m]) such that h[i] € {0,1}, i = 1,...,m
where 0 represents the wild allele (the most frequent one) and 1 the mutated
allele. Since the genotype information refers to the mixed information of its
two haplotypes, we have three possible values at a given position of a genotype:
0, representing that it is homozygous with 0 (which means that both haplo-
types have value 0 at the given position), 2 (denoting that it is homozygous
with 1) or value 1 when it is heterozygous (one haplotype has value 0 and the
other has value 1)!. Therefore, a genotype is represented as a length m ternary
vector (g[1],...,g[m]) such that g[i] € {0,1,2} for i = 1,...,m. We say that
genotype ¢ is solved by haplotypes h; and ho, and represent it by g = h1 @ ha,
if gli] = hq[i] + holi] for i = 1,...,m. An example of three genotypes and its
possible resolving haplotype pairs is shown in Table 1.

HI studies do not deal with the SNPs over the entire genetic sequence at a
time. Instead, the DNA sequence must be partitioned in such a way that the
behavioral patterns of the genetic inheritance can be applied within them and,
thus, accurate solutions from a biological point of view can be found. For the
HIPP problem these regions are the ones between the hotspots (small regions
with elevated recombination). It is known that the recombination process usu-
ally happens among the blocks of DNA between the hotspots, but not inside
them. Thus, if we consider these blocks (and since a new mutation is very
unlikely to happen at a given position) we can assume that the DNA blocks
that an individual has are exactly the same as the ones its parents had. There-

1The notation used in this paper is not the standard one, but under it a genotype is
explained by the sum, site by site, of its two resolving haplotypes. This representation was
introduced by [19].



fore, if we look at a collection of individuals that are somehow related (for
instance, members of a population) the number of haplotypes in such blocks
will be much smaller than the number of possible ones. This observation and
the fact that previous methods for HI found that their results were more likely
correct when they returned small sets of haplotypes, were used by Gusfield to
justify the HIPP [4] approach. The HIPP problem can be written as follows:
Given a set of n genotypes G = {g1,...,gn} find the smallest set of haplotypes
O* = {hy, ..., hx} such that for each genotype g in G there exist two haplotypes
h;, hj in O* such that g = h; ® hj.

The most widely used and referenced algorithm for the HIPP problem and
one of the two that we have used for our experiments is the RTIP [4]. RTIP
(Reduced TIP) is a more practical formulation of its first version TIP [4], which
is actually considered a conceptual formulation. They both rewrite the HIPP
problem as an integer linear program, including constraints for every different
haplotype and haplotype pair which can participate in the resolution of the
genotypes. Although the formulation is the same in both cases, the set of
haplotypes, O, and haplotype pairs considered by one and the other is different.
Their formulation is shown in Fig. 1. The variables defined are the following:
for each genotype g;, its set of possible resolving haplotype pairs is denoted as
R; = {(j, k) : hj and hy form an explaining pair for g;}. For each pair (j, k) in
R; they create a binary variable w; (; 5y which is set to 1 iff the pair is selected to
explain g;. There is also a variable x; for every distinct haplotype in the set O
which is set to 1 iff it is used to explain a genotype. Constraint (1) in the model
ensures that every genotype is explained by only one haplotype pair. Constraints
(2) and (3) ensure that if w; (;x) is 1, and hence pair (hj, hy) is selected, then
haplotypes h; and hy are in the set of chosen haplotypes. Finally, (4) ensures
that the variables are binary. The objective function minimizes the total number
of chosen haplotypes, which is the sum of the z; variables. Therefore, constraint
(1) generates n equations (where n is the number of genotypes) and constraint
(2) generates two equations for each haplotype pair.

The RTIP algorithm searches among the set of resolving haplotype pairs,
so before running the optimization algorithm it has to preprocess the genotype
data by generating the set O of resolving pairs for each genotype. RTIP only
considers pairs in which both haplotypes can participate in the resolution of
any another genotype. Although this cut drastically decreases the number of
possible haplotypes in the model, it still generates an exponential number of
constraints in the general case. Gusfield [4] also introduced a procedure to gen-
erate this set of haplotypes in a time proportional to the length of the genotypes,
m. This procedure consists of taking every pair of genotypes and looking for
the haplotypes in the intersection, that is, those that can participate in the
resolution of both genotypes at the same time.

The intersection of two genotypes is carried out as follows: Let g;, g; be two
genotype vectors. To identify the haplotypes in g; () g;, both vectors must be
scanned from left to right; if a site occurs with a 0 in one genotype and a 2
in the other, then the intersection is (J; if a site occurs with a 1 in one vector
and 0 or 2 in the other, then set that site to 0 if the site in the second vector
isa 0 or tolifitis a2 Then, if there are k remaining sites, where both g;
and g; contain 1’s, there are exactly 2% distinct haplotypes in the intersection,
and RTIP generates them by setting those k sites to 0 or 1 in every possible
way. If, for example, we consider genotypes g, = 21101 and g, = 00200, there



subject to

> wigw =1 Vi (1)

(j,k)ERi
Zj Z wi,(j,k) Viaj, k (2)
T > Wi (k) Vi, j, k (3)
xlawi7(j,k) € {Oal} Vi7j7k7l (4)

Figure 1: TIP and RTIP formulation

is no haplotype that can solve both genotypes at the same time, because g,
requires its two resolving haplotypes to have a 1 in their first position and g
requires its two resolving haplotypes to have a 0. Thus, their intersection is
empty. Let us now consider genotypes g. = 22010 and g4 = 12100. We can
see that there exists one haplotype, which is 11000, that can solve both. For
genotypes ge = 22110 and gy = 11211 the haplotypes that can explain both are
11100 and 11110.

The second algorithm used in our experiments is GAHAP [13], a heuristic
method for the HIPP problem based on genetic algorithms. GAHAP represents
an individual solution s as a length m binary vector (a bit array) where s[i] =
represents that the haplotype pair chosen as an explanation for genotype g; is
the [*" pair in its resolution list. GAHAP also preprocesses the input genotype
matrix before running the genetic algorithm. Its preprocess consists of that of
RTIP with an additional cut which is as follows: Consider two genotypes g;
and g;. Suppose g; has two resolutions (h1,hs) and (hg, hs) and g; has two
resolutions (hg, hs) and (hs, hg). If hy, hs, hy and hg are only involved in the
resolution of one genotype and hy and hy4 are involved in the resolution of two
genotypes, then GAHAP only keeps pairs (hy, ha) and (hs, hg) and deletes pairs
(hg, hs) and (hs,hg) (or equivalently keeps (hg4, hs) and (hs, hg) and deletes
(hl, hg) and (hg, hg))

3 Set-based preprocess

In this section we present the main contribution of this paper, which is the
set-based preprocess. As we have already stated, the preprocess consists of
generating a list of possible resolving haplotype pairs for each genotype. Un-
fortunately, the number of resolving pairs for a genotype grows exponentially
with respect to the number of ambiguous positions it has. Therefore, the larger
the number of haplotypes is, the longer it will take the later applied solver to
give a solution. Nevertheless, as we asserted in Section 1, not every haplotype
is relevant to find the optimal solution, so in order to reduce the number of
resolving pairs, these irrelevant haplotypes do not need to be considered. Gen-



erating every haplotype and then detecting and removing the irrelevant ones
is, for medium-big size instances, an unaffordable task. Therefore, we have de-
signed a procedure which deals with sets of haplotypes rather than individual
haplotypes to generate just those that are relevant.

Once the initialization has been performed, the algorithm iterates a step
where it looks for groups of irrelevant haplotypes. The haplotypes in such groups
will not be part of the eventually generated haplotype pair lists. Therefore,
once a group of irrelevant haplotypes is identified, it is not longer considered by
the algorithm. The algorithm can run until no more haplotypes are found for
elimination or another halting condition can be defined such as the time elapsed
from the beginning.

3.1 Preliminaries

As already mentioned, haplotypes are represented as binary vectors and geno-
types by ternary vectors. In order to deal with a large number of haplotypes,
it is interesting to work with groups of them instead of individual haplotypes,
thereby reducing the memory needed to store them. To represent sets of hap-
lotypes we use bases, which are ternary vectors of 0’s, 1’s and question marks,
’?’. The haplotypes included in a base are those having 0 at every position
where the base has a 0, a 1 at every site where the base has a 1 and every
combination of 1s and Os at every site where the base has a ’?’. Thus, the
number of haplotypes included in a base A with p question marks is |A| = 2P.
If we consider for instance the base A = 10077, the haplotypes included in it
are {10000, 10001, 10010, 10011}. Note also, that a base with no ambiguous
position is a haplotype. By using this representation we avoid generating every
haplotype and, therefore, we save computational space and time.

Since bases are sets of haplotypes, we can define the inclusion relation and
the intersection for them.

Inclusion relation Given two bases A and B, we say that A is a subset of
B if all the haplotypes in base A are also in base B and A # B. That
happens, as summarized in (5), if every position of B with no ambiguous
characters has the same value in A, every ambiguous position in A is also
ambiguous in B and there is at least one ambiguous position in B that
has not an ambiguous value in A. For instance, base B = 10777 is a
superset of base A = 10017 2.

Vi s.t. Bli] #? = Ali] = BJi]
ACB& ( Vi st. Alil]=7=B[i]=" (5)
3 st. Bli] =7 A A[i] #£7?

Intersection Given two bases A and B, the haplotypes in the intersection are
those that belong to both bases. Therefore, two bases have a non-empty
intersection if a position in which one base happens to have a 1 and the
other a 0 does not occur, i.e. ANB # (< Vi s.t. Ali] #7 A Bli] #7 =
Ali] = BJi]. In this case, the haplotypes in the intersection have a 1 at
every position where any of the bases have a 1, a 0 at every position where
any of the bases have a 0 and every combination of Os and 1s where both

2Note that we define the inclusion relation as a proper inclusion.



bases have the ambiguous character. For example, for bases A=10777 and
B=17? 007 the intersection is A N B=10007.

In the same way as haplotypes, bases can also be paired in order to solve
genotypes. Two bases A and B are complementary for a genotype g, denoted
by v4(A) = B or equivalently v,(B) = A, iff there exists a bijection between
A and B such that for each haplotype h, € A there exists a haplotype h, € B
such that g = h, @ hy. Note that if y4(B) = A, both A and B have the same
number of ambiguities (and thus the same number of haplotypes) and in the
same positions. Furthermore, given h, € A, the h;, € B such that g = h, @ hy is
built in the following way: if ¢ € {1,...m} is an index such that A[{] = B[i] =?
then hp[i] = 1 — hg[i]. For example, bases A = 17007 and B = 17107 are
complementary for genotype g = 21101.

A function that has been widely used in the literature of the HI is the one
called cover. This function associates to every haplotype the set of genotypes in
whose resolution it can participate. This function can also be defined over the
bases. The cover of a base A is the intersection of the cover of every haplotype
included in A:

cover(A) = ﬂ cover(h)
heA

Our preprocessing algorithm considers several data structures in its execu-
tion. It considers two sets of bases, H and D. The first structure, H, contains
the set of bases that the algorithm works with. This set is updated at each
iteration by removing bases that contain irrelevant haplotypes. Set D contains
the bases with non-irrelevant haplotypes. Every haplotype included in this set
will be inserted into the haplotype pair lists generated at the end of the prepro-
cess. Another important component of the algorithm is the pair graph, a graph
G = (V, E) which represents the complementary relation among the elements
in H. In this graph, the nodes V are the bases in H and there exists an edge
between two nodes A and B iff there exists a genotype g such that v,(A4) = B.
Let us illustrate the above described graph with an example. Consider the geno-
types and bases in Fig. 2a. The pair graph built using them has two connected
components as shown in Fig. 2b and, as pointed out before, within each of them
every base has the same number of ambiguous positions. We can also see that
base 11001 (which has no ambiguous position and is actually a haplotype) is
included in base 11007. The cover of base 10017, defined as the set of genotypes
in whose it resolution can participate, is cover(1001?) = {go, g3}

Genotype H
go : 21011 | 10017
g1 : 12101 | 11007

g2 : 01211 | 0110? 10017 9 11007 11001
gs : 10121 | 00117 gs O O
L1001 00117 01107 00111 01100

(a) (b)

Figure 2: Input list of genotypes, bases in H and the pair graph built with them



3.2 Initialization

The algorithm evolves by detecting and deleting groups of irrelevant haplotypes.
In order to do that, it updates the set of bases H at each step by deleting bases
which contain irrelevant haplotypes. The first step involves filling H with an
initial set of bases. For this step we make use of an adaptation of the procedure
introduced by Gusfield in his RTTP [4] (see Section 2). It consists of taking
every pair of genotypes g;, g; and calculating the set of haplotypes that can
solve both g; and gj, i.e. the intersection. If there exists at least one haplotype
that can participate in the resolution of both g; and g;, their intersection can
be written as a base, A;;. In this case, the two complementary bases of A;; are
also calculated (one for each of the genotypes, vy, (A;;) and v, (A;;)) and the
three bases are inserted into the set H. The main difference between the original
preprocess of RTIP and our adaptation is that RTIP explicitly generates every
haplotype in the intersection and we generate the base which contains those
haplotypes. Therefore the haplotypes are not explicitly generated reducing the
computational space and time required by the algorithm. The set D is initially
empty. To finish this initialization step, the pair graph is built using the initial
set of bases in H.

3.3 Elimination procedure

In this section we introduce the way in which bases are eliminated. We first
introduce the steps of the algorithm, then illustrate it with an example and
finally show that the deleted haplotypes are irrelevant. The pseudocode of this
procedure is shown in Algorithm 1. The input for the elimination step consists
of the set H, the pair graph built with the bases in H and the set D. The
procedure outputs an updated set H, the pair graph built with its bases and
the updated set D.

In the first three lines, the algorithm selects a set of bases to work with.
The selected bases make a connected component in the pair graph and have the
largest number of ambiguous positions of the bases in H. If there is more than
one connected component with the maximum number of ambiguous positions,
the algorithm selects one randomly. These are maximal bases, which means
that they are not included in any other base of H.

Lines 4 to 11 calculate the intersections between every base in C and every
maximal base which is not in C, i.e. the bases in F \ C. For every non-empty
intersection, the base containing the haplotypes in it is inserted into H. The
idea is to find bases whose haplotypes are involved in the resolution of as many
genotypes as possible. Note that if haplotype h is included in the intersection
of bases A and B, then h covers at least the same genotypes as both A and B.

Lines 12 to 22 insert into H the complementary bases of those that are
maximal subsets of the bases in C. In order to do that, for each base A in C
we get its maximal subsets in H, i.e. those bases A’ C A such that there is not
A” € Hand A’ ¢ A” C A. Then, for each genotype g in the cover of A we
calculate the complementary base of A’ for g and insert it into 7. Note that
once a new base is generated and introduced in H, it can also be a new maximal
subset for some base B in C, so we will need to calculate its complementary bases.
Therefore, this is a recursive process that finishes when the set is closed under
the complementary operation. Given that our procedure works with maximal



Algorithm 1 Elimination procedure, set-based preprocess

1: Calculate F = {A|A € H A AB € H s.t. A C B} the set of maximal
bases of H
Let A be a base randomly drawn from {A | A € FA|A| = max{|B| |B € F}}
Let C be the connected component of A in the pair-graph
for all A; € C do
for all A; € F\C do
Aij — Al N Aj
lf Aij 7& @ then
Insert into set H
end if
end for
: end for
: while {A'| A" c AeCAN AA" e H A" C A” C A} (the set of maximal
subsets of the bases in C) is not closed under the complementary operation
do
13:  for all A€ C do
14: for all A" Cc Ast. AA" e H A'Cc A” C Ado

© P NPT

— = e

15: for all g € cover(A) do

16: if v4(A’) ¢ H then

17: Generate and insert 4 (A’) into set H
18: end if

19: end for

20: end for

21:  end for

22: end while

23: if ABeH, Ae€C s.it. BC A then

24:  Add every base in C to D

25: end if

26: Remove bases in C from H

27: Calculate the pair graph G = (V, E) with V ="H

bases and that the bases in C are deleted, this step is performed in order to keep
the consistency in H.

The last step, lines 23 to 26, removes the bases in C from H. In the case
that there is no base in H that is a subset of a base in C then the bases in C
are introduced in D. This last case means that the bases in C do not share
any haplotype with any other base in H and can not be simplified. The bases
included in the set D are not longer considered by the elimination procedure
but they are not discarded by the algorithm. As we said in section 3.1, every
haplotype in this set will be inserted into the eventually generated haplotype
pair lists.

Now that we have described how the elimination procedure works, let us
illustrate it with an example. Consider for this example the genotype matrix
in Fig. 3a, and suppose that before an iteration of this procedure the current
set of bases H and the pair graph built with them are those in Fig. 3b and 3c
respectively. Assume also that the set of bases D is, at the beginning of this
iteration, empty.



A 111107
B : 011107
go : 122201 C : 001107
g1 : 012201 D : 001170 Aa—2 p N .
g2 : 001210 E : 000170 D
g3 : 000110 F : 000070 T

() (b) (c)

Figure 3: Genotype matrix, bases in H and the pair graph built with them

In the first three lines the algorithm selects a set of bases to work with.
In our example there are two connected components in the pair graph with
the maximum number of ambiguous positions, which is 1, so suppose that we
randomly choose the set {4, B,C} as the connected component C.

Lines 4 to 11 calculate the intersections between every base in C and every
maximal base which is not in C and inserts them into H. The algorithm finds
just one non-empty intersection in these steps, X = C'N D = 001100. Note that
the cover of this base is cover(X) = cover(C) U cover(D) = {g1,92}-

Lines 12 to 22 insert into H the complementary bases of those that are max-
imal subsets of the bases in C. Here, the only maximal subset of the bases in
C is X and therefore, these lines insert into H two new bases, B’ (the comple-
mentary base of X for genotype ¢g1) and A’ (the complementary base of B’ for
genotype go).

The last step, lines 23 to 26, removes the bases in C from H. Since there
exist bases in H that are included in bases of C (A’ C A, B’ C B and X C C),
the bases in C are not inserted into set D. The output of this procedure consists
of the updated set H, the pair graph built with the bases in it and the set D
(which has remain unchanged at this iteration). The set of bases H and the
pair graph the procedure outputs are shown in Fig. 4.

D : 001170
E : 000120
F : 000070
Vihi AT
B’ 011101 Dbt

(a) (b)

Figure 4: Bases in ‘H and the pair graph built with them after one iteration

Finally, we are going to prove that for a deleted haplotype h if there exists
a solution S such that h € S, then it is possible to build a new solution S’ such
that h € S and S’ has at most the same number of different haplotypes than S.

Before showing how to build this new solution, we should point out three
facts about the deleted haplotypes. Let A be a base in the connected component
C. Suppose that at the end of an execution of the elimination procedure the
bases in C are deleted from H without being inserted into D.The first one is that
for each base A in C not every haplotype is deleted, i.e. for each base A € C
there exists at the end of the elimination step a haplotype h such that h € A
and h € B and B € H\ C. This is clear as the set of maximal subsets of the

10



bases in C is not empty (since they are not inserted into D, see line 23 in the
algorithm) and we have closed this under the complementary operation.

The second fact is that if h is a removed haplotype at a given iteration, then
all its complementary haplotypes for every genotype in its cover are also removed
in the same iteration. In order to prove this statement, we must first see that if
haplotype h is not removed at a given iteration then every haplotype for every
genotype in its cover is not removed at the same iteration. For haplotype h € A
not to be removed h must also be included in base B. If B is not a subset of A,
lines 4 to 11 insert into H a base containing h. Let I be the maximal subset of
A that contains h. The next step of the algorithm, lines 12 to 22, insert into H
the complementary bases of every maximal subset of the bases in C until this
set of bases is closed under the complementary operation. Since v4(I) is now
in H \ C, we know that haplotype v4(h) € v4(I) is not deleted. Moreover, the
complementary relation is symmetric, so a haplotype is not removed if and only
if its complementary haplotypes are not removed. Therefore, if a haplotype
is removed, the complementary haplotypes for every genotype in its cover are
removed.

The third fact to be considered about the deleted haplotypes is that their
cover is equal to the cover of the base to which they belong. In an iteration of
the elimination procedure a connected component of the pair graph is deleted.
Thus, the complementary haplotype of a deleted haplotype must be in the same
connected component, so it can not solve more genotypes than the base to which
it belongs.

Considering these properties, it is possible to create a new solution S’ as
follows: we can delete haplotype h € A that solves genotype g in solution S and
introduce a new haplotype h, € A such that there exists B € F\C A h, € B,
i.e. h, is not deleted at the current iteration. Clearly, if h appears in solution S
solving genotype g, then b’ = ~4(h) € S. Also, as we have already stated, if h is a
deleted haplotype then ' = ~4(h) for all h € cover(A) is also deleted. Hence, we
delete this haplotype A’ from S and introduce h] = ,(h,) the complementary
haplotype of the new introduced h, for genotype g in S’. Of course, like as h’,
. belongs to base A’ = v,(A). This argument could be recursively applied to
h!. and the process repeated until none of the deleted haplotypes from H at this
iteration is in the new solution. Therefore, the new solution S’ does not contain
deleted haplotypes and has the same number of haplotypes as S.

3.4 The algorithm

In this section we describe the whole algorithm by combining the steps described
in the previous sections. 3

As shown in Algorithm 2, after the initial step has been performed, the elim-
ination procedure is applied until a halting condition is reached. This halting
condition can be defined in several terms such as the elapsed time from the
beginning.

As previously mentioned, the output of the preprocess is a haplotype pair
list associated to each genotype in the input. Therefore, the last step involves
using the haplotypes in H and D to fill those lists. In order to do this, every

3An executable version of this algorithm is available at http://www.sc.ehu.es/ccwbayes/
members/ekhine/home/index.html.
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Algorithm 2 Set-based preprocess

1: Initialization

2: while — halting condition reached do

3:  Apply elimination procedure

4: end while

5: Generate and insert every haplotype in H into the pair lists

haplotype in each base is generated and inserted into the pair lists of every
genotype in its cover, paired with its complementary in each case.

Let us consider the example in the previous section. Assuming that the step
performed in that example was the last one before the halting condition was
reached, the generated haplotypes are those shown in Fig. 5a and the resulting
pair list is that in Fig. 5b.

D : 0011?70 = {X, D'} = {001100, 001110}
E : 000170 = {E', E""} = {000100,000110}

F : 000070 = {F’, F""} = {000000, 000010} g0 : (A, B')
X : 001100 g1 : (B, X)
A’ 2111100 g2: (X, E"), (D', E')
B’ : 011101 gs: (E',F"),(E", F")

() (b)

Figure 5: Final set of haplotypes and resolving pairs for the genotypes

4 Experiments

4.1 Data sets

In order to evaluate the performance of our preprocessing algorithm, we have
used synthetic and real haplotype inference problem instances. Synthetic in-
stances have been obtained using the ms program [20] and the real data have
been obtained from the International HapMap project [18]. The instances are
divided into two different datasets that we have called classical and new HapMap
dataset.

For every instance the duplicate rows and columns are removed before run-
ning the preprocess. In order to clearly present the results and due to the large
number of instances, we have grouped them and report their average results.
In order to group them, we have taken into account the average number of
ambiguous positions per row and column the input genotype matrices have, pa-
rameters that we have called k_avg and [_avg respectively. These definitions are
inspired by the characterization of the instances given in [5]. Its authors refer
to an input genotype matrix as a (k, [)-bounded instance when it has at most
k ambiguous positions per row and [ ambiguous positions per column and they
prove that the HIPP problem is NP-hard even for (4, 3)-bounded instances. In
addition, we will see that this grouping has a nice property that helps to analyze
the results. We have set the bounding values of k_avg and [_avg to make the
groups in such a way that in a dataset all the groups have a similar number
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of instances. The results are graphically presented. The bounding values are
shown at the bottom of each figure, under each group. In order to know which
group an instance belongs to, one must look for the first group, starting form
the left, which matches its k_avg and [_avg values.

4.1.1 Classical dataset

This first dataset is a kind of standard in the HI literature, having been used by,
among others, [10], [14] and [16]. Tt contains both simulated and real instances.
The instances are divided into three groups?:

Uniform instances. The genotypes in these instances are synthetic and were
generated using the ms software as follows: Generate a set of haplotypes,
usually less than 2n, remove the repeated ones and randomly select two
haplotypes to generate each of the n genotypes . There are 200 uniform
instances, 110 of them generated under the assumption of no recombina-
tion, 30 assuming recombination level 4, another 30 with recombination
level 16 and the last 30 assuming recombination level 40. These instances
contain between 8 and 49 genotypes of a length which varies between 4
and 29 SNPs.

Non-uniform instances. The genotypes in these instances are also simulated
and were generated as follows: Generate a set of 2n haplotypes with the
ms software and randomly select two haplotypes (without removing the
repeated ones) to generate each of the n genotypes. There are 90 non-
uniform instances in the dataset. The instances in this dataset contain
between 6 and 36 genotypes and between 9 and 46 SNPs.

HapMap instances. There are 24 real instances obtained from the HapMap
project. These HapMap instances contain between 6 and 30 genotypes
and between 5 and 29 SNPs.

4.1.2 New HapMap dataset

This second dataset only contains real data obtained from the HapMap project
[18]. The whole sequence of chromosome 1 of the 95 individuals whose data is
available was split by the hotspots because, as already stated, the recombination
process is likely to happen among the blocks of DNA between the hotspots [1§],
but not inside them. The genotypes containing missing data were removed. For
these instances we have also removed the duplicate and complementary rows
and columns before running the preprocess, obtaining instances with a different
number of SNPs and genotypes. Once this cut has been performed we obtained
2119 instances, with at most 63 genotypes and 56 SNPs.

4.2 Compared algorithms and parameters

In order to test our preprocessing procedure, we have combined it with two
HIPP solvers, RTIP [4] and GAHAP [13]. They are both described in section 2.
In the current section we compare both original algorithms, RTIP and GAHAP,

4These instances were kindly provided by Dan G. Brown and Ian M. Harrower
5Personal communication, Dan G. Brown and Ian M. Harrower
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with their modified versions, SB-TIP and SB-GAHAP, which make use of our
set-based preprocess instead of their original preprocess.

The preprocesses (that of RTIP and the set-based) were implemented in
Java. The linear programming solver was GLPK, the GNU linear programming
kit. RTIP and SB-TIP algorithms were executed on a different platform to
GAHAP and SB-GAHAP. Therefore, the computational time of GAHAP and
RTIP cannot be compared, as well as SB-TIP and SB-GAHAP.

The halting condition of the set-based preprocess can be defined in several
ways. For the experiments with the new HapMap dataset, we have halted each
instance at five different moments using five different criteria. These criteria
take into account the elapsed time and also the size of the stored bases in H:
The algorithm stops when the biggest base in the set H has 4, 3, 2, 1 and 0
ambiguous positions (this last condition means that the set of bases H is empty
while D is not) or when the time limit has been exceeded, being this limit
1000 seconds. From now on, we will refer to these criteria as EL4, FLS3, EL2,
EL1 and ELO. For the classical dataset the halting condition of the preprocess
was defined in terms of computational time, being run with a time limit of 1000
seconds. We have used only this halting condition because the small size of these
instances causes the differences among these criteria to be almost imperceptible.
The time limit for the IP solver and the genetic algorithm is also 1000 seconds.
Algorithms GAHAP and SB-GAHAP halt when one of these three conditions is
met: (1) the 1000 seconds time limit is exceeded, (2) the number of generations
is equal to 150 or (3) the optimal value is reached (the optimal value is obtained
from the execution of SB-TIP). Following the recommendations of the authors,
the population size was set to 150 for the instances in the classical dataset and
to 600 for every instance in the new HapMap dataset.

4.3 Results

In this section we compare, on the one hand, the results of RTIP and SB-TIP
and, on the other hand, the ones of GAHAP and SB-GAHAP. The comparisons
are made in terms of haplotypes generated by the preprocessing procedures
and execution time. As a general comment we will show that, as the size of
the instances grow (i.e. for bigger values of k_avg and l_avg) the instances
preprocessed with the set-based are solved much faster. However, for small size
instances it is not always worth preprocessing the instances with our proposed
procedure.

4.3.1 Classical dataset

Before analyzing the results in detail it is important to take into account the
following facts. As we have already stated, GAHAP preprocesses the input
genotype matrix before running the genetic algorithm using the RTIP prepro-
cess and an additional cut. Therefore, the number of haplotypes generated by
GAHAP is always less than or equal to the number of haplotypes generated
by RTIP for every instance. This cut is implicitly performed by the set-based
preprocess, so the number of haplotypes generated by the set-based preprocess
when run until the final stage (EL0) is always less than or equal to the number
of haplotypes generated by GAHAP. GAHAP needs to generate the haplotypes
and then test if they match the requirement of the cut, while the set-based only
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Figure 6: Haplotypes generated (a) and execution time (b) for the uniform
instances in the classical dataset with RTIP and SB-TIP
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Figure 7: Haplotypes generated (a) and execution time (b) for the non-uniform
instances in the classical dataset with RTIP and SB-TIP

10E4

- AP —cue |
[ SB-GAHAP SB-GAHAP

6000

10E3
5000

ms)

(

3000

# of haplotypes
5

Total time

2000

10001

L | 0 L |
kavg<d kavgsd Kavged Kk avg Kk avg<s recomb recomb recomb. kavg<3 kavg<d kavg<d kavg< k.avg<s recomb recomb recomb
vg<6 level 4 level 16 level 40 Lavg<6 vg<6 level 4 level 16 level 40

(a) (b)

Figure 8: Haplotypes generated (a) and execution time (b) for the uniform
instances in the classical dataset with GAHAP and SB-GAHAP
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Figure 9: Haplotypes generated (a) and execution time (b) for the non-uniform
instances in the classical dataset with GAHAP and SB-GAHAP
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Figure 10: Haplotypes generated (a) and execution time (b) for the HapMap
instances in the classical dataset with RTIP and SB-TIP
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Figure 11: Haplotypes generated (a) and execution time (b) for the HapMap
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generates haplotypes that do not match the cut prerequisite. Note also that
the number of haplotypes generated by SB-TIP and SB-GAHAP are not the
same although the applied preprocess is the same. This is because GAHAP does
not consider haplotypes that cover only one genotype, if they are ever needed
they can be easily calculated (remember that under this notation a genotype
is the sum of its two resolving haplotypes). Therefore, when preprocessing the
data to which the GAHAP algorithm is going to be applied, our preprocessing
procedure does not consider those haplotypes either.

In this section we show the haplotypes generated and the required time to
preprocess the instances in the classical dataset. These are the smallest groups
of instances and are quickly and correctly solved. Figs. 6a and 7a show the
number of haplotypes generated by the RTIP preprocess and the set-based pre-
process for the uniform and non-uniform instances respectively. Figs. 8a and
9a also show the number of haplotypes generated by GAHAP and SB-GAHAP
for the same instances. When the set-based preprocess is used the number of
haplotypes generated is smaller and therefore the time required by the IP and
GAHAP solvers decreases. Despite this fact, the whole execution, preprocess
and process, when using the set-based preprocess takes a little longer for these
instances, as shown in Figs. 6b, 8b, 7b and 9b. The instances generated under
recombination are the worst case. Although for these instances the number of
haplotypes is vastly reduced when applying our proposed preprocessing proce-
dure, the large number of non-empty intersections found during the execution
due to the recombination, causes the preprocess time to increase.

The HapMap instances are the hardest ones in this classical dataset. The
instances that have been preprocessed with the our proposed procedure are
clearly solved faster as k_avg and l_avg grow, as shown in Figs. 10b and 11b.
Fig. 10 compares RTIP and SB-TIP, the haplotypes generated in Fig. 10a,
and the total time in Fig. 10b. We should point out that there is one instance
that not one of them could preprocess in the given time limit. There also exists
another instance which is correctly preprocessed using SB-TIP but could not be
preprocessed when using RTIP due to memory overflow. Also, due to the large
number of constraints needed to write the instances as an IP there are other
three instances that could not be solved when using the RTIP preprocess that
are correctly solved with SB-TIP. The situation is quite similar when comparing
GAHAP and SB-GAHAP, as shown in Fig. 11. There also are three instances
that GAHAP does not solve in the given time limit that SB-GAHAP correctly
solves and one that none of them solve.

4.3.2 New HapMap dataset

In this section we give the experimental results of the described algorithms
over the new HapMap dataset. It is worth noticing that for this dataset not
every bar in each group of each figure has the same number of instances. This
can happen for two different reasons. The first one is that there are instances
that are correctly solved within the time limit when using our preprocess that
did not finish when using the original algorithms, RTIP and GAHAP. Those
instances will likely generate more haplotypes than the average, and therefore,
this average will grow. This is due to the larger size of the instances in this
dataset. Another cause is that small instances cannot be halted with some of
our proposed criteria such as EL4 or EL3 because just after the initialization
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Figure 12: Results of RTIP and SB-TIP for the instances in the new HapMap
dataset

procedure has been performed the biggest base in H has less than 4 (respectively
3) ambiguous positions.

In Fig. 12a and 13a we can see how, for every group of instances, the number
of haplotypes generated decreases when the set-based preprocess runs until the
final stages. Fig. 12b shows the time required by the preprocess for RTIP and
SB-TIP and Fig. 13b the required time by GAHAP and SB-GAHAP. In both
cases one can see how the required time grows when the set-based preprocess is
run until the final stages. The number of haplotypes generated is vastly reduced
when using our preprocess and, when the applied process is TIP, so does the
number of constraints in the IP formulation. Consequently, for instances with
high values of k_avg and [_avg there is a dramatical decrease in the process
time. This decrease causes a reduction of the total time (preprocess + process)
required for solving an instance when it is preprocessed using the set-based
procedure, as shown in Fig. 12c and 13c. Moreover, comparing RTIP and SB-
TIP, 154 instances could not be solved when the applied preprocess was RTIP
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Figure 13: Results of GAHAP and SB-GAHAP for the instances in the new
HapMap dataset

while only five could not be solved with any of the five halting conditions defined
for the set-based preprocess in the given time limit. On the other hand, 430
instances that were not solved by the original GAHAP were solved in the time
limit when solved with our modification SB-GAHAP.

Fig. 14 and 15 show a comparison in terms of total execution time of the four
algorithms. Each instance is plotted with a plus or a circular symbol depending
whether it is faster solved (including preprocess and process) with the original
algorithm (RTIP or GAHAP) or with the modified algorithm including the set-
based preprocess (SB-TIP or SB-GAHAP).

Given that many instances have the same values of k_avg and [_avg and in
order to better represent the results, each instance has been plotted in (k_avg+e,
l_avg + ) where the € and v parameters are random numbers sampled from a
uniform distribution (0, 2).

Fig. 14 compares the SB-TIP with RTIP. For almost every instance with
k_avg > 5, the best performance is obtained when the applied preprocess is our
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proposed procedure. For these big instances it often happens that by performing
few iterations of the elimination procedure a large number of haplotypes is
discarded. On the other hand, RTIP generates them all, one by one, usually
taking longer than the set-based preprocess. In extreme cases, RTIP does not
even finish the preprocess in the given time limit. Moreover, even if it does finish,
RTIP will generate a larger number of constraints than the set-based preprocess.
Therefore, it will likely take the IP solver longer to solve an instance that has
been preprocessed with RTTP. For instances with k_avg < 5 and [_avg < 12 both
RTIP and SB-TIP show quite a similar performance. On the other hand, we can
see that for the instances with k_avg < 5 and [_avg > 12 RTIP is faster than
SB-TIP for most instances. These instances that are faster solved with RTTP
contain a large number of genotypes (as a consequence of their large I_avg) of
relatively few SNPs. Therefore, the number of intersections found during the
initialization step is likely to be high. This implies that the algorithm deals
with a large number of bases, but each containing relatively few haplotypes.
The reduction in the number of haplotypes is not as significant as in the rest
of the instances. Thus, the extra time consumed by the set-based preprocess
compared to that of RTIP is much higher than the time saved when processing
the instances.

Fig. 15 compares the SB-GAHAP with GAHAP. The plot is quite similar
to the one in the previous figure. The instances with smaller values of k_avg or
l_avg are faster solved with GAHAP while that with larger values of k_avg and
l_avg are faster solved when the applied preprocess is the set-based.

The results of the tests of chromosome 1 are available at http://www.
sc.ehu.es/ccubayes/members/ekhine/home/index.html. In addition, the re-
sults of the 22 autosomal chromosomes will also be published.

5 Conclusions

In this paper we have introduced a new preprocessing procedure which can
be coupled with several existing solvers for the haplotype inference by pure
parsimony problem. This procedure, which we have called set-based preprocess,
deals with sets of haplotypes instead of dealing with single haplotypes. It iterates
searching and deleting groups of haplotypes such that, for every solution that
includes haplotypes of these groups, another solution can be built that does
not include these haplotypes and has, at most, the same number of different
haplotypes. The use of groups of haplotypes instead of individual haplotypes
reduces the memory needed to represent the initial set of haplotypes. The
halting condition can be defined in several ways so one can adapt its behavior
for different kinds of problems. The number of haplotypes generated by the
set-based preprocess when run until the final stages is always, less than or equal
to the number of haplotypes generated by any of the current preprocessing
algorithms, usually being much smaller.

We have tested our procedure combining it with two existing and well known
solvers for the HIPP problem using simulated and real data. These experiments
showed the efficiency of this procedure in terms of the number of haplotypes
generated and time performance, especially for instances with a large number of
SNPs, it being possible to preprocess and process instances that were previously
unaffordable in a reasonable time. Moreover, n set a lower limit for the number

21



of ambiguous positions per row and column for which it is worth using our
proposed preprocessing procedure since the extra time consumed by it is going
to be saved when processing the data. For these big instances it is usually
not worth running the set-based preprocess until the final stages: the extra
computational time required for the latest steps is higher than the time saved
by the later applied solver with a reduced number of haplotypes. Finally, we
have shown that the reduction in computational resources required when using
our preprocess coupled with a state of the art solver allows us to solve HapMap
problem instances that were previously unaffordable for the same solvers.
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