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Abstract: The purpose of this research work is to prove some weak and strong convergence results
for maps satisfying (E)-condition through three-step Thakur (J. Inequal. Appl. 2014, 2014:328.)
iterative process in Banach spaces. We also present a new example of maps satisfying (E)-condition,
and prove that its three-step Thakur iterative process is more efficient than the other well-known
three-step iterative processes. At the end of the paper, we apply our results for finding solutions of
split feasibility problems. The presented research work updates some of the results of the current
literature.

Keywords: split feasibility problem; three-step iterative process; (E)-condition; convergence result;
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1. Introduction

Let T be a selfmap on a subset W of a Banach space U = (U, ||.||). Subsequently, T is called
contraction map on W if for each pair of elements w, w′ ∈ W, there is some real constant α ∈ [0, 1),
such that

||Tw− Tw′|| ≤ α||w− w′||. (1)

If (1) holds at α = 1, then T is called non-expansive. When a point g ∈W exists with the property
Tg = g, then g is called a fixed point of T. The fixed point set of T we often denote by the notation
Fix(T). In 1922, Banach [1] proved that any self contraction map of a closed subset W of a Banach space
has a unique fixed point. Later, the Banach result [1] was extended by Caccioppoli [2] in complete
metric spaces. In 1965, Browder [3] and Gohde [4] proved that any self non-expansive map of a
convex bounded closed subset W of a uniformly convex Banach space U always admits a fixed point.
The Browder-Gohde result was proved by Kirk [5] in the context of reflexive Banach spaces. We know
that the class of non-expansive maps is important as an application point of view. Thus, it is very
natural to consider larger classes of non-expansive maps. One of the larger class of non-expansive
maps was introduced by Suzuki [6] in 2008. A selfmap T on a subset W of a Banach space is said to be
Suzuki map (or said to satisfy (C)-condition), if for each pair of elements w, w′ ∈W, it follows that

1
2
||w− Tw|| ≤ ||w− w′|| ⇒ ||Tw− Tw′|| ≤ ||w− w′||.

Suzuki also proved that, if a map T satisfies (C)-condition, then for all w, w′ ∈W, ||w− Tw′|| ≤
3||w− Tw||+ ||w− w′|| holds.
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Inspired by Suzuki (C)-condition, Garcia-Falset et al. [7] introduced (E)-condition, as follows:
a selfmap T on a subset W of a Banach space is said be Garcia-Falset map (or said to satisfy
(E)-condition), if for each pair of elements w, w′ ∈W, there is some real constant µ ≥ 1, such that

||w− Tw′|| ≤ µ||w− Tw||+ ||w− w′||.

We see that any map T with (C)-condition satisfies (E)-condition with real constant µ = 3.
Nevertheless, an example in the Section 4 shows that there exists maps in the class of Garcia-Falset
maps which does not belong to the class of Suzuki maps. Hence, the class of Garica-Falset maps
properly includes the class of Suzuki maps. Garcia-Falset et al. [7] also proved some existence
theorems of fixed points for maps satisfying (E)-condition. Recently, Usurelu et al. [8] studied some
fixed point results for this class of maps and using an example, they studied the visualization of
convergence behaviors of some iterative processes. In this paper, we use the three-step iterative
process, which is different from the iterative process used in [8] for approximating fixed points of
maps of this class. We also present a new example of maps satisfying (E)-condition, and prove that
its under the consideration three-step iterative process is more efficient than the other well-known
three-step iterative processes. In the last section, we shall apply our results for finding solutions of
split feasibility problems.

However, once the existence of fixed point for an operator is established, then the finding of this
fixed point is not easy work. One of the simplest iterative method for finding fixed points is the Picard
iterative method, which is, wk+1 = Twk. The Banach–Caccioppoli result states that the unique fixed
point of contractions can be obtained by using the Picard iterative method. Nevertheless, the Picard
iterative method does not always work properly in the finding of fixed points of non-expansive maps.
For finding fixed points of non-expansive maps and to obtain relatively better convergence speed,
one deals with the different iterative methods, e.g., Mann [9], Ishikawa [10], Agarwal [11], Noor [12],
Abbas [13], and others. Among the other things, Thakur et al. [14] introduced the following three-step
iterative process for finding fixed points of non-expansive maps in Banach spaces, as follows:

w1 ∈W,
zk = (1− ck)wk + ckTwk,
yk = (1− bk)zk + bkTzk,
wk+1 = (1− ak)Twk + akTyk, k ∈ N,

(2)

where ak, bk, ck ∈ (0, 1).
In [14], Thakur et al. proved some important strong and weak convergence theorems of the

iterative process (2) for the class of non-expansive maps in the context of uniformly convex Banach
spaces. Recently in 2020, Maniu [15] extended the results of Thakur et al. [14] to the setting of Suzuki
maps. The purpose of this research is to extend the results of Maniu [15] to the more general setting of
Garcia–Falset maps. We also study the rate of convergence of the iterative process (2) with the some
well-known three-step iterative processes in the setting of Garcia-Falset maps, under different initial
points and set of parameters. At the end of the paper, we shall apply our results to find the solution of
split feasibility problems.

2. Preliminaries

In this section, we shall deal with some basic definitions and early results. Let W be any nonempty
subset of a Banach space U. Fix p ∈ U and assume that {wk} ⊆ U is bounded. Define r(p, {wk}) by

r(p, {wk}) := lim sup
k→∞

‖p− wk‖.
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We denote the asymptotic radius of {wk} with respect to W by r(W, {wk}) and define, as follows:

r(W, {wk}) := inf{r(p, {wk}) : p ∈W}.

We denote the asymptotic center of {wk} with respect to W by A(W, {wk}) and define, as follows:

A(W, {wk}) := {p ∈W : r(p, {wk}) = r(W, {wk})}.

The asymptotic center of {wk} with respect to W is nonempty and convex whenever W is convex
weakly compact, (see, e.g., [16,17] and others). One of the well known property of the set A(W, {wk})
is the singletoness property in the frame work of uniformly convex Banach spaces [18].

Recall that a Banach space U is said to have Opial’s property [19], if, for any weakly convergent
sequence {tk} in U with a weak limit t ∈ U, follows the following strict inequality

lim sup
k→∞

||tk − t|| < lim sup
k→∞

||tk − s|| for every s ∈ U − {t}.

The following result shows that the class of Suzuki maps is a sub-class of Garcia–Falset maps.

Lemma 1. [7] Let W be a nonempty subset of a Banach space and let T : W → W satisfies (C)-condition.
Subsequently, T satisfies (E)-condition with µ = 3.

Lemma 2. [7] Let W be a nonempty subset of a Banach space and let T : W → W satisfies (E)-condition.
Subsequently, for all g ∈ Fix(T) and w ∈W, we have ||Tg− Tw|| ≤ ||g− w||.

Lemma 3. [7] Let T be a selfmap on a subset W of a Banach space having Opial property. Let T satisfy the
(E)-condition. If {wk} is weakly convergent to g and limk→∞ ||wk − Twk|| = 0, then g ∈ Fix(T).

The following characterization is due to Schu [20].

Lemma 4. Let U be a uniformly convex Banach space, 0 < a ≤ gk ≤ b < 1 for every natural number k ≥ 1
and η ≥ 0 be some real constant. If {qk} and {pk} are any two sequences in U, such that lim supk→∞ ||qk|| ≤ η,
lim supk→∞ ||pk|| ≤ η and limk→∞ ||gkqk + (1− gk)pk|| = η, then limk→∞ ||qk − pk|| = 0.

3. Convergence Results in Banach Spaces

This section contains some weak and strong convergence results of the iterative process (2)
for operators satisfying (E)-condition. Throughout the section, U will stand for uniformly convex
Banach space.

Lemma 5. Let W be a nonempty convex closed subset of U and T : W →W be a map satisfying (E)-condition
with Fix(T) 6= ∅. If {wk} is generated by (2), then limk→∞ ||wk − g|| exists for every g ∈ Fix(T).

Proof. Let g ∈ Fix(T). By Lemma 2, we have

||zk − g|| = ||(1− ck)wk + ckTwk − g||
≤ (1− ck)||wk − g||+ ck||Twk − g||
≤ (1− ck)||wk − g||+ ck||wk − g||
≤ ||wk − g||,
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and

||yk − g|| = ||(1− bk)zk + bkTzk − g||
≤ (1− bk)||zk − g||+ bk||Tzk − g||
≤ (1− bk)||zk − g||+ bk||zk − g||
≤ ||zk − g||.

While using the above inequilities, we have

||wk+1 − g|| = ||(1− ak)Twk + akTyk − g||
≤ (1− ak)||Twk − g||+ ak||Tyk − g||
≤ (1− ak)||wk − g||+ ak||yk − g||
≤ (1− ak)||wk − g||+ ak||zk − g||
≤ ||wk − g||.

Thus, {||wk − g||} is bounded and non-increasing, which implies that limk→∞ ||wk − g|| exists for
each g ∈ Fix(T).

Now, we establish the following result which will be used throughout in the upcoming theorems.

Theorem 1. Let W be a nonempty closed convex subset of U and let T : W → W be a map satisfying
(E)-condition. Let {wk} be the sequence defined by (2). Subsequently, Fix(T) 6= ∅ if and only if {wk} is
bounded and limk→∞ ||Twk − wk|| = 0.

Proof. Let {wk} be bounded and limk→∞ ||Twk − wk|| = 0. Let g ∈ A(W, {wk}). We shall prove that
Tg = g. Since T satisfies (E)-condition, we have

r(Tg, {wk}) = lim sup
k→∞

||wk − Tg|| ≤ µ lim sup
k→∞

||Twk − wk||+ lim sup
k→∞

||wk − g||

= lim sup
k→∞

||wk − g|| = r(g, {wk}).

It follows that Tg ∈ A(W, {wk}). Since A(W, {wk}) is singleton set, we have Tg = g.
Hence, Fix(T) 6= ∅.

Conversely, we assume that Fix(T) 6= ∅ and g ∈ Fix(T). We shall prove that {wk} is bounded
and limk→∞ ||wk − Twk|| = 0. By Lemma 5, limk→∞ ||wk − g|| exists and {wk} is bounded. Put

lim
k→∞
||wk − g|| = η. (3)

From the proof of Lemma 5, it follows that

||zk − g|| ≤ ||wk − g||

⇒ lim sup
k→∞

||zk − g|| ≤ lim sup
k→∞

||wk − g|| = η. (4)

By Lemma 2, we have

lim sup
k→∞

||Twk − g|| ≤ lim sup
k→∞

||wk − g|| = η. (5)

Again, from the proof of Lemma 5,

||wk+1 − g|| ≤ (1− ak)||wk − g||+ ak||zk − g||.
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It follows that

||wk+1 − g|| − ||wk − g|| ≤ ||wk+1 − g|| − ||wk − g||
ak

≤ ||zk − w|| − ||wk − g||.

Accordingly, we can get ||wk+1 − g|| ≤ ||zk − g||.

⇒ η ≤ lim inf
k→∞

||zk − g||. (6)

From (4) and (6), we get
η = lim

k→∞
||zk − g||. (7)

From (7), we have

η = lim
k→∞
||zk − g|| = lim

k→∞
||(1− ck)(wk − g) + ck(Twk − g)||.

Applying Lemma 4, we obtain

lim
k→∞
||Twk − wk|| = 0.

Using compactness of the domain W, we establish the following strong convergence of {wk}
generated by (2) for maps satisfying (E)-condition.

Theorem 2. Let W be a nonempty convex compact subset of U and let T and {wk} be as in Theorem 1 and
Fix(T) 6= ∅. Subsequently, {wk} converges strongly to a fixed point of T.

Proof. By compactness of W we can construct a subsequence {wkl
} of {wk} such that limk→∞ ||wkl

−
u|| = 0, for some u ∈W. Because the map T satisfies (E)-condition, one can find some real constant
µ ≥ 1, such that

||wkl
− Tu|| ≤ µ||wkl

− Twkl
||+ ||wkl

− u||. (8)

In the view of Theorem 1, limk→∞ ||wkl
− Twkl

|| = 0. Now, using limk→∞ ||wkl
− Twkl

|| = 0 and
limk→∞ ||wkl

− u|| = 0, we have from (8), limk→∞ ||wkl
− Tu|| = 0. Now, the uniqueness of limits in

Banach space follows that Tu = u. Hence, u is the fixed point of T. By Lemma 5, limn→∞ ||wk − u||
exists. Hence, u is the strong limit of {wk}.

Theorem 3. Let W be a nonempty closed convex subset of U and let T and {wk} be as in Theorem 1. If Fix(T) 6=
∅ and lim infk→∞ dist(wk, Fix(T)) = 0. Subsequently, {wk} converges strongly to a fixed point of T.

Proof. The proof is elementary and, hence, omitted.

The next theorem requires condition I of Sentor and Dotson [21]. The detail definition is
given below.

Definition 1. [21] Let W be a nonempty subset of U. A selfmap T of W is said to satisfy condition I if there is
a nondecreasing function ξ with the properties ξ(a) = 0 if and only if a = 0, ξ(a) > 0 for every a ∈ (0, ∞)

and ||w− Tw|| ≥ ξ(dist(w, Fix(T))) for each w ∈W.

Theorem 4. Let W be a nonempty closed convex subset of U and let T and {wk} be as in Theorem 1 and
Fix(T) 6= ∅. If T satisfies condition I, then {wk} converges strongly to a fixed point of T.
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Proof. From Theorem 1, it follows that

lim inf
k→∞

||Twk − wk|| = 0. (9)

From the definition of condition I, we have

||wk − Twk|| ≥ ξ(dist(wk, Fix(T))).

From (9), we get
lim inf

k→∞
ξ(dist(wk, Fix(T))) = 0.

The function ξ : [0, ∞) → [0, ∞) is non-decreasing and satisfy ξ(0) = 0, ξ(a) > 0 for every
a > 0. Hence

lim inf
k→∞

dist(wk, Fix(T)) = 0.

By Theorem 3, we conclude that T converges to some fixed point of T.

Using Opial’s property, we obtain the weak convergence of {wk} for maps with (E)-condition.

Theorem 5. Let W a nonempty closed convex subset of U having Opial property and let T and {wk} be as in
Theorem 1 and Fix(T) 6= ∅. Subsequently, {wk} converges weakly to a fixed point of T.

Proof. By Theorem 1, the sequence {wk} is bounded and limk→∞ ||Twk − wk|| = 0. U is reflexive
because U is uniform convex. Now, by reflexivity of U, we can construct a weakly convergent
subsequence {wks} of {wk} with some weak limit u1 ∈ W. By Lemma 3, we conclude that
u1 ∈ Fix(T). We claim that {wk} converges weakly to u1. Assume that u1 is not the weak limit
of {wk}. Accordingly, we choose another weakly convergent subsequence {wkt} of {wk} with some
weak limit u2 ∈W and assume that u2 6= u1. Again, by Lemma 3, u2 ∈ Fix(T). Using Lemma 5 and
Opial condition, we have

lim
k→∞
||wk − u1|| = lim

s→∞
||wks − u1|| < lim

s→∞
||wks − u2||

= lim
k→∞
||wk − u2|| = lim

t→∞
||wkt − u2||

< lim
t→∞
||wkt − w1|| = lim

k→∞
||wk − u1||.

This is a contradiction. Hence u1 is the weak limit of {wk} and fixed point of T.

4. Numerical Example and Rate of Convergence

Example 1. Define a selfmap T on W = [0, 1] as follows:

Tw =

 0 if w ∈W1 =
[
0, 1

500

)
4w
5 if w ∈W2 =

[
1

500 , 1
]

.

First, we are going to show that T belongs to the class of Garcia–Falset maps, that is, we shall show that
|w − Tw′| ≤ µ|w − Tw| + |w − w′| for each pair of elements w, w′ ∈ W and some real constant µ ≥ 1.
Fix µ = 5 and consider the following cases.

(i): For w, w′ ∈W1, we have

|w− Tw′| = |w| ≤ 5|w|
= 5|w− Tw|
≤ 5|w− Tw|+ |w− w′|.
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(ii): For w, w′ ∈W2, we have

|w− Tw′| ≤ |w− Tw|+ |Tw− Tw′|

= |w− Tw|+ |4w
5
− 4w′

5
|

= |w− Tw|+ 4
5
|w− w′|

≤ |w− Tw|+ |w− w′|
≤ 5|w− Tw|+ |w− w′|.

(iii): For w ∈W2 and w′ ∈W1, we have

|w− Tw′| = |w| = 5|w
5
|

= 5|w− Tw|
≤ 5|w− Tw|+ |w− w′|.

From the above cases, one can conclude that T belongs to the class of Garcia–Falset maps. Next, we
show that T does not belong to the class of Suzuki maps. We select w = 1

800 and w′ = 1
500 . Susbequently,

1
2 |w − Tw| = 1

2 |w| =
1

1600 < 3
4000 = |w − w′|, but |Tw − Tw′| = | 4w′

5 | =
1

625 > 3
4000 = |w − w′|.

For all k ≥ 1, let ak = 0.70 and bk = 0.65 and ck = 0.45. Table 1 shows that three-step Thakur iteration
process [14] converges faster to the fixed point g = 0 as compared three-step Abbas [13] and three-step Noor [12]
iterative processes.

Table 1. Strong convergence of three-step iterative processes while using T given in Example 1.

Three-Step Thakur Three-Step Abbas Three-Step Noor

w1 0.5 0.5 0.5
w2 0.329178000000000 0.354592000000000 0.354888000000000
w3 0.216716311368000 0.251470972928000 0.251890985088000
w4 0.142676483886991 0.178339190464970 0.178786175831820
w5 0.093931919225903 0.126475300450709 0.126898136737206
w6 0.061840642613889 0.089694259474836 0.090069251900787
w7 0.040713158108709 0.063609733711402 0.063928993337133
w8 0.026803751919817 0.045111005392387 0.045375265174857
w9 0.017646410898923 0.031992003248194 0.032206274214749
w10 0.011617620493771 0.022688216831560 0.022859240487047
w11 0.007648530157797 0.016090120365478 0.016224940275934
w12 0.005035455720566 0.011410855921271 0.011516073209292
w13 0.003315122486369 0.008092396445671 0.008173832378198
w14 0.002182530779636 0.005738998080926 0.005801590050068
w15 0.000261903693556 0.004070005615023 0.004117829379377
w16 0 0.002886382862085 0.002922736465576
w17 0 0.002046976543664 0.002074488197591
w18 0 0 0.000311173229638

In Example 1, we set different values for parameters ak, bk and ck and set stopping criterion
‖wk − w∗‖ < 10−15, where the element w∗ = 0 is a unique fixed point of T. The influence of initial
guess and parameter for the three-step Thakur [14], three-step Abbas [13], and three-step Noor [12]
iterative processes can be seen in the Tables 2–4.
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Table 2. When ak = k
k+1 , bk = k

k+7 and ck = ( 1
3k+4 )

1
2 .

Number of Iterates Required to Reach Fixed Point.

Initial Points Three-Step Noor Three-Step Abbas Three-Step Thakur

0.10 23 15 13
0.25 26 18 16
0.50 27 21 17
0.75 28 22 18
0.95 29 23 19

Table 3. When ak = k
k+3 , bk = k√

k+7
and ck = 2k

5k+2 .

Number of Iterates Required to Reach Fixed Point.

Initial Points Three-Step Noor Three-Step Abbas Three-Step Thakur

0.10 18 11 10
0.25 19 14 11
0.50 20 16 12
0.75 20 17 13
0.95 20 17 13

Table 4. When ak = 1− ( 1
k+7 ), bk =

(
k

7k+25

) 1
7 and ck = k

k+25 .

Number of Iterates Required to Reach Fixed Point.

Initial Points Three-Step Noor Three-Step Abbas Three-Step Thakur

0.10 24 15 13
0.25 25 18 16
0.50 25 20 17
0.75 25 21 18
0.95 25 22 19

5. Application

In this section, we are interested in finding of the solution of a split feasibility problem
(in short SFP) by using the three-step iterative method (2). To do this, we assume that U1 and
U2 are any two real Hilbert spaces, ∅ 6= C ⊆ U1 and ∅ 6= Q ⊆ U2 be convex and closed. Assume that
L : U1 → U2 be a linear and bounded. Subsequently, the SFP mathematically described as finding
an element w ∈ C, such that

w ∈ C, Lw ∈ Q. (10)

Next we assume that the solution set Ω associated with the SFP (10) is nonempty and let

Ω = {w ∈ C : Lw ∈ Q} = C ∩ L−1Q.

We see that the set Ω is nonempty convex as well as closed. Censor and Elfving [22] solved the
class of inverse problems with the help of SFP. In the year 2002, Byrne [23] proposed the remarkable
CQ-algorithm for solving the SFP. If γ ∈ (0, 2

||L||2 ), PC and PQ represent the projections onto C and
Q respectively and L∗ : U∗2 → U∗1 is the adjoint of L, then the sequence {wk} of CQ-algorithm is
generated iteratively, as follows:

wk+1 = PC[I − γL∗(I − PQ)L]wk, k ≥ 0. (11)

The following facts are in [24].

Lemma 6. If T = PC[I − γL∗(I − PQ)L], for γ ∈ (0, 2
||L||2 ), then T is non-expansive.
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By assumption, the set Ω that is associated with a SFP is nonempty, one can see that the element
w∗ ∈ C is the solution of SFP if and only if it solves the following fixed point equation:

PC[I − γL∗(I − PQ)L]w = w, w ∈ C.

Hence, the solution set Ω coincides with the fixed point set of the operator T, that is,
Fix(T) = Ω = C ∩ L−1Q 6= ∅. For details, one can refer [25,26].

Now, we present our main results.

Theorem 6. Let T = PC[I − γL∗(I − PQ)L] and {wk} be a sequence defined by the iterative process (2),
then {wk} converges weakly to the some solution of a SFP (10).

Proof. By Lemma 6, the operator T is non-expansive. In the view of Lemma 1, T is Garcia–Falset
operator. The conclusions follows from Theorem 5.

Theorem 7. Let T = PC[I − γL∗(I − PQ)L] and {wk} be a sequence defined by the iterative process (2),
then {wk} converges strongly to the solution of SFP (10), provided that lim infk→∞ d(wk, Ω) = 0.

Proof. Proof follows from Theorem 3.

6. Conclusions

The three-step Thakur [14] iterative process converges faster than three-step Abbas [13] and
three-step Noor [12] iterative process, respectively, for the example under consideration as shown in
the Tables 1–3. The class of Garcia-Falset maps is wider than the class of Suzuki maps, as shown in the
Example 1. Hence, our results update the results of Maniu [15] from the setting of Suzuki maps to the
general setting of Garcia-Falset maps. We have also applied our results for finding solutions of split
feasibility problems. Because our iterative process converges faster than Abbas and Noor iterations
and the class of Garcia–Falset maps is more general than the class of non-expansive and Suzuki maps,
so our results improve and extend the corresponding results in [6,7,12–15].
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