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Simple Summary: Domestic livestock diversity is an important component of global biodiversity and
molecular data have become essential for the characterization of genetic diversity in cattle. The aim
of this study was to assess the effectiveness of a 30-short tandem repeat (STR) panel and reveal the
genetic structure of a local Pirenaica breed compared with other breeds (Terrefa, Blonde d’Aquitaine,
Limousin, Salers and Holstein-Friesian) typically raised in the same geographic Basque region.
The proposed STR panel could be used as an appropriate genetic tool to trace Pirenaica animals and
their Protected Geographic Indication (PGI) products.

Abstract: Pirenaica is the most important autochthonous cattle breed within the Protected Geographic
Indication (PGI) beef quality label in the Basque region, in northern Spain. The short tandem repeats
(STRs) are powerful markers to elucidate forensic cases and traceability across the agri-food sector.
The main objective of the present work was to study the phylogenetic relationships of Pirenaica cattle
and other breeds typically raised in the region and provide the minimum number of STR markers for
parentage and traceability purposes. The 30-STR panel recommended by the International Society
of Animal Genetics-Food and Agriculture Organization of the United Nations (ISAG-FAO) was
compared against other commercial STR panels. The 30-STR panel showed a combined matching
probability of 1.89 x 107> and a power of exclusion for duos of 0.99998. However, commercial STR
panels showed a limited efficiency for a reliable parentage analysis in Pirenaica, and at least a 21-STR
panel is needed to reach a power of exclusion of 0.9999. Machine-learning analysis also demonstrated
a 95% accuracy in assignments selecting the markers with the highest Fgr in Pirenaica individuals.
Overall, the present study shows the genetic characterization of Pirenaica and its phylogeny compared
with other breeds typically raised in the Basque region. Finally, a 21-STR panel with the highest Fgt
markers is proposed for a confident parentage analysis and high traceability.

Keywords: structure; identity; assignment test; microsatellite; multiplex PCR; Salers; Holstein-Friesian;
Terrefia; Blonde d”Aquitaine; Limousin

1. Introduction

Pirenaica are the most important beef cattle raised in the Basque region, northern Spain, and their
meat is included, together with other breeds, within the local Protected Geographic Indication (PGI)
label [1]. The regulation of the PGI quality label establishes the production system and defines
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health and welfare requirements. This beef is highly appreciated by the local consumer, and has
been registered as an “100% autochthonous breed” by the Spanish Ministry of Agriculture under the
National Regulation (R.D 2129/2008, December 26th) on conservation, improvement and promotion of
animal breeds [2]. Tool-supported traceability is of high importance to avoid food fraud and maintain
high standards across the agri-food industry. In this sense, DNA-based traceability constitutes a
powerful tool for parentage detection, and individual or species identification in the food chain [3,4].
For instance, microsatellite, or short tandem repeat (STR) loci, have become necessary tools for pedigree
recording and inbreeding control and are essential for conservation and selection programs [5]. STR loci
are also interesting for individual animal identification purposes through the meat chain promoting
food safety and traceability [6,7].

In this sense, several STR panels have been proposed for parentage verifications in the breeding
industry and cattle related forensic cases. However, depending on the studied breed, a selection of an
appropriate STR panel with a minimum number of markers allowing a kinship exclusion probability
over 99.99 is required. In this sense, initially, a panel of 9-STR was recommended suggesting the
increase of markers in parentage testing [8], and two markers were included in a commercial 11-STR
panel (StockMarks®, Applied Biosystems, Foster City, CA, USA). Later, a 12-STR core panel was
proposed [9] and commercialized (Bovine Genotype™ Panel 1.2, Thermo Scientific, Waltham, MA,
USA). Finally, six additional markers were intended (Bovine Genotype™ Panel 2.2, Thermo Scientific,
USA) to be used as a complement to Panel 1.2 when more STR loci are required. For cattle genetic
resources management studies, on the other hand, FAO proposed a 30-STR panel [10]. The 12-STR core
panel has been widely used in parentage and identity testing, but after the poor discrimination power
observed among several European breeds it was suggested to increase the amount of genotyped STRs
for forensic cases [11]. In the Pirenaica breed, a 10-STR panel was studied for traceability purposes [12]
and other few and/or not core STRs were reported for genetic diversity [13,14]. In other breeds included
in the Basque PGl label, such as autochthonous Terrefia, or imported Blonde d”Aquitaine, Limousin
and Salers, genetic diversity studies have been reported [15-17]. However, most of previous studies
were performed before the recommendation by the FAO for using a 30-STR panel, and therefore,
limitations of markers make for a difficult the comparison with data from later studies [10]. Therefore,
the objectives of the present study were (1) to study the genetic diversity and phylogeny of Pirenaica
cattle; (2) to assess the effectiveness of the 30-STR panel, from the International Society of Animal
Genetics-Food and Agriculture Organization of the United Nations (ISAG-FAO) Advisory group on
Animal Genetic Diversity, for parentage and individual identification compared to other commercial
STR panels recognized as the minimum standard for identity and kinship testing; and (3) to assess the
traceability through genetic assignments comparing several STR panels in a single predictive model
and select the most discriminative markers to determine the population of origin of an unknown
individual in Pirenaica and other breeds raised in the Basque region (Terrefia, Blonde d’Aquitaine,
Limousin, Salers and Holstein-Friesian).

2. Materials and Methods

2.1. Sample Collection and DNA Extraction

Muscle samples from Pirenaica beef cattle from several farms located in the Basque Country
(northern Spain) were collected (1 = 114) according to the Bovine Identification Document. Neither
parentage nor maternal half-sibs were observed, and paternal half-sibs were maintained at low
frequencies (0.009). Furthermore, muscle samples from Salers (n = 13) and Holstein-Friesian cattle
(n =21) were collected for assignment accuracy purposes [18]. Salers and Holstein-Friesian (as cull dairy
cows) are both integrated in the Basque beef supply chain. Pirenaica, Salers and Holstein-Friesian were
purebred and, in all cases, neck (Sternomandibularis) muscle samples were collected at 24 h postmortem
in a local commercial abattoir (Harakai Urkaiko S. Coop., Zestoa, Gipuzkoa). DNA was extracted from
20 mg of muscle tissue using a salting-out method. The DNA pellet was re-hydrated with 200 uL of
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H,0 and aliquots were stored at —20 °C. DNA samples were quantified with a NanoDrop ND-1000
spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and diluted to 50 ng/uL.

2.2. Sample Genotyping

The PCR amplification of the recommended 30 microsatellites (BM1824, BM2113, ETH03, ETHO10,
ETH225, INRA023, SPS115, TGLA53, TGLA122, TGLA126, TGLA227, BM1818, CSSM66, CSRM60,
ILSTS006, HAUT27, HELO1, INRAOO5, INRA037, INRA063, ETH152, HEL09, ETH185, HEL05, HEL13,
INRA032, MM12, HAUT024, ILST005 and INRAO035) was performed by multiplex PCR reaction [10].
Capillary electrophoresis was performed on an ABI PRISM 3130x] Genetic Analyzer (Applied Biosystems,
Foster City, CA, USA) using internal size standard GS LIZ500 (Applied Biosystems). GeneMapper v4.0
was used for fragment analysis.

2.3. Statistical Analysis

In order to study the genetic variation, GENEPOP 4.2 software [19] was used to test for deviations
from Hardy—-Weinberg equilibrium (HW) using the test reported by Guo and Thompson [20] and a
Markov chain (dememorization 5000, batches 100, iterations per batch 1000). Bonferroni’s procedure
was applied to correct the level of significance of multiple tests. The cervus 3.0.3 software [21] was
used to calculate the number of alleles per locus (k), observed heterozygosity (Ho) and expected
heterozygosity (He).

Genetic relationships of Pirenaica were analyzed against Terrefia, Salers and Holstein-Friesian
STR data from our previous studies [15,16]. Reynolds genetic distance measures were computed by
ARrLEQUIN 3.5 [22]. A factorial components analysis (FCA) was used to represent a three-dimensional
plot [23], and a Neighbor-joining (N]) phylogenetic tree based on individuals was also constructed [24].

For individual identification and traceability, matching probability (MP) was computed as the
probability to have a match between two individuals sharing an identical genotype profile and chosen
at random [25] and using Powerstarts 1.2 (Promega, Madison, WI, USA). The combined matching
probability (CMP) was computed with the formula: CMP = (MP;)(MP,) ... (MPy) which is the overall
MP including k number of loci. For parentage purposes, power of exclusion for each locus (PE) was
calculated in the absence of genetic information from one parent (PE-1P) and power of exclusion when
genetic information of both parents was available (PE-2P), power of exclusion for identity of two
siblings (PE-SI) was also computed. Finally, combined power of exclusion (CPE) with the formula:
CPE =1- (1 -PE;)(1 - PE;) ... (1 — PE) which is the overall PE including k number of loci was
calculated [26]. CPE was calculated for PE-1P (CPE;), PE-2P (CPE;) and PE-SI (CPEg;) using several
commercial marker panels and compared with the improved discrimination power of the 30-STR panel.

Assignment tests were performed including several breeds typically raised in the Basque region.
On one hand, minority PGI breeds such as native Terrefia [15], Blonde d"Aquitaine and Limousin [11]
were included using published STR data. On the other hand, Salers and Holstein-Friesian breeds,
genotyped in this study using the 30-STR panel, were included. First of all, the assignment of
individuals to their breeds was tested using the frequency-based [27] and the Bayesian-based [28]
methods implemented in GeNEcLAss 2 software [29]. The Bayesian method was computed by simulating
1000 genotypes (using allele frequencies) and a fixed threshold of 0.001. Thus, an individual was
considered as correctly assigned to a population when it was excluded from all of the non-origin
populations (p < 0.001), but not from the true population of origin. Secondly, the existence of distinct
genetic populations and assignment was tested with a Bayesian model based method in sTRUCTURE
2.3.4 software [30] under an admixture model for clusters (K) and using 10 Markov Chain Monte Carlo
simulations consisting of 1 X 10° iterations after a burn-in of 5 x 10° iterations. The optimal value of K
was selected following the clustering mode described by Kopelman et al. [31] and the approach AK of
Evanno et al. [32]. Thereafter, a supervised machine-learning approach was used to estimate the mean
and variance of assignment accuracy by a Monte-Carlo resampling (100 iterations) cross-validation
procedure using r software and AssignPOP package [33]. Analyses were adjusted by the proportion of
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individuals and by the STRs with the highest Fgr to estimate the minimal number of markers for an
accurate assignment. This approach creates randomly selected, independent training and test data
panels which avoids introducing high-grading bias [34], while the proportion of individuals from
each source population randomly allocated to the baseline data panel was adjusted to avoid biases
associated with unbalanced population sizes [35].

3. Results and Discussion

3.1. Genetic Variations and Genetic Relationships

A total of 30 STR loci were analyzed in 114 Pirenaica individuals and HW equilibrium was reached
in all markers when Bonferroni’s correction was applied, except for the locus INRAO37 (Table 1).
The He across all markers varied from 0.372 (ILST005) to 0.865 (TGLA227), where the average He was
0.680. All the loci were polymorphic and 211 alleles were detected. The number of alleles per locus
ranged between 2 (ILST005) and 12 (CSSM66) with an average of 7.03 + 2.51.

Table 1. Statistical parameters for genetic characteristics of Pirenaica breed using the panel of 30 short
tandem repeat markers by ISAG-FAO [10].

Marker k Ho He PIC MP PE-1P PE-2P PE-SI HW
BM1824 4 0.711 0.745 0.694 0.114 0.319 0.668 0.592 NS
BM2113 8 0.816 0.824 0.797 0.062 0.469 0.821 0.646 NS
ETHO03 8 0.588 0.621 0.582 0.181 0.224 0.597 0.513 NS
ETHO010 6 0.746 0.710 0.658 0.160 0.295 0.649 0.570 NS
ETH225 6 0.684 0.639 0.604 0.161 0.241 0.623 0.527 NS
INRAO023 7 0.737 0.769 0.729 0.088 0.373 0.736 0.610 NS
SPS115 6 0.596 0.581 0.522 0.235 0.182 0.503 0.481 NS
TGLAS53 11 0.754 0.820 0.791 0.063 0.462 0.815 0.643 NS
TGLA122 11 0.746 0.768 0.734 0.084 0.387 0.758 0.611 NS
TGLA126 5 0.658 0.608 0.556 0.201 0.203 0.545 0.502 NS
TGLA227 11 0.860 0.865 0.845 0.039 0.559 0.882 0.672 NS
BM1818 7 0.728 0.783 0.750 0.080 0.401 0.770 0.620 NS
CSSM66 12 0.732 0.777 0.755 0.078 0.422 0.808 0.619 NS
CSRM60 7 0.652 0.632 0.602 0.163 0.240 0.633 0.523 NS
ILSTS006 7 0.719 0.806 0.774 0.070 0.432 0.789 0.634 NS

HAUT27 7 0.693 0.745 0.702 0.111 0.342 0.706 0.594 NS

MM12 11 0.842 0.804 0.777 0.086 0.445 0.810 0.634 NS
HEL09 7 0.754 0.798 0.764 0.075 0.417 0.776 0.629 NS
INRAO032 8 0.693 0.747 0.710 0.099 0.351 0.725 0.597 NS
ETH152 6 0.788 0.746 0.701 0.124 0.336 0.696 0.594 NS
HAUTO024 8 0.772 0.737 0.691 0.123 0.327 0.687 0.589 NS
INRAO037 9 0.268 0.663 0.601 0.231 0.250 0.588 0.536 ok
INRAO005 4 0.604 0.642 0.564 0.198 0.206 0.500 0.518 NS
ETH185 8 0.536 0.596 0.554 0.222 0.202 0.563 0.496 NS
HELO05 8 0.561 0.567 0.535 0.217 0.185 0.555 0.477 NS
INRAO063 4 0.563 0.576 0.506 0.243 0.172 0.469 0.474 NS
HELO01 5 0.554 0.558 0.505 0.254 0.165 0.486 0.466 NS
HEL13 5 0.482 0.469 0.421 0.352 0.113 0.400 0.401 NS
INRAO035 3 0.298 0.427 0.384 0.397 0.091 0.357 0.370 NS

ILST005 2 0.351 0.372 0.302 0.463 0.069 0.237 0.319 NS

k: number of alleles per locus; Ho: observed homozygosity; He: expected heterozygosity; PIC: polymorphic
information content; MP: matching probability; PE-1P: power of exclusion for 1 known parent; PE-2P: power
of exclusion for 2 known parents; PE-SI: power of exclusion for sibling; HW: Hardy-Weinberg equilibrium;
NS: non-significant; ***, p < 0.001.

The origin of Iberian breeds occurred through arrival of cattle from the Bos faurus (Taurine) lineage.
However, MacHugh [36] observed African zebu (Bos indicus) diagnostic alleles in European and African
taurine (Bos taurus) breeds, which indicates a zebu gene introgression into taurine breeds. In this
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pirenaica (taurine) study, the locus BM2113 showed the zebu diagnostic 131-bp allele with a frequency
of 0.149. In addition, other zebu diagnostic alleles were observed at very low frequencies such as
ETH152-193 (0.075) and BM2113-123 (0.009). Zebu and African-type STR alleles have previously been
reported in Iberian cattle [37,38], while the African mitochondrial T1 haplogroup was also observed in
Pirenaica [39]. Therefore, zebu markers may suggest a North African genetic signature in Pirenaica
cattle, based on the hypothesis of Neolithic dispersal through the Mediterranean route and historical
migrations [40,41].

The average heterozygosity value (0.680) was similar to the value reported in Pirenaica by
Rendo et al. [14] using 11 STRs (0.688) and higher than the value reported by Cafion et al. [13] using
16 STRs (0.628). These two studies had smaller sample sizes. In contrast, Martin-Burriel et al. [42]
showed the lowest He in Pirenaica, probably due to sampling or panel selection even 30 STR were
genotyped. Overall, average heterozygosity value was slightly higher than values reported in native
breeds from Spain, Portugal and France ranging from 0.50 to 0.71 [6,13].

The PIC values per locus varied between 0.302 and 0.845, with a mean value of 0.637. A PIC
value exceeding 0.5 indicates highly polymorphic microsatellite marker, while values ranging from
0.25 to 0.5 indicate medium-polymorphic loci. In Pirenaica, the PIC values of most loci exceeded
0.6, except for HEL13 (0.421), INRAO035 (0.384) and ILST005 (0.302). Based on heterozygosity and
PIC values, Pirenaica had slightly lower genetic diversity than other Basque breeds such as Terrefia,
Monchina and Betizu [14,15]. According to Mendizabal et al. [43], the Pirenaica population increased
significantly during the 1850s, but the later introgression of new cattle breeds from Europe lead to an
endangered situation of the former breed. It was not until 1975, when the need to maintain sustainable
production systems using native animal genetic resources promoted the recovery and improvement of
Pirenaica. At present, Pirenaica has the largest population size compared to other aforementioned
native Basque breeds and it is the first native cattle breed being included in a selection program in the
Basque region. Therefore, the selection from a reduced number of reproducers might imply lower
heterozygosity and a reduction of the number of alleles in comparison with aforementioned native
breeds that have been kept in a semi wild natural environment. In fact, this study has showed a
smaller mean number of alleles per locus (7.54 + 2.5) in Pirenaica compared to Betizu (7.91 + 2.51) or
Terrefia (8.64 + 2.54) from a previous study [14]. However, our Pirenaica sample showed a higher
mean number of alleles per locus than others, which ranged between 6.22 and 6.91 [12,14].

The relationship between Pirenaica and other breeds produced in the Basque region was studied
(Figure 1) as relevant for the overall knowledge related to cattle genetic resources. Terrefia (basque
native breed) and other allochthonous breeds used in the region have been studied such as Salers, a rustic
cattle breed used for beef production, which has grown in importance due to its ready adaptability to
local management and environmental conditions. Furthermore, the Holstein-Friesian breed is primarily
used as a cull dairy cow, which is also an integral part of the Basque regional beef supply chain.
The exact test for population differentiation based on allele frequency showed that the breeds were
significantly different from each other (p < 0.001). Pirenaica and terrefia breeds are both native from
the Basque region and showed certain admixture (Figure 1). A marked differentiation of Pirenaica was
observed in the FCA plot in comparison with Salers and Holstein-Friesians (Figure 1a). These results
confirm the genetic differences among native Pirenaica compared with Salers and Holstein-Friesian
breeds, which have a distant geographical origin in Europe. The NJ phylogenetic tree showed three
branches that mainly corresponded to Pirenaicas, Salers and Holstein-Friesians (Figure 1b). The Terrefia
breed was not well separated in the NJ tree, and even it has been less subjected to intensive selection.
Balanced samples might be necessary for future studies of relationships among Basque native breeds.
Clustering analysis using a Bayesian approach identified three underlying genetic clusters (Figure 1c).
According to the probabilities of K as a log-likelihood given K clusters [32], the corresponding AK
statistic showed that maximal AK occurred at K = 2. Pirenaica and Terrefia breeds presented the
zebu-diagnostic BM2113-131 allele, which has also been described in Salers [16]. Therefore, the AK
method may underestimate K considering a common African genetic signature in these three breeds,
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whereas the geographical origin may indicate an optimal K = 3. Finally, genetic differentiation among
breeds was considered. In our case, the overall genetic differentiation among breeds (Fsr) was high
(0.1195; Table 2), as it affects the performance of assignment tests. Genetically divergent breeds
(Fst > 0.1) are more likely to be correctly assigned than closely related ones (Fsr < 0.05) [6].

Axe 1(31.12 %) sen

(c) K=4

| "—T——T Tl.oc scnlc 0.1

B Holstein-Friesian

B Terreiia Pirenaica Salers

Figure 1. Genetic variations and phylogenetic differentiation analyses among cattle breeds. (a) 3D-FCA,
(b) NJ radiation tree (Scale measured in Rgr distance values), size of circles represents bootstraps
percentage and (c) mean probabilities of individual cluster memberships using sTRucTURE (K = 4).

Table 2. Pairwise Fst (below diagonal) and Rgr (above diagonal) between breeds of cattle.

Terrefia  Pirenaica Salers Holstein-Friesian
Terrefia - 0.04277 0.14579 0.14030
Pirenaica 0.04102 - 0.11512 0.14115
Salers 0.12724 0.10324 - 0.24822

Holstein-Friesian 0.12304 0.12369 0.19886 -

All Fst and Rgr values are significant (p < 0.001).

3.2. Individual Identification and Parentage Determination

In Pirenaica, the CMP value was 1.89 x 10~2° when 30 markers were used. Whereas, ISAG core
panel of 12 STRs available in Genotype Panel 1.2 (Thermo Scientific) showed a CMP value of 2.3 x 10711
The CMP value was 3.4 x 10713 when the most polymorphic (highest PIC value) 12 markers were
selected. The present study, using 12 STR core panel or using the most polymorphic 12 STRs, showed
stronger discrimination power than previous studies [44,45]. Bovine Genotype Panel 2.2 (Thermo
Scientific), which includes six additional STRs, could not be completely evaluated since three of its
STRs (MGTG4B, RM67 and SPS113) were not studied following the recommendations [10]. However,
laboratories that perform bovine parentage analyses usually use other complementary panels when
more discrimination power is required for resolving complicated parentage cases.

In paternity testing, PE for each locus was measured as the probability of excluding an individual
(sire) from being the father of the calf. PE was computed considering one known parent (PE-1P,
dam not typed and random sire matched against calf) or two known parents (PE-2P, random sire
matched against dam/calf pairs). In Pirenaica, the CPE for PE-1P and PE-2P was computed considering
all 30 loci, but also considering the reduced loci number used in reference studies. Pirenaica showed
similar CPE; (0.9911; Figure 2) to Terrefia (0.9918) when 11 markers were used [15], while CPE, was
0.9997 in both breeds. When using the minimum 12-STR core panel recognized by ISAG, Pirenaica had
a CPE; and CPE; value of 0.9946 and 0.9998, respectively. In other European breeds, 12-STR panel
showed CPE; values that ranged from 0.9135 to 0.9777 and CPE; values that ranged from 0.9935 to
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0.9999 [11]. However, a CPE value over 99.99% is necessary for paternity analysis, and, therefore,
the 12-STR panel might be insufficient depending on breed and parentage. This evidenced the need
to increase the number of STR loci in Pirenaica, in order to have enough exclusion power to resolve
satisfactorily parentage cases. Van de Goor [11] also considered a 16-STR panel in several European
bovine breeds showing a CPE; values ranging from 0.9818 to 0.9994, and a CPE; values from 0.9935
and 0.9999. However, the Pirenaica was not included in their forensic study.
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[22 Bovine Genotypes 1.2 |[Panel 2.2][B]]

Figure 2. Comparison of combined power of exclusions (CPE) between the panels of short tandem
repeat markers. Short tandem repeats (STRs) considering one known parent, two known parents, sibling
and identical are shown in blue (CPE;), red (CPE;), green (CPEg;), and purple (CPE] = 1 — CMP) cases,
respectively. Little arrows (top) show the minimal number of markers for 99.99% of CPE. Boxes (below)
show the markers included in recommended and commercial STR panels (grey, Stockmarks; garnet,
ISAG core; blue, Bovine genotype 1.2 and 2.2). Numbers in brackets shows other panels used
in literature.

The recommended 30-STR panel, used in this study, showed a CPE; (considering one known
parent) and CPE; (two known parents) values of 0.99998 and 0.99999997, respectively. Our Pirenaica
results showed that a 21-STR panel might be necessary to obtain a CPE; value of 0.9999, while a 13-STR
panel is enough for a discriminative CPE; value of 0.9999 (Figure 2). Finally, for a sibling analysis in
the Pirenaica breed, a 11-STR panel is enough for a CPEg; value of 0.9999, which is similar to the values
observed in other European breeds [11]. Overall, for most forensic cases, except CPEg, the 12-STR
core panel seems insulfficient in Pirenaica and an increase in the amount of genotyped STRs should be
considered. A 21-STR panel looks more appropriate to resolve some parentage analysis in Pirenaica.

3.3. Assignment Analysis of Breeds

In the assignments of GENEcLAss, over 99% of individuals were allocated within their populations
using both frequency (99.67%) and Bayesian (99.70%) methods using 30 STRs. Previous studies showed
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an assignment success between 67% and 100% using 6 to 23 STR data from 4 to 7 cattle breeds [6,44].
However, the assignment method and the confidence of the test should be considered since they greatly
influence the assignment success. Genetic differentiation among breeds is also of interest as it affects
the performance of assignment tests; genetically divergent breeds (Fst > 0.1) are more likely to be
correctly assigned than closely related ones (Fst < 0.05) [6]. In our case, the mean Fst among breeds
was also slightly higher (Table 2) than the aforementioned studies. Only low differentiation in allele
frequencies was observed between Pirenaica and Terrefia native breeds (Fst < 0.1).

In the Bayesian assignment of sTRUCTURE, a study, using the same 30 STRs recommended by
ISAG-FAO, showed an assignment between 89.3% and 95.8% in Korean native cattle [46]. In this
study, considering the 30 STRs panel and a cutoff value of 80% (Q > 0.8), the overall proportion
of animals correctly assigned to a breed was 98.8%. However, assignment tests were performed
using a 11 STR panel and Basque native Terrefia genetic data [15]; Pirenaica assignment decreased
to 66.1%, whereas 31% of Pirenaica animals were uncorrected assigned to Terrefia breed. In contrast,
the Terrefia, Salers and Holstein-Friesian showed higher assignments, 85.3, 94.8 and 96.6%, respectively.
Therefore, a STRUCTURE assignment test suggests that the number of STRs should be increased when
other native breeds are included. Although previous methods (GENEcLASS or STRUCTURE) have been
extensively used for the assignment, they encounter several limitations. The frequency-based method
lacks the p value for measuring the confidence with which an individual belongs to a given population.
Whereas, previous Bayesian methods can bias assignments or provide inaccurate results if sample
sizes are unbalanced among populations [35,47]. In order to overcome the problem of unbalanced
population sizes, a machine-learning approach (assignPOP package, r software) was applied to study
the mean and variance of assignments (Figure 3). This approach combines various markers panels
into a single predictive model, not possible in previous methods, while it can provide the minimum
number and most discriminative markers necessary for accurate assignments. Firstly, Pirenaica was
assessed against the 11-STR panel used in the Terrefia breed [15] (Figure 3a). The means of assignment
were generally low in Pirenaica (62.9%) and Terrefia (58.2%), while high variance was observed in the
bar-plots due to the non-accuracy of the assignment tests. In general, the 11-STR panel might not be
enough for an accurate assessment of an individual to its population of origin, when geographically
and phylogenetically related native Pirenaica and Terrefia breeds are studied. A 16-STR panel reported
in Blonde d"Aquitaine and Limousin [11], breeds also included in the Basque PGI label, was used
against Pirenaica (Figure 3b). High mean assignment value was observed in Pirenaica (98.9%) in
comparison to Blonde d’Aquitaine (45.4%) and Limousin (54.1%) considering balanced training sets of
25,50 and 75 individuals. The overall mean assignment was of 66.1%, which increases with the amount
of STRs included. In our study, lower assignments in Blonde d’Aquitaine and Limousin should be
carefully considered since kinship is unknown in these breeds” data. These two breeds are native from
the south of France, a close Basque region where they have also been traditionally raised, and therefore
they are included in the local PGI. However, future sampling and genotyping of Blonde and Limousin
grown in the Basque region could obtain more trustable assignments along with Pirenaica.

Finally, several subpanels (11, 16 and 21 STRs) and a 30-STR panel assignment were compared
(Figure 3c). Pirenaica and Salers showed over 90% mean assignments for the 16, 21 and 30-STR panels,
while percentages were lower for the 11-STR panel with 70.4% and 83.5%, respectively. In contrast,
for Holstein-Friesians a 21-STR panel was required to reach an assignment of 90% probably related to
a reduced genetic diversity promoted by its selection for milk production. In general, 11 or 12-STR
commercial panels seem to be insufficient for reliable assignment tests even selecting highest Fgr
markers. Pirenaica showed that a panel of over 21-STRs is necessary for trustworthy assignments
(295%; Table S1). In essence, a reliable molecular traceability to ensure a correct assessment of an
unknown beef product to its origin PGI label will depend on a well-designed STR panel containing the
minimum amount of STRs with the highest Fsr values.
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Figure 3. Assignment accuracies (%), according to Monte-Carlo cross-validation and depicted as
bar-plots. (a) Pirenaica and Terrefia breeds’ assignments for balanced populations (10, 15 and
20 individuals) crossed by three levels of train STRs with the highest Fgy (red: 5-STR; green: 8-STR)
and all loci (blue: 11-STR), (b) Pirenaica, Blonde d"Aquitaine and Limousin breeds’ assignments for
balanced populations (25, 50 and 75 individuals) crossed by four levels of train STRs with the highest Fgt
(red: 8-STR; green: 11-STR; turquoise: 12-STR) and all loci (fuchsia: 16-STR). (c) Pirenaica, Salers and
Holstein-Friesian breeds” assignments for balanced populations (5, 8 and 12 individuals) crossed by
four levels of train STRs with the highest Fgy (red: 11-STR; green: 16-STR; turquoise: 21-STR) and all
loci (fuchsia: 30-STR).

Up to date parentage control in cattle has been mainly based on STR but it is currently moving
towards single nucleotide polymorphism (SNP)-based methods [48]. STRs are highly polymorphic
and spread throughout the entire genome [49]. However, its analyses are time consuming, even for
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trained staff, due to the inconsistencies in allele size calling and errors in size determination by different
laboratories. On the other hand, even SNPs are biallelic markers, high-throughput sequencing has
permitted the development of high-density SNP panels with sufficient power to uniquely identify
individuals. These SNP panels have increasing advantages such as greater abundance, genetic stability,
simpler nomenclature and manageable to automated analysis [50]. In fact, a core panel of 100 and
100 additional SNPs have been defined for parentage control [51]. The cost per SNP is low compared
to microsatellites, but the cost of the high-density assays might be prohibitive for many applications
and the equipment necessary for high-throughput SNP panels is still quite expensive [10]. In contrast,
in the present study;, it is estimated a cost of EUR 10-20/sample for multiplex STR genotyping is needed,
which makes this approach affordable for routine traceability in the food supply chain. Moreover,
in case of the Pirenaica breed, the heterozygosity and the availability of large databases of STRs in
cattle herd books, supposes a considerable reason to keep using these polymorphisms although SNPs
will also provide promising advantages that need further research to evaluate the traceability and
forensic effectiveness of an SNP panel in the Pirenaica breed.

4. Conclusions

The population data presented in this study provide extensive information regarding the
discrimination power of a 12-STR ISAG core panel compared with the 30-STR complete panel. It has
been demonstrated that the 30-STR panel is necessary as a first step to select the most appropriate
markers in Pirenaica breed. In fact, the 21-STR panel is necessary for paternity analyses reaching in most
cases a CPE; value over 99.99%. Assignment tests using subpanels and some commercial panels are
insufficient and the number of markers should also be increased for reliable assignhments in Pirenaica
and other breeds typically used for beef production in the Basque region. Overall, the present study
recommends a new assignment approach by selecting the most polymorphic markers in order to design
an appropriate STR panel to increase its discrimination power at a reduced time and cost of analysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/9/1584/s1,
Table S1: Microsatellite markers ordered according to the hightest Fgt value.
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