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Abstract: The endocannabinoid system is associated with protective effects in multiple sclerosis (MS)
that involve attenuated innate immune cell responses. Astrocytes and microglia are modulated by
endocannabinoids and participate in the biosynthesis and metabolism of these compounds. However,
the role of neuroglial cells as targets and mediators of endocannabinoid signaling in MS is poorly
understood. Here we used a microfluidic RT-qPCR screen to assess changes in the expression of the
main endocannabinoid signaling genes in astrocytes and microglia purified from female mice during
the time-course of experimental autoimmune encephalomyelitis (EAE). We show that astrocytes
and microglia upregulate the expression of genes encoding neurotoxic A1 and pro-inflammatory
molecules at the acute disease with many of these transcripts remaining elevated during the recovery
phase. Both cell populations exhibited an early onset decrease in the gene expression levels of
2-arachidonoylglycerol (2-AG) hydrolytic enzymes that persisted during EAE progression as well
as cell-type-specific changes in the transcript levels for genes encoding cannabinoid receptors and
molecules involved in anandamide (AEA) signaling. Our results demonstrate that astrocytes and
microglia responses to autoimmune demyelination involve alterations in the expression of multiple
endocannabinoid signaling-associated genes and suggest that this system may regulate the induction
of neurotoxic and pro-inflammatory transcriptional programs in both cell types during MS.
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1. Introduction

MS is regarded as a chronic demyelinating disease initiated by pathogenic autoimmune responses
against myelin, followed by a broader inflammatory and neurodegenerative process [1]. Local innate
immune responses driven by microglia and astrocytes are crucially involved in MS onset and
progression [2–4]. Classically activated microglial cells produce a plethora of pro-inflammatory
molecules that promote leukocyte recruitment and cytotoxicity to oligodendrocytes and neurons.
Nevertheless, microglia have also demonstrated unconventional activities with regard to MS, such as
increased phagocytosis of myelin debris and secretion of trophic factors that facilitate myelin repair [5–7].
Similarly, astrocytes activated during demyelination also acquire complex phenotypes that can both
hinder or support central nervous system (CNS) recovery. In the last years, however, it has become
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clear that these cells play fundamental pathogenic roles during MS. In EAE, reactive astrocytes promote
inflammation and neurodegeneration through multiple mechanisms, which include neurotoxicity,
the recruitment of inflammatory cells to the CNS, and the modulation of microglial responses [2,4,8].
In this context, recent landmark studies have allowed the characterization of a population of neurotoxic
astrocytes expressing complement component 3 (C3) in response to pro-inflammatory cytokines
released by activated microglia [9]. This subset of reactive astrocytes, termed A1, exhibit transcriptional
programs destructive to synapses and oligodendrocytes and inhibitory to remyelination with potential
pathogenic consequences in human MS and animal models of the disease [9–11].

The endocannabinoid system is a neuromodulatory system formed by cannabinoid CB1 and
CB2 receptors, their endogenous ligands named endocannabinoids, and the enzymes responsible
for the production and metabolism of these compounds. The most accepted pathways for the
biosynthesis of the two major endocannabinoids AEA and 2-AG involve reactions catalyzed by
N-arachidonoylethanolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase α/β isoforms
(DGLα/β), respectively [12]. Regarding metabolism, fatty acid amide hydrolase (FAAH) is the
principal AEA hydrolase in nervous tissue, although the physiological actions of this and other
N-acylethanolamides can also be terminated by alternative lipid amidases, such as N-acylethanolamine
acid amidase (NAAA) [13]. On the other hand, 2-AG is preferentially metabolized by the serine
hydrolases monoacylglycerol lipase (MAGL), α/β-hydrolase domain containing 6 (ABHD6) and 12,
(ABHD12) [14]. More recently, a family of fatty acid binding proteins (FABPs) has been identified as
an intracellular carrier that delivers endocannabinoids, mostly AEA, to their catabolic enzymes [15].
The synthesis and degradation of endocannabinoids are tightly regulated processes that determine the
extent of CB1 and CB2 mediated signaling. In this context, it is well established that pharmacological or
genetic inactivation of AEA and 2-AG hydrolytic enzymes and FABPs augments CNS endocannabinoid
levels and engages cannabinoid receptor-dependent (and independent) effects in vivo [13,16–18].

The brain endocannabinoid system is centrally involved in the pathogenesis of MS as
supported by two main lines of evidence. First and most important, cannabinoid agonists and
endocannabinoid hydrolysis inhibitors exert beneficial effects in experimental models of MS that
include neuroprotection and attenuated inflammatory responses mediated by adaptative and/or
innate immune cells [19–24]. Secondly, a number of studies have reported dysregulated levels of
endocannabinoids and endocannabinoid signaling elements in MS patients and animal models of the
disease. In terms of cannabinoid receptors, both decreased and unaltered CB1 receptor levels have
been reported in the EAE model [25,26], while increased CB2 receptor gene and protein expression is a
consistent finding in rodent models of MS [23,24,27]. Results concerning endocannabinoid levels are
also often controversial, but the majority of the studies report increased concentrations of AEA [28–31]
and unaltered or enhanced 2-AG levels [21,24,32]. In all, most of these studies support the hypothesis
that altered endocannabinoid signaling may modulate MS initiation and progression but do not
establish the cell-type specificity of endocannabinoid activity dysregulation in MS. Astrocytes and
microglia are endowed with cell-specific dotation’s of CB1 and CB2 receptors and endocannabinoid
synthetic/metabolic enzymes [33,34], but the specific role of these cellular populations as targets and
mediators of endocannabinoid signaling in MS remains to be fully characterized.

In this study we investigated changes in the expression of endocannabinoid system genes in
astrocytes and microglia associated with their phenotypic transformation during EAE. Our results show
convergent but also cell-type specific deregulation of transcripts encoding cannabinoid receptors and
endocannabinoid synthetic/metabolic enzymes in both cell populations. Noteworthy, the expression
changes affecting endocannabinoid signaling-related genes in astrocytes and microglial cells take
place early during EAE and parallels or even precedes the over-expression of genes associated to
neurotoxicity and inflammation. These results demonstrate that activated innate immune cells display
a deregulated transcriptional profile of endocannabinoid system genes during MS pathology.
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2. Materials and Methods

2.1. Mice

Female C57BL/6 mice for EAE experiments were purchased from Envigo. Animals were maintained
under standard laboratory conditions with food and water ad libitum. The maintenance of the
animal facility and use of animals was in full compliance with the European Communities Council
Directive of 22 September 2010 on the protection of animals used for scientific purposes (Directive
2010/63/EU). All animal procedures were approved by the local ethical committee (Comité de Ética en
Experimentación Animal, CEEA-UPV/EHU).

2.2. Induction of EAE

Myelin oligodendrocyte glycoprotein 30–35 (MOG30–35) (MEVGWYRSPFSRVVHLYRNGK),
corresponding to the fragment of the mouse MOG from amino acids 35 to 55 was synthesized at the
Peptide Synthesis Core Facility of the Pompeu Fabra University. Mice were immunized subcutaneously
in the flank with 200 µg MOG30–35 peptide in incomplete Freund’s adjuvant supplemented with
8 mg/mL Mycobacterium tuberculosis H37Ra (Difco Laboratories). Pertussis toxin (500 ng; Calbiochem,
Merck Millipore) was injected intraperitoneally on the day of immunization and again two days later.
EAE was induced in a total number of 20 mice that were immunized in four independent experimental
sessions separated 2–5 days each (n = 5 mice per EAE experiment). Bodyweight and motor symptoms
were recorded daily and scored from 0 to 8 as follows: 0, no detectable changes in muscle tone and
motor behavior; 1, flaccid tail; 2, paralyzed tail; 3, impairment or loss of muscle tone in hindlimbs;
4, hindlimb hemiparalysis; 5, complete hindlimb paralysis; 6, complete hindlimb paralysis and loss of
muscle tone in forelimbs; 7, tetraplegia; and 8, moribund.

2.3. Flow Cytometry

On days 7–8, 14–17, and 28–31, naïve and EAE mice were decapitated under isoflurane anesthesia
(IsoVet®, B Braun, Barcelona, Spain), and cells purified from forebrain and spinal cord tissue according
to previously described procedures [21]. Mice were selected for fluorescence-activated cell sorting
(FACS) analysis so that each experimental group included animals immunized in 2–3 independent
EAE experiments. Briefly, brain tissue was dissected and placed in enzymatic solution (116 mM
NaCl, 5.4 mM KCl, 26 mM NaHCO3, 1 mM NaH2PO4, 1.5 mM CaCl2, 1 mM MgSO4, 0.5 mM EDTA,
25 mM glucose, 1 mM L-cysteine) with papain (3 U/mL) and DNAse I (150 U/µL, Invitrogen) for
digestion at 37 °C for 25 min. Halfway through the incubation, the minced tissue was triturated
10 times using 5 mL serological pipettes. Following enzymatic digestion, cells were mechanically
released by gentle passage through 23 G, 25 G, and 27 G syringe needles. After homogenization,
tissue clogs were removed by filtering the cell suspension through prewetted 40 µm cell strainers
(FisherbrandTM; Thermo Fisher Scientific, Loughborough, UK) to a 50 mL Falcon tube quenched by
5 mL of 20% heat-inactivated fetal bovine serum in Hank’s Balanced Salt Solution (HBSS, Thermo Fisher
Scientific). The cell strainers were thoroughly rinsed with 15 mL HBSS in and cell suspensions were
centrifuged 200 × g for 5 min. To purify astrocytes and microglia from myelin debris, cells were
resuspended in 25% isotonic Percoll PLUS (GE Healthcare Europe GmbH, Freiburg, Germany) in
HBSS and centrifuged at 200× g without brake for 20 min at room temperature. The myelin top layer
was aspirated and cells washed with HBSS to remove any traces of Percoll PLUS by centrifuging
at 200× g for 5 min. The total dissociated single cells were resuspended in 500 µL sorting buffer
(25 mM HEPES, 5 mM EDTA, 1% BSA, in HBSS) containing Normal Rat Serum (1:100; Invitrogen;
10710C) and TruStain FcX™ (anti-mouse CD16/32) antibody (1:100; BioLegend; 101320). The cell
suspension was then divided into two equivalent aliquots for the parallel purification of astrocytes and
microglia. Isolated CNS cells were incubated with fluorochrome conjugated antibodies ACSA-2-PE
(1:50; Miltenyi Biotec, Madrid, Spain; REA969), A2B5-488 (1:100, R&D Systems, Minneapolis, MN,
USA; FAB1416G), CD11b-FITC (1:200; BioLegend, San Diego, CA, USA; 101205), CD31-VioBright 515
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(1:200; Miltenyi Biotec; REA784), CD45-FITC (1:200; Miltenyi Biotec; REA737) and O1-488 (1:100; R&D
Systems; FAB1327G) for astrocyte isolation. Microglia were purified from a cell suspension aliquot
incubated with antibodies to CD11b-FITC (1:100; BioLegend; 101205) and CD45-PE (1:100; BioLegend;
103105). In all cases, cell suspensions were incubated with LIVE/DEAD Fixable Green Dead Cell
(1:1500; Thermo Fisher).

Astrocytes were sorted as ACSA-2+ cells following the exclusion of contaminating microglia,
hematopoietic cells, oligodendrocytes, oligodendrocyte progenitors, and endothelial cells grouped in a
dump channel [35,36] (Figure S1). Microglia were sorted as CD11b+ cells with low CD45 expression [37].
Samples were run on a BD FACS Jazz (2B/4YG) flow cytometer (BD Bioscience) controlled using the
BD FACS™ Software (version 1.1.0.84), and the results were analyzed using the FlowJo software.
All gatings were set based on appropriate isotype controls. The debris and cell clumps were initially
gated out on the basis of forward (FSC) and side (SSC) scatter plots, allowing selection of only
the population of interest. Further doublets were gated out using FSC/trigger pulse width plots.
The purity of astrocytes was assessed by FACS analysis of sorted ACSA-2+ cells following fixation
and immunostaining with a C-terminal antibody against the astrocytic marker glutamate aspartate
transporter 1 (GLAST) [38] (1:200; kindly donated by JD Rothstein). Astrocytes sorted from naïve
and EAE mice were found to be 93–97% positive for GLAST (Figure S1). We further confirmed that
we had isolated a relatively pure population of astrocytes and microglia by RT-qPCR analysis for the
expression of several cell-type specific markers (Figure S1).

2.4. Nanofluidic RT-qPCR in Purified Astrocytes and Microglia

Expression analysis of target genes was carried out by RT-qPCR. An average number of
70,000–90,000 astrocytes and 15,000–20,000 microglial cells per mouse were collected in lysis buffer
(Qiagen) containing 1% β-mercaptoethanol for optimal template preservation and stored at−80 °C until
processing. RNA from the FACS-sorted cells was extracted using the RNeasy plus Micro Kit (Qiagen).
The synthesis of cDNA, pre-amplification, and amplification steps were performed at the General
Genomics Service of the UPV/EHU following the quality control of RNA samples (2100 Bioanalyzer,
Agilent Technologies). For nanofluidic qPCR, the pre-amplified cDNA samples were measured with no
reverse transcriptase and no template controls in the BioMark HD Real-Time PCR System using 96.96
and 48.48 Dynamic Arrays of integrated fluidic circuits (Fluidigm Corporation, San Francisco, CA,
USA). This technology enables reliable and accurate gene expression analysis using very limited total
RNA input [39]. We used commercial primers from the IDT Integrated DNA Technologies or Fluidigm
Corporation (Table S1). Data pre-processing and analysis were completed using the Fluidigm Melting
Curve Analysis Software 1.1.0 and Real-time PCR Analysis Software 2.1.1 (Fluidigm Corporation) to
determine valid PCR reactions. Gapdh, Hprt, Ppia, and B2m were included as candidate reference genes
for normalization purposes. Data were corrected for differences in input RNA using the geometric
mean of the reference genes selected according to the results from geNorm (https://genorm.cmgg.be/)
and Normfinder (https://moma.dk/normfinder-software) algorithms. Relative expression values were
calculated with the 2-∆∆Ct method.

2.5. Immunohistochemistry

For histological examination, anesthetized naïve and EAE mice (n = 3; 35 dpi) were transcardially
perfused with 0.1 M phosphate buffer (25 mM NaH2PO4•H2O; 75 mM Na2HPO4; pH 7.4) followed by
4% paraformaldehyde (PFA) in the same buffer. After extraction, the spinal cords were post-fixed in 4%
paraformaldehyde for 4 h. Lumbar spinal cords were dissected, cryoprotected overnight in 20% sucrose
at 4 °C, embedded in Tissue-Tek OCT (Electron Microscopy Sciences, Hatfield, PA, USA), and stored
at −80 °C until use. Tissue sections (10 µm-thick) were blocked for 60 min in TBS (100 mM Tris Base,
150 mM NaCl; pH 7.4) supplemented with 5% normal goat serum, 0.2% Triton X-100, and 3% Fab
fragment (Jackson ImmunoResearch, West Grove, PA, USA) followed by overnight incubation at 4 °C
with a primary antibodies against C3 (1:1500; Dako, Santa Clara, CA, USA; A0063) and GFAP (1:40;

https://genorm.cmgg.be/
https://moma.dk/normfinder-software


Biomolecules 2020, 10, 1228 5 of 19

Millipore Burlington, MA, USA; MAB3402). Following extensive washing, primary antibodies were
detected by incubation with appropriate Alexa Fluor 488 or 594 conjugated donkey antibodies (1:400;
Invitrogen, Carlsbad, CA, USA) for 1 h at room temperature. Confocal microscopy of dual-labeled
tissue sections was performed using a Leica TCS Sp8X STED CW confocal laser scanning microscope
(Leica Microsystems, Wetzlar, Germany). A series of optical sections (z-stacks) was taken through
the tissue at a spacing of 0.7 µm using a 20X oil immersion objective. White matter C3+ and GFAP+

stained areas were quantified in two optical sections per tissue slice obtained from 4–5 slices per mouse.
Custom scripts were used for semiautomated image processing and analysis of co-localization in Fiji
ImageJ [40].

2.6. Data Analysis

RT-qPCR analyses were carried out in 5–6 per experimental group. Immunohistochemistry
was performed in 3 control and EAE mice. Data are presented as mean ± SEM and n represents
the number of animals tested. Student’s t-tests or Mann–Whitney U-tests following application of
Kolmogorov-Smirnov normality tests were used to determine significance in individual gene expression
at different stages of EAE in comparison to naïve mice. One-way ANOVA followed by Newman–Keuls
tests was used for the analysis of normalized gene expression changes over the disease course.
Pearson correlation coefficients were calculated for Figures S3 and S4. All statistical comparisons were
performed using the GraphPad Software with p < 0.05 considered statistically significant.

3. Results

3.1. Early Deregulation of Endocannabinoid System Genes in Astrocytes during EAE

To investigate the role of endocannabinoids in regulating astrocyte dysfunction in MS we analyzed
the gene expression levels of the principal endocannabinoid signaling molecules in cells purified
during EAE progression, using a microfluidic RT-qPCR screen. Interestingly, astrocytes isolated from
asymptomatic disease showed significant modulation of several endocannabinoid system associated
genes. In particular, we measured increased levels of Napepld together with a marked reduction
in Fabp7, although these alterations were concomitant with augmented Faah transcripts (Figure 1B;
Table S2). In addition, presymptomatic EAE astrocytes displayed down-regulated gene expression of
the main 2-AG hydrolytic enzymes Mgll and Abhd6 without changes in the α form of DAGL (Dagla),
primary responsible of 2-AG synthesis in nervous tissue [41] (Figure 1B; Table S2).

Astrocytes isolated from acute EAE mice exhibited reductions in all endocannabinoid
metabolism-associated genes, with the exception of Faah, which persisted at chronic disease (Figure 1C,D;
Table S2). Blunted expression of endocannabinoid hydrolysis genes was associated with reduced Cnr1
transcript levels both at acute and recovery phases. Cannabinoid CB2 receptor mRNA levels were
not detected in astrocytes from naïve or EAE mice at any stage of disease progression (Figure 1C,D).
This result is in general agreement with previous pharmacological studies in cultured cells that
support only a marginal expression of CB2 receptors in astroglial cells [33]. On the other hand, we also
measured down-regulated gene expression of Dagla and Daglb without changes in Napepld, suggesting a
selective impairment of 2-AG biosynthetic molecules at the transcript level that parallels deficits in
hydrolysis-related genes at acute and chronic disease stages (Figure 1C,D).

3.2. EAE Induction Promotes Astrocyte Conversion to a Neurotoxic A1 Phenotype

Recent tissue and cell-type-specific transcriptomic studies suggest a relevant role for neurotoxic
A1 astrocytes in MS pathogenesis [42,43]. However, the induction pattern of astrocytic A1 phenotype
related genes in rodent models of the disease remains to be fully characterized. To address this question,
we evaluated the expression of A1 phenotype associated genes in astrocytes purified by flow cytometry
at the different time-points of EAE progression. In parallel, we analyzed several genes associated
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with the protective A2 reactive phenotype, astrocyte pan-reactive genes, as well as genes involved in
astrocyte functions during autoimmune demyelination [2,8,9,44].
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3.2. EAE Induction Promotes Astrocyte Conversion to a Neurotoxic A1 Phenotype 

Recent tissue and cell-type-specific transcriptomic studies suggest a relevant role for neurotoxic 
A1 astrocytes in MS pathogenesis [42,43]. However, the induction pattern of astrocytic A1 phenotype 
related genes in rodent models of the disease remains to be fully characterized. To address this 
question, we evaluated the expression of A1 phenotype associated genes in astrocytes purified by 
flow cytometry at the different time-points of EAE progression. In parallel, we analyzed several genes 
associated with the protective A2 reactive phenotype, astrocyte pan-reactive genes, as well as genes 
involved in astrocyte functions during autoimmune demyelination [2,8,9,44]. 

The results of our RT-qPCR screen show that astrocytes activated during EAE display increased 
levels of several pan-reactive genes (Cxcl10, Gfap, Serpina3n) and reduced mRNA expression of 
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observations [43,45]. We also validated the up-regulation of genes encoding molecules involved in 
EAE, including Ccl2, Ccl5, and Nos2, and transcripts for genes of the interferon type I signaling 
pathway (Stat1, Stat2, Irf9, Mx1), at peak disease (Table S2) [8,45]. In addition, astrocytes markedly 
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Figure 1. Early-onset deregulation of endocannabinoid system genes in astrocytes during EAE.
(A) Representative dot-plots depicting FACS strategy for the purification of astrocytes from
the CNS of EAE mice. Astrocytes were sorted as ACSA-2+ cells following the exclusion of
contaminating microglia/macrophages and hematopoietic cells (CD11b+/CD45+), oligodendrocytes
(O1+), oligodendrocyte progenitors (A2B5+), and endothelial cells (CD31+) grouped in a dump channel.
(B–D) Histograms represent fold changes in the relative expression of endocannabinoid activity genes
in cells sorted during presymptomatic (B), acute (C), and recovery (D) phases of the EAE compared to
astrocytes from non-immunized mice purified in parallel (n = 5–6 mice group). Changes in relative
expression were determined as log2. N.D., not detected. * p < 0.05; ** p < 0.01; *** p < 0.001; referred to
naïve astrocytes by Student’s t-tests or Mann–Whitney U-tests.

The results of our RT-qPCR screen show that astrocytes activated during EAE display increased
levels of several pan-reactive genes (Cxcl10, Gfap, Serpina3n) and reduced mRNA expression of
several astrocytic markers (Aldh1/l1, Aqp4, Slc1a3) (Figure 2A; Table S2), thus matching previous
observations [43,45]. We also validated the up-regulation of genes encoding molecules involved in
EAE, including Ccl2, Ccl5, and Nos2, and transcripts for genes of the interferon type I signaling pathway
(Stat1, Stat2, Irf9, Mx1), at peak disease (Table S2) [8,45]. In addition, astrocytes markedly upregulated
the mRNA expression of several A1 reactive genes at acute EAE with many of these molecules
remaining elevated during the recovery phase (Figure 2A; Table S2). Remarkably, a number of A1 genes
were significantly up-regulated in astrocytes purified as asymptomatic disease (Figure 2A; Table S2),
suggesting that transformation of these cells towards a neurotoxic phenotype is an early event during
EAE and parallels the infiltration of peripheral immune cells into the CNS (Figure S2). Interestingly,
we found a highly significant correlation between neurological disability and up-regulation of C3
transcript levels in astrocytes purified during acute EAE, but not in cells sorted at the recovery phase
(Figure S3). However, deregulation of genes encoding additional A1 phenotype markers showed only
non-significant trends or even inverse correlations with motor scores at acute or chronic disease stages
(Figure S3). On the other hand, the expression of astrocytic A2 signature genes was either unchanged or
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only modestly increased during the time-course of EAE (Figure 2A; Table S2). Normalization analysis
of A1 and A2 genes indicated a greater induction of the neurotoxic-marker genes during the time-course
of EAE progression (Figure 2B).

To corroborate the presence of A1 astrocytes in EAE we evaluated the expression of C3 in
spinal cord astrocytes at the protein level. Double immunolabeling using antibodies for complement
component C3 [9] and the astrocytic marker GFAP showed increased expression of C3 in white matter
astrocytes from chronic EAE mice compared to naïve animals (Figure 2C). Our colocalization analyses
also demonstrate a predominant C3 expression by astrocytes in white matter of EAE mice as ~75%
of immunostaining lied on the GFAP+ processes (Figure 2C). Since astrocytic C3 has been associated
with a neurotoxic phenotype of aberrant synapse stripping and myelin phagocytic activity [9,46] we
analyzed the gene expression of several molecules regulating these functions in cells purified during
EAE. The induction of astrocytic A1 reactive transcripts at acute disease was paralleled by a significant
down-regulation of genes involved in neuroprotection (Bdnf ), synapse formation (Gpc4, Gpc6, Sparcl1)
and phagocytosis (Megf10, Gas6, Axl) (Figure 1C,D). Cells purified at acute disease also displayed
increased levels of the astrocytic synaptogenic molecule Thbs1 in good agreement with the changes
reported following the in vitro and in vivo induction of A1 astrocytes [9,10]. Most of these genes
remained deregulated, albeit to a lesser extent, in astrocytes purified at the recovery phase of the EAE
thus mirroring deregulation of A1 phenotype markers (Figure 1C,D; Table S2). Combined, these data
show that astrocytes acquire neurotoxic A1 phenotype associated with deficiencies in maintaining and
promoting synapses and blunted myelin clearance capacity during the time-course of EAE.

3.3. Modulation of Endocannabinoid Signaling-Related Genes in Microglia during EAE

We next assessed the expression level of endocannabinoid signaling-associated genes in
microglia purified over the course of EAE. In contrast to our observations in astrocytes, expression of
Cnr1 was not detected by RT-qPCR in naïve or EAE microglia. Conversely, Cnr2 transcripts were
expressed in cells from non-immunized mice but not significantly modulated over the course of EAE
(Figure 3B–D; Table S3). Interestingly, microglia isolated from the CNS of EAE mice displayed changes
in the expression levels of genes involved in 2-AG metabolism reminiscent to the ones observed
in astrocytes during disease progression, albeit to a higher extent. In particular, our results show
reductions in the transcript levels for Mgll, Abhd6, and Abhd12 in microglia purified at asymptomatic
disease, as well as at the peak of the symptoms (Figure 3B–D; Table S3). In parallel, microglial cells
exhibited an early onset reduction in the expression of 2-AG production related genes Dagla and Daglb.
Most of these transcriptional changes were present even though in lesser magnitude in microglial cells
isolated from mice at the recovery phase of EAE (Figure 3D; Table S3). On the other hand, genes involved
in AEA biosynthesis and metabolism were not significantly modulated in microglia at presymptomatic
disease (Figure 3B; Table S3). Cells purified at acute and chronic disease stages, however, displayed a
significant down-regulation of Faah paralleled by increased Naaa levels, without changes in the
expression of Napepld or Fabp7 (Figure 3B–D; Table S3). In sum, our results indicate that astrocytes and
microglia differ in their transcriptional modulation of AEA signaling-related genes during EAE.



Biomolecules 2020, 10, 1228 8 of 19Biomolecules 2020, 10, x FOR PEER REVIEW 8 of 19 

I 

 
Figure 2. Modulation of astrocytic phenotype during EAE. (A) Heat map comparing the mean 
expression of neurotoxic A1, protective A2, and pan-reactive gene transcripts in astrocytes isolated 
from mice in the presymptomatic (EAE-P), acute (EAE-A) and recovery (EAE-R) phases of EAE, as 
determined by RT-qPCR (n = 5–6 mice group). (B) Histogram representation of normalized A1 and 
A2 gene expression during EAE progression. (C) Confocal images and quantification of complement 
component C3 colocalization with the astrocytic marker GFAP in spinal cord white matter of chronic 
EAE mice (n = 3; 35 dpi). Scale bar: 50 μm. (D,E) Fold change in mRNA expression of genes related to 
neuroprotection and synaptogenesis (C) and phagocytosis (D) in astrocytes sorted during acute and 
chronic EAE. Changes in relative expression were determined as log2. N.S., not statistically significant. 
*p < 0.05; **p < 0.01; ***p < 0.001; referred to naïve astrocytes by Student´s t-tests or Mann–Whitney U-
tests; one-way ANOVA followed by Newman–Keuls tests (B). 

3.3. Modulation of Endocannabinoid Signaling-Related Genes in Microglia during EAE 

We next assessed the expression level of endocannabinoid signaling-associated genes in microglia 
purified over the course of EAE. In contrast to our observations in astrocytes, expression of Cnr1 was 
not detected by RT-qPCR in naïve or EAE microglia. Conversely, Cnr2 transcripts were expressed in 
cells from non-immunized mice but not significantly modulated over the course of EAE (Figure 3B–
D; Table S3). Interestingly, microglia isolated from the CNS of EAE mice displayed changes in the 
expression levels of genes involved in 2-AG metabolism reminiscent to the ones observed in 
astrocytes during disease progression, albeit to a higher extent. In particular, our results show 
reductions in the transcript levels for Mgll, Abhd6, and Abhd12 in microglia purified at asymptomatic 
disease, as well as at the peak of the symptoms (Figure 3B–D; Table S3). In parallel, microglial cells 

Figure 2. Modulation of astrocytic phenotype during EAE. (A) Heat map comparing the mean
expression of neurotoxic A1, protective A2, and pan-reactive gene transcripts in astrocytes isolated
from mice in the presymptomatic (EAE-P), acute (EAE-A) and recovery (EAE-R) phases of EAE,
as determined by RT-qPCR (n = 5–6 mice group). (B) Histogram representation of normalized A1 and
A2 gene expression during EAE progression. (C) Confocal images and quantification of complement
component C3 colocalization with the astrocytic marker GFAP in spinal cord white matter of chronic
EAE mice (n = 3; 35 dpi). Scale bar: 50 µm. (D,E) Fold change in mRNA expression of genes related to
neuroprotection and synaptogenesis (C) and phagocytosis (D) in astrocytes sorted during acute and
chronic EAE. Changes in relative expression were determined as log2. N.S., not statistically significant.
* p < 0.05; ** p < 0.01; *** p < 0.001; referred to naïve astrocytes by Student´s t-tests or Mann–Whitney
U-tests; one-way ANOVA followed by Newman–Keuls tests (B).
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Figure 3. Altered expression of microglial endocannabinoid system genes during EAE. (A) Flow
cytometry gating strategy for the analysis of microglial cells from EAE mice. Microglia were sorted as
CD11b+ cells with low CD45 expression. (B–D) RT-qPCR analysis of endocannabinoid signaling genes
in microglia purified at presymptomatic (B), acute (C), and recovery (D) phases of EAE. Fold changes
in relative expression compared to naïve microglia were determined as log2 (n = 5–6 mice group).
Changes in relative expression were determined as log2. N.D., not detected. * p < 0.05; ** p < 0.01;
*** p < 0.001; referred to naïve astrocytes by Student´s t-tests or Mann–Whitney U-tests.

3.4. Expression Patterns of Pro-Inflammatory and Protective Genes in Microglia during EAE

The activation of microglia in MS has been described as pro-inflammatory (also known as
M1) and regenerating (regarded as M2) states [5,47] although more recent observations suggest a
multidimensional model of activation [48]. Concerning findings during autoimmune demyelination,
RNA sequencing of microglia from EAE mice shows a changing phenotype over the course of the disease
with an early-onset modulation of chemokines and molecules related to apoptotic cell uptake [49].
Consistent with these results, a number of genes associated with the induction and expression of
pro-inflammatory responses by microglia such as Ccl2, Ccl5, Cxcl2, Nos2, or Stat1 displayed upregulated
levels in cells purified from EAE mice, as determined by RT-qPCR (Figure 4A; Table S3). Although the
induction of M1 phenotype genes was most remarkable at acute disease, some of these molecules were
already upregulated in microglia isolated from animals at presymptomatic EAE (Figure 4A; Table S3),
thus paralleling the early induction of A1 genes in astrocytes. These results sit well with the hypothesis
that microglia activated during CNS disease facilitates the induction of a neurotoxic phenotype in
astrocytes in vivo [9]. It is also noteworthy, however, that some pro-inflammatory genes were either not
modulated (Il6), or even down-regulated (Il12a, Tnfa), in microglia purified during EAE. On the other
hand, most microglia M2 phenotype related genes displayed reduced expression (Figure 4A; Table S3).
Despite our observations regarding changes in the transcript levels of individual genes suggest that
microglia in EAE predominantly display pro-inflammatory characteristics, normalization analysis
showed no overall modulation of the M1 and M2 associated genes tested during the time-course of the
disease (Figure 4B). Further, none of the M1 genes tested showed a significant correlation with disease
scores at acute or chronic EAE (data not shown). These results contrast the marked induction of A1
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genes in astrocytes (Figure 1A) and match previous reports showing that a major subset of microglial
cells exhibits an intermediate activation state during autoimmune demyelination [50,51].
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Figure 4. Pro-inflammatory and anti-inflammatory gene expressions in microglia isolated during EAE.
(A) Heat map depicting the mean expression of M1 and M2 phenotype associated genes in microglial
cells purified from mice at presymptomatic (EAE-P), acute (EAE-A) and recovery (EAE-R) stages of
EAE as determined by RT-qPCR. (B) Analysis of normalized gene expression by one-way ANOVA
determined no overall deregulation of M1 or M2 gene transcripts during disease progression. (C) Mean
expression of A1 neurotoxic genes in microglial cells during the time-course of EAE. Fold changes in
the relative expression compared to naïve microglia were determined as log2 (n = 5–6 mice group) Pre,
Presymptomatic. N.S., not statistically significant. referred to microglia purified from naïve mice by
Student´s t-tests or Mann–Whitney U-tests.

3.5. EAE Induces the Expression of Astrocyte Pan-Reactive and A1-Like Genes in Microglia

According to recent reports, CNS disease conditions such as spinal cord injury and amyotrophic
lateral sclerosis induce an autologous expression of classical astrocyte-specific marker genes in
microglia whose biological role is currently unknown [52,53]. To understand if such processes are
occurring in MS, we assessed the mRNA levels of pan-astrocytic genes and A1 phenotype markers in
microglial cells purified during EAE. Consistent with previous observations [52], microglia from EAE
mice at acute disease over-expressed markers of reactive astrogliosis such as Gfap, Serpina3n, S1pr3,
and Cd44 (Table S3). Furthermore, transcriptomic responses of microglial cells during EAE mirrored
the upregulated expression of A1 genes in astrocytes, with increased levels of complement components
C1ra and C3, among other phenotype markers (Figure 4C; Table S3). These findings indicate that the
induction of genes associated with the expression of a neurotoxic astrocyte phenotype is not exclusive
to this cell population during EAE. However, the deregulation of A1-like genes in microglia did not
significantly correlate with the severity of disease scores at acute or chronic EAE disease (Figure S4).
In all, these results argue against the pathological relevance of A1 gene expression in microglial cells
during EAE.
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4. Discussion

The study of factors and mechanisms regulating astrocyte and microglia activation in MS has
important therapeutic implications and is a matter of intense research. Findings of the current
study indicate that these cell populations undergo multiple transcriptomic alterations affecting
endocannabinoid system genes concomitant to their phenotypic activation during EAE and that these
alterations occur early after disease induction.

A role for endocannabinoids as modulators of MS pathology is supported by a number
of studies reporting altered levels of these lipids in patients and rodent models of the disease.
Increased concentrations of AEA have been determined in brain tissue, cerebrospinal fluid, and plasma
from MS patients [28–31]. These observations have been replicated in EAE and correlated to increased
NAPE-PLD and reduced FAAH expression and activities [30,32]. Concerning 2-AG, the majority
of the studies report unaltered concentrations both in animal models and MS patients [21,24,30],
although higher 2-AG levels have also been proposed in EAE mice [32]. Although it is generally
assumed that changes in endocannabinoid levels may be, at least in part, associated to the inflammatory
reaction driven by innate immune cells in MS tissue, whether the transcriptional reprogramming
of astrocytes and microglia during disease progression involves changes in the endocannabinoid
biosynthetic and metabolic machinery has never been assessed. In this study, we show that both cell
populations display significant reductions in 2-AG hydrolysis genes Mgll, Abhd6, and Abhd12 at the
early stages of EAE, paralleled or followed by reductions in Dagla and Daglb transcripts. Altogether,
these results suggest that time-dependent transcriptional changes in astrocytes and microglial cells may
contribute to the dysregulation of 2-AG levels in MS, and help explain some inconsistencies between
previous studies. On the other hand, astrocytes and microglia purified over the course of EAE differ
in the timing, extent, and sign of transcriptional changes affecting AEA production and metabolism
machinery. Astroglia transiently and selectively over-expressed Napepld transcripts at presymptomatic
disease while displaying early and persistent down-regulation of Naaa and Fabp7 expression levels.
However, astrocytes at asymptomatic and acute EAE also displayed increased transcript levels
for Faah, consistent with the predominant localization of FAAH proteins in hypertrophic astroglia
associated to active plaques in human MS [54]. Conversely, isolated microglial cells showed selective
down-regulation of Faah transcripts paralleled by increased Naaa expression levels at acute and chronic
stages. In sum, these findings illustrate the cell-type specificity of transcriptomic alterations regarding
AEA biosynthesis and hydrolysis genes in a demyelinating context and suggest that both astroglia and
microglial cells participate in the misbalance of AEA levels in MS.

A hurdle when interpreting the biological impact of changes in the gene expression pattern
of endocannabinoid synthetic and metabolic machinery in purified cells is the absence of results
showing parallel modifications in 2-AG and AEA levels. In this study, the low number of astrocytes
and microglial cells purified for analysis precluded us from providing experimental evidence of
changes in endocannabinoid contents. In this regard, the development of high-sensitivity liquid
chromatography-mass spectrometry techniques allows nowadays the detection of very low amounts
of endocannabinoids, but this experimental approach requires a >106 cells for accurate and reliable
detection of changes in AEA and 2-AG levels [55–58]. When evaluating the utility of endocannabinoid
measurements as a readout of unbalanced production/metabolism it should also be kept in mind
that these alterations may be activity-dependent in vivo and, therefore, not faithfully mirrored upon
determination of basal levels in purified cells. Experimental limitations concerning cell availability in
this study also applied to the detection of proteins for the main components of the endocannabinoid
system, which is further hindered by the low expression levels of several of these molecules in
astrocytes and microglia as well as by antibody specificity issues [59–61]. Although the outcome
of expression changes in the production and metabolic genes on endocannabinoid levels in the
vicinity of the cells remains, thus, to be established, gene expression results in astrocytes purified
at asymptomatic EAE lead us to postulate an imbalance in 2-AG mediated activity at early disease
stages. Indeed, down-regulated Mgll and Abhd6 transcript levels in astrocytes without concomitant
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reductions in Dagla expression may be associated with enhanced 2-AG levels in the context of previous
work. This possibility is supported by lipase profiling experiments demonstrating that MAGL and
ABHD6 are responsible for approximately 85% and 8% of brain 2-AG hydrolysis [14], as well as
by results from global pharmacological or genetic inactivation studies showing that both enzymes
control the accumulation and biological activity of this lipid mediator [17,56]. Further, the analysis
of astrocyte-specific MAGL knockout mice has consistently demonstrated that astrocytic MAGL
plays a substantive role in 2-AG metabolism its inactivation leading to deficient endocannabinoid
clearance. In particular, conditional deletion of MAGL in astrocytes leads to a 40% reduction in
brain 2-AG hydrolysis and 3-fold increases in 2-AG levels while limiting the spatial diffusion of
endocannabinoid signaling at neuronal CB1 receptors [62–64]. On the other hand, there is also
consensus that MAGL inactivation triggers CB1 receptor down-regulation upon sustained exposure
to increased endocannabinoid levels [20,65]. Consistently, astrocytes purified during acute, but not
asymptomatic, EAE disease showed reduced Cnr1 transcript levels that persisted at the recovery
phase. Although changes in endocannabinoid levels cannot be inferred based only on transcriptional
deregulation and caution is thus needed when interpreting these data, altogether our results point
to an early shift toward enhanced 2-AG mediated activity onto astrocytic CB1 receptors that may be
followed by deficits at more progressive stages of the autoimmune demyelination process.

Our data concerning deregulation of Mgll, Abhd6, Dagla, Faah, and Fabp7 transcript levels in
astrocytes purified during acute EAE confirm results from a recent transcriptomic study in EAE mice
at 45 days post-immunization [43]. These authors used RiboTag technology applied to Gfap-Cre
mice to determine astrocyte-specific gene expression networks in multiple regions of the CNS
but did not validate RNA-seq results using RT-qPCR and did not report changes in additional
endocannabinoid system genes. It is noteworthy, however, that two studies using fundamentally
different experimental approaches show similar alterations regarding endocannabinoid activity
associated genes at acute/chronic EAE stages. Altogether, these observations indicate that deregulated
astrocytic expression of endocannabinoid biosynthesis and metabolism genes is a consistent finding in
the EAE mouse model of MS.

With regard to the activation characteristics of the astroglia population in EAE, this study
reports that CNS astrocytes purified during the time-course of the disease dynamically and highly
up-regulate A1-like genes as compared to A2 phenotype markers. We establish that astroglial
cells over-express a number of A1 reactive genes at early, asymptomatic stages, with most of these
molecules exhibiting significantly increased transcript levels both at acute and recovery phases.
Using immunohistochemistry, we corroborated that a population of reactive astrocytes in spinal
cord white matter up-regulates complement component C3 at the protein level. Consistent with the
acquisition of pathogenic functions, our RT-qPCR analysis also demonstrates that induction of astrocytic
A1 phenotype marker genes during autoimmune demyelination is associated with the deregulation of
specific genes involved in neuroprotection, synaptogenesis, and phagocytosis, thus matching previous
observations [9,10]. These observations add to the growing body of evidence showing the presence
of a population of neurotoxic A1 astrocytes in brain aging and chronic neurodegenerative diseases
that compromise synaptic function in part through the release of C3 [46,66–68]. Furthermore, in this
study, the increase in astrocytic C3 transcripts strongly correlated with a motor disability at the acute
disease. Although neurological disability in a complex disease model such as EAE cannot be ascribed
to variations in a single gene, this result is reminiscent of the negative correlation between astroglial
C3 expression and retinal ganglion cell density in optic neuritis [10], and lead us to postulate a relevant
connection between astrocytic complement expression in white matter tracts and neurodegeneration
in MS. On the other hand, the transcriptional induction of additional astrocytic A1 markers displayed,
however, a complex profile in terms of correlation with disease severity, with many of them showing
non-significant correlations or even inversely correlating with neurological scores. When interpreting
these results, it should be kept in mind that although the general up-regulation of A1 genes reported
here supports the expression of a pathogenic neurotoxic astrocytic phenotype [9,44,67] each one of
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these individual genes might play opposite roles in regulating astrocyte function in terms of disease
outcome. Indeed, the inverse correlation astrocytic IFNγ inducible genes such as Iigp1 and Psmb8
and disease severity is not surprising in the context of protective responses driven by this signaling
pathway in experimental MS [69,70]. In addition, most of the A1-like genes assayed in this study
are not expected to be exclusively expressed in the population of so-called neurotoxic astrocytes
during EAE. Instead, a complex pattern of expression in several astrocyte populations displaying
different polarization states may be suggested for the different genes tested based on the existing
literature. Importantly, single-cell microfluidic qPCR of astrocytes purified from experimental models
for astrocyte polarization have validated C3 among other A1 genes as the most appropriate marker to
visualize the population of neurotoxic astrocytes in disease conditions, based on its selective expression
in this subset of reactive astroglia [9]. In this scenario, our results corroborate the pathological relevance
of A1 astrocytes expressing C3 during autoimmune demyelination and highlight the complexity of
studying astrocyte phenotypic responses in MS.

Microfluidic RT-qPCR analysis of isolated microglia revealed a preferential activation toward
a pro-inflammatory phenotype with increased expressions of chemokines such as Ccl2, Ccl5, Cxcl2,
and Cxcl10 that can promote hematopoietic cell recruitment, hence matching previous transcriptomic
analyses [49]. However, it is also noteworthy that the induction of these injury-promoting molecules
was paralleled by the overexpression of genes involved in the expression of microglia protective
functions such as Igf1 and Chil3. In this regard, our observations add to the growing body of evidence
indicating that microglial cells acquire complex phenotypes during autoimmune demyelination that
may promote both tissue damage and repair [51,71]. On the other hand, we also demonstrate the
induction of genes associated with reactive astrogliosis and neurotoxic A1 functions in microglia
during EAE. The expression of microglial Gfap and Serpina3n transcripts shown in this study has
been previously reported in mouse models of injury and disease, and it is speculated that it might
suppress pro-inflammatory pathways [52,53]. Our results in the EAE model support additional studies
using cell-type-specific transcriptomic analysis of microglia and complementary in vitro analyses to
uncover the precise role of astrocyte population marker genes within these cells in MS pathophysiology.
With regard to astrocytic A1-like genes, overexpression of C1ra and C3 is in line with previous results
from transcriptomic studies demonstrating the up-regulation of the complement pathway in microglia
and monocyte-derived macrophages purified from EAE mice [49]. A causal role of complement in the
context of demyelination has been established based on studies showing that C3 null mice display
attenuated disease severity in the EAE model [72]. However, the correlation between astrocytic C3
induction and acute EAE severity in this study was not detected in microglia purified in parallel from
the same animals, and immunohistochemical analysis demonstrated that the expression of this A1
population marker is predominantly associated to astrocytic profiles in EAE mice. These observations
provide evidence that astrocytes, and not microglial cells, are the main mediators of pathogenic C3
signaling in EAE and thus confer cell-type specificity to the protective phenotype C3 knockout mice in
this MS mouse model.

A role for endocannabinoids in preventing or attenuating reactive astrogliosis and microglial
reaction in MS mouse models is supported by a number of studies using genetic and pharmacological
tools [19,20,23,24]. However, how these observations translate to disease progression in terms of
pathogenic and protective astrocyte and microglia functions and the detailed mechanisms underlying
such effects remain to be fully elucidated. The early deregulation of endocannabinoid system genes in
astrocytic and microglia during EAE reported here supports the possibility that these lipid mediators
tune the phenotypic transformation of these cells in demyelinating conditions and warrants further
investigation. In the same context, the extent to which alterations in the expression pattern of
endocannabinoid system genes in innate immune cells determines the general neuroprotective and
regenerative role of these lipids in MS requires further analysis. In this regard, a role for astroglial and
microglial endocannabinoid systems in neurodegenerative conditions is supported by accumulating
evidence demonstrating the relevance of endocannabinoid-mediated crosstalk mechanisms between
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innate immune cells and neurons in regulating brain functions [73,74]. Concerning endocannabinoid
signaling in MS, neuronal CB1 receptors and CB2 receptors in T cells have been established as
crucial determinants of cannabinoid-mediated EAE suppression based, in part, on studies using
cell-type-specific knockdown strategies [24]. Similar experimental approaches have not yet been
applied to the analysis of the neuroglial endocannabinoid system in MS likely due to the low expression
levels of cannabinoid receptor proteins in these cells. In the light of these results, further studies using
cell-type-specific transgenic mice or virus-mediated strategies to specifically modulate endocannabinoid
system elements in astrocytes and microglia are needed to decipher the relevance of these cell types as
targets and mediators of endocannabinoid signaling in MS.

5. Conclusions

Our data represent the first RT-qPCR analysis of endocannabinoid system genes in astrocytes and
microglia at multiple time-points of autoimmune demyelination and disease severity. Results show
that activation of innate immune cells in MS is associated with both general and cell-type-specific
transcriptional alterations affecting endocannabinoid activity associated molecules. These adaptations
are time-dependent, with an early and progressive down-regulation of genes encoding 2-AG hydrolytic
enzymes that precede the appearance of neurological disability followed or paralleled by reductions
in transcripts for cannabinoid receptors and synthetic endocannabinoid enzymes. Concerning the
phenotype of innate immune cells during the disease course, we confirm that microglia exhibit an
intermediate polarization state regarding the expression of inflammatory genes during EAE. Finally,
we demonstrate disease-induced over-expression of astrocytic A1-like phenotype genes paralleled by
deficits in synaptic protection and phagocytosis related transcripts and support a pathogenic role of
this subset of reactive astrocytes in MS.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/9/1228/s1,
Figure S1: FACS sorting and purity of CNS cell populations during EAE. (A,B) Representative dot-plots depicting
FACS strategy for the purification of astrocytes and microglia from EAE mice. Astrocytes were sorted as ACSA-2+
cells following exclusion of contaminating hematopoietic cells (CD45+), microglia/macrophages, and hematopoietic
cells (CD11b+/CD45+), oligodendrocytes (O1+), oligodendrocyte progenitors (A2B5+) and endothelial cells
(CD31+) grouped in a dump channel. Right: The purity of sorted astrocyte population by FACS analysis of the
astrocytic marker GLAST. (B) Microglial cells were sorted as CD11b positive cells with low CD45 expression
(CD11b+/CD45low). (C) qPCR analysis of astrocyte (Aldh1l1, Aqp4, Atp1b2, Gfap, Slc1a3) and microglia (Gpr34,
Itgam, P2ry12, Tmem119) enriched genes in both cell types purified at acute EAE disease (n = 5–6 mice; normalized
to astrocytic Gfap)., Figure S2: Cell-population analysis during EAE. (A) Clinical score of the diseased animals used
in the study (n = 19 mice; 2 independent EAE experiments). Astrocytes and microglia were sorted from control and
immunized mice at the pre-symptomatic (7–8 dpi), acute (14–17 dpi) and recovery (28–31 dpi). (B) Neurological
score of the diseased mice used for FACS analysis at each time-point (n = 6 mice). ***p < 0.001; one-way ANOVA
followed by Newman–Keuls tests. (C) Relative abundance of CD11b+CD45high and CD11b-CD45high peripheral
immune cell populations in CNS single cell suspensions from control and EAE mice at pre-symptomatic, acute,
and recovery phases of the disease (n = 6–8 mice per condition). ***p < 0.001 referred to CD11b+ cells, Student´s
t-tests., Table S1: Target genes and primers for RT-qPCR analysis in astrocytes and microglia, Table S2: RT-qPCR
analysis of astrocytes purified during EAE versus control cells, Table S3: RT-qPCR analysis of microglia purified
during EAE versus control cells.
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Abbreviations

N-acylethanolamine acid amidase (NAAA); 2-arachidonoylethanolamide (anandamide, AEA);
N-arachidonoylethanolamine phospholipase D (NAPE-PLD); 2-arachidonoylglycerol (2-AG); diacylglycerol lipase
α isoform (DGLα); diacylglycerol lipase β isoform (DGLα); experimental autoimmune encephalomyelitis (EAE);
fatty acid amide hydrolase (FAAH); fatty acid binding protein subtype 7 (FABP7); α/β-hydrolase domain
containing 6 (ABHD6); α/β-hydrolase domain containing 12 (ABHD12); monoacylglycerol lipase (MAGL);
retinal ganglion cell (RGC).
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