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 Does incidental sequence learning allow us to better manage 

upcoming conflicting events? 

 

Abstract 

 
Recent proposals emphasize the role of learning in empirical markers of conflict adaptation. 

Some of these proposals are rooted in the assumption that contingency learning works not 

only on stimulus-response events but also on covert processes such as selective attention. In 

the present study we explored how these learning processes may apply to trial-to-trial 

modulations of selective attention, mirroring the sequential nature of congruency sequence 

effects. Two groups of participants performed a four-choice Stroop task in which the color 

to which they responded on each trial acted as a probabilistic predictor either of the external 

response to be emitted on the next trial, or the congruency level (and therefore control 

demands) on the next trial. The results showed clear effects of sequence learning for external 

responses, but no evidence of learning about sequential stimulus-conflict associations. The 

implications of these results are discussed in relation to other learning-based phenomena of 

conflict adaptation, and suggest that learning of stimulus-control associations are strongly 

constrained by event boundaries. 
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Conflict adaptation 

Across all levels of information processing, cognitive agents can be exposed to interference 

that jeopardizes goal-directed selection processes. In the lab such interference can be studied 

using so-called conflict tasks. For example, in the classic Stroop task (MacLeod, 1992; 

Stroop, 1935) responding to the color in which a word is presented (i.e., the goal) can suffer 

interference from the meaning of that word when it refers to a different color (e.g., “RED” 

printed in blue), because word reading occurs automatically. This interference can be 

reliably captured in performance measures, as people are often slower and/or less accurate 

on such incompatible color-word pairings as compared to cases in which color and meaning 

are compatible (i.e., “RED” printed in red). This performance difference is referred to as the 

congruency effect. 

In order to achieve goal-directed behavior in the face of interference, the brain is believed 

to be equipped with various cognitive control processes. One such process has been referred 

to as conflict adaptation, which concerns the brain´s ability to swiftly adjust attentional 

settings when interference or ´conflict´ is detected in order to cope well with current and/or 

future task demands. Various empirical markers of conflict adaptation can be derived from 

exploring the congruency effect. For instance, the congruency effect is typically smaller 

right after having responded to a conflict trial (i.e., the congruency sequence effect or CSE; 

Gratton, Coles, & Donchin, 1992); or after having experienced a disproportionally large 

amount of conflict trials for a given block (i.e., List Wide Proportion Congruency effect or 

LWPCE; Logan & Zbrodoff, 1979), a specific context (Context Specific Proportion 

Congruency effect or CSPCE; Crump, Gong, & Milliken, 2006), or a specific item (Item 

Specific Proportion Congruency effect or ISPCE; Jacoby, Lindsay, & Hessels, 2003). In all 

cases, the idea is that conflict detection (occurring mainly on incongruent trials) results in a 
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more appropriate balance of attentional focus between relevant and irrelevant information 

such that potential upcoming conflicts can be better managed (but see Schmidt, 2018). 

Classical models of cognitive control described well the dynamic processes that are 

required for managing conflict events and maintaining goal-directed behavior (Norman & 

Shallice, 1986). Yet, they often failed to specify how the brain ´decides´ when and how to 

adjust control settings. This left these accounts plagued by homunculi rather than providing 

a mechanistic understanding of conflict adaptation (Abrahamse, Braem, Notebaert, & 

Verguts, 2016; Verbruggen, McLaren, & Chambers, 2014; Verguts & Notebaert, 2009). A 

more mechanistic approach followed on the basis of computational work, with the seminal 

work by Botvinick, Braver, Barch, Carter, & Cohen, (2001) setting the stage. Botvinick et 

al. proposed the conflict monitoring theory (CMT), in which internally generated conflict 

signals served as the cues for the moment at which increased control is required. Even 

though this satisfies the requirement of knowing when to adjust control, a fully mechanistic 

account also has to outline how to adjust control. One candidate ´how´ proposal is outlined 

below, and builds on learning as the main driver of conflict adaptation. 

Learning-based conflict adaptation 

For long, and (still) for many, learning has been understood as the cognitive complement of 

control. Cognitive agents go through life building habits, and recruit control processes when 

these habits violate current goals. The extreme case of such logic is the currently ongoing 

debate on the extent to which conflict adaptation markers (i.e., CSE, LWPCE, ISPCE, 

CSPCE) can be ´explained away´ by learning and memory processes (for reviews see 

Schmidt, 2013, 2018). A related but potentially more synergetic approach is to understand 

conflict adaptation as evolving itself from learning processes (Egner, 2014, 2017, Verguts & 

Notebaert, 2008, 2009). Verguts and Notebaert, for example, proposed a computational 

model in which conflict serves as a teaching signal to drive adaptation: Upon conflict 
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detection, all currently active representations are (further) strengthened, and because active 

representations are typically task-relevant, this results in increased control. This principle 

about how the brain knows how to adjust control settings, was shown to generate both CSEs 

and ISCPEs. Recently, Abrahamse et al. (2016) elaborated on this learning-based approach 

on conflict adaptation (see also Egner, 2014), and argued that this approach can explain why 

conflict adaptation – like has been long known for learning – is sensitive to context and 

reward, and not critically dependent on awareness and expectations (e.g. Jiménez & 

Méndez, 2013; Jiménez & Méndez, 2014). 

In general, the computational and conceptual work outlined above builds on two critical 

assumptions. First, it builds on the insight that the brain processes in analogous ways both 

internally and externally generated events (e.g., conflict signals and physical stimuli), and 

operates similarly via covert and overt actions (e.g., attentional adjustments and motor 

actions). Indeed, just like external stimuli can bias overt actions (e.g., in classical 

conditioning, contingency learning, or sequential event learning), the CMT as well as its 

extended work by others (e.g., Verguts & Notebaert, 2008; 2009) implies that internally 

generated conflict signals can bias covert actions such as attentional focus. A second, related 

insight is that core principles from associative learning can be applied to critical instances of 

´selection´ inside the cognitive agent (i.e., hidden states in information processing). An early 

example of this insight is the working memory gating model by Frank, Loughry and 

O’Reilly (2001), in which reinforcement learning shapes input and output selection in 

working memory. In the current context, this reasoning can be extended to the selection of 

contextually optimal attentional parameters to produce conflict adaptation. For example, in 

the model by Verguts and Notebaert (2008; 2009) Hebbian learning is at work not only for 

active stimulus and/or response representations, but also for active task representations – and 

this drives conflict adaptation.  
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The current study 

The above mentioned LWPC, CSPC and ISPC effects are three empirical demonstrations in 

support of a critical role of associative learning in conflict adaptation, as trial history 

provides contingencies that can be learned to drive adaptation (but see Schmidt, 2018). Yet, 

a learning-based account of conflict adaptation postulates that associative learning is its 

main engine overall. As such, it is important to also explore associative learning processes 

that mirror the time course of the congruency sequence effect – one of the main empirical 

markers of conflict adaptation – in terms of adaptation occurring not only within trials (e.g., 

(Scherbaum, Fischer, Dshemuchadse, & Goschke, 2011) but also across successive trials. In 

tackling this issue, here we take inspiration from the sequence learning literature. 

In the sequence learning literature, it has been shown that the brain can learn about 

sequential regularities between successive stimulus-response events without being instructed 

to do so (i.e., incidental learning). For example, in their seminal paper, Nissen and Bullemer, 

(1987) introduced the serial reaction time (SRT) task, in which participants are required to 

generate spatially compatible responses to spatially defined stimuli on the screen. When 

these S-R events were presented in a fixed, repeating sequence, participants´ performance 

improved with practice up to the moment that the sequence was replaced by random series 

of events that caused performance to drop substantially. This indicates that participants were 

able to better anticipate the upcoming (external) S-R event by using information from the 

previous (external) S-R event (e.g., stimulus-stimulus, response-response, or stimulus-

response learning; see Abrahamse, Jiménez, Verwey, and Clegg, 2010). For example, 

sequential learning at the level of stimulus-stimulus contingencies (i.e., perceptual sequence 

learning) has been shown in studies that decoupled the sequence to be learned from response 

features (e.g. Deroost & Soetens, 2006; Howard, Mutter, & Howard, 1992; Mayr, 1996; 

Remillard, 2003; Song, Howard, & Howard, 2008), and even in studies that arranged two 
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independent sequences involving both perceptual and motor features (D’Angelo, Jiménez, 

Milliken, & Lupiáñez, 2013; Mayr, 1996). Moreover, studies have shown that sequential S-

R learning arises even under probabilistic conditions, where the sequential trials are 

continuously intermixed with unpredictable trials (Jiménez, Lupiáñez, & Vaquero, 2009; 

Shanks, Wilkinson, & Channon, 2003), and – interestingly for current purposes – even when 

the sequence is implemented in the context of interference tasks (Deroost, Vandenbossche, 

Zeischka, Coomans, & Soetens, 2012; Koch, 2007).   

As mentioned, learning-based conflict adaptation builds on the notions that the brain 

operates in similar ways on internal and external stimuli, on overt and covert actions, and on 

the formation of associations between them. Thus the question arises on whether participants 

can learn to associate external stimulus-response information from the current trial to 

internally computed conflict events (or the corresponding attentional adjustments) on the 

following trial. Previous studies have shown that people can improve performance based on 

explicit congruency-level cues presented before each trial, which predict the amount of 

conflict presented on the upcoming trial (Bugg & Smallwood, 2016; Ghinescu, Schachtman, 

Stadler, Fabiani, & Gratton, 2010; Gratton et al., 1992; Logan & Zbrodoff, 1979). Following 

this observation, we here hypothesize that the brain can also learn to anticipate the 

congruency level of the next trial based on predictive information conveyed by an 

uninstructed, incidental predictor presented on the preceding trial, such as the stimulus 

feature to which they are responding on this preceding trial. As such, the current study 

provides for an empirical test of core assumptions of learning-based control. 

We tested two groups of participants. A first group performed a relatively simple, but 

probabilistic, SRT task, in which the color and response of the previous trial acted as valid 

predictors (80% valid) of the color and response on the current trial. A second group 

performed the same task in a very similar design but with one crucial change: here, the color 
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and response of the previous trial were valid predictors (80% valid) not of the color and 

response but rather of the congruency level (congruent or incongruent) of the current trial – 

with congruency level thus being an approximation of the presence/absence of conflict and 

the need of attentional adjustments. Whereas we expected to find clear learning (through 

improvements in performance) for the first group in replication of previous SRT studies 

(e.g., Deroost et al , 2012; Koch, 2007), the critical question was whether the second group 

could also learn the between-trials contingencies in order to better manage upcoming 

conflict. 

Experiment 

Two independent groups of participants performed a 4-choice manual Stroop task over a 

series of six blocks of trials. Unknown to the participants, the succession of trials was 

structured in a different way for each of these two groups. In the external (color→color) 

condition, the color on each trial, and therefore the response required on that trial, conveyed 

80% valid information about the color and response required on the following trial. In the 

internal (color→congruency) condition, the same attributes of each trial contained 80% valid 

information about the amount of conflict to be encountered on the following trial, and 

therefore on the optimal attentional settings required to respond to that trial. 

Method 

Participants. The experiment was conducted in accordance with Spanish regulations, and 

with the ethical standards of the 1964 Declaration of Helsinki. Forty-eight students (6 male, 

mean age 21, ranged between 18 and 40) from the University of Santiago de Compostela 

signed an informed consent to participate in the experiment in exchange for a monetary fee 

or academic credit, and half of them were randomly assigned to either the color→color or 

color→congruency condition. 



SEQUENCE LEARNING AND CONFLICT                                                                       9 
 

Apparatus and stimuli. The experiment was designed and controlled using INQUISIT 4 

(Inquisit 4, 2015) software, running on personal computers connected to 22-in monitors, 

with a resolution of 1920 × 1080. Participants viewed the monitors from an unrestricted 

distance of approximately 60 cm, and responded on a standard QWERTY keyboard placed 

in front of them. On each trial, participants saw a word, randomly selected from the Spanish 

words referring to the colors red ("rojo"), blue ("azul"), green ("verde"), and yellow 

("amarillo"), printed in Arial, lower case, 32 points font, colored either in a congruent or in 

an incongruent color, and presented against a grey background. Participants were asked to 

respond to the color in which the word was written using the keys corresponding to the 

letters ‘z’, ‘x’, ’n’, and ‘m’ to respond, respectively, to the colors red, green, blue and 

yellow. The response keys were marked with appropriate colored stickers. 

Procedure. Participants received initial instructions informing them that they should rest 

their index and middle fingers from each hand on the response keys, and that their task 

consisted of responding as fast and accurately as possible by pressing on the key 

corresponding to the color in which the current word was written. In a first, practice block, 

participants were given the opportunity to learn about the color-key mapping, by responding 

to 50 trials in which the word stimuli were not related to the colors. In this part of the task, 

the color-to-response-location mapping was facilitated by locating four color labels ("rojo", 

"verde", "azul", "amarillo") at the bottom of the screen, marking the relative location of the 

response keys. After the practice block, the word labels were removed, and the experiment 

proceeded to the six experimental blocks. 

Each experimental block consisted of 96 Stroop trials, in which the meaning of the words 

corresponded to one of the four possible colors, with a congruency rate of .50. The 

succession of trials was structured so that, in the external, (color→color) condition, each 

color predicted the next color with a validity of .80. In the internal, (color→congruency) 
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condition, each color predicted the congruency level of the next trial with the same validity. 

To control for the potential influence of particular predictor-target pairs, in the external 

condition the color→color contingencies were counterbalanced over modules of six 

participants, so that every predictor-target pair was equally represented (e.g., the sequences 

red→green, red→blue, and red→yellow corresponded to frequent sequences for exactly two 

participants out of each module of six).  For the internal condition, the color→congruency 

contingencies were also counterbalanced in a similar way so that, over a module of six 

participants, every possible pair of colors was associated once with a congruent successor 

and once with an incongruent successor. Table 1 illustrates this counterbalanced design. 

Table 1. Assignment of predictive values to each possible color predictor, counterbalanced 
for participants, in both the color→congruency and color→color conditions.  

 Predictor 
 Red Green Blue Yellow 

Condition 
Participants 

color→ 
congruency 

color→ 
color 

color→ 
congruency 

color→ 
color 

color→ 
congruency 

color→ 
color 

color→ 
congruency 

color→ 
color 

1/7/13/19 Congruent Green Congruent Blue Incongruent Yellow Incongruent Red 

2/8/14/20 Incongruent Green Incongruent Yellow Congruent Red Congruent Blue 

3/9/15/21 Congruent Blue Incongruent Yellow Incongruent Green Congruent Red 

4/10/16/22 Incongruent Blue Congruent Red Congruent Yellow Incongruent Green 

5/11/17/23 Congruent Yellow Incongruent Blue Congruent Red Incongruent Green 

6/12/18/24 Incongruent Yellow Congruent Red Incongruent Green Congruent Blue 

 

As for the invalid trials, they were introduced continuously among the valid trials, in a 

proportion of .20. The inclusion of invalid trials fulfilled the simultaneous goals of masking 

the sequential contingencies, and  allowing for a continuous test of sequence learning. In the 

color→color condition, we also precluded immediate repetitions (e.g., red-red) and 

alternations (red-green-red) from the control trials, because neither can appear in valid trials, 

and these patterns are known to produce particular effects independent of learning (cf. 

Vaquero, Jiménez, & Lupiáñez, 2006). Thus, whenever an invalid trial was scheduled by the 

program, the valid trial that would have followed based on the sequence was replaced by the 

only remaining candidate that did not produce either a repeating or an alternating pattern. 
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For instance, if valid successor after the series red-green was blue, but the latter stimulus 

was to be replaced by an invalid trial, then a yellow stimulus would replace the planned blue 

trial. In principle, for the color→congruency condition the same precaution was not needed 

to make valid and invalid trials comparable, because  alternations and repetitions could arise 

equally in both valid and invalid trials. Yet, in order to make both conditions more 

comparable, we also implemented these restrictions over the color→congruency group, thus 

precluding immediate repetitions and alternations from appearing in the series. 

Each trial started with a fixation cross presented at the center of the screen, that was 

replaced after 500 ms by an empty screen. After 250 ms, the blank screen was followed by 

the target, which remained on screen until the participant issued a response. If the response 

was correct, the next trial came immediately, thus producing a response-to-stimulus interval 

of 750 ms. When an error was committed, participants heard a tone, and the screen remained 

blank for an additional interval of 1000 ms, before proceeding to the following trial. After a 

training block, participants were informed about the average reaction time and the 

percentage of correct responses produced on that block, and they were asked to keep 

responding as fast as possible, while maintaining the proportion or errors below .10. At the 

end of the sixth experimental block, participants completed a questionnaire that assessed 

their knowledge about the underlying regularities. In the color→color condition, participants 

were asked to select the most likely successor that they expected after a trial displaying each 

of the four colors. They could choose either one of the four successors, or a fifth alternative 

that stated that "any one" was possible. In addition, they were allowed to use a Likert Scale 

marked from 0 to 10 to rate their confidence on each response. In the color→congruency 

condition participants were asked to select whether, after each possible color, they expected 

an "easy" (i.e., congruent) or a "difficult" (incongruent) successor, and they were also asked 

to rate their confidence through a similar Likert Scale. 
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 Design. The experimental design included a between-participants variable Group 

(color→color vs. color→congruency prediction), and two main within-participants factors, 

Congruency (2, Congruent vs. Incongruent trials) and Predictability (2, Valid vs. Invalid 

trials). Because learning to exploit the sequential regularities might take time, we also 

included Practice as an additional within-participants variable, collapsing the training blocks 

into two practice halves. Two Analyses of Variance (ANOVAs) were conducted separately 

using reaction times (RTs) and percentage of errors as the dependent variables. RTs were 

our main focus, but we analyzed errors for completeness, and to confirm that any effect 

observed in RTs could not be attributed to a trade-off between speed and accuracy.  

Results 

Reaction Times. The first trial of each block was removed from the analyses (since they 

were not predicted by any previous trial), as well as the latencies from incorrect responses, 

from the trial immediately following an error (Notebaert, Gevers, Verbruggen, & Liefooghe, 

2006), and from those trials producing RTs straying more than 3 standard deviations from 

the mean, computed for each block and participant separately. The omnibus ANOVA 

conducted on RTs did not show a significant effect of Group, F(1,46)=0.75, p=.39;ηp
2 =.02, 

but it produced significant main effects of Congruency (642 vs. 721 ms), F(1,46)=76.06, 

p<.0001;ηp
2 =.62, Predictability (663 vs. 701 ms), F(1,46)=15.59, p<.0001;ηp

2 =.25, and 

Practice (697 vs. 667 ms), F(1,46)=10.36, p=.002;ηp
2 =.18. The Congruency × Group 

interaction was not significant, F(1,46)=0.01, p=.98;ηp
2 <.001 but, importantly for our 

theoretical purposes, there was a significant Predictability × Group interaction, 

F(1,46)=13.24, p=.001;ηp
2 =.22 which showed that learning differed between both groups. 

An inspection of Figures 1a and 1b showed that learning arose clearly in the color→color  

group for both congruent and incongruent trials, but that this was not the case in the 

color→congruency group. 
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Figure 1. Mean reaction times as a function of Practice (first vs. second training half), 
represented separately for congruent  and incongruent  trials, and for valid and invalidly 
predicted trials. Left panel represents the results obtained for participants assigned to the 
color→color  Group, and right panel represents the results obtained for participants in the 
color→congruency Group. 
 
To assess more specifically the effects of Predictability separately for each group, we 

conducted an independent ANOVA for each group . The analysis conducted for the 

color→color group showed a clear effect of Predictability (the average RTs were 626 vs. 

698 ms, respectively for valid and invalid trials), F(1,23)=15.41, p=.001;ηp
2 =.40, which did 

not interact with Congruency, F(1,23)=0.18, p=.67;ηp
2 =.01. The Predictability × Practice 

interaction did not reach significance, F(1,23)=3.49, p=.07;ηp
2 =.13, although it showed a 

numerical increase of the effect of predictability with practice from 52 to 86 ms. The three-

way Congruency × Predictability × Practice interaction did not reach significance either, 

F(1,23)=.16, p=.69;ηp
2 =.01. A Bayesian analysis conducted using JASP with default priors 

(JASP Team, 2018), to compute the relative plausibility of obtaining these data given H1 

(participants' responses discriminated between valid and invalid trials) relative to H0, 

produced a BF10=1.31 × 10+5, thus showing that the data clearly supported H1. 

For the color→congruency group, the analysis showed no evidence of learning, as the 

effect of Predictability was not significant for this group (700 vs. 703 ms), F(1,23)=0.36, 

p=.55;ηp
2 =.02. A Bayesian analysis analogous to that conducted for the color→color Group, 

produced a BF10 = 0.16 (or a BF01 = 6.36) thus suggesting that the data supported H0 for this 

group. Neither the two-way Predictability × Congruency, F(1,23)=0.19, p=.66;ηp
2 <.01, and 



SEQUENCE LEARNING AND CONFLICT                                                                       14 
 

Predictability × Practice interactions, F(1,23)=1.32 p=.26;ηp
2 =.05, nor the three-way 

Predictability × Practice × Congruency interaction F(1,23)=0.06, p=.80;ηp
2 <.01, reached 

significant levels in the analysis. 

Accuracy. The accuracy levels were generally high, and close to ceiling (.96). The ANOVA 

conducted on the percentage of correct responses showed a significant main effect of Group, 

F(1,46)=4.75, p=.04;ηp
2 =.09, indicating that performance was slightly more accurate in the 

color→congruency group (.966 vs. .950). The effect of Congruency just missed significance 

in the analysis (.961  vs. .954 ), F(1,46)=3.36, p=.07;ηp
2 =.07, and the effect of Practice was 

also non-significant, F(1,46)=0.5, p=.48;ηp
2 =.01, but there was a significant effect of 

Predictability (.969 vs. .947), F(1,46)=25.47, p<.0001;ηp
2 =.36, that indicated that learning 

was observed in this measure. Most importantly for the present purposes, the Group × 

Predictability interaction was also significant, F(1,46)=15.77, p<.001;ηp
2 =.255, showing 

that the effect of Predictability was different in the color→color (.970 vs. .929) as compared 

to the color→congruency group (.969 vs.964). To better understand this interaction, 

independent analyses were conducted for each of these two groups, focusing on the effects 

and interactions involving Predictability. 

The ANOVA conducted on the color→color group showed a significant effect of 

Predictability F(1,23)=24.21, p<.001;ηp
2 =.51, BF10=1.62 × 10+8. The effect of Predictability 

did not interact with either Congruency, F(1,23)=0.36, p=.55;ηp
2 =.01, but there was a non-

significant trend to produce a larger effect of Predictability with Practice (.032 vs. .049 

points of difference, F(1,23)=3.79, p=.06; ηp
2 =.14. 

As for the ANOVA conducted on the color→congruency group, in this case neither the 

main effect of Predictability F(1,23)=1.79, p=.19;ηp
2 =.07, nor any of the interactions 

involving this factor reached significant effects. The Bayesian analysis produced a BF10 = 

0.34 (BF01 = 2.96), lending further support to H0. Thus, consistently with the results 
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observed in the measures of RT, the percentage of hits also showed learning selectively in 

the group that experienced external contingencies (i.e., color→color group) but not in the 

group exposed to internal contingencies (i.e., the color→congruency group). 

Finally, to see whether participants in each of these conditions would be able to report the 

contingencies they were exposed to, we analyzed their responses to the post-task 

questionnaire. To obtain a single score that represents the amount of knowledge directly 

expressed through this questionnaire, we scored their responses with 1 or -1 in terms of 

whether the successor of each color was either correct or incorrect (a score of 0 was entered 

when a participant used the "any one" alternative), and multiplied that score by the 

confidence rate deposited on that response according to the Likert scale. These average 

scores differed significantly between groups, t(46)=2.25, p=.03 (two-tailed). Independent T 

tests indicated that the average score obtained by the color→color group (2.02) was 

significantly different from 0, t(23)=2.34, p=.03, whereas the corresponding score obtained 

by the color→congruency group (-0.14) was not different from 0, t(23)=-.33, p=.75.   

Discussion 

The present study investigated whether participants can use information provided by the 

previous trial not only to predict the (color-response) identity of the following trial, but also 

to get prepared for an increased or decreased likelihood to experience conflict on that trial. 

Our results replicate the standard observation that participants can learn to use sequential 

contingencies established between successive colors, as demonstrated by faster responses 

and a reduced amount of errors when responding to valid than to invalid trials in the 

color→color group. However, we found no evidence for our main hypothesis that the same 

should be observed for color→congruency contingencies. As the observations in both 

groups separately (as well as the comparison between them) allow for interesting additional 

discussion, we will now discuss each of those two contingency groups in turn. 
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Notably, while the color→color group did show learning, there was no interaction with 

practice. However, relatively fast learning has also been observed in other sequence learning 

studies involving only first-order probabilistic contingencies (D'Angelo et al., 2013). 

Because the goal of learning in this case consists only of four pair-wise associations between 

each of the four possible colors and its more likely successor, and they are repeated about 20 

times per block, it is not surprising that the learning was already well established during the 

first training half.  

Interestingly, while we observed a clear benefit in performance of color-color 

contingencies, this benefit did not further interact with the congruency effect. This result 

contrasts with previous findings by Deroost and colleagues (2012), who showed a reduction 

of the Stroop effect on predictable trials. Our experiment differed from the study by Deroost 

and colleagues (2012) in that we assigned the four colors to four, instead of two, response 

buttons, and used restrictions in color sequences avoiding direct color repetitions from both 

the previous trial and the trial before that. Therefore, our restrictions might have excluded 

response repetition effects that can considerably reduce congruency effects (e.g., Mayr, 

Awh, & Laurey, 2003). More broadly, however, our results are consistent with previous 

findings by Koch (2001, 2005) who also found a clear benefit of predictable (task) 

sequences that did not further interact with the task switch cost. Although speculative at this 

point, these findings might suggest that sequential predictability is not effective for reducing 

interference effects at the task level. 

In addition to showing that participants can learn about a sequence of colors in the 

context of a four-choice Stroop task, our main goal was to assess whether participants could 

also learn to use the same predictors to anticipate the amount of conflict expected for the 

following trial. Previous work has indicated a role for associative learning processes in 

conflict adaptation. For example, the CSPC and ISPC effects have been interpreted as 
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showing the formation of synchronic associations between contextual features (e.g., 

location, color, identity) and the amount of conflict encountered on that trial (Cañadas, 

Rodríguez-Bailón, Milliken, & Lupiáñez, 2013; Crump & Milliken, 2009). In extension of 

this work, we here explored the extent to which conflict-related representations can become 

associated to the imperative feature to which participants responded on the previous trial – 

i.e., whether they can learn a sequence that relates the previous color (and the response 

produced on that trial) to the level of conflict expected on the following trial. Effects of 

sequence learning have been demonstrated for perceptual-motor features between successive 

trials in a variety of settings (for a review, see Abrahamse et al., 2010), and here we again 

showed that this learning occurs in the context of a Stroop task when each color predicts the 

color of the following trial (cf. Deroost et al., 2012). Yet, despite the very similar design 

used in the color→congruency group, we observed no learning for contingencies between 

previous trial color and the congruency level on the next trial. 

The absence of learning in the color→congruency group stands in contrast not only with 

the learning observed in the current study for a comparable color→color group, but also 

with learning-based modulations of control in previous work. First, as mentioned above, the 

CSPC (Crump et al., 2006) and ISPC effects (Jacoby et al., 2003) have been interpreted as 

showing that specific features of a trial can become associated with its control demands, and 

thus trigger the appropriate attentional adjustments. Second, pre-cueing studies suggest that 

cues interspersed between successive trials also become associated with the amount of 

conflict expected on the following trial, thus improving participants' responding to the 

expected conflict (Bugg & Smallwood, 2016; Ghinescu et al., 2010; Gratton et al., 1992; 

Logan & Zbrodoff, 1979). Interestingly, the interpretation of these phenomena in terms of 

learning-based conflict adaptation has been challenged by claims arguing, for instance, that 

pre-cueing effects could also be accounted for by a strategy where participants respond on 
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the basis of the distracters (Wühr & Kunde, 2008), and that ISPC and CSPC effects could 

arise from the learning of specific contingencies among items, contexts, and response 

features (Schmidt, 2013; 2018). However, there are a few studies that seem to be immune to 

these criticisms, showing that the CSPC effect can be observed even for new items not 

previously associated to congruency level contexts (Crump & Milliken, 2009), and that pre-

cueing effects arise also in conditions that preclude the use of the strategy proposed by Wühr 

and Kunde (2008), as is the case in four-choice Stroop tasks (Bugg & Smallwood, 2016). 

Given these latter indications of learning-based conflict adaptation, the current observation 

that learning-based control does not arise in a sequential context, points to a possible 

boundary condition as to how and when associative learning steers conflict adaptation.  

Specifically, Bugg and Smallwood's (2016) results showed evidence of pre-cueing effects 

(i.e., pre-cue based modulation of the congruency effect) in a four-choice Stroop task similar 

to that used in the current experiments, but in which the congruency level information was 

cued explicitly by the words "MATCHING" or "CONFLICTING", presented in the interval 

between successive trials. The present null results thus invite a comparison with the 

conditions under which Bugg and Smallwood (2016) obtained their pre-cueing effects. The 

most obvious difference between their and our experimental design may concern the 

moment of cue presentation (i.e., during the preceding trial versus during the interval 

between successive trials). Yet, at least three other design differences are also noticeable: (1) 

Bugg and Smallwood provided their participants with cues that conveyed explicit (and 

semantically transparent) information about their predictive value; (2) they used cues that 

predicted congruency levels with 100% validity; and (3) they compared the effect of these 

cues with performance on control blocks in which the cues were completely absent. In 

contrast, we were more interested in the question of whether participants could incidentally 

learn to get prepared for a predictable level of conflict, and so we adapted the conflict task to 
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include an implicit sequence learning paradigm, using the previous target as the informative 

cue, reducing the informative value of these cues to a validity of .80, and testing learning 

continuously over the same blocks, by comparing responses to regular vs. control trials. 

Whereas these conditions produced clear effects of incidental learning when the 

probabilistic information concerned the identity of the following target (i.e., regular 

incidental sequence learning; Abrahamse et al., 2010), it turned out that participants were 

not equally able to exploit these cues when they informed them about the amount of conflict 

that they should face on the following trial. Future work may aim to tear apart the 

contributions of each of these differences in accounting for the contrasting patterns of results 

between the current study and the work by Bugg and Smallwood (2016). 

The present results can also be considered surprising in comparison to previous CSPC 

and ISPC studies (Crump, Brosowsky, & Milliken, 2017; Crump & Milliken, 2009; Jacoby 

et al., 2003). Notice that the main effect of validity in our analyses corresponds to the two-

way interaction between context/item (low versus high proportion congruency) and 

congruency, that is usually evaluated in studies focusing on the modulation of a congruency 

effect by cues (or contexts) that predict proportion congruency. Specifically, whereas in the 

present analysis cue conditions are categorized as a function of cue validity (standard 

practice in the sequence learning literature), CPSC and ISPC studies typically categorize cue 

conditions as a function of cue identity, and thus what it predicts (i.e., mostly congruent 

versus incongruent trials). As such, the here reported absent main effect of validity showed 

that participants in this task are not using that context to prepare for the congruency of the 

upcoming trial1. 

                                                 
1 Alternatively, concerns may be raised that our design lacks the necessary power to detect the size of the 

effect typically obtained in dedicated CSPC or ISPC experiments. CSPC designs are often found to produce 
absolute effects around 15-20 ms. In the present study, because the standard deviation of the differences 
between predicted and non-predicted trials in the color→congruency condition is 23 ms, this would amount to 
a normalized Cohen-d between .65 and .87. A design with 24 participants would be sufficiently high-powered 
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The main difference between studies showing item- or context-specific effects and the 

present study is probably that in the former studies the association occurs for control settings 

and stimulus features that are part of the same trial. Interestingly, together with the pre-cuing 

work discussed above, this suggests that the current null results for the color→congruency 

group could not be attributed to the cue-control set interval being either too short (as 

CSPC/ISPC effects use a zero interval; e.g., Crump & Milliken, 2009), or too long (as 

cueing studies used an even larger interval; e.g., 2000 ms in Bugg & Smallwood, 2016) for 

learning to develop. Instead, the main differences between the present procedure and 

previous studies could be best explained in terms of the structural differences provoked by 

presenting a prospective conflict-cue within the context of another conflict-related event, 

rather than in the context of the same event or as a separate cue (that may be encoded as part 

of the upcoming target event). Even though at this point it remains speculative, we believe 

the present results suggest that, for participants involved in a task that requires continuous 

shifts between conflict levels, it is especially difficult to use information from a previous 

event as a cue to prepare for the forthcoming conflict event. This type of event boundary 

condition is broadly consistent with other research on episodic memory suggesting that 

people show reduced memory for associations across versus within event boundaries (e.g., 

(Ezzyat & Davachi, 2011; Farrell, 2012; Kurby & Zacks, 2008). In that respect, cue-conflict 

associations could be easier to learn when part of the same episode because participants are 

more likely to cluster cue and target into a single memory trace. This type of reasoning also 

generally fits well with accounts that emphasized the role of episodic memories in 

explaining conflict adaptation (Egner, 2014; Schmidt, 2018; Schmidt, De Houwer, & 

Rothermund, 2016; Spapé & Hommel, 2008, 2014; Weissman, Hawks, & Egner, 2016) 

                                                                                                                                                      
to capture such effects (1-β between .86 and .98, as computed by G*Power 3, Faul, Erdfelder, Lang, & 
Buchner, 2007), but it could be underpowered to detect effects of 10 ms (1-β=.53) or smaller.  
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(Egner, 2014; Schmidt, 2018; Schmidt, De Houwer, & Rothermund, 2016; Spapé & 

Hommel, 2008; 2014; Weissman, Hawks, & Egner, 2016). 

Finally, one might argue that the absence of evidence for learning in the 

color→congruency group should not necessarily mean that learning was completely absent 

in this group, but rather that their effects were not strong enough to allow for their 

expression in speeded performance. In contrast to the color→color contingency, that 

involves a sequential relation between two relevant features and their corresponding 

responses, the color→congruency condition involves a more abstract relation between the 

color of each stimulus and the amount of conflict that will exist between that relevant feature 

and an irrelevant feature on the next stimulus. Even though we took care to make the 

information contents of each of these contingencies as comparable as possible, by allowing 

just two alternatives in each case (i.e., in the color→color group there was only a valid and 

an invalid successor for each predictor, just as in the color→congruency group there were 

only the two alternatives of congruent vs. incongruent successors),  cross-dimensional forms 

of sequence learning have been typically harder to obtain, and have shown to give place to 

relatively smaller effects in performance (Schmidtke & Heuer, 1997; Shin, Aparicio, & Ivry, 

2005). In this regard, however, it may be worth noting that Jiménez and Méndez (2013, 

Experiment 2a and 2b) also tested a condition that could be taken as an analogous, 

unidimensional version of this congruency sequence learning task, and they found no 

evidence of learning in their measures of speeded performance, even though their 

participants showed learning when they were asked about their explicit expectancies. In 

those experiments, the authors arranged the sequence of trials in either alternating or 

repeating series of congruency, so that the congruency level of each trial informed, with an 

average validity of .70, about the congruency level of its successor. Taking together these 

results by Jiménez and Méndez (2013) and the present results, it seems that using 
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information provided on a trial to prepare for the amount of conflict expected on the 

following trial is particularly difficult to achieve, at least under conditions in which the 

sequence information is conveyed by probabilistic cues. 

In sum, the current findings show that sequential stimulus-conflict relations are not as 

easily formed as sequential stimulus-stimulus or response-response relations, which adds 

important nuance to recent learning-based theories of conflict adaptation that emphasize the 

shared underlying learning mechanisms between the two (Abrahamse et al., 2016; Egner, 

2014). These findings are also particularly interesting in light of other studies showing 

stimulus-conflict relations within separate trial events (Bugg & Smallwood, 2016; Crump & 

Milliken, 2009), suggesting that the learning of stimulus-control relations is constrained by 

event boundaries. However, further research should determine whether providing more 

explicit or deterministic cues could produce any evidence of trial by trial, learning-based 

modulation of conflict control.  
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