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*Highlights (for review)

Highlights

e Episodes of drought-induced conifer mortality are becoming more frequent in
Europe

e Conifer mortality triggers secondary succession of autochthonous broadleaf species.

e Tree mortality triggers complex cascading effects which ultimately affects Ry

e Changes in fine root specific root length (SRL) correlates negatively with Ry;.
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Summary

As a widespread phenomenon affecting terrestrial ecosystems worldwide, the extent and
spatio-temporal scales at which the increasing number of reported events of climate-
change-induced tree mortality could affect the ecology and carbon (C) sink capacity of
terrestrial soils, remains unknown. We here study how regional-scale drought-induced tree
mortality events registered after a very dry 2012 year in the Carpathians mountain range
(Romania), which affected three of the most widely distributed conifer species: Scots pine,
Black pine, and Silver fir, resulted in hot-spots of biogenic soil CO, emissions (soil
respiration; Rs). Four to five years after the main mortality event, Re-related soil CO;
emissions under dead trees were, on average, 21% higher than CO, emissions under living
trees (ranging from 18 to 35%). Total (R;) and heterotrophic (Ry)-related soil CO,
emissions were strongly determined by the soil environmental alterations following tree
mortality (e.g. changes in quantity and quality of soil organic matter, microclimate, pH or
fine root demography). Moreover, the massive mortality event of 2012 ultimately resulted
in a stronger dominant role of successional vegetation (broadleaf seedlings, shrubland and
grasses) in controlling those environmental factors that either directly or indirectly affected
biotic soil fluxes (Rs and Ry). We, therefore, show that apart from the well-known direct
effects of climate change over soil CO, emissions, cascading effects triggered by climate-
change-induced tree mortality could also exert a strong indirect impact over soil CO,
emissions, altering the magnitude and the environmental controls of R and hence

determining ecosystem C budget and their response to climate.
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1. Introduction
The number of episodes of forest defoliation and mortality associated with climate change
has increased substantially during the last decades (Allen et al., 2010; Carnicer et al., 2011),
and it is further expected to increase even more in future decades (IPCC 2014). In this
regard, understanding physiological and ecological causes of tree mortality as well as
predisposition of trees to die is nowadays a hot-topic that has attracted many attention and
studies (Allen et al., 2010, 2015; Anderegg et al., 2012; McDowell et al., 2015; Sangiiesa-
Barreda et al. 2015; Rogers Brendan et al., 2016; Neumann et al., 2017; Lloret and
Kitzberger, 2018). There is, however, a knowledge gap on how ecosystems are actually
responding to such perturbations, i.e. whether and at which extent tree mortality could
affect ecosystem functioning (Anderegg, et al. 2013) and more particularly how tree
mortality could affect soil respiration (R;), which represents the total biogenic CO,
produced and emitted from soils (Vargas et al., 2010), and is the major outgoing flux of
CO; from ecosystems to the atmosphere (Curiel Yuste et al., 2005; Davidson et al., 2005;
Barba et al., 2018). Trees have the capacity to modulate the belowground environment
(Flores-Renteria et al., 2015, 2016) triggering cascading causal-effect relations that could
result in substantial changes in the biological functioning of the soil system and in
fundamental alterations of the soil nutrient and soil CO, emissions (Flores-Renteria et al.,
2018). However, data and evidences on how these alterations occur and at which extent tree
mortality could affect patterns and controls of CO, emissions from terrestrial soils are

scarce.

Besides altering soil abiotic conditions, tree mortality limits the supply of substrate in the

form of carbohydrates (e.g. exudates) or nutrients (litter) demanded by belowground organs
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(fine roots), symbionts (e.g. mycorrhiza), and soil biological communities from the
rhizosphere and the soil (e.g. Hogberg et al., 2001; Binkley et al., 2006; Barba et al., 2016).
The disruption of the C flow to belowground has been directly related to almost immediate
decreases in Ry (Hogberg et al., 2001; Binkley et al., 2006; Nave et al., 2011; Levy-Varon
et al., 2014), due to a parallel decrease in autotrophic (fine root and mycorrhiza) and
heterotrophic (respirations from microbes and soil fauna) respiration. On medium-long
term, the death of trees may have critical effects over key soil biogeochemical cycling
(Rodriguez et al. 2016), resulting in chronical losses of key nutrients such as nitrogen (N),
with unknown consequences for the capacity of the systems to recover pre-perturbations
pools and functions (Garcia-Angulo et al. in prep). This happens because the disruption of
the flow of C from plants to soils and the changes in the microclimatic conditions
associated with tree mortality may prominently alter the composition, structure and
functionality of soil biological communities (Curiel Yuste et al. 2012, Avila et al. 2016)
resulting in irreversible losses of key functional groups that sustain important soil functions

such as N fixation or mineralization of essential nutrients (Gémez-Aparicio et al. 2017).

Few studies have been designed, however, to investigate in depth how processes triggered
by tree mortality could affect biogenic soil CO, emissions and at which extent. In this
regard, tree mortality has been associated with ecosystems reaching new equilibriums,
resulting in important changes in the diversity of soil biota and soil functions (Curiel Yuste
et al., 2012; Lloret et al., 2015, Avila et al., 2016), as well as in the overall biogenic
emissions of CO, from soils (Moore et al. 2013; Avila 2018). Depending on the magnitude
of the tree mortality event and/or legacies from historical management, forest ecosystems

are able to counteract potential negative effects of tree mortality and recover pre-
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perturbations functioning rates relatively fast (Nave et al., 2011; Gough et al., 2013; Levy-
Varon et al., 2014; Barba et al., 2016). This is because tree mortality, depending on the
ecosystem's characteristics and its initial conditions, triggers a process of recolonization by
seedlings of the same species (regeneration) or of other species better fitted to present
conditions (secondary succession), which slowly replace the niche left by the death of the
trees (e.g. Vayreda et al., 2016; Ruiz-Benito et al., 2017). How these complex aboveground
ecological processes could actually impact belowground functioning, subsequently

affecting magnitude and controls of biotic CO, emissions remains unknown.

The objective of this study was to deepen our mechanistic understanding of the effects of
large-scale tree die-off events on total soil respiration (Rs). For that, we here show a
regional scale study, spanning for two consecutive years (2016, “year 1”; and 2017, “year
2”), on rates of Ry in stands located in the Carpathians mountain range (Brasov county,
Romania), where recent extremely dry years, such as 2012, have resulted in extended
mortality rates. These mortality events have mainly affected conifer tree species, especially
Scots pine (Pinus sylvestris L.), Silver fir (4bies alba Mill.), and Black pine (Pinus nigra
Arnold). The conifers” mortality observed in 2012 and estimated to extend over large areas
in the forests situated at different altitudes around Brasov (Forest Districts of Rasnov,
Sacele, and Kronstadt), followed a sequence of several extraordinary dry and hot years
registered during the first decade of the century

(http://www.meteoromania.ro/anm/?lang=ro_ro). These affected conifers are slowly

replaced by autochthonous broadleaf species, especially Quercus robur, Fagus sylvatica,
Fraxinus ornus, Fraxinus excelsior, Carpinus betulus, Quercus petraea or Acer campestre

(Table 1). Additionally, the study collected detailed information on variables potentially
5
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sensitive to tree die-off and directly/indirectly associated with Ry, e,g, soil water content
(SWC) and temperature (Tsoil), soil C and nutrients pools, soil heterotrophic respiration
(Rp), and fine root biomass and functional traits (e.g. specific root area, SRA and root

length, SRL).

We, therefore, hypothesized that abiotic/biotic changes promoted by tree mortality will
trigger a cascade of causal-effect relations that could have resulted in substantial changes in
the biological functioning of the soil system, subsequently altering the soil CO, emissions.
In particular, we hypothesized that in these coniferous forests, where tree mortality is
giving way to forests dominated by native hardwood species, the process of secondary
succession associated with mortality of conifers would be associated with profound
transformations of the microclimate, biology and chemistry of the soil, which ultimately

will affect the magnitude and controls of soil CO, emissions.

2. Materials and Methods

2.1. Study sites
For this study, we selected a total number of 9 conifer stands (3 for Silver fir, 3 for Scots
pine, and 3 for Black pine), all of them affected by recent mortality events (i.e., following
the 2012 drought) (Table 1). These forests were located in the Transylvanian side of the
Eastern Romanian Carpathians Mountain range (Brasov County). As we wanted to
avoid/limit as much as possible other disturbance factors (e.g. management), forests were
selected either in protected areas or in areas where management intensity has been minimal
for the last decades. All stands were located on sloppy terrains (slopes ranging from 17 at to

37 °). Both pine species stands were located between ~ 450 and 700 m a.s.l., while the
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Silver fir stands were situated starting from ~ 800 m a.s.l) (Table 1). Both pine species are
almost pure stands, that were artificially regenerated ~100 years ago, whereas the Silver fir
stands are uneven, naturally regenerated, mixed stands with Fagus sylvatica (up to 35% in
the forest composition) of more than 150 years old (Heres et al., in prep). Soil type in the
Silver fir stands is mainly Eutricambisols, while Rendzina is the main soil type of the pine
stands (Table 1). Both mean annual precipitations (MAP) and mean annual temperatures
(MAT) (Climate Research Unit Time Series, CRU TS3.10; via http://climexp.knmi.nl)
were relatively low and not very variable among locations, ranging, respectively from 593
to 693 mm and from 3.7 to 6.6 °C (Table 1). Our study also shows a natural understory
gradient (tree saplings and seedlings) and grass cover, from sites with very scarce
understory/grass cover (7%) to sites with understory/grass cover averaging up to 70%
(Table 1). The drought-induced mortality rate was estimated to round 19-23% for Silver

fir, 16-27% for Black pine, and 17-22% for Scots pine (Table 1).

2.2.Field measurements

2.2.1. Experimental design and tree age estimation
At each of the 9 conifer stands affected by mortality, 5 pairs of standing adult dead and
living trees were sampled (see below) along a transect perpendicular to the slope. We used
a paired sampling design (Bigler and Bugmann 2004), in which the selected living trees had
similar size (diameter at breast height, DBH), competition level, and microsite conditions
with the dead ones. Trees noticeably affected by biological agents (e.g. pathogens, fungus),
wind, or human influences were avoided during the sampling. The sampling of the 5 pairs
was carried out in transects starting at a random point within each stand and maintaining a

constant altitude, and thus similar humidity conditions, until the required number of trees
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were sampled. Distance between sampled pairs was always >5 m. To establish the age of
the living trees and the mortality year for the dead trees, from each tree, two wood cores
were extracted at breast height (1.3 m), approximately orthogonal to the slope, using
increment borers (Heres et al., in prep). At the same time, for all trees, we recorded the
following variables: species, status (dead or living), DBH, height and crown diameters. All
trees within a 5 m radius from the trunk of the sampled trees (i.e., reference trees) and with
a DBH>10 cm were inventoried, and their taxonomic identity (species), DBH and distance
to the reference sampled trees were registered. We calculated a tree competition index as
the sum of the diameters of all trees with DBH>10 c¢cm within 5 m radius around the
reference tree. Within the same considered 5 m radius, the percentage cover (%) of the
understory vegetation (woody species with a DBH < 10 c¢m, shrubs) and grass cover were
visually assessed. To quantify light availability, we took a hemispherical photo near every
collar during the 2016 summer with a Nikon digital camera with fisheye lens and a self-
leveling mount. Photos were processed with the Winscanopy software (Regents
Instruments Inc., Sainte-Foy, Quebec, 2003). As a measure of light intensity, we used the

total site factor (TSF) in percent of above canopy light, and LAI (leaf area index).

2.2.2. Soil respiration (R,) measurements
Starting from spring 2016 (“year 17), at each study site two PVC collars (10 cm in
diameter, and 8 cm in height) per each of the selected dead and living trees were inserted
into the soil at an average depth of 2.5 cm to measure R;. Collars set at this depth were
stable and caused minimal disturbance to fine roots. They were installed at around a 50 cm
distance, on the left and right-hand sides of the trunk of each sampled living and dead tree,

in a fictitious line perpendicular to the slope. Measurements of Ry were carried out within
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each collar with a portable infrared gas analyzer (IRGA) connected to a soil respiration
chamber (EGM-4 and SRC-1; PP Systems, USA). We further added the to the chamber
volume of the commercial chamber (1171 cm®) the extra volume generated from the
collars. The increase of CO, within the chamber was measured during 120 seconds. Soil
CO; efflux measurements were always performed between 9 a.m. and 6 p.m. Ry was not
measured during rainy days. When a major rain event occurred (e.g., daily precipitation >
15 mm), Ry measurements were postponed 36 h in order to minimize the effects of extreme
precipitation on R,. Each Ry measurement campaign was performed within an interval of 3-
4 days. In total, Ry measurements were performed in 7 different time series: April 2016
(spring), July 2016 (summer), September 2016 (autumn), November 2016 (winter), April
2017 (spring), July 2017 (summer), and October 2017 (autumn), covering thus all seasons.

Periods when the snow layer was thick, covering the soil, were not considered.

Both soil temperature (Tsoil) and soil water content (SWC) were measured simultaneously
with R;. Tsoil was measured using a Soil Temperature Probe (STP, PP Systems) that was
inserted at 5 cm depth into the soil. Soil water content (SWC) was measured at 6 cm depth,
using the ThetaProbe ML2X soil moisture sensor (Delta-T Devices, UK) coupled to a data
logger (Infield7, UMS GmBh Munchen). We performed 3 different measurements of soil
moisture around each collar and recorded the average value of them which was used in

further analyses.

2.2.3. Soil sampling
Apart from the Ry measurement campaigns, a campaign was carried out for the collection

of soil samples in late summer 2016 (first week of August). We collected soil samples near
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each PVC collar to determine: soil chemical composition, Ry, fine root biomass, and the
different fine roots functional traits (see below). We sampled three soil cores in about
maximum 10 cm distance around each PVC collar. Soil cores were taken using a cylinder
tube sampler (diameter of 5 cm) that was introduced at a depth of 10 cm in the soil after
removing the not yet decomposed litter (Or horizon) of the previous year. Afterwards, all
three soil cores were merged into one single composite sample per each PVC collar, put
into bags and stored at cool temperature (<4°C) in mobile ice boxes till further processing
in the lab. A total of 180 composite soil samples (9 conifer sites x 5 tree couples x 2 status

(living and dead) x 2 PVC collars per each sampled tree) were collected.

2.3.Laboratory analyses

2.3.1. Chemical and physical soil analysis
In the laboratory, soil water content (SWC) for each soil sample collected in 2016 was
measured gravimetrically by sampling 20 g of fresh soil (avoiding stones), and drying it at
105°C during 48 hours. Both stones and roots (fine and coarse) were manually separated
from all collected soil samples. Stones were then weighted to obtain their total mass. The
remaining soil was sieved at 2 mm, dried and stored in a dark place for subsequent
analyses. Water Holding Capacity (WHC) and bulk density (McKenzie et al, 2014) were
calculated, and soil pH was measured in distilled water with a soil — H,O ratio of 1:20 for

each soil sample.

To analyze the concentrations of total organic carbon (TOC), and nitrogen (TN) and
nutrient content in soils, the sieved soil was further grinded by hand using a mortar and

then divided in two aliquots. One aliquot was used to calculate the nutrient content (Al,
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Mg, K, Na, P, Ca, S, and Mn) of the soil using an inductively coupled plasma optical
emission spectrometry (ICP-AES; Thermo Scientific iCAP 6500DUO, ThermoFisher
Scientific, Waltham, MA, USA), while the other aliquot was used to measure the TOC and

TN using an elemental analyzer (TruSpec CN, LECO, Saint Joseph, M1, USA).

2.3.2. Root measurements
All the roots that were separated from each soil sample (see above) were first carefully
cleaned with distilled water to remove adhered soil particles and then sorted into two
diameter classes: fine roots (diameter < 2 mm) and coarse roots (diameter > 2mm). No
distinctions between fine roots from grasses and trees could be made. Cleaned fine roots
were then scanned and processed with WinRHIZO (Regents Instruments Inc., Quebec,
Canada) to obtain fine root length, fine root diameter, and fine root surface area. Finally,
both fine and coarse roots were dried at 65°C for 5 days to reach a constant weight, and
afterwards weighed to the nearest 0.1 g. Based on these measures we determined the
demography of the fine root population based on different fine root functional traits: fine
root biomass (FRB, g/g soil), fine root volume (FRV, cm3/g soil), specific root length
(SRL, ratio of fine root length to dry weight, m g™') and specific root area (SRA, ratio of

fine root area to dry weight, cm? g™).

2.3.3. Soil Ry measurements under controlled conditions
Ry was measured using 40 g of dry, sieved soil that was introduced into a sample jar of 150
mL volume and was rewetted to 60 % of its WHC. Once the desired WHC was achieved,
this soil was incubated 48 hours in an environmental chamber (at 20 © C and 80% of

moisture) to avoid potential anomalous pulses of CO, (“Birch effect”; Birch, 1958).
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Afterwards, it was again incubated controlling water content, this time following a
temperature gradient from 5 to 35 ° C to cover a wide range of temperatures. Ry was
measured every 10 ° C (i.e., 5 °C, 15 °C, 25 °C, and 35 °C) during 60 seconds with an EGM-
4 and the net CO, increases were calculated following a similar protocol to that of Curiel
Yuste et al. (2007, 2011). The Ry that we further used to do analyses represents the
averaged of the Ry values measured at each temperature (i.e., 5 °C, 15 °C, 25 °C, and 35

°C), thus covering the Ry variability of this microclimatic range.

2.4.Statistical analysis
A principal component analysis (PCA) was conducted to reduce the n-dimensional of soil
nutrients data into two linear axes explaining the maximum amount of variance
(Supplementary material, Fig. S1). According to the plot of the two first PCA components
the soils' elemental composition splits as it follows: PC1 reflects a gradient of nutrients'
availability related with higher amounts of C, N, P, Ca, S, and Mg, whereas PC2 reflects a
gradient of soil organic matter (SOM) availability (Fig. S1). Hence, both PC1 and PC2
were subsequently used in models as a measure of the nutritional status and of the substrate

available in soils.

We performed a preliminary evaluation of the potential effects of inter-annual variability
(year 1 vs year 2), tree species (Silver fir, Scots pine, and Black pine), and tree status
(differences among dead and living trees) over R and soil microclimate (Tsoil and SWC).
To do so, we firstly averaged R, Tsoil and SWC values for the two different PVC collars
installed per each tree (see above Soil respiration (Ry) measurements) at each field

campaign. Since none of the variables were normally distributed, we used a non-parametric
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one-way analyses of variance (Kruskal-Wallis tests) followed by a pairwise Wilcoxon post-

hoc test with a Bonferroni correction.

Because our first aim was to investigate the drivers of soil CO, production across this
regional gradient we used linear mixed-effects models (nlme R package; Pinheiro et al.,
2016) to analyze the influence of tree mortality and environmental data (e.g. biotic and
abiotic variables that could potentially affect R) on Ry and Ry. In order to focus in drivers
of Ry and Ry variability across sites we then averaged all seasonal values (#=7) to one
single averaged value per tree. As Ry and Ry data were not normally distributed, we
logarithmic transformed them. The model was “forced” to include tree status as a fixed
variable in order to test and further discuss potential differences in fluxes and controls
associated to tree status. Besides the status of the tree, the fixed part of the models also
accounted for other environmental factors that could explain variability in Rg and Ry: e.g.
soil microclimatic conditions (Tsoil and SWC), aboveground tree and forest structure
(DBH, Tree competition index or yunderstorey/grass cover), SOM content (PC2), soil
nutritional status (PC1), fine root biomass (FRB), and fine root specific length/area
(SRL/SRA). For all models tree species nested within site identification were introduced as
a random effect. To look for differences between vigor groups, the least-squares means
were analyzed applying a Tukey correction. The coefficients were estimated using the
restricted maximum likelihood method. The residuals of the models fulfilled the conditions
of normality (p > 0.05). The selection of the final models was based on the Akaike's

information criterion (AIC) (i.e. minimal models with the lowest AIC).
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Structural equation models (SEMs) were finally used to test the direct and indirect
influence of the different biotic and abiotic factors on R;. Since the sample size was
relatively small (n = 88), the number of predictors included in the model was thoroughly
limited, as recommended by Shipley (2002). Our models considered a complete set of
hypothesis based on literature, previous exploratory analyses (Kruskal-Wallis, correlations,
etc.), and our own previous experience (Flores-Renteria et al., 2016, 2018; Pérez-Izquierdo
et al., 2017, see Fig. S2). The model assumed that aboveground vegetation structure (size of
the sampled living and dead trees, tree competition index, and the % of understory and
grass cover) would affect the abiotic (microclimate, pH) and the biotic (root demography)
soil environment, as well as the nutritional status (PC1) and the organic matter content
(PC2) in soils under trees. Overall, both Ry and Rs, would be strongly controlled by
changes in all these environmental factors which are ultimately controlled by the

aboveground vegetation structure.

Several SEMs were run and the best-fitted ones were finally selected according to the
covariance proximity between observed and expected data (goodness-of-fit y2). From the
general model we used multigroup SEM to test whether the studied factors were linked by
the same causal structure in each tree status (dead or living) and to identify the paths that
did not behave similarly in the two conditions (Shipley, 2002; Garcia-Camacho et al.,
2010). For this analysis, we used the same hypothetical model used for each status group
separately. A constrained model in which all free parameters were forced to be equal across
the two conditions was built and contrasted with field data. Since a lack of fit was detected
in the fully constrained multigroup model, a series of nested models, where equality

constraints were removed one at a time, were developed to detect which one would
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significantly improve the model (Shipley, 2002; Garcia-Camacho et al., 2010). Differences
in X* and AIC statistics between the fully constrained model and the models freed from a
constraint were used to test for differences in parameter values between the two conditions.
Standardized path coefficients were estimated by using the maximum likelihood algorithm
(Shipley, 2002). SEM analyses were performed using SPSS® and SPSS® AMOS 20.0

software’s (IBM Corporation Software Group, Somers, NY).

3. Results
Both SWC and Tsoil varied significantly between years, being “year 1” (2016) warmer and
wetter on average than “year 2” (2017), although no such significant trend was found for Ry
(Figs. 1 and S3). No differences in Ry were found between the three conifer species,
although the soils from Silver fir stands were significantly colder (lower average Tsoil) and
wetter (higher average SWC) than the ones from the Black pine and Scots pine stands (Fig.
S3). When looking for differences in SWC, Tsoil and R considering tree status (living or
dead), living trees differed significantly from the dead ones only in SWC and R..
Specifically, dead trees showed higher SWC and R, values than the living ones (Figs. 1 and

33).

Overall, Ry was consistently higher under dead trees with respect to living ones (Fig. 2,
Table S1). According to our results, CO, emissions under dead trees were on average 21%
higher than under living ones. Furthermore, Ry, specific root length/area (SRL/SRA), TOC,
TON, and SWC were among the environmental variables that were consistently higher,
although not always significantly, under dead trees comparing with the living ones (Fig. 2,

Table S1). Other variables such as pH, C:N ratio, or total fine root biomass/volume (FRB
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and FRV, respectively) showed less sensitivity to tree mortality and/or less consistent
trends across tree species, although FRB tended to be lower under dead trees (Fig. 2, Table
S1). No clear differences were found between living and dead trees when the grass and
understory cover, or the tree competition index were considered (Table S1). This happened
because cover of understory of broadleaf seedlings and grasses was independent of the

health status of the sampled trees and very dependent on site-specifics conditions.

Both mean soil temperature and quantity of SOM (PC2) were, together with tree status
(living and death) the variables that better explained R, variability across sites (Fig. 3, Table
S1). As expected for ecosystems generally limited by temperature, Tsoil explained a large
portion of across-site variability in Ry (Fig. 3, Table S2), whereas Ry was also strongly
driven by SOM quantity (PC2, Fig. 3, Table S2). No differences in Ry between soil
collected under dead and living trees were found (Figure 4). On the other hand, we found a
strong effect of the nutritional status (PC1) and the quantity of SOM (PC2) on Ry (Fig. 4,
Table S3). Additionally, the best obtained model also included a significant negative effect

of SRL over Ry (Fig. 4, Table S3).

SEMs showed the complex causal-effect cascade of processes controlling Ry and Ry (Fig.
5). Specifically, this analyses highlighted how strongly forest structure (tree DBH, tree
competition, understory and grass cover) influenced, directly or indirectly, the observed
variability of soil abiotic (microclimate, pH, nutrient content) and biotic (SRL, FRV, Ry)
variables, resulting in the observed variability in Ry across sites. Both, trees (i.e. size and
tree competition) and understory cover exerted a strong effect over soil microclimate

(Tsoil), soil pH, and nutrients (PC1). While conifers tend to acidify soils, we here observe
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how an increasing cover of broadleaf understory was associated with increases in pH,
which, on the other hand, was also behind the observed improvement of soil nutritional
status (PC1) and SOM sequestration (PC2). The presence of grasses was also directly
associated with an increase in SOM (PC2) and SRA, but a decrease in FRV. Multigroup
SEM further showed a tighter control of Tsoil over R under dead than under living trees, as
illustrated by the significantly higher ML coefficient obtained. Moreover, multigroup SEM
also showed how conifers and successional vegetation exerted an opposite effect over the
demography of fine roots (SRL and FRV). Specifically, living trees exerted an overall
negative effect over SRL, whereas the presence of grasses was positively associated with
SRL. On the other hand, the FRV was stimulated in poor soils (high PC1) and under high
SOM contents (low PC2), but was also negatively correlated with the presence of grasses
and the increase in broadleaf understory cover. Furthermore, we here show how,
independently of the health status of the trees, increase in the SRA negatively affected Ry.
Also, controls of Ry differed depending on the conifer health status (living or dead): living
trees exerted a positive control over Ry, but when tree dies Ry variability was mainly
controlled by nutrient status (PC1) and SOM quantity (PC2) (besides SRL). Finally,
observed variability of Rg seemed to be partially explained by variability of Ry under dead

trees while under living conifers no relation was found between both fluxes.

4. Discussion
We here reported large events of drought-induced tree mortality on stands dominated by
three of the conifer tree species most widely distributed in the Carpathian mountain range
(Table 1). This drought-induced mortality coincides with globally increasing reported
events of conifer decline, which are being generally attributed to historical management
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practices (e.g. favoring/planting conifer species outside their climatic and structural
optimum; Urbieta et al., 2008; Ruiz-Benito et al., 2012), or to climate-change induced
increases in temperature and droughts intensity and frequency that seem to affect more the
conifer-like than the angiosperms-like related functional traits (Henne Paul et al., 2015;
Mclntyre et al., 2015; Ruiz-Benito et al., 2017). Indeed, the observed increasing presence of
an understory vegetation of seedlings mainly composed by native broadleaf species (e.g.
Fagus sylvatica, Fraxinus excelsior, Fraxinus ornus, Acer campestre, Quercus petraea,
Ulmus glabra) (Table 1) coincides with these mentioned above observations and are,
therefore, in accordance with this general decline in conifer dominance, especially

ubiquitously observed in European forests.

Drought induced conifer mortality resulted in large increases in biogenic soil CO,
emissions (R), averaging a 21% increase under the dead trees comparing with the living
ones, and persisting during two consecutive years (2016-2017), four to five years after the
mortality event occurred in 2012. Given the observed large proportion of tree mortality
observed after the 2012 drought (Table 1), this tree mortality-induced hot-spot of CO,
emissions might be responsible for decelerating the capacity of these ecosystems to recover
pre-mortality levels of C sequestration (e.g. Moore et al, 2013). Our results are not in
accordance with decreases in Ry observed under experimental tree girdling manipulations
(e.g. Hogberg et al., 2001; Binkley et al., 2006; Nave et al., 2011; Levy-Varon et al., 2014),
or under natural conditions, when tree mortality events were massively caused by bark
beetle attacks (e.g. Moore et al. 2013) or by infections with pathogens, e.g. Phytophtora

cinammoni (Avila et al., 2016). Accordingly, literature generally shows how tree death
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results in an almost immediate and dramatic decrease in R, rates associated with the
decrease in the supply of newly plants-fixed carbohydrate for belowground metabolic
activity, e.g. autotrophic respiration, mycorrhiza activity and rhizosphere heterotrophic
respiration (Subke et al., 2004; Hogberg et al., 2007). This Ry drop associated with tree
mortality may last for decades in monospecific forest (e.g. Moore et al. 2013, Avila et al.,
2016), while other studies have shown how depending on the level of the perturbation and
the secondary successional processes, Ry may recover pre-perturbation values after several
years (e.g. Levy-Varon et al., 2014; Barba et al., 2016), or even increase during favorable
seasons in mixed forest (Barba et al., 2013). Hence, due to the initial physiological collapse
that tree mortality produces in a system, the functional recovery of this system in general
and of the Ry in particular depends on the degree of perturbation but also on secondary
successional process triggered by tree mortality (Levy-Varon et al., 2014; Lloret et al.,

2015; Barba et al., 2018).

In these conifer forests so representative for the Carpathians' landscape, the observed hot-
spots of CO, under dead trees were strongly dominated by Ry (Fig. 2 and 5). We here
postulate that these mortality-triggered hot-spots of Ry and Ry were mostly explained by an
increase in the quality and quantity of SOM which results from both the increase in
senescent material and from the successional processes following tree death (Fig. 2, 4 and
5). The observed increase in topsoil SOM under dead trees (increase in TOC, Figure 2)
could be attributed, at least partially, to the accumulation of senescent plant material
(leaves, roots and branches) which generally accumulate under dead trees (Moore et al.
2013). However, SOM accumulation under dead conifers alone cannot explain the observed

increase in Ry because, as observed, Ry was also very sensitive to the increase in soil
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nutrient availability (PC1) (Figure 4, Table S3). Besides, we here observed how shifts in
the controls of Ry after the massive mortality event of 2012 ultimately resulted in a stronger
dominant role of the successional vegetation (broadleaf seedlings, shrubland and grasses)
over the belowground environmental factors, directly or indirectly affecting Ry and Ry
fluxes (Figure 5). This shift towards greater understory control over soil functions was in
detriment of the former control exerted by the conifers which influenced the microclimate
(SWC and Tsoil), the abiotic soil environment (pH), the nutrient quality (PC1), SOM
(PC2), and the fine root demography (specifically SRA/SRL, FRV) (Figs. 2, 3, 4 and 5).
These changes were further reflected in changes in the magnitude and the controls of biotic

soil fluxes (Rg and Ry) (Figure 2 and 5).

For instance, the increase in pH and grassland cover resulting from the shift in the
aboveground vegetation dominance also played a critical role in increasing SOM (PC2; Fig.
5). This is because, under conifer influence, the generally low soil pH and the low quality
of the residues due to the high proportion of recalcitrant compounds, e.g. lignin and/or
allelopathic molecules (e.g. Curiel Yuste et al. 2005; Fernandez-Alonso et al., 2018) slow
down the breakdown of the litter and its incorporation to SOM in the mineral soil. On the
other hand, incorporation of litter in SOM occurs generally faster in ecosystems dominated
by broadleaf species because the generally higher pH and higher quality of the produced
residues stimulates bioturbation (Frouz et al., 2009). Indeed, the multigroup SEM further
showed how the increase in pH associated with the increasing presence of the understory
vegetation had a direct and strong positive effect over SOM quality (PC1), suggesting that
on top of the increase in SOM under dead trees, the secondary successional processes

triggered by conifer mortality was positively affecting the quality of the substrate. Our
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results, therefore, clearly indicate how the shift in vegetation dominance associated with
conifer mortality had a strong impact over the quantity and quality of SOM, resulting in

increased Ry, which subsequently affected Rs.

This dominant role of successional vegetation after tree death was also reflected in a
substantial increase in the surface of absorption of the radical system (increase in SRL and
SRA; Fig. 2) which corresponds to a shift towards a fine-root demography optimized to
maximize nutrients acquisition (Roumet et al., 2016). This shift, associated with an increase
in the presence of grasses (Fig. 5), suggest that the belowground niche left by the death of
the conifers creates an opportunity to the surrounding early successional vegetation to
obtain resources (nutrients and moisture) (Curiel Yuste et al., 2012; Barba et al., 2013)
whose acquisition is, otherwise, subjected to strong competition, especially in nutrient-
poor, low pH conifer sites as those considered in this study. Indeed, the multigroup SEM
showed how the poor nutrient conditions under conifers (PC1), while alive, promoted a
bigger radical system (higher FRV), but with relatively less very fine roots (suppressing

SRL).

The consistent increase in the specific length and surface (SRL/SRA) of fine roots under
dead trees was paralleled by the observed increase in Ry (Figure 2). This was expected,
given the general observed linear relation between, on one hand, SRL and the fine roots
turnover rates (Silver and Miya, 2001; Hobbie et al., 2010; Roumet et al., 2016), and, on
the other hand, SRL and rates of root respiration (Rs) (Reich et al., 2008; Makita et al.,
2012; Picon-Cochard et al., 2012). Although R, were not measured in this study, we did

not observe a significant increase in SOM turnover (rates of Ry per unit of soil C; data not
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shown) under dead trees, suggesting that it is most plausible that the increase of SRL was
associated with a parallel increase in Rs. Rather than stimulating Ry, our models also
showed a very consistent negative relation between SRL and Ry (Figure 4 and 5),
suggesting that besides this expected positive effect of SRL over autotrophic activity, the
net effect over Ry was negative. It, therefore, could be that by increasing their capacity to
absorb nutrients (increase in SRL), successional vegetation competes more efficiently for
the same resources with the soil heterotrophic community (negative priming, Kuzyakov
2002), resulting in the observed suppression of Ry. Indeed, an increase in competition for
key nutrients (e.g. N, P, K) between roots and heterotrophs could be maximal in soils when
nutrients are generally limiting, thereby resulting in the suppression of Ry (e.g. Schimel et

al., 1989; Wang and Bakken 1997; Kuzyakov 2002).

5. Conclusions
We here collected compelling evidences to support our initial hypotheses: cascading
mechanisms triggered by selective tree mortality and a subsequent secondary successional
process played a critical role in regulating soil functioning and soil CO, emissions during
transitional states. Specifically, we here show how conifer mortality resulted in an average
increment of biogenic emissions of 21%, 4-5 years after the large mortality event of 2012,
which might be further responsible for decelerating the capacity of these ecosystems to
recover pre-mortality levels of C sequestration. These transitional states after tree death
resulted in a stimulation of the heterotrophic activity (Ry), favored by the increase in
senescent material but also by changes in the soil microenvironment (e.g. climate, pH and
SOM) partially controlled by successional vegetation. A shift towards a more efficient

resource-acquisitive strategy of fine roots (increase in SRL), triggered by tree mortality and
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also associated with the increasing dominance of the successional vegetation, was also
behind the observed changes in the magnitude and controls of Ry and Rs. Our results,
hence, call the attention on how above-belowground ecological processes triggered by tree
mortality may substantially determine dynamics of key biogeochemical cycles (e.g. C and
N) at local and regional scales. One of the drawbacks of this study might be the fact that the
effects of tree-mortality were only evaluated during a relatively short-term (2 years), at sub-
decadal time scale (4-5 years after the main mortality event), and in a limited number of
sites (9). Despite its limitations, this is one of the first studies evidencing the complexity of
the controls over Ry in climate-change-induced tree mortality scenarios, and as such, it
might serve as a base to develop further, more extended studies on this topic. In a changing
world where episodes of tree mortality associated with climate change are substantially
incrementing, more studies should, therefore, be designed to deepen the observed potential
impacts of tree mortality and subsequent successional processes at larger temporal and

spatial scales
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Fig. captions

Fig. 1. Evolution of soil water content (SWC), soil temperature (Tsoil) and soil respiration
(Rs) as a function of time and trees' health status (living or dead). Error bars represent the
standard error of the mean.

Fig. 2. Changes in soil abiotic (microclimate, pH) and biotic (fine root demography, R, Ry)
variables, as well as soil total organic carbon (TOC) and total organic nitrogen (TON)
values evaluated under dead trees relative to the values evaluated under living trees.
Therefore, positive values (right hand side of the vertical bar) represent an increase in that
particular variable under dead with respect to under living trees. Error bars represent
standard error of the mean. Asterisk represent significant from zero differences (p value >
0.05; t-test).

Fig. 3. Linear mixed-effects models for soil respiration (R;). Solid lines represent modeled
R; responses under dead trees, whereas dotted lines represent modeled R responses under
living trees. Where, Ts = soil temperature at 5 cm depth; PC2 = second dimension of the
PCA, here representing SOM.

Fig. 4. Linear mixed-effects models for heterotrophic respiration (Ry). Solid lines represent
modeled R responses under dead trees, whereas dotted lines represent modeled Ry
responses under living trees. SRL = specific root length; PC1= first dimension of the PCA,
here representing soil nutrients; PC2 = second dimension of the PCA, here representing
SOM.

Fig. 5. Multigroup SEM representation. Path diagrams representing hypothesized causal
relationships between aboveground vegetation, biotic and abiotic variables, soil respiration
(Rs) and soil heterotrophic activity (Ry) under living (a) and dead (b) conifer trees. Arrows
depict causal relationships: positive and negative effects are indicated by solid and dashed
lines respectively, with numbers indicating standardized estimated regression weights
(SRW). Arrow widths are proportional to the significance values according to the legend.
Paths with non-significant coefficients are represented in gray. Coefficients in bold
characters represent those causal relationships where the strength of the relation differed
between soils under living (green) and under dead (orange) trees. = 86.81, NFI= 0.83 y
RMSEA=<0.0001, df= 122, p=0.99
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Fig.5
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