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 Episodes of drought-induced conifer mortality are becoming more frequent in 

Europe 

 Conifer mortality triggers secondary succession of autochthonous broadleaf species.  

 Tree mortality triggers complex cascading effects which ultimately affects Rs 

 Changes in fine root specific root length (SRL) correlates negatively with RH.  
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Summary 

As a widespread phenomenon affecting terrestrial ecosystems worldwide, the extent and 

spatio-temporal scales at which the increasing number of reported events of climate-

change-induced tree mortality could affect the ecology and carbon (C) sink capacity of 

terrestrial soils, remains unknown. We here study how regional-scale drought-induced tree 

mortality events registered after a very dry 2012 year in the Carpathians mountain range 

(Romania), which affected three of the most widely distributed conifer species: Scots pine, 

Black pine, and Silver fir, resulted in hot-spots of biogenic soil CO2 emissions (soil 

respiration; Rs). Four to five years after the main mortality event, Rs-related soil CO2 

emissions under dead trees were, on average, 21% higher than CO2 emissions under living 

trees (ranging from 18 to 35%). Total (Rs) and heterotrophic (RH)-related soil CO2 

emissions were strongly determined by the soil environmental alterations following tree 

mortality (e.g. changes in quantity and quality of soil organic matter, microclimate, pH or 

fine root demography). Moreover, the massive mortality event of 2012 ultimately resulted 

in a stronger dominant role of successional vegetation (broadleaf seedlings, shrubland and 

grasses) in controlling those environmental factors that either directly or indirectly affected 

biotic soil fluxes (Rs and RH). We, therefore, show that apart from the well-known direct 

effects of climate change over soil CO2 emissions, cascading effects triggered by climate-

change-induced tree mortality could also exert a strong indirect impact over soil CO2 

emissions, altering the magnitude and the environmental controls of Rs and hence 

determining ecosystem C budget and their response to climate. 

  



1. Introduction 

The number of episodes of forest defoliation and mortality associated with climate change 

has increased substantially during the last decades (Allen et al., 2010; Carnicer et al., 2011), 

and it is further expected to increase even more in future decades (IPCC 2014). In this 

regard, understanding physiological and ecological causes of tree mortality as well as 

predisposition of trees to die is nowadays a hot-topic that has attracted many attention and 

studies (Allen et al., 2010, 2015; Anderegg et al., 2012; McDowell et al., 2015; Sangüesa-

Barreda et al. 2015; Rogers Brendan et al., 2016; Neumann et al., 2017; Lloret and 

Kitzberger, 2018). There is, however, a knowledge gap on how ecosystems are actually 

responding to such perturbations, i.e. whether and at which extent tree mortality could 

affect ecosystem functioning (Anderegg, et al. 2013) and more particularly how tree 

mortality could affect soil respiration (Rs), which represents the total biogenic CO2 

produced and emitted from soils (Vargas et al., 2010), and is the major outgoing flux of 

CO2 from ecosystems to the atmosphere (Curiel Yuste et al., 2005; Davidson et al., 2005; 

Barba et al., 2018). Trees have the capacity to modulate the belowground environment 

(Flores-Rentería et al., 2015, 2016) triggering cascading causal-effect relations that could 

result in substantial changes in the biological functioning of the soil system and in 

fundamental alterations of the soil nutrient and soil CO2 emissions (Flores-Rentería et al., 

2018). However, data and evidences on how these alterations occur and at which extent tree 

mortality could affect patterns and controls of CO2 emissions from terrestrial soils are 

scarce.  

 

Besides altering soil abiotic conditions, tree mortality limits the supply of substrate in the 

form of carbohydrates (e.g. exudates) or nutrients (litter) demanded by belowground organs 



(fine roots), symbionts (e.g. mycorrhiza), and soil biological communities from the 

rhizosphere and the soil (e.g. Högberg et al., 2001; Binkley et al., 2006; Barba et al., 2016). 

The disruption of the C flow to belowground has been directly related to almost immediate 

decreases in Rs (Högberg et al., 2001; Binkley et al., 2006; Nave et al., 2011; Levy-Varon 

et al., 2014), due to a parallel decrease in autotrophic (fine root and mycorrhiza) and 

heterotrophic (respirations from microbes and soil fauna) respiration. On medium-long 

term, the death of trees may have critical effects over key soil biogeochemical cycling 

(Rodriguez et al. 2016), resulting in chronical losses of key nutrients such as nitrogen (N), 

with unknown consequences for the capacity of the systems to recover pre-perturbations 

pools and functions (García-Angulo et al. in prep). This happens because the disruption of 

the flow of C from plants to soils and the changes in the microclimatic conditions 

associated with tree mortality may prominently alter the composition, structure and 

functionality of soil biological communities (Curiel Yuste et al. 2012, Avila et al. 2016) 

resulting in irreversible losses of key functional groups that sustain important soil functions 

such as N fixation or mineralization of essential nutrients (Gómez Aparicio et al. 2017). 

 

Few studies have been designed, however, to investigate in depth how processes triggered 

by tree mortality could affect biogenic soil CO2 emissions and at which extent. In this 

regard, tree mortality has been associated with ecosystems reaching new equilibriums, 

resulting in important changes in the diversity of soil biota and soil functions (Curiel Yuste 

et al., 2012; Lloret et al., 2015, Avila et al., 2016), as well as in the overall biogenic 

emissions of CO2 from soils (Moore et al. 2013; Avila 2018). Depending on the magnitude 

of the tree mortality event and/or legacies from historical management, forest ecosystems 

are able to counteract potential negative effects of tree mortality and recover pre-



perturbations functioning rates relatively fast (Nave et al., 2011; Gough et al., 2013; Levy-

Varon et al., 2014; Barba et al., 2016). This is because tree mortality, depending on the 

ecosystem's characteristics and its initial conditions, triggers a process of recolonization by 

seedlings of the same species (regeneration) or of other species better fitted to present 

conditions (secondary succession), which slowly replace the niche left by the death of the 

trees (e.g. Vayreda et al., 2016; Ruiz Benito et al., 2017). How these complex aboveground 

ecological processes could actually impact belowground functioning, subsequently 

affecting magnitude and controls of biotic CO2 emissions remains unknown. 

 

The objective of this study was to deepen our mechanistic understanding of the effects of 

large-scale tree die-off events on total soil respiration (Rs). For that, we here show a 

regional scale study, spanning for two consecutive years (2016, ; and 2017, 

2 ), on rates of Rs in stands located in 

Romania), where recent extremely dry years, such as 2012, have resulted in extended 

mortality rates. These mortality events have mainly affected conifer tree species, especially 

Scots pine (Pinus sylvestris L.), Silver fir (Abies alba Mill.), and Black pine (Pinus nigra 

Arnold) mortality observed in 2012 and estimated to extend over large areas 

Kronstadt), followed a sequence of several extraordinary dry and hot years 

registered during the first decade of the century 

(http://www.meteoromania.ro/anm/?lang=ro_ro). These affected conifers are slowly 

replaced by autochthonous broadleaf species, especially Quercus robur, Fagus sylvatica, 

Fraxinus ornus, Fraxinus excelsior, Carpinus betulus, Quercus petraea or Acer campestre 

(Table 1). Additionally, the study collected detailed information on variables potentially 



sensitive to tree die-off and directly/indirectly associated with Rs, e,g,  soil water content 

(SWC) and temperature (Tsoil), soil C and nutrients pools, soil heterotrophic respiration 

(RH), and fine root biomass and functional traits (e.g. specific root area, SRA and root 

length, SRL). 

 

We, therefore, hypothesized that abiotic/biotic changes promoted by tree mortality will 

trigger a cascade of causal-effect relations that could have resulted in substantial changes in 

the biological functioning of the soil system, subsequently altering the soil CO2 emissions. 

In particular, we hypothesized that in these coniferous forests, where tree mortality is 

giving way to forests dominated by native hardwood species, the process of secondary 

succession associated with mortality of conifers would be associated with profound 

transformations of the microclimate, biology and chemistry of the soil, which ultimately 

will affect the magnitude and controls of soil CO2 emissions. 

 

2. Materials and Methods 

2.1. Study sites 

For this study, we selected a total number of 9 conifer stands (3 for Silver fir, 3 for Scots 

pine, and 3 for Black pine), all of them affected by recent mortality events (i.e., following 

the 2012 drought) (Table 1). These forests were located in the Transylvanian side of the 

Eastern Romanian Carpathians Mountain range (  County).  As we wanted to 

avoid/limit as much as possible other disturbance factors (e.g. management), forests were 

selected either in protected areas or in areas where management intensity has been minimal 

for the last decades. All stands were located on sloppy terrains (slopes ranging from 17 at to 

37 º). Both pine species stands were located between 450 and 700 m a.s.l., while the 



Silver 

almost pure stands, that were artificially regenerated 100 years ago, whereas the Silver fir 

stands are uneven, naturally regenerated, mixed stands with Fagus sylvatica (up to 35% in 

the forest composition) of more than 150 years old . Soil type in the 

Silver fir stands is mainly Eutricambisols, while Rendzina is the main soil type of the pine 

stands (Table 1). Both mean annual precipitations (MAP) and mean annual temperatures 

(MAT) (Climate Research Unit Time Series, CRU TS3.10; via http://climexp.knmi.nl) 

were relatively low and not very variable among locations, ranging, respectively from 593 

to 693 mm and from 3.7 to 6.6 ºC (Table 1). Our study also shows a natural understory 

gradient (tree saplings and seedlings) and grass cover, from sites with very scarce 

understory/grass cover (7%) to sites with understory/grass cover averaging up to 70% 

(Table 1).  The drought-induced mortality rate was estimated to round 19-23% for Silver 

fir, 16-27% for Black pine, and 17-22% for Scots pine (Table 1). 

 

2.2.Field measurements 

2.2.1. Experimental design and tree age estimation 

At each of the 9 conifer stands affected by mortality, 5 pairs of standing adult dead and 

living trees were sampled (see below) along a transect perpendicular to the slope. We used 

a paired sampling design (Bigler and Bugmann 2004), in which the selected living trees had 

similar size (diameter at breast height, DBH), competition level, and microsite conditions 

with the dead ones. Trees noticeably affected by biological agents (e.g. pathogens, fungus), 

wind, or human influences were avoided during the sampling. The sampling of the 5 pairs 

was carried out in transects starting at a random point within each stand and maintaining a 

constant altitude, and thus similar humidity conditions, until the required number of trees 



were sampled. Distance between sampled pairs was always >5 m. To establish the age of 

the living trees and the mortality year for the dead trees, from each tree, two wood cores 

were extracted at breast height (1.3 m), approximately orthogonal to the slope, using 

ame time, for all trees, we recorded the 

following variables: species, status (dead or living), DBH, height and crown diameters. All 

trees within a 5 m radius from the trunk of the sampled trees (i.e., reference trees) and with 

a DBH>10 cm were inventoried, and their taxonomic identity (species), DBH and distance 

to the reference sampled trees were registered. We calculated a tree competition index as 

the sum of the diameters of all trees with DBH>10 cm within 5 m radius around the 

reference tree. Within the same considered 5 m radius, the percentage cover (%) of the 

understory vegetation (woody species with a DBH < 10 cm, shrubs) and grass cover were 

visually assessed. To quantify light availability, we took a hemispherical photo near every 

collar during the 2016 summer with a Nikon digital camera with fisheye lens and a self-

leveling mount. Photos were processed with the Winscanopy software (Regents 

Instruments Inc., Sainte-Foy, Quebec, 2003). As a measure of light intensity, we used the 

total site factor (TSF) in percent of above canopy light, and LAI (leaf area index). 

 

2.2.2. Soil respiration (Rs) measurements 

Starting from spring 2016 ( ), at each study site two PVC collars (10 cm in 

diameter, and 8 cm in height) per each of the selected dead and living trees were inserted 

into the soil at an average depth of 2.5 cm to measure Rs. Collars set at this depth were 

stable and caused minimal disturbance to fine roots. They were installed at around a 50 cm 

distance, on the left and right-hand sides of the trunk of each sampled living and dead tree, 

in a fictitious line perpendicular to the slope. Measurements of Rs were carried out within 



each collar with a portable infrared gas analyzer (IRGA) connected to a soil respiration 

chamber (EGM-4 and SRC-1; PP Systems, USA). We further added the to the chamber 

volume of the commercial chamber (1171 cm3) the extra volume generated from the 

collars. The increase of CO2 within the chamber was measured during 120 seconds. Soil 

CO2 efflux measurements were always performed between 9 a.m. and 6 p.m. Rs was not 

measured during rainy days. When a major rain event occurred (e.g., daily precipitation > 

15 mm), Rs measurements were postponed 36 h in order to minimize the effects of extreme 

precipitation on Rs. Each Rs measurement campaign was performed within an interval of 3-

4 days. In total, Rs measurements were performed in 7 different time series: April 2016 

(spring), July 2016 (summer), September 2016 (autumn), November 2016 (winter), April 

2017 (spring), July 2017 (summer), and October 2017 (autumn), covering thus all seasons. 

Periods when the snow layer was thick, covering the soil, were not considered. 

 

Both soil temperature (Tsoil) and soil water content (SWC) were measured simultaneously 

with Rs.  Tsoil was measured using a Soil Temperature Probe (STP, PP Systems) that was 

inserted at 5 cm depth into the soil. Soil water content (SWC) was measured at 6 cm depth, 

using the ThetaProbe ML2X soil moisture sensor (Delta-T Devices, UK) coupled to a data 

logger (Infield7, UMS GmBh Munchen). We performed 3 different measurements of soil 

moisture around each collar and recorded the average value of them which was used in 

further analyses. 

 

2.2.3. Soil sampling 

Apart from the Rs measurement campaigns, a campaign was carried out for the collection 

of soil samples in late summer 2016 (first week of August). We collected soil samples near 



each PVC collar to determine: soil chemical composition, RH, fine root biomass, and the 

different fine roots functional traits (see below). We sampled three soil cores in about 

maximum 10 cm distance around each PVC collar. Soil cores were taken using a cylinder 

tube sampler (diameter of 5 cm) that was introduced at a depth of 10 cm in the soil after 

removing the not yet decomposed litter (OL horizon) of the previous year. Afterwards, all 

three soil cores were merged into one single composite sample per each PVC collar, put 

into bags and stored at cool temperature (<4oC) in mobile ice boxes till further processing 

in the lab. A total of 180 composite soil samples (9 conifer sites x 5 tree couples x 2 status 

(living and dead) x 2 PVC collars per each sampled tree) were collected. 

 

2.3.Laboratory analyses 

2.3.1. Chemical and physical soil analysis 

In the laboratory, soil water content (SWC) for each soil sample collected in 2016 was 

measured gravimetrically by sampling 20 g of fresh soil (avoiding stones), and drying it at 

105oC during 48 hours. Both stones and roots (fine and coarse) were manually separated 

from all collected soil samples. Stones were then weighted to obtain their total mass. The 

remaining soil was sieved at 2 mm, dried and stored in a dark place for subsequent 

analyses. Water Holding Capacity (WHC) and bulk density (McKenzie et al, 2014) were 

calculated, and soil pH was measured in distilled water with a soil  H2O ratio of 1:20 for 

each soil sample. 

 

To analyze the concentrations of total organic carbon (TOC), and nitrogen (TN) and 

nutrient content in soils, the sieved soil was further grinded by hand using a mortar and 

then divided in two aliquots. One aliquot was used to calculate the nutrient content (Al, 



Mg, K, Na, P, Ca, S, and Mn) of the soil using an inductively coupled plasma optical 

emission spectrometry (ICP-AES; Thermo Scientific iCAP 6500DUO, ThermoFisher 

Scientific, Waltham, MA, USA), while the other aliquot was used to measure the TOC and 

TN using an elemental analyzer (TruSpec CN, LECO, Saint Joseph, MI, USA). 

 

2.3.2. Root measurements 

All the roots that were separated from each soil sample (see above) were first carefully 

cleaned with distilled water to remove adhered soil particles and then sorted into two 

diameter classes: fine roots (diameter < 2 mm) and coarse roots (diameter > 2mm). No 

distinctions between fine roots from grasses and trees could be made. Cleaned fine roots 

were then scanned and processed with WinRHIZO (Regents Instruments Inc., Quebec, 

Canada) to obtain fine root length, fine root diameter, and fine root surface area. Finally, 

both fine and coarse roots were dried at 65oC for 5 days to reach a constant weight, and 

afterwards weighed to the nearest 0.1 g. Based on these measures we determined the 

demography of the fine root population based on different fine root functional traits: fine 

root biomass (FRB, g/g soil), fine root volume (FRV, cm3/g soil), specific root length 

(SRL, ratio of fine root length to dry weight, m g-1) and specific root area (SRA, ratio of 

fine root area to dry weight, cm2 g-1). 

 

2.3.3. Soil RH measurements under controlled conditions 

RH was measured using 40 g of dry, sieved soil that was introduced into a sample jar of 150 

mL volume and was rewetted to 60 % of its WHC. Once the desired WHC was achieved, 

this soil was incubated 48 hours in an environmental chamber (at 20 º C and 80% of 

moisture) to avoid potential anomalous pulses of CO2 Birch, 1958). 



Afterwards, it was again incubated controlling water content, this time following a 

temperature gradient from 5 to 35 º C to cover a wide range of temperatures. RH was 

measured every 10 º C (i.e., 5 ºC, 15 ºC, 25 ºC, and 35 ºC) during 60 seconds with an EGM-

4 and the net CO2 increases were calculated following a similar protocol to that of Curiel 

Yuste et al. (2007, 2011). The RH that we further used to do analyses represents the 

averaged of the RH values measured at each temperature (i.e., 5 ºC, 15 ºC, 25 ºC, and 35 

ºC), thus covering the RH variability of this microclimatic range. 

 

2.4.Statistical analysis 

A principal component analysis (PCA) was conducted to reduce the n-dimensional of soil 

nutrients data into two linear axes explaining the maximum amount of variance 

(Supplementary material, Fig. S1). According to the plot of the two first PCA components 

the soils' elemental composition splits as it follows: PC1 reflects a gradient of nutrients' 

availability related with higher amounts of C, N, P, Ca, S, and Mg, whereas PC2 reflects a 

gradient of soil organic matter (SOM) availability (Fig. S1). Hence, both PC1 and PC2 

were subsequently used in models as a measure of the nutritional status and of the substrate 

available in soils. 

 

We performed a preliminary evaluation of the potential effects of inter-annual variability 

(year 1 vs year 2), tree species (Silver fir, Scots pine, and Black pine), and tree status 

(differences among dead and living trees) over Rs and soil microclimate (Tsoil and SWC). 

To do so, we firstly averaged Rs, Tsoil and SWC values for the two different PVC collars 

installed per each tree (see above Soil respiration (Rs) measurements) at each field 

campaign. Since none of the variables were normally distributed, we used a non-parametric 



one-way analyses of variance (Kruskal-Wallis tests) followed by a pairwise Wilcoxon post-

hoc test with a Bonferroni correction.   

 

Because our first aim was to investigate the drivers of soil CO2 production across this 

regional gradient we used linear mixed-effects models (nlme R package; Pinheiro et al., 

2016) to analyze the influence of tree mortality and environmental data (e.g. biotic and 

abiotic variables that could potentially affect Rs) on Rs and RH. In order to focus in drivers 

of Rs and RH variability across sites we then averaged all seasonal values (n=7) to one 

single averaged value per tree. As Rs and RH data were not normally distributed, we 

logarithmic transformed them. T

variable in order to test and further discuss potential differences in fluxes and controls 

associated to tree status. Besides the status of the tree, the fixed part of the models also 

accounted for other environmental factors that could explain variability in Rs and RH: e.g. 

soil microclimatic conditions (Tsoil and SWC), aboveground tree and forest structure 

(DBH, Tree competition index or yunderstorey/grass cover), SOM content (PC2), soil 

nutritional status (PC1), fine root biomass (FRB), and fine root specific length/area 

(SRL/SRA). For all models tree species nested within site identification were introduced as 

a random effect. To look for differences between vigor groups, the least-squares means 

were analyzed applying a Tukey correction. The coefficients were estimated using the 

restricted maximum likelihood method. The residuals of the models fulfilled the conditions 

of normality (p > 0.05). The selection of the final models was based on the Akaike's 

information criterion (AIC) (i.e. minimal models with the lowest AIC). 

 



Structural equation models (SEMs) were finally used to test the direct and indirect 

influence of the different biotic and abiotic factors on Rs. Since the sample size was 

relatively small (n = 88), the number of predictors included in the model was thoroughly 

limited, as recommended by Shipley (2002). Our models considered a complete set of 

hypothesis based on literature, previous exploratory analyses (Kruskal-Wallis, correlations, 

etc.), and our own previous experience (Flores-Rentería et al., 2016, 2018; Pérez-Izquierdo 

et al., 2017, see Fig. S2). The model assumed that aboveground vegetation structure (size of 

the sampled living and dead trees, tree competition index, and the % of understory and 

grass cover) would affect the abiotic (microclimate, pH) and the biotic (root demography) 

soil environment, as well as the nutritional status (PC1) and the organic matter content 

(PC2) in soils under trees. Overall, both RH and Rs, would be strongly controlled by 

changes in all these environmental factors which are ultimately controlled by the 

aboveground vegetation structure.

 

Several SEMs were run and the best-fitted ones were finally selected according to the 

covariance proximity between observed and expected data (goodness-of-

general model we used multigroup SEM to test whether the studied factors were linked by 

the same causal structure in each tree status (dead or living) and to identify the paths that 

did not behave similarly in the two conditions (Shipley, 2002; García-Camacho et al., 

2010). For this analysis, we used the same hypothetical model used for each status group 

separately. A constrained model in which all free parameters were forced to be equal across 

the two conditions was built and contrasted with field data. Since a lack of fit was detected 

in the fully constrained multigroup model, a series of nested models, where equality 

constraints were removed one at a time, were developed to detect which one would 



significantly improve the model (Shipley, 2002; García-Camacho et al., 2010). Differences 

in X2 and AIC statistics between the fully constrained model and the models freed from a 

constraint were used to test for differences in parameter values between the two conditions. 

Standardized path coefficients were estimated by using the maximum likelihood algorithm 

(Shipley, 2002). SEM analyses were performed using SPSS® and SPSS® AMOS 20.0 

 

 

3. Results 

Both SWC and Tsoil varied significantly between years 1 6) warmer and 

wetter on average than 2 7), although no such significant trend was found for Rs 

(Figs. 1 and S3). No differences in Rs were found between the three conifer species, 

although the soils from Silver fir stands were significantly colder (lower average Tsoil) and 

wetter (higher average SWC) than the ones from the Black pine and Scots pine stands (Fig. 

S3). When looking for differences in SWC, Tsoil and Rs considering tree status (living or 

dead), living trees differed significantly from the dead ones only in SWC and Rs. 

Specifically, dead trees showed higher SWC and Rs values than the living ones (Figs. 1 and 

S3). 

 

Overall, Rs was consistently higher under dead trees with respect to living ones (Fig. 2, 

Table S1). According to our results, CO2 emissions under dead trees were on average 21% 

higher than under living ones. Furthermore, RH, specific root length/area (SRL/SRA), TOC, 

TON, and SWC were among the environmental variables that were consistently higher, 

although not always significantly, under dead trees comparing with the living ones (Fig. 2, 

Table S1). Other variables such as pH, C:N ratio, or total fine root biomass/volume (FRB 



and FRV, respectively) showed less sensitivity to tree mortality and/or less consistent 

trends across tree species, although FRB tended to be lower under dead trees (Fig. 2, Table 

S1). No clear differences were found between living and dead trees when the grass and 

understory cover, or the tree competition index were considered (Table S1). This happened 

because cover of understory of broadleaf seedlings and grasses was independent of the 

health status of the sampled trees and very dependent on site-specifics conditions. 

 

Both mean soil temperature and quantity of SOM (PC2) were, together with tree status 

(living and death) the variables that better explained Rs variability across sites (Fig. 3, Table 

S1). As expected for ecosystems generally limited by temperature, Tsoil explained a large 

portion of across-site variability in Rs (Fig. 3, Table S2), whereas Rs was also strongly 

driven by SOM quantity (PC2, Fig. 3, Table S2). No differences in RH between soil 

collected under dead and living trees were found (Figure 4). On the other hand, we found a 

strong effect of the nutritional status (PC1) and the quantity of SOM (PC2) on RH (Fig. 4, 

Table S3). Additionally, the best obtained model also included a significant negative effect 

of SRL over RH (Fig. 4, Table S3). 

 

SEMs showed the complex causal-effect cascade of processes controlling Rs and RH (Fig. 

5). Specifically, this analyses highlighted how strongly forest structure (tree DBH, tree 

competition, understory and grass cover) influenced, directly or indirectly, the observed 

variability of soil abiotic (microclimate, pH, nutrient content) and biotic (SRL, FRV, RH) 

variables, resulting in the observed variability in Rs across sites. Both, trees (i.e. size and 

tree competition) and understory cover exerted a strong effect over soil microclimate 

(Tsoil), soil pH, and nutrients (PC1). While conifers tend to acidify soils, we here observe 



how an increasing cover of broadleaf understory was associated with increases in pH, 

which, on the other hand, was also behind the observed improvement of soil nutritional 

status (PC1) and SOM sequestration (PC2). The presence of grasses was also directly 

associated with an increase in SOM (PC2) and SRA, but a decrease in FRV. Multigroup 

SEM further showed a tighter control of Tsoil over Rs under dead than under living trees, as 

illustrated by the significantly higher ML coefficient obtained. Moreover, multigroup SEM 

also showed how conifers and successional vegetation exerted an opposite effect over the 

demography of fine roots (SRL and FRV). Specifically, living trees exerted an overall 

negative effect over SRL, whereas the presence of grasses was positively associated with 

SRL. On the other hand, the FRV was stimulated in poor soils (high PC1) and under high 

SOM contents (low PC2), but was also negatively correlated with the presence of grasses 

and the increase in broadleaf understory cover. Furthermore, we here show how, 

independently of the health status of the trees, increase in the SRA negatively affected RH. 

Also, controls of RH differed depending on the conifer health status (living or dead): living 

trees exerted a positive control over RH, but when tree dies RH variability was mainly 

controlled by nutrient status (PC1) and SOM quantity (PC2) (besides SRL). Finally, 

observed variability of Rs seemed to be partially explained by variability of RH under dead 

trees while under living conifers no relation was found between both fluxes. 

 

4. Discussion 

We here reported large events of drought-induced tree mortality on stands dominated by 

three of the conifer tree species most widely distributed in the Carpathian mountain range 

(Table 1). This drought-induced mortality coincides with globally increasing reported 

events of conifer decline, which are being generally attributed to historical management 



practices (e.g. favoring/planting conifer species outside their climatic and structural 

optimum; Urbieta et al., 2008; Ruiz Benito et al., 2012), or to climate-change induced 

increases in temperature and droughts intensity and frequency that seem to affect more the 

conifer-like than the angiosperms-like related functional traits (Henne Paul et al., 2015; 

McIntyre et al., 2015; Ruiz Benito et al., 2017). Indeed, the observed increasing presence of 

an understory vegetation of seedlings mainly composed by native broadleaf species (e.g. 

Fagus sylvatica, Fraxinus excelsior, Fraxinus ornus, Acer campestre, Quercus petraea, 

Ulmus glabra) (Table 1) coincides with these mentioned above observations and are, 

therefore, in accordance with this general decline in conifer dominance, especially 

ubiquitously observed in European forests. 

 

Drought induced conifer mortality resulted in large increases in biogenic soil CO2 

emissions (Rs), averaging a 21% increase under the dead trees comparing with the living 

ones, and persisting during two consecutive years (2016-2017), four to five years after the 

mortality event occurred in 2012. Given the observed large proportion of tree mortality 

observed after the 2012 drought (Table 1), this tree mortality-induced hot-spot of CO2 

emissions might be responsible for decelerating the capacity of these ecosystems to recover 

pre-mortality levels of C sequestration (e.g. Moore et al, 2013). Our results are not in 

accordance with decreases in Rs observed under experimental tree girdling manipulations 

(e.g. Högberg et al., 2001; Binkley et al., 2006; Nave et al., 2011; Levy-Varon et al., 2014), 

or under natural conditions, when tree mortality events were massively caused by bark 

beetle attacks (e.g. Moore et al. 2013) or by infections with pathogens, e.g. Phytophtora 

cinammoni (Avila et al., 2016). Accordingly, literature generally shows how tree death 



results in an almost immediate and dramatic decrease in Rs rates associated with the 

decrease in the supply of newly plants-fixed carbohydrate for belowground metabolic 

activity, e.g. autotrophic respiration, mycorrhiza activity and rhizosphere heterotrophic 

respiration (Subke et al., 2004; Högberg et al., 2007). This Rs drop associated with tree 

mortality may last for decades in monospecific forest (e.g. Moore et al. 2013, Avila et al., 

2016), while other studies have shown how depending on the level of the perturbation and 

the secondary successional processes, Rs may recover pre-perturbation values after several 

years (e.g. Levy-Varon et al., 2014; Barba et al., 2016), or even increase during favorable 

seasons in mixed forest (Barba et al., 2013). Hence, due to the initial physiological collapse 

that tree mortality produces in a system, the functional recovery of this system in general 

and of the Rs in particular depends on the degree of perturbation but also on secondary 

successional process triggered by tree mortality (Levy-Varon et al., 2014; Lloret et al., 

2015; Barba et al., 2018). 

 

In these conifer forests so representative for the Carpathians' landscape, the observed hot-

spots of CO2 under dead trees were strongly dominated by RH (Fig. 2 and 5). We here 

postulate that these mortality-triggered hot-spots of RH and Rs were mostly explained by an 

increase in the quality and quantity of SOM which results from both the increase in 

senescent material and from the successional processes following tree death (Fig. 2, 4 and 

5). The observed increase in topsoil SOM under dead trees (increase in TOC, Figure 2) 

could be attributed, at least partially, to the accumulation of senescent plant material 

(leaves, roots and branches) which generally accumulate under dead trees (Moore et al. 

2013). However, SOM accumulation under dead conifers alone cannot explain the observed 

increase in RH because, as observed, RH was also very sensitive to the increase in soil 



nutrient availability (PC1) (Figure 4, Table S3). Besides, we here observed how shifts in 

the controls of Rs after the massive mortality event of 2012 ultimately resulted in a stronger 

dominant role of the successional vegetation (broadleaf seedlings, shrubland and grasses) 

over the belowground environmental factors, directly or indirectly affecting Rs and RH 

fluxes (Figure 5). This shift towards greater understory control over soil functions was in 

detriment of the former control exerted by the conifers which influenced the microclimate 

(SWC and Tsoil), the abiotic soil environment (pH), the nutrient quality (PC1), SOM 

(PC2), and the fine root demography (specifically SRA/SRL, FRV) (Figs. 2, 3, 4 and 5). 

These changes were further reflected in changes in the magnitude and the controls of biotic 

soil fluxes (Rs and RH) (Figure 2 and 5). 

 

For instance, the increase in pH and grassland cover resulting from the shift in the 

aboveground vegetation dominance also played a critical role in increasing SOM (PC2; Fig. 

5). This is because, under conifer influence, the generally low soil pH and the low quality 

of the residues due to the high proportion of recalcitrant compounds, e.g. lignin and/or 

allelopathic molecules (e.g. Curiel Yuste et al. 2005; Fernández-Alonso et al., 2018) slow 

down the breakdown of the litter and its incorporation to SOM in the mineral soil. On the 

other hand, incorporation of litter in SOM occurs generally faster in ecosystems dominated 

by broadleaf species because the generally higher pH and higher quality of the produced 

residues stimulates bioturbation (Frouz et al., 2009). Indeed, the multigroup SEM further 

showed how the increase in pH associated with the increasing presence of the understory 

vegetation had a direct and strong positive effect over SOM quality (PC1), suggesting that 

on top of the increase in SOM under dead trees, the secondary successional processes 

triggered by conifer mortality was positively affecting the quality of the substrate. Our 



results, therefore, clearly indicate how the shift in vegetation dominance associated with 

conifer mortality had a strong impact over the quantity and quality of SOM, resulting in 

increased RH, which subsequently affected Rs. 

 

This dominant role of successional vegetation after tree death was also reflected in a 

substantial increase in the surface of absorption of the radical system (increase in SRL and 

SRA; Fig. 2) which corresponds to a shift towards a fine-root demography optimized to 

maximize nutrients acquisition (Roumet et al., 2016). This shift, associated with an increase 

in the presence of grasses (Fig. 5), suggest that the belowground niche left by the death of 

the conifers creates an opportunity to the surrounding early successional vegetation to 

obtain resources (nutrients and moisture) (Curiel Yuste et al., 2012; Barba et al., 2013) 

whose acquisition is, otherwise, subjected to strong competition, especially in nutrient-

poor, low pH conifer sites as those considered in this study. Indeed, the multigroup SEM 

showed how the poor nutrient conditions under conifers (PC1), while alive, promoted a 

bigger radical system (higher FRV), but with relatively less very fine roots (suppressing 

SRL). 

 

The consistent increase in the specific length and surface (SRL/SRA) of fine roots under 

dead trees was paralleled by the observed increase in Rs (Figure 2). This was expected, 

given the general observed linear relation between, on one hand, SRL and the fine roots 

turnover rates (Silver and Miya, 2001; Hobbie et al., 2010; Roumet et al., 2016), and, on 

the other hand, SRL and rates of root respiration (RA) (Reich et al., 2008; Makita et al., 

2012; Picon-Cochard et al., 2012). Although RA were not measured in this study, we did 

not observe a significant increase in SOM turnover (rates of RH per unit of soil C; data not 



shown) under dead trees, suggesting that it is most plausible that the increase of SRL was 

associated with a parallel increase in RA. Rather than stimulating RH, our models also 

showed a very consistent negative relation between SRL and RH (Figure 4 and 5), 

suggesting that besides this expected positive effect of SRL over autotrophic activity, the 

net effect over RH was negative. It, therefore, could be that by increasing their capacity to 

absorb nutrients (increase in SRL), successional vegetation competes more efficiently for 

the same resources with the soil heterotrophic community (negative priming, Kuzyakov 

2002), resulting in the observed suppression of RH. Indeed, an increase in competition for 

key nutrients (e.g. N, P, K) between roots and heterotrophs could be maximal in soils when 

nutrients are generally limiting, thereby resulting in the suppression of RH (e.g. Schimel et 

al., 1989; Wang and Bakken 1997; Kuzyakov 2002). 

 

5. Conclusions 

We here collected compelling evidences to support our initial hypotheses: cascading 

mechanisms triggered by selective tree mortality and a subsequent secondary successional 

process played a critical role in regulating soil functioning and soil CO2 emissions during 

transitional states. Specifically, we here show how conifer mortality resulted in an average 

increment of biogenic emissions of 21%, 4-5 years after the large mortality event of 2012, 

which might be further responsible for decelerating the capacity of these ecosystems to 

recover pre-mortality levels of C sequestration. These transitional states after tree death 

resulted in a stimulation of the heterotrophic activity (RH), favored by the increase in 

senescent material but also by changes in the soil microenvironment (e.g. climate, pH and 

SOM) partially controlled by successional vegetation. A shift towards a more efficient 

resource-acquisitive strategy of fine roots (increase in SRL), triggered by tree mortality and 



also associated with the increasing dominance of the successional vegetation, was also 

behind the observed changes in the magnitude and controls of RH and Rs. Our results, 

hence, call the attention on how above-belowground ecological processes triggered by tree 

mortality may substantially determine dynamics of key biogeochemical cycles (e.g. C and 

N) at local and regional scales. One of the drawbacks of this study might be the fact that the 

effects of tree-mortality were only evaluated during a relatively short-term (2 years), at sub-

decadal time scale (4-5 years after the main mortality event), and in a limited number of 

sites (9). Despite its limitations, this is one of the first studies evidencing the complexity of 

the controls over Rs in climate-change-induced tree mortality scenarios, and as such, it 

might serve as a base to develop further, more extended studies on this topic. In a changing 

world where episodes of tree mortality associated with climate change are substantially 

incrementing, more studies should, therefore, be designed to deepen the observed potential 

impacts of tree mortality and subsequent successional processes at larger temporal and 

spatial scales 
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Fig. captions 
 
Fig. 1. Evolution of soil water content (SWC), soil temperature (Tsoil) and soil respiration 
(Rs) as a function of time and trees' health status (living or dead). Error bars represent the 
standard error of the mean. 
 
Fig. 2. Changes in soil abiotic (microclimate, pH) and biotic (fine root demography, Rs, RH) 
variables, as well as soil total organic carbon (TOC) and total organic nitrogen (TON) 
values evaluated under dead trees relative to the values evaluated under living trees. 
Therefore, positive values (right hand side of the vertical bar) represent an increase in that 
particular variable under dead with respect to under living trees. Error bars represent 
standard error of the mean. Asterisk represent significant from zero differences (p value > 
0.05; t-test). 
 
Fig. 3. Linear mixed-effects models for soil respiration (Rs). Solid lines represent modeled 
Rs responses under dead trees, whereas dotted lines represent modeled Rs responses under 
living trees. Where, Ts = soil temperature at 5 cm depth; PC2 = second dimension of the 
PCA, here representing SOM. 
 
Fig. 4. Linear mixed-effects models for heterotrophic respiration (RH). Solid lines represent 
modeled Rs responses under dead trees, whereas dotted lines represent modeled Rs 
responses under living trees. SRL = specific root length; PC1= first dimension of the PCA, 
here representing soil nutrients; PC2 = second dimension of the PCA, here representing 
SOM. 
 
Fig. 5. Multigroup SEM representation. Path diagrams representing hypothesized causal 
relationships between aboveground vegetation, biotic and abiotic variables, soil respiration 
(Rs) and soil heterotrophic activity (RH) under living (a) and dead (b) conifer trees. Arrows 
depict causal relationships: positive and negative effects are indicated by solid and dashed 
lines respectively, with numbers indicating standardized estimated regression weights 
(SRW). Arrow widths are proportional to the significance values according to the legend. 
Paths with non-significant coefficients are represented in gray. Coefficients in bold 
characters represent those causal relationships where the strength of the relation differed 
between soils under living (green) and under dead (orange) trees. 2= 86.81, NFI= 0.83 y 
RMSEA= <0.0001, df= 122, p= 0.99 
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