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Abstract 

Historically, the growth of energy consumption has fuelled human development, but this approach is no longer socially and 

environmentally sustainable. Recent analyses suggest that some individual countries have responded to this issue successfully by 

decoupling Total Primary Energy Supply from human development increase. However, globalisation and international trade have 

allowed high-income countries to outsource industrial production to lower income countries, thereby increasingly relying on 

foreign energy use to satisfy their own consumption of goods and services. Accounting for the import of embodied energy in goods 

and services, this study proposes an alternative estimation of the Decoupling Index based on the Total Primary Energy Footprint 

rather than Total Primary Energy Supply. An analysis of 126 countries over the years 2000-2014 demonstrates that previous studies 

based on energy supply highly overestimated decoupling. Footprint-based results, on the other hand, show an overall decrease of 

the Decoupling Index for most countries (93 out of 126). There is a reduction of the number of both absolutely decoupled countries 

(from 40 to 27) and relatively decoupled countries (from 29 to 17), and an increase of coupled countries (from 55 to 80). 

Furthermore, the study shows that decoupling is not a phenomenon characterising only high-income countries due to improvements 

in energy efficiency, but is also occurring in countries with low Human Development Index and low energy consumption. Finally, 

six exemplary countries have been identified, which were able to maintain a continuous decoupling trend. From these exemplary 

countries, lessons have been identified in order to boost the necessary global decoupling of energy consumption and achieved 

welfare. 

Keywords: decoupling index; energy footprint; energy democracy; energy transitions; consumption based accounts; sustainable 

development goals 

Highlights: 

- Energy footprint accounts show an overall decrease of decoupling for most countries.

- Six exemplary countries show a maintained decoupling of HDI from energy requirement.

- Permanent or temporary decoupling has been detected in 89 countries.

- Both high and low-HDI countries can achieve temporary decoupling.
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Acronyms 

ADP Absolute Decoupling Point  

CBA Consumption Base Accounts 

DF Driving Forcers  

DI Decoupling Index 

EI Education Index 

EP Environmental Pressure 

GDP Gross Domestic Product 

GFC Great Financial Crisis – Great Recession 

GMRIO Global Multi Regional Input-Output 

HDI Human Development Index 

IEA International Energy Agency 

II Income Index 

LEI Life Expectancy Index 

MF Material Footprint 

PB Planetary Boundaries 

PBA Production Based Accounts 

TFC Total Final Consumption 

TPEF Total Primary Energy Footprint 

TPES Total Primary Energy Supply 

 

1. Introduction  

In order to achieve a global sustainable a use of energy resources, energy consumption needs to respect 

socially fair and environmentally viable Planetary Boundaries (O’Neill et al., 2018). The introduction 

reviews the literature to establish the required energy to achieve development and define sustainable energy 

boundaries. Within this context, the decoupling phenomenon has been observed, in which energy 

consumption can be reduced while increasing countries development levels. 

1.1 Energy consumption requirements 

The correlation between the energy consumption and welfare of a country has been a well discussed topic. 

There is general agreement in the literature that a certain amount of energy consumption is fundamental to 

the economic progress and social development of a country (Wu and Chen, 2017). Nevertheless, there is 

still no consensus regarding the minimum thresholds of energy consumption needed to achieve acceptable 

living standards. Krugmann and Goldemberg (1983) found that between 11.5 and 15.7 MWh per capita per 

year was the cost of satisfying the basic human needs. Subsequently, an economic minimum requirement of 

7.25 MWh per capita per year was identified (Grabl et al., 2004). Comparatively, Martínez and Ebenhack 

(2008) identified that 9.3 MWh per capita per year (MWh·cap
-1

·yr
-1

) were necessary to maintain the HDI 

level above 0.7, and 33.7 MWh in order to uplift the HDI value above 0.9. With 2005 data, it was stated 

that an average consumption of 16.7 MWh·cap
-1

·yr
-1

 was enough to achieve a 0.8 HDI value (Steinberger 

and Roberts, 2010). Subsequently, using the Life Expectancy parameter, Mazur (2011) detected that all 
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nations consuming above 40 MWh·cap
-1

·yr
-1

have life expectancies near 80 years. Similarly, in 2012 it was 

detected that energy consumption of above 43.8 MWh·cap
-1

·yr
-1

 does not necessarily lead to a higher 

Quality of Life Index (Pasten and Santamarina, 2012). Finally, Steckel et al. (2013) found that 

27.8 MWh·cap
-1

·yr
-1

 could very likely maintain the HDI higher than 0.9. 

1.2 Energy consumption boundaries 

In order to match human energy needs to available energy, current research attempts to understand how 

much energy is accessible worldwide as well as which the physical and sustainable Planetary Boundaries 

(PB) are (Rockström et al., 2009), in order to preserve the Earth System in a resilient and accommodating 

state (Steffen et al., 2015). The natural limits of global energy resources were recognised by the scientific 

community for the first time in the 1970s (Meadows et al., 1972). Currently, forecasting the peak-oil is a 

constant challenge for the scientific community (Pargman et al., 2017). Current fossil-fuel-based global 

energy consumption threshold needs to be lowered, since is has been defined as: environmentally 

unsustainable (Inman, 2008), (IPCC, 2015), (Gies, 2017), socially unfair (Sovacool et al., 2016) 

(Eisenstein, 2017), and further economic losses and crises have been forecasted (Hsiang et al., 2017) 

(Fouquet, 2017) (Inman, 2013).  

In response to the knowledge of energy limitations, as well as an attempt to promote an equal opportunity 

to the access of energy for all citizens in the world, in 1998 the Swiss Government promoted the “2000 

Watt Society” (Stulz et al., 2011). The initiative had the ambitious target of reducing 60% of the Total 

Primary Energy Supply (TPES) from 41 to 17.52 MWh·cap
-1

·yr
-1

 (Heeren et al., 2012). However, 18 years 

later, in 2015, the TPES of the country was still 34.46 MWh·cap
-1

·yr
-1

 (International Energy Agency, 

2015). But this figure does not include the energy consumed in other countries embodied in imported 

products and services, which has been growing in recent decades (Arto et al., 2016). 

The shift towards renewable energy sources has been stated to be environmentally indispensable (IPCC, 

2015) and even beneficial in economic or social terms globally (Jacobson and Delucchi, 2011) (WWF, 

2011) (Jacobson et al., 2015) (Teske et al., 2015) (García-Olivares, 2016) and nationally (Kucukvar et al., 

2017), as demonstrated by using the Triple Bottom Line methodology (Slaper and Hall, 2011). According 

to optimistic studies, a 100% renewable energy supply for 139 countries could be possible within 2050, 

while actually maintaining the global energy consumption of 2012 (Jacobson et al., 2017). In this respect, 

even if all the countries in the world could be able to maintain 2012 consumption levels within renewable 

generation (13,267,620 ktoe, International Energy Agency, IEA), maintaining human population in 2012 

levels (7100 millions) each individual would have the equal right of consuming a Total Primary Energy 

Footprint of 21.9 MWh·cap
-1

·yr
-1

 of fully renewable energy. Nevertheless, limits for renewable energies 

have been discovered. For example, taking into account the land usage in the case for the solar resource, 

has concluded that a global transition to domestically produced renewable solar energy will be physically 

unfeasible to maintain current energy consumption levels (Capellán-Pérez et al., 2017). Other research has 

considered a strong limit in renewable energy penetration; in an optimistic scenario, the total installed 

capacity of renewables is forecasted to saturate at around 1.8 TW in 2030 (Hansen et al., 2017) and 

maximum global production capacities of around 145,000 TWh in 2050 (Capellán-Pérez et al., 2014). 
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Being aware of these limits, Cullen et al. (2011) analysed the capacity of reduction of TPES through 

savings and efficient management and concluded that a 73% reduction would be feasible. A global energy 

consumption reduction from 475 EJ·yr
-1

 to 129 EJ·yr
-1

 (based on the 2005 data) was identified as feasible, 

reducing energy use from buildings, transport and industry (Cullen et al., 2011). This baseline would give 

each citizen the equal right to consume of 4.7 MWh·cap
-1

·yr
-1

. Nevertheless this reduction capacity has 

been contrasted based on the difficulty of reducing current energy consumption levels; especially due to the 

strong correlation between energy consumption and economic growth (Sorrell, 2015).  

Lastly, due to the limitation of the Planetary Boundaries, has been found that generally the current resource 

consumption level is 2 to 6 times the sustainable level one (O’Neill et al., 2018). Thus, taking into account 

the present global energy consumption (13,647,367 ktoe in 2015, IEA) and assuming the positive condition 

that population figures will be maintained (7,355 millions in 2015, World Bank), energy consumption 

should be reduced to between 3.6 and 10.8 MWh·cap
-1

·yr
-1

. 

 

1.3 Decoupling 

Being aware of the limited availability of energy (renewable or less), the decoupling between energy 

consumption (and its impacts) and the achieved welfare has been defined as a “key issue” to reach the 

Sustainable Development Goals (SDGs) (UNEP, 2011), (UNEP, 2014). This issue establishes how 

humanity should be able to maintain current life standards in developed countries and promote 

development in low-income countries without affecting the environmental bio-capacity of the Earth. To 

accomplish the decoupling challenge, technological innovations (eco-efficiency and system innovations) 

have been seen as the main leverages (UNEP, 2011), (UNEP, 2014). As a secondary aspect, the need to 

encourage change in consumption patterns, to reduce the consumption of resources while achieving 

improvements in quality of life, has been identified as an influential factor (UNEP, 2014). These objectives 

are aligned with “Goal 7” of SDG (UN, 2015) where the sustainable energy availability is recognised as a 

right for all individuals, “Goal 10” of SDG, where equality between countries is recognised, and finally 

“Goal 12” where sustainable consumption ways are claimed. 

Since 1970, the relation between consumed energy and gained GNP or GDP has been widely studied and 

has assessed the possibility of decoupling (Bullard and Foster, 1976), (Meadows et al., 1972), (Nilsson, 

1993). In 2002, an extensive study was developed by the Organisation for Economic Co-operation and 

Development (OECD, 2002), where indicators to measure the Environmental Pressure (EP) from specific 

Driving Forcers (DF) were classified, and the variation ratio between EP and DF during a certain period 

was defined as the Decoupling Factor (DF). Mielnik and Goldemberg (2002) analysed the decoupling 

phenomena in 20 developing countries, concluding that technology improvements due to foreign 

investments could promote a decoupling. Decoupling was also analysed in the transportation sector, 

between consumed energy and provoked emissions (Tapio, 2005). Diakoulaki and Mandaraka (2007) 

analysed the decoupling between emissions and industrial growth within the 14 EU countries, finding that a 

considerable effort has been done for decoupling. Decoupling between environmental impacts (measured in 

CO2eq emissions) and GDP has also been analysed in Brazil (de Freitas and Kaneko, 2011), and between 
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consumed energy and GDP in China (Zhang et al., 2015). Both studies concluded that technology played an 

important role in decoupling in Brazil, reducing the carbon intensity of the generation mix, and in China, 

increasing the energy efficiency (energy intensified effect). In China was founded that decoupling was also 

a result of the rapid economic growth of the country (Wang, 2011). 

A more recent study, that analysed the decoupling phenomenon in eight countries, concluded that 

decoupling, is more present and constant in developed countries (Wu et al., 2018). Wu et al. (2018) used a 

specific Decoupling Index (DI) of Impact-GDP-Technology (IGT) in different countries within GDP and 

TPES, where this decoupling is clearly observed in developed countries such as the UK, France, and USA. 

In the study, absolute decoupling and relative decoupling terms were used to clearly distinguish the 

achievements of different countries. 

Nevertheless, relating the decoupling phenomenon to technological advancements of the developed 

countries, has already been considered for re-evaluation (Moreau and Vuille, 2018). When integrating 

footprint accounting in resource consumption measurements, it was found that the decoupling between 

economic achievements and environmental impacts was “smaller than reported or even non-existent” 

(Wiedmann et al., 2015), due to exporting production chains to other countries. Moreau and Vuille (2018) 

states that decoupling is still under discussion due to the “virtual decoupling” concept. The “virtual 

decoupling” occurs when a developed country argues to reduce energy consumption, while in reality has 

only exported the industrial production chains to other less developed countries (Moreau and Vuille, 2018), 

thus national energy measurements are not able to detect this consumptions. As a result, even if decoupling 

has been defined as a necessary factor to achieve sustainable goals, it is not clear which countries and when 

reach decoupling – or simply have export high energy consumer industry to other countries –, and whether 

there is an impetus to attain it. 

 

1.4 Accounting for total primary energy consumption 

In order to determine decoupling, energy consumed by a country may be measured in different ways that 

affect the results. The Total Primary Energy Supply of a country (TPES) and the Total Final Consumption 

(TFC) have been the most popular indicators when measuring energy consumption, both defined by the 

(International Energy Agency, 2015). TPES is the sum of TFC and the losses of the energy transformation 

and distribution sectors (Goldemberg and Siqueira Prado, 2011). However, TPES and TFC are both 

Production Based Accounts (PBA), where energy consumption is measured within the boundaries of a 

country (Peters, 2008). In present day, the massive outsourcing of industrial production chains and services  

(especially from high-income countries to low-income ones), causes the total energy consumption of high-

income countries appears to be smaller, since part of it is outsourced and accounted for in other countries 

(Arto et al., 2016). 

To address this occurrence, scientists have used Consumption Base Accounting (CBA). CBA was initially 

used for Carbon Footprint measurement (Munksgaard and Pedersen, 2001), (Peters, 2008), (Peters and 

Hertwich, 2008), (Kanemoto et al., 2012), (Barrett et al., 2013) using the Global Multi Regional Input-

Output (GMRIO) methodology (Wiedmann and Lenzen, 2018). Footprint accounting has become a well-
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established method to trace the total resource needs and environmental impacts of a country’s consumption 

(Wiedmann et al., 2007), (Galli et al., 2012), (Hoekstra and Wiedmann, 2014), (Wiedmann et al., 2015).  

Using the same GMRIO methodology, the “Energy Footprint” concept was developed (Arto et al., 2016). 

This considers the energy embodied in imported goods and services that is consumed in other countries, 

and is defined as Total Primary Energy Footprint (TPEF). TPEF allows relocating the energy accounts 

according to the final consumers.  

It needs to be clarified that the concept of Energy Footprint has been used either for specific industrial 

processes (processing with the LCA methodology) or to calculate whole countries’ energy footprints (such 

as in this research, using the GMRIO methodology). Generally, when the term Energy Footprint is used to 

calculate the external energy use of specific industrial manufacturing or resource extraction processes, the 

concept Cumulative Energy Demand (CED) is used and Life Cycle Assessment (LCA) methodology is 

more frequent (Röhrlich et al., 2000), (Huijbregts et al., 2010), (Puig et al., 2013). Nevertheless, in this 

research, Energy Footprint specifically refers to the CBA energy consumption of a determinate whole 

country. 

Several studies have been developed in this field, taking into account different databases (GTAP, WIOD, 

OECD, Eora and EXIOBASE) as well as different countries (Chen and Lin, 2008), (Wiedmann, 2009), 

(Mativenga and Rajemi, 2011), (Chen and Chen, 2013), (Heinonen and Junnila, 2014), (Arto et al., 2016), 

(Lan et al., 2016). The latest research in the energy field prioritised comparing the accuracy of results when 

calculating the energy footprint (Owen et al., 2017), (Min and Rao, 2017); forecasted future energy 

scenarios (Kucukvar et al., 2017), (Kaltenegger et al., 2017); as well as computed energy footprint 

calculations based in single years (Wu and Chen, 2017), (Chen and Wu, 2017), (Rocco et al., 2018), (Chen 

et al., 2018), (Wood et al., 2018), (Zhang et al., 2018). 

Despite these advancements, the decoupling phenomenon between the TPEF and subsequent achieved 

welfare has not been addressed in a broad way through –analysing contemporaneously several countries– 

with the use of a Decoupling Index and Energy Footprint accounts. Given the precedent “virtual 

decoupling” detected in Switzerland (Moreau and Vuille, 2018), the possibility of studying decoupling in 

several countries within a footprint account perspective is especially relevant. 

1.5 Study aims 

The objective of this study is to analyse unsolved decoupling phenomena between Total Primary Energy 

Footprint (TPEF) and achieved welfare (measured with HDI) among 126 countries from 2000 to 2014. The 

presence of the decoupling effect in developed and non-developed countries has been studied, in an attempt 

to define any link between the level of development in a country and the achievement of decoupling. 

For this purpose, the TPEF of 126 countries has been calculated using CBA during 2000 and 2014. With 

these data, the Decoupling Index (DI) between consumed energy and achieved HDI (defined in 

Methodology section) has been calculated, analysing the difference between TPES and TPEF results. 

Secondly, TPEF based DI versus gained HDI has been analysed and countries have been classified in four 

decoupling types. At this stage, exemplary countries have been identified dividing the Decoupling Index in 

four year gaps: 2000-2004, 2004-2008, 2008-2012 and 2012-2014, where maintained decoupling has been 
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achieved. Thirdly, country-based, time series have been developed in order to more accurately observe the 

decoupling trends of exemplary countries. Lastly, temporary decoupled countries have also been detected 

in order to understand which countries could achieve future absolute decoupling trends. 

Section 2 of this paper illustrates the Global Multi-Region Input-Output method used. Section 3 breaks 

down results divided in the above defined four parts and in Section 4, the results are discussed. Finally, 

Section 5 provides recommendations and implications for improved policy making. 

 

2. Methods and data 

2.1 GMRIO calculation 

Global Multi Regional Input-Output (GMRIO) methodology has been used to calculate the Total Primary 

Energy Footprint (TPEF) from the initial Total Primary Energy Supply (TPES) obtained from the 

International Energy Agency (IEA). This has been accomplished using the 26 industry sector based Eora 

database economic information for 189 countries (Lenzen et al., 2012). A more detailed version of this 

database, with 15,909 sectors, is available (Lenzen et al., 2013) but, since the original energy data from the 

IEA matches better with 26-sector version of Eora, the former has been considered more appropriate for the 

purpose of this research. It must be clarified that the Eora 26 database estimates the economic sectorial data 

of certain industries in some countries, thus when using these data to calculate the TPEF of a country, the 

errors already reported in economic matrixes will be reflected in the calculated footprints. According to 

Moran and Wood (2014), after performing a sensitivity analysis within a harmonised carbon footprint 

satellite account, differences between Eora, WIOD, EXIOBASE and GTAP databases are smaller than 10% 

in most major economies. Reducing uncertainty in MRIO analysis has been identified as relevant work for 

the future standardization of results (Rodrigues et al., 2018), but it is out of the scope of this paper. 
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Figure 1: Global Multi-Regional Input-Output (GMRIO) structure with the Eora 26-sector database (orange) and TPES data 

from IEA (green). The final block in the original version of Eora reports 6 categories of final demand for each country. For the 

sake of simplicity, for each one, we have aggregated the 6 categories by country into one. Adapted from Miller and Blair (2009). 

 

A standard, environmentally extended, demand-driven input-output model has been used (see Figure 1) to 

calculate the TPEF of countries (Owen et al., 2017), (Oita et al., 2016), (Lenzen et al., 2004), (Wiedmann et 

al., 2007). In order to relate IEA TPES energy data with the Eora 26 economic database, a row vector of 

satellite data of energy consumption for each industrial sector by country was created (fI) following the 

criteria indicated in Supplementary Table 1. The TPES is the sum of energy consumption by industries (fI, a 

row vector with information on the energy use of 189 countries and 26 sectors) and the direct use of energy 

per household (fH, a row vector with information on energy use per household in 189 countries). This 

method, also known as the Leontief equation, follows the sequence of equations below. Firstly, the energy 

consumption coefficient per unit of industrial output (c vector) has been calculated, where diag stands for 

the diagonalization of a vector, as: 

 

𝐜 = 𝐟𝐈 · (diag(𝐱))−𝟏 (1) 

The technical coefficients matrix (A) has been calculated, and from this in turn we arrive at the Leontief 

Inverse (L): 
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𝐀 =  𝐙(diag(𝐱))−𝟏 (2) 

𝐋 ≡ (𝐈 − 𝐀)−𝟏 (3) 

Next, the total (i.e. a scalar) industrial energy embodied in the products and services demanded by country r 

(gI
r) is obtained using the standard demand-driven IO model: 

𝑔𝐼
𝑟   = 𝐜𝐋𝐲𝐓𝐎𝐓

𝐫    (4) 

Where 𝐲𝐓𝐎𝐓
𝐫  is a column vector (4915 x 1) representing the total final demand of goods and services by 

country r. 

Finally, we obtain the total TPEF of country r as the sum of the industrial energy embodied in the products 

and services (gI
r) and the energy consumed directly by final users (gH

r ). 

 

𝑔𝑟 = 𝑔𝐼
𝑟 + 𝑔𝐻

𝑟  (5) 

 

In this study, due to the insufficiency of the energy consumption country-based satellite data, and the extant 

difficulties of cross-referencing the results of MRIO analysis with HDI data, we have however obtained the 

results for 126 countries out of the total 189 Eora database countries. 

2.2 Human Development Index 

The Human Development Index has been the selected indicator to compare the consumed energy with the 

achieved welfare of a country; as this accounts for the economic advantages but also improvements in 

human well-being (Sen, 1992). Data has been derived from UNDP (UNDP, 2015) and has been processed 

in order to obtain average trends, which have been used to validate the final conclusions of the project. 

HDI, shown in Equation 6, is the geometric mean of Income Index (II), Life Expectancy Index (LEI) and 

Education Index (EI), based in the aggregation of economic, health and education level of a country 

(UNDP, 2017). 

𝐻𝐷𝐼 = √𝐿𝐸𝐼 × 𝐼𝐼 × 𝐸𝐼
3

 (6) 

2.3 Decoupling Index 

The decoupling phenomena, has been most frequently graphically observed (Wiedmann et al., 2015), 

(Steinberger and Roberts, 2010). Nevertheless, the Decoupling Index (DI) (Wang, 2011), (Wu et al., 2018), 

is a crucial parameter that enables to compare the achievements of a single country over time, or to 

compare different countries with each other. The DI allows understanding how countries are reducing 

environmental burdens (in this case energy consumption) while increasing their development status. The 

difference between relative decoupling and absolute decoupling is especially important since the latter 

implies an energy reduction in absolute terms. The DIGDP has been a development from the well known 
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I=PAT formula (Wu et al., 2018), obtaining the final Equation 7; where g represents the average increase of 

GDP, and t represents the average decline rate of energy consumption per unit of GDP between the selected 

years (Supplementary Note 1 shows how the left side of Equation 7 is equal to the right side). 

𝐷𝐼𝐺𝐷𝑃 =
𝑡

𝑔
× (1 + 𝑔) =

𝛥 𝐺𝐷𝑃(%) − 𝛥 𝑇𝑃𝐸𝑆(%)

𝛥𝐺𝐷𝑃(%)
 (7) 

 

𝐷𝐼 =  𝐴𝑅𝐶𝑇𝐴𝑁(  
𝛥 𝐻𝐷𝐼(%)

𝛥 (
𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑃
) (%)

) (8) 

In this study, Equation 7 has been used as a reference to create Equation 8, replacing GDP by HDI and 

adding the population variable P, the DIHDI (referenced as DI) is achieved. The results have been calculated 

in degrees due to the differences between GDP and HDI. The use of degrees allows having a clearer visual 

range, since the HDI values have the maximum value of 1.0 whereas GDP does not present a specific 

maximum. Equation 8 shows how Figure 2 has been created, the increase of HDI and energy consumption 

have been included in percentage. 

 

 

Figure 2: Decoupling Index indicator between HDI and energy consumption.  

 

It must be clarified that Equation 8 results range, due to the use of ARCTAN, was originally from -90 to 

90, since the formula itself is not capable of distinguishing whether the variation of HDI or energy 

consumption is positive or negative on their own. Thus, in order to properly identify the negative or 
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positive symbols, Matlab has been used, generating a results range from -180 to 180 degrees (see 

Supplementary Note 2). Figure 2 (a) shows how the results have been identified in quadrants (Zhang et al., 

2017), and Figure 2 (b) shows how these quadrants have been converted into a linear visualization mode; 

this allows the comparison of the results of DI with a single vertical arrow according to TPES and TPEF 

data as shown later in Figure 3. Four different trends have been identified among countries shown in 

Figure 2 (c), according to the Decoupling Index methodology: 

c1. Absolutely decoupled countries (90 to 180º). Those who are reducing their TPES (or TPEF) and 

increasing their HDI. Figure 2(a) shows how the Absolute Decoupling Point (ADP) could be 

graphically identified in the annual series. ADP corresponds to the point after which energy 

consumption started reducing while still HDI is still increasing. (e.g. FRA: HDI +5%, TPEF -10%, 

DI 153º) 

c2. Relatively decoupled countries (45 to 90º). Those countries that need to increase their energy 

consumption to increase the HDI value, but the percentage of energy consumption increase is lower 

than the increased HDI percentage. (e.g. MOZ: HDI +39%, TPEF +7%, DI 80º) 

c3. Not decoupled countries (0 to 45º). Countries that need to increase their energy consumption at 

least in the same or greater percentage that the increase of the achieved HDI value. (e.g. NOR: HDI 

+3%, TPEF +11%, DI 17º) 

c4. Reduction of HDI (0º to -180º). In this case two different subsections could be distinguished. 

Firstly, there is a scenario where energy consumption increases, and secondly one where 

consumption decreases. This last situation might happen in cases such as wars or deep national crisis. 

Eventually, in high-developed countries, a momentary soft decrease of HDI could be justified in 

order to achieve planned energy reductions. (e.g. SYR: HDI -6%, TPEF -30%, DI -168º) 

3. Results 

Results have been divided into four subsections matching the specific aims of the study (Section 1.5). 

3.1 Decoupling Index as measured by TPES and TPEF 

The index has been calculated according to the methodology introduced in Section 2.3. Figure 3 shows that 

the Decoupling Index (DI) changes significantly in many countries when considering TPES or TPEF data. 

There is a general trend of decreasing the DI in most of the countries (93 countries out of 126 decrease their 

DI while 33 increase it). The number of absolutely decoupled countries have been reduced from 40 to 27, 

the number of relatively decoupled countries have been reduced from 29 to 17 and instead the amount of 

coupled countries have increase from 55 to 80 using TPEF account.  

This general trend to reduce the DI of countries when using TPEF accounts occurs due to an energy 

consumption increase in percentage in comparison with TPES accounts, while maintaining the same HDI 

gain. In high-income countries, even though the imported embodied energy has been generally slightly 

reduced since the Global Financial Crisis (GFC, or Great Recession) (Mazumder, 2018), is still higher than 

in 2000; and in low-income countries imported embodied energy has been slowly growing since 2000. 
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Thus, during the analysed time period, low-income countries and high-income countries in general have a 

worse Decoupling Index with TPEF accounts. Therefore, even if the sum of the TPES and TPEF of all 

countries is equal, same quantity of energy consumption is extracted from exporter countries to be 

relocated in importer ones; in the Decoupling Index, a there is not a balance between countries that 

increased and decreased the DI value when using TPEF accounts (Supplementary Figure 1).  

Countries that have an absolute decoupling within TPES, such as AUS, CAN, KWT, NLD, NOR, ROU, 

SVK, CHE and TJK, are coupled when using TPEF data; meaning that their consumption implies larger 

levels of energy than their production for the same level of HDI. Similarly, some countries that are shown 

to have a relative decoupling with TPES values, appear to be coupled under TPEF accounts, such as AZE, 

BWA, HRV, GHA, KEN, NPL, NZL, PRY, POL, MDA, SRB and YEM. Other countries, which are 

shown to be in absolute decoupling situation with TPES, are only relatively decoupled according to TPEF 

data, such as: DOM, FIN, LUX and UKR. 

On the other hand, a total of 33 out of 126 countries improved their DI value when using TPEF accounts. 

The highest variations occurred in 3 countries; BLR, which seems to be coupled according to TPES 

calculations, is absolutely decoupled; and MEX and MLT, which are relatively decoupled according to 

TPES measurements, are absolutely decoupled in TPEF terms. 

 

Figure 3: The arrows start in the DITPES and end in the DITPEF,, and both are calculated using consumption based accounts 

(CBA), during the 2000-2014 period. The red arrows show how in 93 countries (from the analysed 126 ones) TPEF reports a 

smaller DI than that offered by TPES data, and the green arrows show how in 33 countries the TPEF identifies a greater DI than 

that detected by TPES data.  

 

3.2 TPEF based Decoupling Index versus HDI 

Figure 4 shows the relation between the development level (in terms of HDI) and the achieved DI (based 

on TPEF accounts) in 2000-2014 split into four periods: 2000-2004, 2004-2008, 2008-2012, and 2012-

2014. It can be seen that every period follows a very different pattern.  

Noticeably, although decoupling is generally less present when TPEF data is used, successive years 

indicate increasing numbers of countries that are reaching the absolute decoupling (Figure 4 and Figure 5). 
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Nevertheless, some high-HDI countries, that have been absolutely decoupled during the first three periods, 

are not anymore decoupled during the last period (USA, DEU, DNK) (Figure 5). 

Intriguingly, it is remarkable that countries with extremely low HDI, have achieved temporary in periods 2 

and 3 (NER, YEM, ZWE, MOZ) (Figure 4). However, there are fewer less-developed countries that are 

absolutely decoupled during the last period or are able to maintain the decoupled trend long term. 

 

 

Figure 4: In this figure, DITPEF and its relation with HDI have been analysed. The main goal of this figure is to understand the 

general trends of countries, shown by the “dark” areas of the charts. As can be seen, in Period 1 the only “dark” area is in the 

dependent (red) zone, while in Period 3 and Period 4, new “dark” areas appear in the absolutely decoupled (green) zone. 

 

Figure 5 has been created by zooming into Figure 4 in order to better understand the countries that could 

serve as a reference for “best practice” countries, with an HDI value between 0.8 and 1.0 and a Decoupling 

Index between 90º and 180º, manifesting an absolute decoupling. 
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Figure 5: DI and HDI relation according TPEF accounts, during the four different periods. Exemplary countries (red) have been 

identified when at least in 3 periods have been able to maintain an absolute decoupling trend. 

 

 

Figure 5 shows that there is not a single country with a maintained absolute decoupling since 2000, and 

only 6 countries from the 126 analysed have an HDI above 0.8 and are manifesting a continuous absolute 

decoupling since 2004 (and also in average from 2000 to 2014): ESP, ITA, HUN, GBR, JPN and FRA. It 

could be understood that these countries are exemplary countries, which are achieving a maintained 

reduction of their energy consumption, while maintaining a gain in HDI. 

3.3 Time series performances 

Time series were developed for each of the 126 countries from year 2000 to 2014, and those for the six 

exemplary countries detected in the previous subsection have been shown in Figure 6, in order to better 

understand their dynamics. Has been found that, firstly, exemplary countries present more gradual and 

stable energy reductions during recent years, which were achieved in two ways: reducing energy 

consumption inside the country (observed from TPES curve) and reducing embodied energy consumption 

in goods and services imported from other countries (observed from TPEF curve), while increasing HDI. 

Hungary, Italy and Spain are the countries that have reached the major reductions in their TPEF values, 

with 29%, 30% and 33%, respectively.  

Secondly, all of the exemplary countries have been affected by the GFC increasing the reduction value of 

the TPEF from previous years. Nevertheless, all of them have been able to maintain the HDI increase 

tendency. This means that the crisis phenomena could be seen as an opportunity to reach reduction goals, 

rather than a risk, if it is properly managed (Schneider et al., 2010). 

Additionally, a large difference in consumption is observed when Absolute Decoupling Point (ADP) was 

reached, meaning that each country could find its own strategy in order to improve their current 

consumption levels (Figure6). France, Japan and the United Kingdom present the highest ADP value, with 
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60 to 65 MWh·cap
-1

·yr
-1

, and Hungary the lowest, with 36 MWh·cap
-1

·yr
-1

. Spain and Italy found the ADP 

at 48 MWh·cap
-1

·yr
-1

. 

Finally, a critical observation was made that all of the exemplary countries have a higher TPEF than TPES, 

meaning that all of them are net importers of energy embodied in goods and services. This means that 

achieving a decoupling could be harder for net embodied energy exporter countries (such as China or 

India). It has been observed that generally only 14.2 % of the absolutely decoupled countries are net 

embodied energy exporters, whereas from the relatively decoupled or coupled countries, net embodied 

energy exporters make up 41.2% and 41.3% respectively (Supplementary Table 2). This has been measured 

by comparing the obtained DITPEF and the corresponding Hidden Energy Flow (HEF, HEF = TPES/TPEF 1, 

(Akizu et al., 2017) (Akizu et al., 2018)) of each country (Supplementary Table 2). 

 

Figure 6: The consumed TPES and TPEF and the achieved HDI of the six exemplary countries during the 2000-2014 period. The 

Absolute Decoupling Point (ADP, green) has been highlighted in the TPEF line of each country. 

 

 

Figure 7 shows which industrial sectors (defined by the Eora database, Supplementary Table 1) present 

higher energy reductions in the exemplary countries. Direct electricity consumed at homes been included in 

the industrial sector 24 (“Private Households”). A sectorial divergence is notorious. While in some 

countries, such as HUN or GBR, reduction in “Private households” energy consumption has been 

significant (3-4%), in other countries, such as JPN or ITA, reductions in “Construction” sector have been 

more relevant (1-4%). “Electricity, Gas and Water” and “Petroleum, Chemical and Non-Metallic” sectors 

have notorious reductions in almost all the countries. It has been observed that “Transportation” sector has 

not any significant reduction in any of the exemplary countries. “Electrical and Machinery” sector has 

variations in reductions; JPN has been able to reduce the energy consumed in this sector, while the rest of 

the exemplary countries are increasing the energy consumption in it. Trade sectors have generally suffer a 

slight reduction, while “Financial and Business activities” have experienced a generally slight increase. 
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Figure 7: Percent increase or decrease of energy consumption by sector (according to TPEF accounts) from 2000 to 2014 for 

the six exemplary countries. 

 

 

3.4 Temporary or permanent decoupling 

In this subsection, countries that have manifested a temporary decoupling in one or more years have been 

identified. Figure 8 shows that from the 126 countries analysed, taking into account the TPEF values, 89 

have reached a permanent or temporary decoupling; from which 27 (as shown in Figure 3) are permanently 

decoupled and 62 have experienced a temporary decoupling. Temporary decoupling means that at least in 

one year have been able to reduce TPEF while increasing their HDI value. The TPEF value at which these 

countries have reach the temporary decoupling, is drastically different among countries. Some countries 

have been able to decouple with a TPEF inferior than 20 MWh·cap
-1

·yr
-1 

(especially in Africa), whereas 

others have decoupled with a TPEF superior than 180 MWh·cap
-1

·yr
-1

. Achieving a temporary decoupling 

– even if less relevant than achieving an average absolute decoupling –, reveals the possible 62 candidate 

countries that could be able to reach a maintained decoupling in the incoming years (Supplementary 

Figure 2 and Supplementary Figure 3).  

 

 

 

Figure 8: 89 countries have been temporarily or permanently decoupled during the 2000-2014 period according TPEF accounts. 
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4. Discussion: 

4.1 General discussion: 

In order to achieve global energy justice (Sovacool et al., 2016) and gain a global equal share of energy 

resources, most developed countries should reduce their current energy consumption (as explained 

Section 1). Nevertheless this reduction does not imply necessarily a reduction of citizen’s wellbeing. The 

possibility of meeting a decoupling between energy consumption and HDI allows countries to transit 

towards a low socio-environmental impact energy system. Furthermore, this could enhance a fair share of 

global energy resources among countries, boosting international energy justice. In this study, six countries 

have been identified (FRA, HUN, ITA, JPN, GBR, ESP), which are already experiencing the decoupling 

phenomenon in a maintained way. Until the present day, mainly the “degrowth movement”, recognised by 

the scientific community (Weiss and Cattaneo, 2017), has made clear proposals for reducing resources 

consumption in order to reach better global living standards. The energy degrowth proposal, due to the 

possibility of increasing development (welfare) while reducing energy consumption, has the potential to 

become an international energy transition strategy. 

In order to analyse DI, this study shows that consumption-based accounts must be used; since results are 

more complete than traditional TPES-based analyses. Only footprint-based accounts are able to reflect the 

current reality of the internationally globalised goods and services market. The use of TPEF data, instead of 

TPES, brings most of the analysed countries towards a more coupled situation between energy 

consumption and HDI. Calculations that have been carried out with TPES (Wu et al., 2018) are only able to 

offer an interesting but partial perspective of the energy consumption decoupling, generating a “virtual 

decoupling” in numerous countries (such as AUS, CAN, LUX, CHE, etc.). This study shows that footprint 

accounts need to be taken into account to avoid “virtual decoupling”, not only in developed countries, but 

even in non-developed ones. This is particularly significant when defining worldwide energetically 

exemplary countries to follow. 

As a positive result of the research, it has been noted that absolute decoupling has been permanently or 

partially achieved within very different energy consumption and HDI values by 89 countries (Figure 8). 

Absolute decoupling has been achieved from high-energy consumption countries as QAT, ISL and LUX 

(with a TPEF between 192-169 MWh·cap
-1

·yr
-1

and a HDI between 0.83-0.89), to low energy consumption 

ones as YEM, SEN and NER (with a TPEF between 4-2 MWh·cap
-1

·yr
-1

 and a HDI between 0.35-0.49). 

This gives an optimistic nuance to the incoming necessary energy transition process, meaning that 

regardless of the energy intensity of a country, there is room of improvement for energy consumption 

reductions in every national reality and maintain or increase the HDI. Furthermore, it could be observed in 

Figure 4, shows that more countries are able to reach an absolute decoupling in the last period (2012-2014) 

than previously, showing a clear international tendency to move towards lower energy consumption 

realities. 

This study shows that according to the analysed 126 countries, there is much left to do to trigger the 

necessary worldwide decoupling required to reach sufficient energy consumption reduction in developed 

countries, and boost the increase of HDI in less-developed ones to achieve the sustainable use of global 
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energy resources, with low socio-environmental impacts. Nevertheless, positive performances have been 

found, observing that more countries have been achieving important decoupling targets in recent years, 

especially between 2012 and 2014. 

 

4.2 Exemplary countries: 

Although achieving a temporary absolute decoupling can frequently occur, maintaining this tendency in the 

long-term, in order to clearly reduce the energy consumption of a country while increasing its HDI, has 

been found to be challenging. From the 126 countries analysed, only 27 have shown an average absolute 

decoupling during the total year gap of 2000-2014 (Figure 3), and only 6 of them, within the HDI above 

0.8, have shown a maintained absolute decoupling during the last three year gaps, 2004-2008, 2008-2012 

and 2012-2014 (Figure 4 and Figure 5). These exemplary countries show three relevant aspects.  

Firstly, the gradual energy reduction is a constant trend in most of them, avoiding drastic reductions. 

Energy reductions have been achieved inside the country boundaries (most probably due to the energy 

efficiency achievements: eco-efficiency and innovation), but also within the imported energy embodied in 

goods and services. Reached energy reductions during 14 years have been significant, and three of the 

exemplary countries (ESP, ITA, HUN) have been able to reduce around 30% of their TPEF. According to 

the sectorial distribution of reductions, achievements in the electric production sector have been notorious 

in all countries, as well as in the petrochemical sector. Reductions in the construction and the household 

sectors are also relevant in some countries. Thus, it is noticed that each country has its own strategy to 

reduce the TPEF, reducing energy consumption from significantly different economic sectors.  

Secondly, the GFC has positively impacted in the exemplary countries regarding this scope, provoking 

ulterior reductions in their energy consumption while still increasing the HDI value. This allows citizens to 

understand the crisis as an opportunity (Schneider et al., 2010). 

Finally, all of the exemplary countries are net embodied energy importers. This should be taken into 

account to improve international relations promoting the support to most industrial producer countries, 

enhancing their increase of HDI while maintaining low levels for their per capita energy consumption. The 

recognition of the current imports of embodied energy in goods and services is a key factor. Importer 

countries need to be aware of the privileges that this brings to them (such as to allow an easier decoupling 

between energy consumption and welfare), and fair economic payments for imported embodied energy 

should be promoted. Compensation systems, such as the ones developed in carbon footprints in global scale 

(Pezzey and Jotzo, 2013), (Meng et al., 2018) or in ecosystem services in a more national or regional scale 

(Reed et al., 2017), could be implemented in the energy field. 

 

5. Conclusions and Policy Implications 

In the current globalised market, with large amount of goods and service exchanges among countries, it is 

compulsory to take into account the energy embodied in trade if an integral energy consumption diagnosis 
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is desired. Countries can no longer understand their energy consumption accounts using TPES data directly 

drawn from the International Energy Agency database. Instead, TPES data needs to be complemented with 

TPEF calculations in order to avoid distortion of energy consumption pattern realities. 

Exemplary countries, the ones that have achieved a maintained decoupling among consumed energy and 

improved HDI, have developed it via gradual energy consumption reductions as opposed to drastic energy 

consumption reduction performances. These reductions could be achieved by two paths; firstly by 

enhancing the integration of eco-efficiency and innovation tools within national boundaries (in particular 

within the electricity, petrochemical, construction and private houses sectors), and secondly via supporting 

the reduction of imported energy embodied in products and services from other countries which in turn 

triggers energy sovereignty. Despite the lack of clearly identified environmentally sustainable and socially 

fair global energy threshold, most developing countries seem to have a margin to increase their energy 

consumption in order to increase their HDI. However, this increase could be supported and expedited by 

international collaborations with energy efficient standards across developing countries through Kyoto 

Protocol-type clean development mechanisms or technology transfers (UNEP, 1998). 

The study shows, that economic crises are an opportunity to gain decoupling. In all of the six exemplary 

countries, the 2009 Global Financial Crisis (GFC) enhanced their energy reduction while increasing their 

HDI. 

Net embodied-energy exporter countries have been found especially weak when trying to achieve a 

decoupling reality; thus, in order to create a global absolute decoupling trend, solidarity towards and 

collaboration with net embodied-energy exporter countries should be increased. Building upon the 

recognition of trade in embodied energy trade and on quantitative information on energy footprints, 

international cooperation on reducing global energy demand should be designed. 

This work contributes to “Goal 7” of SDG (UN, 2015), promoting insights to reach a sustainable energy 

system for all individuals. The work also contributes towards the achievement of “Goal 10” of the SDG, 

fostering the reduction of inequality among countries, and “Goal 12”, enhancing sustainable consumption 

patterns. 
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8. Supplementary Material 

Next supplementary figures, tables and notes have been added to support the better understanding of the 

study. 

 

Supplementary Note 1: The next validation shows how the original formula (left side of Equation 7) and the one used 

in this research to create Equation 8 (right side of Equation 7), are the identical. 

 

 

                                                                         

 

 

Supplementary Note 2: In order to offer the full quadrant range of answers to Equation 8, in the algorithm used in 

the calculations, ARCTAN limitations have been corrected using “if” commands in Matlab. This way authors were 

able to amplify the -90 to 90 results range to -180 to 180. The DI value was corrected as follows: 

 

if ANGLE ARCTAN<0  and  DELTA_HDI<0 

ANGLE ARCTAN = ANGLE ARCTAN +180; 

 

elseif ANGLE ARCTAN>0  and  DELTA_HDI<0 

ANGLE ARCTAN = ANGLE ARCTAN -180; 
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Supplementary Table 1: Matching between TPES data obtained form International Energy Agency (IEA) and Eora 

Database 26 sectors to create the TPES satellite data.  

Sector 

number 

(Eora) 

Sector Description (Eora) 

Sector matching (IEA) 

Final Consumption IEA Losses IEA 

1 Agriculture L_82: Agriculture/forestry - 

2 Fishing L_83: Fishing - 

3 Mining and Quarrying L_63: Mining and quarrying - 

4 Food & Beverages L_64: Food and tobacco - 

5 Textiles and Wearing 

Apparel 

L_68: Textile and leather - 

6 Wood and Paper L_65: Paper, pulp and print 

L_66: Wood and wood products 

- 

7 Petroleum, Chemical and 

Non-Metallic Mineral 

Products 

L_58: Chemical and petrochemical 

L_59: Non-ferrous metals 

L_60: Non-metallic minerals 

L_26: Coke ovens (transf.) 

L_27: Patent fuel plants (transf.) 

L_29: Oil refineries (transf.) 

L_30: Petrochemical plants (transf.) 

L31: Coal liquefaction plants (transf.) 

L_34: Charcoal production plants (transf.) 

8 Metal Products L_57: Iron and steel L_24: Blast furnaces (transf.) 

9 Electrical and Machinery L_62: Machinery - 

10 Transport Equipment L_61: Transport equipment - 

11 Other Manufacturing L_69: Non-specified (industry) - 

12 Recycling - - 

13 Electricity, Gas and Water 

- 

L_15: Main activity producer electricity plants (transf.) 

L_16: Autoproducer electricity plants (transf.) 

L_17: Main activity producer CHP plants (transf.) 

L_18: Autoproducer CHP plants (transf.) 

L_19: Main activity producer heat plants (transf.) 

L_20: Autoproducer heat plants (transf.) 

L_21: Heat pumps (transf.) 

L_22: Electric boilers (transf.) 

L_23: Chemical heat for electricity production (transf.) 

L_36: Energy industry own use 

L_54: Losses 

14 Construction L_67: Construction L_28: BKB/peat briquette plants (transf.) 

19 Transport L_70: Transport -  

15 Maintenance and Repair 

L_81: Commercial and public 

services (Proportionally divided 

according to the Eora 26 “Z” 

matrix). 

- 

16 Wholesale Trade 

17 Retail Trade 

18 Hotels and Restaurants 

20 Post and 

Telecommunications 

21 Financial Intermediation and 

Business Activities 

22 Public Administration 

23 Education, Health and Other 

Services 

24 Private Households L_80: Residential - 

25 Others L_84: Non-specified (other) 

L_85: Non-energy use 

L_12: Transfers 

L_13: Statistical differences 

26 Re-export & Re-import - - 

TOTAL 100 % 100 % 
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Supplementary Figure 1: Example of how the Decoupling Index (DI) decreases in embodied energy exporter 

countries (CHN) and embodied energy importer countries (AUS). In both of them, the DI is lower when TPEF 

accounts are considered instead of TPES ones. This occurs due to a higher percentage increase of energy use within 

TPEF accounts between 2000 and 2014. The figure shows how countries are net embodied energy importers or 

exporters (a) and how the percentage difference in energy increase is greater in both countries (b) with footprint 

accounts. 

 

 

 

 

 

 

Supplementary Figure 2: 89 countries experienced temporary or permanent decoupling between the year 2000 and 

2014. The year that the decoupling was reached is shown in the figure above. 
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Supplementary Figure 3: The 89 temporarily and permanently decoupled countries (exemplary countries in black 

lines) ordered from left to right according the higher TPEF where decoupling was achieved (in vertical axis Y1). A 

line has been traced in the value of 0.8 HDI, which is understood as the bottom limit of high HDI according to UNDP. 

To the left of the line, countries with a higher decoupling than 35 MWh·cap
-1

·yr
-1

 can be found. In order to better 

understand the characteristics of the 89 decoupling countries, HDI data (in vertical axis Y2) has been disaggregated 

in Life Expectancy Index (LEI, purple), Education Index (EI, green) and Income Index (II, orange). It is observed that 

while the high II levels of high-TPEF consumer countries are able to maintain their decoupling trend, the low EI 

(below 0.7) of some high-TPEF countries might make sustained decoupling difficult. On the contrary, high LEI of 

some medium-low TPEF countries might support their capacity to achieve sustained decoupling. 

 

Supplementary Table 2: Decoupling Index values (DITPES  and DITPEF ) during the 2000-2014 year period by 

country and country codes. Countries have been listed from greatest to lowest according their DITPEF , from the most 

absolutely decoupled country to the most coupled ones, and lastly the ones where HDI has been reduced. In the 

rightmost column, Hidden Energy Flow (HEF) has been added (HEF =TPEF/TPES-1), which shows the percentage 

increase/reduction of energy that countries display if imported energy embodied in goods and services is taken into 

account (Akizu et al., 2017). Absolute decoupled countries have been identified in green, relatively decoupled ones in 

orange, coupled countries in red and countries whose HDI value has decreased in grey. Negative HEF countries have 

been marked yellow. 

 

Country Code 
DI_TPES 

(2000-2014) 
DI_TPEF 

(2000-2014) 
HEF 

(Average 2000-2014) 

Bahrain BHR  162.89   168.73  -23% 

Belgium BEL  171.55   168.30  -3% 

USA USA  164.25   164.68  14% 

UAE ARE  167.92   163.76  4% 

Jamaica JAM  167.17   160.55  20% 

Israel ISR  129.90   157.16  42% 

UK GBR  169.69   156.66  50% 

Japan JPN  160.31   156.56  30% 

Cyprus CYP  164.55   155.57  70% 

Italy ITA  162.12   155.33  30% 

France FRA  155.50   152.88  19% 

Uzbekistan UZB  150.93   150.73  -8% 

Portugal PRT  153.92   150.12  34% 

Ireland IRL  162.83   150.01  36% 

Greece GRC  152.34   148.79  62% 

Spain ESP  158.89   146.47  23% 

Zimbabwe ZWE  123.56   145.56  -13% 

Jordan JOR  117.83   145.55  23% 

Malta MLT  62.74   136.92  75% 

Germany DEU  135.90   134.49  12% 

Denmark DNK  158.18   131.12  52% 

Cameroon CMR  134.38   130.81  7% 
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Philippines PHL  127.84   130.25  3% 

Sweden SWE  153.51   129.10  5% 

Hungary HUN  122.86   108.89  9% 

Mexico MEX  71.57   99.02  5% 

Cuba CUB  129.54   97.54  14% 

Ethiopia ETH  85.58   86.77  -22% 

Mozambique MOZ  78.80   80.44  5% 

Luxembourg LUX  155.17   78.79  64% 

Zambia ZMB  78.74   77.99  3% 

Dominican 
Republic DOM  143.77   77.40  8% 

Belarus BLR  42.21   74.48  -81% 

Pakistan PAK  77.69   73.36  -10% 

Togo TGO  61.03   68.92  1% 

Niger NER  66.41   67.22  16% 

Tanzania TZA  57.69   66.54  -2% 

El Salvador SLV  112.57   64.53  23% 

Ukraine UKR  142.38   62.35  -21% 

Slovenia SVN  87.28   59.62  5% 

Senegal SEN  67.17   50.36  18% 

Venezuela VEN  71.32   49.65  -4% 

Angola AGO  55.48   49.18  5% 

Finland FIN  102.31   45.99  -8% 

Austria AUT  50.28   43.92  31% 

Azerbaijan AZE  68.62   41.63  -8% 

Kenya KEN  56.34   40.76  11% 

Nepal NPL  49.53   40.51  7% 

Croatia HRV  88.91   39.91  20% 

DR Congo COD  41.70   39.88  4% 

Canada CAN  125.90   39.09  -3% 

Switzerland CHE  155.02   38.06  80% 

Slovakia SVK  136.21   37.87  22% 

Botswana BWA  50.11   37.35  88% 

Ghana GHA  86.61   37.20  2% 

Serbia SRB  74.92   35.50  7% 

Singapore SGP  50.11   35.44  131% 

Cambodia KHM  36.16   35.01  10% 

Czech Republic CZE  105.72   32.97  -1% 

Nicaragua NIC  30.27   32.49  15% 

Bolivia BOL  17.18   32.04  -8% 

Benin BEN  26.15   31.40  7% 

Myanmar MMR  41.17   30.82  -3% 

Cote dIvoire CIV  19.30   29.72  -14% 

Tunisia TUN  22.66   28.13  5% 

Bulgaria BGR  53.54   27.72  -21% 

Netherlands NLD  150.31   26.95  13% 

Paraguay PRY  51.74   26.63  29% 

Morocco MAR  25.84   26.13  -7% 

Turkey TUR  28.35   26.01  26% 

India IND  25.10   25.79  -5% 

Guatemala GTM  24.04   25.68  12% 

South Africa ZAF  27.54   25.25  -16% 

Poland POL  52.75   24.01  8% 

Yemen YEM  62.21   23.46  -1% 

Indonesia IDN  34.00   23.17  -10% 

Romania ROU  96.40   22.66  0% 

Russia RUS  34.40   22.25  -17% 

Mauritius MUS  27.26   22.16  75% 
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South Korea KOR  16.70   21.75  0% 

New Zealand NZL  60.55   19.53  8% 

Argentina ARG  18.50   19.19  3% 

Egypt EGY  17.09   19.10  1% 

Namibia NAM  19.19   18.48  79% 

Bangladesh BGD  20.82   18.03  4% 

Honduras HND  19.98   17.58  7% 

Brazil BRA  14.56   17.51  1% 

Colombia COL  43.70   17.51  31% 

Norway NOR  139.48   16.86  30% 

Sri Lanka LKA  36.20   15.96  0% 

Iceland ISL  7.05   15.88  -9% 

Panama PAN  18.01   15.71  35% 

Estonia EST  16.08   15.52  5% 

Albania ALB  21.04   15.12  28% 

Lithuania LTU  34.47   14.75  36% 

Chile CHL  24.35   14.68  -4% 

Tajikistan TJK  100.01   14.00  -1% 

Latvia LVA  21.70   13.84  37% 

Kazakhstan KAZ  10.51   13.82  -14% 

Algeria DZA  16.29   13.61  -32% 

Iran IRN  14.54   13.23  0% 

Ecuador ECU  20.37   12.34  13% 

Armenia ARM  15.28   12.33  18% 

Saudi Arabia SAU  16.39   11.72  -8% 

Costa Rica CRI  13.04   11.48  22% 

Moldova MDA  45.37   11.25  -71% 

Congo COG  8.29   10.14  12% 

Thailand THA  10.85   9.90  -14% 

Australia AUS  140.74   9.80  13% 

Mongolia MNG  16.38   9.44  -14% 

Oman OMN  8.64   9.38  -25% 

Viet Nam VNM  10.21   9.28  -10% 

Georgia GEO  9.84   9.21  35% 

Haiti HTI  8.99   9.14  3% 

China CHN  9.26   8.85  -14% 

Kyrgyzstan KGZ  17.28   8.41  -2% 

Malaysia MYS  11.90   8.30  -28% 

Uruguay URY  8.27   8.08  45% 

Peru PER  8.04   6.57  17% 

Qatar QAT  83.22   5.63  -23% 

Gabon GAB  4.36   5.40  6% 

Kuwait KWT  138.41   5.15  13% 

Trinidad and 
Tobago TTO  5.93   4.28  -50% 

Iraq IRQ  13.74   3.46  -7% 

Syria SYR -171.36  -168.37  -13% 

Libya LBY -145.06  -175.20  -42% 
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