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1  | INTRODUC TION

Fisheries are expected to satisfy an increasing proportion of 
global protein demand in the future, but can only do this if man-
aged sustainably (Barange et al., 2018; Merino et al., 2012). This is 
a considerable challenge given human population growth and the 
projected increase in food demand (Tilman & Clark, 2014). Wild 

fisheries support industrial and traditional livelihoods worldwide, 
from domestic subsistence artisanal fishing (Golden et al., 2016), to 
highly technological industrial fleets operating across jurisdictional 
boundaries (Lopez, Moreno, Sancristobal, & Murua, 2014). Managing 
international fisheries sustainably is difficult given the complexity 
of marine governance, exclusive economic zones (EEZs) and inter-
national agreements (Miller, 2007). Climate change is posing an 
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Abstract
There is broad evidence of climate change causing shifts in fish distribution world-
wide, but less is known about the response of fisheries to these changes. Responses 
to climate-driven shifts in a fishery may be constrained by existing management or 
institutional arrangements and technological settings. In order to understand how 
fisheries are responding to ocean warming, we investigate purse seine fleets target-
ing tropical tunas in the east Atlantic Ocean using effort and sea surface temperature 
anomaly (SSTA) data from 1991 to 2017. An analysis of the spatial change in effort 
using a centre of gravity approach and empirical orthogonal functions is used to as-
sess the spatiotemporal changes in effort anomalies and investigate links to SSTA. 
Both analyses indicate that effort shifts southward from the equator, while no clear 
pattern is seen northward from the equator. Random forest models show that while 
technology and institutional settings better explain total effort, SSTA is playing a 
role when explaining the spatiotemporal changes of effort, together with manage-
ment and international agreements. These results show the potential of management 
to minimize the impacts of climate change on fisheries activity. Our results provide 
guidance for improved understanding about how climate, management and govern-
ance interact in tropical tuna fisheries, with methods that are replicable and trans-
ferable. Future actions should take into account all these elements in order to plan 
successful adaptation.
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additional burden on fisheries management by affecting abundance, 
phenology and causing distribution shifts of fish stocks across ju-
risdictional boundaries (Free et al., 2019; Poloczanska et al., 2016; 
Young et al., 2019). These impacts have a range of implications for 
fisheries management (Pinsky et al., 2018). As transboundary fisher-
ies become more common with climate change, fisheries can face 
access problems due to the relatively slow speed of negotiations 
and changes to management agreements (McIlgorm et al., 2010). 
Existing projections of marine biodiversity, global catch potential 
and fisheries revenues under climate change predict significant im-
pacts, with biodiversity of marine species decreasing in the tropics 
(García Molinos et al., 2015), a re-distribution of the catch potential 
globally (Cheung et al., 2010) and increases in revenues in northern 
latitudes as lower latitudes face reduction in profits (Lam, Cheung, 
Reygondeau, & Sumaila, 2016). These impacts are expected to affect 
heavily the people depending on marine resources for their liveli-
hoods (e.g. Barange et al., 2018; Bell et al., 2013; Young et al., 2019).

Tuna fisheries are among the fisheries with greatest impor-
tance for economies and societies worldwide, targeting some of the 
world's commercially most valuable fish species. Tuna production 
increased from <0.6 million tons in 1950 to 7.7 million tons in 2014 
(FAO, 2018). Among tuna species, tropical tunas, that is, Skipjack 
tuna (SKJ) (Katsuwonus pelamis, Scombridae), Yellowfin tuna (YFT) 
(Thunnus albacares, Scombridae) and Bigeye tuna (BET) (Thunnus 
obesus, Scombridae) account for the highest catches, making up 
for about 75% of tuna and tuna-like global catches (FAO, 2018). 
These species are expected to be affected by anthropogenic climate 
change (Muhling et al., 2015), shifting their distribution, migration 
times, physiological rates and abundance with consequences for 
catchability to fisheries (Báez, Pascual-Alayón, Ramos, & Abascal, 
2018; Brill & Hobday, 2017). Due to the migratory nature of these 
species, some tuna fisheries operate over large spatial scales and 
multiple jurisdictions, utilizing fishing agreements to access EEZs, 
and with significant fishing activity in the high seas (Mullon et al., 
2017). The importance of these fisheries for economies and liveli-
hoods, together with the transboundary nature of the stocks and 
management, and the threat of climate change to tropical tuna spe-
cies make it crucial to understand the challenges regarding future 
sustainability. Moreover, the interactions between management in-
stitutions, international agreements and climate-driven changes in 
the tropical tuna fisheries need to be understood to plan effective 
adaptation to climate change.

Considerable effort has been expended on projecting tropi-
cal tuna fisheries activity under climate change scenarios (Asch, 
Cheung, & Reygondeau, 2018; Dell, Wilcox, Matear, Chamberlain, & 
Hobday, 2015; Lehodey et al., 2017; Michael, Wilcox, Tuck, Hobday, 
& Strutton, 2017; Yen, Su, Teemari, Lee, & Lu, 2016), but there is 
still little evidence showing impacts of climate change on the activ-
ity of fleets targeting tropical tunas (Monllor-Hurtado, Pennino, & 
Sanchez-Lizaso, 2017) or the consequences for dependent societies, 
economies and fisheries governance (Dueri et al., 2016; McIlgorm 
et al., 2010; Mullon et al., 2017). Regarding institutions, mainly 
two Regional Fisheries Management Organizations (RFMOs) take 

into account climate change considerations (i.e. the Inter-American 
Tropical Tuna Commission and the Commission for the Conservation 
of Southern Bluefin Tuna; Gutierrez, 2016). The International 
Commission for the Conservation of Atlantic Tunas (ICCAT) is in-
creasingly taking into consideration climate change, although mostly 
for the western Bluefin tuna stock assessment (Hobday et al., 2019). 
As with other food production sectors, integrating biophysical infor-
mation together with social and economic factors is important when 
developing management response options to climate change.

Here, we investigate evidence of climate change affecting the 
recent distribution of tropical tuna fisheries using time series anal-
yses of effort data. Then, we explore the role of technological and 
institutional actions associated with the distribution shifts, including 
the existing international agreements and management regulations. 
We focus on the east Atlantic Ocean, where a number of fleets op-
erate. Our goal is to improve the understanding about how climate, 
management and governance interact in tropical tuna fisheries, with 
methods that are replicable and transferable.

2  | MATERIAL S AND METHODS

Effort data from the ICCAT and sea surface temperature anomaly 
(SSTA) data have been used to evaluate whether climate change is 
impacting the effort distribution of purse seine (PS) fisheries oper-
ating in the east Atlantic Ocean. An analysis of the spatial change 
in effort distribution is conducted using a centre of gravity (COG) 
approach. Empirical orthogonal functions (EOFs) are used to assess 
the spatiotemporal changes in effort anomaly (effortA) and SSTA. 
These functions generate spatial patterns and time series of effort 
and temperature that are correlated. Finally, random forest mod-
els are used to explore the influence of management, institutional 
agreements and technological changes on the effort. All analyses are 
performed using R software (version 3.5.1; R Core Team, 2018). R 
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scripts for replication are available in GitHub/irrubio/tropituna_fish-
ery_change (see the workflow of scripts in Figure S1).

2.1 | Tropical tuna fisheries data

Monthly effort (fishing hours) and catch data of all PS fisheries tar-
geting tropical tunas from 1991 to 2017 in the Atlantic Ocean were 
downloaded from the ICCAT website (ICCAT, 2018). This PS data-
base is at a 1 by 1 degree resolution. For our analysis, PS data were 
limited to the eastern Atlantic Ocean (29°N, 30°S, 19°E, 35°W). 
Effort data were aggregated by summing to 5 by 5 degrees and also 
by quarter to keep the representativeness of the data in the study 
area for the EOF analysis. Then, effortA was calculated by subtract-
ing the quarterly mean over the entire data period from the data 
(Benestad, Hanssen-Bauer, & Chen, 2008; Bjornsson & Venegas, 
1997). Quarterly effort was also calculated at 1 by 1 resolution by 
summing for the COG analysis.

In this study, we assume that the location of the reported fish-
ing effort represents the distribution of the fleet activity (Davies, 
Mees, & Milner-Gulland, 2014). Our main objective is to understand 
any fleet activity distribution response to climate change. Previous 
studies have considered catch and catch per unit effort (CPUE) spa-
tial changes, using these variables as proxies for abundance. These 
studies are, however, not free from caveats, especially for PS fisher-
ies (see in Kaplan et al., 2014 and Tidd, Brouwer, & Pilling, 2017). In 
a preliminary analysis, we found evidence of distributional changes 
in the fishery based on catch and CPUE data (calculated as the 
weight [t] caught by operation mode per fishing hour), but PS CPUE 
is not considered a good proxy for abundance (Kaplan et al., 2014; 
Maunder et al., 2006). To test for any relationship between catch/
CPUE and abundance, we correlated estimated yearly biomass by 
the ICCAT Standing Committee on Research and Statistics (SCRS) 
with yearly catch/CPUE on fishing aggregation devices (FADs) 
and free schools of YFT and BET (SKJ biomass data are nowadays 
unavailable from the SCRS). Only YFT catch data on free schools 
were significantly correlated with abundance, as catches or CPUE 
on FADs did not follow (and were decoupled from) biomass trends 
(Figures S2 and S3); and BET correlations between catch/CPUE and 
estimated biomass were non-significant. However, we were unable 
to use YFT catch location when fishing on free schools as a proxy 
for YFT distribution since the data were too patchy to allow the EOF 
analysis. For all these reasons, we conducted the final analysis with a 
focus on the distribution of fishing effort.

2.2 | Sea surface temperature anomaly data

To describe environmental change, we used monthly Kaplan SST V2 
anomaly data from 1856 to 2017 with a spatial resolution of 5 by 
5 degrees (NOAA/OAR/ESRL.PSD, 2018), which were aggregated 
by quarter by averaging for the study period and area. These SST 
anomalies are based on the 1951–1980 time period. We used 5 by 

5 degree resolution to match effort resolution for the EOF analysis. 
While this coarse resolution does not permit analysis of environ-
mental features (e.g. eddies or fronts), we are seeking to understand 
large scale shifts linked to highly mobile fleets targeting highly mi-
gratory species. We used the data from 1856 to 2017 to show the 
long-term change in SSTA in the study region (Figure 1); however, for 
the rest of the analysis, we matched SSTA and effort data temporal 
scales, that is 1991–2017.

2.3 | Institutional and technological data

In order to investigate the role of technological and institutional ac-
tions in the effortA distribution shifts, we collected information on 
PS institutional arrangements, management regulations and tech-
nological change in the study region over the period 1991–2017. 
The European Union has public Sustainable Fisheries Partnership 
Agreements (SFPAs) with African countries that allow European 
vessels to enter EEZs of those countries. These agreements could 
have had an impact on the fishery distribution since European PS 
represents 56% of the PS tropical tuna catch in the study area (cal-
culated from the database used in 2.1). We focused on two variables, 
the number of vessels allowed to enter a specific EEZ by SFPA and 
the total number of SFPAs in the region by quarter. Data until 2012 

F I G U R E  1   Sea surface temperature anomaly (SSTA) in the study 
area from 1856 to 2017 (a) and total effort in fishing hours by all 
purse seine (PS) fleets in the study area from 1991 to 2017 (b). 
SST anomalies are based on the 1951–1980 time period. The blue 
line represents a linear regression fitted to the SSTA data (p < .05). 
The red line represents SSTA in the study period 1991–2017 (see a 
detailed view of SSTA data for 1991–2017 in Figure S5)
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were obtained from Le Manach et al. (2013), and for 2012 to 2017 
from the web-based sources and agreements/protocols of European 
databases (European Commission, n.d.; European Union, n.d.). 
Unfortunately, information on private agreements is not available 
publicly and we were not able to include it in the analysis.

The ICCAT is the management body that establishes fishing reg-
ulations, including Total Allowable Catches (TACs) that apply in the 
region. We compiled information on the different management and 
conservation policies taken by the ICCAT to preserve tuna fisher-
ies in good status (not overfished). Management actions by quarter 
were extracted from ICCAT official recommendations available on 
the website (ICCAT, n.d.), which include information on TACs when 
set (i.e. presence or absence of a TAC as a binomial variable), as well 
as fishing time–area closures (presence or absence of a closure as a 
binomial variable).

Tropical tunas are targeted by some fleets that employ advanced 
technologies including FADs with echo-sounder buoys. These fleets 
have modernized substantially over the time period considered, and 
changes in technology may impact effort. To represent FAD fishing 
patterns, that is technological change, catch proportion on FADs by 
quarter (%, all species included) was calculated between 1991 and 
2017, using the ICCAT database from 2.1.

2.4 | Distribution change analysis

To capture the spatial patterns of the PS tropical tuna fishery and to 
investigate year-to-year variations, the latitudinal COG of the effort 
is calculated every year. The COG represents the mean location of 
the effort (Saraux et al., 2014). We consider annual COG north and 
south of the equator separately to check for poleward expansion in 
each hemisphere. The COG is calculated using Equation (1),

where n is the number of fishing sets, efforti is the effort in the ith set 
and latitudei is the latitude of the ith set. A linear regression is used to 
evaluate trends over time in COG in each hemisphere, and COG is also 
correlated (Pearson) to SSTA.

2.5 | Temperature and effort distribution analysis

To further assess the variability of the tropical tuna fishery distri-
bution over time and its relationship with SSTA, we apply empirical 
orthogonal functions (EOFs) to the quarterly PS effort anomaly data 
(effortA) (Bjornsson & Venegas, 1997; Preisendorfer, 1988) and the 
quarterly SSTA. We use the “sinkr” package in R (version 0.6; Taylor, 
2017). The EOFs are found by computing the eigenvalues and eigen-
vectors of the effortA or SSTA covariance matrix. The derived eigen-
values provide a measure of the per cent variance explained by each 
mode of variability. Then, the most informative EOFs are identified, 

and temporal and spatial structures investigated. However, the vari-
ance of effortA or SSTA is not equal at all gridpoints; therefore, the 
“local” explained variance (LC) is also calculated using Equation (2).

which is equivalent to the fraction of variance expressed by the ith EOF 
at each jth grid point over the total variability reconstructed by the 
leading kmax EOF (Ganzedo, Alvera-Azcárate, Esnaola, Ezcurra, & Sáenz, 
2011). λi represents the eigenvalue of the covariance matrix associated 
with the ith eigenvector ei. This analysis does not allow for missing 
data, thus, effortA is reconstructed by means of the Data Interpolating 
Empirical Orthogonal Functions method (DINEOF) (Beckers, Barth, & 
Alvera-Azcárate, 2006), which has already been applied to the ICCAT 
dataset and validated by Ganzedo, Erdaide, Trujillo-Santana, Alvera-
Azcárate, and Castro (2013). Spatiotemporal time series with <25% of 
missing data were selected for reconstruction (Ganzedo et al., 2013). In 
total, the dataset for EOF analysis has 26 spatial series each with 108 
time values (quarters from 1991 to 2017).

The advantage of performing an EOF analysis is that a small num-
ber of leading EOF can explain a large fraction of the total variance 
of the whole dataset, as other studies applied to fish ecology and 
fisheries science have found (Marshall et al., 2016; Petitgas, Doray, 
Huret, Masse, & Woillez, 2014; Saraux et al., 2014). Then, posterior 
testing can be done to see whether a relationship exists between 
effortA and SSTA by performing Pearson correlations between the 
EOF temporal structures of effortA versus SSTA. This methodology 
takes into account the entire spatiotemporal structure of the data-
sets (including latitude and longitude) which is not possible with the 
previous COG analysis.

2.6 | Institutional and technological analysis

Two random forest models are used to evaluate the influence of 
management, international agreements and technology on the ef-
fort and the temporal structure resulting from the EOF analysis of 
the effortA compared with other variables (e.g. SSTA) using the 
“randomForest” package in R (version 4.6-14; Liaw & Wiener, 2002). 
This method has been previously applied in fisheries research (e.g. 
Melnychuk, Banobi, & Hilborn, 2013; Pons et al., 2017) and allows 
for non-linear relationships between predictors and a response vari-
able without making any parametric assumptions about the distribu-
tion of the response variable. Random forests (Breiman, 2001) are 
an ensemble method, which build a selected number of regression 
trees (m) from a boostrap sample of the original data set. Kuhn and 
Johnson (2013) suggest using at least 1,000 trees that in our case 
are adequate to stabilize the mean squared error (MSE) of the model. 
For each regression tree, a set of predictors (mtry) are randomly se-
lected from the original predictors at a given node. We use the de-
fault value of mtry, which is equal to a third of the predictor variables 
(Liaw & Wiener, 2002). The best predictor is then determined, and 

(1)COG=

∑n

i=1
latitudei ∗efforti
∑n

i=1
efforti

,

(2)LC=
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�i

∑kmax

k=1
�ke

2
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the data split in two groups such that the overall sum of squared 
errors is minimized (Kuhn & Johnson, 2013). This process continues 
until a tree is built, and multiple predictor variables can be shown to 
influence the response variable. We present from the analysis a vari-
able importance plot for visualizing the percentage of increase in the 
MSE (%IncMSE) when variables are randomly permuted, which gives 
a measure of how influential each considered predictor variable is 
on predicting the response variable. We also include the results of 
partial dependence plots that provide insight into the directionality 
of the effect for a given predictor (Berk, 2008). Before conducting 
random forest, predictors were tested for collinearity using general-
ized variance inflation factors (Fox & Monette, 1992), which were 
<6.0 suggesting little possibility of confounding among the predictor 
variables (Zuur, Ieno, & Elphick, 2010).

In our two random forest models, the response variables are the 
quarterly effort in fishing hours and the quarterly temporal struc-
ture (PC1) resulting from the EOF analysis of effortA (effort: con-
tinuous, mean ± SD [26,559 ± 7,361], range [10,972–43,494]; PC1 
effortA: continuous, mean ± SD [0.0 ± 2.2], range [−5.7 to 6.7]). The 
predictors are listed and described in Table 1.

3  | RESULTS

Records of SSTA in the study region show a statistically significant 
increasing trend over the period 1856 to 2017 (Figure 1a), where 
SSTA has increased by 0.82°C. Total effort progressively decreases 
after 1999 but increases again after 2009 (Figure 1b). Changes in the 
distribution of the fishery over time only follow a clear pattern for 
the southern COG of effort (Figure 2), which significantly shifts to-
wards southern latitudes from the equator between 1991 and 2017 
(p < .05) and correlates with SSTA with a Pearson r coefficient of 

−0.3 (p < .05). When the SSTA is higher, the COG shifts south. The 
northern COG of effort does not follow any clear distribution trend 
over the study period and area (Figure 2) and does not correlate with 
SSTA.

In order to further explore changes in distribution and any rela-
tionship with temperature, we performed an EOF analysis on SSTA 
and effortA and then examined the correlation between the result-
ing temporal structures (Figure 3; see uncorrelated structures of 
second and third leading EOF in Figure S4). The first leading EOF of 
the SSTA accounts for 70% of the data variance and the first leading 
EOF of the effortA for 19% (Figure 3). Correlation between the EOF 
temporal structure of SSTA and effortA is significant (p < .05), with a 
Pearson r coefficient of 0.5.

Examination of the “local” explained variances shows that the 
highest reconstructed local explained variance of the first tempera-
ture anomaly EOF is concentrated in equatorial waters of the study 
area (Figure 3a). The spatial structure is quite homogeneous since 
all waters behave in a similar way (pink colour, Figure 3a). For years 
when the temporal structure or principal component (PC) is posi-
tive (e.g. 2016–2017 in Figure 3a), warming is observed in the whole 
study area, particularly in waters closer to the equator. In addition, 
the first EOF of effortA shows a different spatial pattern (Figure 3b). 
In general, the effortA in central west equatorial waters and waters 
off Senegal behaves in the opposite way to the effortA in south-
ern waters and waters between 5° and 10°N. This means that when 
the PC of effortA is positive (e.g. 2016–2017 in Figure 3b), effort 
increases in the pink-pixel waters and decreases in the black-pixel 
waters (Figure 3b). Pixels must be interpreted with caution due to 
large variation in local explained variance (e.g. range 0%–88%). If 
we spatially link SSTA to effortA, which correlate positively for the 
temporal EOF structure, effort shifts from central west equatorial 
waters and waters in front of Senegal towards southern waters of 

Predictor Description Mean ± SD Range (min–max)

SSTA Continuous. The quarterly sea surface 
temperature anomaly mean in degrees

0.4 ± 0.2 −0.2 to 1.1

quarter Factor. Quarter when the data were 
recorded. 1: January to March; 2: April to 
June; 3: July to September, 4: October to 
December

– 1–4

FAD_prop Continuous. The quarterly proportion of 
total catch (all species included) on FADs 
representing the major technological 
changes in %

62.5 ± 15.8 25.9–91.7

TAC Binomial factor. Is there a total allowable 
catch established? Yes (1)/ no (0)

– 0–1

closure Binomial factor. Is there time-area closure 
established? Yes (1)/ no (0)

– 0–1

agr_num Continuous. Agreement number, number 
of Sustainable Fisheries Partnership 
Agreements (SFPAs) in place by quarter

8 ± 2 4–10

agr_vessel Continuous. Vessel number allowed by 
SFPAs in place by quarter

31 ± 4 25–41

TA B L E  1   Predictor variables of the 
random forest models, note that the 
response variables are the effort and the 
quarterly PC1 of effort anomaly resulting 
from the empirical orthogonal function 
analysis
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the study area and waters between 5° and 10°N when the PC of 
SSTA is positive and vice-versa. Therefore, with warmer waters (e.g. 
as a result of climate change), effort shifts southeastwards from cen-
tral west equatorial waters of the study area and towards waters 
between parallel 5° and 10° north latitude.

A relationship between the first component of the temporal struc-
tures (PC1) of effortA and SSTA has been found by means of the EOF 
analysis and posterior correlation, which partially explains spatio-
temporal shifts of the PS fishery. The southern COG of effort also 
correlates with SSTA. To evaluate the influence that management, in-
stitutional agreements and technology have on the trends of the PC1 

effortA and effort compared with other variables (e.g. SSTA), a ran-
dom forest model was fitted to the PC1 effortA explaining 59% of the 
data variance, as well as to effort, explaining 60% of the data variance. 
The variables with the largest percentage of increase in the mean 
squared error are the most important predictors, which are the num-
ber of vessels allowed by SFPAs (agr_vessel), SSTA and the presence/
absence of a TAC in the case of PC1 effortA (Figure 4a) and technol-
ogy represented by the proportion of catch on FADs and agr_vessel 
in the case of effort (Figure 4b). The partial dependence plots for 
the most important predictors of PC1 effortA (Figure 5a) and effort 
(Figure 5b) show that PC1 effortA is positive with a higher number 

F I G U R E  2   Latitudinal north (blue line-
dots) and south (red line-dots) centre of 
gravity (COG) changes of effort from 1991 
to 2017. Grey shading represents the 
annual effort distribution by latitude

F I G U R E  3   Empirical orthogonal 
function (EOF) results for sea surface 
temperature anomaly (SSTA) (a) and 
effortA (b). Left: spatial structures of the 
EOF. Total variance (%) appears in the 
title and the “local” explained variance (%) 
inside pixels. Right: temporal structures 
(PCs) of the EOF
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of vessels allowed to access certain EEZs, with higher SSTA and with 
the presence of a TAC. Effort is higher with the smallest and highest 
proportions of catch on FADs, while there is no clear trend from the 
partial dependence plot on the vessel number allowed by agreements 
(agr_vessel). While effort appears to be higher with the smallest and 
highest proportions of catch on FADs, this pattern is driven by very 
few data points and may not traduce the overall pattern in the rela-
tionship between effort and proportion of catch on FADs.

4  | DISCUSSION

PS fisheries activity in the central east Atlantic Ocean has shifted 
southward from the equator from 1991 to 2017. However, the 

northern distribution of the fleet activity does not follow a clear 
pattern, but tends to move towards waters between 5° and 10°N. 
By focusing on catch compositions, Monllor-Hurtado et al. (2017) 
reported a shift of tuna catches in sub-tropical latitudes on a global 
scale from 1965 to 2011 by investigating the percentage of tropical 
tuna in longline catches. They concluded that at least in the Atlantic 
and Indian Oceans, tropical tuna catches have reduced in tropical 
areas and they attribute these changes to ocean warming. Cheung, 
Watson, and Pauly (2013) also showed ocean warming has already 
affected global fisheries, with an increasing dominance of catches 
of warmer waters species at higher latitudes. Our analyses showed 
a relationship between spatiotemporal changes in effort distribu-
tion of purse seiners targeting tropical tunas and SSTA in the study 
area, meaning that the fleet activity is being affected by climate 

F I G U R E  4   Variable importance score 
of different predictors on the PC1 effortA 
from the empirical orthogonal function 
(EOF) analysis (a) and effort (b). The most 
influential variables are those with the 
greatest percentage increase in the mean 
squared error (%IncMSE)

F I G U R E  5   Partial dependence plots of the most important predictors of PC1 effortA from the empirical orthogonal function (EOF) 
analysis (a) and effort (b). The vertical axis is the conditional mean of the response (PC1 effortA or effort) for different values of the 
predictor in question, with all other variables fixed
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change. In addition to temperature, other environmental condi-
tions might be influencing the spatial distribution of the fleet, for 
example upwelling systems in the study area that are expected to 
decline with climate change with unknown consequences to fish-
ing communities (Sylla, Mignot, Capet, & Gaye, 2019). If we link the 
response of the fleet to what is being observed on tropical tuna 
species, according to Erauskin-Extramiana et al. (2019), tuna habitat 
distribution limits are already shifting poleward (on average, 6.5 km 
per decade in the northern hemisphere and 5.5 km per decade in 
the southern hemisphere). It is thus consistent to see a southward 
movement of the fleet over time partially explained by climate 
change as a response of an ecological shift. However, we did not see 
a clear northward trend from the equator, suggesting other factors 
are involved. Indeed, the scale of the habitat spatial shift observed 
by Erauskin-Extramiana et al. (2019) is smaller than the one of the 
fleet during the study period, reaffirming that other variables (e.g. 
management or technological variables) are also playing a role in the 
distribution of the fishery.

Our results show that the change in distribution of the fishery 
is related to a combination of environmental (SSTA) and human fac-
tors. The EOF analysis has isolated the spatiotemporal distribution 
patterns of effort that are linked to SSTA; however, other variables 
seem to have a higher effect on global effort such as the proxy we 
used for technology advances. Changes in technology are crucial 
and affect effort (Tidd et al., 2017). Since the mid-1990s, FADs have 
become an important means by which purse seiners catch tropi-
cal tunas, and the PS fishery is now mostly dependent on FADs in 
the Atlantic Ocean (Maufroy et al., 2017). Throughout the 2000s, 
several other technological improvements occurred in the fishery, 
including the use of radio buoys with GPS system to locate FADs 
and the introduction of echo-sounder buoys to monitor the amount 
of biomass aggregated under FADs (Lopez et al., 2014). There has 
been an associated shift in fishing strategies; before the FAD revo-
lution, successful sets on free schools required a deep understand-
ing and knowledge of the environment and target species acquired 
over many years of fishing experience. Now, skippers rely on locat-
ing FADs and using new technologies for successful sets; they have 
become technology managers and tuna harvesters following FADs 
(Gabantxo Uriagereka, 2003). With regard to effort, FAD utilization 
was the most important variable explaining effort during the study 
period, a crucial factor to include when studying effort changes of 
purse seiners in the Atlantic Ocean.

Furthermore, the role of institutions is important in limiting the 
number of vessels allowed to fish in EEZs through public SFPAs for 
example, however, certain vessels not having access to EEZs can still 
fish in the high seas or access these EEZs through private agreements 
(no information on private agreements was available to include in 
our analysis). Results indicate that public SFPAs influence overall 
spatiotemporal changes of effort in the region and have a higher role 
when explaining effort than SSTA. This suggests that human man-
agement has the potential of overtaking distribution impacts caused 
by climate change on fisheries activity (Barange, 2019; Gaines et al., 
2018). The management institutions are RFMOs, that is the ICCAT 

in our study area, and seek to ensure the sustainable use of fishing 
resources (Cullis-Suzuki & Pauly, 2010). There has recently been an 
effort to establish a FAD management plan and limit the number of 
FADs, which is currently set to no more than 500 FADs with or with-
out instrumental buoys active at any time per vessel in the Atlantic 
Ocean (ICCAT, 2016). Management actions such as setting TACs and 
spatial closures also took place in the study period, being the pres-
ence of a TAC influential on the spatiotemporal distribution of effort 
and the presence of a closure similar to the presence of a TAC when 
influencing overall effort. Although climate change is posing an addi-
tional consideration for fisheries management, it is not yet taken into 
account by the ICCAT. Fortunately, according to Pentz, Klenk, Ogle, 
and Fisher (2018), the ICCAT does have a relatively high potential 
capacity to manage high seas resources effectively under climate 
change. While many institutional actions represent an indirect set 
of adaptations to climate change in that they all seek the sustainabil-
ity of tropical tunas, direct and specific climate-related actions are 
needed to avoid undesirable socioeconomic consequences (Grafton, 
2010; Leith et al., 2014).

Some models predict a biomass increase of Skipjack and YFTs in 
tropical areas as well as in most coastal countries’ EEZs in the long 
term, a decrease of BET (Dueri, Bopp, & Maury, 2014; Erauskin-
Extramiana et al., 2019) and a re-distribution in both depth and hor-
izontal distribution of tropical tunas (Deary et al., 2015; Dell et al., 
2015; Erauskin-Extramiana et al., 2019; Evans et al., 2015). Here, we 
did not take into account changes in the depth of fishing effort, but 
PS fishing may be more affected than other methods such as long-
line fisheries that can set hooks at greater depths (Marsac, 2017). 
Regarding latitudinal shifts, PS vessels in the east Atlantic Ocean 
are already going further south and north from the equator due 
to technological advances among other factors, but this also leads 
to increased fuel costs (see also Michael et al., 2017). Thus, home 
port location could become limiting if species shift further away. 
Other implications of shifting species concern the distribution of 
tropical tunas in EEZs of the coastal countries (Báez et al., 2018). 
Some countries in the Guinean Gulf might be losing resources and 
others gaining, which adds a challenge for the sustainability of the 
resources (Bell et al., 2013; Dubik et al., 2019; Pinsky et al., 2018). 
New public or private agreements and conflicts (e.g. Spijkers & 
Boonstra, 2017) might also arise between countries from tropical 
tunas’ re-distribution.

The IPCC (2019) highlights the need to develop adaptation plans 
to minimize the effect of ocean warming on dependent communi-
ties, particularly in tropical regions which are expected to be more 
affected by climate change. Even if ecological impacts are expressed 
most strongly in tropical regions, dependent communities are also 
outside these regions. Therefore, it is crucial to analyse fishing-de-
pendent societies’ vulnerability in the face of climate change (e.g. 
Badjeck, Allison, Halls, & Dulvy, 2010; Colburn et al., 2016; Hobday 
et al., 2016; Young et al., 2019), distinguishing who is benefiting from 
fishing or has stopped benefiting, where and whether it is under a 
subsistence economy or free market economy and considering in-
teractions between both.
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Finally, identifying impacts of climate change on tropical tunas 
and their associated fisheries and management is of great impor-
tance to determine whether it will affect societies dependent on 
these resources. The method developed here to explore the ef-
fect of ocean temperature on the effort of tropical tunas in the 
east Atlantic Ocean over the period 1991–2017 showed that PS 
fisheries have shifted southward from the equator, which can be 
explained by climate change, institutional, management and tech-
nological factors. However, our results suggest that management 
can be a powerful tool to overcome climate change distribution 
impacts on fisheries activity. As fisheries management organiza-
tions have a crucial role to maintain resource sustainability, adap-
tation to climate change needs to be incorporated in their agendas, 
which must span environmental, institutional and socioeconomic 
considerations.
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