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Abstract: This paper firstly studies an SIR (susceptible-infectious-recovered) epidemic model without
demography and with no disease mortality under both total and under partial quarantine of the
susceptible subpopulation or of both the susceptible and the infectious ones in order to satisfy the
hospital availability requirements on bed disposal and other necessary treatment means for the
seriously infectious subpopulations. The seriously infectious individuals are assumed to be a part
of the total infectious being described by a time-varying proportional function. A time-varying
upper-bound of those seriously infected individuals has to be satisfied as objective by either a total
confinement or partial quarantine intervention of the susceptible subpopulation. Afterwards, a new
extended SEIR (susceptible-exposed-infectious-recovered) epidemic model, which is referred to as an
SEIAR (susceptible-exposed-symptomatic infectious-asymptomatic infectious-recovered) epidemic
model with demography and disease mortality is given and focused on so as to extend the above
developed ideas on the SIR model. A proportionally gain in the model parameterization is assumed to
distribute the transition from the exposed to the infectious into the two infectious individuals (namely,
symptomatic and asymptomatic individuals). Such a model is evaluated under total or partial
quarantines of all or of some of the subpopulations which have the effect of decreasing the number of
contagions. Simulated numerical examples are also discussed related to model parameterizations of
usefulness related to the current COVID-19 pandemic outbreaks.

Keywords: SEIAR epidemic model; confinement intervention; quarantine intervention; COVID-19;
mathematical modelling; numerical modelling

1. Introduction

Epidemic mathematical models in different formal frameworks are of crucial interest in recent
decades [1,2]. Such mentioned formal frameworks include, for instance, differential, difference and
differential/difference hybrid equations, dynamic systems, control theory [3–20], computation [7],
and information theory [21–28] as well as combined mathematical analysis of epidemic spreading and
control design tools [21,22,27–36]. One of the objectives of such models is to investigate and predict
the evolution of epidemic infectious diseases in humans, animals, or plants as well as to elucidate how
the interventions, like quarantine actions or regular and impulsive vaccination and treatment controls,
can avoid or mitigate their contagious propagation (See References [1,2,11,13,15,17–20,25–36]). It can
be pointed out that the quarantine and the confinement interventions are qualitatively similar to
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using impulsive vaccination and treatment controls since all or a part of a targeted subpopulation
(typically, the susceptible one or the infectious one or fractions of them) is removed from its associate
compartment and the viewable effect is a re-initialization of the corresponding trajectory solution under
fewer contagious contacts. Another beneficial effect is that the transmission rate decreases to lower
levels because of the mentioned decrease in the number of contacts. The previously mentioned control
intervention are very relevant concerning the disease temporary evolution and its steady-state reachable
numbers of the various subpopulations since they can increase the values of the transmission rate being
compatible with a basic reproduction number being less than unity. This property implies that the
disease-free equilibrium point is a global attractor and the disease becomes asymptotically removed as
a result. Those above issues have been important in the last months with regard to the evolution of the
COVID-19 pandemic around the world (See References [27,29,37–51]). In particular, an “ad hoc” SEIR
model parameterization related to the COVID-19 pandemic is investigated in Reference [37] including
delayed re-susceptibility caused by the infection. Additionally, a kind of autoregressive model average
model (ARMA), known as an ARIMA model for prediction of COVID-19, is presented and simulated
in Reference [38] for the data of several countries. The effects of different phases of quarantine actions
in the values of the transmission rate are studied in Reference [39]. See Reference [42] for a discussion
of related simulated numerical results on the COVID-19 outbreak in Italy. Some results have been
recently reported on reaction-diffusion epidemic models of usefulness fore dengue [52], on delayed
diffusive epidemic models [53], and on multi-group epidemic discrete models with time delays [54].
(See also related references therein).

It can be pointed out that there are links in the descriptions of epidemic models to symmetry
and asymmetry concepts with different interpretations. For instance, in Reference [13], the problem
of patchy epidemic environments in the multi-node case where there are in-flux and out-flux of
populations between different nodes (for instance, with each node describing distinct towns or
regions) is focused on. The most general assumption involved is that the matrices of population
travelling interchange are asymmetric in the most general case, but they can be symmetric in particular.
In Reference [55], a close problem is focused on for epidemic models describing a network with more
than one node and the concepts of symmetry and asymmetry play a role in the mathematical description
of the proposed model. On the other hand, in Reference [56], the case of reported versus unreported
infective cases is calculated. In the case of time-invariant model parameterizations, such a ratio
becomes invariant for both the time-instantaneous tests and the time- accumulated tests interpreted as
a certain symmetry property. Generally speaking, symmetry is equivalent to an invariance of a certain
quantity under transformations. In that way, a related property associated with a number of common
epidemic models is their invariance under certain transformations of variables, which is a property
that applies even for models of a single node. Assume, for instance, a true-mass action epidemic
model [43] with a typical bilinear incidence of the form βSI/N where β is the transmission rate and S
and I are the susceptible and infectious instantaneous numbers and N is the total population assumed
constant through time. Furthermore, assume that the above model is changed to a normalized one
for all the subpopulations leading to the transformed variables s = S/N, i = I/N etc. It can be easily
seen that the form of the equations remains invariant with the redefined transmission rate βn = βN.
Such an idea is applicable even to epidemic models of a single node.

The related existing bibliography on epidemic modelling is abundant and very rich including
a variety of epidemic models with several coupled subpopulations including the susceptible,
the infectious, and the recovered ones as an elementary starting basis in the simpler SIR epidemic models.
Further generalizations lead to the so-called SEIR models, which include the exposed subpopulation
(those who do not have external symptoms yet) as a new subpopulation. More complex models,
such as SEIADR-type models, which include the asymptomatic infectious and the infective dead
subpopulations, have been designed and discussed, for instance, for Ebola disease [15,16]. On the
other hand, Covid-19 is an infectious disease caused by a newly discovered coronavirus at the end
of 2019. The first outbreak was reported in Wuhan (China) and then it extended worldwide very
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fast [57]. At this time, there is no vaccine nor effective treatment available while social distancing,
isolation, and quarantine have been revealed to be the most important measurements to counteract
its spread. Despite the current death rate of the disease being around 3–4%, acute symptoms may lead
to intensive care unities (ICU’s) admission to many seriously infected patients, which provokes the
overflow of these units and a situation of stress in the health system of many countries where the
situation of their health systems is becoming really difficult over recent months because of the lack
of beds, material, and staff for the abundant, seriously infected people.

The main objective of this paper is to propose and to investigate a new SEIAR epidemic model
with demography, which is a generalized SEIR (susceptible-exposed-infectious-recovered). Such a
model includes asymptomatic infectious (A) and eventual illness mortality. All the formulations are
developed in a deterministic framework of differential equations with finite jumps in their solutions.
A fraction of the exposed subpopulation has a transition to the symptomatic infectious subpopulation
while its complementary to unity fraction has a transition to the asymptomatic one. The main
results concern the study of the model under, in general, partial quarantines. Total quarantine
actions and confinement interventions are considered as particular cases being governed, in each
particular situation, by the choices of the gains, which describe the decrease of subpopulation levels
subject to eventual reception or transmission of new contagions. Such gains are designed in such a
way that the foreseen fraction of the infectious needing hospital care are upper-bounded by a function,
which describes the hospital availability on beds and other means, like staff, available amounts and
qualification, number of respirators, etc. Before the presentation and discussion of the new proposed
SEIAR model, two simple illustrative examples on partial or total quarantines are given on a simpler
SIR model without demography and with no mortality.

The paper is organized as follows. Section 2 states and briefly describes the simple mentioned SIR
model under total or partial quarantine of the susceptible and infectious in order to satisfy the objective
that a weighted proportion of the infectious subpopulation is less than a certain upper-bound defined
by hospital treatment considerations. Section 3 presents the proposed SEIAR model, which includes
the exposed and the asymptomatic subpopulations subject to demography and eventual mortality so
that it generalizes the previously discussed SIR model. The properties of positivity and boundedness
of the state trajectory solution are stated and proved. Section 4 studies the model under partial or total
quarantines of some or all the subpopulations so that a hospital management objective on temporary
availability of technical means and bed disposal can be fulfilled. Section 5 presents and discusses some
numerically worked examples under model parameterizations of the COVID-19 pandemic to test the
efficiency of several quarantine interventions. Lastly, conclusions end the paper. Appendices A and B
with details of some auxiliary calculations are also given.

2. A Quarantined SIR Epidemic Model

The effects of total or partial quarantine interventions imply that the transmission rates decrease
since the number of contagious contacts decreases. See, for instance, References [38,39]. The quarantines
on the susceptible have the qualitative effect of an impulsive vaccination since part of the susceptible
population is kept away of infective contacts. This is equivalent to reduce, in practice, along a
short time interval (instantaneously in an ideal impulsive model), the susceptible subpopulation.
Similarly, quarantines on the infectious are similar to impulsive treatment actions on the infectious
subpopulation, which is equivalent to reduce its numbers in short time intervals or instantaneously
in the ideal case (See References [11,15,18,19]). Quarantine of infectious agents is also referred to as
their isolation. However, in order to unify the nomenclature along the paper, the term quarantine will
be used for all populations.

Example 1 below on an SIR model without mortality is given as an introductory one to fix
some basic ideas about quarantine decisions. Such decisions might be made on both susceptible and
infectious decisions based on the hospital management regarding availability of beds and other hospital
technical means necessary for infection treatment on seriously infected individuals. The solution
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for this model is obtained directly from the differential equations and it is then extended to more
general SEIR models including quarantine actions and demography with the presence of exposed and
asymptomatic individuals. It can be pointed out that the solution for an SIR model with demography
has been obtained in Reference [5] by its reduction to an Abel-type equation by using a power-series
perturbation approach.

2.1. Example 1 (An SIR Epidemic Model without Demography Subject to Monitored Quarantine)

Consider the subsequent SIR (Susceptible “S”- Infectious “I”- Recovered “R”) without demography
and disease mortality:

.
S(t) = −βS(t)I(t)

.
I(t) = βS(t)I(t) − γI(t)

.
R(t) = γI(t)

(1)

with S(0) = S0, I(0) = I0 ≥ 0 and R(0) = R0 ≥ 0 with min(S0, I0, R0) ≥ 0, where β and γ are the
transmission rate and the recovery rate, respectively. The total population is N(t) = S(t) + I(t) + R(t);
∀t ∈ R0+ with N(t) = N(0) = N0 being constant ∀t ∈ R0+ in view of (1). The solution of (1) is:

S(t) = e−β
∫ t

0 I(τ) dτS0

I(t) = eβ
∫ t

0 S(τ) dτ−γtI0 = e−γteβS0
∫ t

0 e−β
∫ τ
0 I(σ) dσ dτI0

R(t) = eγ
∫ t

0 I(τ)dτR0.

(2)

Let Ih(t) = ρ (t)I(t) the estimated fraction of infectious which require hospital care at time t
(referred to as the “seriously ill infectious subpopulation”) and Ih(t) the upper-bound of hospital
admission availability at time t. Note the following simple result which is concerned with an eventual
quarantine intervention of all the susceptible individuals:

Proposition 1. Assume that, for a given ρ(t) ∈ (0 , 1] and an availability upper-bound Ih(t), it is possible to
hospitalize all the seriously ill infectious subpopulations at time t via susceptible quarantine of all the susceptible
subpopulations at time t0 = 0, if I0 ≤

eγt

ρ(t) Ih(t) ;∀t ∈ R0+.

Proof. Assume that S0 = 0, that is, a total quarantine of the existing susceptible subpopulation at time
t0 = 0, or absence of an initial susceptibility for an eventual contagion. Thenρ(t)I(t) = ρ(t)e−γtI0 ≤ Ih(t)
from Equation (2) for any given t ∈ R0+ if I0 ≤

eγt

ρ(t) Ih(t) with initial immune amounts given by

R0 = N0 − I0 ≥ max
t∈R0+

(
0, N0 −

eγt

ρ(t) Ih(t)
)
. �

In general, it might not be necessarily a total quarantine on the susceptible to accomplish with
the hospital management requirements provided that the number of initial infections is small enough
according to Proposition 1. In this sense, Proposition 1 might be easily generalized to the case of
partial quarantine of the susceptible. It can be necessary to keep the hospital bed availability at
time t along a time interval of a length of at least γ−1, which is the recovery average period or
up until some time exceeding t along the lasting of the most serious period of the illness force.
The subsequent Proposition 2 is based on a partial withdrawal of the initial susceptible amounts
from the contagion scenario via a quantifying parameter λ ∈ [0, 1] of the fraction population to
withdraw from the contagion environment at the time instant where a quarantine intervention is
decided. For instance, if a quarantine is decided on the susceptible subpopulation at time t1, then
S
(
t+1

)
= (1− λ)S

(
t−1

)
, where S

(
t+1

)
= lim

t→t+1

S(t) and S
(
t−1

)
= S(t1) = lim

t→t−1
S(t) and the instantaneous net

change of the susceptible subpopulation at t1 is ∆ S(t1) = S
(
t+1

)
− S

(
t−1

)
= −λS

(
t−1

)
. In the following,

we show an alternative and confluent interpretation to the finite jumps in the solution decreases the
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susceptible candidate individuals available for contagion at the time instant t = t1. A Dirac impulse of
amplitude −λS

(
t−1

)
, namely −λδ(t− t1)S

(
t−1

)
, with δ(.) denoting the Dirac delta distribution is applied

to the time–derivative of S(t) at t = t1, which is physically equivalent to the injection of such an
instantaneous impulsive vaccination on the susceptibility [43]. Proposition 2 is concerned with a
quarantine intervention at t = 0 on the susceptible subpopulation, which leads to the eventual existence
bounded discontinuity of the solution at t = 0 and an impulsive corresponding time-derivative as
a result. The piecewise continuous solution of the differential system is still unique since the finite
jump at the discontinuity is calculated explicitly with its left and right limits at the discontinuity point.

Proposition 2. Assume that S(0−) = S−0 = S0 and S(0+) = S+
0 = (1− λ)S0 for some λ ∈ [0 , 1], where λS0

is the amount of initial susceptible submitted to quarantine at the initial time instant t0 = 0. Then, the following
properties hold.

(i) The constraint ρ(t)I(t) ≤ Ih(t) is fulfilled for some given t ∈ R+ if λ ≥ λm =

max
(
1− ln Ih(t)−lnρ(t)+γt

βS0
∫ t

0 e−β
∫ τ
0 I(σ) dσ dτ

, 0
)

provided that I0 ≤
eγt

ρ(t) Ih(t).

(ii) The constraint ρ(θ)I(θ) ≤ Ih(θ) is fulfilled for θ ∈
[
t, t + γ−1 + η

]
for any given η ∈

[
η0 − γ−1 , η1

]
and

some prefixed η0, η1 ∈ R0+ if and only if λ ≥ λmθ = max
(
1− inf

t≤ξ≤t+γ−1+η

ln Ih(ξ)−lnρ(ξ)+γξ−lnI0

βS0
∫ ξ

0 e−β
∫ τ
0 I(σ) dσ dτ

, 0
)
.

If ρ(θ) = ρ(t) and Ih(θ) = Ih(t); ∀θ ∈
[
t, t + γ−1 + η

]
then the constraint ρ(θ)I(θ) ≤ Ih(θ) is fulfilled

for θ ∈
[
t, t + γ−1 + η

]
if λ ≥ max

1− ln Ih(t)−lnρ(t)+γt−lnI0

βS0
∫ t+γ−1+η

0 e−β
∫ τ
0 I(σ) dσ dτ

, 0

.

Proof. The hospital management availability objective is fulfilled at time t if and only if:

ρ(t)e−γteβ(1−λ)S0
∫ t

0 e−β
∫ τ
0 I(σ) dσ dτI0 ≤ Ih(t) (3)

or, equivalently, if and only if

lnρ(t) − γt + β(1− λ)S0

∫ t

0
e−β

∫ τ
0 I(σ) dσ dτ+ lnI0 ≤ ln Ih(t) (4)

which is satisfied for some λ ∈ [0 , 1] if and only if λ ≥ λm. Property (i) has been proved. Property (ii) is
a direct extension of Property (ii). �

Related to Proposition 2, note that S+
0 /S−0 = 1−λ and ∆S0/S−0 =

(
S+

0 − S−0
)
/S−0 = −λ. Then, 1−λ

is the instantaneous relative variation of the susceptible subpopulation at the impulsive time instant
t0 = 0 where a quarantine intervention is applied on the susceptible. In the same way, −λ is the relative
negative decrement of the population at t0 = 0 because of the quarantine action. Similar interpretations
apply for any quarantined subpopulation as it will be discussed later on in this section and in the
remaining sections.

Note that Proposition 1 describes the total initial quarantine of the susceptible as a particular
case in Proposition 2 with λ = 1. Proposition 2 establishes a guaranteed fraction of the susceptible
submitted to quarantine for achieving the hospital availability of serious cases at a certain time instant
or time interval.

Example 1 is now extended with two combined quarantine interventions on the susceptible and
infectious subpopulations, respectively. For exposition simplicity, it is assumed in example 1 and in
example 2 below that the transmission rate becomes constant. In practice, such a parameter decreases
as the number of infectious-susceptible contacts decreases and increases since such a number increases.
This fact would be taken into account along Sections 4 and 5 where a more general epidemic model
will be discussed.
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2.2. Example 2 (A Partial Quarantine on the Susceptible Followed by a Later Partial Quarantine on the
Infectious)

Example 1 can be generalized by programming a first partial quarantine on the susceptible and a
later partial quarantine on the infectious so that certain susceptible amounts can be protected from the
infection and some infectious are then taken apart from the successive propagation of the infection.
This makes sense if there are relatively few susceptible and relevant infectious numbers in the time
where the action starts and it is the considered case. Later on, it is considered the case when there are
initially relatively few infectious cases, which is a fraction of known cases submitted to quarantine,
while, later on, as the infection progresses, there are relevant numbers of susceptible cases, which need
to be protected as the infectious cases are increasing. This has been recently the case in many countries
around the world concerning the COVID19 has out-broken from epidemic to pandemic [38,46–50].

Thus, assume that, at a time instant t1, a fraction λ(t1)S(t1) is submitted to quarantine on the
interval [t1, t3] and that, at a time instant t2 ∈ [t1 , t3), a fraction ρ(t2)I(t2) of the infectious cases is
submitted to quarantine on the time interval [t2, t3]. Assume, with no loss in generality, that the
initial conditions are taken at t0 = 0. The question arises is how to choose reasonably λ(t1) ∈ (0 , 1),
δ(t2) ∈ (0, 1), T0 = t1 – t0, and T1 = t2 − t1 such that ρ(t)I(t) ≤ Ih(t), ∀t ∈

[
t3, t3 + γ−1 + η

]
for any

η ∈
[
η0 − γ−1 , η1

]
and some prefixed η0, η1 ∈ R0+. The solution trajectory obeys from (1) the following

set of equations of which there is at least one per subpopulation, which depends on the infectious
evolution only from the initial conditions, in view of Equation (2).

S(t) = e−β
∫ t

0 I(τ) dτS0;∀t ∈ [0, t1) (5)

S
(
t+1

)
= (1− λ(t1))S

(
t−1

)
= (1− λ(t1))e

−β
∫ t1

0 I(τ) dτS0 (6)

S(t) = e
−β

∫ t
t1

I(τ) dτ
S
(
t+1

)
= e
−β

∫ t
t1

I(τ) dτ
(1− λ(t1))S

(
t−1

)
= e−β

∫ t
0 I(τ) dτ(1− λ(t1))S0;∀t ∈ [t1,∞) (7)

I(t) = eβ
∫ t

0 S(τ) dτ−γtI0 = e−γteβS0
∫ t

0 e−β
∫ τ
0 I(σ) dσ dτI0;∀t ∈ [0 , t1] (8)

I(t) = e−γ(t−t1)e
β
∫ t

t1
S(τ) dτ

I
(
t+1

)
= e−γte

βS0[(1−λ(t1))
∫ t

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ]

I0;∀t ∈ [t1, t2)

(9)

I
(
t+2

)
= (1− δ(t2))I

(
t−2

)
= (1− δ(t2))e−γt2e

βS0[(1−λ(t1))
∫ t2

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ]

I0 (10)

I(t) = e−γ(t−t2)e
β
∫ t

t2
S(τ) dτ

I
(
t+2

)
= e−γte

β
∫ t

t2
S(τ) dτ

(1− δ(t2))e
βS0[(1−λ(t1))

∫ t2
t1

e−β
∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ]

I0

= e
−γt+βS0((1−λ(t1))

∫ t
t1

e−β
∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ)

(1− δ(t2))I0;∀t ∈ [t2,∞)

(11)

R(t) = eγ
∫ t

0 I(τ)dτR0 = eγ
∫ t

0 e−γτeβS0
∫ τ
0 e−β

∫ ν
0 I(σ) dσ dνdτR0;∀t ∈ [0 , t1) (12)

R
(
t+1

)
= R

(
t−1

)
+ λ(t1)S

(
t−1

)
= eγ

∫ t1
0 e−γτeβS0

∫ τ
0 e−β

∫ ν
0 I(σ) dσ dνdτR0 + λ(t1)e

−β
∫ t1

0 I(τ) dτS0

(13)

R(t) = e
γ
∫ t

t1
I(τ)dτ

R
(
t+1

)
=e

γ
∫ t

t1
e−γτe

βS0((1−λ(t1))
∫ τ
t1

e
−β

∫ ξ
0 I(σ+t1) dσ

dξ+
∫ t1
0 e
−β

∫ ξ
0 I(σ) dσ

dξ)
I0dτ

×

eγ
∫ t1

0 e−γτ+βS0
∫ τ
0 e−β

∫ ν
0 I(σ) dσ dνdτR0 + λ(t1)e

−β
∫ t1

0 I(τ) dτS0

;∀t ∈ [t1 , t2)

(14)
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R
(
t+2

)
= R

(
t−2

)
+ δ(t2)I

(
t−2

)
= e

γ
∫ t2

t1
e
−γτ+βS0((1−λ(t1))

∫ τ
t1

e
−β

∫ ξ
0 I(σ+t1) dσ

dξ+
∫ t1
0 e
−β

∫ ξ
0 I(σ) dσ

dξ)
I0dτ

×

eγ
∫ t1

0 e−γτeβS0
∫ τ
0 e−β

∫ ν
0 I(σ) dσ dνdτR0 + λ(t1)e

−β
∫ t1

0 I(τ) dτS0

+δ(t2)I
(
t−2

) (15)

R(t) = e
γ
∫ t

t2
I(τ)dτ

R
(
t+2

)
= e

γ

∫ t
t2

I(τ)+
∫ t2

t1
e
−γτ+βS0((1−λ(t1))

∫ τ
t1

e
−β

∫ ξ
0 I(σ+t1) dσ

dξ+
∫ t1
0 e
−β

∫ ξ
0 I(σ) dσ

dξ)
I0dτ


×

eγ
∫ t1

0 e−γτ+βS0
∫ τ
0 e−β

∫ ν
0 I(σ) dσ dνdτR0 + λ(t1)e

−β
∫ t1

0 I(τ) dτS0


+δ(t2)e

−γt2+βS0[(1−λ(t1))
∫ t2

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ]

I0;∀t ∈ [t1, t2)

(16)

We still keep the notation and term of “recovered” for all the subpopulation R(t) while noting the
ones which have been transferred as a result of the susceptible quarantine as well as those that do not
have permanent or temporary immunity.

2.3. Hospital Management Objective of Example 2 on a Temporary Time Interval

The hospital management availability objective is the fulfilment of ρ(t)I(t) ≤ Ih(t);
∀t ∈

[
t3, t3 + γ−1 + η

]
for any η ∈

[
η0 − γ−1 , η1

]
and some prefixed η0, η1 ∈ R0+ with time intervals to

take the quarantine actions defined by T1 = t1 − t0 and T2 = t2 − T1 with t0 = 0, that is, one gets from
(11) that the objective is fulfilled if:

ρ(t )e
−γt3+βS0((1−λ(t1))

∫ t3
t1

e−β
∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ)

(1− δ(t2))I0 ≤ Ih(t);
∀t ∈

[
t3, t3 + γ−1 + η

]
,

(17)

or equivalently,

ln ρ(t) − γt3 + βS0

(
(1− λ(t1))

∫ t
t1

e−β
∫ τ

0 I(σ+t1) dσ dτ+
∫ t1

0 e−β
∫ τ

0 I(σ) dσ dτ
)
+ ln(1− δ(t2)) + lnI0 ≤ lnIh; (18)

∀t ∈
[
t3, t3 + γ−1 + η

]
which holds if

βS0

(
(1− λ(t1))

∫ t3+γ
−1+η

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ

)
+ ln(1− δ(t2)) + lnI0

≤ min
t3≤t≤t3+γ−1+η

lnIh(t) − ln ρ(t) + γt3
(19)

which still holds under the sufficient condition to be fulfilled on
[
t, t3 + γ−1 + η

]
:

0 ≤ 1− λ(t1) ≤

1∫ t3+γ−1+η
t1

e−β
∫ τ
0 I(σ+t1) dσ dτ

[
1
βS0

(
min

t3≤t≤t3+γ−1+η
lnIh(t) − ln ρ(t) + γt3 − ln(1− δ(t2)) − lnI0

)
−

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ

]

or, equivalently, if

1 ≥ λ(t1) ≥

∫ t3+γ
−1+η

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ−β−1S−1

0

ln

min
t3≤t≤t3+γ−1+η

Ih(t)

(1−δ(t2))ρ(t) I0
+γt3

+∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ

∫ t3+γ−1+η
t1

e−β
∫ τ
0 I(σ+t1) dσ dτ

≥ 0 (20)
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under the necessary condition that:

1 + β−1S−1
0

γt3 + ln
min

t3≤t≤t3+γ−1+η
Ih(t)

(1−δ(t2))ρ(t) I0

≥ ∫ t3+γ
−1+η

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ

≥ β−1S−1
0

γt3 + ln
min

t3≤t≤t3+γ−1+η
Ih(t)

(1−δ(t2))ρ(t) I0

,

(21)

equivalently, if for a given min
t3≤t≤t3+γ−1+η

Ih(t), t3 satisfies the constraints:

γ−1

βS0

(∫ t3+γ
−1+η

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ− 1

)
− ln

min
t3≤t≤t3+γ−1+η

Ih(t)

(1−δ(t2))ρ(t) I0


≤ t3 ≤ γ−1

βS0

(∫ t3+γ
−1+η

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ

)
− ln

min
t3≤t≤t3+γ−1+η

Ih(t)

(1−δ(t2))ρ(t) I0

,
(22)

equivalently, if for a given t3, Ih(t) satisfies the constraints:

(1− δ(t2))ρ(t) I0e
βS0 (

∫ t3+γ
−1+η

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ−1)−γt3

≤ min
t3≤t≤t3+γ−1+η

Ih(t) ≤ (1− δ(t2))ρ(t) I0e
βS0 (

∫ t3+γ
−1+η

t1
e−β

∫ τ
0 I(σ+t1) dσ dτ+

∫ t1
0 e−β

∫ τ
0 I(σ) dσ dτ)−γt3

(23)

It becomes clear, as intuitively expected, that the fraction of susceptible allocated in quarantine
since time has to be increased as the fraction of infectious in quarantine since time decreases and also
as the initial susceptible and infectious subpopulations become larger.

I(t) = e−γteβS0
∫ t

0 e−β
∫ τ
0 I(σ) dσ dτI0;∀t ∈ [0, t1] (24)

I
(
t+1

)
= (1− δ(t1))I

(
t−1

)
= (1− δ(t1))e

−γt1+βS0
∫ t1

0 e−β
∫ τ
0 I(σ) dσ dτI0 (25)

I(t) = e−γ(t−t1)e
βS0

∫ t
t1

e−β
∫ τ
0 I(σ) dσ dτ

I
(
t+1

)
(26)

= e−γteβS0
∫ t

0 e−β
∫ τ
0 I(σ+t1) dσ dτ(1− δ(t1))I0;∀t ∈ [t1 , t2] (27)

S(t) = e−β
∫ t

0 I(τ) dτS0;∀t ∈ [0, t1] (28)

S(t) = e
−β(

∫ t1
0 I(τ) dτ+

∫ t2
t1

I(τ) dτ)
S0 (29)

= e
−βI0(

∫ t1
0 e−γτ+βS0

∫ τ
0 e
−β

∫ ξ
0 I(σ) dσ

dξ dτ+(1−δ(t1))
∫ t

t1
e−γτ+βS0

∫ τ
0 e
−β

∫ ξ
0 I(σ+t1) dσ

dξ dτ)
S0;∀t ∈ [t1 , t2) (30)

S
(
t+2

)
= (1− λ(t2))S(t2) = (1− λ(t2))e

−βI0(
∫ t1

0 e−γτ+βS0
∫ τ
0 e
−β

∫ ξ
0 I(σ) dσ

dξ dτ+(1−δ(t1))
∫ t2

t1
e−γτ+βS0

∫ τ
0 e
−β

∫ ξ
0 I(σ+t1) dσ

dξ dτ)
S0 (31)

In this case, the quarantine of a fraction of the infectious precedes that of a fraction of the
susceptible. The objective is now the fulfilment of the ρ(t)I(t) ≤ Ih(t); ∀t ∈

[
t3, t3 + γ−1 + η

]
for any

η ∈
[
η0 − γ−1 , η1

]
and some prefixed η0, η1 ∈ R0+ with time intervals to take the quarantine actions

defined by T1 = t1 − t0 and T2 = t2 − T1 with t0 = 0,

ρ(t)e−γ(t−t2)e
βS(t+2 )

∫ t
t2

e−β
∫ τ
0 I(σ+t2) dσ dτ

I(t2) ≤ Ih(t);∀t ∈
[
t3, t3 + γ−1 + η

]
(32)
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for any η ∈
[
η0 − γ−1 , η1

]
and some prefixed η0, η1 ∈ R0+ with time intervals to take the quarantine

actions defined by T1 = t1 − t0 and T2 = t2 − T1 with t0 = 0. Then,

β(1− λ(t2))S
(
t−2

)∫ t

t2

e−β
∫ τ

0 I(σ+t2) dσ dτ+ lnρ(t) − γ(t− t2) + lnI(t2) ≤ lnIh(t) (33)

β(1− λ(t2))S
(
t−2

)∫ t
t2

e−β
∫ τ

0 I(σ+t2) dσ dτ+ lnρ(t) − γ(t− t2) + ln
(
e−γt2eβS0

∫ t2
0 e−β

∫ τ
0 I(σ) dσ dτ(1− δ(t1))I0

)
≤ lnIh(t) (34)

or,

β(1− λ(t2))S
(
t−2

)∫ t
t2

e−β
∫ τ

0 I(σ+t2) dσ dτ+ lnρ(t) − γt + βS0
∫ t2

0 e−β
∫ τ

0 I(σ) dσ dτ+ ln(1− δ(t1)) + lnI0 ≤ lnIh(t)

guaranteed for all t ∈
[
t3, t3 + γ−1 + η

]
, that is for the largest value of Formula (33) if

β(1− λ(t2))S
(
t−2

)∫ t3+γ
−1+η

t2
e−β

∫ τ
0 I(σ+t2) dσ dτ+ lnρ(t) − γt3 + βS0

∫ t2

0 e−β
∫ τ

0 I(σ) dσ dτ+ ln(1− δ(t1)) + lnI0 (35)

≤ min
t3≤t≤t3+γ−1+η

lnIh(t),

which can be always guaranteed if δ(t1) = 1 for the objective min
t3≤t≤t3+γ−1+η

lnIh(t) > 0, that is for the

removal of all the infectious cases via quarantine at t = t1 if the objective is to keep any number of
infectious on the time interval

[
t3, t3 + γ−1 + η

]
since

−∞ = lnρ(t) − γt3 + βS0

∫ t2

0
e−β

∫ τ
0 I(σ) dσ dτ−∞+ lnI0 ≤ lnIh(t) (36)

β(1− λ(t2))S
(
t−2

)∫ t3+γ
−1+η

t2

e−β
∫ τ

0 I(σ+t2) dσ dτ

+ lnρ(t) − γt + βS0

∫ t2

0
e−β

∫ τ
0 I(σ) dσ dτ+ ln(1− δ(t1)) + lnI0 ≤ lnIh(t) (37)

Assume that the information about the numbers of infections and those susceptible are not precise.
Therefore, the number of known infectious cases is at most µ(t)I(t) and that of susceptible cases is
at most ν(t)S(t) with known µ(t) , ν(t) ∈ [0, 1]. Therefore, δ(t1) ∈ [0 ,µ(t1)] and λ(t2) ∈ [0 , ν(t2)].
We proceed as follows:

2.4. Algorithm 1

It consists of the following main steps:
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Algorithm 1

1 Step 0. Given are t3 > 0, µ , ν ,ρ : R0+ → [0, 1] with ρ(t) ≤ µ(t); t ∈ R0+

2 Fix t1 ≥ 0 , t2 ∈ [t1 , t3), η0, η1 ≥ 0η ∈
[
η0 − γ−1 , η1

]
3 Define

4 L(t1, t2, t3, µ̂(t1), ν̂(t2)) = β(1− ν̂(t2)λ(t2))S
(
t−2

)∫ t3+γ−1+η

t2
e−β

∫ τ
0 I(σ+t2) dσ dτ

5 +lnρ(t) − γt3 + βS0
∫ t2

0 e−β
∫ τ

0 I(σ) dσ dτ+ ln(1− µ̂(t1)δ(t1)) + lnI0

6 Step 1. If L(t1, t2, t3, 0 , 0) ≤ min
t3≤t≤t3+γ−1+η

lnIh(t), then the hospital availability objective is

7 fulfilled without quarantine actions neither on the infectious patients nor
8 on the susceptible individuals.
9 Go to End.
10 Step 2. If L(t1, t2, t3,µ(t1) , 0) ≤ min

t3≤t≤t3+γ−1+η
lnIh(t), then the hospital availability objective is

11 fulfilled with some quarantine action on the infectious at time t = t1.

12 Defineδ̂(t1) =

{
inf µ̂(t1) ∈ (0, µ(t1)] : L(t1, t2, t3, µ̂(t1) , 0) ≤ min

t3≤t≤t3+γ−1+η
lnIh(t)

}
.

13 Then,the hospital availability objective is fulfilled with any eventually partial or total quarantine action
14 with fraction δ(t1) ∈

[
δ̂(t1) , µ(t1)

]
at time t = t1 on the infectious (which is necessarily total if

15 δ̂(t1) = µ(t1)). Go to End.
16 Step 3. If L(t1, t2, t3,µ(t1) ,λ(t2)) ≤ min

t3≤t≤t3+γ−1+η
lnIh(t), then the objective is fulfilled with total

17 quarantine action on the infectious cases at time t = t1 and some quarantine action on the
18 susceptible ones at the time instant t2.

19 Defineλ̂(t2) =

{
inf ν̂(t2) ∈ (0, ν(t2)] : L(t1, t2, t3,µ(t1) , ν̂(t2)) ≤ min

t3≤t≤t3+γ−1+η
lnIh(t)

}
.

20 Then, the hospital availability objective is fulfilled with any eventually partial or total quarantine action
21 with fraction λ(t2) ∈

[
λ̂(t2) , ν(t2)

]
at time t = t2 on the infectious (which is necessarily total if

22 λ̂(t2) = ν(t2)). Go to End.
23 Step 4. If L(t1, t2, t3,µ(t1) ,λ(t2)) > min

t3≤t≤t3+γ−1+η
lnIh(t), then the hospital availability objective

24 cannot be solved with the time- scheduling specifications of Step 0.
25 Step 5. If possible, decrease one or both of the
26 quarantine time instants to anticipate the quarantine actions. Go to Step 1. Otherwise, go to End.

The following result holds concerning the feasibility of Step 5 of Algorithm 1.

Proposition 3. The following properties hold:

(i) If S01 = S1(0) ≤ S02 = S2(0) and I01 = I1(0) ≤ I2(0) = I02 then I1(t) ≤ I2(t), ∀t ∈ R0+.
(ii) The “if” part of Step 5 of algorithm 1 can always be performed by fixing any t0 > 0 and t0 ← t1, t2 in

Step 1 unless Step 0 has been performed for quarantine time actions t1 = t2 = 0.

Proof. Assume that there exists some t > 0 such that I1(t) > I2(t) and I1(τ) ≤ I2(τ) for τ ∈ [0 , t) and
proceed by contradiction arguments. One has from Equation (2) that:

I01(t) = e−γteβS01
∫ t

0 e−β
∫ τ
0 I1(σ) dσ dτI01 > I02(t) = e−γteβS02

∫ t
0 e−β

∫ τ
0 I2(σ) dσ dτI02

what implies that

S01

∫ t

0
e−β

∫ τ
0 I1(σ) dσ dτ− S02

∫ t

0
e−β

∫ τ
0 I2(σ) dσ dτ >

1
β
(ln I02 − ln I01) ≥ 0

so that ∫ t

0
e−β

∫ τ
0 I2(σ) dσ dτ ≤

S02

S01

∫ t

0
e−β

∫ τ
0 I2(σ) dσ dτ <

∫ t

0
e−β

∫ τ
0 I1(σ) dσ dτ
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and then
∫ t

0 e−β
∫ τ

0 I2(σ) dσ dτ <
∫ t

0 e−β
∫ τ

0 I1(σ) dσ dτ so that there exists some ε ∈ (0 , t) such that∫ t
t−ε I2(σ) dσ >

∫ t
t−ε I1(σ) dσ. Thus, there exists some 0 < t′ < t such that I2(t′) > I1(t′), which contradicts

the assumption that I1(t) > I2(t) and I1(τ) ≤ I2(τ) for τ ∈ [0 , t). As a result, I1(t) ≤ I2(t); ∀t ∈ R0+

and the Property (i) is proven. Property (ii) is a direct consequence of Property (i) and Step 0, Step 1,
and Step 5 of algorithm 1 and the fact that the initial conditions may be taken at any initial time t0 > 0. �

Remark 1. It turns out that the average disease transmission rate depends on the number of contagion contacts
between susceptible and infectious cases and it increases with the number of average contacts. Therefore, the above
example can be directly generalized without difficulty to a piecewise constant disease transmission rate function
defined by β(t) = β0 for t ∈ [0, t1) (Equations (5)–(8) and (12)–(13)), β = β1, t ∈ [t1, t2) (Equations (9)–(11)
and (14)–(16)) and β = β2, t ∈ [t2, t3). Similar considerations apply to example 1.

3. An SEIAR Epidemic Model Subject to Confinement or to Partial Quarantines

3.1. The Model

The ideas of the examples of Section 2 are extended to a more general model. The following
SEIAR (susceptible “S”, exposed “E”, symptomatically infectious “I”, asymptomatically infectious “A”
and recovered “R”) is proposed:

.
S(t) = b1 −

(
b2 + β

(
I(t) + β̃AA(t)

))
S(t) + η R(t) (38)

.
E(t) = −(b2 + γ)E(t) + β

(
I(t) + β̃AA(t)

)
S(t) (39)

.
I(t) = −(b2 + α+ τ0)I(t) + γpE(t) (40)

.
A(t) = −(b2 + τ0)A(t) + γ(1− p)E(t) (41)
.
R(t) = −(b2 + η)R(t) + τ0(I(t) + A(t)) (42)

with initial conditions S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, A(0) = A0 ≥ 0 and R(0) = R0 ≥ 0
with max(S0, E0 , I0 , A0, R0) > 0. The parameters have the subsequent interpretation.

b1 is the recruitment rate,
b2 is the natural average death rate,
β an β̃Aβ

(
β̃A ≤ 1

)
are the transmission rates of the symptomatic and asymptomatic infectious

cases, respectively.
η is the average immunity rate,
γ is the average transition rate from the exposed to all the infectious, i.e., A(t) + I(t),
α is the average extra mortality associated with the disease,
τ0 is the average natural immune response rate for the whole infectious subpopulation A(t) + I(t),
p and 1 − p are the fractions of the exposed that become symptomatic and asymptomatic

infectious cases, respectively.
The total population N(t) = S(t) + E(t) + I(t) + R(t) obeys the differential equation:

.
N(t) = b1 − b2N(t) − αI(t) (43)

With the initial condition N0 = S0 + E0 + I0 + A0 + R0. The above model has two separate
transitions from three exposed to the asymptomatic and symptomatic infectious cases so that the
two corresponding transition fractions sum-up unity. At the same time, the model considers that the
disease transmission rates of the symptomatic and asymptomatic infectious cases to the susceptible
cases are eventually distinct. A reason for that is that the symptomatic case can transmit the illness
with stronger force such as by means of a stronger and persistent cough.



Symmetry 2020, 12, 1646 12 of 33

3.2. Hospital Management Objective on a Temporary Time Interval

The hospital management objective within the time interval [t∗, t∗ + T] is the fulfilment of the
following constraint.

ρ(t)I(t) ≤ IH(t);∀t ∈ [t∗, t∗ + T]

for a given ρ : [t∗, t∗ + T] → [0, 1] . IH : bt∗, t∗ + Tc → R0+ defines the hospital maximum admissible
individuals according to its availability on bed disposal and sanitary necessary means for the seriously
ill symptomatic infectious individuals ρ(t)I(t) who need medical care in the hospital.

The quarantine time instants are defined by the strictly increasing sequence {ti}
∞

0 ⊂ R0+ or by a finite
subset of this sequence. Any fraction of a subpopulation x(t) submitted to quarantine at time ti translates
into the reduction of its numbers for possible contagions, according to x

(
t+i

)
=

(
1− δx

(
t−i

))
x
(
t−i

)
where δx

(
t−i

)
∈

[
0 ,µx

(
t−i

)]
⊂ [0, 1] is the fraction of that subpopulation, which is quarantined.

Usually, its maximum µx
(
t−i

)
is less than one or even small enough than one due to precise knowledge

of the current numbers belonging to that population. Since the susceptible, exposed, and asymptomatic
infectious cases are not mutually identifiable as separable from the others in most of the cases because,
due to the lack of efficient tests or availability for their application, they are typically considered
together to establish their numbers in quarantine. The problem is more tractable by considering that
the asymptomatic infectious cases are a fraction of the symptomatic ones. The proportionality function
is obtained from (40)–(41) in the sequel. First, one gets from (40)–(41), the following solutions:

I(t) = e−(b2+α+τ0)tI0 + γp
∫ t

0
e−(α+b2+τ0)(t−τ)E(τ)dτ (44)

A(t) = e−(b2+τ0)tA0 + γ(1− p)
∫ t

0
e−(b2+τ0)(t−τ)E(τ)dτ (45)

so that

ϑ(t) =
A(t)
I(t)

=
eαt

(
ϑ0I0 + γ(1− p)

∫ t
0 e(b2+τ0)τE(τ)dτ

)
I0 + γp

∫ t
0 eατe(b2+τ0)τE(τ)dτ

(46)

which is also coherent with a proportionality of initial conditions ϑ(0) = ϑ0 = A0
I0

and which can be
calculated for any other previous values of the exposed subpopulation as follows:

ϑ(t) =
A(t)
I(t)

=
eαh

(
ϑ(t− h)I(t− h) + γ(1− p)

∫ h
0 e(b2+τ0)(t−h+τ)E(t− h + τ)dτ

)
I(t− h) + γp

∫ h
0 e(α+b2+τ0)(t−h+τ)E(t− h + τ)dτ

(47)

and Equations (38)–(39) can then be rewritten via Equation (46) as:

.
S(t) = b1 −

(
b2 + β

(
1 + β̃Aϑ(t)

))
I(t)S(t) + η R(t) (48)

.
E(t) = −(b2 + γ)E(t) + β

(
1 + β̃Aϑ(t)

)
I(t)S(t) (49)

The SEIADR model can be alternatively interpreted as a special case of SEIR by removing the
explicit evolution of the asymptomatic infectious cases while considering its influence in the susceptible,
exposed, and recovered subpopulations via the proportionality function (47). Therefore, the trajectory
solution of Equations (38)–(42) in view of Equations (46), (48) and (49), can be expressed by Equations
(44) and (45), subject to Equation (46), together with the subsequent equations:

S(t) = e−b2t−β
∫ t

0 (I(τ)+β̃AA(τ))dτS0 +

∫ t

0
e−(b2(t−τ)+β

∫ t
τ
(I(ξ)+β̃AA(ξ))dξ)(b1 + ηR(τ))dτ (50a)
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= e−b2t−β
∫ t

0 (1+β̃Aϑ(τ))I(τ)dτS0 +

∫ t

0
e−(b2(t−τ)+β

∫ t
τ
(1+β̃Aϑ(ξ))I(ξ)dξ)(b1 + ηR(τ))dτ (50b)

E(t) = e−(b2+γ)tE0 + β

∫ t

0
e−(b2+γ)(t−τ)

(
I(τ) + β̃AA(τ)

)
S(τ)dτ (51a)

= e−(b2+γ)tE0 + β

∫ t

0
e−(b2+γ)(t−τ)

(
1 + β̃Aϑ(τ)

)
I(τ)S(τ)dτ (51b)

R(t) = e−(b2+η)tR0+τ0

∫ t

0
e−(b2+η)(t−τ)(I(τ) + A(τ))dτ (52a)

= e−(b2+η)tR0+τ0

∫ t

0
e−(b2+η)(t−τ)(1 + ϑ(τ))I(τ)dτ (52b)

Proposition 4. The following properties hold under finite non-negativity of the initial conditions:

(i) All the subpopulations, and then the total population, are non-negative for all time.
(ii) All the subpopulations, and then the total population, are bounded for all time.

Proof. The proof of property (i) is immediate by inspection of Equations (44), (45), (50), (51), and (56).
The proof of property (ii) follows by contradiction. Assume that N : R0+ → R0+ is unbounded.

Then, there is a strictly increasing sequence { ti}
∞

i=0 such that N(ti)→∞ as ti →∞ and
.

N(ti) >

0. Then from Equation (43), N(ti) <
b1−αI(ti)

b2
≤

b1
b2

, which contradicts that N(ti)→∞ as ti →∞ .
Then, N : R0+ → R0+ is bounded. Since all the subpopulations are non-negative for all time from
Property (i), then they are bounded as well for all time and property (ii) has been proven. �

The following result proves that ϑ(t) = A(t)/I(t) is always bounded for all time. Therefore, it
cannot happen that A(t) converges asymptotically to a positive value or that it oscillates provided that
I(t) converges asymptotically to zero. This fact is already known as a consequence of fixing α = 0 and
p = 1/2 since, in this case, the asymptomatic subpopulation cannot evolve by exceeding the numbers
of the infectious subpopulation.

Proposition 5. ϑ : R0+ → R0+ is bounded for any finite initial conditions satisfying I0 > 0.

Proof. First note that if, I0 > 0, then ϑ(0) = ϑ0 > 0 and finite since A0 ≥ 0 is finite since the initial
conditions are non-negative and finite. Note also from (44)–(45) that, since A0 and I0, are nonzero, then
A(t) and I(t) cannot be zero at any finite time even though they can potentially converge asymptotically
to zero. Now, assume that ϑ : R0+ → R0+ is not bounded and proceed by contradiction arguments.
Note the following: �

Claim 1. If ϑ : R0+ → R0+ is unbounded, then there exists a strictly increasing sequence {ti}
∞

i=0 ⊂ R0+ with{
ti+1 − ti

}∞
i=0 being bounded such that

{
ϑ(ti) − ϑ(ti − h)

}∞
i=0 is strictly increasing.

Proof of Calim 1. Assume that this is not the case so that
{
ϑ(ti) − ϑ(ti − h)

}∞
i=0 is not strictly

increasing for any given strictly increasing {ti}
∞

i=0 ⊂ R0+ and ϑ : R0+ → R0+ is unbounded.
However, if ϑ(tk) ≤ ϑ(tk − h); ∀tk ∈ {ti}

∞

i=0, and since ϑ : R0+ → R0+ is continuous, then ϑ(τ) is
bounded for τ ∈ [tk − h , tk] since this interval is bounded ∀tk ∈ {ti}

∞

i=0 and any sequence {ti}
∞

i=0.
Then, ϑ : R0+ → R0+ is bounded, which contradicts its unboundedness. Then, if ϑ : R0+ → R0+ is
unbounded, then there exists a strictly increasing sequence {ti}

∞

i=0 ⊂ R0+ such that
{
ϑ(ti) − ϑ(ti − h)

}∞
i=0

is strictly increasing. The proof follows by proving that there is no such sequence {ti}
∞

i=0 ⊂ R0+ such
that

{
ϑ(ti) − ϑ(ti − h)

}∞
i=0 is strictly increasing so that ϑ : R0+ → R0+ is unbounded. �
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Claim 2. From claim 1, one has that ϑ
(
t j
)
> ϑ

(
t j − h

)
for any t j ∈ {ti}

∞

i=0 with the sequence {ti}
∞

i=0 ⊂ R0+

existing from claim 1. Then, one has from Equation (47) that:

eαh
(
I
(
t j − h

)
+

γ(1−p)
ϑ(t j−h)

∫ h
0 e(b2+τ0)(t j−h+τ)E

(
t j − h + τ

)
dτ

)
(
I
(
t j − h

)
+ γp

∫ h
0 e(α+b2+τ0)(t j−h+τ)E

(
t j − h + τ

)
dτ

) > 1 (53)

so that(
eαh
− 1

)
I
(
t j − h

)
> γp

∫ h
0 e(α+b2+τ0)(t j−h+τ)E

(
t j − h + τ

)
dτ− γ(1−p)eah

ϑ(t j−h)

∫ h
0 e(b2+τ0)(t j−h+τ)E

(
t j − h + τ

)
dτ (54)

and then

I
(
t j − h

)
>

1
eαh − 1

∫ h

0
e(b2+τ0)(t j−h+τ)

γpeα(t j−h+τ)
−
γ(1− p)eah

ϑ
(
t j − h

) E
(
t j − h + τ

)
dτ;∀t j ∈ {ti}

∞

i=0 (55)

Now, since
{
ϑ(ti) − ϑ(ti − h)

}∞
i=0 is strictly increasing, then:

Case (a) If E : R0+ → R0+ is bounded, and since,
{
ϑ(ti)

}∞
i=0 is unbounded, then

I
(
t j − h

)
>

γp
eαh − 1

∫ h

0
e(b2+τ0)(t j−h+τ)eα(t j−h+τ)E

(
t j − h + τ

)
dτ (56)

lim inf
t j→∞

I
(
t j − h

)
−

γp
eαh − 1

∫ h

0
e(b2+τ0)(t j−h+τ)eα(t j−h+τ)E

(
t j − h + τ

)
dτ

 > 0 (57)

∀ti ∈
{
tik

}∞
k=0

for some subsequence
{
tik

}∞
k=0

of {ti}
∞

i=0 so that either the claimed bounded

E :
{
tik

}∞
k=0
→ R0+ leads to E

(
tik

)
→ 0 as k→∞ or

{
I(tik)

}∞
k=0 is unbounded and then

{
I(ti)

}∞
i=0 is

also unbounded. However,
{
E(ti)

}∞
i=0 being bounded implies from Equation (51) and from continuity

arguments (since a continuous function cannot be unbounded in a finite interval, it is bounded on its
boundary) that I : R0+ → R0+ is bounded for the sequence {ti}

∞

i=0. Since t j+1 − t j ≤ T < ∞; ∀t j ∈ {ti}
∞

i=0,
it follows that E, I : R0+ → R0+ are bounded. Thus, if E : R0+ → R0+ is bounded, then E

(
t j
)
→ 0 as

t j →∞ and, from Equation (44), I : R0+ → R0+ is bounded and, also, from Equation (40), I
(
t j
)
→ 0

as t j →∞ . However, as a result, Equation (57) is untrue so that if ϑ : R0+ → R0+ is unbounded then
E : R0+ → R0+ and I : R0+ → R0+ are unbounded and Case a is not possible, which leads to consider
Case b discussed below.

Case (b) If E : R0+ → R0+ is unbounded, then I : R0+ → R0+ is unbounded too. Thus, one gets
from (39)–(40) that

A
(
t j
)
+ I

(
t j
)
= (1 + ϑ(0))I0 − α

∫ t j

0
I(τ)dτ− (b2 + τ0)

∫ t j

0
(1 + ϑ(τ))I(τ)dτ (58)

and the following contradiction arises for any given finite initial conditions since:

A0 + I0 = (1 + ϑ(0))I0 = lim
t j→∞

(
A
(
t j
)
+ I

(
t j
)
+ α

∫ t j
0 I(τ)dτ+ (b2 + τ0)

∫ t j
0 (1 + ϑ(τ))I(τ)dτ

)
= ∞ (59)

As a result, E : R0+ → R0+ is bounded if
{
ϑ(ti) − ϑ(ti − h)

}∞
i=0 is strictly increasing and Case b is

not possible. Since neither case a nor case b are possible, one concludes that
{
ϑ(ti) − ϑ(ti − h)

}∞
i=0 is

not strictly increasing for any sequence {ti}
∞

i=0 and any given h > 0 with a positive finite separation
between consecutive elements. As a result, ϑ : R0+ → R0+ is bounded as a result of a contradiction to
the initial assumption of the proof.
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4. Total Confinement or Partial Quarantines to Achieve the Hospital Availability Objective

We consider a sequence (or a finite denumerable set) of isolated time instants Sc = {ti}
Nc
i=0 at which

the quarantine intervention actions will be applied in order to satisfy some defined management
hospital objective of intensive care of the seriously ill patients. If Sc is a finite set, then Nc = cardSc < ∞.
If Sc is a sequence, its cardinal is infinity, denoted by Nc = χ0, since it is a denumerable set of
infinity cardinal.

Note the following facts:

Fact 1. δx(ti) ∈
[
0 , δx(ti)

]
with δx(ti) ≤ 1 for x = S, E, A, I, ∀ti ∈ Sc. Usually, δx(.) ≤ δx(.) < 1 for

x = S, E, A since the suitable universal confinement of the fraction of population including the non-symptomatic
infectious cases cannot be performed because of the fact that basic services in industry, health, transportation,
etc. have to be kept and, furthermore, it is not possible to control precisely all the programmed quarantined
individuals.

Fact 2. Usually in practice, µI(ti) < 1, ∀ti ∈ Sc because all the infectious individuals are not known because of
the limitation of appropriate testing and the difficulty of identifying those with a low level of symptoms.

Fact 3. For quasi-universal quarantines, except for the maintenance of the basic services, it can be programmed for
the use of identical fractional values δS(ti) = δE(ti) = δA(ti) = µ(ti), ∀ti ∈ Sc to get the same proportionality
of quarantined numbers for all the non-symptomatic infectious cases because of the practical lack of technical
means for identifying them separately from the symptomatic infectious.

Fact 4. The transmission rate is proportional to the susceptible–infectious contacts so that quarantines or
total confinements translate into a decrease in the number of contacts and then into smaller values of the
disease transmission rate β. For exposition and simplicity in the equations’ presentation, it is assumed that
the transmission rate is a piecewise constant function β(t) = β(ti), ∀t ∈ [ti , ti+1), where ti and ti+1 are any
consecutive time instants in Sc.

The quarantine fractions for each subpopulation can be programmed at a set of sampling instants
belonging to Sc subject to minimum and maximum interval constraints, namely,

0 < T0i ≤ ti+1 − ti = Ti ≤ T < ∞;∀ti ∈ Sc (60)

Assume that the subpopulation R(t) is an “extended like-recovered” subpopulation, which contains
the recovered subpopulation while also incorporating the fractions of susceptible, exposed,
and infectious cases, which are quarantined. Let the non-negative real sequences

{
SM(ti)

}
ti∈Sc ,{

EM(ti)
}
ti∈Sc ,

{
IM(ti)

}
ti∈Sc ,

{
AM(ti)

}
ti∈Sc and

{
RM(ti)

}
ti∈Sc be the maximum suitable values on [ti, ti+1) for

ti ∈ Sc for given values S
(
t−i

)
,E

(
t−i

)
, I

(
t−i

)
and R

(
t−i

)
, namely, SM(ti) ≥ sup

ti≤t<ti+1

S(t), EM(ti) ≥ sup
ti≤t<ti+1

S(t),

IM(ti) ≥ sup
ti≤t<ti+1

I(t), AM(ti) ≥ sup
ti≤t<ti+1

A(t), RM(ti) ≥ max
ti≤t<ti+1

R(t). Assume that the quarantine

fractions of the subpopulations for ti ∈ Sc are subject to the constraints δS(ti) =
[
0, δS(ti)

]
⊂ [0, 1],

δE(ti) =
[
0, δE(ti)

]
⊂ [0, 1], δI(ti) =

[
0, δI(ti)

]
⊂ [0, 1] and δA(ti) =

[
0, δA(ti)

]
⊂ [0, 1] for given

maximum prescribed nonnegative values δS(ti), δE(ti), δI(ti) and δA(ti). They are selected as follows
in such a way that the fractions of quarantined subpopulations are as small as possible to get the
hospital management objective.

δS(ti) =


δS(ti) i f δ̂S(ti) ≥ δS(ti)

δ̂S(ti) i f δ̂S(ti) ∈
(
0, δS(ti)

)
0 i f δ̂S(ti) ≤ 0

; δE(ti) =


δE(ti) i f δ̂E(ti) ≥ δE(ti)

δ̂E(ti) i f δ̂E(ti) ∈
(
0, δE(ti)

)
0 i f δ̂E(ti) ≤ 0

(61)
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δI(ti) =


δI(ti) i f δ̂I(ti) ≥ δI(ti)

δ̂I(ti) i f δ̂I(ti) ∈
(
0, δI(ti)

)
0 i f δ̂I(ti) ≤ 0

; δA(ti) =


δA(ti) i f δ̂A(ti) ≥ δA(ti)

δ̂A(ti) i f δ̂A(ti) ∈
(
0, δA(ti)

)
0 i f δ̂A(ti) ≤ 0

(62)

where

δ̂S(ti) = 1−
1

S
(
t−i

) (SM(ti) −

(
1− e−b2Ti

b2
+

∫ Ti

0
e−β(ti)

∫ Ti
τ

(I(ξ+t+i )+β̃AA(ξ+t+i ))dξ
)
(b1 + η RM(ti))

)
(63)

δ̂E(ti) = 1−
1

E
(
t−i

)  (b2 + γ)EM(ti) − β(ti)
(
1− e−(b2+γ) Ti

) (
IM(ti) + β̃AAM(ti)

)
SM(ti)

b2 + γ

 (64)

δ̂I(ti) ≥ δI(ti) ≥ max

0, 1−
1

I
(
t−i

)  (α+ b2 + τ0)IM(ti) −
(
1− e−(α+b2+τ0) Ti

)
γpEM(ti)

α+ b2 + τ0


 (65)

δ̂A(ti) = 1−
1

A
(
t−i

)  (b2 + τ0)AM(ti) −
(
1− e−(b2+τ0) Ti

)
γ(1− p)EM(ti)

b2 + τ0

 (66)

The motivation of taking the quarantined subpopulations (1− δx(.)), according to
Equations (61)–(66) is discussed in Appendix B.

The solution trajectories under partial (or total) quarantines of some or all the subpopulations
under different fractioned quarantined subpopulations are given in Appendix A. On the other hand,
the proof of the above constraint (66) is given in Appendix B. It is a routine exercise to get the following
particular case of Equations (65)–(66).

δ(ti) = δS(ti) = δE(ti) = δI(ti) = δA(ti)

= min
(
δ̂S(ti), δ̂E(ti), δ̂I(ti), δ̂A(ti)

)
∈

[
0 , min

(
δS(ti), δE(ti), δI(ti), δA(ti)

) )
(⊂ [0 , 1])

(67)

concerning the situation that all the subpopulations are constrained in identical proportions
to quarantine and that the maximum allowed values δS(ti), δE(ti), δI(ti) and δA(ti) for the
corresponding fractions. It has to be taken into account to set such maximum thresholds, such as the
management of minimal services, maintenance of the industrial and sanitary activities, the food
supply and its transportation and distribution, the technical impossibility of fully controlling
the confinement, etc.

The feasibility of the hospital management objective is formally addressed in the next result.

Proposition 6. Let Sc = {ti}
Nc
i=0, with Nc ≤ ∞, be a finite set or a sequence of quarantine time instants with the

in-between quarantine time periods being Sp =
{
Ti = ti+1 − ti

}Nc
i=0 and assume that the hospital management

objective within the time interval [ti, ti+1) is the fulfilment of the following constraint.

ρ(t)I(t) ≤ IH(t)∀t ∈ [ti, ti+1) (68)

for some given ρ : [ti, ti+1) → [0, 1] , where IH : [ti, ti+1)→ R0+ represents the hospital availability
on bed disposal and sanitary necessary treatment means for the seriously ill symptomatic infectious
individuals ρ(t)I(t) who need medical care in the hospital. The above objective is achievable under
global quarantine for the total population if

δ(ti) = δI(ti) = min (δS(ti), δE(ti), δI(ti), δA(ti)) (69)
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where
δI(ti) = δIρm(ti);ρm(ti) = sup

t1≤t<ti+1

(
ρa(t) ∈ [0,ρ(t)] : 0 ≤ δIρa(ti) ≤ δI(ti)

)
(70)

δIρa(ti) = 1−
1

I
(
t−i

)

(α+ b2 + τ0) inf

t1≤t<ti+1
(IH(t)/ρa(t)) −

(
1− e−(α+b2+τ0) Ti

)
γpEM(ti)

α+ b2 + τ0

 (71)

Proof. Note that the objective (68) is fulfilled via Equations (69)–(71) with identical quarantine amounts
for all the subpopulations and the maximum admissible ρm(t) being closer as much as possible to the
targeted ρ(t) for a given IH(t) if δI(ti) in Equation (69) fulfils Equations (70)–(71). �

Proposition 7. Assume that the hospital management objective is only required to be fulfilled at the testing
time instants of the set Sc rather than at the time intervals in-between consecutive time instants of Sc.
Then, Equation (71) becomes modified as follows.

δIρm(ti) = 1−
e(b2+α+τ0)Ti

I
(
t−i

)  (α+ b2 + τ0)IH
(
t−i+1

)
/ρm

(
t−i+1

)
−

(
1− e−(α+b2+τ0) Ti

)
γpE

(
t−i+1

)
α+ b2 + τ0

 (72)

where ρm(ti) = sup
t1≤t<ti+1

(
ρa(t) ∈ [0,ρ(t)] : 0 ≤ δIρa(ti) ≤ δI(ti)

)
.

Proof. It is similar to Proposition 6 by taking into account Remark B1 in Appendix B. �

Remark 2. As discussed in Remark 1, the transmission rate depends on the number of contacts susceptible to
infections, which can decrease significantly under quarantines or confinements. Therefore, β may be replaced by
a piecewise constant function β = β(ti); ∀t ∈ [ti , ti+1); ∀ti ∈ Sc in order to generalize the results of this section
(See Equations (62) and (63) and the equations in Appendices A and B).

5. Numerical Simulations

This section contains some numerical simulation examples aimed at illustrating the theoretical
background discussed in previous sections. To this end, parameter values corresponding to COVID-19
are considered. It has to be pointed out that reported data regarding COVID-19 exhibit high
variability among outbreaks or are even inconsistent. Thus, parameter values could be subject
to changes as knowledge on the infection progress. However, the discussion on the effect of
the considered counteracting measurements holds regardless of the particular parameterization
of the model. The simulations are performed with the values collected in Tables 1 and 2 for the specific
case of the Madrid Region (“Comunidad de Madrid”).
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Table 1. Parameter values employed in simulations.

Parameter Interpretation Value Source

b1 Recruitment rate 57554 years−1 [44] year 2018

b2 Natural average death rate 1/85 years−1 [44]

β Transmission rate of symptomatic cases 2.5/N(0) [45]

βA Specific transmission rate factor of asymptomatic cases 1 [45,46]

γ Average incubation period 1/5.5 days−1 [47]

η Average immunity loss rate 0 [39,45,47]

α Mortality rate associated with disease 3.55% [48]

τ0 Average immune response rate 1/10 days−1 [39]

p Fraction of exposure that becomes symptomatic 69% [49]

Table 2. Initial conditions for simulations.

Population Value

S(0) 6,778,382

E(0) 1

I(0) 0

A(0) 0

R(0) 0

N(0) 6,778,383

From Table 2, it can be concluded that simulation starts with the total population being susceptible
and a single exposed case. Figures 1 and 2 display the evolution of all populations in the absence of
control actions. It is deduced from Figure 1 that the spreading of the disease would end up affecting
the total population if no control action was taken, as similarly concluded in Reference [45].

Figure 1. Evolution of susceptible and recovered in the absence of control actions.
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Figure 2. Evolution of exposed, infectious and asymptomatic in the absence of control actions.

It is also observed in Figure 2 the large number of infected people, I, attained at the infection peak.
Such a large number of infected people would definitely overflow the hospital available resources.
In order to avoid this situation a quarantine policy will be applied to control the infection spreading.
According to [50], it will be considered that the average percentage of infectious cases that require
hospitalization is 25%. Thus, the hospital management objective is set as ρI(t) = 0.25I(t) ≤ IH(t),
where IH(t) denotes the maximum number of available resources. In the Madrid region, the number of
available hospital beds is 20,516, [51], so that the management of hospital resources imply that the
constraint IH(t) should be satisfied for all time. This upper-bound is constant since it is the number
of installed beds in the health system before the outbreak of the pandemic, which should not be
outnumbered by using the proposed control measurements. This situation is depicted in Figure 3
where it is shown that the hospitalized cases may exceed the number of available beds.

Figure 3. Graphical representation of the hospital management objective. The infectious curve should
lie below the red line representing the number of available beds.

In order to achieve the hospital management objective, quarantine on different populations
will be applied. Therefore, the population of infectious cases is assumed t be quarantined



Symmetry 2020, 12, 1646 20 of 33

(isolated) at different percentages twice per day. This means that every 12 h, a percentage of
the infectious population, I, is removed from this compartment due to the fact that they will be isolated
and they will no longer spread the infection. Since clinical symptoms may be detected, this population
can be quarantined independently from the other ones. Thus, Figure 4 shows the effect of this “isolation
of cases” policy. In this way, Figure 4a displays the hospital management objective and the obtained
infectious curves for different values of δI ranging from 0.16 to 0.24, so that the percentage of isolated
infections range from 16% to 24%. Figure 4b also shows the effect of the impulsive action on the
infectious evolution.

Figure 4. (a) Isolation (quarantine) of infectious with declared symptoms. (b) Zoom on the plot
showing the effect of the impulsive action.
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Figure 4 is obtained by assuming that the infectious cases are isolated from the first day of simulation.
However, the first day of quarantine (isolation) application may be delayed by a number of days
(implying that cases are not isolated and they can still spread the infection for more days) due to several
reasons. In this case, the results depicted in Figure 5 are obtained for the same values of δI as before
(from 0.16 to 0.24). Thus, Figure 5a displays the evolution of infectious cases when the isolation of
cases policy starts 25 days before the first exposed case appears while Figure 5b displays the infectious
evolution when the isolation policy starts 30 days after. The isolated individuals are removed from the
I -compartment.

Figure 5. Effect of delayed infectious quarantine on hospital objective achievability: (a) delay of 25 days,
(b) delay of 30 days.

It can be deduced from Figure 5 that the hospital objective may still be accomplished if the
quarantine policy is not delayed too much while, if the delay in the isolation application exceeds a
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certain threshold, then the hospital objective may not be satisfied. Consequently, it is revealed as
crucial to isolate the cases as soon as possible. The limit value for the quarantine percentage that allows
fulfilling with the hospital objective at all time points can be calculated by trial-error simulation by using
a search algorithm such as Algorithm 1 discussed in Section 2 or by using Equations (61)-(66) evaluated
at quarantine application time instants. In this case, simulations for different values are performed to
analyze the effect of changing the quarantine percentage procedure that, in turn, allows finding its
limit value. On the other hand, Figure 6 displays the evolution of the infectious and hospital beds
threshold when a quarantine on the general population is applied at day 20 after the first exposed
individual is introduced in the population. This situation is modeled as the reduction of the same
percentages of individuals from all populations at day 20. This may be the general situation when
a universal lock down is decreed as it was the case of Spain. Therefore, the values of δS = δE =

δI = δA range between 0.8 and 0.9, which implies that the quarantine involves up to 90% of the
whole population. It is observed in Figure 6 that the application of quarantine reduces the peak of
infectious cases with respect to not taking any measure but, depending on the percentage, may not be
enough to achieve the hospital objective. Figure 7 displays, as an example, the abrupt change on the
susceptible when the quarantine is applied at day 20. Furthermore, Figure 8 displays the change in the
evolution of the infectious cases when quarantine is applied at different starting times. Thus, we fix δS
for all populations and the day when quarantine is applied ranges from 3 to 24 days after the first
exposed is introduced in the population. The fact for applying quarantine earlier moves the peak to
the right but does not change its value. Therefore, when the quarantine is applied to such a large
percentage of population, the time of application is not that crucial. In addition, it is revealed to be
more appropriate for early detection and isolation of cases than the quarantine of a large percentage of
general population since it allows attaining the hospital management objective without locking down
a large amount of individuals.

Figure 6. Effect on the infectious cases of the quarantine of the entire population.
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Figure 7. Evolution of the susceptible cases when quarantine is applied.

Figure 8. Effect of the day of application of quarantine in the evolution of the infectious cases.

In addition, Figure 9 displays the evolution of infectious cases when quarantining 80–90% of the
entire population is ordered at day 20 and relaxed at day 90 while Figure 10 shows the infectious
cases when quarantine is lifted at day 300. In all these cases, all quarantined populations are added
to the susceptible population once quarantine finishes. It is deduced from Figures 9 and 10 that,
when quarantine is lifted, the number of infectious cases rebounds (end exceeds the hospital availability
threshold) no matter how long quarantine had been maintained. Thus, the sole application of a general
quarantine is not a sufficient control action to deal with the infection spreading since rebounding may
occur at the end of quarantine. Figure 11 shows the effect of isolating 70% of infectious individuals
every 6 h after day 40 when a general quarantine for 90% of the population is decreed from day 20 to
day 90. It can be concluded from Figures 9–11 that an important measure is the early detection and
isolation of cases in order to prevent new outbreaks once a situation of quarantine is relaxed.
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Figure 9. Evolution of the infectious cases when general quarantine is applied at day 20 and relaxed at
day 90.

Figure 10. Evolution of the infectious cases when general quarantine is applied at day 20 and relaxed
at day 300.
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Figure 11. Evolution of the infectious cases when general quarantine is applied at day 20 and lifted at
day 90 while isolation of 70% of infectious individuals is applied every 6 h after day 40.

Lastly, quarantine is commonly implemented with social distancing measurements.
Social distancing has the effect of reducing the infectivity factor, β. This factor can also be reduced
due to the quarantine application discussed before. Therefore, the last simulation will deal with the
case when β is a piecewise constant function. In this way, the value of β displayed in Figure 12 is
proposed for simulation. Figure 13 depicts the evolution of the infectious cases with the displayed
piecewise constant beta and no other control action. It is observed in Figure 13 that the hospital
requirement is fulfilled in this case. Thus, an early reduction of the infectivity rate is crucial to control
the infection spreading. Figure 14 shows the effect of joining a reduction of the infectivity rate with
quarantine of 50% of the entire population from day 20. It can be concluded that the joint effect is able
to attain the hospital requirement in an easier way than by using a single method.

Figure 12. Piecewise constant β function.
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Figure 13. Evolution of infectious and hospital objective with piecewise constant β.

Figure 14. Evolution of infectious and hospital objective with piecewise constant β and quarantine in
all populations of 50% from day 20.

It can be pointed out that current data regarding Covid-19 exhibit high variability between
outbreaks and places and many of them include many inconsistencies such as a negative number of
deaths in order to regularize incorrectly informed data. It was very common to give erroneous
data at the beginning of the infection outbreak since only the seriously infected individuals
were tested. Therefore, those with unserious symptoms and those being asymptomatic were not tested.
Thus, the confrontation of the model with real data will require an important work of data gathering and
analyzing. Therefore, the total number of total infectious cases at any time of the infection evolution can
be roughly estimated by the number of deaths caused by the illness with the estimated proportion of
1–1.5% of deaths from all of the infectious individuals in accordance with recently reported estimations.
Basically, the model adequacy analysis could be performed by comparing the actual number of deaths
and ICU hospitalized patients from the results obtained from the model. This process will definitely
require an appropriate definition of cases and the review of previously informed data. On the other
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hand, the transmission rate of the symptomatic and asymptomatic infectious subpopulations can be
updated through from the corresponding given data by the health system. The remaining parameters
of Table 1 can be updated from medical data on hospital records and testing records on populations.
This methodology may be useful to adjust the model parameterization from recorded data on the
disease evolution.

6. Conclusions

This paper has considered the problem of partial or total quarantines of the susceptible and
the susceptible and infectious populations of both a simple SIR model and a more general SEIAR
model with mortality and demography. Such a model incorporates the asymptomatic infectious
subpopulation to the usual SEIR models. The proposed model is studied under either partial or total
quarantines of some or of all of the subpopulations in order to satisfy prescribed hospital availability
requirements on bed disposal and other necessary treatment means. The quarantined fractions of
one or various involved subpopulations can be mutually distinct. In this way, the total confinement
becomes a particular case of quarantine intervention. The hospital objective to be fulfilled is being
prescribed through time as a monitored design constraint on the seriously infectious subpopulations,
which needs hospital care. Such a subpopulation is assumed to be a fraction of the total infectious
individuals while the objective management establishes that their numbers should be kept below a
prefixed absolute upper-boundary, which cannot be violated. Some simulated numerical examples
are also discussed by using modelling parameterizations related to the current COVID-19 pandemic.
Those simulations corroborate that quarantine interventions with enough anticipation related to the
pandemic outbreak and the appropriate identification of cases are efficient tools for the fulfilment of
required hospital management objectives.
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Appendix A. Evolution Equations for Quarantines In-between to Consecutive Time Instants and
Their Counterparts for Accumulated Quarantines

Let Sc = {ti}
Nc
i=0 be a sequence of confinement time instants. One has from Fact 1 and (38)–(42) that:

S
(
t+i

)
= (1− δs(ti))S

(
t−i

)
(A1)

S(t) =e
−b2(t−ti)−β(ti)

∫ t
ti
(I(τ)+β̃AA(τ))dτ

S
(
t+i

)
+

∫ t
t+i

e−(b2(t−τ)+β(ti)
∫ t
τ
(I(ξ)+β̃AA(ξ))dξ)(b1 + ηR(τ))dτ;

∀t ∈ [ti , ti+1)
(A2)

= e
−b2(t−ti)−β(ti)

∫ t
ti
(1+β̃Aϑ(τ))I(τ)dτS

(
t+i

)
+

∫ t
t+i

e−(b2(t−τ)+β(ti)
∫ t
τ
(1+β̃Aϑ(ξ))I(ξ)dξ)(b1 + ηR(τ))dτ;

∀t ∈ [ti , ti+1)
(A3)

E
(
t+i

)
= (1− δE(ti))E

(
t−i

)
(A4)
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E(t) =
[
e−(b2+γ)(t−ti)E

(
t+i

)
+ β(ti)

∫ t
t+i

e−(b2+γ)(t−τ)
(
I(τ) + β̃AA(τ)

)
S(τ)dτ

]
= e−(b2+γ)(t−ti)E

(
t+i

)
+ β(ti)

∫ t
t+i

e−(b2+γ)(t−τ)
(
1 + β̃Aϑ(τ)

)
I(τ)S(τ)dτ;∀t ∈ [ti , ti+1)

(A5)

I
(
t+i

)
= (1− δI(ti))I

(
t−i

)
(A6)

I(t) =

e−(b2+α+τ0)(t−ti)I
(
t+i

)
+ γp

∫ t

t+i

e−(α+b2+τ0)(t−τ)E(τ)dτ

;∀t ∈ [ti , ti+1) (A7)

A
(
t+i

)
= (1− δA(ti))A

(
t−i

)
(A8)

A(t) = e−(b2+τ0)(t−ti)A
(
t+i

)
+ γ(1− p)

∫ t

t+i

e−(b2+τ0)(t−τ)E(τ)dτ;∀t ∈ [ti , ti+1) (A9)

R
(
t+i

)
= R

(
t−i

)
+ δS(ti) S

(
t−i

)
+ δE(ti)E

(
t−i

)
+ δI(ti)I

(
t−i

)
+ δAA

(
t−i

)
(A10)

R(t) = e−(b2+η)(t−ti)R
(
t+i

)
+ τ0

∫ t

t+i

e−(b2+η)(t−τ)(I(τ) + A(τ))dτ;∀t ∈ [ti , ti+1) (A11)

The above result can be generalized to the contributions for a set of intermediate confinement
time instants. To proceed with such a generalization, we first prove the following result for time-varying,
impulsive, real scalar differential equations.

Theorem A1. Consider the scalar differential equation.

.
x(t) = a(t)x(t) + u(t); t ∈ (0 , +∞)x

(
t+j

)
=

(
1− δ

(
t j
))

x
(
t−j

)
where a, u : R0+ → R are bounded piecewise continuous functions, t j ∈ Timp = {t0 = 0 , t1 , t2, . . . .} with
t j+1 − t j ≥ ∆ > 0, δ

(
t j
)
∈ [0, 1]; ∀t j ∈ Timp, Timp is a finite or (denumerable) infinite set or real numbers and

x(0−) ∈ R is given. Then,

x(t) =

 i∏
j=1

[
1− δ

(
t j
)]e

∫ t
0 a(τ) dτx

(
0+

)
+

i∑
k=1

 i∏
j=k

[
1− δ

(
t j
)]

∫ tk

t+k−1

e
∫ t
τ

a(ξ) dξ u(τ)dτ+
∫ t

t∗i

e
∫ t
τ

a(ξ) dξ u(τ)dτ

=

 i∏
j=`+1

[
1− δ

(
t j
)]e

∫ t
t`

a(τ) dτ
x
(
t+
`

)
+

i∑
k=`+1

 i∏
j=k

[
1− δ

(
t j
)]

∫ tk

t+k−1

e
∫ t
τ

a(ξ) dξ u(τ)dτ+
∫ t

ti

e
∫ t
τ

a(ξ) dξ u(τ)dτ;

∀t ∈ [ti, ti+1);∀t`, t`+1, ti(≥ t`+1) ∈ Timp

is the unique solution of the above impulsive differential equation for t ∈ [ti , ti+1); ∀ti , ti+1 ∈ Timp, and, for all,
t ≥ tM if tM is the maximum element of Timp if such a set has a finite cardinal.

Proof. It is organized by induction. Take a time instant t ∈ [ti , ti+1); ∀ti , ti+1 ∈ Timp. Then,

x(t) = (1− δ(ti)) Φ(t, ti)x
(
t−i

)
+

∫ t

t+i

Φ(t, τ)u(τ)dτ

where Φ(t, τ) = e
∫ t
τ

a(ξ)dξ; ∀τ, t(≥ τ), t′(≥ t) ∈ R0+. Note that for τ ∈ [t, t′]:

Φ(t, t′) = e
∫ t′

t a(ξ)dξ = e
∫ τ

t a(ξ)dξ+
∫ t′
τ

a(ξ)dξ = Φ(t, τ)Φ(τ, t′)
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By using recursion to compute x
(
t−i

)
from the solution x(ti−1) at the preceding ti−1 ∈ Timp and so

on until reaching t0 = 0 yields:

x(t) = (1− δ(ti)) Φ(t, ti)
[
(1− δ(ti−1)) Φ(ti, ti−1)x

(
t−i−1

)
+

∫ ti
t+i−1

Φ(ti, τ)u(τ)dτ
]
+

∫ t
t+i

Φ(t, τ)u(τ)dτ

= (1− δ(ti)) (1− δ(ti−1)) Φ(t, ti−1)x
(
t−i−1

)
+ (1− δ(ti))

∫ t
t+i−1

Φ(t, τ)u(τ)dτ+
∫ t

t+i
Φ(t, τ)u(τ)dτ

=
(∏i

k=0[1− δ(tk)]
)
Φ(t, 0)x(0−) +

∑i
k=1

(∏i
j=k

[
1− δ

(
t j
)])

Φ(t, tk)
∫ tk

t+k−1
Φ(tk, τ) u(τ)dτ+

∫ t
t+i

Φ(t, τ)u(τ)dτ

=
(∏i

k=0[1− δ(tk)]
)
Φ(t, 0)x(0−) +

∑i
k=1

(∏i
j=k

[
1− δ

(
t j
)])∫ tk

t+k−1
Φ(t, τ) u(τ)dτ+

∫ t
t+i

Φ(t, τ)u(τ)dτ

=
(∏i

k=0[1− δ(tk)]
)
Φ(t, 0)x(0−) +

∑i
k=1

(∏i
j=k

[
1− δ

(
t j
)])∫ tk−tk−1

0 Φ
(
t, t+k−1 + τ

)
u
(
t+k−1 + τ

)
dτ

+
∫ t−ti

0 Φ(t, ti + τ)u(ti + τ)dτ;∀t ∈ [ti, ti+1)

=
(∏i

k=1[1− δ(tk)]
)
Φ(t, 0)x(0+) +

∑i
k=1

(∏i
j=k

[
1− δ

(
t j
)])∫ tk−tk−1

0 Φ
(
t, t+k−1 + τ

)
u
(
t+k−1 + τ

)
dτ

+
∫ t−ti

0 Φ(t, ti + τ)u(ti + τ)dτ;∀t ∈ [ti, ti+1);∀t`, t`+1, ti(≥ t`+1) ∈ Timp

and the proof is complete. �

In general, for a sequence of potential confinement time instants, Sc = {ti}
Nc
i=0 by taking t0 = 0

with no loss in generality, one obtains the following set of equations for the various subpopulations by
proceeding recursively from the above Equations (A1)–(A11) and Theorem A1.

S(t) =e
−b2(t−ti)−β(ti)

∫ t
ti
(I(τ)+β̃AA(τ))dτ

S
(
t+i

)
+

∫ t
ti

e−(b2(t−τ)+β(ti)
∫ t
τ
(I(ξ)+β̃AA(ξ))dξ)(b1 + ηR(τ))dτ;

∀t ∈ [ti, ti+1)
(A12)

= e
−b2(t−ti)−β(ti)

∫ t
ti
(1+β̃Aϑ(τ))I(τ)dτS

(
t+i

)
+

∫ t
ti

e−(b2(t−τ)+β(ti)
∫ t
τ
(1+β̃Aϑ(ξ))I(ξ)dξ)(b1 + ηR(τ))dτ;

∀t ∈ [ti, ti+1)
(A13)

=
(∏ j

i=`[1− δS(ti)]
)
e
−b2(t−t`)−β(t`)

∫ t
t`
(I(τ)+β̃AA(τ))dτ

S
(
t−`

)
+

∑ j
k=`+1

(∏ j
i=k[1− δS(ti)]

) ∫ tk−tk−1
0 e−(b2(t−tk−1−τ)+β(tk−1)

∫ t
τ
(I(t+k−1+ξ)+β̃AA(t+k−1+ξ))dξ)

(
b1 + ηR

(
t+k−1 + τ

))
dτ

+
∫ t−t j

0 e−(b2(t−t j−τ)+β(t j)
∫ t
τ
(I(t+j +ξ)+β̃AA(t+j +ξ))dξ)

(
b1 + ηR

(
t+j + τ

))
dτ;∀t` , t j(≥ t`), t j+1 ∈ Sc,

∀t ∈
[
t j, t j+1

)
(A14)

=
(∏ j

i=`[1− δS(ti)]
)[

e−b2(t−t`)−β(t`)
∫ t−t`

0 (1+β̃Aϑ(t
+
`
+τ))I(t+

`
+τ)dτS

(
t−`

)]
+

∑ j
k=`+1

(∏ j
i=k[1− δS(ti)]

) ∫ tk−tk−1
0 e−(b2(t−tk−1−τ)+β(tk−1)

∫ t
τ
(1+β̃Aϑ(t

+
k−1+ξ))I(t

+
k−1+ξ)dξ)

(
b1 + ηR

(
t+k−1 + τ

))
dτ

+
∫ t−t j

0 e−(b2(t−t j−τ)+β(t j)
∫ t
τ
(1+β̃Aϑ(t

+
j +ξ))I(t

+
j +ξ)dξ)

(
b1 + ηR

(
t+j + τ

))
dτ;∀t` , t j(≥ t`), t j+1 ∈ Sc,

∀t ∈
[
t j, t j+1

)
(A15)

E(t) =
(∏ j

i=`[1− δE(ti)]
)
e−(b2+γ)(t−t`)E

(
t−`

)
+

∑ j
k=`+1

(∏ j
i=k[1− δE(ti)]

)∫ tk−tk−1
0 e−(b2+γ)(t−tk−1−τ)β(tk−1)

(
I
(
t+k−1 + τ

)
+ β̃AI

(
t+k−1 + τ

))
S
(
t+k−1 + τ

)
dτ

+
∫ t−t j

0 e−(b2+γ)(t−t j−τ)β
(
t j
) (

I
(
t+j + τ

)
+ β̃AI

(
t+j + τ

))
S
(
t+j + τ

)
dτ;∀ti, t j ∈ Sc,∀t ∈

[
t j, t j+1

) (A16)

I(t) =
∏ j

i=`[1− δI(ti)]e−(b2+α+τ0)(t−t`)I
(
t−`

)
+γp

∑ j
k=`+1

(∏ j
i=k[1− δI(ti)]

)∫ tk−tk−1
0 e−(b2+α+τ0)(t−tk−1−τ)E

(
t+k−1 + τ

)
dτ

+γp
∫ t−t j

0 e−(b2+α+τ0)(t−t j−τ)E
(
t+j + τ

)
dτ;∀ti, t j ∈ Sc,∀t ∈

[
t j, t j+1

) (A17)

A(t) =
(∏ j

i=` [1− δA(ti)]
)
e−(b2+τ0)(t−t`)A

(
t−`

)
dτ

+γ(1− p)
∑ j

k=`+1

(∏ j
i=k[1− δA(ti)]

) ∫ tk−tk−1
0 e−(b2+τ0)τE

(
t+k−1 − τ

)
dτ

+γ(1− p)
∫ t−t j

0 e−(b2+τ0)τE(t− τ)dτ;∀ti, t j ∈ Sc,∀t ∈
[
t j, t j+1

) (A18)
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R(t) = e−(b2+η)(t−t j)
(
R
(
t−j

)
+ δS

(
t j
)

S
(
t−j

)
+ δE

(
t j
)
E
(
t−j

)
+ δI

(
t j
)
I
(
t−j

)
+ δAA

(
t−j

))
+τ0

∫ t−t j
0 e−(b2+η)τ(I(t− τ) + A(t− τ))dτ

= N(t) − S(t) − I(t) −A(t) −R(t);∀t ∈
[
t j, t j+1

)
,∀t j ∈ Sc

(A19)

Appendix B. Discussion of the Quarantined Choices According to (61)–(66)

One gets from (A1)–(A9) that

sup
ti≤t<ti+1

S(t) ≤ (1− δS(ti))S
(
t−i

)
+

(∫ Ti
0+ e−b2(t−τ)−β(ti)

∫ Ti
τ

(I(ξ+t+i )+β̃AA(ξ+t+i ))dξ
)
(b1 + η RM(ti)) ≤ SM(ti) (A20)

with Ti = ti+1 − ti provided that

δS(ti) ≥ δS(ti) ≥ max
(
0, 1− 1

S(t−i )

(
SM(ti) −

(∫ Ti
0+ e−b2(t−τ)−β(ti)

∫ Ti
τ

(I(ξ+t+i )+β̃AA(ξ+t+i ))dξ
)(

b1 + η RM
(
t+i

))))
(A21)

sup
ti≤t<ti+1

E(t) ≤ (1− δE(ti))E
(
t−i

)
+

1− e−(b2+γ)Ti

b2 + γ
β(ti)

(
IM(ti) + β̃AAM(ti)

)
SM(ti) ≤ EM(ti) (A22)

provided that

δE(ti) ≥ δE(ti) ≥ max
(
0, 1− 1

E(t−i )

(
(b2+γ)EM(ti)−β(ti) (1−e−(b2+γ) Ti)(IM(ti)+β̃AAM(ti))SM(ti)

b2+γ

))
(A23)

sup
ti≤t<ti+1

I(t) ≤ (1− δI(ti))I
(
t−i−1

)
+

1− e−(α+b2+τ0)Ti

α+ b2 + τ0
γpEM(ti) ≤ IM(ti) (A24)

provided that

δI(ti) ≥ δI(ti) ≥ max

0 , 1−
1

I
(
t−i

)  (α+ b2 + τ0)IM(ti) −
(
1− e−(α+b2+τ0) Ti

)
γpEM(ti)

α+ b2 + τ0


 (A25)

sup
ti≤t<ti+1

A(t) ≤ (1− δA(ti))A
(
t−i−1

)
+

1− e−(b2+τ0)Ti

b2 + τ0
γ(1− p)EM((ti)) ≤ AM(ti) (A26)

provided that

δA(ti) ≥ δA(ti) ≥ max

0 , 1−
1

A
(
t−i

)  (b2 + τ0)AM(ti) −
(
1− e−(b2+τ0) Ti

)
γ(1− p)EM(ti)

b2 + τ0


 (A27)

and from (A10)–(A11), one gets:

RM(ti)≤ e−(b2+η)Ti
(
R
(
t−i

)
+ δS(ti)SM(ti) + δE(ti)EM(ti) + δI(ti)IM(ti) + δA((ti))AM(ti)

)
≤ R(t) = e−(b2+η)(t−ti)

(
R
(
t−i

)
+ δS(ti) S

(
t−i

)
+ δE(ti)E

(
t−i

)
+ δI(ti)I

(
t−i

)
+ δAA

(
t−i

))
+τ0

∫ t−ti
0 e−(b2+η)τ(I(t− τ) + A(t− τ))dτ

≤ R
(
t−i

)
+ δS(ti)SM(ti) + δE(ti)EM(ti) +

(
δI(ti) + τ0

1−e−(b2+η) Ti
b2+η

)
IM(ti) +

(
δA(ti) + τ0

1−e−(b2+η) Ti
b2+η

)
≤ RM(ti) = sup

ti≤t<ti+1

R(t);∀ti ∈ Sc

(A28)

Remark A1. If in (A20), (A22), (A24), and (A26), one replaces
sup

ti≤t<ti+1

S(t)→ S
(
t−i+1

)
, sup

ti≤t<ti+1

E(t)→ E
(
t−i+1

)
, sup

ti≤t<ti+1

I(t)→ I
(
t−i+1

)
, and sup

ti≤t<ti+1

A(t)→ A
(
t−i+1

)
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so that the hospital objective is only required at the time instants of Sc. Then the decreased fractions of (A21),
(A23), (A25), and (A28) of the involved subpopulations become modified with the replacements:

SM(ti)→ S
(
t−i+1

)
, EM(ti)→ E

(
t−i+1

)
. IM(ti)→ I

(
t−i+1

)
and AM(ti)→ A

(
t−i+1

)
, and

1
S(t−i )

→
eb2Ti+β(ti)

∫ Ti
0 (I(τ+t+i )+β̃AA(τ+t+i ))dτ

S(t−i )
; 1

E(t−i )
→

e(b2+γ)Ti

E(t−i )
1

I(t−i )
→

e(b2+α+τ0)Ti

I(t−i )
; 1

A(t−i )
→

e(b2+τ0)Ti

A(t−i )
according to (A2), (A5), (A7) and (A9).
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