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Summary 
The Bay of Biscay shelters a large and diverse pelagic community of exploited species 

that require of direct assessment methods to determine the Total Allowable Catch (TAC) 

fishing quotas. Particularly, European anchovy (Engraulis encrasicolus) supports 

profitable fisheries for both the Spanish and French fleets, making it one of the most 

valuable commercial species of the area. Other species such as Mueller´s pearlside 

(Maurolicus muelleri) have arisen increasing interest in their commercial exploitation, 

urging the development of assessment methods focused on their future potential 

exploitation.  

Acoustic surveys are particularly well suited for quantification of distribution and 

abundance of pelagic species. They have become one of the most widely used methods 

for fish stock abundance estimation, and now form an important part of routine stock 

management all over the world. The main acoustic parameter needed to convert the 

acoustic energy into numerical abundance is the target strength (TS; [dB re 1 m2]), which 

is based on species-specific single target detections.  

Generally, in situ TS measurements are assumed to deliver the most accurate results, if 

collected with concurrent reliable biological samples and tilt angle information. 

However, measuring TS of fish in their natural environment implies dealing with some 

difficulties, some of which derive from their small size and densely packed aggregative 

distribution. To allow more control of the abundance and ensure isolation of target 

species, ex situ experiments can be conducted under controlled environmental 

conditions. Unfortunately, these experiments pose some concerns that can introduce 

bias in the TS measurements.  One of them is that the fish behavior may be altered due 

to the unnatural conditions in which they are immersed, resulting in biased TS 

measurements. Another issue is related to the short-range measurements that are 

commonly obtained from cage experiments. At distances too close from the signal 

source (i.e. inside the near-field), the wave front is not completely formed leading to 

biased measurements of target strength. 
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Finally, when the biological properties of the targets are known, the acoustic properties 

of the whole fish or body components can be estimated using theoretical models to 

verify or extend the empirical TS measurements.  

The elaboration of this thesis was motivated by the lack of unbiased TS values for 

European anchovy and Muller´s pearlside, necessary to deliver accurate estimates of 

abundance by means of acoustic methods.  

In the case of anchovy, there are some methodological inconsistencies related to the 

target strength value currently used for the estimation of anchovy abundance in the Bay 

of Biscay. First, different values are used by different surveys, and second, none of these 

values is specific for anchovy. A combination of ex situ and in situ measurements were 

utilised at three frequently used acoustic frequencies, including the one used for 

assessment. In situ data were collected during night pelagic trawls in two different 

seasons along 7 years of study. A backscattering model for physostome fish, where the 

swimbladder was simulated as a two chambered prolate spheroid, was used to help 

interpret the results. The obtained TS values were -44.6 (±2.3), -46.9 (±3) and -48.4 

(±2.7) dB at 38, 120 and 200 kHz respectively, which, for the 3.5-19.5 cm long anchovies 

studied, yielded b20 values of -66.5, -68.7 and -70.4 dB. The results were rather 

consistent among seasons and among in situ and ex situ conditions, obtaining significant 

TS-length positive relationships for all frequencies. This research is part of a series of 

efforts planned to obtain a comprehensive TS versus length relationship to update the 

acoustic assessment methodology of European anchovy in the Bay of Biscay. 

The target strength of pearlside was estimated for the first time at five frequencies 

commonly used in acoustic surveys. Its relationship with fish length (b20) was also 

determined. Biomass estimates of pearlside in the Bay of Biscay during the four years of 

study (2014–2017) are given using the 38 kHz frequency. Morphological measurements 

of the swimbladder were obtained from soft X-ray images and used in the backscattering 

simulation of a gas-filled ellipsoid. Pearlside is a physoclist species, which means that 

they can compensate the swimbadder volume against pressure changes. However, the 

best fit between the model and the experimental data showed that they lose that 

capacity during the trawling process, when the swimbladder volume is affected by 

Boyle´s law. 
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I organised this research work following the traditional monograph structure, divided 

into the following five chapters:  

In Chapter 1, Introduction, I first present the general context of the research, describing 

the state of the art of the fisheries in the Bay of Biscay with specific focus on European 

anchovy and Muller´s pearlside. Then, I described the aim and specific objectives of the 

thesis, which are divided into the following sections: TS measurements, TS processing, 

TS interpretation and TS application. 

In Chapter 2, Background, I included a general overview on how acoustic methods are 

applied to fisheries management, followed by a description of the main acoustic 

principles and definitions, necessary to understand the content of this research.  

Chapter 3, Material and methods, includes a methodological description of the in situ, 

ex situ and modelling techniques, including all the experiments performed to reduce 

potential biases associated to sampling, analysis and post-processing procedures. This 

chapter has been structured following the sections described in Chapter 1.    

Chapter 4, Results, presents the results of this thesis grouped by species: Mueller´s 

pearlside and European anchovy, respectively. 

In Chapter 5, Discussion and conclusions, I present a general discussion on the results 

obtained, following the structure presented in chapters 1 and 3. Strengths and 

weaknesses of the methodologies are discussed, focussing on their contribution to a 

sustainable stock assessment of two pelagic species in the Bay of Biscay. Finally, I 

summarized the main conclusions derived from this thesis. 
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Resumen 
El Golfo de Bizkaia alberga una gran variedad de especies pelágicas de gran interés 

comercial, que han de ser gestionadas mediante métodos directos para determinar la 

captura total permitida (TAC por sus siglas en inglés; total allowable catch) y las cuotas 

de esfuerzo. En concreto, la anchoa europea (Engraulis encrasicolus) supone una pesca 

rentable para las flotas española y francesa, convirtiéndola en una de las especies 

comerciales más valiosas de la zona. Otras especies como la anchoa de fondo 

(Maurolicus muelleri) han despertado un interés creciente en su explotación comercial, 

instando al desarrollo de métodos de evaluación centrados en su potencial explotación. 

Las campañas acústico-pesqueras son particularmente adecuadas para la cuantificación 

de la distribución y abundancia de especies pelágicas. En los últimos años se han 

convertido en uno de los métodos más utilizados para la estimación de la abundancia 

de las poblaciones de peces, y ahora forman una parte importante de la gestión rutinaria 

de los stocks en todo el mundo. 

El parámetro acústico que se necesita para convertir la energía acústica en abundancia 

numérica es la fuerza del blanco (TS por sus siglas en inglés; target strength [dB re 1 m2]), 

que se basa en detecciones de blancos individuales y es específico para cada especie. 

El TS se puede determinar tanto teórica como empíricamente. El TS determinado 

empíricamente puede ser medido en condiciones naturales (in situ) o en un ambiente 

controlado (ex situ). En general, se supone que las mediciones de TS in situ proporcionan 

los resultados más precisos, sin embargo, medir el TS de peces en su entorno natural 

implica lidiar con algunas dificultades mayormente derivadas de su pequeño tamaño y 

de su tendencia a agregarse en densidades altas. Las condiciones ideales para estimar el 

valor del TS in situ son: 

- Que la agregación sea monoespecífica con peces de tamaño y condición 

parecida. 

- Que la densidad promedio de la agregación sea baja (menos de 1 individuo por 

volumen de reverberación) y sigan una distribución aleatoria para poder ser 

detectados como ecos individuales. 
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- Que la distancia entre la plataforma y la agregación muestreada sea pequeña 

para poder minimizar el volumen de muestreo y la longitud del pulso. 

- Que la distancia entre la plataforma y la agregación muestreada sea mayor que 

el campo cercano para que los frentes de onda sean paralelos y la intensidad de 

la onda varíe proporcionalmente al cuadrado de la distancia, según la regla de la 

presión inversa. 

- Que el haz de la ecosonda sea estrecho y la longitud del pulso corta para 

minimizar el volumen de muestreo. 

- Que se recojan evidencias alternativas a las detecciones acústicas (generalmente 

mediante pescas o registros ópticos). 

- Que las condiciones ambientales se asemejen, en la medida de lo posible, a las 

que tendrán lugar durante los muestreos acústico-pesqueros destinados a 

estudios de evaluación.  

Los experimentos ex situ ofrecen la ventaja de poder tener más control sobre la 

abundancia y asegurar así, un buen aislamiento de la especie objetivo, sin embargo, 

estos experimentos se realizan en un entorno que no es el natural para los peces, y su 

comportamiento puede verse alterado sesgando, en consecuencia, las mediciones de 

TS. Otro problema de los experimentos ex situ está relacionado con las mediciones de 

corto alcance ya que se ven afectadas por el efecto el campo cercano. A distancias 

demasiado próximas a la fuente de la señal, el frente de onda no está completamente 

formado, por lo que las mediciones de TS no son fiables. Finalmente, cuando se conocen 

las propiedades biológicas de la especie de interés, se pueden estimar las propiedades 

acústicas del pez entero o de alguno de sus componentes, utilizando modelos teóricos 

para verificar o ampliar las mediciones empíricas de TS. Durante los últimos años, se han 

desarrollado una gran variedad de modelos numéricos y analíticos, por lo que es 

imprescindible valorar las ventajas y limitaciones de cada modelo antes de hacer una 

selección. 

En esta tesis, la determinación del TS de la anchoa de fondo y anchoa europea se ha 

realizado mitigando previamente los errores derivados de las mediciones de TS en 

condiciones no ideales, mediante los siguientes procedimientos: 
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• Se ha reducido el error asociado a la detección de ecos múltiples: 

- Usando datos nocturnos en todos los experimentos 

- Aplicando un filtro de densidades altas en los datos registrados in situ 

- Controlando la variación del TS promedio a distintos volúmenes del pulso 

de sonido en las mediciones ex situ 

• Se ha corregido el sesgo derivado de las mediciones de corto alcance de las 

mediciones ex situ 

• Se ha comprobado la capturabilidad de todo el rango de tallas de anchoa de 

fondo usando distintos tamaños de malla 

• Se ha determinado la morfología de la vejiga natatoria de las dos especies 

objetivo para aplicarla en los modelos teóricos 

• Se ha descrito el comportamiento de la vejiga natatoria de la anchoa de fondo 

durante el proceso de pesca, comparándolo con el comportamiento derivado de 

los modelos teóricos, bajo distintas asunciones de ángulo de inclinación de la 

vejiga y tasas de contracción. 

La elaboración de esta tesis fue motivada por la falta de valores de TS específicos, no 

sesgados necesarios para proporcionar estimas precisas de abundancia de la anchoa de 

fondo y la anchoa europea, mediante métodos acústicos. Los análisis se han realizado a 

partir de datos obtenidos de dos campañas enfocadas a la evaluación de la anchoa en el 

Golfo de Bizkaia: BIOMAN, basada en el método de la producción diaria de huevos, y 

JUVENA, enfocada a la estima de abundancia de la anchoa juvenil mediante métodos 

acústicos. 

En esta tesis se ha estimado por primera vez el TS de la anchoa de fondo, en 5 

frecuencias comúnmente utilizadas en estudios acústicos, además de su b20 para cada 

una de las cinco frecuencias (-65.9 ± 2, -69.2 ± 3, -69.2 ± 2, -69.5 ± 2.5 and -71.5 ± 2.5 dB 

at 18, 38, 70, 120 and 200 kHz, respectivamente). También se proporcionan estimas de 

abundancia realizadas para los años de estudio (2014-2017) utilizando la frecuencia de 

38 kHz. Las mediciones morfológicas de la vejiga natatoria se obtuvieron a partir de 

imágenes de rayos X y se utilizaron en la simulación de la retrodispersión de un elipsoide 

lleno de gas. La anchoa de fondo es una especie fisoclista, lo que significa que pueden 

compensar el volumen de la vejiga frente a cambios de presión. Sin embargo, el mejor 
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ajuste entre el modelo y los datos experimentales mostró que pierden esa capacidad 

durante el proceso de pesca, cuando el volumen de la vejiga natatoria se ve afectado 

por la ley de Boyle. 

En el caso de la anchoa europea, hay algunas inconsistencias metodológicas en cuanto 

al TS empleado para la estimación de abundancia en el Golfo de Bizkaia. En primer lugar, 

se usan distintos valores en las distintas campañas acústicas de evaluación y, en segundo 

lugar, ninguno de estos valores es específico de la anchoa. En esta tesis se combinaron 

datos de mediciones in situ y ex situ en las tres frecuencias acústicas que se usan 

normalmente, incluyendo la que se usa típicamente para la evaluación. Se recogieron 

los datos in situ durante pescas nocturnas de arrastre pelágico en dos estaciones 

diferentes (primavera y otoño) a lo largo de 7 años de estudio. Se usó un modelo de 

retrodispersión para peces fisóstomos, para ayudar a interpretar los resultados, donde 

la vejiga natatoria se simplificó a un esferoide prolado de dos cámaras. Los valores de TS 

obtenidos fueron -44.6 (±2.3), -46.9 (±3) y -48.4 (±2.7) dB a 38, 120 y 200 kHz 

respectivamente que, para las anchoas de 3.5-19.5 cm de largo estudiadas, arrojaron 

valores de relación TS-talla (b20) de -66.5, -68.7 y -70.4 dB. Los resultados fueron 

bastante consistentes entre estaciones y entre condiciones in situ y ex situ, obteniendo 

relaciones positivas de TS-talla, significativas para todas las frecuencias. Este estudio 

forma parte de una serie de esfuerzos para obtener una relación TS-talla que permita 

actualizar la metodología de evaluación acústica de la anchoa europea en el Golfo de 

Bizkaia. 

He organizado este trabajo de investigación siguiendo la estructura clásica de 

monografía, dividiéndola en los siguientes cinco capítulos:  

En el capítulo 1, Introducción, presento el contexto general de la investigación, 

describiendo el estado del arte de la pesca en el Golfo de Bizkaia con un enfoque 

específico hacia la anchoa de fondo y la anchoa europea. En la última parte de este 

capítulo resumo los objetivos específicos de la tesis, divididos que las siguientes 

secciones: mediciones de TS, procesado de TS, interpretación del TS y aplicaciones del 

TS. 
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En el capítulo 2, Contexto, incluyo una descripción general sobre cómo se aplican los 

métodos acústicos a la gestión pesquera, seguida de una descripción de los principales 

principios y definiciones acústicas, necesarios para comprender el contenido de esta 

investigación.   

El capítulo 3, Material y métodos, incluye una descripción metodológica de las técnicas 

in situ, ex situ y de modelado teórico, incluyendo todos los experimentos realizados para 

reducir los posibles sesgos asociados con los procedimientos de muestreo, análisis y 

posterior procesamiento. Este capítulo lo he dividido siguiendo la estructura presentada 

en el capítulo 1. 

He dividido el capítulo 4, Resultados, en dos grandes secciones correspondientes a cada 

especie estudiada. En primer lugar, presento los resultados de la anchoa de fondo: 

primero, describo los resultados del experimento de capturabilidad, seguido de la 

variación de su respuesta acústica en función de la frecuencia operacional. A 

continuación, presento los resultados de las estimas de TS obtenidas para cada 

frecuencia, que son usados para calcular las relaciones TS-talla y hacer las estimas de 

abundancia para los años de estudio. Finalmente, la última parte de la sección de la 

anchoa de fondo la enfoco a los resultados de la morfología de la vejiga natatoria y del 

modelo teórico. En la sección dedicada a la anchoa europea describo primeramente los 

resultados del experimento ex situ para la corrección de los datos registrados dentro del 

campo cercano. A continuación, presento las distribuciones de TS y tallas de los datos in 

situ y ex situ filtrados, con los que determino las relaciones TS-talla en las tres 

frecuencias usadas para el estudio. Por último, se muestra una predicción de los 

patrones directividad obtenidos a partir del modelo teórico basado en el método de las 

soluciones fundamentales. 

En el capítulo 5, Discusión y conclusiones, hago una discusión general sobre los 

resultados obtenidos, incluyendo las ventajas y desventajas de las metodologías 

aplicadas para producirlos, y su contribución a las metodologías acústicas de evaluación 

de stock. Para un mejor seguimiento de la discusión, he seguido el orden de las secciones 

descritas en los capítulos 1 y 3. Finalmente he resumido las principales conclusiones 

derivadas de esta tesis.   
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En resumen, esta tesis supone un gran avance en el estado del arte de la gestión de dos 

especies pelágicas en el Golfo de Bizkaia: 

• Los resultados obtenidos a partir del estudio de la anchoa de fondo suponen una 

contribución esencial para futuras estimas de abundancia y simulaciones 

teóricas, claves para evaluar el impacto que pueda tener su potencial 

explotación, permitiendo así establecer las medidas necesarias para su gestión.  

• Los resultados para la anchoa europea forman parte de una serie de esfuerzos 

realizados para obtener una relación TS-talla específica, que permita actualizar 

la metodología para su gestión en el Golfo de Bizkaia.  
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1.1. Fisheries management in the Bay of Biscay   

The Bay of Biscay is a gulf in the southern region of the northeast Atlantic that covers a 

total area of 225,000 km2 with a maximum depth of 4,375 m. It stretches from Cape 

Ortegal in Galicia (43°46´N 7°52´W) to Penmarc´h Point in Brittany (47°48´N 4°22´W) 

(Figure 1.1). It shelters a large and diverse community of commercial species including 

hake (Merluccius merluccius), anchovy (Engraulis encrasicolus), mackerel (Scomber 

scombrus), sardine (Sardina pilchardus), horse mackerel (Trachurus trachurus), 

anglerfish (Lophius sp) or megrims (Lepidorhombus sp). Fishery management in general 

mainly depends on estimating the size of the exploited population (Gulland, 1983) to 

determine the Total Allowable Catch (TAC) and effort quotas (Latour et al., 2003; Pikitch, 

E. K. et al., 2004; Smith et al., 2007).  

 
 

Figure 1.1  Map illustrating the location of the Bay of Biscay (adapted from Wikipedia). Black 
dots located in Cape Ortegal (Southwest) and Penmarc´h Point (Northeast), and dashed line 
determines the western limit of the Bay of Biscay. 
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To provide assessment and management advice on fish stocks from the Bay of Biscay, 

estimates of abundance are currently provided by expert groups (ICES., 2014). More 

specifically, the assessment of small pelagic fishes requires of direct assessment 

methods of biomass or population abundance, typically either from acoustic or from egg 

production methods (Barange et al., 2009). Even though the survey indexes of biomass 

are usually taken as relative indexes of abundance in the integrated assessments, the 

estimates are generally given in tons as originally these methods were designed to 

produce absolute levels of biomass. For this reason, controversies are occasionally 

generated when absolute levels of assessment biomass diverge largely from the 

absolute numbers provided by the indexes. For standardization purposes, the methods 

and their associated parameters are routinely revised to achieve more reliable 

abundance indices and to approach as much as possible unbiased estimates of biomass. 

Acoustic surveys are considered effective methods to quantify the distribution and 

abundance of many pelagic marine fauna (Simmonds and Maclennan, 2005). To convert 

the acoustic data into biomass estimates, it is necessary to estimate the target strength 

(TS; dB re 1 m2), which is a measure of the amount of incident wave reflected by a single 

target (Simmonds and MacLennan, 2005) , and determine its relationship with the fish 

length. Generally, measurements of TS done on fish in their natural environment (e.g. in 

situ) are assumed to deliver the most accurate results, if collected with concurrent 

reliable biological samples and tilt angle information (Torgersen and Kaartvedt, 2001; 

Madirolas et al., 2016; Zare et al., 2017). However, measuring TS of fish in their natural 

environment implies dealing with difficulties that may lead to biased TS values and 

should, therefore, be carefully considered. When targeting small pelagic species, 

probably the most important source of in situ TS bias is the inability of the single target 

detection algorithm to resolve multiple echoes (Soule et al., 1996). Hence, it is a critic 

aspect of the TS measurement process to apply procedures to mitigate this potential 

bias.  

In parallel to the process of analyzing TS measurements, is often useful to run fish 

backscattering simulations, which help interpreting and generalizing the observed 

results. As up to 95% of the level of acoustic response of a gas-filled swimbladder-

bearing fish is attributable to the swimbladder (Foote, K.G., 1980), many backscattering 
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models derive from the swimbladder morphology. Changes in the volume or surface 

area of the swimbladder can influence the TS significantly (Blaxter and Batty, 1990; 

Horne, 2000) and lead to considerable differences in abundance estimates.  

Gas-filled bladdered fish can be classified into two classes: physoclists, which are able to 

compensate the swimbladder volume to pressure changes, and physostomous, which 

are not. Among the small pelagic species that can be found in the Bay of Biscay, in this 

work we will focus on two species that have a different type of swimbladder: Mueller’s 

pearlside, a physoclist, and European anchovy, a physostome. Each of these species is 

in a completely different state of exploitation: the former is a potentially exploitable 

resource while the latter is a fully exploited one. 

 

1.1.1. A potentially exploitable resource: Mueller´s pearlside  

Mesopelagic fishes constitute an important component of the food web in the ocean 

and form the sound scattering layers (SSLs) (Williams et al., 2001; Cherel et al., 2008). 

Despite their small size, they are numerically important in temperate and tropical 

oceanic waters (Gjøsaeter and Kawaguchi, 1980; Sassa, C. et al., 2002; Irigoien et al., 

2014), constituting major forage food for various commercially-fished species (Prosch, 

R.M et al., 1989; O’Driscoll et al., 2009). Due to the increasing interest in their 

commercial exploitation (Savinykh, V.F. and Baytalyuk, A.A., 2010; Directorate-General 

for Maritime Affairs and Fisheries, 2018; Prellezo, 2018; Springmann et al., 2018; Hidalgo 

and Browman, 2019), accurate estimates of its abundance are key to evaluate the 

impact of their potential exploitation and establish the necessary management 

measures (Prellezo, 2018; Hidalgo and Browman, 2019).  

The total abundance of mesopelagic fish in the world oceans is unknown. Biomass 

estimates published in the last 20 years range between 2 and 20 Gt. New acoustic 

estimates are over one order of magnitude above historic estimates based on net 

sampling (Irigoien et al., 2014; Jennings and Collingridge, 2015; Proud et al., 2017, 2018; 

Anderson et al., 2018), challenging our understanding of gross ocean carbon production, 

major food chains and ecosystem carbon flow in these deep-water systems. Two main 

reasons leading to this uncertainty have been identified. First, mesopelagic fish species 
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are difficult to fish due to high avoidance to experimental pelagic trawls (Kaartvedt et 

al., 2012; Peña, 2019), potentially leading to an underestimation of their biomass. 

Second, the composition of the acoustic scatterers in the deep scattering layers may 

include other species than fish (e.g. siphonophores), potentially leading to an 

overestimation of their biomass (Proud et al., 2018). To overcome this, a combination 

of trawl and multifrequency acoustic methodologies has been recommended for the 

estimation of mesopelagic fish abundance (Koslow et al., 1997; Kloser et al., 2009; 

Pakhomov et al., 2010).  

Among the mesopelagic species, Mueller’s pearlside (Maurolicus muelleri, Gmelin, 1789; 

pearlside hereafter) is one of the most abundant and potentially accessible species to 

commercial fisheries, as it often resides closer to the surface than other mesopelagic 

species (Godø et al., 2009).  However, to date there are no scientific surveys focused on 

the biomass estimation of mesopelagic species in the Bay of Biscay. There are particular 

difficulties to accomplish acoustic-based biomass estimations for this species. Firstly, for 

mesopelagic species in general and pearlside in particular, the small size of the 

swimbladder might cause the appearance of resonance-induced maxima inside the 

range of the operative frequencies most common in acoustic surveys, hence inducing 

non-linear relationships between TS and length (Davison et al., 2015b) and thus 

hampering, or at least complicating, their estimation of abundance. Secondly, even if 

pearlside is considered a physoclist species, its actual swimbladder volume 

compensation performance during the trawling process is not clear, making difficult to 

know whether the observed swimbladder size at the surface was representative of the 

actual size at the depth of capture. In fact, when modelling the swimbladder, there is 

lack of consensus in literature on whether to consider pearlside as a physostome (Godø 

et al., 2009; Scoulding et al., 2015; Proud et al., 2018) or as a physoclist (Fujino, T. et al., 

2009; Peña et al., 2014; Kloser et al., 2016; Peña and Calise, 2016) species, which 

generates confusion on the most basic application of the empirically measured TS values 

to estimate abundance: are the TS values valid for all the depth range, or, if not, how 

should they be changed according to depth?  
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1.1.2. Stock assessment of an exploited species: European anchovy  

European anchovy (Engraulis encrasicolus; Linnaeus, 1758) is one of the main 

commercial species in the Bay of Biscay, supporting profitable fisheries for both the 

Spanish and French fleets. The internationally coordinated scientific advice relies on the 

stock assessment of this resource, following the so-called Catch-Bayesian Biomass-

Based Model (CBBM) (Ibaibarriaga et al., 2008; ICES, 2015), which integrates the 

information coming from commercial fleets and scientific surveys, providing estimates 

of the adult stock abundance and recruits. The scientific surveys contributing to the 

assessment are BIOMAN (Santos, M. et al., 2018), based on the Daily Egg Production 

Method in spring and two trawl-acoustic surveys, PELGAS (Massé, J. et al., 2018) in 

spring and JUVENA (Boyra et al., 2013) in autumn.  

The methodologies of the surveys are discussed and evaluated annually at the ICES 

Working Group of Acoustics and Eggs (‘WGACEGG’, n.d.) and the results are synthetized 

at the ICES Working Group on Southern Horse Mackerel, Anchovy and 

Sardine (WGHANSA) (ICES., 2017) to produce the CBBM assessment. Fortunately, the 

different surveys used as input for the CBBM assessment of anchovy are significantly 

correlated with each other (‘WGACEGG’, n.d.), showing crossed-consistency, as 

expected.  

However, there are still some methodological inconsistencies requiring revisions, 

especially concerning the trawl-acoustic methodology part of the assessment. The two 

acoustic surveys use different TS-length relationships for the estimation of anchovy 

abundance, none of which has been obtained from anchovies. This hampers the 

harmonization of the results of both surveys into a single abundance estimation in 

absolute terms, as  has been acknowledged by ICES WGACEGG, being the achievement 

of a common TS-length relationship for the region considered one of the key objectives 

of the working group (ICES, 2013). 
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1.2. Hypothesis, aim and objectives  

After presenting the general context and motivation of this research work, the following 

hypothesis has been defined: 

Acoustic techniques can be used to determine the individual acoustic signal of small, 

densely-aggregated pelagic fish in order to determine the basic elements necessary to 

deliver unbiased acoustic estimates of abundance, to be used for resource monitoring, 

scientific advice and ultimately, fishery management of these resources.    

The aim of this thesis is to obtain unbiased TS estimates and TS-length relationships of 

two pelagic species in the Bay of Biscay: European anchovy and Muller´s pearlside. To 

achieve this aim, in situ and ex situ measurements were done at multiple frequencies, 

using several procedures to address the main sources of bias associated to these 

techniques. In addition, swimbladder morphological measurements and backscattering 

simulations were carried out to help the interpretation and the proper application of 

the obtained results. Given the difference between both species, distinct backscattering 

models were applied for each. To achieve this aim, this thesis work has been divided 

into the following individual objectives: 

TS measurement and processing 

• To estimate TS values of Muller´s pearlside at 18, 38, 70, 120 and 200 kHz 

frequencies using acoustic data collected from in situ measurements. 

• To estimate TS values of European anchovy at 38, 120 and 200 kHz frequencies, 

using acoustic data collected from both in situ and ex situ measurements. 

• To reduce the potential multiple target bias from the TS measurements:  

- working during the nighttime   

- applying a high-density filter to the in situ measured data  

- controlling the incidence of the volume of the sound pulse on the mean 

ex situ measured TS.  

• To correct the bias derived from the short-range measurements of the ex situ 

experiments.  
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• To test the catchability of small length classes of pearlside using different mesh 

size codends  

TS interpretation and application 

• To determine the morphology of the swimbladder of both species and use it to 

model the acoustic backscatter using appropriate theoretical models for each 

species. 

• To describe the swimbladder behaviour of pearlside during the trawling process 

by comparing the model behaviour under different swimbladder tilt angle and 

contraction rate values.  

• To provide estimates of biomass of pearlside for the years of study. 
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2.1. The role of acoustics in fisheries management 

The utility of underwater sound to detect and identify aquatic lifeforms has been 

considered of great potential for almost a century now, when the first successful 

experiment on the acoustic detection of fish in a tank was published (Kimura, 1929). 

Progressive advances in the development of technology (Sund, 1935; Wood et al., 1935), 

together with the important contributions evidenced after World  War II (Hodgson, 

1950; Hodgson and Fridriksson, 1955), were essential milestones on the progress in 

acoustic identification methods. It was not until then that the first investigations on the 

application of acoustic methods to fish abundance estimation were published (Tungate, 

1958; Mitson and Wood, 1961), and not until the 70s and 80s that a broader perspective 

on the potential of the acoustic techniques was achieved.  

The increasingly sophisticated acoustic technologies offered the possibility of registering 

information of fish populations at high spatio-temporal resolution, over wide scales 

(Trenkel et al., 2011; Godø et al., 2014), becoming an important application of acoustics 

in fisheries research (Gunderson, 1993). 

 

2.2. Acoustic surveys and calibration 

Acoustic surveys are often conducted to estimate the abundance of pelagic fish 

populations (Gunderson, 1993): a certain area is covered following transects while 

acoustic echoes from fish are registered. These echoes may be observed anywhere in 

the water column, but this technique will only be useful when the fish of interest are 

away from the seabed and not too close to the surface. This makes acoustic survey 

techniques particularly suitable for pelagic species such as anchovies (Engraulidae) 

(Simmonds and MacLennan, 2005) and pearlsides (Sternoptychidae). 

For a survey to provide reliable results, the echosounders have to be calibrated following 

standard procedures (Demer et al., 2015). Calibration of acoustic instruments is crucial 

when used for quantitative purposes such as biomass estimation and should be 

performed with exhaustive attention to detail. During the first acoustic surveys, before 

the first protocol was published (Foote K.G. et al., 1987), calibration was a major source 
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of error of fish abundance estimates (Blue, 1984). The ICES Fisheries Acoustics, Science 

and Technology Working Group (WGFAST), has promoted the methodological 

developments for a good performance of the calibration procedures, guiding the 

acoustic community to uniformly apply the same methods to calibrate the acoustic 

equipment. Technological innovation and development made it necessary to create a 

new practical guide for calibration (Demer et al., 2015), however, due to the continuous 

progress in the field, new updates should be incorporated regularly to achieve the best 

quality results.  

In modern practice, a standard target is commonly used for calibration. A tungsten 

carbide or copper sphere is suspended below the transducer while the echosounder 

transmits and receives signals as it would during the survey, measuring the echo 

produced by the target and the time delay between the echo and the transmitted pulse 

(Figure 2.1). To determine the acoustic parameters correctly, factors such as the 

environmental conditions (i.e. the speed of sound in water or the absorption coefficient) 

and the echosounder frequency must be known. Details on the particular types of 

spheres that are commonly used with the typical frequencies of study can be found in 

Demer et al (Demer et al., 2015). 

All data obtained for the elaboration of this thesis was collected from multi-vessel 

surveys, which required an additional inter-ship calibration procedure to be carried out 

after the independent calibration of each vessel. This is a necessary measure to check if 

there are no significant differences in their respective measurement capabilities 

(Simmonds and MacLennan, 2005). 



2. BACKGROUND 

12 
 

 

 

Figure 2.1 Calibration method using a sphere as standard target suspended by three 
monofilament lines (Demer et al., 2015). 

 

2.3. Acoustic principles 

Sound is a mechanical disturbance that propagates as a pressure wave in an elastic 

medium, decreasing its intensity with the increase of range. Any device that uses sound 

to detect targets in water is defined as sonar. The echosounder is a kind of sonar that 

projects the sound in a directional beam in the form of a main lobe oriented vertically 

downwards, and several sidelobes of reduced intensity. It consists of a transceiver (that 

generates electrical energy) and a transducer (converts the electrical energy into 

mechanical sound energy) (Simmonds and MacLennan, 2005) (Figure 2.2). They are 

typically made from piezoelectric elements that generate electric energy when an 

oscillating external voltage is applied (Simmonds and MacLennan, 2005). In fisheries 

acoustics, the most commonly used frequencies at which the electrical energy is 

produced are 18, 38, 70, 120, 200 and 333 kHz.  
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Figure 2.2 Scheme illustrating the concept of echosounding. The transmitted pulse is reflected by 

the targets and seabed as an echo that is displayed on an echogram. 

 

When the pulse of sound encounters a target, a proportion of the incident energy is 

scattered back towards the transducer, amplified and converted to electrical energy that 

is displayed on a two-dimensional picture, or echogram, showing the ensonified volume 

of water in the vertical (depth or range) and horizontal (space or time) domain (Figure 

2.3).  

The echo or backscattered sound is generally quantified in the linear domain as the 

backscattering cross-section ("bs, [m
2]), or in the logarithmic space as TS expressed in 

decibels as: 

 

#$	 = 	10)*+,-(/01) 
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Figure 2.3 Example of an echogram showing juvenile anchovy dispersed at 15 m depth, in 
autumn at 38 kHz. The colour scale on the right shows the echo intensity (sv [dB re 1m2]). The 
seabed is at 49 m depth represented in brown. 

 

 

The maximum detection range of an echosounder is limited by the absorption of sound 

in water that increases with the operational frequency. The intensity of the marks in the 

echogram is proportional to the difference in the acoustic impedance (difference in 

density and sound speed) between the target and the water (Love, 1971), and can be 

used as a measure of biomass in the water column. Split-beam echosounders such as 

the EK60 scientific echosounder, use transducers divided into four quadrants, and can 

determine the direction and location of the targets in the beam by comparing the time-

of-arrival difference of the signals received by each quadrant (Demer et al., 1999). The 

accuracy of the output makes it possible to count individual fish or measure the density 

of fish aggregations, however, to resolve individual echoes, they must be at least half 

the pulse length (c3) separated from each other, where 3 is the pulse duration [s] and c 

in the speed of sound [ms-1]. When the individual targets are small and in high packing 

densities, the echoes form a continuous received signal with varying amplitude, and it is 

no longer possible to resolve individual echoes. The sum of all the discrete targets that 

contribute to echoes from the sampled volume (V0) is the volume backscattering 

coefficient (sv) (MacLennan et al., 2002): 
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45 = 	∑/01 7-⁄  , 

 

where: 

 

7- = 	 9:;<= 2⁄ , 

 

with ? being the equivalent beam angle of the transducer in steradians. 

The volume backscattering strength (Sv) is the equivalent logarithmic measure: 

 

$5 = 10)*+,-(45) 

 

If the backscattering volume strength is integrated over bigger volumes, it can then be 

expressed as the mean volume backscattering strength (MVBS or $5@). 

The area backscattering coefficient (sa; [m2 m2]) is more commonly used in acoustic 

surveys as it is the acoustic energy integrated over a layer between two depths. One of 

the scaled versions used for fisheries surveys is known as the nautical area scattering 

coefficient (NASC or sA; [m2nmi2), which is sa integrated over one nautical mile, defined 

as: 

 

4A	 = 4C(1852)=4F 

 

2.3.1. Target strength  

The number of fish per unit volume can be deduced by knowing the target strength of 

the fish that contribute to the acoustic signal. The target strength is a measure of the 
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proportion of the incident energy that is backscattered by the target (MacLennan et al., 

2002), expressed as a log-linear function of fish standard length (SL; cm) of the form:  

 

TS = alog10 (SL) + b,                             

 

where the slope, a, and the intercept, b, are species-specific constants. This equation is 

used on TS of fish from the same species over a range of sizes ensonified at the same 

frequency (McClatchie, 2003). As stated by MacLennan and Simmonds (2002), in the 

absence of data evidencing the contrary, a value can be assumed to be 20. In the case 

of clupeoids, such as anchovy, a is normally close to 20 (Love, 1977; Foote, K.G., 1980) 

and the TS equation is often replaced by: 

TS = 20log10 (SL) + b20,      

However, when the amount of data available is sufficient to determine a species-

specific TS-length relationship, this value should not be used without first determining 

whether it is the most suitable one (McClatchie, 2003).  

 

2.3.1.1. Target strength measurements 

In situ measurements 

Generally, in situ TS measurements are assumed to deliver the most accurate results, if 

collected with concurrent reliable biological samples and tilt angle information 

(Torgersen and Kaartvedt, 2001; Madirolas et al., 2016; Zare et al., 2017). However, 

measuring TS of fish in their natural environment implies dealing with difficulties that 

may lead to biased TS values and should, therefore, be carefully considered. Firstly, 

during daytime, small pelagic fish such as European anchovy (Massé, 1996) or pearlside, 

aggregate in schools too densely packed to resolve individual targets. Secondly, the fact 

that TS is a stochastic variable means that it can have a range of values described by a 

probability distribution. Since TS measurements are usually recorded over a period of 
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time and across a particular layer of fish, a wide range of target strength values might 

be registered, representing different size-classes or behavioural states (Ona, 2003; 

Simmonds and MacLennan, 2005).  

 

Ex situ measurements 

Another possible strategy is to conduct ex situ experiments (Kang and Hwang, D, 2003; 

Kang et al., 2009), allowing more control of the abundance and assuring isolation of the 

target species. However, ex situ experiments pose some concerns such as possibly 

altering the behavior of the targets (Nakken and Olsen, 1977; Ona, 1990). Another 

caveat of this method is derived from the near-field effect derived from short range 

measurements. Additionally, the backscatter of the cage should be extracted from the 

fish TS measurements. This can be done by previously measuring the empty cage or by 

using a cage larger than the acoustic beam (Ona, 2003). 

 

Multiple targets 

One of the challenges of TS measurements is to ensure that the TS data is not affected 

by multiple targets present in the acoustic reverberation volume (Sawada et al., 1993), 

thus leading to a bias in the TS value. Ideally, single-fish detectors are able to detect 

single echoes when these are well spaced but, in the case of small pelagic fish, their high 

packing densities are likely to prevent the successful detection of single target echoes 

(Barange et al., 1996). 

There are different strategies to overcome this problem. Lowering the transducers and 

a camera closer to the fish targets (thus reducing the sampling volume) has often helped 

mitigate it (Massé, 1996; Ona, 2003; Kang et al., 2009; Murase, H. et al., 2011; Fernandes 

et al., 2016). In the Bay of Biscay, a variant of this technique has been applied to estimate 

TS of anchovy (Doray et al., 2016), but the methodology caused a change in the fish 

behavior that probably biased positively the mean TS values. Other strategies involve 

working during nighttime, when most species disperse and migrate near the surface 

(Misund, 1999), yet these are most useful when the study areas are dominated by the 
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target species (Foote K.G. et al., 1987; Barange et al., 1996; Peltonen and Balk, 2005; 

Zhao et al., 2008), but might be problematic in case of mixture of fish species or in 

presence of high abundances of plankton.  

However, when the previous approaches have not succeeded to register well-spaced 

single targets, there are other strategies developed to reject multiple echo detections 

under high density conditions. Some of them were tested during the first months of the 

development of this thesis, on a set of TS data of in situ skipjack and bigeye tuna 

collected around drifting Fish Aggregating Devices (FADs) (Boyra et al., 2018, 2019).    

The first method consisted in increasing the threshold of the standard deviation of 

phases between the samples of the received pulse, which are the parameters that 

should control the acceptance of multiple echoes (Soule, 1997). The second method was 

a fish tracking analysis (Blackman, 1986), which consists in grouping targets according 

to their mutual spatial and temporal proximity, considering that they are successive 

detections of the same fish in a track. Another attempt for multiple target removal was 

based on the simultaneously detected targets at multiple frequencies (Demer et al., 

1999; Conti et al., 2005; Scoulding et al., 2015) which requires that the TS values pass 

the single target criteria in at least two frequencies independently to be considered 

valid. The last tested method consisted on filtering the areas of the echogram with 

highest densities of fish individuals, thus with higher probability of failure of the single 

target detection algorithm (Barange et al., 1996; Massé, 1996; Gauthier and Rose, 2001; 

Scoulding et al., 2015).  

 

TS-length relationship 

Despite the stochastic nature of TS, one would expect that the average of many TS 

measurements would follow a systematic dependence on the species, size and 

behaviour of the fish targets. In fact, standard errors below 5% of the mean are typical 

when 500 – 1000 measurements are made (Zhao, 1996). However, when several modes 

are present in the TS distributions, the average TS value might not be representative of 

a determined size-class. In the case of well-differentiated size modes of fish obtained 

from the trawl catches, these can be matched to the modes present in the TS 
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distributions, but, in the case of superimposed modes, other statistical methods should 

be applied. A common approach (MacLennan and Menz, 1996) is to assume a specific 

distribution of the probability density function (PDF) (i.e. Gaussian, Rayleigh) and a TS 

function (typically TS = 20logL + b), so that TS values are calculated for each length in the 

catch histogram. Then, a least-square fitting procedure is applied to obtain the b value 

that minimises the differences between the calculated and observed TS histograms.      

 

Near-field effect 

At distances near the face of the transducer, the wave-fronts are not parallel producing 

unpredictable changes of intensity with range. TS measurements done in this area are 

expected to be biased due to the inherently unstable nature of the acoustic beam. The 

far-field area is the part of the beam were the wave-fronts are nearly parallel, and where 

the variations of intensity are more predictable (Simmonds and MacLennan, 2005). To 

avoid bias derived from the near-field effects, the boundary range (Rb) between the near 

and the far fields can be calculated using the linear distance across the transducer face 

(a) and the wavelength (λ): 

 

<0 = 	G= H⁄  

 

It is recommended to perform the acoustic measurements at ranges of at least 2Rb to 

be considered applicable to the far-field conditions. However, ad hoc experiments can 

be designed to determine the spatial variation of the intensity in the near field and 

calculate the correction values to be applied to the empirical measurements. Such 

corrections should only be applied at ranges where the intensity variations are predicted 

by theoretical modelling.  
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2.3.1.2. Target strength theoretical modelling  

For a complete understanding of sound scattering by aquatic organisms, empirical and 

theoretical methods should be combined (Henderson, M. J. and Horne, J. K., 2007) in 

order to understand to what extent the experimental findings can be used for biomass 

estimation in acoustic surveys (Jech et al., 2015). The improvement in the numerical and 

analytical approaches in the last years has increased the diversity of acoustic scattering 

models, making it essential to evaluate the effectiveness of a model for each specific 

species or survey. Since the early 60s, many theoretical models for swimbladder-bearing 

fish species have been developed focusing on the swimbladder morphology and its 

acoustical properties, since it accounts for up to 95% of the backscattered energy from 

gas-filled swimbladder-bearing fish (Foote, K.G., 1980). A comprehensive summary and 

comparison of the most used ones has recently been published (Macaulay et al., 2013; 

Jech et al., 2015). There are two main similarities between those models: (1) they 

evaluate the TS assuming the far-field condition (Massé, 1996) and (2) they are based 

on the approximation of the swimbladder to an idealised shape. Of these, the Prolate 

Spheroid Model (PSM) (Andreeva, 1964; Weston, D. E., 1966; Love, 1978; Furusawa, M., 

1988; Ye, 1997) uses an idealized representation of a swimbladder (Simmonds and 

MacLennan, 2005) and has been applied in several studies (Fujino, T. et al., 2009; 

Yasuma et al., 2009; Prario et al., 2015; Scoulding et al., 2015; Madirolas et al., 2016; 

Peña and Calise, 2016; Proud et al., 2018). 

More sophisticated models such as the Boundary Element Models (BEM) or Finite 

Element Models (FEM) (Foote and Francis, 2002; Francis and Foote, 2003; Lilja et al., 

2004) use the true shape of scattering objects but they turn out computationally 

unaffordable for arbitrary close distances (Pérez-Arjona et al., 2018). However, TS 

calculations at a desired finite distance with an important reduction in computational 

costs, can now be performed using a new class of numerical methods that have emerged 

in the last decades, the so-called meshless methods (Pérez-Arjona et al., 2018). Making 

use of fundamental solutions accounting directly for infinite or semi-infinite spaces, the 

Method of Fundamental Solution (MFS) has proven a successful tool for estimating the 

measurable TS of fish and the contribution of the different inner structures of fish to TS, 

with similar, or even more accuracy than FEM or BEM but with a reduction of 
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computational costs what can be specially important when considering fish models with 

more fish structures than swimbladder, e.g., fish backbone (Fairweather et al., 2003; 

Pérez-Arjona et al., 2018).  

 

2.3.2. Biological acoustics 

2.3.2.1. The swimbladder 

Up to 95% of the backscatter of a gas-filled swimbladder-bearing fish, is attributable to 

the swimbladder (Foote, K.G., 1980) due to the density contrast between gas and water 

(Haslett, R. W. G., 1962). Changes in the volume or surface area of the swimbladder can 

influence the TS significantly (Blaxter and Batty, 1990; Horne, 2000) and lead to 

considerable differences in abundance estimates. Gas-filled bladdered fish can be 

classified into two classes.  

 

2.3.2.1.1. Physoclists  

The physoclistous fish have closed swimbladders. They have glands to extract gas from 

the water to be secreted into the bladder. They can compensate the swimbladder 

volume for pressure changes by “pumping up” or removing gas by glandular action. The 

cod (Gadus morhua) and other gadoids belong to this group (Simmonds and MacLennan, 

2005) as well as some mesopelagic species such as the pearlside. However, its actual 

swimbladder volume compensation performance during the trawling process is not 

clear, hampering the interpretation of the observed swimbladder size at the surface. In 

fact, when modelling the swimbladder, there is lack of consensus in the literature on 

whether to consider pearlside as a physostome (Godø et al., 2009; Scoulding et al., 2015; 

Proud et al., 2018) (the swimbladder volume obeys Boyle´s law) or as a physoclist species 

(Fujino, T. et al., 2009; Peña et al., 2014; Kloser et al., 2016; Peña and Calise, 2016). 
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2.3.2.1.2. Physostomes 

Physostomous fish have a pneumatic duct that connects the swimbladder to the 

digestive tube and, therefore, to the surrounding water (Whitehead, P.J.P and Blaxter, 

J.H.B., 1989). During ascending migrations, the gas is vented through the pneumatic 

duct. Changes in the ambient pressure induce changes in the swimbladder shape by 

continuous diffusion through the bladder wall. Many clupeoids such as anchovy, belong 

to this group and are unable to compensate the swimbladder volume for pressure 

changes. Because of this, it is expected that TS decreases with depth according to the 

Boyle’s law as has been observed in previous measurements of anchovy (Zhao et al., 

2008) and other physostomous species (Ona, 2003). 
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3.1. Data collection 

3.1.1. Acoustic data 

3.1.1.1. Echointegration data 

In this work, only the sA allocated to pearlside was used to produce spatial distribution 

maps and vertical profiles, since the spatial analyses of anchovy are already part of the 

annual reports elaborated by ICES WGACEGG. The acoustic backscattering at 38 kHz 

collected during the transects was echointegrated annually by 0.1 nmi (elementary 

distance sampling unit or EDSU) per ~50 m bins, to a maximum depth of 500 m. This part 

of the survey strategy (Boyra et al., 2013) consisted in providing spatial distribution and 

biomass annual estimates of several species at a single frequency (38 kHz). 

 

3.1.1.2. TS data 

In situ data collection 

Acoustic-trawl data was collected from years 2010 to 2017, during two scientific surveys 

that take place in the Bay of Biscay in two different times of year (Figure 3.1). JUVENA 

(Boyra et al., 2013) takes place in September, focusing on the juvenile fraction of the 

anchovy population while BIOMAN (Santos, M. et al., 2018) is developed in May (during 

the peak of the spawning season) focusing on the adult component. Since year 2014, 

JUVENA has adopted a new ecosystemic approach with the scope of assessing a bigger 

number of target species such as pearlside. Two scientific research vessels were used in 

each survey: RV “Ramón Margalef” (RM, hereafter) and RV “Emma Bardán” (EB, 

hereafter). Both registered continuous acoustic data with an EK60 scientific 

echosounder (Kongsberg Simrad AS, Kongsberg, Norway) with split-beam transducers of 

38, 120 and 200 kHz. Additionally, RM registered data at 18, 70 and 333 kHz frequencies. 

The transducers were placed in a drop keel that reached a maximum depth of 6.75 m. 

All nominal beam widths were 7º except for the 18 kHz transducer, with a beam width 

of 11º. Pulse duration was 1024 µs with a ping rate of 0.7 s-1.  The scientific echosounders 

of each research vessel were calibrated at least once a year, typically at the beginning 

of the survey, following standard procedures (Demer et al., 2015), using a tungsten 
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carbide sphere of 38.1 mm of diameter. Intercalibration exercises were carried out each 

year between the two vessels following standard methodologies (Simmonds and 

MacLennan, 2005). The most relevant calibration parameters of the in situ and ex situ 

measurements are described in Table 3.1. 

 

 

 
Figure 3.1 Area of study in the Bay of Biscay, with the sampling locations for EE (European 
anchovy) and MM (pearlside). 
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Table 3.1 Calibration settings of the in-situ data collected from research vessels Ramón Margalef 
(1) and Emma Bardán (2). Target strength of reference target was -42.3, -40 and -39.9 dB at 38, 
120 and 200 kHz, respectively. Allowed TS deviation was 5 dB. 

Year Survey Frequency 
(kHz) 

Pulse duration  
(μs) 

Power 
(W) 

Gain 
(dB) 

Sa correction  
(dB) 

2010 JUVENA1 38  
1024 

 

1200 25.57 -0.66 

120 256 26.77 -0.26 

200 210 25.63 -0.34 

2011 BIOMAN 38  
1024 

 

1200 23.94 -0.76 

120 250 25.96 -0.43 

200 210 26.51 -0.36 

2012 JUVENA2 38  
1024 

 

1200 23.94 -0.76 

120 250 25.96 -0.43 

200 210 26.51 -0.36 

2013 JUVENA2 38  
1024 

 

1600 22.76 -0.79 

120 250 26.03 -0.43 

200 120 26.45 -0.34 

2014 BIOMAN 38  
1024 

 

1200 23.94 -0.73 

120 150 26.03 -0.43 

200 120 26.19 -0.25 

2014 JUVENA1 18 

 
1024 

 

1600 22.76 -0.79 

38 1400 25.46 -0.68 

70 600 26.38 -0.42 

120 200 25.89 -0.40 

200 90 27 -0.23 

2014 JUVENA2 38  
1024 

 

1200 23.94 -0.73 

120 150 26.14 -0.33 

200 120 26.19 -0.25 

2015 BIOMAN 38  
1024 

 

1200 23.98 -0.70 

120 150 26.14 -0.33 

200 120 26.19 -0.25 

2015 JUVENA2 38 

1024 
 

1200 23.98 -0.70 

70 750 26.86 -0.32 

120 150 26.08 -0.33 

200 120 26.19 -0.25 

2016 BIOMAN 38  1200 23.86 -0.73 
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Year Survey Frequency 
(kHz) 

Pulse duration  
(μs) 

Power 
(W) 

Gain 
(dB) 

Sa correction  
(dB) 

120 1024 
 

150 26.25 -0.29 

200 120 26.13 -0.23 

2016 JUVENA1 18 

 
1024 

 

1800 22.03 -0.83 

38 1200 25.56 -0.66 

70 600 26.38 -0.40 

120 125 26.58 -0.35 

200 90 25.94 -0.32 

2017 BIOMAN 38  
1024 

 

1200 23.88 -0.79 

120 150 26.25 -0.29 

200 120 26.13 -0.23 

2017 JUVENA1 18 

 
1024 

 

1600 22.22 -0.73 

38 1600 23.51 -0.65 

70 600 27.07 -0.33 

120 200 26.78 -0.25 

200 120 26.70 -0.28 

2017 JUVENA2 38  
1024 

 

1200 23.88 -0.79 

120 150 26.25 -0.29 

200 120 26.13 -0.23 
 

 

Table 3.2 Details of the pelagic trawls and experiments used for the analysis. 

Trawl Date Survey Lat 
° 

Lon 
° 

Anchovy 
catch 
(% gr) 

Mean 
length 

(cm ± sd) 

Mean 
depth 

(m) 

European anchovy – in situ 

5009 10/05/2011 BIOMAN 46.53 -4.34 100 14 ± 0.2 9.85 

5010 10/05/2011 BIOMAN 43.71 -2.62 90 15 ± 0.4 11.79 

5011 11/05/2011 BIOMAN 43.70 -2.51 91 15 ± 0.5 18.14 

5013 11/05/2011 BIOMAN 43.70 -2.27 95 14 ± 0.9 14.64 

5014 11/05/2011 BIOMAN 44.00 -2.31 100 14 ± 0.9 13.56 

5040 23/05/2011 BIOMAN 43.94 -2.42 96 13 ±0.4 9.91 

5044 24/05/2011 BIOMAN 46.13 2.57 96 10 ± 0.1 7.85 
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Trawl Date Survey Lat 
° 

Lon 
° 

Anchovy 
catch 
(% gr) 

Mean 
length 

(cm ± sd) 

Mean 
depth 

(m) 

5049 27/05/2011 BIOMAN 45.75 -1.63 98 13 ± 0.4 13.85 

5014 12/05/2014 BIOMAN 46.39 -2.59 100 13 ± 0.8 9.17 

5017 13/05/2014 BIOMAN 43.63 -3.02 100 14 ± 0.1 13.75 

5027 16/05/2014 BIOMAN 43.75 -4.08 97 13 ± 0.7 9.42 

5031 17/05/2014 BIOMAN 45.12 -1.93 91 15 ± 0.9 9.85 

5039 25/05/2014 BIOMAN 46.49 -3.54 100 13 ± 0.7 15.13 

5040 25/05/2014 BIOMAN 47.33 -3.42 100 13 ± 0.8 13.96 

5043 26/05/2014 BIOMAN 47.56 -3.61 100 13 ± 0.5 13.35 

5048 28/05/2014 BIOMAN 47.17 -3.19 100 13 ± 0.9 9.82 

5049 28/05/2014 BIOMAN 44.37 -1.52 100 13 ± 0.5 8.36 

5046 26/05/2015 BIOMAN 44.62 -1.50 100 12 ± 0.7 10.66 

5041 25/05/2016 BIOMAN 45.87 -1.64 97 13 ± 0.8 9.17 

5044 26/05/2016 BIOMAN 45.87 -2.52 85 15 ± 0.3 18.65 

5011 11/05/2016 BIOMAN 46.13 -1.89 99 13 ± 0.7 10.69 

5019 15/05/2016 BIOMAN 46.00 -2.14 92 12 ± 0.8 9.23 

5020 15/05/2016 BIOMAN 46.25 -1.96 90 14 ± 0.8 8.93 

5034 23/05/2016 BIOMAN 47.13 -2.93 95 13 ± 0.7 8.64 

5037 24/05/2016 BIOMAN 46.88 -2.83 99 11 ± 0.8 8.60 

5014 11/05/2017 BIOMAN 43.98 -6.48 87 13 ± 0.5 9.10 

5032 16/05/2017 BIOMAN 43.76 -3.72 98 11 ± 0.4 10.36 

9050 27/09/2010 JUVENA 46.39 -3.71 98 11 ± 0.4 15.96 

9205 04/09/2012 JUVENA 44.23 -7.87 93 7 ± 0.4 9.46 

9213 11/09/2012 JUVENA 44.10 -2.25 87 8 ± 0.1 13.75 

9222 17/09/2012 JUVENA 46.38 -2.53 98 8 ± 0.8 15.15 

9230 21/09/2013 JUVENA 44.18 -7.52 100 9 ± 0.9 15.63 

9233 23/09/2013 JUVENA 45.46 -1.87 100 16 ± 0.3 7.55 

9235 24/09/2013 JUVENA 45.96 -3.10 100 15 ± 0.5 9.65 

9236 24/09/2013 JUVENA 43.65 -2.00 100 16 ± 0.6 14.42 

9011 09/09/2014 JUVENA 44.39 -1.64 100 8 ± 0.6 16.50 

9201 03/09/2014 JUVENA 44.66 -1.85 100 6 ± 0.1 7.79 

9222 18/09/2014 JUVENA 46.13 -2.11 87 9 ± 0.8 13.43 

9201 30/08/2015 JUVENA 45.63 -1.60 100 6 ± 0.1 13.50 

9233 20/09/2015 JUVENA 45.95 -2.62 98 10 ± 0.6 19.63 
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Trawl Date Survey Lat 
° 

Lon 
° 

Anchovy 
catch 
(% gr) 

Mean 
length 

(cm ± sd) 

Mean 
depth 

(m) 

9240 24/09/2015 JUVENA 45.50 -3.09 99 12 ± 0.1 15.11 

9002 01/09/2016 JUVENA 44.00 -6.48 98 6 ± 0.2 13.29 

9009 06/09/2016 JUVENA 43.60 -4.32 91 8 ± 0.8 19.17 

9015 11/09/2016 JUVENA 43.86 -1.70 90 7 ± 0.3 13.56 

9002 03/09/2017 JUVENA 43.52 -1.88 97 9 ± 0.9 13.18 

9004 04/09/2017 JUVENA 45.25 -1.34 100 8 ± 0.3 19.32 

9005 05/09/2017 JUVENA 43.75 -6.83 97 11 ± 0.1 14.12 

9009 15/09/2017 JUVENA 44.06 -7.53 100 8 ± 0.5 14.54 

9019 20/09/2017 JUVENA 43.85 -7.53 87 9 ± 0.9 14.77 

9215 18/09/2017 JUVENA 43.75 -3.04 100 5 ± 0.8 9.05 

9223 21/09/2017 JUVENA 46.27 -2.22 99 9 ± 0.9 13.33 

9234 05/10/2017 JUVENA 44.10 -2.24 100 15 ± 0.5 10.20 

9236 06/10/2017 JUVENA 45.30 -2.21 99 12 ± 0.4 7.95 

European anchovy – ex situ 

n1 11/07/2012 CAGE 47.63 -4.14 100 10 ± 0.1 3.26 

n2_1 19/07/2012 CAGE 47.78 -4.53 100 10 ± 0.1 2.61 

n2_2 20/07/2012 CAGE 43.50 -2.50 100 10 ± 0.1 2.51 

n3_1 20/02/2013 CAGE 43.50 -2.50 98 10 ± 0.9 2.58 

n3_2 20/02/2013 CAGE 43.50 -2.50 98 10 ± 0.9 2.55 

Muller´s pearlside – in situ 

9010 08/09/2014 JUVENA 44.06 -5.10 91 3.0 ± 0.2 70 

9002 31/08/2015 JUVENA 44.46 -8.20 100 4.3 ± 0.6 75 

9006 05/09/2016 JUVENA 44.05 -5.10 100 2.6 ± 0.3 153 

9012 08/09/2016 JUVENA 43.54 -2.70 97 4.9 ± 0.9 163 

9020 22/09/2016 JUVENA 45.70 -2.82 100 4.0 ± 0.5 106 

9006 06/09/2017 JUVENA 44.10 -7.52 36* 2.9 ± 0.5 120 

9012 16/09/2017 JUVENA 44.48 -3.38 37* 2.7 ± 0.4 51 

9013 17/09/2017 JUVENA 45.05 -2.20 100 4.7 ± 0.8 120 

9015 18/09/2017 JUVENA 45.21 -2.45 97 3.6 ± 0.6 114 

9017 20/09/2017 JUVENA 45.94 -3.03 100 3.8 ± 0.5 105 

9031 27/09/2017 JUVENA 46.30 -4.31 97 4.1 ± 0.4 55 
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Ex situ data collection 

TS measurements were made with a three-frequency (38, 120 and 200 kHz) Simrad EK60 

split-beam scientific echosounder system installed in a floating 0.6 m x 0.6 m platform 

~20 cm below the sea surface. The cage was cylindrical with 7 m depth and 16 m of 

diameter, with a mesh size of 0.4 cm. The floating platform was placed about halfway 

(~4 m) between the center and the border of the cage, where the highest abundance of 

fish was detected (Figure 3.2). The raft was connected to a logistic boat that housed the 

ancillary electronic equipment and the 12 V batteries used as power source. Day and 

night data were registered during the study but, after preliminary inspection of the data, 

only night experiments were used in the analysis.  

 

 

Figure 3.2 Scheme of the experimental set up in the cage used for the ex situ measurements of 
European anchovy. 

 

 



3. MATERIALS AND METHODS 

31 
 

Daytime data yielded significantly higher TS values, probably due to the higher packing 

densities, as was reported by the diver, hence likely subjected to higher probability of 

detecting unresolved multiple echoes. According to divers´ report, the presence of 

mackerel was restricted to the bottom layer, below 6 meters depth. Calibrations were 

done following the standard procedures (Demer et al., 2015) and were repeated for all 

pulse durations and power settings (Table 3.3). 

 

 

Table 3.3 Calibration settings of the ex-situ data. Note that the 200 kHz gain values differ from 
the expected increasing trend with time, because there were 2 different 200 kHz transducers 
used. 

Year Experiment 
(code) 

Frequency 
(kHz) 

Pulse 
duration 

(μs) 

Power 
(W) 

Gain 
(dB) 

Sa 

correction 
(dB) 

2012 N1 38 256 800 23.62 -0.66 

120 256 200 23.55 -0.59 

200 256 180 25.74 -0.44 

2012 N2 38 256 800 23.51 -0.65 

120 64 200 25.23 -0.58 

200 64 180 24.74 -0.67 

2013 N3 38 512 800 25.40 -0.75 

120 256 200 26.63 -0.61 

200 128 180 26.07 -0.76 

 

 

Near-field experiment 

Due to the cage dimensions (Figure 3.2) the ex situ acoustic measurements were 

unavoidably performed inside the near-field of the 38 kHz transducer (the critical range 

calculated to be 4.5 m) (Medwin and Clay, 1998). To test the validity of these data, an 

ad hoc calibration experiment was carried out, in which a reference target (a tungsten 

carbide sphere of 38.1 mm of diameter) was measured at different distances (2, 3, 4, 6 

and 12 m) from a horizontally oriented 38 kHz transducer. The experiment was repeated 
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with the 200 kHz transducer (whose critical range is 1.33 m) for comparison. The 

transducers were first calibrated at 12 m, where the near-field effect was not biasing 

the target detections and were consecutively approached to the energy source. The gain 

differences between measures inside and outside the near-field were used to apply the 

corrections to the ex situ anchovy TS measurements.  

 

3.1.2. Biological data 

3.1.2.1. Pelagic trawls  

Ground truth trawl hauls were performed based on the interpretation of the echograms, 

aiming to determine the species size distribution across the whole area of study. Both 

vessels performed trawl hauls during JUVENA surveys but only EB performed trawl hauls 

during BIOMAN due to the regular activities that take place in the RM during the latter 

one, related to the Daily Egg Production Method. Trawl samplings were done with a 

Gloria HOD 352 pelagic trawl of 15 m of vertical opening, provided with a 10-mm mesh 

size (bar length) at the cod end. Fishing trawls were performed during day and night, 

between 5 and 300 m depth at a mean speed of 4 knots. Acoustic data recorded during 

trawl hauls with predominance (>85%) of the target species in the catch (either anchovy 

or pearlside) were selected for the TS analysis (Table 3.2). Lengths were obtained from a 

random sample of >50 individuals of each haul and measured to 0.5-cm standard length 

classes (SL; cm) onboard the research vessel.  

 

Catchability of small length classes of pearlside 

Due to the high avoidance of mesopelagic fish to experimental pelagic trawls (Kaartvedt 

et al., 2012; Peña, 2019), an ad hoc experiment was performed to test whether the mesh 

size codend was able to efficiently capture the whole length distribution of the pearlside 

population. For this, we used two different codends on the same model of pelagic trawl: 

one codend had the 10 mm minimum mesh used for the samples involved in the TS 

analyses and the other codend had a gradual mesh size, ranging from 8 to 2 mm, 

specially designed to target micronekton species. In total there were 21 positive hauls 

of pearlside for the experiment; from these, 13 were done with the small mesh and 9 
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with the large one. The experimental procedure consisted of measuring the length of 

100 individuals from each trawl to compare the length distributions obtained with both 

gears using statistical analysis of variance (ANOVA). 

 

3.1.2.2. Experimental cage  

Ex situ TS measurements were obtained from two sets of anchovy individuals, captured 

in September 2012 (Set 1) and July 2013 (Set 2) in the Bay of Biscay. Both were captured 

by the purse seiner Itsas Lagunak and transported in the life bait fishing tanks onboard 

the vessel. The first set was composed of 120 anchovies that were kept in water tanks 

(1 m depth x 3 m diameter) in the Aquaculture School of Mutriku for eight months before 

being moved to the sea culture cage at the mouth of Mutriku harbor (Gipuzkoa, Spain; 

43°18´N, 02°22´W) (Figure 3.1). The second set consisted of ~5,000 anchovy individuals 

mixed with ~100 horse mackerels and was transported directly from the purse seiner 

tanks to the harbor cage. After being moved to the cage, anchovies were left at least 

two days to settle before starting the experiments. A diver visually inspected the cage 

periodically for maintenance, feeding and monitoring the fish. Two groups of 

measurements (N1, N2) were carried out using the first set of anchovies and one (N3) 

using the second one. At the end of each set of measurements, 50 specimens were 

weighed and measured for standard length SL. 

 

3.2. Data analysis 

3.2.1. Echointegration data 

3.2.1.1. Single frequency analysis  

Acoustic energy was first cleaned from unwanted signals and then echointegrated using 

a threshold of -60 dB. The software used for this purpose was Movies+ (developed by 

Ifremer, France). The nautical area scattering coefficient (sA; m2 nmi-2) was allocated by 

species and size according to the hauls and the echogram typology. It was then used to 

obtain the mixed species echointegrator conversion factor (Simmonds and MacLennan, 
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2005). The sA allocated to pearlside at a given time was used to examine the effects of 

the daily vertical migration (DVM). Finally, the abundance in numbers was obtained after 

dividing sA by the mean backscattering coefficient of pearlside and multiplying by the 

mean weight and EDSU to obtain the annual biomass in the studied area. 

 

3.2.1.2. Multifrequency analysis 

Multifrequency analysis was done on acoustic data collected from hauls with more than 

85% of the catch being one of the target species (Figure 3.3A) using Echoview software 

(Echoview Software, 2013). The deepest trawls were performed at mean depths of 163 

m and 19.6 m in the case of pearlside and anchovy, respectively (Table 3.2). Due to the 

range limitation of the high frequencies, background noise that registered below 100 m 

at 200 kHz was removed (Figure 3.3B) following the techniques described by De Robertis 

and Higginbottom (De Robertis and Higginbottom, 2007) (cells of 20 pings by 5 samples, 

smoothed via 5 x 5 convolution into the background noise removal operator, with 

maximum noise of -125 dB and minimum signal-to-noise ratio (SNR) = 1. 

 
Figure 3.3 Example echograms showing the typical pearlside multifrequency scattering layer (A) 
and the background noise correction applied to the 200 kHz frequency, at depths greater than 
100 m (B). 
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Frequency-dependent dB difference  

Echointegrations were done using Echoview Software Pty Ltd, 2013, version 5.2 

(Echoview Software, 2013) over cells of 50 m vertical x 0.1 nautical mile with a -70 dB 

minimum threshold; subsequent analyses were performed in R software (R: A language 

and environment for statistical computing, 2017). ΔMVBS between frequencies is often 

used to discriminate between scattering groups (Madureira et al., 1993; Massé, 1996; 

Murase et al., 2009; Lezama-Ochoa et al., 2011; Gastauer et al., 2017). In this thesis, a 

bi-frequency algorithm (Ballón et al., 2011; Lezama-Ochoa et al., 2011) was used on the 

in situ experiments, based on the differences in mean volume backscattering strength 

(Sv [dB re 1 m2 m-3]) at 38 and 120 kHz, to separate swimbladdered fish from fluid-like 

organisms or macro-zooplankton. A binary matrix was created from the data selected 

by the algorithm, and applied as a mask to the three frequencies of study using Echoview 

(Echoview Software, 2013). All the echograms were visually inspected to cross-check the 

correct performance of the algorithm. ΔMVBS was calculated using 38 kHz as the 

reference frequency and all averaging was performed in the linear domain and 

converted back to the logarithmic scale.  

 

3.2.2. TS analysis 

3.2.2.1. Single target detection  

TS values were derived from echosounder data using the Echoview single target 

detection algorithm for split beam echosounders (Soule, 1997). A -70 dB minimum 

threshold was applied with a pulse determination level of 6 dB. The minimum and 

maximum normalised pulse lengths were 0.7 and 1.5, respectively, the maximum beam 

compensation applied was 6 dB and the maximum standard deviation of minor and 

major axis angles was 0.6 degrees.  

 

Multiple targets 

To reduce the expected bias derived from the multiple targets´ detection, all 

measurements were made at night to facilitate the detection of single fish targets. 
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Measurements at the cage were performed using different pulse durations (64, 128, 256 

and 512 µs) to check whether the values obtained varied at increasing sampling volumes 

(i.e., decreasing vertical resolutions) due to higher failure probability of the single target 

discrimination algorithm for larger volumes. 

The preliminary analysis performed on the four methods described in the methodology 

section: Multiple targets, was used to discard the methods that were not effective in 

removing multiple target detections. The standard phase deviation did not affect mean 

TS values (varied less than 0.5 dB) and was thus discarded. The multiple frequency and 

the high-density filtering methods provided rather similar results (differing in 2, 0.8, ~3, 

~3 and 2.5 dB at 18, 38, 70, 120 and 200 kHz frequencies, respectively). However, since 

the maximum distance between the spatial coordinates of the detections at different 

frequencies was larger than the typical size of the target species, the multiple frequency 

method was not considered reliable. This thesis, therefore focused on the high-density 

filtering method. 

This approach consisted in filtering the areas of the echogram with highest densities of 

fish individuals, thus with higher probability of failure of the single target detection 

algorithm. The number of fish per echo-integrated volume was determined by (Sawada 

et al., 1993) as: 

IJ =
KLMNO1P
=QRS

,        

where c is the speed of sound in water in ms-1, τ is the transmit pulse duration in seconds, 

Ψ is the equivalent beam angle in steradians, R is the target range in meters, sv is the 

volume backscattering coefficient and σbs a preliminary value for the backscattering 

cross section (Maclennan et al., 2002), i.e., the linearized TS value, which is normally 

obtained from the length distribution of the target fish and a TS-length model.  

In general, the high fish density filtering procedures were able to reduce the bias 

considerably (Foote K.G. et al., 1986; Soule et al., 1996; Scoulding et al., 2015). The 

difficulty relied on determining the appropriate density threshold, because, it was 

observed in our case, that the smaller the threshold applied, the lower were the 

obtained TS values in an endless progression. In order to provide a valid criterion for 
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establishing a fish density threshold, the diagnostic tools for unbiased TS estimation by 

(Gauthier and Rose, 2001) was applied. According to it, the high fish density threshold 

was obtained from the comparison of the fish density in a given volume IJ  and the 

number of single targets detected by the algorithm in the same volume:  

#J =
KLMNOTUVWXTY

=JY
,        

where 7Z is the volume at the cutoff angle omega and [G\+][^ is the mean number of 

targets per ping. The threshold was identified when the number of single targets 

reached saturation due to higher probability of detecting multiple targets (Gauthier and 

Rose, 2001). Thus, the echogram was divided in a grid of regular cells and calculated TV 

and NV at each cell. We represented TV against NV and the threshold was chosen at the 

inflection point, if any. A windowing smoothing process was applied by grouping the fish 

densities by ranges to allow the appearance of the pattern. Also, as the sharpness of the 

inflection point would depend on the effectiveness of the single target detection 

algorithm, in order to try to obtain a clearly identifiable peak, a relatively strict single 

target detection algorithm (in terms of rejection of multiple targets) was applied. Signals 

were filtered to reject pulses narrower than 70% and wider than 150% than the 

transmitted pulse, and the maximum standard deviation of the sample angles at each 

pulse was set to 0.2 degrees in both dimensions, using the full 6 dB beam compensation 

(corresponding to a beam angle of around 7º). A sensitivity analysis was run to test the 

applicability and results of the method at different decreasing cell scales: from 10 m x 

100 pings, 10 m x 50 pings, 10 m x 25 pings and 10 m x 10, decreasing until 1 ping (which, 

given that 1 ping »  0.15 m, resulted in grid cells from 1500 to 1.5 m2). For each 

resolution, a different threshold was calculated by modifying the parameters that 

allowed the inflection point representation to be clear (such as the sequence of Nv 

thresholds at which the mean TS values are obtained for calculation). Due to the 

differences in number and spatial distribution of the targets at each cell size, the mean 

TS values were weighted to the number of targets in each cell.  
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3.2.2.2. TS-length relationship 

Based on the amount of data available from each species, the TS-length relationship 

was determined following two different procedures.  

 

TS-L for pearlside 

In the case of pearlside, a 20log SL relationship was assumed to produce b20 estimates 

at five frequencies (18, 38, 70, 120 and 200 kHz) by the least-squares fitting procedure 

(MacLennan and Menz, 1996). The filtered TS dataset was fit to a normal distribution 

derived from the fish size histogram of the catches (modelled TS distribution assuming 

20 log SL) to evaluate the mean, standard deviation (SD) and b20 of the best fit, given by 

the coefficient of determination (R2).  

 

TS-L for European anchovy 

In the case of anchovy, the number of acoustic-trawls available for analysis permitted to 

perform a free-fitting linear relationship of mean TS versus mean length values, to 

determine the most suitable a value.  

 

3.2.3. TS interpretation 

3.2.3.1. Swimbladder morphology 

X-ray images 

Random subsamples were frozen in liquid nitrogen immediately after being captured 

and stored in individual plastic bags at -15 ºC onboard the research vessel. Four months 

after being captured frozen samples (283 pearlside individuals and 12 anchovies) were 

carefully removed from the plastic bags and set in order by trawls. This was done in the 

laboratory under a temperature-controlled environment (0° C) to minimise the 

damaging effect on the biological structures. The three cross-sectional dimensions of 

the swimbladder length (Lsb; cm), height (Hsb; cm) and width (Wsb; cm) plus the tilt angle 

(θsb) were determined based on soft X-ray images (IntechForView CR system) of the 

lateral and dorsal aspects of the fish (Figure 3.4). Only the specimens with undamaged 

swimbladders (63 pearlside individuals and 4 anchovies) were considered for the 
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measurements (i.e. there were some cases in which these were absent or disfigured and 

bubbles of air were visible elsewhere from the swimbladder). The dimensions of the 

detector plate were 430 mm x 350 mm with a pixel size of 86 µm. Samples were located 

at 1 m from the source and exposed to 40 kV per 1.6 mA/sec. 

 

 

Figure 3.4 Example showing the spatial arrangement of fish samples for the X-ray session (a). 
Soft X-ray images of the lateral and dorsal aspects (b) of a specimen of M. muelleri (standard 
length, SL = 47 mm). A 1 cm scale bar was included. 

 

3.2.3.2. Modelling pearlside - Prolate spheroid model (PSM)  

The effects of depth and size on the swimbladder target strength were analysed using a 

scattering model that applied an ellipsoidal approximation for the swimbladder 

(Andreeva, 1964; Weston, D. E., 1966; Love, 1978; Furusawa, M., 1988; Ye, 1997).  

The semi-major (a = Lsb/2) and semi-minor axes in the lateral (b = Hsb/2) and dorsal (c = 

Wsb/2) aspects were used to calculate the equivalent sphere radius aesr (Strasberg, M, 

1953): 

Gesr= (G	_	9), `⁄  

 

All the equations used in this study, as well as the environmental and material 

properties, were adopted from previous studies (Andreeva, 1964; Love, 1978) (Table 
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3.4). The sequence in which the different equations of the model were used followed 

the same structure as in Scoulding et al (Scoulding et al., 2015). 

Although pearlside is a physoclist species (Marshall N. B., 1960), different assumptions 

related to the depth dependence of swimbladder volume were compared. (1) The first 

assumption implied that the swimbladder dimensions were independent of depth due 

to volume compensation associated with physoclist species (Kloser et al., 2002; Fujino, 

T. et al., 2009; Peña et al., 2014; Peña and Calise, 2016); thus, we assumed no effect of 

Boyle´s law. (2) A pressure-induced volume reduction of the swimbladder was 

considered according to Boyle´s law (Godø et al., 2009; Scoulding et al., 2015; Proud et 

al., 2018) by which the dimensions at the fishing depth were expected to be smaller than 

those observed at the surface. In this case, the following model was used:  

 

/a = 	/-(1 +
a
,-
)c, 

 

where /a is the backscattering cross-section at depth z, /- at the surface and ! is the 

estimated contraction rate parameter (-0.67 for a free ellipsoid) (Ona, 2003). (3) This 

assumption accounted for the mechanical stress of the fish derived from the trawling 

process, where ! was treated as a floating parameter of values ranging from 0 to -0.67. 

Values for mean (d̅) and standard deviation ("θ) of tilt angle were obtained from the X-

ray images. (4) Finally, the whole space of combined parameters was explored, using γ, 

d̅ and "θ as floating parameters. Except for the third variant of the model, in which the 

tilt angle parameters were determined from the X-ray images, the other three 

assumptions explored normal distributions with mean values ranging from 0–70° and 

standard deviations of 0–30°.  

 

Table 3.4 Model parameters 

Model parameters        Symbols Units                  Values 

Sound speed  cw m s-1 1490 

Density of sea water ρw Kg m-3 1026 

Density of fish flesh ρf Kg m-3 1050 

Density of air ρa Kg m-3 1.3 
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Ratio of specific heat for air (swimbladders) γa - 1.4 

Specific heat at constant pressure for air 
(swimbladders) 

cpa Cal kg-1  °C-1 240 

Surface tensión s N m-1 200 

Thermal conductivity of air ĸ a Cal m-1 s-1 °C-1 5.5 x 10-3 

Real part of complex shear modulus of fish tissue µr N m-2 1 x 106 

Complex part of shear modulus of fish tissue µi N m-2 3 x 104 

 

 

The Akaike information criteria (AIC) was used to select the best variant of the model 

because it considers the goodness of fit of the model and penalises the use of optimised 

parameters over the use of parameters with fixed values.  

fgh = i)*+($$jk1) + 2(l + 1) − i)*+(i) 

where n is the number of observations and p is the number of floating parameters used. 

The optimal model was then used to interpret the actual swimbladder behaviour of 

pearlside. 

 

3.2.3.3. Modelling European anchovy – Method of Fundamental Solutions (MFS)  

Anchovy is a physostomous fish with a dual chambered swimbladder, which the 

simulation simplified as a two chambered prolate spheroids (Andreeva, 1964; Weston, 

D. E., 1966; Love, 1978; Furusawa, M., 1988; Ye, 1997), PS1 and PS2, being the major axis 

of PS1 orthogonal with respect to the incident acoustic pulse and the major axis of PS2 

tilted a with respect the major axis of PS1 (Figure 3.5). The model also considered the 

backbone contribution, expected to attenuate the swimbladder signal (Pérez-Arjona et 

al., 2018), but discarded the flesh contribution. The prolate spheroids dimensions and 

the tilt angle were based on soft X-ray images. The calculations were carried out for 

mean standard length SL=10.5 cm, with corresponding PS1 and PS2 dimensions given by: 

length (semi-major axes, a1= 0.625 cm and a2=0.5 cm), height (semi-minor axes, b1=0.2 

cm and b2=0.2cm) and width (semi-minor axes c1= b1 and c2= b2), and relative angle θ=12 

degrees. 
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Figure 3.5 Lateral radiograph of a specimen of Engraulis encrasicolus showing the two connected 
swimbladder chambers (PS1 and PS2) and the backbone. Fish length = 10.1 cm, fish height = 1.04 
cm. 

 

The method of fundamental solutions was used to solve the three-dimensional 

Helmholtz equation in the frequency domain (Fairweather et al., 2003). The two 

chambered swimbladder was considered a pressure-release surface and the fish 

backbone was modelled as a fluid filled (ρ=1100 kg/m3, c=2270 m/s) straight cylinder 

(length=9 cm and radius=1mm) with smooth edges surrounded by homogeneous host 

medium (sea water with acoustical properties ρ=1026 kg/m3, c=1490 m/s). The basic 

principle of the MFS is that the sound field in a homogeneous region can be simulated 

by the linear superposition of the effects of a number of virtual sources, each one with 

its own amplitude, and imposing boundary conditions on the scatter surface 

(Fairweather et al., 2003; Pérez-Arjona et al., 2018). The MFS virtual sources were 

located with at least 6 sources per wavelength to adequately resolve the acoustic wave. 

For the sake of comparison with experimental measurements, the acoustic source has 

been considered the specific case of the far field of a circular piston, as an idealization 

of a scientific echosounder transducer. Additionally, the MFS was applied on short-range 

distances to be compared with the near-field experimental results. The transducer size 

was chosen to produce a half-beam angle at −3 dB of 3.5° following the transducers’ 

specifications of Simrad EK60 scientific echosounders at the working frequencies. The 

MFS model was solved at the three working frequencies used in measurements 38 kHz, 

120 kHz and 200 kHz and convergence tests were carried out for each frequency to 

guarantee the proper density mesh. The TS directivity was considered for incidence 

angle distribution θ (90±5°) and θ between (90±10°), being θ=90° the backscattering 

direction.
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4.1. Mueller´s pearlside 

4.1.1. Biological sampling 

A total of 11 trawls where M. muelleri was the dominant species were used for the 

analyses (Table 3.2). Krill Meganyctiphanes norvegica contributed on average 3.6% of 

the total numbers, while squid (Loligo vulgaris), salps (Salpasalpa) and jellyfish 

(Rhopilema spp.) contributed to the catches to a lesser extent. Standard length 

distributions of pearlside ranged from 2.6 ± 0.3 cm to 4.9 ± 0.9 cm. A total of 63 

individuals with apparently undamaged swimbladders were finally used for the 

morphological measurements. The pearlside swimbladder appeared as a regular-shaped 

single-chamber ellipsoid with a long (a=Lsb/2) and short (b=Hsb/2) lateral semi-axis and 

a short dorsal semi-axis (c=Wsb/2) and an average tilt angle of 24° ± 7° (Figure 3.2, Table 

4.1).  

 

Table 4.1 Results of the morphological measurements of the swimbladder (n = 63). 

 Symbol Units Range Mean ± SD 

Standard body length  L f cm 1.41 – 5.23 2.87 ± 0.78 

Length Lsb cm 0.25 – 0.98 0.45 ± 0.14 

Height Hsb cm 0.07 – 0.35 0.20 ± 0.07 

Width Wsb cm 0.03 – 0.31 0.12 ± 0.06 

Dorsal area Asb.D cm2 0.006 – 0.17  0.05 ± 0.03 

Lateral area Asb.L cm2 0.01 – 0.18 0.06 ± 0.04 

Long lateral semi-axis  a cm 0.13 – 0.49 0.22 ± 0.07 

Short lateral semi-axis  b cm 0.03 – 0.16 0.08 ± 0.02 

Short dorsal semi-axis c cm 0.01 – 0.15 0.06 ± 0.03 

Swimbladder ratio a/Lf - 0.05 – 0.12 0.08 ± 0.02 

Aspect ratio Ɛ - 0.09 – 0.47 0.26 ± 0.09 

Tilt angle θ ° 11.4 – 43.6 24 ± 7 
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Figure 4.1 Swimbladder morphological measurements. Relationship between standard length 
(mm) and the swimbladder volume, aspect ratio (Ɛ=c/a), swimbladder length and equivalent 
radius of the 63 specimens with gas-filled swimbladders. The shadowed area represents the 95% 
confidence intervals. 

 

 

Results indicate that for an increase in fish length, there is an increase in swimbladder 

volume (r2 = 0.6, p < 0.001), length (r2 = 0.07, p < 0.05) and equivalent radius (r2 = 0.6, p 

< 0.05) (Figure 4.1Error! Reference source not found.). As for the aspect ratio, data 

suggested a positive correlation with fish length, although this was not significant (r2 = 

0.02, p > 0.05). 

 

4.1.1.1. Capture efficiency vs mesh size experiment 

The mean ± standard deviation body length of the fish captured with the 8 to 2 mm 

mesh was 3.3 cm ± 0.8 cm whereas for the 10 mm mesh it was 2.7 cm ± 0.7 cm, with the 

minimum sizes caught being ~1.5 cm in both cases (N=1201). To further assess this, in 

one site we repeated two trawls consecutively, targeting the same aggregation using 
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both mesh sizes. In this case, the mean sizes were 3.5 cm ± 0.4 cm and 3.6 cm ± 0.4 cm 

for the 8-2 mm and 10 mm mesh sizes, respectively, and the statistical tests provided 

non-significant differences between means (p > 0.05). According to this result both 

trawls seem equally able to perform sampling of small sizes in the range of this study 

and hence the biological sampling for the TS analysis was unbiased and representative 

of the true pearlside size distribution. 

 

4.1.2. Spatial distribution patterns of Mueller´s pearlside in the Bay of Biscay 

Mueller's pearlside was predominantly found off the shelf or at the outer part of the 

continental shelf, although it reached the 100 m isobath on the French shelf. Its vertical 

distribution during daytime ranged from 50 m down to the maximum depth sampled in 

this study (500 m) (Figure 4.2). The location of the acoustic detections of pearlside in the 

water column varied with time being on average about 50 m shallower during nighttime 

(Figure 4.3). 

 

Figure 4.2 Horizontal (a) and vertical (b) distribution of the Nautical Area Scattering Coefficient 
(NASC; m2 nmi-2) of M. muelleri. Bathymetric lines drawn in grey. This map is representative of 
the spatial distribution of pearlside within the area of study. 
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Figure 4.3 Vertical migration. Diurnal vertical migration patterns of M. muelleri with mean depth 
(m) plotted against local time of day in hours. The density of points is proportional to the nautical 
area scattering coefficient (sA; m2 nmi-2). Loess smoother represented as solid line. 
 
 

 

4.1.3. Frequency dependent dB difference 

Pearlside ΔMVBS38 showed a general decreasing trend towards high frequencies. The 

observed pattern described the highest difference at 18 kHz with a sharp decline 

towards 38 kHz, consistent with the presence of a resonance peak at frequencies below 

38 kHz. There was an approximately similar response at 38 and 70 kHz and a final decay 

for the 120 and 200 kHz frequencies (Figure 4.4).  
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Figure 4.4 Averaged in situ dB difference ΔMVBS38 of pearlside. A general decreasing trend was 

observed with increasing frequency. Error bars indicate 95% confidence interval. 

 

4.1.4. In situ TS 

Even if the Nv values varied within the scale of measurement, the averaged TS values 

were constant regardless of the grid size, showing differences of less than 0.2 dB within 

scales. The smallest scale size (5 pings x 5 meters) was chosen for the Nv threshold 

determination. The point of inflection of the number of Tv on the fish number Nv (Figure 

4.5) was observed at threshold values of 0.12, 0.07, 0.16, 0.06 and 0.04 fish per m3 at 

18, 38, 70, 120 and 200 kHz frequencies, respectively, meaning that only cells that 

passed those thresholds were retained for subsequent analysis. The filtered TS datasets 

consisted of 109, 154, 578, 255 and 158 targets at each respective frequency, on which 

the b20 fitting procedure was based.   
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Figure 4.5 Example of the number of targets per sample volume (Tv) against number of fish per 
acoustic reverberation volume (Nv) at 38 kHz. Grey points are the b20 values averaged for every 
Nv threshold value. Black point indicates filtered b20 value at Tv/Nv inflexion point, that 
corresponds to a 0.075 Nv threshold. 

 

 

The best-fit b20 values derived from the Nv-filtered TS and SL distributions were -65.9, -

69.2, -69.2, -69.5 and -71.5 dB for the 18, 38, 70, 120 and 200 kHz, respectively, with 

coefficients of determination (R2) ranging from 53 to 73% (Figure 4.6). These TS-length 

relationships correspond to the depth range of the filtered dataset (17–143 m) and 

standard fish length ranging from 2.7 to 4.3 cm. 
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Figure 4.6 Predicted and observed TS fitting procedure. The filtered TS dataset (black vertical solid lines) was fit with a normalized length distribution (solid 
curve) to evaluate the mean (dashed vertical line), standard deviation (2, 3, 2, 2.5 and 2.5 for 18, 38, 70, 120 and 200 kHz, respectively) and b20 (topright corner 
of each panel) of the best fit, given by coefficient of determination (R2) of observed versus modelled TS distributions. N stands for the number of targets that 
passed the filtering process and were used in the optimization. 
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4.1.5. Biomass estimation 

The biomass of pearlside in the Bay of Biscay was calculated with single frequency data 

registered at 38 kHz over the four years analysed in this study. It followed a decreasing 

trend from 2014 to 2016 but reached maximum numbers in 2017. The minimum and 

maximum estimates were 70.7 and 161.7 thousand tons in years 2016 and 2017, 

respectively (Table 4.2). 

 

Table 4.2 Time series of biomass estimation of pearlside in the Bay of Biscay. 

 
Year 

<sA> 
(m2nm-2) 

Area 
(nm2) 

Mean 
weight 

(gr) 

Mean 
length 
(cm) 

Biomass  
@ 38 kHz 

(Tn) 
CV 
(%) 

2014 309.3 21,073 0.51 3.42 142,242 30 

2015 630.79 8,663 0.58 3.96 127,447 35.3 

2016 348.96 7,189 0.36 3.44 70,784 68.2 

2017 511.30 13,313 0.53 3.68 161,713 35.7 
 

 

4.1.6. Acoustic scattering model 

The general behaviour of the backscattering model used was illustrated by simulating the 

TS-length and TS-depth relationships for swimbladder contraction rates !	= 0 and ! = -

0.67 (Figure 4.7). Regarding the size effect, modelled TS values decreased with decreasing 

swimbladder size, but the resonance frequency increased. The effect of size on the 

resonance frequency was clearly seen when ! = -0.67, but smaller when ! = 0 (estimated 

to be below 50 kHz for all the examined sizes). The effect of depth on the resonance 

frequency was minimal when ! = 0, but clearly observed when ! = -0.67. Maximum TS 

values at resonance decreased with depth, having a major effect when ! = -0.67. Depth 

variations produced major changes on smaller swimbladder sizes. 
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Figure 4.7 Scattering model simulations. Resonance scattering model behavior for simulations 
of different sizes and depths, considering swimbladder contraction rates ! = 0 (left) and ! = -0.67 
(right).  In these theoretical simulations, broadside incidence (Θ = 0°) was assumed 

 

 

When ! was set to 0 (no pressure effect) and the tilt angle was used as a floating 

parameter, the optimised tilt angle was 70º ± 5 (Table 4.3a). The lowest AIC value was 

achieved when using a fixed ! = -0.67 (Boyle´s law effect), and the mean tilt angle (θ) 

that minimised the distance between the modelled and experimental TS values followed 

a normal distribution with a mean of 10º ± 5 (Table 4.3b). The model simulation that 

assumed the measured θ ± #θ from the X-ray images (24° ± 7), produced an optimised 

contraction rate of -0.66 (Table 4.3c). The highest AIC value was obtained when the three 

variables were treated as floating parameters, and the whole space of combinations among 

parameters was evaluated with the ranges defined above (Table 4.3d).  

 

Table 4.3 Performance comparison (AIC, Akaike Information Criteria) of the different 
backscattering model variants tested. Mean depth and fish length averaged from filtered 
dataset: 

      Swimbladder contraction 
rate (γ) 

Mean tilt angle  
(θ) 

SD tilt angle 
(#θ) 

Number of 
optimized 

parameters (*)  

AIC 
 

(a) -0.66* 24** 7** 1 16 

(b) 0 70* 5* 2 15 

(c) -0.67 10* 5* 2 8 

(d) -0.62* 65* 10* 3 19 
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The optimal model (! = -0.67 and θ = 10º ± 5) was plotted for a range of frequencies 

from 0 to 250 kHz, for a mean depth of 84.5 m and mean SL of 3.68 cm (Figure 4.8). 

Additional curves were included using the mean depth and length from all the trawls used 

in this study (in grey). The in situ filtered TS data at the five frequencies of study (black 

points) fit the model curve closely (Figure 4.8).  

 

 

Figure 4.8 Model vs filtered in situ TS data. Optimal model (! = -0.67 and Θ = 10º ± 5) plotted for 
frequencies from 0 to 250 kHz using mean depth 84.5 m and mean length 3.68 cm (black line). 
Additional curves show the model behavior using depths and standard lengths associated to the 
trawls used in the study (grey lines). Black dots are the in situ filtered TS values with error bars 
showing the standard deviation from the mean values. 

 

 

4.2. European anchovy 

4.2.1. Data collection 

The in situ data selection criteria retained a total of 53 hauls (Table 3.2), 27 of which 

corresponded to the spring survey BIOMAN and 26 to the autumn one, JUVENA. All of 

them were performed during nighttime, where anchovy schools were observed (Boyra et 

al., 2013) to break up into a layer of dispersed fish through the first meters of the water 
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column. Spring hauls were limited to the eastern part of the Bay of Biscay, covering the 

French coast, while autumn hauls covered a wider area, reaching 8ºW longitude. The ex 

situ experiments were performed in the inner part of the Bay of Biscay, in a common area 

for the spring and autumn surveys (Figure 3.1).   

 

4.2.1.1. Near field experiment 

The analytical solutions of the on-axis pressure effect and the far field approximation 

obtained with the MFS model converged at 4.5 m from the source (Figure 4.9A). The TS 

deviation between both curves described a decreasing pattern with distance (Figure 4.9B). 

The gain differences measured between the near and far field during the experiments 

converged with the analytical solution at distances > 2.5 m (Figure 4.9B). Ex situ TS 

measurements at depths smaller than 2.5 m were discarded for not being predictable by 

the model. Since the calibration in the cage was performed at 4 meters, TS measurements 

within 3.5 and 4.5 meters were considered unbiased and no correction was applied. 

However, measurements within 2.5 to 3.5 meters were corrected by subtracting 0.33 dB 

and values within 4.5 to 6 meters by adding 0.24 dB. 

 

 
Figure 4.9 (A) Analytical solution for pressure in the vertical axis (solid line) and the far-field 
approximation (segmented line). (B) TS deviation between the pressure in the vertical axis and 
far field analytical approximations (solid curve) at different distances from the source. The black 
points represent the experimental gain difference between near and far field. Deviation of the 
experimental and analytical solutions are relevant at distances below 2 m (empty circle). 
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Figure 4.10 Example echograms illustrating the results of the plankton filtering process to the in 
situ (A: haul 179019) and ex situ data (B: N1). 

 

4.2.2. Target selection 

After the plankton filtering performance (an example is illustrated in Figure 4.10A, B), the 

application of the high-density filter to the in situ data retained 30%, 52% and 74% of the 
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targets at 38, 12 and 200 kHz, respectively. All three ex situ experiments were included 

in the analysis since no significant differences were observed among the mean TS values 

measured at different pulse durations (Figure 4.11). A total of 6388, 15695 and 19012 

targets were finally used for the TS estimates at 38, 120 and 200 kHz, respectively. The 

filtered dataset covered a depth range of 2.5 to 27.5 m. The fish length values measured 

from the different experiments ranged from 3.5 to 19.5 cm, with highest mean (±standard 

deviation) value obtained in spring 13.4 (±1.5) cm, and smaller mean values in the cage 

experiments and autumn survey: 10.4 (±1) and 10 (±3.4) cm, respectively. The highest 

size variability was observed in the autumn survey, with a wider distribution than in the 

spring and cage measurements (Figure 4.12A). The filtered TS distributions showed mean 

values at increasing operative frequencies of -43.3 (±1.5), -45.4 (±2.3) and -47.1 (±2.1) 

dB in BIOMAN, -45.4 (±0.9), -45.5 (±2.3) and -47.7 (±2.3) dB in the cage experiments, 

and -46.2 (±2.7), -49.4 (±2.1) and -50.3 (±2.5)  dB in JUVENA (Figure 4.12B). All TS 

distributions were clearly monomodal except for the 120 and 200 kHz measurements 

from the cage, where the mode was less pure. The TS values, on the other hand, exhibited 

no clear relationship with depth (slope = 0.1, p-value =0.18, R2=3%). 

 

 
Figure 4.11 Boxplots summarizing TS distributions against pulse duration used in the ex situ 
experiments. Pairwise t-test produced p-values > 0.05 within pulse durations. 
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Figure 4.12 Length and filtered TS histograms grouped by in situ (BIOMAN, JUVENA) and ex situ 
(cage) measurements. 

 

 

4.2.3. TS-length relationships 

Overall, the measured TS values increased linearly with the logarithm of the fish length. 

In agreement with the corresponding mean body lengths, TS values are generally higher 

for the spring hauls, than for the autumn ones and the experimental cage results (Figure 
4.13). Overall, the three types of measurements (ex situ and in situ from both surveys) 

fitted nicely the same TS versus log-length regression. When the slope of the regression 

was forced to 20, the b20 values for the in-situ measured data were -66.5, -68.9 and -70.5 

dB at 38, 120 and 200 kHz, respectively, and -66.1, -66.4 and -68.7 dB for the ex-situ 

measurements (Table 4.4). If the whole dataset was considered, these values were -66.5, -

68.7 and -70.4 dB. The free fitting linear model produced significant results in-situ, with 

slopes of 18.2 and 23.5, non-significant results ex-situ and, when considering the whole 

data set, significant slopes slightly over 20 at the three operative frequencies, with 

intercepts at -68.8, -69 and -72.9 dB, respectively.  

 

 



4. RESULTS 

58 
 

Table 4.4 Statistics of the empirical TS-L linear regression parameters. Significance codes: 0 
`***´; 0.001 `**´; 0.01 `*´ 

 Frequency 
(kHz) a  b  b20  N 

IN SITU 

 

 
 

38 22.2*** -68.8*** -66.5*** 53 

120 20.5*** -69.5*** -68.9*** 53 

200 22.5*** -73.2*** -70.5*** 53 

EX SITU 

 

 
 

38 34.1 -80.5* -66.1*** 3 

120 47.4 -94.3 -66.4*** 3 

200 82.1 -131.9 -68.7*** 3 

IN SITU + EX SITU 

 

 
 

38 22.2*** -68.8*** -66.5*** 56 

120 20.3*** -69*** -68.7*** 56 

200 22.4*** -72.9*** -70.4*** 56 

THEORETICAL MODEL 

 

 

38 16.9  -63 -66.2 - 

120 16.3 -65.8 -69.7 - 

200 19.8 -70 -70.3 - 
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Figure 4.13 Mean TS against total length (L) relationship. Bold solid line = experimental forced 
fitting (b20); dashed line = experimental free fitting, and dotted line = numerical fitting (b20). Red 
circles correspond to BIOMAN hauls, blue squares to JUVENA hauls and green triangles to the 
cage experiments. 
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4.2.4. Acoustic scattering model 

The two-chambered swimbladder and backbone simulations (Figure 4.14) predicted more 

directive patterns of TS against tilt angle at increasing frequencies, which led to steeper 

decrease of the TS values with beam angles for the first ±10º. Thus, although the 

maximum TS values that occurred at 12º from normal incidence, (i.e., normal to the 

oblique swimbladder chamber) were similar at all frequencies, the mean values were 

considerably higher for lower frequencies.  

 

 
Figure 4.14 Beam directivity patterns obtained with the backscattering simulation of the two-
chambered swimbladder plus backbone at the three frequencies of study. The maximum TS 
values are obtained for a tilt angle of 78° (12° from normal incidence). Although these maximum 
values are similar at all frequencies, the TS values averaged for SD ranges of ±5°, ±10° or ±15° 
are lower for higher frequencies.  
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5.1. TS measurements and processing 

This thesis presents a comprehensive study aimed at determining the values of target 

strength (TS) and TS-length relationships of two important pelagic species in the Bay of 

Biscay, European anchovy and Muller´s pearlside. These are basic elements necessary 

to estimate their biomass, thus allowing proper management of both resources.  

When measuring TS values for small pelagic species, two of the key difficulties are to 

apply a correct lower threshold (Weimer and Ehrenberg, 1975) and to avoid bias by 

unresolved multiple targets (Soule et al., 1995). Being both, anchovy and pearlside, small 

pelagic species and subjected to potential bias due to unresolved multiple targets, they 

shared some common efforts concerning filtering for bias mitigation. First, all 

measurements were made at night to facilitate the detection of single fish targets. Then, 

data exploration would determine whether to apply further filtering or not.  

The ex situ measurements´ results were similar at different effective resolutions of the 

acoustic sensors (Figure 4.11), supporting the notion that the relatively low fish density 

at the cage at night was sufficient to avoid multiple echoes and hence requiring of no 

additional filtering processes. As mentioned above, mean TS values at increasing 

sampling volumes are expected to increase owing to the higher probability of including 

multiple targets. 

Conversely, measurements obtained from in situ experiments for both species were 

further filtered by removing the areas where fish density was above an empirically 

determined threshold value (Sawada, K. et al., 1993; Ona, E. and Barange, M., 1999). 

One of the main issues associated to this method is that the filtered TS value is calculated 

based on a previous TS value used as initial input. However, the empirically determined 

threshold value (Nv) was proven independent of the horizontal scale at which it was 

calculated, thus avoiding the circularity-issue of calculating a TS value that is dependent 

on a previous one. The method presented here is based on preliminary tests performed 

in the early days of the development of this thesis, and published as part of a previous 

work (Boyra et al., 2018). Even if this method was proven effective for the bias reduction 

derived from multiple targets, it should be noted that the signal from multiple echoes 

might not be entirely removed and a certain degree of bias may remain. 
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Anchovy data were collected during spring and autumn for 7 years, covering a wide 

range of fish lengths (3.5-19.5 cm) and physiological conditions. The size and TS 

distributions (Figure 4.12) at the different sampling periods reflect this seasonality, as the 

largest specimens were measured during the spring spawning peak (when only adults 

are present in the area) and the smallest during the autumn survey (when part of the 

adult stock is absent due to trophic migrations whereas juveniles predominate) (Boyra 

et al., 2013). This study has shown significant positive correlations between TS and fish 

length and a good correlation between in situ and ex situ results. The range of sizes of 

anchovy used in this work practically covers the full range of sizes observed during the 

acoustic surveys of anchovy in the Bay of Biscay (4-20 cm). The optimal slope obtained 

for the whole data set at all frequencies was consistently close to 20 (Table 4.4), meaning 

that the horizontal cross-sectional area of the swimbladder changes proportionally to 

the square of the fish length, according to expectations (Simmonds and Maclennan, 

2005). The non-significant TS-length relationship derived from the ex situ data was not 

considered relevant, instead being attributed to the small number of points (only three) 

available.  

Despite the highly significant TS-length relation obtained, a few of the smallest anchovy 

trawls tend to provide lower mean TS values than expected by the fitted linear 

relationship (left part of Figure 4.13). Several potential causes were considered as 

responsible for this effect. For example, it could be a consequence of the tendency of 

the smallest juveniles of being more associated with plankton, which would tend to 

negatively bias mean TS values. This was checked by further inspecting the echograms 

and catch composition of those trawls in search of plankton, but neither the echograms 

nor the catches showed sign of higher than average proportion of plankton. 

Alternatively, it could be caused by different behavior of the smallest anchovies, which 

have been reported to change its aggregating patterns with growth, gathering in 

increasingly larger and denser shoals (Boyra et al., 2016). A larger range of tilt angles 

caused by a less polarized swimming fashion could lead to a smaller mean TS value. This 

effect should be higher for the highest frequency, due to higher directivity, thus in 

agreement with our results. Another possible cause could be an allometric growth, or 
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perhaps a late inflation of the swimbladder, which would tend to produce comparatively 

lower TS values for the smallest size ranges.  

At 38 kHz, the most used frequency in fisheries acoustics (Simmonds and Maclennan, 

2005), recent studies have provided b20 = -68.6 dB on similar species Engraulis anchoita 

(Madirolas et al., 2016), obtained from 11-17 cm specimens during night-time in situ TS 

measurements. Other experiments on Engraulis japonicus (Zhao et al., 2008) have 

yielded TS-length relationships with b20 = -65.8 dB (Kang et al., 2009) for lengths ranging 

4.8-12.2 cm and -66.5 dB (Sawada et al., 2009) for 10.6 cm. Thus, our values for anchovy 

(b20 = -66.5 dB at 38 kHz) are within the range of the latest published TS values and TS-

length relations obtained for engraulid species. 

The only previous work to examine the TS of European anchovy, obtained by funneling 

the targets through a net with an open cod-end, yielded a mean b20 of -65.2 dB from 

12.5 cm anchovies at ~60 m depth at 70 kHz (Doray et al., 2016). This methodology 

avoided multiple target bias, but at the expense of forcing the anchovies to swim almost 

horizontally (i.e. with a narrower distribution of tilt angles than expected to be their 

natural behavior) towards the net mouth. Although the results of that work are not 

directly comparable with our own due to differences in frequency and behaviour, they 

can be considered qualitatively consistent. These authors’ theoretical 2 dB decrease 

predicted at 38 kHz is consistent with a reduction in the range of tilt angles illustrated in 

Figure 4.14. 

One should take into account that the depths of the anchovies studied (2.5-27.5 m) are 

in the upper range of the typical 5-120 m of the acoustically sampled depth for 

assessment, which constitutes a limitation for determining the depth dependence of TS. 

However, given that anchovy is a physostomous species and thus unable to compensate 

its swimbladder volume against pressure changes, TS can be expected to decrease with 

depth according to Boyle’s law, as has been observed in previous measurements of 

anchovy (Zhao et al., 2008) and other physostomous species (Ona, 2003).  

Mesopelagic fish are known to avoid or escape from fishing trawls (Pakhomov et al., 

2010; Heino et al., 2011; Kaartvedt et al., 2012; Peña, 2019) biasing the length 

distribution of the population (Gartner, 1988; Itaya et al., 2007; Davison et al., 2015a). 
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However, the results of the mesh size experiment (section 4.1.1.1) proved that the used 

fishing gear was able to sample the whole size range found in our area of study (1.5–6.5 

cm). However, it is recommended to test the capture efficiency of each sampling area 

before performing studies on pearlside and, if significant differences are found, 

minimise the associated bias by applying a capture efficiency correction factor (Davison 

et al., 2015a).  

The derived TS versus length relationships show consistency with the positive and 

significant correlation found between standard fish length and volume of swimbladder 

for this species (Figure 4.1). This represents a step forward compared to a recent study 

on the same species (Scoulding et al., 2015) where neither a consistent TS-length 

relationship was achieved nor clear relationships were found between standard fish 

length and swimbladder volume. The TS estimates of pearlside presented in this thesis 

agree with TS estimates of pearlside from previous studies (Table 5.1): values ranging 

from -60.4 to -52.5 dB at 38 kHz were reported for a total length of 4.5–5.7 cm at 10–50 

m depth (Yoon, G-D. et al., 1999), -70 to -50 dB was estimated for 2–4 cm specimens 

between 10–60 m depth (Torgersen and Kaartvedt, 2001). Reported target strength 

estimates for 2.3 and 3.5 cm specimens at 20–64 m depth varied from -60.3 to -60.8 dB 

at 38 kHz (Scoulding et al., 2015). This is 0.5–1 dB higher than our results. In comparison 

with the reported multifrequency TS estimates of that study, our results were inside 

their range at 18 kHz, but 2–4.5 dB higher at high frequencies. One possible explanation 

for this discrepancy could be the effect of tilt angle on high frequencies (Fujino, T. et al., 

2009; Scoulding et al., 2015). Variable fish behaviours during the TS measurement 

process could result in high variability of the tilt angles. However, our results imply a 

smaller difference than studies analysing other similar species (Benoit-Bird and Au, 

2001). 
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Table 5.1 Summary table with relevant TS estimates published in the last 20 years. 

Reference Specie Depth 
(m) 

Length 
(cm) 

TS (dB) 

18 kHz 38 kHz 70 kHz 120 kHz 200 kHz 

This study M. muelleri 17 - 137 2.7 - 4.3 -56.9 -59.8 -59.9 -60 -62 

Scoulding et al (2015) M. muelleri 20 - 64 3.5 -53.6 -60.8 - -62.9 -66.4 

Scoulding et al (2015) M. muelleri 20 - 64 2.3 -57.1 -60.3 - -62 -65 

Benoit-Bird and Au (2001) Myctophids 0-200 3.7-6.1 - - - - -58.8 

Sawada et al (2011) D. Theta 150 5.4-5.5 - - -55.8 - - 

Torgersen and Kaartvedt (2001) M. muelleri 10-60 2-4 - -70 to -50 - - - 

Yoon et al (1999) M. Muelleri 10-30 4.5-5.7 - -60.4 to -52.7 - - - 

Yoon et al (1999) M. muelleri 30-50 4.5-5.7 - -59.2 to -52.5 - - - 

 

 

5.2. Interpretation of the obtained TS values 

To help interpret the obtained empirical results, the acoustic response of both species 

was modelled using specific theoretical approaches according to their swimbladder 

morphology. In the case of anchovy, the morphological parameters obtained here are 

in line with previously published values for the same (Doray et al., 2016) and similar 

species (Madirolas et al., 2016), corroborating the dual-chambered morphology of the 

swimbladder (Figure 3.5). Conversely, a comprehensive morphological description of 

pearlside swimbladder, unpublished for this species, was presented in this thesis based 

on 63 X-ray images. Given the smaller size and simpler shape of the swimbladder of 

pearlside, a gas-filled prolate spheroid approximation was used to simulate the acoustic 

response of this species. 

In the case of anchovy, given its particular swimbladder morphology, a specific 

backscattering model was utilized to simulate its acoustic backscattering, based on the 

method of fundamental solutions (MFS) (Fairweather et al., 2003; Pérez-Arjona et al., 

2018) for physostomous fish, simulating the swimbladder as two-chambered prolate 

spheroids (Andreeva, 1964; Weston, D. E., 1966; Love, 1978; Furusawa, M., 1988; Ye, 

1997)  plus the backbone. The MFS is a meshless method that has been proven useful in 
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estimating the measurable TS of fish and the contributions of the different inner 

structures of fish to TS, with similar or even greater accuracy than FEM or BEM, yet with 

reduced computational costs, a consideration that is especially important when 

examining fish models with additional fish structures to a swim bladder (e.g. a fish 

backbone) (Pérez-Arjona et al., 2018). Moreover, in the specific case of the ex situ 

measurements of fish located inside the near-field, the use of the MFS permitted to 

increase the number of valid measurements by predicting the acoustic response of 

targets located at distances above 2.5 meters, instead of being limited by the critical 

range (4.5 meters). Most of the methods considered for the numerical evaluation of TS 

are solely valid when estimating TS in the far field (Jech et al., 2015). Only the finite 

element method (FEM) (Lilja et al., 2004) and the boundary element method (BEM) 

(Foote and Francis, 2002) provide alternatives at arbitrarily close distances, but they 

(especially FEM) have a high, and in some cases even unaffordable, computational cost.  

The backscattering model also provided some rough explanation of the TS frequency 

response. According to the model, despite the similarity between the highest TS values 

across frequencies, the greater directivity of the higher frequencies (Figure 4.14) 

produced lower mean TS values when averaged over a range of tilt angles. In general 

terms, a rather good general agreement was obtained between the simulations and the 

empirical results (Table 5.1). The obtained TS trend with frequency, with slightly higher 

responses at lower frequencies (Figure 4.13), was typical of the beginning of the 

geometric region of a bladder-bearing fish species (Simmonds and Maclennan, 2005; 

Fernandes et al., 2006). This pattern may prove useful in developing multi-frequency 

masks to discriminate anchovy from plankton and other (bladderless) pelagic species 

(Lezama-Ochoa et al., 2011).  

In the case of pearlside, there were no previous knowledge about its swimbladder 

morphology and thus, a comprehensive study was conducted to describe morphology 

of this species for a wide range of fish lengths. This study showed significant positive 

correlations between the length of pearlside and three of the studied morphological 

parameters (swimbladder length, volume and equivalent sphere radius) (Figure 4.1). The 

swimbladder volume relationship with fish length was already studied in a previous work 

(Scoulding et al., 2015), although no clear relationship was reported. The positive 
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correlation between aspect ratio and fish length obtained here means that the 

swimbladder tends to be more elongated for smaller individuals. On a study focused on 

similar species (M. japonicus) (Fujino, T. et al., 2009), positive correlations were 

described for swimbladder length and equivalent radius with fish length. However, no 

correlation between the aspect ratio and fish length was reported. The mean tilt angle 

of the swimbladder measured from the X-ray images (24º ± 7) agrees with the range of 

values published for similar (Fujino, T. et al., 2009) and same species (Scoulding et al., 

2015), being 0–24.8º and 0–55º, respectively.  

One of the remaining uncertainties for this species before this work was the effect that 

changes in depth associated with capture may have on swimbladder size. It is commonly 

assumed that pearlside, being a physoclist species, can absorb and secrete gas from the 

swimbladder to maintain a constant buoyancy while moving through the water column 

(Simmonds and MacLennan, 2005). However, it remained unclear whether pearlside can 

compensate the swimbladder volume during the trawling process. The swimbladder can 

be overexpanded and even damaged due to decompression (Nichol, D. G. and Chilton, 

E. A., 2006) or mechanical stress. When modelling swimbladder backscattering for this 

species, some studies used smaller sizes than those measured at the surface, 

compressed according to Boyle´s law, treating pearlside as a physostomous fish (Godø 

et al., 2009; Scoulding et al., 2015; Proud et al., 2018). However, other studies used 

swimbladder dimensions measured at the surface and therefore considered pearlside 

as a strict physoclist (Kloser et al., 2002; Fujino, T. et al., 2009; Peña et al., 2014; Peña 

and Calise, 2016). Furthermore, it remained unknown if pearlsides allow swimbladder 

gas to expand and compress with changes in depth in undisturbed conditions (Love et 

al., 2004). Additionally, gas volume measurements at the surface are problematic due 

to the differences in pressure and temperature conditions between the surface and the 

depth of capture (Davison et al., 2015b).  

To address this issue, we simulated swimbladder backscattering response under 

different ranges of fish length, depth, tilt angle and swimbladder contraction rates. We 

then compared the simulated TS values to the experimental ones. The best model fit 

was achieved when a free ellipsoid was simulated (i.e. no volume compensation) with 

an incidence angle of 10º ± 5° (Table 4.3). These results support the hypothesis that fish 
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in the process of dying cannot compensate for the rapid pressure changes derived from 

capture. Therefore, the swimbladder volume seems to obey Boyle´s law (Godø et al., 

2009; Scoulding et al., 2015; Proud et al., 2018). Even if the physiological mechanisms 

lying behind these results may be more complex, it can now be assumed that the 

acoustic backscatter of captured pearlside must be modelled under a constant-mass 

assumption. Therefore, our modelling results support the hypothesis that the equivalent 

radius of the swimbladder at the mean depth of the trawls (84.5 m) would be 47% 

smaller than that measured at the surface (Table 4.1), which implies a 90% reduction of 

swimbladder volume. 

There is still scope for increasing the knowledge about the behavior of pearlside 

swimbladder with depth. Our results support a lack of volume compensation during the 

trawl, but they do not shed any light about how the voluntary depth changes 

accomplished by this vertically migrant species affect its mean TS values. In this regard, 

further work should be done, measuring TS at different depths from submersible 

transducers such as the Wide-Band Autonomous Transceiver (WBAT) from Simrad 

(Kongsberg Maritime AS), approaching their distribution layers. One possible study 

would be to perform successive separated trawls of the higher and the lower part of a 

pearlside layer and comparing their mean TS values versus their body lengths.  

The optimisation of the model parameters produced a mean tilt angle of 10° ± 5°. 

Therefore, one might conclude that the mean orientation of fish that best explains our 

data is -14° (± 9°) (obtained from subtracting the tilt angle of the swimbladder from the 

modelled optimal tilt angle). This would suggest that fish from the hauls used in this 

study were predominantly exhibiting a downwards swimming behaviour. However, 

mesopelagic species and in particular pearlside, can adopt a wide range of orientation 

angles along the diel cycle performing DVM (Bali and Aksnes, 1993; Godø et al., 2009; 

Staby et al., 2013). This behavior has been described in response to diverse hypothesised 

adaptive values (Staby et al., 2013) including predator avoidance (Eggers, 1978; Hrabik 

et al., 2006), optimal temperatures (Wurtsbaugh and Neverman, 1988) and improving 

feeding conditions (Neilson and Perry, 1990). Other factors that may induce variations 

of the tilt angle are time of day and time of year of data collection (Sawada, K. et al., 

1993), swimming behavior (Blaxter and Batty, 1990), schooling density (Foote, K.G., 
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1980; Misund and Beltestad, 1996) and dispersion or position (Ona, 2003) in the water 

column. This suggests that the variability of data belonging to different trawls, as done 

in this study, might be greater than reflected here. However, as the effect that this 

variability has on the modelled TS increases with frequency and size, it is minimal at 

lower frequencies (Fujino, T. et al., 2009; Scoulding et al., 2015). This implies a minimal 

effect on the frequency typically used for biomass estimation (38 kHz). 

 

5.3. Application of the TS values: estimation of biomass 

For anchovy, despite the need for a precise TS value in the acoustic assessment of fish 

abundance, alongside the recommendation that an empirical TS-length data 

relationship be established whenever new data are collected (McClatchie, 2003), 

biomass estimates of this species in the Bay of Biscay have long been produced using TS-

length relations from another species (herring) published more than three decades ago 

(ICES., 1982; Degnbol et al., 1985). In response, this study has presented the first TS 

measurements for European anchovy at the frequency of 38 kHz used for assessment. 

The obtained b20 values at 38 kHz were 5-6 dB higher than those currently used by 

acoustic surveys in the assessment of European anchovy in the Bay of Biscay (Boyra et 

al., 2013). Such values would represent a more than twofold decrease if applied to 

estimate the acoustic-based biomass of anchovy. However, the TS values were derived 

at a lower depth than is typical for anchovy during the daytime (i.e. the period at which 

acoustic surveys are conducted), especially for adults and larger juveniles that are 

subjected to nycthemeral migrations. Thus, given the expected decrease of TS with 

depth for anchovy and other physostomous species (Ona, 2003; Zhao et al., 2008; 

Fässler et al., 2009; Madirolas et al., 2016), it is likely that the reduction in acoustic-

based biomass will be somewhat lesser than that inferred solely from this work.  

Therefore, further research is necessary to supplement the measurements obtained in 

this work at different depth ranges. The findings could then be combined with the 

present results to produce a thorough TS-length-depth relationship to update the 

acoustic-based assessment of this important species. This is a difficult objective to 

achieve using echosounders installed on a vessel, because it implies measuring the TS 
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during the day, when anchovies (specially adults) operate near the sea bottom 

(according to their nycthemeral migrations) and aggregate in schools, hampering the 

discrimination of single targets. One possible solution would involve the use of 

submersible echosounders inside the trawls (e.g., WBAT) at different trawl depths, 

hence allowing the determination of TS-length-depth relationships through the water 

column.  

Regarding the biomass estimation of pearlside, this thesis provides for the first time, a 

TS versus length relationship. This is necessary and sufficient under the estimation 

procedure applied on the typical siwmbladder-bearing pelagic species, for whom the 

size of the swimbladder is larger than the acoustic wavelength hence belonging to the 

geometric region Figure 5.1.  

 

 
Figure 5.1 Frequency dependence of scattering by a gas bubble. The intensity of the response 
has been normalised to 1 at resonance. It increases rapidly to a peak at the resonance frequency 
of the bubble, then it falls to a constant level at high frequencies (Simmonds and MacLennan, 
2005). 
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However, for pearlside, the particular range of sizes of the swimbladder plus the large 

range of distances to the transducer, cause its acoustic response to potentially cover a 

wider area of the frequency spectrum (from Rayleigh to the resonance and geometric 

regions), (Figure 4.7)hence causing a non-linear TS vs length relationship not present in 

(the normally larger) regular epipelagic species. This non-linearity, further complicated 

by potential changes of swimbladder wall elasticity and/or swimbladder volume with 

pressure (Davison et al., 2015b), may induce bias on biomass estimations. To address it, 

instead of using one single TS-length (or TS-depth-length) relation for the whole water 

column, as it is done for small pelagics, biomass could be produced using different 

relations at different depth layers. Due to precisely the small size of their swimbladder 

and their long typical distance from the transducers, the exact shape and irregularities 

of the swimbladder are less important for small mesopelagic fishes such as pearlside, 

and thus, relatively reliable outcomes can be obtained from simple, idealized 

backscattering models as prolate-spheroid ones. Taking advantage of this 

aforementioned relative simplicity for modelling pearlside backscattering, empirical and 

modelled TS-length relationships could be combined to predict the TS-length relations 

at different depths, by modifying the empirical TS values using the model predictions. 

Then, biomass estimations could be produced using these measured and model-

corrected TS-length relations per layer. 

In sum, the results of this work have made an important improvement towards the 

assessment of these two species in such a different state of exploitation. Even if there is 

still much work to be done, I think that at least this thesis has contributed to outline the 

future research lines for both species, by providing some of the basic elements required 

to deliver absolute biomass estimations for them. Hopefully, we have also contributed 

to give one step further on the sustainable exploitation of these two important pelagic 

species.  
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5.4. Conclusions and thesis 

The aim of this thesis was to provide the basic acoustic elements necessary to deliver 

unbiased abundance estimates of two small pelagic species in the Bay of Biscay. The 

objectives addressed to achieve this aim have delivered the following conclusions that 

have been divided per species:    

For Muller´s pearlside the conclusions are: 

• This thesis has provided the first TS-length relationships specific at six 

frequencies ranging from 18 to 200 kHz 

• The swimbladder growth is positively related to the fish length, and is in 

agreement with the positive relationship between the TS and fish length. 

• Theoretical simulations performed using the prolate spheroid approximation of 

the swimbladder using different contraction rates, were essential to understand 

the swimbladder volume changes during the trawling process. 

• Even if it is considered a physoclist species, during the trawling process, the 

swimbladder volume is affected by Boyle´s law. Consequently, the actual 

swimbladder volume of pearlside at depth is smaller than the observed at the 

surface (i.e. X-ray images) and dependent on the depth of capture. This result 

has contributed to improve the basis of the backscattering theoretical modelling 

for pearlside. 

• To overcome the non-linearity of TS-length relations affecting the biomass 

estimation of pearlside, abundance estimates should be given by combining 

theoretical and empirical TS measurements by depth layers. 

• The swimbladder behaviour against depth variations needs further research to 

determine the detailed volume adaptation process. 
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For European anchovy the conclusions are: 

• This thesis has provided the first TS-length relationships specific for European 

anchovy at the frequency used by assessment acoustic surveys (38 kHz) as well 

as the frequency response at typical frequencies (38, 120 and 200 kHz). 

• The robustness of the TS-L values obtained in this work is supported by: 

- The wide range of sampled fish lengths that cover the seasonal mean size 

variation of the species along 7 years of study.   

- The significance of the linear relationship between TS and length and the 

consistency between ex situ and in situ data. 

- The consistency between theoretical and empirical results. 

• Combining theoretical Methods of Fundamental Solutions (MFS) with the ex situ 

measurements was essential to reduce the bias associated to the short-range TS 

measurements, increasing the number of available data obtained from the ex 

situ experiments. 

• The TS-length relationships used in the current acoustic surveys addressed for 

anchovy stock assessment, yield overestimated values for biomass. However, 

since the TS-length relationships obtained in this study, are valid only for the 

upper 25 meters of the water column, further research needs to be done on the 

TS-depth dependence before updating the currently used value for assessment.  

Finally, considering these conclusions, the hypothesis has been confirmed, being the 

thesis that:  

Acoustic data collected from ex situ and in situ experiments, subjected to cleaning, 

filtering and bias reduction methodologies, delivered robust species-specific TS-L 

relationships, that are essential for biomass estimation purposes. The use of acoustic 

backscattering theoretical models to interpret the empirical results, increases our 

understanding of the swimbladder behaviour under different conditions, essential to 

determine to what extent the empirical results can be used for biomass estimation 

purposes.   
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