
���������	
���
�	
����������
�������

�����
����	� 	���	!��"��	#����
�
$���
�%���	�&	#�%�'��
	�������	��(	�
��&�����	�������)����

�	
�*��+	��	�,��%�����	�&	$�,�
�-'����	
��)�
���%,	��	.�
%'�������-�,�(	

#�%-�����
���	����%�/�����	.
�-��%,

0�,'	#�-�
��1	�2����	�
'
�/2�1	
���3��(�
	4��(�-'
'1	0�,�	�5	6�/���

0'��	����

���	��-�,����1	�����
����788+++5�����2/��5��'5�,



Noname manuscript No.

(will be inserted by the editor)

A review on Estimation of Distribution Algorithms in

Permutation-based Combinatorial Optimization Problems

Josu Ceberio, Ekhine Irurozki, Alexander

Mendiburu and Jose A. Lozano

the date of receipt and acceptance should be inserted later

Abstract Estimation of Distribution Algorithms (EDAs) are a set of algorithms
that belong to the field of Evolutionary Computation. Characterized by the use of
probabilistic models to represent the solutions and the dependencies between the
variables of the problem, these algorithms have been applied to a wide set of aca-
demic and real-world optimization problems, achieving competitive results in most
scenarios. Nevertheless, there are some optimization problems, whose solutions can
be naturally represented as permutations, for which EDAs have not been exten-
sively developed. Although some work has been carried out in this direction, most
of the approaches are adaptations of EDAs designed for problems based on inte-
ger or real domains, and only a few algorithms have been specifically designed to
deal with permutation-based problems. In order to set the basis for a development
of EDAs in permutation-based problems similar to that which occurred in other
optimization fields (integer and real-value problems), in this paper we carry out a
thorough review of state-of-the-art EDAs applied to permutation-based problems.
Furthermore, we provide some ideas on probabilistic modeling over permutation
spaces that could inspire the researchers of EDAs to design new approaches for
these kinds of problems.

1 Introduction

The research work carried out in the field of metaheuristics has provided the com-
munity with a large number of tools for solving optimization problems. In this
work, we focus on a set of metaheuristics called Estimation of Distribution Algo-
rithms (EDAs) [26, 29, 37, 39] that belong to the field of Evolutionary Algorithms
(EAs). The main characteristic of EAs is the use of techniques inspired by the
natural evolution of the species. In nature, species change across time; individuals
evolve, adapting to the characteristics of the environment. This evolution leads to
individuals with better characteristics. The same idea is translated to the world of
computation, where an individual represents a particular solution for the problem

Intelligent Systems Group · Computer Science and Artificial Intelligence Department · The
University of the Basque Country



2 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

1. D0 ← Generate M individuals (the initial population) at random
2. Repeat for l = 1, 2, ... until a stopping criterion is met
3. DSe

l
← Select N ≤ M individuals from Dl−1 according to the selection method

4. pl(x) = p(x|DSe

l−1) ← Estimate the probability distribution of an individual being
among the selected individuals

5. Dl ← Sample M individuals (the new population) from pl(x)
6. End

Fig. 1: General outline of Estimation of Distribution Algorithms (EDAs).

to be solved, a population comprises several individuals, and different operators
such as crossover, mutation and selection techniques are used to make the indi-
viduals (solutions) evolve (improve). The most popular reference of these types of
algorithms are the Genetic Algorithms (GAs) [14].

As an improvement of GAs, EDAs were introduced in the field of Evolution-
ary Algorithms in [36], although previous similar approaches can be found in [56].
Unlike GAs, EDAs learn a joint probability distribution associated with the set
of most promising individuals at each generation, trying to explicitly express the
interrelations between the different variables (characteristics) of the problem. Sam-
pling the probabilistic model generated in the previous generation, a new popu-
lation of solutions for the problem is created. The algorithm stops iterating and
returns the best solution found across the generations when a certain stopping
criterion is met, such as a maximum number of generations/evaluations, homoge-
neous population, or lack of improvement in the solutions. Figure 1 introduces a
detailed pseudo-code of EDAs.

Based on this general framework, several EDA approaches have been developed
in the last years [26,29,38,39], where each approach learns a specific probabilistic
model that conditions the behavior of the EDA from the point of view of complex-
ity and performance. Many works in the literature confirm the good performance of
EDAs in the solution of problems from diverse fields. Protein Folding [45], Capac-
itated Vehicle Routing Problems [52], Calibration of Chemical Applications [35],
Finding the Optimal Path in 3D Spaces [53], Software Testing [44], Chemotherapy
Treatment Optimization for Cancer [6] or Nuclear Reactor Fuel Management Pa-
rameter Optimization [21] are some examples of many real-world problems where
EDA-based approaches were applied to find optimal solutions.

In this work, we are interested in the solution of a specific subset of NP-hard
optimization problems. Particularly, we refer to those problems whose solutions
can be naturally represented as a permutation. Even though the literature provides
several EDA approaches for permutation-based problems, most of these approaches
are adaptations of EDAs designed initially for the solution of integer or real-
value domain problems. We understand integer domain problems as those problems
where the search space is defined as

Ω = {0, . . . , r1} × . . .× {0, . . . , rn}, where ri ∈ N i = 1, . . . , n

and by real-value-based problems we understand those problems where the search
space is an infinite non-numerable subset of Rn.

The EDAs designed for the previous two kinds of problems show several draw-
backs when applied to permutation-based problems. The main drawback is that



Title Suppressed Due to Excessive Length 3

those EDAs do not learn a probability distribution over a permutation space, but
a distribution over an integer or real-values space. Therefore, these models are not
summarizing the regularities contained in the permutations.

In order to set the basis for a development of EDAs in permutation-based
problems similar to that given for integer and real-value optimization problems,
we carry out a thorough review of state-of-the-art EDAs applied to permutation-
based problems. Furthermore, we provide some ideas on probabilistic modeling
over permutation spaces that could inspire the researchers of EDAs to design new
approaches for this kind of problems.

The remainder of this paper is organized as follows. In Section 2 we give a
background on permutation-based problems that will be used in Section 3 to base
the review of EDA approaches designed for solving permutation-based optimiza-
tion problems. In Section 4 we carry out a thorough experimental analysis of the
existing EDA proposals when applied to classical permutation-based problems. In
Section 5 we present several models for the estimation of probability distributions
over permutation search spaces giving some advice on their use in EDAs. Finally,
Section 6 sums up the main conclusions and raises some ideas for future work.

2 Permutation-based problems

As mentioned previously, many optimization problems find a natural representa-
tion of the solution as permutations. In combinatorics, a permutation is understood
as a vector σ = (σ1, . . . , σn) of the indexes {1, . . . , n} such that σi �= σj for all i �= j.
We say that index j is in position i in σ when σi = j.

While there exist many combinatorial optimization problems whose solutions
are based on permutations, the meaning of these permutations can be different in
different problems. This fact is important when solving these problems with EDAs,
as the probabilistic model should take into account the semantic information of
the permutation. For that reason, in the following paragraphs we introduce some
examples of permutation-based problems where, although the codification of the
solution is given by permutations, the meaning in each case is different.

2.1 Travelling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) [15] consists of looking for the shortest
path, in terms of time, distance, or any similar criterion, to go over n different cities
visiting each city only once and returning to the city of departure. A solution is
usually given by a sequence of cities which is represented as a permutation. The
search space is denoted as

Ω = {(σ1, σ2, . . . , σn)|σi ∈ {1, 2, . . . , n}, σi �= σj , ∀i �= j}.

In a TSP of 4 cities, σ = (3, 2, 4, 1) would be a possible solution, indicating that the
initial city is 3, then 2, 4, 1, finally coming back to 3. As we assume that the first
city of the path is not fixed, the TSP is a problem with cyclic solutions, and each
solution can be represented by 2n different permutations for symmetric instances
and n for asymmetric instances. For instance, solution σ

� = (1, 3, 2, 4) represents
the same city-tour that σ does, while the permutations are different.



4 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

The objective function F , is defined as the sum of the distances of going from
city i − 1 to i, denoted as dij , through all cities in the order specified by the
permutation:

F (σ1, σ2, . . . , σn) =
n�

i=2

dσi−1σi + dσn,σ1

.
In TSP we note that the relevant information for the calculation of the fitness

function of a solution is given by the relative ordering of the indexes in the permu-
tation. The information drawn from the absolute positions of each index is useless,
as stated with σ and σ

�. Furthermore, no matter which position indexes i and j are
in the permutation, if they are adjacent, the contribution to the objective function
is the same.

2.2 Flow Shop Scheduling Problem (FSSP)

The Flow Shop Scheduling Problem [17] consists of scheduling n jobs (i = 1, . . . , n)
onmmachines (j = 1, . . . ,m). A job consists ofm operations and the j-th operation
of each job must be processed on machine j for a specific time. A job can start on
the j-th machine when its (j−1)-th operation has finished on machine (j−1), and
if machine j is free. The goal of the optimization is to minimize the processing time
of all the jobs, or in other words, to minimize the processing time of the last job.
The solution is codified as a permutation of length n that represents the ordering
in which the jobs are going to be processed. This means that for each machine the
order of the jobs is the same and it is given as a permutation. For instance, in a
problem of 4 jobs and 3 machines, the solution (1, 2, 3, 4), represents that job 1 is
processed first, next job 2 and so on.

Let pi,j denote the processing time for job i on machine j, and ci,j denote the
completion time of job i on machine j. Then cσi,j is the completion time of the job
scheduled in the i-th position in the sequence on machine j. cσi,j is computed as
cσi,j = pσi,j +max{cσi,j−1, cσi−1,j}. Therefore, the objective function F is defined
as follows:

F (σ1, σ2, . . . , σn) = cσn,m

As can be seen, the solution of the problem is given by the processing time of
the last job σn in the permutation, since this job finishes the last. Even though the
objective function is given by the time of this last job, the completion time of this
last job depends on the ordering of the previous σ1, . . . , σn−1 jobs. Furthermore,
in this problem, the value of the objective function can not be decomposed and
depends on the position of each index in the permutation as well as on the whole
order of the jobs.

2.3 Linear Ordering Problem (LOP)

In the Linear Ordering Problem (LOP), we are given an n×n matrix C = [cij ] and
the goal is to determine a simultaneous permutation of the rows and columns of
C such that the sum of the superdiagonal entries is as large as possible (or equiv-
alently, the sum of the subdiagonal entries is as small as possible). The solution of



Title Suppressed Due to Excessive Length 5

the LOP is codified as permutation of length n where each index σi (i = 1, . . . , n)
means that the values of the σi-th row and column of the matrix are reallocated
to the i-th position. The objective function is defined as follows:

F (σ1, . . . , σn) =
n�

i=1

n�

j=i

cσiσj

In this problem we can see that the contribution of an index σi to the objective
function depends on the previous and posterior indexes to it. However it does not
depend on the order of these previous and posterior indexes.

2.4 Quadratic Assignment Problem(QAP)

The Quadratic Assignment Problem (QAP) [23] is the problem of allocating a set
of facilities to a set of locations, with a cost function associated to the distance and
flow between the facilities. The objective is to assign each facility to a location such
that the total cost is minimized. Specifically, we are given two n×n input matrices
with real elements H = [hij ] and D = [dkl], where hij is the flow between facility
i and facility j and dkl is the distance between location k and location l. Given
n facilities, the solution of the QAP is codified as a permutation σ = (σ1, . . . , σn)
where each σi (i = 1, . . . , n) represents the facility that is allocated to the i-th
location. The fitness of the permutation is given by the following objective function:

F (σ1, σ2, . . . , σn) =
n�

i=1

n�

j=1

hij ∗ dσiσj

The quality of the solution is determined by the absolute position of each index
(facility) in the permutation as regards the absolute position of the remaining
indexes.

As stated in the previous problems, the semantic meaning of the permutation
may change completely depending on the problem being dealt with. In order to
efficiently solve these problems, it is essential to choose the permutation that allows
probabilistic models to discover and preserve relative ordering constraints, absolute
ordering constraints or adjacency relations of the indexes in the permutation.

3 EDAs for permutation-based optimization problems

This section is devoted to carrying out a review of the different EDA approaches
in literature for permutation-based problems. We classify the existing EDAs for
solving permutation-based problems into three groups. A first group is composed of
those EDAs designed originally for solving integer domain problems and adapted to
simulate permutation individuals at the sampling step. In a second group, we place
those approaches designed for solving real-value optimization problems that have
been modified to handle permutations. Beyond adaptations of existing approaches,
the literature includes a few works where the authors introduce specific designs



6 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

of EDAs for permutation-based problems, or general designs that are applied to
permutation-based problems to illustrate their usefulness for the first time. We
place these EDA approaches in the third group.

In the following sections we explain each group in detail and we elaborate on
the weak and strong points of each proposal.

3.1 Adaptations of integer encoding EDA approaches

One lead that EDA researchers have followed to deal with permutations is the use
of EDAs designed for integer-based problems [8,10,24,25]. These algorithms learn,
departing from a dataset of permutations, a probability distribution over a set
Ω = Ω1 × Ω2 × . . . × Ωn where Ωi = {1, 2, . . . , ri}, ri ∈ N i = 1, . . . , n, instead of
learning a distribution over a permutation space. Therefore, the sampling of these
models may not provide permutation individuals but an individual in Ω.

In order to overcome this deficiency, the authors simulate permutation indi-
viduals by modifying the sampling step. The most common method to sample a
probabilistic model in EDAs is the Probabilistic Logic Sampling algorithm [18].
In this sampling strategy, variables are instantiated following an ancestral order.
To sample the i-th ordered variable, the previous (i − 1)-th variables have to be
instantiated. In order to obtain a permutation, the following changes have to be
made to the sampling strategy. A permutation can be obtained if the i-th vari-
able is not allowed to take the values instantiated by the previous variables. To do
that, when i-th variable has to be sampled, the probability of the previous sampled
values is set to 0 and the local probabilities of the rest of the values are normal-
ized to sum 1. Although this procedure leads to permutations, we note that every
time that we modify the probabilities to enable sampling permutation individuals,
the information kept by the probabilistic model is denaturalized somehow in the
sampled solutions.

Without taking into account the complexity of the probabilistic model learnt
by the EDA used (univariate, bivariate or multivariate), many integer-based ap-
proaches such as Univariate Marginal Distribution Algorithm (UMDA) in [25], Mu-
tual Information Maximization for Input Clustering (MIMIC) in [3], Dependency-
Trees [40] or Estimation of Bayesian Network Algorithm (EBNA) [3] have been
adapted to deal with permutation-based problems.

3.2 Adaptations of real encoding EDA approaches

Another way that the research community of EDAs has found to approach permutation-
based problems is by means of EDAs designed for solving real-value-based prob-
lems. These algorithms are based on a method that allows to decodify a real-valued
vector as a permutation. Given a real vector (x1, x2, . . . , xn) of length n, a permu-
tation individual can be obtained from it by ranking the positions using the values
xi, (i = 1, . . . , n). Supposing we have the real vector:

(2.35, 3.42, 9.35, 0.32, 11.54, 10.42, 5.23, 4.2, 7.8),

the permutation obtained when decoding the vector, is (2, 3, 7, 1, 9, 8, 5, 4, 6). In-
troduced first by Bean [2], this strategy is called the Random Keys algorithm. The



Title Suppressed Due to Excessive Length 7

main advantage of random keys is that they always provide feasible solutions, since
each real-valued vector represents a permutation. However, as stated by Bosman
and Thierens [5], random keys strategy is not effective and introduces large over-
heads since every time that an individual must be evaluated, an ordering algorithm
has to be applied to get the corresponding permutation. The ineffectiveness of the
approach is related with the redundancy that the codification involves. One can
easily notice that real-valued vectors with different values can lead to the same
permutation. The real vector

(1.78, 3.90, 7.03, 1.24, 12.56, 9.87, 4.27, 4.10, 0.60)

would represent the permutation (2, 3, 7, 1, 9, 8, 5, 4, 6). In both cases, the permu-
tation that codifies the real vector is the same, although the vector is different,
therefore the same fitness value is assigned by the objective function. This cre-
ates many plateaus in the corresponding real-value optimization problems that
the EDA is solving.

This random key strategy has been jointly used with different EDAs for real-
valued problems [5, 42]. In [30] the Job Shop Scheduling Problem is approached
with UMDA for the continuous domain, MIMIC approach for the continuous do-
main (MIMICc) and Estimation of Gaussian Networks Algorithms (EGNAs).

3.3 Permutation-oriented EDA approaches

In addition to the previously introduced EDA approaches, the EDAs research
community has tried to go a step forward designing new algorithms that consider
the real nature of permutations. In the following sections the outcome of that work
is introduced and explained in detail. Although some of these algorithms could be
considered in the previous two groups, we have introduced them in this group as
they have specific designs for permutations or they have been applied to illustrate
their usefulness for the first time over permutation-based problems.

3.3.1 IDEA Induced Chromosome Elements Exchanger (ICE)

Bosman and Thierens [5] introduced a new algorithm called IDEA Induced Chro-
mosome Elements Exchanger (ICE) to deal with permutation-based problems.
They proposed a modification of the IDEA approach introduced previously by the
same authors in [4].

IDEA follows the general framework defined for real-valued-based EDAs con-
sidering that the selected population follows a Gaussian distribution. A specific
characteristic of IDEA is to factorize the Gaussian density function (pdf) as a
product of marginal distributions. Particularly, the variables are partitioned into
several subsets and a marginal pdf is estimated for each group. IDEA can be
directly applied to permutation-based problems using the random keys represen-
tation. However, Bosman and Thierens [5] rejected this strategy since the joint use
of random keys and real-value based EDAs, as previously reported by the authors,
does not lead to very effective optimization algorithms. To overcome this problem,
the ICE algorithm was proposed in which probabilistic sampling of new solutions
is replaced by a specialized crossover operator that takes into account the parti-
tion of the variables in the probabilistic model learnt. Given two parents, the new



8 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

1. Set the position counter k ←− 1.
2. Obtain first node σ1 uniformly at random from {1, 2, . . . , n}.
3. Sample index k.

3.1. Set to 0 previously sampled variables in row σk+1 of E.
3.2. Normalize non-sampled variables in row σk+1 of E.
3.3. Sample next variable σk+1.

4. Update the position counter k ←− k + 1.
5. If k < n, go to Step 3.

Fig. 2: General outline of the Edge Histogram Based Sampling Algorithm.

individual is constructed by randomly picking the values of the variables of a block
from a parent. For each block, one of the parents is chosen uniformly at random.
Note that in ICE the probabilistic model is not explicitly used to sample new
individuals, but only the information related with the partition of the variables is
used.

3.3.2 Edge histogram models

In [46, 50] a new type of EDA for permutation-based problems called Edge His-
togram Based Sampling Algorithm (EHBSA) is introduced. The algorithm esti-
mates a probabilistic model that learns the adjacency of the indexes in the selected
individuals at each generation. For an n-dimensional problem, the model is given
by a matrix E = [eij ] where eij = P (σk+1 = j|σk = i) and i, j ∈ {1, 2, . . . , n} and
k ∈ {1, 2, . . . , n − 1} . Each eij is added a ε value in order to control the pressure
in sampling and avoid individuals with probability 0 or 1. ε is denoted as

ε =
2N
n− 1

Bratio,

where N is the size of of the set of the selected individuals and Bratio (Bratio >

0) is a constant defined by the authors.
In order to sample the probabilistic model, the authors use an algorithm that

samples the positions of the permutation ordered, starting with position 1. Once
position i-th has been sampled, position (i + 1)-th is sampled using the row of
matrix E corresponding to the index sampled at position i-th. This row is modified
by setting to 0 those values which previously appeared and normalizing the rest
of the values. A pseudocode for the sampling algorithm can be seen in Figure 2.

In addition to this sampling, the authors propose another sampling strategy
that extends the one introduced by using an individual of the previous generation
to sample a new individual. The new sampling strategy consists of the following
steps. A parent individual is selected from the previous generation at random and
c > 2 crossover points in the individual are selected uniformly at random, dividing
the parent into c segments of variable length. Randomly selected c − 1 segments
of the parent are copied to the new individual and the remaining non-sampled
segment in the individual is simulated by sampling the probabilistic model with the
previously introduced strategy. This sampling procedure leads to new individuals
that differ from their parents on average on the positions of n/c indexes.



Title Suppressed Due to Excessive Length 9

According to the authors, the introduced sampling strategies are called sam-
pling without template (EHBSAWO) and sampling with template (EHBSAWT ) re-
spectively.

In [49] the author extends EHBSA to solve the FSSP, designing an asymmet-
rical edge histogram model. In [48] a revised EHBSA is proposed, referred to as
enhanced EHBSA (eEHBSA). This approach presents a more flexible sampling
procedure (cut-point selection) and modifies the way the new generation is cre-
ated.

3.3.3 Node histogram models

In [51] the Node Histogram Based Sampling Algorithm (NHBSA) is introduced.
The NHBSA builds a first order marginals matrix that represents the distribution
of the indexes across the (absolute) positions of the individuals in the set of the
selected individuals. The model of a n-dimensional problem is given by a matrix
H = [hij ] where hij = P (σi = j) and i, j ∈ {1, 2, . . . , n}. Hence, hij represents the
probability of the index j to be in the i-th position in the selected individuals.

As in EHBSA, a ε is added to each hij in order to control the pressure in
sampling, where N represents the size of the set of the selected individuals and
Bratio is a positive constant ratio set by the authors. ε is denoted as

ε =
N

n
Bratio

The design of the NHBSA focuses particularly on those problems where the
main contribution to the objective function is given by the absolute position of
the indexes in the permutation.

As regards the sampling method, two strategies are proposed to simulate new
individuals. A first proposal introduced by the authors uses a sampling strategy
that samples the positions of the permutation randomly. Similarly to EHBSAWO,
at each step, the sampling algorithm sets to 0 the probabilities in H of the vari-
ables sampled in the individual and normalizes the probabilities of the remaining
variables to sum 1. A pseudocode for the sampling algorithm can be seen in Fig-
ure 3.

The second sampling algorithm uses a parent individual from the previous
generation to create the new individual. A random individual is picked-up from the
previous generation and c random single positions are copied to the new individual.
The remaining empty positions are filled by sampling the probabilistic model.

The authors denote as NHBSAWT and NHBSAWO, the NHBSA that use the
sampling with template and sampling without template respectively.

In [47] several variations of sampling methods for NHBSA are proposed, such
as replacing the random sampling sequence used in the algorithm with the se-
quential sampling sequence like EHBSA. Another approach changes the number
of sampling nodes randomly instead of using a fixed number. Using probability
density functions to determine the number c crossover points is also introduced
in [48].



10 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

1. Generate a random permutation pos[] of 1, . . . , n.
2. Generate a candidate node list C = 1, . . . , n.
3. Set the position counter k ←− 1.
4. Sample index pos[k].

4.1. Set to 0 those probabilities of variables already sampled in pos[k] in H.
4.2. Normalize remaining probabilities to sum 1.
4.3. Sample node x.

5. Set σpos[k] ←− x and remove node x from C.
6. Update the position counter k ←− k + 1.
7. If k < n, go to Step 4.

Fig. 3: General outline of the Node Histogram Based Sampling Algorithm.

3.3.4 Recursive EDA

Romero et al. [43] proposed a new class of EDAs called Recursive EDA (REDA).
The REDA is an optimization strategy based on EDAs that consists of k optimiza-
tion stages (see figure 4). In an initial stage an EDA is applied to the problem and
a solution is obtained. In a second stage, the variables of the problem are divided
in two groups of similar size (when possible). Next, an EDA is executed over the
variables that belong to the first group, while the variables of the second group
remain fixed to the values given by the optimal solution in the previous stage.
This process is repeated, fixing the variables in the second group and optimizing
over the first group. This completes the second stage. The remaining stages follow
the same procedure recursively. For instance, in the third stage, each group of the
second stage is divided in two groups, and each group of variables is optimized
separately. The algorithm stops when the number of variables in a group reaches
a minimum threshold.

The motivation behind this proposal is to reduce the computational cost of
learning the model (which in [34] is identified as the most expensive step of an
EDA) by solving smaller problems at each stage.

Although every EDA approach could be used for optimization at each stage,
due to the recursive nature of the strategy, the authors suggest using EDAs such
as UMDA or MIMIC that permit keeping the computational cost feasible, since
the EDA is executed repeatedly.

Even though this strategy is a general scheme and could be applied to any
optimization problem, the authors proposed this algorithm for the optimization
of the triangulation of bayesian networks, and therefore we classify it as a specific
EDA for permutation-based problems.

Regarding the codification scheme, REDAs use the previously introduced ran-
dom keys encoding in the continuous approaches. However, for discrete domain,
they refuse to use straight forward individual codification as do the approaches
introduced in Section 3.1. Instead of that, they propose a new codification that
allows to learn probability distributions over permutations. In order to do that,
they set a bijection between the numbers {1, . . . , n!} to the set of permutations
of order n. This bijection is based on the decomposition in prime factors of n!
that is given such that n! = p

n1
1 · . . . · pnr

r . An individual is then represented as
a vector of length r, corresponding to the number of prime factors. Position i-th



Title Suppressed Due to Excessive Length 11



















































Fig. 4: Recursive EDA Strategy

Function FromIndividualToPermutation(input individual, output perm)
1. Initialize a vector l = (1,2,. . . ,n)
2. For i=1 to n-1
3. perm(i) = l(individual(i))
4. update l, removing the individual(i) position
5. End

6. perm(n) = l(1)

Fig. 5: Function to obtain the permutation perm codified by the individual ord.

in the individual can take ni + 1 values {0, 1, . . . , ni}, representing the possible
exponent of the i-th prime factor. Therefore, given an individual we obtain an
integer, and from it the permutation is obtained. Given a particular individual,
the corresponding permutation is obtained by the procedure defined in Figure 5.
Table 1 shows an example for this procedure, supposing a problem of size 4, and
given individual (2,2,1).

Although this codification allows to learn a probability distribution over per-
mutation spaces, the decodification process denaturalizes the relation between the
variables and permutations.



12 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

Table 1: Example of the function FromIndividualToPermutation

Step individual List l perm Updated list l
1 (2,2,1) (1,2,3,4) () -

For, i = 1 (2,2,1) (1,2,3,4) (2) (1,3,4)
For, i = 2 (2,2,1) (1,3,4) (2 3) (1,4)
For, i = 3 (2,2,1) (1,4) (2 3 1) (4)

6 (2,2,1) (4) (2 3 1 4) ()

3.4 Hybrid EDAs

In addition to the previous algorithms, several hybrid EDAs have also been pro-
posed for permutation-based problems. These algorithms generally combine stan-
dard EDA approaches with other techniques such as local search [20, 54, 55] or
Particle Swarm Optimization (PSO) [28]. In [54, 55] an operator called Guided
Mutation is introduced which combines a conventional mutation operator with a
probabilistic model learnt at each step. In [7], Chen et al. propose a hybrid EDA
for solving single machine scheduling problems that combines classic univariate
and bivariate probabilistic models with crossover and mutation genetic operators.

Due to the complexity of studying hybrid approaches, we decided not to include
these approaches in the experiments.

4 Experiments

In the following sections we introduce the setup of the experiments and the analysis
of the results.

4.1 Experiments setup

We carried out an empirical evaluation of the most representative EDA approaches
reviewed in this paper. In order to do that, we considered it interesting to ana-
lyze their behavior using a benchmark of classical test problems. Particularly, we
selected the following sets of 24 instances for each problem type:

– TSP: bays29, berlin52, burma14, ch130, dantzig42, eil51, eil76, eil101, fri26, gr17,
gr24, gr48, gr96, gr137, hk48, pr76, pr107, pr124, pr136, rat99, st70, swiss42,
ulysses16 and ulysses221.

– QAP: bur26a, bur26b, bur26c, bur26d, nug17, nug18, nug20, nug21, tai10a, tai10b,
tai12a, tai12b, tai15a, tai15b, tai20a, tai20b, tai25a, tai25b, tai30a, tai30b, tai35a,
tai35b, tai40a and tai40b2.

– LOP: t75i11xx, t65f11xx, t65b11xx, t65d11xx, t65i11xx, t65l11xx, t65n11xx, t65w11xx,
t69r11xx, t70b11xx, t70d11xx, t70d11xxb, be75eec, be75np, be75oi, be75tot, tiw56n54,
tiw56n58, tiw56n62, tiw56n66, tiw56n67, stabu70, stabu74, stabu75 and usa703.

1 TSPLIB. http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
2 Éric Taillard’s web page. http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
3 Optsicom Project. http://heur.uv.es/optsicom/LOLIB/#instances



Title Suppressed Due to Excessive Length 13

– FSSP: tai20×5, tai20×10, tai50×10 and tai100×20 4 (The first six instances
from each file).

Regarding the set of selected algorithms, the choice has been made according
to the classification of EDAs presented in Section 3. From the set of integer-based
EDA approaches, we have chosen UMDA, MIMIC, EBNABIC and TREE. From
the group of EDAs belonging to the continuous domain, we have chosen UMDAc

and EGNAee. In addition, all the EDAs specifically designed for solving permu-
tation optimization problems have been selected for the comparison: IDEA-ICE,
EHBSAWT , EHBSAWO, NHBSAWO, NHBSAWT and REDA. For comparison
purposes we have included a very well known GA, the Ordering Messy Genetic
Algorithm (OmeGA) [22].

As previously mentioned, there are hybrid EDAs that have been applied to
several permutation-based problems. In these algorithms, it is quite complex to
measure what the contribution of the probabilistic model to the optimization pro-
cess is. Due to this fact, we have limited the experiments to ’pure’ EDAs since we
aim to analyze the capacity of the different probabilistic models used for solving
permutation codification problems.

For each algorithm and problem instance 10 runs have been completed. Table 2
shows the values for the execution parameters of all EDAs, being n the size (num-
ber of variables) of the instance. Regarding specific-EDA parameters, the values
suggested by their respective authors have been used. Romero et al. [43] suggest
executing REDA with fast execution EDAs since they will be run repeatedly, thus
we use UMDA and MIMIC, as the authors do in their experiments. On the other
hand, Tsutsui [51] suggests setting the Bratio constant to 0.0002 for EHBSA and
NHBSA.

Table 2: Execution parameters set of the algorithms.

Parameter Value

Population size 10n

Selection size 10n/2

Offspring size 10n− 1

Selection type Ranking selection method

Elitism selection method The best individual of the previous gener-
ation is guaranteed to survive

Stopping criterion A maximum number of generations: 100n

4.2 Results

Table 3 shows the average error and standard deviation for each type of problem5.
This average error is calculated as the normalized difference between the best

4 Éric Taillard’s web page. http://mistic.heig-vd.ch/taillard/problemes.dir/
ordonnancement.dir/ordonnancement.html

5 Average and standard deviation of the fitness value results obtained for all the in-
stances tested (4 problem types × 24 instances) by the 14 algorithms can be found in
http://www.sc.ehu.es/ccwbayes/members/jceberio/home/index.html



14 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

Table 3: Average error and standard deviation for each type of problem. Results
in bold indicate the best average result found.

EDA TSP QAP LOP FSSP

UMDA
avg. 0.5077 0.0298 0.1511 0.0538
dev. 0.3315 0.0153 0.0354 0.0308

MIMIC
avg. 0.6762 0.0390 0.1495 0.0351
dev. 0.4371 0.0211 0.0351 0.0117

EBNABIC

avg. 0.5051 0.0310 0.1508 0.0545
dev. 0.3438 0.0153 0.0358 0.0326

TREE
avg. 1.2554 0.0526 0.1761 0.0601
dev. 0.8637 0.0318 0.0369 0.0223

UMDAc

avg. 1.2792 0.2118 0.3303 0.1535
dev. 0.9408 0.1420 0.0384 0.0322

EGNAee

avg. 1.1830 0.1655 0.3118 0.1424
dev. 0.8886 0.1006 0.0481 0.0335

IDEA-ICE
avg. 1.2090 0.0801 0.1743 0.0734
dev. 0.7610 0.0320 0.0322 0.0253

EHBSAWT

avg. 0.0037 0.0256 0.1371 0.0276

dev. 0.0059 0.0189 0.0328 0.0232

EHBSAWO

avg. 0.1251 0.0653 0.2239 0.0626
dev. 0.1544 0.0395 0.0400 0.0453

NHBSAWT

avg. 1.0680 0.0112 0.1366 0.0277
dev. 0.8659 0.0130 0.0328 0.0215

NHBSAWO

avg. 0.3385 0.0222 0.1375 0.0326
dev. 0.2443 0.0144 0.0326 0.0226

REDAUMDA

avg. 2.0550 0.1426 0.2131 0.0986
dev. 1.1909 0.0811 0.0467 0.0541

REDAMIMIC

avg. 1.7410 0.1727 0.2794 0.1242
dev. 1.3057 0.0963 0.0750 0.0443

OmeGA
avg. 1.2860 0.1347 0.3336 0.1281
dev. 0.8513 0.0684 0.0750 0.0734

objective value obtained by the algorithm and the best known solution. Note that
each entry in the table is the average of 240 values (24 instances × 10 runs).
The lower the values are, the better the performance. Looking at these results, it
can be seen that Tsutsui’s EHBSAWT and NHBSAWT are by far the algorithms
that provide the best results on average for every problem type. These results
show the high influence of the templates (WT approaches) when sampling new
individuals. At the opposite end, the results show that continuous codification
EDAs, REDA approaches and OmeGA are, without doubt, the algorithms that
perform the worst.

The results confirm the classification of the problem types given in Section 2
in relation with the contribution to the objective function of the indexes in the
permutation. For instance, in TSP the relevant information for the calculation of
the fitness function is given by the relative ordering of the indexes. The results
in Table 3 show that, for the TSP, the algorithm that learns the adjacency of
the indexes is that which better results obtains. On the other hand, NHBSAWT

performs the best for the QAP as the probabilistic model is focused on estimating
the probability distribution of the indexes in the absolute positions of the permu-
tation. In problems for which the contribution of the index is mixed, such as LOP
and FSSP, NHBSAWT and EHBSAWT have similar behavior.



Title Suppressed Due to Excessive Length 15

In order to carry out a statistical analysis of the results obtained in the ex-
periments, and following the suggestions given in [13], we decided to use non-
parametric tests. The authors state that, for multiple-problem analysis –as is our
case–, due to the dissimilarities in the results and the small size of the sample
to be analyzed, a parametric test may result in erroneous conclusions. The de-
scriptions given in Section 2 state that the semantic meaning of the permutations
may change depending on the problem type we deal with, and thus we presume
different performances of the EDAs for the TSP, QAP, LOP and FSSP. Due to
this fact, we carried out individual statistical tests of the EDAs for each problem
type.

The statistical analysis will be conducted in two steps. First, we will check if
significant differences exist among the results obtained. For this purpose, Fried-
man’s test will be used. This test ranks the algorithms for each problem, providing
also an average rank value for each algorithm. These ranks can be consulted in
Table 4.

Table 4: Average rankings of the algorithms. The lower the rank is, the better the
performance.

EDA TSP QAP LOP FSSP
UMDA 5.87 4.16 5.12 6.04
MIMIC 7.70 5.41 4.91 4.37
EBNABIC 5.83 4.41 5.04 5.89
TREE 9.87 7.25 7.91 7.12
UMDAc 9.97 13.66 12.95 13.12
EGNAee 8.64 11.41 12.12 12.08
IDEA-ICE 9.70 8.66 7.79 8.49
EHBSAWT 1.27 3.79 1.68 1.91
EHBSAWO 2.12 7.83 10.16 6.54
NHBSAWT 7.52 1.5 1.56 2.04
NHBSAWO 3.79 2.45 2.75 3.20
REDAUMDA 11.91 10.54 8.87 10.52
REDAMIMIC 10.37 12.62 11.08 11.58
OmeGA 10.37 11.25 13.00 12.04

The p-values resulting from applying Friedman’s test are lower than 0.0001,
which is below the level of significance considered (α = 0.05). This means that
there exist significant differences among the observed results. Once the rejection
of the null hypothesis has been proved, a post-hoc method will be used to carry
out all pairwise comparisons. Particularly, Shaffer’s static procedure will be used,
as suggested for such cases in [12]. Again, the significance level has been fixed to
α = 0.05. Results obtained from this procedure are represented in Figures 6, 7, 8
and 9 by means of critical difference diagrams. These diagrams draw the ranking
of the algorithms and link with a horizontal line those groups of algorithms for
which no significant differences were found (p-values higher than α = 0.05).

The statistical analysis confirms the good performance of NHBSA and EHBSA,
and particularly those algorithms that use the template strategy. Even if UMDA,
MIMIC and EBNABIC are not designed specifically to deal with permutation-
based problems, being the closest to Tsutsui’s algorithms, they show an acceptable
performance.



16 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

REDA
MIMIC

NHBSA
WT REDA

UMDANHBSA
WO

EHBSA
WT
EHBSA

WO
EBNABIC

UMDA

EGNAee

UMDAc

OmeGATREEMIMIC

ICE

1 2 3 4 5 6 7 141312111098

Fig. 6: Critical difference ranking diagram of TSP results.

REDA
MIMIC

NHBSA
WT REDA

UMDA

NHBSA
WO EHBSAWT EHBSA

WO
EBNABIC

UMDA EGNAee UMDAc

OmeGA

TREEMIMIC ICE

1 2 3 4 5 6 7 141312111098

Fig. 7: Critical difference ranking diagram of QAP results.

1

REDA
MIMIC

NHBSA
WT REDA

UMDANHBSA
WO

EHBSA
WT EHBSA

WO

2 3 4 5 6 7

EBNABIC

UMDA EGNAee

UMDAc

OmeGA

TREE

MIMIC

141312111098

ICE

Fig. 8: Critical difference ranking diagram of LOP results.

Surprisingly, the results achieved by EBNABIC and TREE do not outperform
those achieved by UMDA. As stated in the literature, EBNABIC and TREE al-
gorithms are supposed to be more powerful than univariate algorithms, such as
UMDA, since the first two learn (in)dependencies between variables and UMDA,
instead, assumes independence between variables. In order to understand this be-
havior, we studied the probabilistic models learnt by EBNABIC at each step. We
realized that the learnt structure was an empty structure at all the times. And



Title Suppressed Due to Excessive Length 17

1

REDA
MIMIC

NHBSA
WT

REDA
UMDA

NHBSA
WO

EHBSA
WT

EHBSA
WO

2 3 4 5 6 7

EBNABIC

UMDA EGNAee UMDAc

OmeGA

TREEMIMIC

141312111098

ICE

Fig. 9: Critical difference ranking diagram of FSSP results.

thus, the behavior of EBNABIC results similar to that of UMDA. The reason why
the learning algorithm does not learn any structure is as follows:

When we analyze the performance of these algorithms, it is important to note
that they work in the probability space of size n

n (being n the size of the problem).
This means that when we introduce an arc Xi → Xj in the probabilistic model,
the number of parameters for codifying the local probability distribution of Xi is
multiplied by n. EBNABIC includes the arcs that improve the BIC score the most.
This score is based on the maximum likelihood between nodes and a penalty term
related to the complexity of structure. Taking into account the population size
used in the experiments, when we try to add an arc, the increase in the likelihood
is always smaller than the increase in the complexity, and therefore no arc is
added. In the case of TREE, due to its design, the structure learning algorithm
is forced to add those arcs that have the highest mutual information. However, as
the population size does not provide enough information, the learnt tree turns out
to be an over-fitted model.

IDEA-ICE shows a moderate efficiency, while REDA, OmeGA and the classi-
cal approaches for continuous domains, EGNAee and UMDAc have obtained the
worst results (this last performance may be due to the highly redundant encoding
domain, as stated in several works).

In addition to these results, we consider it interesting to provide supplemen-
tary information about the number of times that the algorithms are able to get the
best known solutions, and average number of iterations (generations) needed by
them. Results in Table 5 show again that the highest success rates belong to the
EHBSA and NHBSA approaches, taking note of the high influence of employing
the template strategy. Surprisingly, there is not any EDA able to achieve optimal
solutions for the LOP instances. In general, such low rates demonstrate the weak-
ness of the compared EDAs to achieve optimum solutions in permutation-based
problems.

In order to analyze the behavior of EDAs in relation to the iterations needed
by each algorithm to obtain its best solution, Table 6 introduces the average and
standard deviation of the number of generations needed to find those best solu-
tions. Note that the number of iterations in crossover-based algorithms such as
ICE and OmeGA is dramatically low comparing to the rest of EDAs. Another
remarkable fact is the high deviation of the number of iterations.



18 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

Table 5: Success rate of the algorithms achieving optimal results.

% TSP QAP LOP FSSP
UMDA 1.6 0.8 0.0 0.0
MIMIC 0.4 2.1 0.0 0.0
EBNABIC 2.1 0.8 0.0 0.8
TREE 0.4 1.2 0.0 0.0
UMDAc 4.2 0.0 0.0 0.0
EGNAee 3.7 0.0 0.0 0.0
IDEA-ICE 0.0 0.0 0.0 0.0
EHBSAWT 74.2 9.6 0.0 11.2
EHBSAWO 40.0 5.8 0.0 0.0
NHBSAWT 10.4 31.7 0.0 5.4
NHBSAWO 2.9 7.9 0.0 2.5
REDAUMDA 0.4 0.0 0.0 0.0
REDAMIMIC 1.2 0.0 0.0 0.0
OmeGA 0.0 0.0 0.0 0.0

Table 6: Average and standard deviation of the iterations required to find the best
solution. REDA algorithms are not included in this analysis due to the recursive
strategy that follows the EDA.

EDA TSP QAP LOP FSSP

UMDA
avg. 5362.78 698.85 4472.73 2973.22
dev. 3965.94 506.18 884.72 2536.14

MIMIC
avg. 1993.53 531.11 2430.76 775.17
dev. 1328.35 365.32 521.73 689.54

EBNABIC

avg. 5386.81 717.50 4509.50 3105.74
dev. 4123.52 529.23 827.77 2626.11

TREE
avg. 5896.24 1487.35 4613.75 2959.04
dev. 3522.10 840.35 703.43 2246.44

UMDAc

avg. 2440.82 591.67 563.35 447.93
dev. 2077.21 485.06 722.65 675.64

EGNAee

avg. 3353.38 1123.40 1036.17 1848.13
dev. 2163.48 499.00 1036.17 1523.86

IDEA-ICE
avg. 258.35 39.32 144.25 289.24
dev. 224.63 21.21 37.86 341.13

EHBSAWT

avg. 3526.13 1702.01 4426.07 3972.13
dev. 3501.54 817.43 1040.97 2772.07

EHBSAWO

avg. 4298.46 1571.58 3724.33 3432.13
dev. 3719.40 588.09 486.51 2146.82

NHBSAWT

avg. 6266.87 1645.08 4254.60 3882.62
dev. 3592.48 903.79 1099.40 2719.95

NHBSAWO

avg. 3979.47 536.72 2571.42 2938.68
dev. 3610.47 390.46 1020.63 2767.95

OmeGA
avg. 31.70 21.66 32.38 29.58
dev. 5.17 12.68 1.92 10.26

As a general conclusion, it must be highlighted that those approaches designed
to handle the space of permutations are those that obtain the best results. More-
over, NHBSA and EHBSA use only 1-order and index adjacency probabilistic
models, which theoretically are too simple to efficiently comprise the underlying
probability distribution. These results should encourage the research community
to follow this direction, trying to design more effective probability models over the



Title Suppressed Due to Excessive Length 19

space of permutations. In the next section, we discuss some ideas that could be
useful for this purpose.

5 Discussion

As commented in the previous sections, in order to deal with permutation-based
problems the proposed EDA approaches are (i) adaptations of algorithms designed
for integer-based problems, (ii) transforming a permutation problem into a contin-
uous optimization problem and then using EDAs designed for continuous domains
or (iii) ad hoc approaches using first-order statistics. Contrary to integer prob-
lems, where the community has used most of the mechanisms provided for the
researchers working in machine learning, and statistics such as graphical models,
kernels, etc, this has not been the case for permutations. In this section we give
a brief review of the most common probabilistic models to deal with permuta-
tion spaces. We also point out some ideas on the use of those models in EDAs,
particularly we briefly analyze the learning and sampling algorithms of the models.

Since the most common application of permutations is that of ranking, we will
use these two words, permutations and ranking, interchangeably throughout this
section.

5.1 Models based on marginals

When working with samples of permutations, the trivial approach consists of main-
taining the information relative to the first order marginals, which express the
probability of item i being at position j. This information can be stored in O(n2)
space by using an nxn matrix. A natural extension consists of storing higher order
marginals. Such marginals correspond to the probability of a specific set of items
(i1, ..., ik) being at specific positions (j1, ..., jk). One may also be interested in main-
taining the probability of an item being at the position right after another item
without specifying a particular position. In fact, this is the kind of information
used in the edge histogram model, [46, 50], while the node histogram model, [51],
maintains the first order marginals.

This representation is not only compact, but it is also easy to learn. By using
the first order marginals, statistics such as the mode can be computed. However,
when it comes to sampling - a necessary step in EDAs- further information about
the distribution is required. In [51] a distribution with the given marginals is
sampled. However, the actual distribution is unknown. There does not seem to be
a closed form for it and it is not clear which are the properties of such a distribution.
Actually, there can be infinitely many probability distributions that have a given
first order marginal probability matrix. Therefore, among all those distributions
how can one select the ’correct’ one? A common approach in statistics and machine
learning is to consider the maximum entropy distribution, i.e. the distribution
that, by having those marginal probabilities, has the highest uncertainty. This is
the procedure followed by [1] which showed that such a distribution happens to
have the simple expression given by

P (σ) = exp(
n�

i=1

Yi,σ(i) − 1).



20 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

where Y ∈ Rnxn. Unfortunately, it is also shown in [1] that obtaining the Y matrix
is #P-hard. Nevertheless, they also give an approximation algorithm which runs
in polynomial time for computing the Y parameter.

5.2 Plackett-Luce model

The Plackett-Luce distribution takes its name from the combination of the inde-
pendent work carried out by Plackett [41] and Luce [31]. Luce’s model describes a
sequential ranking generator method in which the items are sampled from the first
to the last position (i.e., from the most to the least preferred item). The parameter
space consists of n positive weights (w1, ..., wn) that sum 1. These probabilities are
used to sample the first position of the rank, with P (σ(1) = j) = wj . The following
positions, {2, ..., n}, are sampled without replacement until a complete ranking is
obtained. Note that, in order to sample position i of a permutation by using Luce’s
model, the probability of selecting item j1 over j2 does not depend on the weights
of the rest of the items in the set.

The above model induces a distribution over all possible rankings. It was first
used by Plackett and can be written as follows:

P (σ) =
n−1�

i=1

wσ(i)�n

j=i
wσ(j)

Due to the Markovian nature of the model, it is not easy to make inference
over sets of items such as P (σ(n) = i). Regarding the learning process of the n

parameters of a Plackett-Luce distribution, one can find in the literature methods
based on maximum likelihood estimation [19] and Power EP (expectation propa-
gation) [16]. Once the distribution parameters are known, the sampling procedure
consists of following Luce’s model.

5.3 Mallows model

The Mallows model [32] is a distance based exponential model. The most com-
monly used metric is the Kendall tau distance, which, given two permutations σ1

and σ2, counts the total number of pairwise disagreements between both of them
i.e., the minimum number of adjacent swaps to convert σ1 into σ2. Formally, it
can be written as

τ(σ1, σ2) = |{(i, j) : i < j, (σ1(i) < σ1(j) ∧ σ2(i) > σ2(j))

∨ (σ2(i) < σ2(j) ∧ σ1(i) > σ1(j)) }|.

The above metric can be equivalently written as

τ(σ1, σ2) =
n−1�

j=1

Vj(σ1, σ2)

where Vj(σ1, σ2) is the minimum number of adjacent swaps to set in the j-th
position of σ1, σ1(j), the value σ2(j).



Title Suppressed Due to Excessive Length 21

The Mallows model makes use of this metric to define an exponential probabil-
ity model for permutations which can be defined by two parameters: The central
permutation, σ0, and the spread parameter, θ. It can be written as

P (σ) ∝ exp(−θτ(σ, σ0)).

When the spread parameter is θ > 0, the central permutation, σ0, is the one
with the highest probability value and the probability of the other n!−1 permuta-
tions is inversely proportional to their distance to the central permutation and the
spread parameter θ. Because of these two properties, the Mallows distribution is
considered analogous to the Gaussian distribution on the space of permutations.

Among its many extensions, the generalized Mallows (GM) model [11] is that
which has received an special attention by the community. This extension makes
use of n parameters: The central permutation, σ0, and n − 1 spread parameters,
θ1, ..., θn−1. The probability distribution over each distinct ranking is as follows:

P (σ) ∝ exp(−
n−1�

j=1

θjVj(σ, σ0))

Note that when the n− 1 parameters θj are constrained to be equal, the gen-
eralized Mallows reduces to the Mallows model.

The typical way to learn the parameters of the distribution of a given sample
of permutations is to maximize the likelihood of these parameters. Let {σ1, ..., σN}
be the given sample. Then, its log-likelihood is given by

log l(σ1, ..., σN |σ0,θ) = −N

n−1�

j=1

(θj V̄j + logψj(θj))

where V̄j =
�N

i=1 Vj(σi, σ0)/N , i.e. V̄j denotes the observed mean for Vj and ψj(θj)
refers to the normalization constant. Note that by setting equal values for the
spread parameters θi for every i = {1, ..., n − 1}, we obtain the expression of the
maximum likelihood estimator for the Mallows model. For both Mallows and Gen-
eralized Mallows models the problem of finding the MLE for σ0 and θ is NP-hard.
Particularly, the problem of finding the central permutation or consensus ranking is
called rank aggregation and is equivalent to finding the MLE estimator of σ0. One
can find several methods for solving this problem, both exact [9] and heuristic [33].
Therefore, if any of these models is applied to EDAs, at each step a NP-hard prob-
lem must be solved. However, this is also the case for integer-based problems, where
at each step a Bayesian network is learned. Although a NP-complete problem is
solved at each generation, EDAs have been successfully applied to integer-based
problems. Note that EDAs do not need to solve the Bayesian network learning
problem to optimality. On the contrary, the sampling process can be easier for
the Mallows model than for the Generalized Mallows model. Note that while the
former assigns equal probability values for permutations at equal distance to the
central permutation, the latter does not. An obvious way to sample a Mallows
model is by using a Markov Chain Monte Carlo method such us a Gibbs sampler.

However, the main drawback of these two models is that their unimodal nature
makes the representation of distributions of multimodal optimization problems
impossible.



22 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

5.4 Non-parametric models

As we have already stated, the unimodality Mallows and Generalized Mallows can
be a drawback to deal with multimodal optimization problems. However, they can
be used to build a multimodal distribution. In [27] a multimodal non-parametric
estimator is built by placing Mallows kernels on the top of the elements of a given
sample of permutations. The non-parametric estimator of such a distribution is
given by the following equation

p̂(σ) ∝
m�

i=1

exp(−c d(σ, σi))

where c is a spread parameter.
The proposed estimator is consistent. Moreover, by exploiting the underlying

combinatorial properties of permutations the estimator can be efficiently com-
puted. It has been successfully applied to partial ranking problems. On the other
hand, the use of a single spread parameter c, which has to be manually set, can
limit the quality of the resulting estimator.

6 Conclusions and Future work

In this paper we have reviewed the existing EDA approaches for solving permutation-
based optimization problems. We have stated by means of examples of permutation-
based problems that, although all solutions are encoded as permutations, their
meanings change from one problem to another. We classified the existing EDA ap-
proaches for solving permutation-based problems in three groups: (i) adaptations
of algorithms designed for integer-based problems, (ii) transforming a permutation-
based problem into a continuous optimization problem and then using EDAs de-
signed for continuous domains and (iii) ad hoc approaches using different strate-
gies. The experimental analysis carried out showed that the best results are given
by those EDA approaches that implement ad hoc designs. On the contrary, contin-
uous and REDA approaches are those which perform the worst. The experimental
analysis also stated that the integer-based EDAs yield good solutions. In fact, those
algorithms that find best solutions, EHBSA and NHBSA, are the only EDAs that
learn probabilistic models taking into account the characteristics of permutations.
This fact suggests that the future work that the research community of EDAs
should follow is the use of the probabilistic model over permutation spaces. Fol-
lowing this idea we have introduced several models that could be used with EDAs
in order to solve permutation-based problems.

7 Acknowledgments

We gratefully acknowledge the generous assistance and support of Prof. S. Tsut-
sui and Prof. P. Bosman in this work. This work has been partially supported by
the Saiotek and Research Groups 2007-2012 (IT-242-07) programs (Basque Gov-
ernment), TIN2008-06815-C02-01, TIN2010-14931 and Consolider Ingenio 2010
- CSD 2007 - 00018 projects (Spanish Ministry of Science and Innovation) and



Title Suppressed Due to Excessive Length 23

COMBIOMED network in computational biomedicine (Carlos III Health Insti-
tute). Josu Ceberio holds a grant from Basque Goverment.

References

1. S. Agrawal, Z. Wang, and Y. Ye. Parimutuel Betting on Permutations. In Internet and
Network Economics, volume 5385 of Lecture Notes in Computer Science, pages 126–137.
Springer Berlin / Heidelberg, 2008.

2. J. C. Bean. Genetic Algorithms and Random Keys for Sequencing and Optimization.
INFORMS Journal on Computing, 6(2):154–160, 1994.

3. E. Bengoetxea, P. Larrañaga, I. Bloch, A. Perchant, and C. Boeres. Inexact graph matching
by means of estimation of distribution algorithms. Pattern Recognition, 35(12):2867–2880,
2002.

4. P. A. N. Bosman and D. Thierens. Expanding from Discrete to Continuous Estimation
of Distribution Algorithms: The IDEA. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao,
E. Lutton, J. J. M. Guervós, and H. P. Schwefel, editors, PPSN, volume 1917 of Lecture
Notes in Computer Science, pages 767–776. Springer, 2000.

5. P. A. N. Bosman and D. Thierens. Crossing the road to efficient IDEAs for permutation
problems. In L. S. et al. et al., editor, Genetic and Evolutionary Computation Confer-
ence, GECCO 2001, Proceedings, San Francisco, California, USA, 2001, pages 219–226.
Morgan Kaufmann, 2001.

6. A. E. I. Brownlee, M. Pelikan, J. A. W. McCall, and A. Petrovski. An application of a
multivariate estimation of distribution algorithm to cancer chemotherapy. In C. Ryan and
M. Keijzer, editors, GECCO, pages 463–464. ACM, 2008.

7. S. Chen and M. Chen. Bi-Variate Artificial Chromosomes with Genetic Algorithm for Sin-
gle Machine Scheduling Problems with Sequence-Dependent Setup Times. In Proceedings
of the Congress on Evolutionary Computation, 2011.

8. C. Chow and C. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory, 14(3):462–467, May 1968.

9. W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. In Proceedings of
the 1997 conference on Advances in neural information processing systems 10, NIPS ’97,
pages 451–457, Cambridge, MA, USA, 1998. MIT Press.

10. J. S. De Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding Optima by Estimating Prob-
ability Densities. In Advances in Neural Information Processing Systems, volume 9. M.
Mozer, M. Jordan and Th. Petsche eds., 1997.

11. M. A. Fligner and J. S. Verducci. Distance based ranking Models. Journal of the Royal
Statistical Society, 48(3):359–369, 1986.

12. S. Garcia and F. Herrera. An Extension on ”Statistical Comparisons of Classifiers over
Multiple Data Set” for all Pairwise Comparisons. Journal of Machine Learning Research,
9:2677–2694, 2008.

13. S. Garcia, D. Molina, M. Lozano, and F. Herrera. A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005
Special Session on Real Parameter Optimization. Journal of Heuristics, 15(6):617–644,
2009.

14. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison/Wesley, Reading MA, 1989.

15. D. E. Goldberg and R. L. Jr. AllelesLociand the Traveling Salesman Problem. In ICGA,
pages 154–159, 1985.

16. J. Guiver and E. Snelson. Bayesian inference for Plackett-Luce ranking models. In In-
ternational Conference on Machine Learning (ICML 2009), ICML ’09, pages 377–384.
ACM, 2009.

17. J. Gupta and J. E. Stafford. Flow shop scheduling research after five decades. European
Journal of Operational Research, (169):699–711, 2006.

18. M. Henrion. Propagating uncertainty in Bayesian networks by Probabilistic Logic Sam-
pling. In J. F. Lemmer and L. N. Kanal, editors, UAI, pages 149–164. Elsevier, 1986.

19. D. R. Hunter. MM Algorithms for Generalized Bradley-Terry Models. The Annals of
Statistics, 32(1):384–406, 2004.

20. B. Jarboui, M. Eddaly, and P. Siarry. An estimation of distribution algorithm for min-
imizing the total flowtime in permutation flowshop scheduling problems. Computers &
OR, 36(9):2638–2646, 2009.



24 Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu and Jose A. Lozano

21. S. Jiang, A. Ziver, J. Carter, C. Pain, A. Goddard, S. Franklin, and H. Phillips. Estimation
of Distribution Algorithms for nuclear reactor fuel management optimisation. Annals of
Nuclear Energy, 33(11-12):1039–1057, 2006.

22. D. Knjazew and D. E. Goldberg. Omega - ordering messy ga: Solving permutation prob-
lems with the fast genetic algorithm and random keys. In GECCO, pages 181–188, 2000.

23. T. C. Koopmans and M. J. Beckmann. Assignment Problems and the Location of Eco-
nomic Activities. Cowles Foundation Discussion Papers 4, Cowles Foundation for Research
in Economics, Yale University, http://ideas.repec.org/p/cwl/cwldpp/4.html, 1955.

24. P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Combinatorial optimization
by learning and simulation of Bayesian networks. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, UAI 2000, pages 343–352, Stanford, CA, USA, 2000.

25. P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Optimization in continuous
domains by learning and simulation of Gaussian networks. In Proceedings of the Workshop
in Optimization by Building and using Probabilistic Models. A Workshop within the 2000
Genetic and Evolutionary Computation Conference, GECCO 2000, pages 201–204, Las
Vegas, Nevada, USA, 2000.

26. P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Kluwer Academic Publishers, 2002.

27. G. Lebanon and Y. Mao. Non-Parametric Modeling of Partially Ranked Data. Journal
of Machine Learning Research (JMLR), 9:2401–2429, 2008.

28. H. Liu, L. Gao, and Q. Pan. A hybrid particle swarm optimization with estimation of
distribution algorithm for solving permutation flowshop scheduling problem. Expert Syst.
Appl., 38:4348–4360, April 2011.

29. J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea. Towards a New Evolutionary
Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness
and Soft Computing). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

30. J. A. Lozano and A. Mendiburu. Estimation of Distribution Algorithms applied to the job
schedulling problem. In P. Larrañaga and J. A. Lozano, editors, Estimation of Distribution
Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers,
2002.

31. D. Luce R. Individual Choice Behavior. Wiley, New York, 1959.
32. C. L. Mallows. Non-null ranking models. Biometrika, 44(1-2):114–130, 1957.
33. B. Mandhani and M. Meila. Tractable search for learning exponential models of rankings.

In Artificial Intelligence and Statistics (AISTATS), April 2009.
34. A. Mendiburu, J. A. Lozano, and J. Miguel-Alonso. Parallel Implementation of EDAs

Based on Probabilistic Graphical Models. IEEE Transactions on Evolutionary Computa-
tion, 9(4):406–423, 2005.

35. A. Mendiburu, J. Miguel-Alonso, J. A. Lozano, M. Ostra, and C. Ubide. Parallel EDAs to
create multivariate calibration models for quantitative chemical applications. J. Parallel
Distrib. Comput., 66(8):1002–1013, 2006.

36. H. Mühlenbein and G. Paaß. From Recombination of Genes to the Estimation of Distribu-
tions I. Binary Parameters. In Lecture Notes in Computer Science 1411: Parallel Problem
Solving from Nature - PPSN IV, pages 178–187, 1996.

37. M. Pelikan and D. E. Goldberg. Hierarchical problem solving and the Bayesian optimiza-
tion algorithm. In D. Whitley, D. Goldberg, E. Cantú-Paz, L. Spector, I. Parmee, and
H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence, volume 1, pages 267–274, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

38. M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications, 21(1):5–20,
2002.

39. M. Pelikan, K. Sastry, and E. Cantú-Paz. Scalable Optimization via Probabilistic Modeling:
From Algorithms to Applications (Studies in Computational Intelligence). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

40. M. Pelikan, S. Tsutsui, and R. Kalapala. Dependency Trees, Permutations, and Quadratic
Assignment Problem. Technical report, Medal Report No. 2007003, 2007.

41. R. L. Plackett. The Analysis of Permutations. Journal of the Royal Statistical Society,
24(10):193–202, 1975.

42. V. Robles, P. de Miguel, and P. Larrañaga. Solving the Traveling Salesman Problem with
EDAs. In P. Larrañaga and J. A. Lozano, editors, Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation. Kluwer Academic Publishers, 2002.



Title Suppressed Due to Excessive Length 25

43. T. Romero and P. Larrañaga. Triangulation of Bayesian networks with recursive Estima-
tion of Distribution Algorithms. Int. J. Approx. Reasoning, 50(3):472–484, 2009.

44. R. Sagarna and J. A. Lozano. Scatter Search in software testing, comparison and col-
laboration with Estimation of Distribution Algorithms. European Journal of Operational
Research, 169(2):392–412, 2006.

45. R. Santana, P. Larrañaga, and J. A. Lozano. Protein folding in simplified models with Es-
timation of Distribution Algorithms. IEEE Transactions On Evolutionary Computation,
12(4):418–438, 2008.

46. S. Tsutsui. Probabilistic Model-Building Genetic Algorithms in Permutation Representa-
tion Domain Using Edge Histogram. In PPSN, pages 224–233, 2002.

47. S. Tsutsui. A Comparative Study of Sampling Methods in Node Histogram Models with
Probabilistic Model-Building Genetic Algorithms. In IEEE International Conference on
Systems, Man, and Cybernetics. October 8-11, 2006, Taipei, Taiwan, volume 4, pages
3132–3137, 2006.

48. S. Tsutsui. Effect of Using Partial Solutions in Edge Histogram Sampling Algorithms with
Different Local Searches. In SMC, pages 2137–2142, 2009.

49. S. Tsutsui and M. Miki. Solving Flow Shop Scheduling Problems with Probabilistic Model-
Building Genetic Algorithms using Edge Histograms. In 4th Asia-Pacific Conference on
Simulated Evolution And Learning (SEAL 02), pages 776–780, 2002.

50. S. Tsutsui, M. Pelikan, and D. E. Goldberg. Using Edge Histogram Models to Solve
Permutation Problems with Probabilistic Model-Building Genetic Algorithms. Technical
report, IlliGAL Report No. 2003022, 2003.

51. S. Tsutsui, M. Pelikan, and D. E. Goldberg. Node Histogram vs. Edge Histogram: A
Comparison of PMBGAs in Permutation Domains. Technical report, Medal, 2006.

52. S. Tsutsui and G. Wilson. Solving Capacitated Vehicle Routing Problems Using Edge
Histogram Based Sampling Algorithms. In Proceedings of the IEEE Conference on Evo-
lutionary Computation, Portland, Oregon (USA), pages 1150–1157, 2004.

53. B. Yuan, M. E. Orlowska, and S. W. Sadiq. Finding the optimal path in 3d spaces using
EDAs - the wireless sensor networks scenario. In ICANNGA (1), pages 536–545, 2007.

54. Q. Zhang, J. Sun, E. Tsang, and J. Ford. Combination of Guided Local Search and
Estimation of Distribution Algorithm for Solving Quadratic Assignment Problem. In
Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation
Conference, pages 42–48, 2004.

55. Q. Zhang, J. Sun, E. Tsang, and J. Ford. Estimation of Distribution Algorithm with
2-opt Local Search for the Quadratic Assignment Problem. Studies in Fuzziness and Soft
Computing, 192/2006:281–292, 2006.

56. A. A. Zhigljavsky. Theory of Global Random Search. Kluwer Academic Publishers, 1991.


