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Abstract

A classical supervised classification task tries to predict a single class variable based on a
data set composed of a set of labelled examples. However, in many real domains more than
one variable could be considered as a class variable, so a generalization of the single-class
classification problem to the simultaneous prediction of a set of class variables should be
developed. This problem is called multi-dimensional supervised classification.

In this paper, we deal with the problem of learning Bayesian network classifiers for multi-
dimensional supervised classification problems. In order to do that, we have generalized the
classical single-class Bayesian network classifier to the prediction of several class variables.
In addition, we have defined new classification rules for probabilistic classifiers in multi-
dimensional problems.

We present a learning approach following a multi-objective strategy wich considers the
accuracy of each class variable separately as the functions to optimize. The solution of
the learning approach is a Pareto set of non-dominated multi-dimensional Bayesian network
classifiers and their accuracies for the different class variables, so a decision maker can easily
choose by hand the classifier that best suits the particular problem and domain.

1 Introduction

Supervised classification (Bishop, 2006; Duda et al., 2001) is one of the most important tasks in
pattern recognition field. A supervised classification problem involves the learning, or induction,
of a classification model or classifier. This classifier is a function that assigns one or more values
to a set of class variables, or labels, based on the values of a set of predictive variables or features.
The classifier is usually learnt from a set of labeled cases (the training set) by means of a classifier
induction algorithm.

Classical supervised classification focuses on the prediction of a single class variable, but many
real domains consider more than one class variable, so it would be useful to extend it to the
prediction of multiple class variables.

We have called this problem multi-dimensional supervised classification, and it must not be
confused with other classification tasks such as multi-class (Tax and Duin, 2002): problems with a



single class variable that can take more than two values, multi-task (Caruana, 1997): an inductive
transfer approach, where a main task is predicted helped by the prediction of some extra tasks, or
multi-label classification (Tsoumakas and Katakis, 2007): where an instance can be classified with
several different labels. Note, however, that this last problem can be seen as a multi-dimensional
classification problem where each label or category is a binary class variable whose value is one
when the instance is included in that category or zero otherwise. Other classification tasks in
pattern recognition can be seen as a multi-dimensional classification problem, such as structured
prediction (Bakir et al., 2007; Daumé and Marcu, 2005), where there are several class variables
with a conditional structure among them, or hierarchical classification (Dumais and Chen, 2000;
Cesa-Bianchi et al., 2006), where there is a hierarchical structure (two or more levels) among the
class variables.

There are several possibilities to adapt single-class classifiers to multi-dimensional classification
problems, but none of them exactly captures the problem characteristics. One approach consists
of constructing a single class variable that models all possible combinations of classes. This class
variable models the Cartesian product of all the class variables. The problem arises because this
compound class variable can easily end up with an excessively high cardinality. This leads to
computational problems because of the high number of parameters the model has to estimate.
Furthermore, the model does not reflect the real structure of the classification problem. Another
approach is to develop multiple classifiers, one for each class variable. However, this approach
does not capture the real characteristics of the problem either, because it does not model the cor-
relations between the different class variables and so, it does not take advantage of the information
that they may provide. The previous approaches are clearly insufficient and suboptimal for the
resolution of problems where class variables have high cardinalities or high degrees of correlation
among them. The basic idea of multi-dimensional classification is that the use of the correlations
between class variables may help in the classification task, so it is important to model as well as
possible the correlations among class variables.

Recent works (van der Gaag and de Waal, 2006; de Waal and van der Gaag, 2007) present
Bayesian network classifiers that use the correlations among class variables to model multi-
dimensional classification problems. They propose learning and inference algorithms for multi-
dimensional Bayesian network classifiers, but they restrict the structure of the Bayesian networks.
For these restricted models, the authors have proved that the complexity of the learning task is
polynomial in the number of variables involved.

In this paper, we break these structural constraints allowing the learning of any multi-dimensional
Bayesian network structure. For this purpouse, we have developed a multi-objective optimization
structural learning approach whose objective is to maximize the accuracy of each class variable
separately. Moreover, we realize that in multi-dimensional classification there could be more than
one classification rule, and so, we have developed specific classification rules for these problems.
A very preliminary version of this work was presented in Rodriguez and Lozano (2008).

The rest of the paper is organized as follows. In Section 2 the multi-dimensional supervised
classification problem is proposed. Section 3 provides the multi-dimensional Bayesian network
classifiers proposed in this paper. The multi-objective learning of the multi-dimensional Bayesian
classifiers is introduced in Section 4. Finally, the simulation study and the conclusions are pre-
sented in sections 5 and 6 respectively.

2 Multi-dimensional supervised classification

In this section we present, in detail, the nature of the multi-dimensional supervised classification
problem and how to define and evaluate a multi-dimensional classifier.



2.1 Multi-dimensional supervised classification problems

We call multi-dimensional supervised classification to the generalization of the classical supervised
classification task where more than one class variable should be simultaneously predicted.

An approach to multi-dimensional supervised classification consists of building a classifier
from training data in order to predict the value of a class vector of m class variables or labels
C = (C4,--+,Cy,) given the predictive attributes or features X = (Xi,---,X,,) of an unseen
unlabeled instance * = (x1,--- ,x,). We suppose that (X,C) is a random vector with a joint
feature-label probability distribution p(z, c).

A classifier 1) is a function that maps X into C:

v AL armpxaox{lL o = {L Lt X x {L et}
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where r; and ¢; are the cardinalities of the feature X; (for ¢ = 1,...,n) and the class variable C;
(for j =1,...,m) respectively.

A classifier is learnt from a training set D = {(z™), cM), ..., ((?, ¢9))} with a classifier induc-
tion algorithm A(-). Given the induction algorithm A(-), which is assumed to be a deterministic
function of the training set, the classifier obtained from a training set D is denoted as 1 = A(D).
Therefore, a multi-dimensional classification problem can be defined as the induction, from a data
set D, of a classification function 1 that given a feature vector x, returns a class vector c.

2.2 Multi-dimensional classification rules

In probabilistic classification, the induction algorithm learns a probability distribution p(z,¢) or
p(c|x) from the training data and classifies a new instance based on this. For that purpose, a
classification rule must be defined. The multi-dimensional nature of the problem allows us to
develop different classification rules that would make no sense in single-class classification because
they take into account multiple class variables.

In single-class supervised classification, the most commonly used classification rule returns the
most likely class value given the features. We call it one-dimensional classification rule:

¢= argmax. {p(0|$1, T ,xn)} = argmax. {w}
p(x1,- - o)
= argmaz.{p(c,x1,  + ,ZTn)}

This classification rule can be easily generalized to the prediction of more than one class
variable. The multi-dimensional classifier returns the most probable combination of class variables
given the features. We call it joint classification rule:

(E1,++ ,ém) = argmaze, ... c,, {plci, - ,cmlT1, - ,2n)}
p(:,g17 Ce ;zn)
= argmaze ..c, {p(c1, -, Cm,T1, 0, Tn)}

However, we can go beyond and develop other classification rules in order to estimate the
values of the class variables. We propose another classification rule that consists on marginalizing
each class variable for the rest of class variables simultaneously. We call it marginal classification



rule and estimates the value of each class variable C; (with j =1,---,m) as follows:

¢j = argmaze, A{p(cjlzi,---,xn)} = argmaz,, Zp(cj, cjlar, -, xn)

[

_ p(cjacﬁjaxla"';xn) _
= argmax, = argmazx.; p(cj,Cnjs T, Tn)
- p(zl;" 7xn) )
[ C—j
where c; = {c1, -+ ,¢j—1,Cj41, s Cm }-

The previous classification rules estimate the class variables values in one step: the joint
classification rule estimates all the class variables simultaneously and the marginal classification
rule estimates each class variable separately. In multi-dimensional classification we can propose
classification rules that estimate the class variables in a procedure with more than one step.

We propose a classification rule based on the marginal values of the rest of the class variables.
In the first step, each class variable is estimated using the marginal classification rule previously
defined, and then, each class variable value is estimated again using the class values for the rest
of the class variables estimated at the end of the first step as evidence. We call it conditional
classification rule:

~ s o p(cj,é\ij,l'l,"',fﬂn)
cj = argmaze{p(cj,cijlzr, -, xn)} = argmaz, P
= argmaz.{p(c;,c;,x1, - ,T5)}
where ¢ ; are the predicted values for {C1,---,Cj-1,Cj11, -+ ,Cp } using the marginal classifi-

cation rule.

Moreover, we can extend the previous classification rule and continue estimating the class
values taking into account the estimated values for the rest of the classes in the previous step.
This procedure should continue until a stop criterion is reached, for example when the estimated
class values do not change in two consecutive steps. We call it iterative classification rule:

p(c'7/C\2-,ZL'1, e 7:Cn)
o0 — . o0 P — J J —
c; = argmaz.{p(cj,cl;lrr, - ,xn)} = argmaz, { o ) } =
= argmaij{p(cjv/C\gjazla"' 7:Cn)
~(s—1
~s ) ~(s—1) o p(cjﬂc(—‘sj )axla"' 5$n) o
c; = argmax, {p(c;, c; |1, ,20)} = argmaz., P =
=  argmac; {p(cj76£5j71)7 Ly, 51'71)
where E? are the predicted values for {C1,---,Cj—-1,Cjt1,- -+ ,Cp} using the marginal classifica-

tion rule and E(fjfl) are the predicted values for {C4,---,Cj_1,Cjs1,--- ,Cp,} in the s — 1 step
using the conditional classification rule.



2.3 Multi-dimensional classification evaluation

Once a classifier is constructed it is needed to measure its associated error. The prediction error
of a single-class classifier v is the probability of the wrong classification of unlabeled instances x
and is denoted as €(¢)):

€(¥) = p((X) # C) = Ex[d(c, v (x))] (1)

where §(z,y) is a loss function whose result is 1 if  # y and 0 if x = y.

However, in multi-dimensional classification we can measure the correctness of an instance in
different ways:

e Joint evaluation: This consists of evaluating the estimated values of all class variables
simultaneously, that is, it only registers a success if all the classes are correctly predicted,
and otherwise registers an error (see Equation 2). This rule generalizes the previous single-
class evaluation measure to multi-dimensional classification.

() = p(¥(X) # C) = Ex[é(c, ¥ (x))] (2)

e Single evaluation: This consists of checking separately if each class is correctly classified. For
example, if we classify an instance x as (¢; = 0.é2 = 1) and the real value is (¢; = 0.c; = 0),
we count ¢; as a success and ¢y as an error. This approach provides one performance function
for each class C; (for j = 1,---,m). The output of this evaluation is a vector € of size m
with the performance function of the multi-dimensional classifier for each class variables (see
Equation 3):

¢j(¥) = p(;(X) # Cj) = Ex[b(cj, vi(x))] (3)

where 1;(X) is the estimated label of the multi-dimensional classifier for the j-th class
variable.

Ideally, we would like to calculate exactly the error of a classifier, but in most real world
problems the feature-label probability distribution p(x,¢) is unknown. So, the prediction error
of a classifier ¥ is also unknown, it can not be exactly computed, and thus, must be estimated
from data. There are several estimators of the prediction error, from the simple Resubstitution
(Devroye and Wagner, 1979) and Hold-out (McLachlan, 1992) to the more complex Bootstrap
(Efron and Tibshirani, 1993) and Bolstered (Braga-Neto et al., 2004). In this work we use one of
the most popular error estimation techniques: k-fold cross-validation (k-cv) (Stone, 1974) in its
repeated version. In k-cv the dataset is divided into k folds, a classifier is learnt using k& — 1 folds
and an error value is calculated by testing the classifier in the remaining folds. Finally, the k-cv
estimation of the error is the average value of the errors committed in each fold. The repeated
r times k-cv consists of estimating the error as the average of r k-cv estimations with different
random fold partitions. This method considerably reduces the variance of the error estimation
(Rodriguez et al., 2010).

In multi-dimensional classification we could be interested in learning the most accurate clas-
sifier for all class variables simultaneously (measured with a joint evaluation). However, it makes
sense to find the most accurate classifiers for each single class variable (measured with single
evaluations). The learning approach that we present considers the single evaluation of each class
variable as the functions to optimize in a multi-objective optimization problem. We will present
this approach in Section 4.



3 Multi-dimensional Bayesian networks classifiers

3.1 Preliminaries and notation

In this paper we generalize the single-class oriented Bayesian network classifiers to domains with
more than one class variable. Bayesian networks (Pearl, 1988) are powerful tools for knowledge
representation and inference under uncertainty conditions. These formalisms have been exten-
sively used as classifiers (Langley et al., 1992; Larranaga et al., 2005) and have become a classical
and well-known classification paradigm. In spite of the popularity of Bayesian network classifiers,
few works have taken into account their generalization to multiple class variables (van der Gaag
and de Waal, 2006; de Waal and van der Gaag, 2007).

A Bayesian network is a pair B = (S, ©®) where S is a directed acyclic graph (DAG) whose
vertices correspond to random variables and whose arcs represent conditional (in)dependence re-
lations among variables, and © is a set of parameters . We consider Bayesian networks over a
finite set V.= {C1, -+ ,Cm, X1, -+ , Xpn} where each variable C; and X; take a finite set of values.
© is formed by parameters 0., pa(;) and 0., pa(s,) for each value that C; and X; can takes and
for each value assignment Pa(z;) and Pa(c;) to the sets Pa(X;) and Pa(C};) of parents of X; and
C; respectively.

A Bayesian network classifier is usually represented as a Bayesian network with a particular
structure: the class variables are on the top of the graph and are the parents of the predictive
variables, i.e. there are no arcs from predictors to class variables.

The network B defines a joint probability distribution p(cq,- -+, ¢m, 21, -+ ,2,) given by:

p(Ch 5 Cmy T, axn) = Hgnzl 96j|Pa(Cj) H?:l Hmi|Pa(mi)

The Bayesian network, B = (S,0®), can be defined by an expert who is able to list the
conditional independences between problem variables or, more frequently, it can be learnt from
domain data. In general, the problem of learning a Bayesian network classifier from data can be
seen as: given a training set D = {(x(),cM),... (x(@ c(®)} of d instances of (X, C), find a
network B that best matches D (Friedman et al., 1997)

There are two main approaches for automatically learning Bayesian networks from data (Neapoli-
tan, 2003): while the first one is based on a score + search process in the space of possible struc-
tures, the second tries to detect the conditional independences by means of statistical hypothesis
tests. In this work, we use a score + search multi-objective process. Our scores are the k-fold
cross-validation estimations of the accuracies of each class variable separately.

3.2 Structure of multi-dimensional class Bayesian networks classifiers

A multi-dimensional class Bayesian network classifier is a generalization of the classical one-class
variable Bayesian classifiers for domains with multiple class variables (van der Gaag and de Waal,
2006). It models the relationships between the variables by directed acyclic graphs (DAG) over
the class variables and over the feature variables separately, and then connects the two sets of
variables by means of a bipartite directed graph. So, the DAG structure S = (V, A) has the set
V of random variables partitioned into the sets Vo = {C4,...,Cy}, m > 1, of class variables
and the set Vp = {X1,..., X, }, n > 1, of feature variables. Moreover, the set of arcs A can be
partitioned into three sets: Acr, Ac and Ap with the following properties:

I This definition takes into account that the objective is to define multi-dimensional Bayesian classifiers



e Acr C Ve x Vg is composed of the arcs between the class variables and the feature
variables, so we can define the feature selection subgraph of S as Scr = (V,Acr). This
subgraph represents the selection of features that seems relevant for classification given the
class variables.

e Ac C Ve x V¢ is composed of the arcs between the class variables, so we can define the
class subgraph of S induced by V¢ as S¢ = (Veo, Ac).

e Ar C Vi x Vg is composed of the arcs between the feature variables, so we can define the
feature subgraph of S induced by Vg as Sp = (Vp, Ap).

In Figure 1, we show a multi-dimensional class Bayesian network classifier with 3 class variables
and 5 features and its partition into the three subgraphs.

X0 6 X 0

(a) Complete graph (b) Feature selection subgraph
(c) Class subgraph (d) Feature subgraph

Figure 1: A multi-dimensional class Bayesian network classifier and its division

Depending on the structure of the class subgraph and the feature subgraph, van der Gaag and
de Waal (2006) and de Waal and van der Gaag (2007) distinguish the following sub-families of
multi-dimensional class Bayesian network classifiers 2:

o Multi-dimensional naive Bayes classifier (MDnB): the class subgraph and the feature sub-
graph are empty and the feature selection subgraph is complete.

o Multi-dimensional tree-augmented classifier (MDTAN): both the class subgraph and the
feature subgraph are directed trees.

o Multi-dimensional polytree-augmented classifier (MDPoly): both the class subgraph and the
feature subgraph are polytrees.

In addition to these structures, we have considered another structure for experimental pur-
pouses:

o Multi-dimensional J/K dependences Bayesian classifier (MDJ/K ): This structure allows
each class variable C; to have, apart from the class variables, a maximum of .J dependences
with other class variables C;, and each predictive variable X; to have a maximum of K
dependences with other predictive variables X;.

2Tn van der Gaag and de Waal (2006) and de Waal and van der Gaag (2007) they use the term fully instead of
multi-dimensional to name the classifiers.



(c) Multi-dimensional Polytree (d) Multi-dimensional 1/2

Figure 2: Multi-dimensional class Bayesian classifiers

In Figure 2, we show the different families of multi-dimensional classifiers.

In van der Gaag and de Waal (2006) and de Waal and van der Gaag (2007), the authors present
a single-objective learning approach of MDnB and MDTAN classifiers ® In this work we propose
a multi-objective learning approach of multi-dimensional Bayesian classifiers. This approach also
allows to learn classifiers without structural restrictions in either the class subgraph or the feature
subgraph. In Section 4.3 we will introduce this structural learning approach in detail.

4 Learning multi-dimensional Bayesian network classifiers
by means of multi-objective optimization

4.1 Multi-objective approach to multi-dimensional classification

As we have seen in Section 3.1, in one-class supervised classification we have to find a clas-
sifier that maximizes the accuracy of the class variable given an data set of instances D =
{(x®,cM), ... (x(@ cD)}, In multi-dimensional classification, the aim could be to find a clas-
sifier that maximizes the accuracy of all the class variables simultaneously (joint evaluation), or
to find the classifier that maximizes the accuracy of each class variable (single evaluation). Our
approach considers the learning of multi-dimensional Bayesian classifiers whose objective is to
maximize the accuracy of each class variable. In order to carry out this approach, we suppose
that there are classifiers whose accuracy can not been improved for one class variable without
getting worse for any other class variable.

To carry out this approach to multi-dimensional classification by means of multi-objective
optimization, we use a well-known multi-objective evolutionary algorithm (MOEA): the multi-

3In this article we have called them vG-MDnB and dW-MDTAN.



objective evolutionary algorithm based on decomposition (Zhang and Li, 2007; Li and Zhang,
2009) (MOEA /D). We have chosen this algorithm because of its success in experimental domains.

Other multi-objective approaches to supervised classification have been developed by the re-
search community, but none of them takes into account multi-dimensional class prediction. All
the approaches developed so far have focused on a single class variable and try to optimize dif-
ferent aspects such as: accuracy of the classifier and number of selected attributes, sensitivity
on ROC curves, rule mining and partial classification, model accuracy versus model complexity,
feature selection, accuracy on two different data sets or ensemble learning by means of integration
of diverse classifiers (Freitas, 2004; Handl et al., 2007).

4.2 Multi-objective optimization

A multi-objective optimization problem (MOP) can be defined as an optimization problem with
multiple objectives measured with different performance functions, usually in conflict with each
other, and a set of restrictions. Hence, the optimization consists of finding such a solution which
would give the values of all the objective functions acceptable to a decision maker (Osyczka, 1985),
who have to chose the prefered optimal solution. The aim is to find good compromises (trade-offs)
rather than a single solution (Coello et al., 2006).

Formally, a multi-objective optimization problem can be formulated as finding the vector x

that satisfies | inequality restrictions g;(x) > 0 for ¢ = 1,2,--- 1 and k equality restrictions
hi(x) = 0 for i = 1,2,--- ,k and optimizes (maximizes or minimizes) the vector of objective
functions:

An important concept in multi-objective optimization is the Pareto dominance: A vector

u = (u1, - ,Up) is said to dominate v = (vy, -+ ,vy,) (denoted by u < v) if and only if u is
partially less (on minimization) than v. Thatis Vi € {1,--- ,m},u; <v;AFj e {l,--- ,m}:y; <
Uj

A Edgeworth-Pareto optimal solution (Stadler, 1988) is a nondominated solution, that is, a
solution that is impossible to improve in any objective function without a simultaneous worsening
in some other objectives. The set of Pareto optimal solutions composes a Pareto optimal set
and their images form a Pareto front. The expected solution of a multi-objective optimization
problem is therefore, a Pareto front representing the values of the performance functions for each
objective. The Pareto front usually contains more than one element because there exist different
trade-off solutions to the problem. So, in practice, a human decision maker have to choose the
most suitable solution.

MOEA/D decomposes the multi-objective optimization problem into a number of scalar op-
timization subproblems and then optimizes them simultaneously. We use a Tchebycheff ap-
proach (Miettinen, 1999) to decompose the problem into P subproblems by using a weigh vector
(Al,--- ,AP). It maintains a population of classifiers composed of the best solutions found so
far for each subproblem. At each step of the algorithm, and for each subproblem 4, it develops a
new solution crossing current solutions in the neighbour of the i-th subproblem (in the proposed
experimentation we use one-point cross-over for binary solutions and PMX cross-over for permu-
tation solutions (Larrafiaga et al., 1999)). A neighborhood of a weight vector AJ is deifiAned as a
set of its T' closest weight vectors in (A{, -+, A ). The new solution replaces a maximum of nr
solutions of the neighbourhood that are improved by the new solution. Finally, at each iteration of
the problem we maintain a external population with the best non-dominated solutions found so far.

The main input parameters for the algorithm are:



e P: The number of subproblems in which we decompose the multi-objective optimization
problem.

(AL, .- AP): A uniform spread of weight vectors.
e T': The number of neighbors of each subproblem.

e nr: Number of replacements in the neighbourhood.
e A stop criterion.

The output is the set of best non-dominated solutions found during the search.

The algorithm works as follows:
e Step 1: Initialization.

— Step 1.1: Initialize an external population EP.

Step 1.2: Compute Euclidean distances between the P weight vectors and find the T’
closest neighbors of each subproblem.

— Step 1.3: Generate an initial population.

Step 1.4: Initilize Z, a vector with the best solution for each subproblem.
e Step 2: Update. Fori=1,---, P do
— Step 2.1: Reproduction. Selection of 2 solutions and generation of a new solution
based on genetic operators.
— Step 2.2: Improvement of the new solution if needed.
— Step 2.3: Update of neighborhood solutions.
— Step 2.4: Update of external population EP.

* Remove from EP all the solutions dominated by the new solutions.
* Add the new solution to EP if no solution in EP dominates it.

e Step 3: Stoping Criteria

4.3 Structural learning approach

This section describes in detail the multi-objective optimization approach to learn the multi-
dimensional class Bayesian classifier structures proposed in this work.

In our approach, we use a multi-objective optimization problem to carry out the learning of the
structure S of a multi-dimensional Bayesian network classifier B. The search space is composed of
the multi-dimensional Bayesian classifiers with no structural restrictions in Ac, Ar and Acr sets
of arcs. The objective functions of the multi-objective optimization problem are the r repeated k-
fold cross-validation error estimations (kcv) of each class variable separately (the single evaluation
of each class):

kev(v) = [kevi (), -, kevp, (V)]

where 1 is a multi-dimensional classifier.
To carry out the search procedure, each possible multi-dimensional Bayesian network classifier
structure is codified by a vector formed by three parts (Figure 3):
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e The first part is a permutation of the class variables V> and represents an ancestral order
over them. Its size is equal to the number of class variables.

e The second part is a binary vector that represents all the possible arcs of the feature selection
subgraph Acp. Its size is equal to the number of class variables times the number of
predictive variables.

e The third part is a permutation of the features Vr and represents an ancestral order over
them. Its size is equal to the number of predictive variables.

L m i+ m - N—————n ———
| Vo | Acr | Vr |

Permutation Binary Permutation

Figure 3: Codification of an individual

To recover a Bayesian network classifier structure, each individual is decodified as follows:

e The first permutation part represents an ancestral order in Vio. Therefore, each class variable
can be a parent of its successors in the ancestral order. In order to determine the set of arcs
in Ac, we carry out a statistical test (see below).

e The binary part represents Acg. A value 1 represents an arc between a class variable and
a feature.

e The last permutation part represents an ancestral order in Vp. We let each predictive
variable be a parent of its successors in the ancestral order. We carry out a statistical test
(see below), in order to determine the set of arcs in Ap.

The independence test we use to determine if a dependence between two variables is strong
enough to be part of the model is based on the mutual information between them: It is known
(Kullback, 1959) that 2Nf(Xi,Xj), if X; and X, are independent, asymptotically follows a
x? distribution with (r; — 1)(r; — 1) degrees of freedom where N is the number of cases, X;
and X; are random variables and 7; and r; are the cardinality of X; and X, respectively:
Limy—0c2N1(Xi, X;) ~ X3, 1), 1)

Based on this result, a null hypothesis test can be carried out in a multi-dimensional Bayesian
network classifier to check the possible dependences in Ac. The null hypothesis Hy is: “the ran-
dom variables C; and C; are independent”. So, if the quantity 2V I (C;, C;) surpasses a threshold
s, for a given test size o = f;;o x%ti_l)(tj_l)ds, where t; is the cardinality of C;, and t; the
cardinality of Cj, the null hypothesis is rejected and there is a dependence between C; and Cj.
Therefore the arc between C; and Cj is included in the model. This test was used on single-class
Bayesian network classifiers to check the dependences among the class variables and the features
(Blanco, 2005).

In this work, we use the conditional mutual information between a feature X; and a feature
X, given its parents Pa(X;) to determine if the relation between two features X; and X, in Ap
should be included in the model. We have generalized the previous result to the case of conditional
mutual information as follows (Kullback, 1959):

Limy—s2NI(X;, X;|Pa(X;)) ~ Xri1)(r; —1)([Pa(X,))

11



where r; is the cardinality of X;, r; the cardinality of X; and |Pa(X})| the cardinality of the
parents of X;.

Analogously to the hypothesis test described before, based on these results we can perform
the following conditional independence test. The null hypothesis Hy is: “the random variables X;
and X; are conditionally independent, given Pa(X;)*. So, if the quantity 2NI(X;, X;|Pa(X;))
surpasses a threshold s, for a given test size a = fszo X?”_l)m_1)(|Pa(xj)‘)ds, the null hypothesis
is rejected and the random variables X; and X are considered dependent given Pa(X;). There-
fore the arc is included in the model.

For example, given a problem with 2 class variables and 3 features, the following individual
(1,2]1,0.1,0.1,0/2, 1, 3), is decodified in the following way:

In order to build A¢, we use the first permutation part formed by (1,2, ---). It represents the
ancestral order (C1,C3). If 2NI(Cq, Cs) surpasses the previously defined independence test, the
arc is included in the model. We can suppose that in this case the arc is included in the model.
The second part is a binary vector formed by (---,1,0.1,0.1,0.- - - ) and represent the dependences
among the class variables and the features, that is, Acr. There are three features and two class
variables, so the first 3 positions of this part (---,1,0.1,-- ) represents the dependences between
the first class variable C; and the features and the following 3 positions (---,0.1,0.---) the de-
pendences of the second class variable Cy with the features. A 1 in a position represents an arc.
In this case there are dependences from C; to X; and X3, and from C5 to X5. Finally, we have to
build Ar. In order to do this, we use the last permutation part formed by (---,2,1,3). This rep-
resents the ancestral order (X2,X7,X3). The arcs that surpass the previously defined conditional
independence test are included in the model. In this case we have to check 2N I (X5, X;|Pa(X1)),
2NI1(Xs, X5|Pa(X3)) and 2N1 (X1, X5|Pa(X3)). In this example, we can suppose that the only
conditional dependence among variables that does not surpass the independence test is the one
from X5 to X7 (2NI(X2, X;|Pa(X1))), and therefore, it is the only arc among features that is
not included in the model. The obtained classifier structure is given in Figure 4.

Figure 4: The classifier encoded in the individual (1,2|1,0.1,0.1,0|2,1,3). We suppose that the
only conditional dependence among variables that does not surpass the independence test is the
one from X5 to X3

5 Experimental set-up

In this section, we present the proposed experimentation in order to evaluate our learning approach
to multi-dimensional Bayesian network classifiers. We analyze the following aspects:

e The robustness and stability of the proposed learning approach in relation to the variability

12



sources: How does the Pareto set change in different MOEA /D runs or with different training
sets?

e We compare the proposed classification rules.

e The result of our proposal is compared with both single-objective learning approaches and
single-class approaches to multi-dimensional classification, in the context of Bayesian net-
works classifiers.

5.1 The experimental process

In order to carry out the experimentation required to evaluate our approach, we use some artificial
multi-dimensional data sets and one real world data set.

The artificial data sets are sampled from multi-dimensional feature-label probability distri-
butions p(x,c) represented as multi-dimensional Bayesian network classifiers. These Bayesian
network classifiers have been created in two steps. First, the structure of the multi-dimensional
Bayesian network classifier was created with the Java Bayes software (Cozman, 2000) and then we
obtained the parameters by sampling a Dirichlet distribution with all parameters equal to one. We
have chosen the following structures: MDnB, MDTAN, MDPoly and MDJ/K. These structures
have been created with 8 predictive variables and taking 2 and 3 class variables into account. The
cardinality of the predictive variables ranges from 2 to 4 and the cardinality of the classes from 2
to 3. In the case of MDJ/K, we use J =1 and K = 2 (Figure 2) for 2 class variables and J = 2
and K = 2 for 3 class variables. Once the multi-dimensional Bayesian network classifiers have
been created, we sample 5 data sets from each of them. Specifically, we sample 40 artificial data
sets (5 for each different structure (4) and number of class variables (2)) of 200 instances each.

Typical benchmark data repositories in supervised classification do not provide data sets with
multiple class variables. However, there is a data set in the UCI Machine Learning Repository
(Asuncion and Newman, 2007) where several attributes can be used as class variables: Automobile
data set. This data set has 205 instances and 26 predictive variables. Some variables are contin-
uous and others discrete and there are missing values in some instances. We pre-processed this
data set by discretizing all the continuous variables to 2 nominal values (Fayyad and Irani, 1993)
and deleting the instances and predictive variables with missing values (we deleted 2 predictive
variables and 13 instances). This data set is used considering two class variables (price and sym-
boling) and three class variables (highway-mpg, price and symboling).

We use the MOEA /D algorithm as the learning engine. The parameters used for the experi-
ments with this algorithm were fixed as follows:

e Number of subproblems: S = 100« (individual size).

e Number of neighbours for each subproblem: 7' = 20.

Stop criterion: 100.000 evaluations.

Number of replacements in the neighbourhood: nr = 2.

e Objective functions: We use the 5 repeated 5-fold cross-validation error estimation of each
class variable.

In order to study the stability of the proposed learning approach with regard to different runs of
the learning algorithm, we run MOEA /D 5 times for each artifical data set.
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So as to make all these experiments possible, we use different open source libraries in Java.
For the classification utilities we use the ICLAB library (Calvo and Flores, 2009) and the weka
library (Witten and Frank, 2000) and for the multi-objective optimization utilities we use the
jMetal library (Durillo et al., 2006).

5.2 Pareto evaluation

The results of the multi-objective learning are presented in a Pareto front composed of non-
dominated solutions. Each point of the Pareto front represents the accuracies for each class of
a specific classifier. Therefore, in order to compare different runs of the MOEA /D algorithm
with the same data set or the classifiers obtained with different data sets, we need to compare
several Pareto fronts. The community working in the field of multi-objective optimization has
devised several measures to evaluate different Pareto fronts. Basically a good Pareto front has its
points uniformly spread around the real Pareto front and covers the complete real Pareto front.
In this paper, we have adopted different measures to evaluate the obtained Pareto fronts and the
classifiers on it:

e Size of the dominated space S(A) (Zitzler and Thiele, 1999): It measures the amount of the
objective space that is covered by a given non-dominated set of classifiers A (Figure 5 for
an illustration in a two class problem). A high value of S(A) indicates that the classifiers
in A have good accuracy values for all class variables.

1

Accuracy C,

S(A)

Accuracy C; 1
Figure 5: Calculation of S(A).
e Non-uniformity of a Pareto front D(A) (Lee et al., 2005): This quantity measures the non-

uniformity of the distribution of a Pareto front, and it is given by the distribution of the
Euclidean distance d; between each pair of closest points along the Pareto front:

2_;(di/dm —1)?
oAl

This quantity is the standard deviation of the distances normalized by the average distance
dm. If D(A) = 0, the spacing in the Pareto front is uniform. Therefore, a lower value means
a more uniform spread of the Pareto front.

14



In addition to the previous two measures and in order to better evaluate the obtained Pareto
fronts from a classification point of view, we have included in our analysis some classifiers of the
Pareto front we call representative classifiers. Therefore, we have selected the most extreme clas-
sifiers (the most accurate classifiers for a single class variable) and the most balanced classifier
(the highest average accurate classifier) of each Pareto front (Figure 6).

- Best classifier
- for class 2
| ]
| |
| |
Best classifier
DN - for class 1
2 ]
Q [ ]
=]
3] Best average
2 classifier ]
| |
| |

Accuracy C

Figure 6: Representative classifiers of a Pareto front.

6 Results

The proposed approach returns a Pareto front composed of a set of non-dominated classifiers.
The obtained Pareto fronts show different trade-off solutions to the multi-dimensional classifi-
cation problem. Each point of the Pareto front represents the accuracies of a classifier for the
different class variables.

In order to illustrate the achieved results, we have plotted some Pareto fronts produced in
a single MOEA /D run. For each multi-dimensional structure (MDnB, MDTAN, MDPoly and
MD1/2) with 2 class variables, we show the results for one data set sampled with that structure
(figures 7, 8, 9 and 10). Each figure shows a Pareto front for each classification rule. We also
show the results for the Automobile data set (Figure 11) with 2 class variables. 4

This results section is organized at follows: First, we measure the robustness and stability
of the proposed approach for different variability sources (Section 6.1). Then, the results for
different classification rules are compared (Section 6.2). Finally, we compare the results of the
proposed multi-objective learning approach with other Bayesian network classification approaches
to multi-dimensional classification (Section 6.3).

4The complete results (for all the data sets and MOEA/D runs) can be consulted at
http://www.sc.ehu.es/ccwbayes/members/juandiego/MOPLearning/
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Figure 7: Accuracy values of classifiers in the Pareto fronts learnt in one data set sampled from
a 2 class multi-dimensional classifier with a MDnB structure in a single MOEA /D run.
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Figure 8: Accuracy values of classifiers in the Pareto fronts learnt in one data set sampled from
a 2 class multi-dimensional classifier with a MDTAN structure in a single MOEA /D run.

6.1 Robustness and stability of the proposed learning approach

We start by analyzing the stability of our approach with regard to different executions of the
learning algorithm. In order to do that, we measure the variance accross 5 different MOEA /D
runs with the same training set. The results can be consulted in tables 1, 2, 3, 4, 5 and 6. Each
value in the following tables represents the average and the standard deviation for 5 MOEA /D
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Figure 9: Accuracy values of classifiers in the Pareto fronts learnt in one data set sampled from
a 2 class multi-dimensional classifier with a MDPoly structure in a single MOEA /D run.
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Figure 10: Accuracy values of classifiers in the Pareto fronts learnt in one data set sampled from
a 2 class multi-dimensional classifier with a MD1/2 structure in a single MOEA /D run.

runs of the corresponding measure for each classification rule and each multi-dimensional structure.

Tables 1 and 2 show the mean and the standard deviation of the S(A) value of the Pareto
fronts obtained from the artificial data sets with 2 and 3 class variables respectively.

The size of dominated space of the obtained Pareto fronts is almost the same for different
MOEA /D runs. The standard deviation of S(A) is in the order of magnitude of 10~ for almost
all the data sets, a very low variance value because S(A) is a value bound between 0 and 1.
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Table 1: Mean and standard deviation for 5 MOEA /D runs of the S(A) value of Pareto fronts
obtai

Table 2: Mean and standard deviation for 5 MOEA/D runs of the S(A) value of Pareto fronts
obtai

ned from 2 class artificial data sets.
S(A) | Datasetl | Dataset2 | Dataset3 | Dataset4 | Datasetd |

MDnB 0.660 £+ 2.8E-3 | 0.585 £ 2.3E-3 | 0.546 £ 8.7E-3 | 0.577 + 2.5E-3 | 0.642 + 1.4E-3
Joint MDTAN || 0.607 + 5.8E-3 | 0.630 + 1.1E-2 | 0.630 + 4.5E-3 | 0.607 + 6.1E-3 | 0.637 + 6.2E-4
MDPoly | 0.615 £ 1.7E-3 | 0.574 £ 6.0E-3 | 0.649 + 4.5E-3 | 0.660 £ 2.2E-3 | 0.591 + 8.3E-3
MD1/2 | 0.659 £ 7.6E-3 | 0.630 + 3.8E-3 | 0.662 + 1.7E-3 | 0.663 + 7.3E-3 | 0.688 + 8.8E-3
MDnB | 0.606 £ 2.7E-3 | 0.628 + 8.6E-3 | 0.629 + 4.8E-3 | 0.607 £ 2.9E-3 | 0.638 + 9.5E-4
Mar. MDTAN || 0.657 + 1.5E-3 | 0.583 + 1.2E-3 | 0.544 + 7.3E-3 | 0.576 + 1.3E-3 | 0.641 + 1.2E-3
: MDPoly | 0.613 £ 1.2E-3 | 0.573 + 3.6E-3 | 0.649 £+ 1.9E-3 | 0.660 + 2.6E-3 | 0.590 + 4.3E-3
MD1/2 | 0.658 £ 3.5E-3 | 0.627 + 1.3E-3 | 0.660 + 2.7E-3 | 0.660 £ 9.0E-3 | 0.687 + 9.0E-3
MDnB | 0.658 £ 3.2E-3 | 0.585 + LAE-3 | 0.542 £ 6.9E-3 | 0.577 £ LIE-3 | 0.641 £ 1.8E-3
Cond. MDTAN | 0.606 + 3.0E-3 | 0.626 + 4.6E-3 | 0.630 + 1.7E-3 | 0.606 £+ 2.5E-3 | 0.637 + 1.2E-3
MDPoly | 0.613 £ 9.9E-4 | 0.572 + 3.0E-3 | 0.646 + 9.1E-4 | 0.659 + 1.2E-3 | 0.589 + 3.2E-3
MD1/2 | 0.655 £ 1.1E-3 | 0.628 £+ 1.9E-3 | 0.660 + 1.0E-3 | 0.660 + 7.2E-3 | 0.686 £ 6.5E-3
MDnB | 0.656 £ 4.9E-3 | 0.584 = 8.0E-4 | 0.542 £ 6.9E-3 | 0.577 £ 1.3E-3 | 0.640 £ 1.IE-3
Tter MDTAN | 0.605 + 3.3E-3 | 0.626 + 3.9E-3 | 0.629 + 5.7E-4 | 0.606 £+ 2.2E-3 | 0.637 + 5.5E-4
" | MDPoly | 0.613 £ 2.1E-3 | 0.571 + 1.3E-3 | 0.647 £ 1.8E-3 | 0.659 + 1.8E-3 | 0.587 £ 5.6E-3
MD1/2 | 0.655 £ 1.3E-3 | 0.627 £ 1.2E-3 | 0.660 + 1.0E-3 | 0.659 + 7.3E-3 | 0.684 £ 6.1E-3

ned from 3 class artificial data sets.
S(A) | Dataset1 | Dataset2 | Dataset3 | Datasetd | Dataset5 |
MDnB 0.705 £ 5.6E-3 | 0.735 £ 5.3E-3 | 0.739 £ 5.4E-3 | 0.771 + 3.3E-3 | 0.858 £+ 2.5E-3
Joint MDTAN || 0.663 + 1.1E-2 | 0.695 + 8.9E-3 | 0.671 + 3.9E-3 | 0.646 + 6.1E-3 | 0.677 £ 6.0E-3
MDPoly | 0.581 + 6.4E-3 | 0.589 + 1.0E-2 | 0.525 £+ 6.4E-3 | 0.482 £+ 1.5E-2 | 0.591 + 9.3E-3
MD2/2 | 0.676 £ 8.5E-3 | 0.727 £ 1.8E-2 | 0.715 + 4.1E-2 | 0.616 + 9.1E-3 | 0.615 £ 3.8E-3
MDnB || 0.707 £ 5.4E-3 | 0.726 + LIE-2 | 0.741 £ 4.25-3 | 0.772 = 44E-3 | 0.850 + 2.76-3
Ve, | VDTN [ 0663 £ 26E-3 | 0.695 + 13E-3 | 0673 + 19E-3 | 0.638 + 15E-2 | 0679 & 16E-2
" | MDPoly | 0.572 + 1.0E-2 | 0.594 £+ 5.3E-3 | 0.520 £ 4.4E-3 | 0.488 £+ 1.3E-2 | 0.576 + 1.4E-2
MD2/2 | 0.678 £ 1.2E-2 | 0.725 £+ 1.8E-2 | 0.706 + 4.7E-2 | 0.620 + 9.3E-3 | 0.612 £ 6.1E-3
MDuB [ 0.701 £ 8353 | 0.728 = LIE-2 | 0.736 £ 5,563 | 0.772 = 43E-3 | 0.860 + 2,663
Cond, | VIDTAN | 0666 + 32E-3 | 0.097 + 45E-3 | 0673 + 2853 | 0.041 + 14E-2 | 0,688 & 14E-2
MDPoly | 0.576 £ 7.7E-3 | 0.596 + 7.6E-3 | 0.520 £+ 3.3E-3 | 0.482 + 1.7E-2 | 0.586 + 7.5E-3
MD2/2 | 0.665 £ 3.0E-2 | 0.731 £ 1.2E-2 | 0.731 + 4.0E-3 | 0.621 + 7.0E-3 | 0.612 £ 4.9E-3
MDuB | 0.704  59E-3 | 0.735 £ 10E-2 | 0.741 £ 5.7E-3 | 0.772 + 1.9E-3 | 0.856 & 3.2E-3
Tter. MDTAN || 0.664 + 3.6E-3 | 0.689 + 5.1E-3 | 0.672 + 2.4E-3 | 0.632 + 1.3E-2 | 0.687 £ 1.6E-2
MDPoly | 0.574 £ 6.7E-3 | 0.593 + 1.0E-2 | 0.521 £ 5.8E-3 | 0.484 + 9.9E-3 | 0.587 + 5.0E-3
MD2/2 0.681 + 3.6E-3 | 0.725 £ 1.8E-2 | 0.731 + 3.9E-3 | 0.612 + 8.0E-3 | 0.612 £ 8.1E-3
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Figure 11: Accuracy values of the Pareto fronts learnt in the Automobile data set with 2 class
variables in a single MOEA /D run.

Moreover, all the measured values are between 0.48 and 0.86. The variance of the size of the
dominated space seems to be slightly lower in 2 class variable data sets than in 3 class variable
data sets. However, the size of the dominated space of the proposed approach is very stable for
different learning algorithm runs.

Tables 3 and 4 show the mean and the standard deviation of the D(A) value of the Pareto
fronts obtained from artificial data sets with 2 and 3 class variables respectively.

Contrary to the case of S(A), we observe significative changes in the non-uniformity of the
obtained Pareto fronts for different MOEA/D runs. The standard deviation of D(A) is in the
order of magnitude of 10~! for almost all the data sets. Another interesting aspect is that the
variance of the non-uniformity of the obtained Pareto fronts is very similar for different number
of class variables. So, in this case it seems that the number of class variables does not influence
in the uniformity of the Pareto front.

Finally, we analyze the representative classifiers of the obtained Pareto fronts. Tables 5 and 6
show the accuracy and its standard deviation of the representative classifiers of each Pareto front
obtained from artificial data sets with 2 and 3 class variables respectively.

The accuracy of the representative classifiers of the obtained Pareto fronts is very similar for
different MOEA /D runs. The standar deviation is in the order of magnitude of 1072 of the ac-
curacy for almost all the data sets, a very low variance value because all the measured values are
between 0.56 and 0.95. The variance seems to be slightly lower in 2 class variable data sets than
in 3 class variable data sets, but in the same order of magnitude.

If we focus on the most extreme classifiers (the most accurate for a particular class variable),
we show that the variance of the acccuracy for that particular class variable is lower than the
variance of the accuracy of the rest class variables, a good result if our objective is that class vari-
able. Finally, the variance of the accuracy of the most balanced classifiers (the highest average
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Table 3: Mean and standard deviation for 5 MOEA/D runs of the D(A) value of Pareto fronts

obtained from 2 class artificial data sets.

D(4) H Data set 1 ‘ Data set, 2 ‘ Data set 3 ‘ Data set 4 ‘ Data set 5 ‘

MDnB 0.718+7.4E-2 | 1.022+6.3E-1 | 0.662+1.6E-1 | 0.643+8.8E-2 | 0.513+2.3E-1

Joint MDTAN || 1.081£1.5E-1 | 1.357+£2.5E-1 | 0.859+2.1E-1 | 2.0504+4.7E-1 | 1.4674+3.5E-1
MDPoly | 0.9294+6.1E-1 | 0.483+1.7E-1 | 0.6134+3.1E-1 | 0.657+1.9E-1 | 0.711£1.0E-1

MD1/2 0.91847.2E-1 | 0.678+1.4E-1 | 0.572+2.1E-1 | 1.117£5.0E-1 | 1.005+4.6E-1

MDnB 0.628+8.3E-2 | 0.581+1.5E-1 | 0.665+1.5E-1 | 0.668+1.5E-1 | 0.591£1.7E-1

Mar. MDTAN || 1.158+1.7E-1 | 1.491+£1.7E-1 | 0.627+£2.4E-1 | 1.975+2.2E-1 | 1.37842.5E-1
MDPoly | 0.566+1.4E-1 | 0.592+2.6E-1 | 0.496+1.1E-1 | 0.516+9.0E-2 | 0.655+1.6E-1

MD1/2 0.480+1.3E-1 | 0.6044+2.1E-1 | 0.5394+1.5E-1 | 0.948+6.1E-1 | 0.603+£2.5E-1

MDnB 0.662+9.2E-2 | 0.575+1.5E-1 | 0.5734+1.0E-1 | 0.458+1.3E-1 | 0.431£1.3E-1

Cond. MDTAN | 1.366+2.5E-1 | 1.478+2.6E-1 | 0.718+2.7E-1 | 1.947+2.7E-1 | 1.363+1.3E-1
MDPoly | 0.495+2.1E-1 | 0.493+1.9E-1 | 0.553+1.1E-1 | 0.369+9.9E-2 | 0.665+2.4E-1

MD1/2 0.641+£1.4E-1 | 0.532+1.4E-1 | 0.4534+4.6E-2 | 0.765+3.3E-1 | 0.960+3.7E-1

MDnB 0.697+1.2E-1 | 0.601+1.7E-1 | 0.5614+1.7E-1 | 0.406£1.9E-1 | 0.531£2.0E-1

Tter MDTAN | 1.194£1.7E-1 | 1.459+1.3E-1 | 0.759+6.3E-1 | 2.1254+2.7E-1 | 1.4254+2.6E-1
' MDPoly | 0.582+1.9E-1 | 0.666+2.3E-1 | 0.479+1.2E-1 | 0.601+9.4E-2 | 0.620+1.6E-1
MD1/2 0.640+1.3E-1 | 0.694+2.1E-1 | 0.670+7.3E-2 | 0.605+2.4E-1 | 0.921+4.3E-1

Table 4: Mean and standard deviation for 5 MOEA/D runs of the D(A) value of Pareto fronts

obtained from 3 class artificial data sets.

\ D(4) | Datasetl | Dataset2 | Dataset3 | Datasetd | Dataset) |
MDnB 0.852£7.7E-2 | 0.667+7.9E-2 | 0.72549.5E-2 | 0.845+1.2E-1 | 1.448+2.6E-1
Joint MDTAN | 1.245+4.0E-1 | 0.970+3.4E-1 | 1.570+3.4E-1 | 0.851+1.9E-1 | 0.88045.0E-2
MDPoly | 0.849+7.8E-2 | 0.795+6.2E-2 | 0.902+£1.4E-1 | 0.777£1.0E-1 | 0.975+3.5E-2
MD2/2 || 0.926+7.2E-2 | 0.892+1.0E-1 | 0.887+1.1E-1 | 0.698+3.7E-2 | 0.855+1.1E-1
MDnB 0.961+1.4E-1 | 0.6704+2.6E-2 | 0.655+5.6E-2 | 0.730+7.9E-2 | 1.595+3.7E-1
Mar MDTAN | 0.971+4.4E-1 | 0.943+£3.3E-1 | 1.552+4.5E-1 | 0.869+1.8E-1 | 0.947+6.1E-2
" | MDPoly || 0.914+5.6E-2 | 0.742+9.1E-2 | 0.959+8.9E-2 | 0.723+4.0E-2 | 1.019+7.2E-2
MD2/2 || 0.922+7.5E-2 | 0.991+£9.4E-2 | 0.8544+2.0E-1 | 0.774+6.0E-2 | 0.894+1.2E-1
MDnB 0.883+4.7E-2 | 0.635+3.9E-2 | 0.793+1.1E-1 | 0.705+4.8E-2 | 1.509+2.8E-1
Cond MDTAN | 1.217+£3.9E-1 | 0.959+3.9E-1 | 1.842+5.1E-1 | 0.875+3.2E-1 | 0.927+1.0E-1
" | MDPoly || 0.900+9.4E-2 | 0.736+8.2E-2 | 0.91847.2E-2 | 0.8644+1.2E-1 | 1.05045.5E-2
MD2/2 || 0.907+3.5E-2 | 1.042+1.4E-1 | 0.915+7.9E-2 | 0.729+1.2E-1 | 0.838+1.0E-1
MDnB 0.945+1.6E-1 | 0.656+3.8E-2 | 0.635+4.6E-2 | 0.787+1.3E-1 | 1.561+1.7E-1
Tter. MDTAN | 1.01843.9E-1 | 1.065+3.0E-1 | 1.896+4.5E-1 | 0.794+1.1E-1 | 0.91545.0E-2
MDPoly | 0.938+5.1E-2 | 0.725+6.9E-2 | 0.911+1.0E-1 | 0.697+5.9E-2 | 1.087+7.1E-2
MD2/2 0.912+4.5E-2 | 0.7784+1.0E-1 | 0.836+£1.2E-1 | 0.6914+8.2E-2 | 0.802+3.1E-2
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Table 5: Mean and standard deviation for 5 learning algorithm runs of the accuracy of the
representative classifiers of Pareto fronts obtained from 2 class artificial data sets.

Best Classifier for C; Best Classifier for Cy Best average Classifier
@ Cy 4 Cy @) Cy

MDnB  |0.729 + 3.3E-3(0.794 + 1.7E-2 0.690 & 1.1E-2(0.827 & 2.6E-3|0.711 + 9.2E-3 0.818 + 6.2E-3

Joint MDTAN 0.716 £ 4.0E-3[0.820 + 8.0E-3 0.605 & 1.4E-2(0.872 £ 5.1E-3 |0.678 + 3.7E-2 0.846 + 1.5E-2
MDPoly [0.752 £ 2.5E-30.793 4 8.0E-3 0.709 + 2.3E-2 0.822 + 4.6E-3 |0.740 + 6.9E-3 0.809 + 7.4E-3

MD1/2 0.836 + 3.7E-3 0.745 + 2.2E-2(0.792 £+ 2.2E-2 0.791 + 4.7E-3|(0.824 £+ 7.2E-3 0.772 £ 1.1E-2

MDnB  |0.727 £ 3.0E-3[0.802 + 5.4E-3 0.695 & 6.2E-3{0.825 & 1.2E-3|0.708 + 7.5E-3 0.820 + 5.0E-3

Mar. MDTAN 0.716 £ 3.1E-3[0.820 + 8.0E-3 0.605 & 1.5E-2(0.871 £ 3.0E-3 |0.665 + 3.7E-2 0.853 + 1.4E-2
MDPoly [0.751 + 1.5E-30.794 £ 6.4E-3|0.718 & 8.5E-3(0.822 + 3.2E-3|0.736 £ 9.9E-30.811 + 6.6E-3

MD1/2 0.835 £+ 3.4E-3 0.747 + 1.9E-2(0.804 £ 8.6E-3 0.789 + 4.3E-3|(0.820 &+ 1.2E-2 0.776 £ 1.2E-2

MDnB  [0.727 + 3.1E-30.801 + 4.1E-3]D.697 + 3.8F-30.826 + 1.3E-3 [0.714 £ 7.5E-3]0.816 + 6.7F-3

Cond. MDTAN 0.716 £ 2.3E-3(0.820 + 9.6E-3 0.609 & 1.1E-2(0.870 £ 2.7E-3|0.697 + 1.6E-2 0.844 + 1.5E-2
MDPoly [0.751 + 1.3E-30.796 £ 5.6E-3|0.718 & 9.9E-3|0.821 + 3.0E-3 |0.740 £ 9.5E-3(0.809 + 7.9E-3

MD1/2 [0.834 + 3.0E-30.751 £+ 1.2E-2|0.803 + 8.4E-3 0.789 + 3.0E-3 |0.819 + 1.1E-2 0.778 + 9.6E-3

MDnB  [0.727 + 2.8E-3[0.803 + 4.2E-3]D.698 + 8.1F-3 [0.825 + 2.0E-3 [0.711 + 1.1E-2[0.816 + 5.4F-3

ler, | MDTAN [0.716 + 1.9E-30.822 + 6.7E-3|0.608 - 8.8E-3/0.870 :t 2.2-3|0.671  4.0E-2 .848 + 1.4E-2
" | MDPoly [0.751 + 1.6E-30.795 £ 6.1E-3{0.720 £ 6.7E-30.820 + 2.1E-3|0.737 £ 8.4E-3(0.811 & 5.9E-3
MD1/2 [0.834 + 2.6E-30.755 + 1.1E-2|0.801 + 8.6E-3 0.788 + 2.3E-3 |0.820 £ 9.6E-3 0.777 £ 9.1E-3

accurate classifiers) is similar for all class variables.

We also study the stability of the proposed approach for different training sets. To that end,
we show in tables 7 and 8 the standar deviation for different training sets of the S(A) and D(A)
values, and the accuracy of the representative classifiers of the obtained Pareto fronts with artifi-
cial data sets with 2 and 3 class variables respectively. Each value for each classification rule and
each multi-dimensional structure, represents the average of the standard deviation for 5 different
data sets and 5 MOEA /D runs for each data set.

We notice that the variance over different data sets is higher than the variance over different
learning algorithm runs. That is because the variance for different training sets includes the
variability for different learning algorithm runs. The size of the dominated space of the obtained
Pareto fronts is almost the same for different training sets. The standard deviation of the S(A)
value is in the order of magnitude of 102 for almost all the data sets.

The non-uniformity of the Pareto fronts varies for different training sets. The standard de-
viation of the D(A) value is in the order of magnitude of 107! for almost all the data sets and
furthermore, it is very similar for different number of class variables. So, it seems that the number
of class variables does not influence the uniformity of the Pareto front.

Finally, we focus on the variance of the accuracy of the representative classifiers of the obtained
Pareto fronts. The standard deviation is in the order of magnitude of 1072 for almost all the data
sets, a low variance value, and it seems to be slightly lower in 2 class variable data sets than in 3
class variable data sets (but in the same order of magnitude).

We conclude the study of the robustness of the proposed approach with the following conclu-
sion: Although the proposed approach seems to return different classifiers for different training
sets and MOEA /D runs, they cover a similar part of the accuracy space and maintain similar ac-
curacy values for the reference classifiers. So, our approach seems to be robust for both variability
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Table 6: Mean and standard deviation for 5 learning algorithm runs of the accuracy of the representative classifiers of Pareto fronts
obtained from 3 class artificial data sets.

(44

Best Classifier for C1 Best Classifier for Cs

[@ Cy Cs [&) Cy Cs
MDnB 0.807 & 2.8E-3 | 0.924 + 2.5E-3 | 0.857 + 7.4E-3 || 0.733 £ 2.2E-2 | 0.950 + 7.8E-4 | 0.895 & 9.6E-3
Joint MDTAN 0.814 £+ 3.6E-3 | 0.775 £ 1.8E-2 | 0.929 &+ 6.2E-3 0.791 £ 3.8E-3 | 0.846 £+ 2.7E-3 | 0.926 &+ 3.5E-3
MDPoly 0.694 £ 7.5E-3 | 0.721 £ 1.7E-2 | 0.751 &+ 3.8E-2 0.564 £ 1.9E-2 | 0.825 £ 5.1E-3 | 0.760 £ 1.5E-2
MD2/2 0.830 £ 3.9E-3 | 0.764 £+ 1.1E-2 | 0.724 + 3.0E-2 0.720 £ 3.1E-2 | 0.830 £ 4.7E-3 | 0.740 £ 5.4E-2
MDnB 0.805 £ 5.3E-3 | 0.924 £+ 3.0E-3 | 0.860 + 6.4E-3 0.756 £ 2.1E-2 | 0.950 £+ 3.6E-4 | 0.889 + 9.2E-3
Mar MDTAN 0.814 £ 3.8E-3 | 0.772 £ 2.0E-2 | 0.931 & 5.8E-3 0.794 £ 4.5E-3 | 0.846 & 1.8E-3 | 0.925 + 4.0E-3
’ MDPoly 0.692 £+ 7.0E-3 | 0.715 £ 2.0E-2 | 0.7561 &£ 3.1E-2 0.560 £ 1.9E-2 | 0.823 £ 4.7E-3 | 0.765 £+ 1.5E-2
MD2/2 0.830 £+ 3.8E-3 | 0.768 £+ 1.2E-2 | 0.727 &+ 2.9E-2 0.724 £ 3.1E-2 | 0.830 £ 6.1E-3 | 0.741 £ 5.7E-2
MDnB 0.806 + 4.0E-3 | 0.925 £+ 2.4E-3 | 0.858 £+ 4.8E-3 0.733 £ 2.1E-2 | 0.950 £+ 5.0E-4 | 0.894 + 8.7E-3
Cond. MDTAN 0.813 £ 2.9E-3 | 0.778 £ 1.6E-2 | 0.929 £ 6.6E-3 0.792 £ 2.7E-3 | 0.846 £+ 1.5E-3 | 0.925 + 3.0E-3
MDPoly 0.690 £ 6.0E-3 | 0.721 £ 1.7E-2 | 0.757 4+ 1.5E-2 0.563 £+ 2.1E-2 | 0.824 £+ 4.8E-3 | 0.749 £ 3.0E-2
MD2/2 0.831 £ 3.4E-3 | 0.768 £+ 8.9E-3 | 0.737 £ 1.5E-2 0.731 £ 3.4E-2 | 0.828 £+ 3.4E-3 | 0.732 £+ 5.4E-2
MDnB 0.807 & 3.6E-3 | 0.925 £ 2.0E-3 | 0.858 & 6.4E-3 || 0.742 + 2.6E-2 | 0.950 & 1.1E-3 | 0.891 & 1.3E-2
Tter. MDTAN 0.813 £ 3.0E-3 | 0.781 £ 1.6E-2 | 0.932 &+ 6.7E-3 0.792 £ 5.0E-3 | 0.847 £+ 2.0E-3 | 0.925 + 2.8E-3
MDPoly 0.690 £ 4.1E-3 | 0.727 £ 9.5E-3 | 0.763 £ 1.0E-2 0.567 £ 2.6E-2 | 0.822 £ 4.4E-3 | 0.761 £ 2.2E-2
MD2/2 0.829 + 2.5E-3 | 0.769 £+ 1.2E-2 | 0.739 £ 1.4E-2 0.730 £+ 3.0E-2 | 0.827 £+ 3.3E-3 | 0.761 £ 3.6E-2

Best Classifier for Cs Best average Classifier

C1 Cs Cs C1 Cs Cs
MDnB 0.738 £ 1.1E-2 | 0.933 £+ 4.8E-3 | 0.924 £ 4.0E-3 0.767 £ 2.8E-2 | 0.935 £+ 1.0E-2 | 0.893 £+ 1.4E-2
Joint MDTAN 0.724 + 3.2E-2 | 0.806 £+ 7.8E-3 | 0.958 £+ 1.1E-3 0.800 £+ 3.3E-3 | 0.814 £ 1.5E-2 | 0.940 £ 6.2E-3
MDPoly 0.609 £ 2.3E-2 | 0.725 = 1.3E-2 | 0.856 &+ 3.1E-3 0.623 £ 3.2E-2 | 0.765 £ 2.9E-2 | 0.812 £ 3.8E-2
MD2/2 0.736 £ 3.1E-2 | 0.763 £ 1.7E-2 | 0.839 £ 4.8E-3 0.790 £ 1.8E-2 | 0.787 £ 1.9E-2 | 0.786 + 3.5E-2
MDnB 0.739 £ 6.7E-3 | 0.932 £ 5.4E3 | 0.925 = 2.0E3 || 0.777 + 1.AE2 | 0.935 £ 7.7E-3 | 0.805 + 1.8E2
g, | MDTAN || 0.758 & 3.1E-2 | 0.804 + 1.0E-2 | 0.958 & 1.2E-3 || 0.800 + 6.1E-3 | 0.816 & 1.5E-2 | 0.938 + 9.5E-3
* [MDPoly || 0.610 & 2.5E-2 | 0.731 £ 2.2E-2 | 0.856 & 3.9E-3 || 0.670 + 4.1E-2 | 0.785 + 2.8E-2 | 0.805 & 3.7E-2
MD2/2 0.736 £ 3.1E-2 | 0.764 £ 2.3E-2 | 0.838 + 6.2E-3 0.780 £ 2.6E-2 | 0.797 £+ 2.0E-2 | 0.794 £+ 1.9E-2
MDnB 0.736 + 7.0E-3 | 0.933 £ 4.5E-3 | 0.924 + 3.0E-3 || 0.774 + 1.9E2 | 0.934 + 9.9E-3 | 0.890 + 1.9E2
Cond MDTAN 0.747 £ 2.7E-2 | 0.805 £+ 8.9E-3 | 0.958 £+ 1.3E-3 0.797 £ 7.2E-3 | 0.814 £+ 2.0E-2 | 0.944 + 7.8E-3
" | MDPoly 0.603 £ 2.9E-2 | 0.738 £+ 2.4E-2 | 0.856 + 2.6E-3 0.627 £ 2.9E-2 | 0.781 £+ 2.5E-2 | 0.801 £+ 2.8E-2
MD2/2 0.741 £ 2.6E-2 | 0.765 &= 1.9E-2 | 0.839 & 4.7E-3 0.791 £ 2.2E-2 | 0.789 £+ 1.5E-2 | 0.795 £ 2.4E-2
MDnB 0.737 £ 4.0E-3 | 0.935 £+ 2.5E-3 | 0.924 £ 2.6E-3 0.764 + 2.8E-2 | 0.940 £+ 6.7E-3 | 0.900 £ 1.3E-2
Tter MDTAN 0.739 £ 5.6E-3 | 0.810 & 4.4E-3 | 0.958 4+ 6.5E-4 0.798 £ 4.2E-3 | 0.810 £ 2.4E-2 | 0.941 £+ 7.6E-3
’ MDPoly 0.614 £ 1.7E-2 | 0.734 £+ 2.2E-2 | 0.855 &+ 3.0E-3 0.625 £ 3.1E-2 | 0.775 £+ 2.6E-2 | 0.800 £ 4.7E-2
MD2/2 0.746 £ 2.1E-2 | 0.769 £+ 1.1E-2 | 0.837 £ 5.3E-3 0.781 £ 2.3E-2 | 0.793 £ 1.4E-2 | 0.796 + 2.5E-2




Table 7: Standard deviation for different training sets of the S(A) and the D(A) values, and the
accuracy of the representative classifiers of Pareto fronts obtained from 2 class artificial data sets.

Accuracy
S(A) || D(4) | Best C; Class. | Best C Class. | Best Av. Class.
0 G 0 G 0 G

MDnB || 3.9E2 || 127E01 || 3.0E2 | 2.1E-2 || 2.2E-2 | 2.6E2 || 2.3E-2 | 2.6E-2

Joint | MDTAN || 12E2 || BA7E-01 | 9.0E-3 | L9E-2 | 40E-2 | 5.3E3 || 22E2 | LIE-2
MDPoly | 2.9E-2 || 1.13E-01 || 2.6E-2 | 2.6E-2 || 2.4E-2 | 2.7TE-2 || 2.6E-2 | 2.8E-2
MD1/2 | 1.3E-2 || 1.86E-01 || 7.8E-3 | 2.2E-2 || 2.1E-2 | 2.0E-2 || 9.5E-3 | 1.5E-2
MDnB || 3.9E2 || 3.27E02 || 3.0E2 | 2.3E-2 || 2.1E-2 | 2.6E2 || 2.3E-2 | 2.7E-2

Mar. MDTAN || 1.2E-2 || 3.47E-01 || 8.7E-3 | 1.8E-2 || 4.2E-2 | 5.6E-3 || 3.2E-2 | 9.1E-3
MDPoly | 3.0E-2 || 4.72E-02 || 2.6E-2 | 3.0E-2 || 2.8E-2 | 2.8E-2 || 2.6E-2 | 2.9E-2
MD1/2 | 1.3E-2 || 1.25E-01 | 7.3E-3 | 2.0E-2 || 1.5E-2 | 2.0E-2 || 9.0E-3 | 1.7E-2
MDnB || 3.9E2 || 7.62E02 || 3.052 | 2.3E-2 || 2162 | 2.7E2 || 2.5E-2 | 2.7E-2

Cond. MDTAN || 1.2E-2 || 2.71E-01 || 8.6E-3 | 1.8E-2 || 4.5E-2 | 6.0E-3 || 1.1E-2 | 9.0E-3
MDPoly | 2.9E-2 || 7.54E-02 || 2.6E-2 | 3.0E-2 || 3.2E-2 | 2.8E-2 || 2.7TE-2 | 2.8E-2
MD1/2 | 1.3E-2 || 1.54E-01 | 7.7E-3 | 1.5E-2 || 1.6E-2 | 2.0E-2 || 1.1E-2 | 2.2E-2
MDnB || 3.8E-2 || 7.28E-02 || 3.0E-2 | 2.3E-2 || 2.2E-2 | 2.6E-2 || 2.35-2 | 2.6E-2

Tter. MDTAN || 1.2E-2 || 3.33E-01 || 9.1E-3 | 1.7TE-2 || 4.7E-2 | 5.0E-3 || 2.2E-2 | 1.0E-2
MDPoly | 3.0E-2 || 4.73E-02 || 2.6E-2 | 2.9E-2 || 2.6E-2 | 2.8E-2 || 2.TE-2 | 2.7E-2
MD1/2 || 1.3E-2 || 8.60E-02 | 8.4E-3 | 2.2E-2 || 1.3E-2 | 2.0E-2 || 9.6E-3 | 2.0E-2

sources, MOEA /D runs and training sets, in terms of the accuracy of classifiers returned.

6.2 Comparison of the proposed classification rules

One way to compare the different classification rules is by visually inspecting the obtained Pareto
fronts. For each classification rule we plotted the Pareto fronts produced in a single MOEA /D
run (figures 7, 8, 9 and 10). However, these Pareto fronts are obtained for a single data set and
we want to compare the classification rules for all the data sets. We use statistical tests in order
to know when there are statistical differences between the classification rules in relation with the
S(A) value, the D(A) value and the accuracy of the representative classifiers. Specifically, we
have used a Friedmand test (Demsar, 2006) with a Shaffer’s static post-hoc test with o = 0.1
(Garcia and Herrera, 2008). Following the suggestion of Garcia and Herrera (2008), we use the
Shaffer’s static instead of Nemenji post-hoc test because it is more powerful. The test results can
be represented by means of critical difference diagrams (Demsar, 2006), which show the mean
ranks of each classification rule across all the domains in a numbered line. If there is no statisti-
cally significant difference between two methods, they are connected in the diagram by a straight
line.

The results of the experimentation can be consulted in tables 9, 10, 11 and 12. Each value
represents the average and the standard deviation of the S(A) and the D(A) values for 5 different
training sets and 5 MOEA /D runs for each classification rule and each multi-dimensional struc-

ture. The best values for each multi-dimensional structure are in bold.

For almost all the domains in the experimentation, multi-dimensional classifiers that use joint
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Table 8: Standard deviation for different training sets of the S(A) and the D(A) values, and the accuracy of the representative classifiers

[ (4

of Pareto fronts obtained from 3 class artificial data sets.
Accuracy
S(A) D(A) Best C; Class. Best C Class. Best C5 Class. Best Av. Class.
Cl ‘ Cz | Cg 01 | Cz | Cs C1 | 02 ‘ 03 Cl | 02 | CB

MDnB 4.2E-2 || 2.16E-01 || 3.8E-2 | 1.6E-2 | 2.4E-2 || 4.6E-2 | 1.6E-2 | 1.7TE-2 || 3.8E-2 | 1.6E-2 | 2.4E-2 || 4.3E-2 | 1.6E-2 | 1.9E-2

Joint MDTAN || 1.3E-2 || 2.43E-01 19E-2 | 44E-2 | 1.6E-2 || 1.5E-2 | 2.8E-2 | 1.6E-2 || 1.9E-2 | 44E-2 | 1.6E-2 | 1.5E-2 | 3.1E-2 | 1.9E-2
MDPoly 4.0E-2 || 6.31E-02 || 2.8E-2 | 5.3E-2 | 7.3E-3 || 5.0E-2 | 2.7E-2 | 3.7TE-2 || 2.8E-2 | 5.3E-2 | 7.3E-3 | 3.0E-2 | 2.6E-2 | 2.4E-2

MD2/2 4.4E-2 || 6.15E-02 || 5.0E-2 | 1.7E-2 | 3.TE-2 || 4.2E-2 | 1.5E-2 | 3.1E-2 || 5.0E-2 | 1.7TE-2 | 3.7TE-2 || 5.3E-2 | 1.8E-2 | 1.9E-2

MDuB || 43E2 || 2.85E01 || 3.6E-2 | 1.5E-2 | 2.6E-2 || 3.8E2 | 1.5E-2 | 1.7E-2 || 3.6E2 | 1.5E-2 | 2.6E-2 || 42E-2 | 1.9E2 | 2.4E-2

Mar. MDTAN || 1.5E-2 || 1.98E-01 1.8E-2 | 4.4E-2 | 1.6E-2 || 1.7E-2 | 2.8E-2 | 1.6E-2 || 1.8E-2 | 4.4E-2 | 1.6E-2 || 1.9E-2 | 3.1E-2 | 2.2E-2
MDPoly 3.7E-2 || 1.11E-01 || 2.9E-2 | 4.8E-2 | 1.4E-2 || 5.0E-2 | 2.5E-2 | 3.0E-2 || 2.9E-2 | 4.8E-2 | 1.4E-2 || 4.0E-2 | 2.0E-2 | 1.6E-2

MD2/2 4.2E-2 || 5.87E-02 || 5.1E-2 | 1.6E-2 | 3.7E-2 || 3.9E-2 | 1.5E-2 | 2.8E-2 || 5.1E-2 | 1.6E-2 | 3.7E-2 | 5.1E-2 | 1.6E-2 | 2.6E-2

MDnB || 4.5E-2 || 2.42E-01 || 3.9E-2 | 1.5E-2 | 2.6E-2 || 4.0E-2 | 1.5E-2 | 1.6E-2 || 3.9E-2 | 1.5E-2 | 2.6E-2 || 4.3E-2 | 1.AE-2 | 2.4E-2

Cond. MDTAN || 1.6E-2 || 2.93E-01 1.8E-2 | 41E-2 | 1.7E-2 || 1.7E-2 | 2.8E-2 | 1.8E-2 || 1.8E-2 | 4.1E-2 | 1.7E-2 || 1.9E-2 | 2.9E-2 | 1.3E-2
MDPoly 4.1E-2 || 7.50E-02 || 3.0E-2 | 5.1E-2 | 2.3E-2 || 4.7E-2 | 2.7E-2 | 2.3E-2 || 3.0E-2 | 5.1E-2 | 2.3E-2 || 1.7E-2 | 2.7E-2 | 1.0E-2

MD2/2 4.7E-2 || 8.22E-02 || 5.0E-2 | 1.5E-2 | 4.0E-2 || 4.1E-2 | 1.4E-2 | 3.6E-2 || 5.0E-2 | 1.5E-2 | 4.0E-2 || 5.2E-2 | 1.8E-2 | 2.0E-2

MDuB || 42E2 || 2.69E-01 || 3.7E-2 | 1.6E-2 | 2.3E-2 || 40E-2 | 1.5E-2 | 1.6E2 || 3.7E2 | 1.6E-2 | 2.3E-2 || 4.0E-2 | 1.3E-2 | 1.3E-2

lter, | MDTAN || L6E-2 || 3.04E-01 || L8E-2 | 44E-2 | 17E-2 || L5E-2 | 28E-2 | 17E-2 || 18E-2 | 44E-2 | 17E-2 | 15E-2 | 24E-2 | L7E-2
' MDPoly 3.9E-2 || 1.29E-01 || 3.0E-2 | 4.9E-2 | 1.9E-2 || 4.2E-2 | 2.7E-2 | 2.9E-2 || 3.0E-2 | 4.9E-2 | 1.9E-2 | 3.4E-2 | 3.5E-2 | 2.0E-2
MD2/2 4.8E-2 || 5.62E-02 || 5.0E-2 | 1.7E-2 | 4.1E-2 || 44E-2 | 1.3E-2 | 2.1E-2 || 5.0E-2 | 1.7TE-2 | 4.1E-2 || 5.4E-2 | 1.7E-2 | 1.9E-2




Table 9: Mean and standard deviation for different training sets and MOEA /D runs of the S(A)

and the D(A) values of Pareto fronts obtained from 2 class artificial data sets.

S(A)

D(4)

MDnB

Joint

Mar.

Cond.

Iter.

0.60173+3.89E-2
0.60010+3.91E-2
0.60069+3.93E-2
0.600124+3.85E-2

0.711534+1.27E-1
0.62645+3.27E-2
0.54014+7.62E-2
0.55923+7.28E-2

MDTAN

Joint

Mar.

Cond.

Iter.

0.62221+1.21E-2
0.62162+1.21E-2
0.62097+1.21E-2
0.62057+1.20E-2

1.36296£3.17E-1
1.32568+3.47E-1
1.37436+£2.71E-1

1.39239+3.33E-1

MDPoly

Joint

Mar.

Cond.

Iter.

0.61786+2.94E-2
0.61680+2.97E-2
0.61587+2.93E-2
0.61539+3.00E-2

0.67856+1.13E-1
0.56500+4.72E-2
0.51505+7.54E-2
0.58965+4.73E-2

MD1/2

Joint

Mar.

Cond.

Iter.

0.66037+1.28E-2
0.65548+1.28E-2
0.65796+1.31E-2
0.65720+1.29E-2

0.85792+1.86E-1
0.62295+1.25E-1
0.67006+1.54E-1
0.70611+8.60E-2

Table 10: Mean and standard deviation for different training sets and MOEA /D runs of the S(A)

and the D(A) values of Pareto fronts obtained from 3 class artificial data sets.

S(A)

D(A)

MDnB

Joint

Mar.

Cond.

Iter.

0.76190+4.22E-2
0.76090+4.35E-2
0.75945+4.52E-2
0.76153+4.22E-2

0.907544+2.16E-01
0.921974+2.85E-01
0.90517+2.42E-01
0.916644+2.69E-01

MDTAN

Joint

Mar.

Cond.

Iter.

0.67019+1.27E-2

0.66977+1.52E-2
0.67297+1.57E-2

0.66883+1.65E-2

1.10314+2.43E-01
1.05668+1.98E-01
1.16390+2.93E-01
1.13755+3.04E-01

MDPoly

Joint

Mar.

Cond.

Iter.

0.55373+4.00E-2
0.550114+3.69E-2
0.55232+4.07E-2
0.55201£3.95E-2

0.85971+6.31E-02
0.87143+1.11E-01
0.89339+7.50E-02
0.871414+1.29E-01

MD2/2

Joint

Mar.

Cond.

Iter.

0.66975+4.35E-2

0.631514+4.18E-2
0.67213+4.73E-2

0.67204+4.82E-2

0.85140+6.15E-02
0.89847+5.87E-02
0.88617+8.22E-02
0.80380+5.62E-02

25



classification rule lead to higher S(A) values (tables 9 and 10), indicating that better solutions
(higher accuracies) are obtained using this classification rule. This result is corroborated with the
statistical tests (figures 12 and 13).

4 3 2 1
\ | | |
Yt !
Conditional Iterative Marginal Joint

Figure 12: S(A) ranking for the different classification rules on the 2 class artificial domains.

4 3 2 1
\ | | |
Iterative Conditional Marginal Joint

Figure 13: S(A) ranking for the different classification rules on the 3 class artificial domains.

If we analyze the non-uniformity of the Pareto fronts produced with different classification
rules (tables 9 and 10), we observe differences between artificial data sets with 2 and 3 class
variables. In the 2 class variable case, the Pareto fronts produced with the joint classification rule
have the worst D(A) values in almost all cases, and the values for the rest of the classification
rules are very similar between them. We have applied the previous described statistical test to the
obtained results (Figure 14), and we show that there are significative differences between classi-
fiers that use joint classification rule and classifiers that use conditional or iterative classification
rules.

On the other hand, the D(A) values in the 3 class variables case are very similar, and we do
not find statistical differences in the use of any classification rule (Figure 15).

4 3 2 1
| | |

—

Joint Marginal Iterative Conditional

Figure 14: D(A) ranking for the different classification rules on artificial domains with 2 class
variables.

4 3 2 1
| | : T i : | |
Marginal Conditional Joint Iterative

Figure 15: D(A) ranking for the different classification rules on artificial domains with 3 class
variables.

As in the previous section, we analyze the mean and the standard deviation of the accuracies

of the representative classifiers produced with the different classification rules (tables 11 and 12).
The tables show the results for the artificial data sets with 2 and 3 class variables respectively. In
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all cases, the Pareto fronts of classifiers that use joint classification rule contain the most extreme
solutions (the most accurate for a particular class variable) for the given data sets. But it seems
that they do not find the most balanced solutions (the highest average accurate classifiers).

If we apply the previously described statistical test (figures 16 and 17) we show that the Pareto
fronts with classifiers that use joint clasification rule contain more extreme solutions than Pareto
fronts with classifiers that use other classification rules with statistical differences. However, there
are no statistical differences to state which classification rule leads to the most balanced solutions.

Conditional Iterative Marginal Joint

Figure 16: Accuracies ranking of the best extreme solutions for the different classification rules
on artificial domains.

4 3 2 1

1 | |
Joint Marginal Conditional Iterative

Figure 17: Accuracies ranking of the best balanced solutions for the different classification rules
on artificial domains.

We finish the study of the comparison of the different classification rules with the following
conclusion: We found no differences in the D(A) value for different classification rules in the 3
classes data sets, but in the 2 classes data sets the Pareto fronts produced with a joint classi-
fication rule are less uniformly distibuted than classifiers produced with conditional or iterative
classification rules. However, it seems that the Pareto fronts produced with a joint classification
rule reach better S(A) values. Moreover, we observe that classifiers produced with a joint classifi-
cation rule are more extreme classifiers (the most accurate for each class variable) than classifiers
produced with other classification rules. On the other hand, we can not state which classification
rule produces more balanced classifiers (the highest average accurate classifiers).

6.3 Multi-objective learning approach versus other approaches to multi-
dimensional classification

We compare the multi-objective learning approach proposed in this paper with the single-objective
learning approaches to multi-dimensional classification proposed by de Waal and van der Gaag
(2007) and van der Gaag and de Waal (2006) (vG-MDnB and dW-MDTAN, see section 3.2) 5.
We also compare our approach with single-class oriented Bayesian classifiers. For that purpose,
we have chosen a naive Bayes classifier (nB) (Langley et al., 1992; Minsky, 1961) and a tree-
augmented Bayesian classifier (TAN) (Friedman et al., 1997). For each data set, we train m
single-class classifiers (m nB and m TAN), one for each class variable. Note that each of the points
in the following figures that represents single-class classifiers represent, in fact, m classifiers: one
for each class variable. Figure 18 summarizes the experimental process we propose to compare
our approach versus other approaches to multi-dimensional classification.
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Table 11: Mean and standard deviation of the accuracy for different training sets and MOEA /D runs of the representative classifiers of
Pareto fronts obtained from 2 class artificial data sets.

Best Classifier for C

Best Classifier for Co

Best average Classifier

4

Cy

Cy

Cy

Cy

Cy

MDnB

Joint

0.7279£2.97E-2

0.7944£2.09E-2

0.6898+2.24E-2

0.8266+2.62E-2

0.7107+£2.34E-2

0.8184+2.62E-2

Mar.

0.7268+£2.99E-2

0.8024£2.30E-2

0.6948+2.06E-2

0.8254£2.64E-2

0.7084+2.26E-2

0.8200£2.71E-2

Cond.

0.7274+3.02E-2

0.8009+2.26E-2

0.6975+£2.12E-2

0.8256+2.67E-2

0.7141+2.51E-2

0.8156+2.66E-2

Iter.

0.7273+3.02E-2

0.8030+2.28E-2

0.6983+2.24E-2

0.825042.57E-2

0.7112£2.29E-2

0.8165+2.56E-2

MDTAN

Joint

0.7162+9.01E-3

0.8198+1.94E-2

0.6055+4.02E-2

0.8720+5.28E-3

0.6779+2.16E-2

0.8457+1.10E-2

Mar.

0.7163+8.74E-3

0.8200£1.80E-2

0.6046+4.21E-2

0.8708+5.55E-3

0.6650+3.22E-2

0.8526+9.07E-3

Cond.

0.7158+8.61E-3

0.8200£1.77E-2

0.6089+4.51E-2

0.8704+5.95E-3

0.6972+1.05E-2

0.8436+8.99E-3

Iter.

0.71584+9.12E-3

0.8223+1.71E-2

0.6077+4.67E-2

0.8698+4.96E-3

0.6708+2.19E-2

0.8484+1.02E-2

MDPoly

Joint

0.7519+2.61E-2

0.793242.59E-2

0.7090+2.39E-2

0.8224+2.72E-2

0.7405+2.60E-2

0.8093+2.84E-2

Mar.

0.7511+2.59E-2

0.7940+2.99E-2

0.7181+2.81E-2

0.8217+2.76E-2

0.7364+2.56E-2

0.8113+2.90E-2

Cond.

0.7509£2.59E-2

0.7961+3.05E-2

0.7176+£3.17E-2

0.8206£2.80E-2

0.7402+2.74E-2

0.8093£2.76E-2

Iter.

0.7507£2.65E-2

0.7946£2.90E-2

0.7204+2.60E-2

0.8201£2.83E-2

0.7373+2.68E-2

0.8110£2.75E-2

MD1/2

Joint

0.8356+7.84E-3

0.7455+2.25E-2

0.7920+2.07E-2

0.7913+2.01E-2

0.8236+9.49E-3

0.7720+1.53E-2

Mar.

0.8347+7.34E-3

0.7470+1.98E-2

0.8043+1.49E-2

0.7893+2.05E-2

0.8196+9.01E-3

0.7762+1.68E-2

Cond.

0.8343+7.74E-3

0.7510£1.54E-2

0.8030+1.61E-2

0.78944+1.98E-2

0.8194+1.07E-2

0.7778+2.19E-2

Iter.

0.8342+8.43E-3

0.7548+2.16E-2

0.8015+1.27E-2

0.7885£2.01E-2

0.8204+9.60E-3

0.7773£1.98E-2
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Table 12: Mean and standard deviation of the accuracy for different training sets and MOEA /D runs of the representative classifiers of

Pareto fronts obtained from 3 class artificial data sets.

Best Classifier for C1 Best Classifier for C»
Cy | Cy | C 4 | C | C3
Joint 0.80736+3.8E-2 0.92416+1.6E-2 0.85736+2.4E-2 0.73328+4.6E-2 0.95032+1.6E-2 | 0.89480+1.7TE-2
MDnB Mar. 0.80536+2.4E-3 0.92416+1.5E-2 0.85968+2.6E-2 0.75600+3.8E-2 0.94984=+1.5E-2 0.88904+1.7E-2
Cond. 0.8063243.9E-2 0.924804+1.5E-2 0.85824+2.6E-2 0.73296+4.0E-2 0.95008+1.5E-2 0.89448+1.6E-2
Iter. 0.80688+3.7E-2 0.92488+1.6E-2 0.85792+2.3E-2 0.742244+4.0E-2 0.94960+1.5E-2 0.89064+1.6E-2
Joint 0.81426+1.9E-2 0.77489+4.4E-2 0.92863+1.6E-2 0.79136+1.5E-2 0.84570+2.8E-2 0.92560+1.6E-2
MDTAN Mar. 0.81410+1.8E-2 0.771931+4.4E-2 0.93063+1.6E-2 0.79392+1.7E-2 0.84635+2.8E-2 0.92536+1.6E-2
Cond. 0.81354+1.3E-3 0.77818+4.1E-2 0.92935+1.7E-2 0.79223+1.7E-2 0.845714+2.8E-2 0.925444+1.8E-2
Tter. 0.81266+1.8E-2 0.78082+4.4E-2 | 0.93231+1.7E-2 0.79176+1.5E-2 0.84658+2.8E-2 0.92529+1.7E-2
Joint 0.69384+2.8E-2 | 0.72096+5.3E-2 0.751124+7.3E-3 0.56400+5.0E-2 0.82488+2.7E-2 0.75976+3.7E-2
MDPoly Mar. 0.69160+2.9E-2 0.715524+4.8E-2 0.75056+1.4E-2 0.55976+5.0E-2 0.82288+2.5E-2 0.76480+3.0E-2
Cond. 0.6903243.0E-2 0.7215245.1E-2 0.75744+2.3E-2 0.56320+4.7E-2 0.82384+2.7E-2 0.74928+2.3E-2
Iter. 0.69016+3.0E-2 0.72728+4.9E-2 0.76328+1.9E-2 0.56736+4.2E-2 0.82184+2.7E-2 0.76136+2.9E-2
Joint 0.8302445.0E-2 0.76424+1.7E-2 0.7243243.7E-2 0.72032+4.2E-2 0.83016+1.5E-2 0.740484+3.1E-2
MD2/2 Mar. 0.8300045.1E-2 0.76832+1.6E-2 0.7267243.7E-2 0.72360+3.9E-2 0.83024+1.5E-2 0.7407242.8E-2
Cond. 0.83080+5.0E-2 0.76768+1.5E-2 0.73736+4.0E-2 0.73104+4.1E-2 0.82832+1.4E-2 0.7323243.6E-2
Tter. 0.8290445.0E-2 0.76888+1.7E-2 | 0.73912+4.1E-2 0.73040+4.4E-2 0.827124+1.3E-2 0.76144+2.1E-2
Best Classifier for Cs Best Average Classifier
Ch | Co | Cs Ch | [& | Cs
Joint 0.7379245.7E-2 0.93280+1.7E-2 0.92424+4+1.5E-2 0.76696+4.3E-2 0.93504+1.6E-2 0.89304+1.9E-2
MDnB Mar. 0.73880+5.4E-2 0.93192+1.7E-2 0.92496+1.4E-2 0.77720+4.2E-2 0.93544+1.9E-2 0.895124+2.4E-2
Cond. 0.73600+5.8E-2 0.93288+1.7E-2 0.92416+1.5E-2 0.7742444.3E-2 0.93416+1.4E-2 0.89040+2.4E-2
Iter. 0.737121+5.6E-2 0.93488+1.6E-2 0.924244+1.5E-2 0.76400+4.0E-2 0.93976+1.3E-2 | 0.90032+1.3E-2
Joint 0.7242245.1E-2 0.80558+3.4E-2 0.95787+1.3E-2 0.80022+1.5E-2 0.81430+3.1E-2 0.94047+1.9E-2
MDTAN Mar. 0.75818+7.8E-2 0.80380+2.8E-2 0.95779+1.2E-2 0.80031+1.9E-2 | 0.81565+3.1E-2 0.93775+2.2E-2
Cond. 0.74685+6.8E-2 0.80521+3.0E-2 0.95819+1.3E-2 0.79685+1.9E-2 0.81426+2.9E-2 0.94367+1.3E-2
Iter. 0.7394948.2E-2 0.80975+2.8E-2 0.95763+1.3E-2 0.79847+1.5E-2 0.80989+2.4E-2 0.94063+1.7E-2
Joint 0.60864+3.5E-2 0.725284+2.6E-2 0.8555242.2E-2 0.62264+3.0E-2 0.765524+2.6E-2 0.81208+2.4E-2
MDPoly Mar. 0.609524+4.3E-2 0.73064+2.9E-2 0.85616+2.2E-2 0.60960+4.0E-2 0.78528+2.0E-2 0.80544+1.6E-2
Cond. 0.60344+3.7E-2 0.73792+2.3E-2 0.85560+2.2E-2 0.62680+1.7E-2 0.78056+2.7E-2 0.80088+1.0E-2
Tter. 0.61360+3.6E-2 0.734164+2.5E-2 0.855124+2.3E-2 0.624644+3.4E-2 0.775524+3.5E-2 0.80040+2.0E-2
Joint 0.73648+4.3E-2 0.76256+1.3E-2 0.83864+1.5E-2 0.7903245.3E-2 0.787124+1.8E-2 0.78584+1.9E-2
MD2/2 Mar. 0.73608+4.1E-2 0.76416+1.6E-2 0.83784+1.4E-2 0.7795245.1E-2 0.79664+1.6E-2 0.79400+2.6E-2
Cond. 0.74128+4.8E-2 0.76464+1.9E-2 0.83896+1.5E-2 0.79152+5.2E-2 0.78936+1.8E-2 0.794724+2.0E-2
Iter. 0.74560+4.7E-2 | 0.76944+2.1E-2 0.83728+1.5E-2 0.7815245.4E-2 0.79312+1.7E-2 0.79648+1.9E-2
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Figure 18: The proposed experimentation to compare the proposed learning approach versus other
approaches to multi-dimensional classification
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Figure 19: Accuracy values of the Pareto fronts learnt with a multi-objective learning approach
vs. other Bayesian approaches in a MDnB structure data set.

In order to illustrate the obtained results, we have plotted the obtained Pareto front of the
proposed approach versus vG-MDnB, dW-MDTAN and m nB and m TAN classifiers in one
artificial data set from each of the proposed structures (figures 19, 20, 21 and 22) and in the
Automobile data set (Figure 23). The Pareto fronts are created departing from the ones shown in
figures 7, 8,9, 10 and 11 with 2 class variables (we maintain the labels of the different classification

5Remember that vG-MDnB and dW-MDTAN obtain only one classifier and not a Pareto set
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Figure 20: Accuracy values of the Pareto fronts learnt with a multi-objective learning approach
vs. other Bayesian approaches in a MDTAN structure data set.
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Figure 21: Accuracy values of the Pareto fronts learnt with a multi-objective learning approach
vs. other Bayesian approaches in a MDPoly structure data set.

rules). Note that the Pareto fronts are composed mixing the classifiers obtained with different
classification rules and removing the dominated classifiers.

The figures clearly show that the Pareto fronts obtained with the multi-dimensional learning
approach dominates the solutions obtained with vG-MDnB, dW-MDTAN, m nB and m TAN for
all the data sets. The proposed approach offers more accurate classifiers for all class variables than
vG-MDnB, dW-MDTAN, m nB and m TAN classifiers. The dW-MDTAN classifier is the closest
to the obtained Pareto fronts. For example in the Pareto front plotted in Figure 21, the solution
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Figure 22: Accuracy values of the Pareto fronts learnt with a multi-objective learning approach
vs. other Bayesian approaches in a MD1/2 structure data set.
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Figure 23: Multi-objective approach vs. other Bayesian approaches in the Automobile data set

of a dAW-MDTAN is very close to the Pareto front, but it is still dominated by the classifiers in it.

Tables 13 and 14 show the accuracies of the representative classifiers in the obtained Pareto
fronts versus the accuracies of vG-MDnB, dW-MDTAN, m nB and m TAN classifiers in the 2
class artificial data sets. The classifiers are evaluated using a 5 repeated 5-cv error estimator.
Each value represents the average of the accuracy of the classifiers obtained for each data set
structure and the standard deviation for the different traininig sets and learning algorithm runs
for the multi-objective learnt classifiers and the standard deviation for the different training sets
and kcv runs. This value is the best for the different classification rule. The best values for each
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Table 13: Mean and standard deviation of the accuracy for different training sets and MOEA /D
runs of the most accurate classifiers of the proposed approach versus of vG-MDnB, dW-MDTAN,

m nB and m TAN classifiers in 2 class artificial data sets.
MDnB MDTAN
Cl | 02 Cl | C2
Best () class. 0.727+3.0E-2 | 0.800+2.2E-2 | 0.716+8.9E-3 | 0.821+1.8E-2
Best (5 class. 0.695+2.2E-2 | 0.826+2.6E-2 | 0.607+4.4E-2 | 0.871+5.4E-3
Best Av. class. | 0.711+2.3E-2 | 0.8184+2.6E-2 | 0.678+2.2E-2 | 0.848+9.8E-3
vG-MDnB 0.660+7.0E-3 0.7724+4.3E-2 0.5484+2.1E-2 0.796+1.5E-2
dW-MDTAN 0.675+7.7E-3 0.7924+3.6E-2 0.699+2.9E-2 0.844+1.3E-2
m nB 0.667+1.9E-2 | 0.757+3.2E-2 | 0.539+3.9E-2 | 0.804+1.7E-2
m TAN 0.657+£9.2E-3 | 0.740+6.0E-2 | 0.689+1.3E-2 | 0.857+2.2E-2
MDPoly MD1/2
Cl | 02 Cl | C2
Best () class. 0.751+2.6E-2 | 0.794+2.9E-2 | 0.835+7.8E-3 | 0.750+2.0E-2
Best (5 class. 0.716+£2.7E-2 | 0.821+2.8E-2 | 0.800+1.6E-2 | 0.790+2.0E-2
Best Av. class. | 0.739+2.6E-2 | 0.810+2.8E-2 | 0.821+9.7E-3 | 0.776+1.8E-2
vG-MDnB 0.643+2.6E-2 | 0.741+3.8E-2 | 0.770+9.3E-3 | 0.711+1.3E-2
dW-MDTAN 0.716+2.3E-2 0.762+4.9E-2 0.8194+7.4E-3 | 0.720+8.0E-3
m nB 0.662+3.6E-2 0.778+2.0E-2 0.760+8.0E-3 | 0.707+2.1E-2
m TAN 0.683+1.4E-2 | 0.779+2.9E-2 | 0.792+8.4E-3 | 0.705+1.8E-2

multi-dimensional structure are in bold.

The proposed approach leads to most accurate classifiers in almost all cases. The extreme
classifiers of the obtained Pareto fronts have the best accuracy values for all the class variables
in all the data sets. The obtained most balanced classifiers dominate the classifiers learnt with
other learning approaches (they have better accuracy for all class variables) in all cases except in
the 2 classes MDTAN structure data sets. In those data sets, 2 TAN classifiers seem to improve
the performance of the multi-objective learnt classifiers.

Finally, we test the proposed approach in the Automobile data set to check if it improves the
performance of other approaches to multi-dimensional classification in real world domains. Tables
15 and 16 show the accuracies of the representative classifiers in the obtained Pareto fronts versus
the accuracies of vG-MDnB, dW-MDTAN, m nB and m TAN classifiers in the Automobile data
set. Each value represents the average of the accuracy of the obtained classifiers and the standard
deviation for the different learning algorithm runs. The best values for each multi-dimensional
structure are in bold.

In the tested real world data set, the classifiers learnt with the proposed approach improve the
accuracy performance of vG-MDnB, dW-MDTAN, m nB and m TAN for all classes. The extreme
classifiers of the obtained Pareto fronts have the best accuracy values for each of the class variables,
and the most balanced classifiers dominate the classifiers learnt with other learning approaches
(they have better accuracy for all class variables). The proposed approach substantially improves
the performance of the other approaches to multi-dimensional classification in real world domains.
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Table 14: Mean and standard deviation of the accuracy for different training sets and MOEA /D runs of the most accurate classifiers of

the pro

posed approach versus of vG-MDnB, dW-MDTAN, m nB and m TAN classifiers in 3 class artificial data sets.
MDnB MDTAN
C1 | Co | Cs C1 | Co | Cs
Best C; class. 0.806+2.9E-2 | 0.925+1.5E-2 | 0.858+2.5E-2 | 0.814+1.4E-2 | 0.776+4.3E-2 | 0.930+1.7E-2
Best (5 class. 0.741+4.1E-2 | 0.950£1.5E-2 | 0.892+1.6E-2 | 0.792+1.6E-2 | 0.846+2.8E-2 | 0.925+1.7E-2
Best (5 class. 0.737+5.6E-2 | 0.933+1.7E-2 | 0.924+1.4E-2 | 0.742+7.0E-2 | 0.806+3.0E-2 | 0.958+1.2E-2
Best Av. class. | 0.771+4.2E-2 | 0.936£1.5E-2 | 0.895+2.0E-2 | 0.7994+1.7E-2 | 0.814+2.9E-2 | 0.941+1.8E-2
vG-MDnB 0.732+6.2E-2 | 0.925+1.2E-2 | 0.858+1.4E-2 | 0.6144+2.5E-1 | 0.6074+2.4E-1 | 0.728+2.9E-1
dW-MDTAN 0.761+3.9E-2 | 0.922+1.3E-2 | 0.854+1.9E-2 | 0.646+2.6E-1 | 0.6224+2.5E-1 | 0.736+2.9E-1
m nB 0.738+7.0E-2 | 0.920+1.2E-2 | 0.874+2.5E-2 | 0.632+2.5E-1 0.625+2.5E-1 | 0.734+2.9E-1
m TAN 0.740+8.8E-2 | 0.908+2.2E-2 | 0.880+2.4E-2 | 0.575+2.3E-1 0.606+2.4E-1 | 0.724+2.9E-1
MDPoly MD2/2
C1 | Co | Cs C1 | Co | Cs
Best () class. 0.691+2.9E-2 | 0.721+5.0E-2 | 0.756+1.6E-2 | 0.830+5.1E-2 | 0.767+1.6E-2 | 0.732+3.9E-2
Best (5 class. 0.564+4.7E-2 | 0.823+£2.7E-2 | 0.759+3.0E-2 | 0.726+4.2E-2 | 0.829+1.4E-2 | 0.7444+2.9E-2
Best (5 class. 0.609+3.8E-2 | 0.7324+2.6E-2 | 0.856+2.2E-2 | 0.740+4.5E-2 | 0.765+1.8E-2 | 0.838+1.5E-2
Best Av. class. | 0.621+3.0E-2 | 0.7774+2.7E-2 | 0.805+1.7E-2 | 0.786+5.3E-2 | 0.792+1.7E-2 | 0.793+2.1E-2
vG-MDnB 0.560+3.7E-2 | 0.733+3.9E-2 | 0.753+2.2E-2 | 0.679+2.1E-2 | 0.7394+2.6E-2 | 0.711+3.4E-2
dW-MDTAN 0.604+4.2E-2 | 0.760+3.0E-2 | 0.793+2.2E-2 | 0.736+3.4E-2 | 0.758+1.4E-2 | 0.740+2.7E-2
nB 0.556+2.6E-2 | 0.752+3.4E-2 | 0.758+3.8E-2 | 0.702+3.4E-2 | 0.7564+2.9E-2 | 0.754+2.1E-2
TAN 0.608+7.0E-2 | 0.7244+3.3E-2 | 0.778+£3.8E-2 | 0.758+6.2E-2 | 0.7424+5.8E-2 | 0.744+2.3E-2




Table 15: Mean and standard deviation of the accuracy for different learning algorithm runs of the

most accurate classifiers of the proposed approach versus the mean and standard deviation of the

accuracy for different k-cv evaluations of vG-MDnB, dW-MDTAN, m nB and m TAN classifiers

in Automobile data| set with 2 class variables. . |
1

Cy |

Best (' Class.

0.959+1.41E-03

0.616+2.50E-02

Best (5 Class.

0.908+1.87E-02

0.701£5.64E-03

Best Av Class.

0.928+4.89E-03

0.699£6.05E-03

vG-MDnB

0.934 +£8.91E-02

0.529+7.18E-02

dW-MDTAN

0.927+£7.99E-02

0.571+6.65E-02

m nB

0.927£8.72E-02

0.492+8.13E-02

m TAN

0.907+8.18E-02

0.6424+3.74E-02

Table 16: Mean and standard deviation of the accuracy for different training sets and learning
algorithm runs of the most accurate classifiers of the proposed approach versus the mean and
standard deviation of the accuracy for different k-cv evaluations of vG-MDnB, dW-MDTAN, m
nB and m TAN classifiers in Automobile data set with 3 class variables.

C, |

Cs

C3

Best (' Class.

0.990+3.32E-4

0.927+2.74E-3

0.595+3.73E-3

Best (5 Class.

0.962+8.79E-3

0.960+6.63E-4

0.5744+9.12E-3

Best (5 Class.

0.950+3.02E-2

0.925+7.30E-3

0.683+6.47E-3

Best Av Class.

0.9794+3.32E-4

0.940+1.66E-3

0.674+2.16E-3

vG-MDnB 0.962+3.48E-3 | 0.910£1.93E-2 | 0.591+4.89E-3
dW-MDTAN 0.889+4.39E-2 | 0.910+7.69E-3 | 0.655+6.32E-2
m nB 0.9434+2.14E-3 | 0.930£1.23E-2 | 0.640+2.60E-3
m TAN 0.964+3.10E-3 | 0.900+8.40E-3 | 0.610£1.21E-3
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7 Conclusions and future work

We call multi-dimensional supervised classification to the generalization of the single-class su-
pervised classification problem to the simultaneous prediction of a set of class variables. In this
paper, we face the problem of learning Bayesian network classifiers for multi-dimensional su-
pervised classification problems. To that end, we present a multi-objective learning approach
to multi-dimensional Bayesian classifiers. This approach returns a Pareto set of non-dominated
multi-dimensional Bayesian classifiers learnt from the same data set. In addition, we have defined
new classification rules for probabilistic classifiers in multi-dimensional class problems.

Our approach considers the learning of multi-dimensional Bayesian classifiers whose objective
is to maximize the accuracy of each class variable, and it uses a multi-objective optimization
algorithm (MOEA/D) to learn a set of non-dominated classifiers. We have used the 5 repeated
5-fold cross-validation error estimation (5cv) of each class variable as objective functions for the
multi-objective optimization problem.

The robustness of the proposed learning approach is measured for different variability sources:
The variance with regard to different learning algorithm runs and the variance with regard to
changes in the training set. The proposed learning approach seems to be very robust for both
variability sources. The classifiers in the Pareto fronts obtained with our approach are not evenly
distributed for different training sets and MOEA /D runs, however they cover a similar part of the
accuracy space and maintain very similar accuracy values.

We note that the multi-dimensional characteristic of the problem allows us to develop different
classification rules for multi-dimensional classifiers that would make no sense in single-class classi-
fication because they take into account multiple class variables. We have presented four different
classification rules: The joint classification rule returns the most probable combination of class
variables given the features. By constrast, the marginal classification rule marginalizes each class
variable for the rest of the class variables given the features, and returns the most probable value.
The conditional classification rule begins using the marginal clasification rule and then uses the
estimated class values as evidence in order to estimate again the class variables values. Finally,
the iterative classification rule continues estimating the class variable values in different steps
since the estimated class variables values do not change in two consecutive steps.

We show that the classifiers produced with the joint classification rule are more accurate for
each class variable, but there are no differences in the average accuracy for all class variables
simultaneously. The Pareto fronts produced with a joint classification dominate a higher part of
the accuracy space. Their classifiers are similarly distributed across the Pareto front to the rest
of the classification rules in the 3 classes data sets, but in the 2 classes data sets the Pareto fronts
produced with a joint classification rule are less uniformly distibuted than classifiers produced
with conditional or iterative classification rules.

Finally, we compare the proposed approach with other Bayesian classification approaches to
multi-dimensional classification (vG-MDnB, dW-MDTAN, m nB and m TAN classifiers). The
results show clearly that the classifiers obtained with the proposed approach improve the accu-
racy of the compared classifiers for each class variable and for all class variables simultaneously.
Furthermore, it offers a very interesting graphic representation of the behaviour of several different
multi-dimensional class Bayesian classifiers learnt from the same data set. So, a decision maker
can easily choose the appropriate one from the Pareto front.
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There are some paths where it is worth extending the learning approach presented in this
paper. Firstly, we would like to extend the multi-objective learning to unrestricted Bayesian
networks following the work done in Acid et al. (2005). Finally, it would be interesting to develop
techniques to help a decision maker in the choosing of an appropriate classifier from the Pareto
front.
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