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tA 
lassi
al supervised 
lassi�
ation task tries to predi
t a single 
lass variable based on adata set 
omposed of a set of labelled examples. However, in many real domains more thanone variable 
ould be 
onsidered as a 
lass variable, so a generalization of the single-
lass
lassi�
ation problem to the simultaneous predi
tion of a set of 
lass variables should bedeveloped. This problem is 
alled multi-dimensional supervised 
lassi�
ation.In this paper, we deal with the problem of learning Bayesian network 
lassi�ers for multi-dimensional supervised 
lassi�
ation problems. In order to do that, we have generalized the
lassi
al single-
lass Bayesian network 
lassi�er to the predi
tion of several 
lass variables.In addition, we have de�ned new 
lassi�
ation rules for probabilisti
 
lassi�ers in multi-dimensional problems.We present a learning approa
h following a multi-obje
tive strategy wi
h 
onsiders thea

ura
y of ea
h 
lass variable separately as the fun
tions to optimize. The solution ofthe learning approa
h is a Pareto set of non-dominated multi-dimensional Bayesian network
lassi�ers and their a

ura
ies for the di�erent 
lass variables, so a de
ision maker 
an easily
hoose by hand the 
lassi�er that best suits the parti
ular problem and domain.1 Introdu
tionSupervised 
lassi�
ation (Bishop, 2006; Duda et al., 2001) is one of the most important tasks inpattern re
ognition �eld. A supervised 
lassi�
ation problem involves the learning, or indu
tion,of a 
lassi�
ation model or 
lassi�er. This 
lassi�er is a fun
tion that assigns one or more valuesto a set of 
lass variables, or labels, based on the values of a set of predi
tive variables or features.The 
lassi�er is usually learnt from a set of labeled 
ases (the training set) by means of a 
lassi�erindu
tion algorithm.Classi
al supervised 
lassi�
ation fo
uses on the predi
tion of a single 
lass variable, but manyreal domains 
onsider more than one 
lass variable, so it would be useful to extend it to thepredi
tion of multiple 
lass variables.We have 
alled this problem multi-dimensional supervised 
lassi�
ation, and it must not be
onfused with other 
lassi�
ation tasks su
h as multi-
lass (Tax and Duin, 2002): problems with a1



single 
lass variable that 
an take more than two values, multi-task (Caruana, 1997): an indu
tivetransfer approa
h, where a main task is predi
ted helped by the predi
tion of some extra tasks, ormulti-label 
lassi�
ation (Tsoumakas and Katakis, 2007): where an instan
e 
an be 
lassi�ed withseveral di�erent labels. Note, however, that this last problem 
an be seen as a multi-dimensional
lassi�
ation problem where ea
h label or 
ategory is a binary 
lass variable whose value is onewhen the instan
e is in
luded in that 
ategory or zero otherwise. Other 
lassi�
ation tasks inpattern re
ognition 
an be seen as a multi-dimensional 
lassi�
ation problem, su
h as stru
turedpredi
tion (Bakir et al., 2007; Daumé and Mar
u, 2005), where there are several 
lass variableswith a 
onditional stru
ture among them, or hierar
hi
al 
lassi�
ation (Dumais and Chen, 2000;Cesa-Bian
hi et al., 2006), where there is a hierar
hi
al stru
ture (two or more levels) among the
lass variables.There are several possibilities to adapt single-
lass 
lassi�ers to multi-dimensional 
lassi�
ationproblems, but none of them exa
tly 
aptures the problem 
hara
teristi
s. One approa
h 
onsistsof 
onstru
ting a single 
lass variable that models all possible 
ombinations of 
lasses. This 
lassvariable models the Cartesian produ
t of all the 
lass variables. The problem arises be
ause this
ompound 
lass variable 
an easily end up with an ex
essively high 
ardinality. This leads to
omputational problems be
ause of the high number of parameters the model has to estimate.Furthermore, the model does not re�e
t the real stru
ture of the 
lassi�
ation problem. Anotherapproa
h is to develop multiple 
lassi�ers, one for ea
h 
lass variable. However, this approa
hdoes not 
apture the real 
hara
teristi
s of the problem either, be
ause it does not model the 
or-relations between the di�erent 
lass variables and so, it does not take advantage of the informationthat they may provide. The previous approa
hes are 
learly insu�
ient and suboptimal for theresolution of problems where 
lass variables have high 
ardinalities or high degrees of 
orrelationamong them. The basi
 idea of multi-dimensional 
lassi�
ation is that the use of the 
orrelationsbetween 
lass variables may help in the 
lassi�
ation task, so it is important to model as well aspossible the 
orrelations among 
lass variables.Re
ent works (van der Gaag and de Waal, 2006; de Waal and van der Gaag, 2007) presentBayesian network 
lassi�ers that use the 
orrelations among 
lass variables to model multi-dimensional 
lassi�
ation problems. They propose learning and inferen
e algorithms for multi-dimensional Bayesian network 
lassi�ers, but they restri
t the stru
ture of the Bayesian networks.For these restri
ted models, the authors have proved that the 
omplexity of the learning task ispolynomial in the number of variables involved.In this paper, we break these stru
tural 
onstraints allowing the learning of any multi-dimensionalBayesian network stru
ture. For this purpouse, we have developed a multi-obje
tive optimizationstru
tural learning approa
h whose obje
tive is to maximize the a

ura
y of ea
h 
lass variableseparately. Moreover, we realize that in multi-dimensional 
lassi�
ation there 
ould be more thanone 
lassi�
ation rule, and so, we have developed spe
i�
 
lassi�
ation rules for these problems.A very preliminary version of this work was presented in Rodríguez and Lozano (2008).The rest of the paper is organized as follows. In Se
tion 2 the multi-dimensional supervised
lassi�
ation problem is proposed. Se
tion 3 provides the multi-dimensional Bayesian network
lassi�ers proposed in this paper. The multi-obje
tive learning of the multi-dimensional Bayesian
lassi�ers is introdu
ed in Se
tion 4. Finally, the simulation study and the 
on
lusions are pre-sented in se
tions 5 and 6 respe
tively.2 Multi-dimensional supervised 
lassi�
ationIn this se
tion we present, in detail, the nature of the multi-dimensional supervised 
lassi�
ationproblem and how to de�ne and evaluate a multi-dimensional 
lassi�er.2



2.1 Multi-dimensional supervised 
lassi�
ation problemsWe 
all multi-dimensional supervised 
lassi�
ation to the generalization of the 
lassi
al supervised
lassi�
ation task where more than one 
lass variable should be simultaneously predi
ted.An approa
h to multi-dimensional supervised 
lassi�
ation 
onsists of building a 
lassi�erfrom training data in order to predi
t the value of a 
lass ve
tor of m 
lass variables or labels
C = (C1, · · · , Cm) given the predi
tive attributes or features X = (X1, · · · , Xn) of an unseenunlabeled instan
e x = (x1, · · · , xn). We suppose that (X ,C) is a random ve
tor with a jointfeature-label probability distribution p(x, c).A 
lassi�er ψ is a fun
tion that maps X into C:

ψ : {1, ..., r1} × ...× {1, ..., rn} → {1, ..., t1} × ...× {1, ..., tm}

(x1, · · · , xn) 7→ (c1, · · · , cm)where ri and tj are the 
ardinalities of the feature Xi (for i = 1, . . . , n) and the 
lass variable Cj(for j = 1, . . . ,m) respe
tively.A 
lassi�er is learnt from a training set D = {(x(1), c(1)), ..., (x(d), c(d))} with a 
lassi�er indu
-tion algorithm A(·). Given the indu
tion algorithm A(·), whi
h is assumed to be a deterministi
fun
tion of the training set, the 
lassi�er obtained from a training set D is denoted as ψ = A(D).Therefore, a multi-dimensional 
lassi�
ation problem 
an be de�ned as the indu
tion, from a dataset D, of a 
lassi�
ation fun
tion ψ that given a feature ve
tor x, returns a 
lass ve
tor c.2.2 Multi-dimensional 
lassi�
ation rulesIn probabilisti
 
lassi�
ation, the indu
tion algorithm learns a probability distribution p(x, c) or
p(c|x) from the training data and 
lassi�es a new instan
e based on this. For that purpose, a
lassi�
ation rule must be de�ned. The multi-dimensional nature of the problem allows us todevelop di�erent 
lassi�
ation rules that would make no sense in single-
lass 
lassi�
ation be
ausethey take into a

ount multiple 
lass variables.In single-
lass supervised 
lassi�
ation, the most 
ommonly used 
lassi�
ation rule returns themost likely 
lass value given the features. We 
all it one-dimensional 
lassi�
ation rule:

ĉ = argmaxc {p(c|x1, · · · , xn)} = argmaxc

{
p(c, x1, · · · , xn)

p(x1, · · · , xn)

}

= argmaxc {p(c, x1, · · · , xn)}This 
lassi�
ation rule 
an be easily generalized to the predi
tion of more than one 
lassvariable. The multi-dimensional 
lassi�er returns the most probable 
ombination of 
lass variablesgiven the features. We 
all it joint 
lassi�
ation rule:
(ĉ1, · · · , ĉm) = argmaxc1,··· ,cm

{p(c1, · · · , cm|x1, · · · , xn)}

= argmaxc1,··· ,cm

{
p(c1, · · · , cm, x1, · · · , xn)

p(x1, · · · , xn)

}

= argmaxc1,··· ,cm
{p(c1, · · · , cm, x1, · · · , xn)}However, we 
an go beyond and develop other 
lassi�
ation rules in order to estimate thevalues of the 
lass variables. We propose another 
lassi�
ation rule that 
onsists on marginalizingea
h 
lass variable for the rest of 
lass variables simultaneously. We 
all it marginal 
lassi�
ation3



rule and estimates the value of ea
h 
lass variable Cj (with j = 1, · · · ,m) as follows:
ĉj = argmaxcj

{p(cj|x1, · · · , xn)} = argmaxcj





∑

c
¬j

p(cj , c¬j |x1, · · · , xn)






= argmaxcj





∑

c
¬j

p(cj , c¬j , x1, · · · , xn)

p(x1, · · · , xn)




 = argmaxcj





∑

c
¬j

p(cj , c¬j , x1, · · · , xn)




where c¬j = {c1, · · · , cj−1, cj+1, · · · , cm}.The previous 
lassi�
ation rules estimate the 
lass variables values in one step: the joint
lassi�
ation rule estimates all the 
lass variables simultaneously and the marginal 
lassi�
ationrule estimates ea
h 
lass variable separately. In multi-dimensional 
lassi�
ation we 
an propose
lassi�
ation rules that estimate the 
lass variables in a pro
edure with more than one step.We propose a 
lassi�
ation rule based on the marginal values of the rest of the 
lass variables.In the �rst step, ea
h 
lass variable is estimated using the marginal 
lassi�
ation rule previouslyde�ned, and then, ea
h 
lass variable value is estimated again using the 
lass values for the restof the 
lass variables estimated at the end of the �rst step as eviden
e. We 
all it 
onditional
lassi�
ation rule:
ĉj = argmaxcj

{p(cj, ĉ
∗
¬j |x1, · · · , xn)} = argmaxcj

{
p(cj , ĉ

∗
¬j , x1, · · · , xn)

p(x1, · · · , xn)

}

= argmaxcj
{p(cj, ĉ

∗
¬j , x1, · · · , xn)}where ĉ

∗
¬j are the predi
ted values for {C1, · · · , Cj−1, Cj+1, · · · , Cm} using the marginal 
lassi�-
ation rule.Moreover, we 
an extend the previous 
lassi�
ation rule and 
ontinue estimating the 
lassvalues taking into a

ount the estimated values for the rest of the 
lasses in the previous step.This pro
edure should 
ontinue until a stop 
riterion is rea
hed, for example when the estimated
lass values do not 
hange in two 
onse
utive steps. We 
all it iterative 
lassi�
ation rule:

ĉ
0
j = argmaxcj

{p(cj, ĉ
0
¬j |x1, · · · , xn)} = argmaxcj

{
p(cj , ĉ

0
¬j , x1, · · · , xn)

p(x1, · · · , xn)

}
=

= argmaxcj
{p(cj, ĉ

0
¬j , x1, · · · , xn)

ĉ
s
j = argmaxcj

{p(cj, ĉ
(s−1)
¬j |x1, · · · , xn)} = argmaxcj

{
p(cj , ĉ

(s−1)
¬j , x1, · · · , xn)

p(x1, · · · , xn)

}
=

= argmaxcj
{p(cj , ĉ

(s−1)
¬j , x1, · · · , xn)where ĉ

0
j are the predi
ted values for {C1, · · · , Cj−1, Cj+1, · · · , Cm} using the marginal 
lassi�
a-tion rule and ĉ

(s−1)
¬j are the predi
ted values for {C1, · · · , Cj−1, Cj+1, · · · , Cm} in the s − 1 stepusing the 
onditional 
lassi�
ation rule. 4



2.3 Multi-dimensional 
lassi�
ation evaluationOn
e a 
lassi�er is 
onstru
ted it is needed to measure its asso
iated error. The predi
tion errorof a single-
lass 
lassi�er ψ is the probability of the wrong 
lassi�
ation of unlabeled instan
es xand is denoted as ǫ(ψ):
ǫ(ψ) = p(ψ(X) 6= C) = EX[δ(c, ψ(x))] (1)where δ(x, y) is a loss fun
tion whose result is 1 if x 6= y and 0 if x = y.However, in multi-dimensional 
lassi�
ation we 
an measure the 
orre
tness of an instan
e indi�erent ways:

• Joint evaluation: This 
onsists of evaluating the estimated values of all 
lass variablessimultaneously, that is, it only registers a su

ess if all the 
lasses are 
orre
tly predi
ted,and otherwise registers an error (see Equation 2). This rule generalizes the previous single-
lass evaluation measure to multi-dimensional 
lassi�
ation.
ǫ(ψ) = p(ψ(X) 6= C) = EX[δ(c, ψ(x))] (2)

• Single evaluation: This 
onsists of 
he
king separately if ea
h 
lass is 
orre
tly 
lassi�ed. Forexample, if we 
lassify an instan
e x as (ĉ1 = 0.ĉ2 = 1) and the real value is (c1 = 0.c2 = 0),we 
ount ĉ1 as a su

ess and ĉ2 as an error. This approa
h provides one performan
e fun
tionfor ea
h 
lass Cj (for j = 1, · · · ,m). The output of this evaluation is a ve
tor ǫ of size mwith the performan
e fun
tion of the multi-dimensional 
lassi�er for ea
h 
lass variables (seeEquation 3):
ǫj(ψ) = p(ψj(X) 6= Cj) = EX[δ(cj , ψi(x))] (3)where ψj(X) is the estimated label of the multi-dimensional 
lassi�er for the j-th 
lassvariable.Ideally, we would like to 
al
ulate exa
tly the error of a 
lassi�er, but in most real worldproblems the feature-label probability distribution p(x, c) is unknown. So, the predi
tion errorof a 
lassi�er ψ is also unknown, it 
an not be exa
tly 
omputed, and thus, must be estimatedfrom data. There are several estimators of the predi
tion error, from the simple Resubstitution(Devroye and Wagner, 1979) and Hold-out (M
La
hlan, 1992) to the more 
omplex Bootstrap(Efron and Tibshirani, 1993) and Bolstered (Braga-Neto et al., 2004). In this work we use one ofthe most popular error estimation te
hniques: k-fold 
ross-validation (k-
v) (Stone, 1974) in itsrepeated version. In k-
v the dataset is divided into k folds, a 
lassi�er is learnt using k− 1 foldsand an error value is 
al
ulated by testing the 
lassi�er in the remaining folds. Finally, the k-
vestimation of the error is the average value of the errors 
ommitted in ea
h fold. The repeated

r times k-
v 
onsists of estimating the error as the average of r k-
v estimations with di�erentrandom fold partitions. This method 
onsiderably redu
es the varian
e of the error estimation(Rodríguez et al., 2010).In multi-dimensional 
lassi�
ation we 
ould be interested in learning the most a

urate 
las-si�er for all 
lass variables simultaneously (measured with a joint evaluation). However, it makessense to �nd the most a

urate 
lassi�ers for ea
h single 
lass variable (measured with singleevaluations). The learning approa
h that we present 
onsiders the single evaluation of ea
h 
lassvariable as the fun
tions to optimize in a multi-obje
tive optimization problem. We will presentthis approa
h in Se
tion 4. 5



3 Multi-dimensional Bayesian networks 
lassi�ers3.1 Preliminaries and notationIn this paper we generalize the single-
lass oriented Bayesian network 
lassi�ers to domains withmore than one 
lass variable. Bayesian networks (Pearl, 1988) are powerful tools for knowledgerepresentation and inferen
e under un
ertainty 
onditions. These formalisms have been exten-sively used as 
lassi�ers (Langley et al., 1992; Larrañaga et al., 2005) and have be
ome a 
lassi
aland well-known 
lassi�
ation paradigm. In spite of the popularity of Bayesian network 
lassi�ers,few works have taken into a

ount their generalization to multiple 
lass variables (van der Gaagand de Waal, 2006; de Waal and van der Gaag, 2007).A Bayesian network is a pair B = (S,Θ) where S is a dire
ted a
y
li
 graph (DAG) whoseverti
es 
orrespond to random variables and whose ar
s represent 
onditional (in)dependen
e re-lations among variables, and Θ is a set of parameters 1. We 
onsider Bayesian networks over a�nite set V = {C1, · · · , Cm, X1, · · · , Xn} where ea
h variable Cj and Xi take a �nite set of values.
Θ is formed by parameters θcj|Pa(cj) and θxi|Pa(xi) for ea
h value that Cj and Xi 
an takes andfor ea
h value assignment Pa(xi) and Pa(cj) to the sets Pa(Xi) and Pa(Cj) of parents of Xi and
Cj respe
tively.A Bayesian network 
lassi�er is usually represented as a Bayesian network with a parti
ularstru
ture: the 
lass variables are on the top of the graph and are the parents of the predi
tivevariables, i.e. there are no ar
s from predi
tors to 
lass variables.The network B de�nes a joint probability distribution p(c1, · · · , cm, x1, · · · , xn) given by:

p(c1, · · · , cm, x1, · · · , xn) =
∏m

j=1 θcj |Pa(cj)

∏n

i=1 θxi|Pa(xi)The Bayesian network, B = (S,Θ), 
an be de�ned by an expert who is able to list the
onditional independen
es between problem variables or, more frequently, it 
an be learnt fromdomain data. In general, the problem of learning a Bayesian network 
lassi�er from data 
an beseen as: given a training set D = {(x(1), c(1)), · · · , (x(d), c(d))} of d instan
es of (X,C), �nd anetwork B that best mat
hes D (Friedman et al., 1997)There are twomain approa
hes for automati
ally learning Bayesian networks from data (Neapoli-tan, 2003): while the �rst one is based on a s
ore + sear
h pro
ess in the spa
e of possible stru
-tures, the se
ond tries to dete
t the 
onditional independen
es by means of statisti
al hypothesistests. In this work, we use a s
ore + sear
h multi-obje
tive pro
ess. Our s
ores are the k-fold
ross-validation estimations of the a

ura
ies of ea
h 
lass variable separately.3.2 Stru
ture of multi-dimensional 
lass Bayesian networks 
lassi�ersA multi-dimensional 
lass Bayesian network 
lassi�er is a generalization of the 
lassi
al one-
lassvariable Bayesian 
lassi�ers for domains with multiple 
lass variables (van der Gaag and de Waal,2006). It models the relationships between the variables by dire
ted a
y
li
 graphs (DAG) overthe 
lass variables and over the feature variables separately, and then 
onne
ts the two sets ofvariables by means of a bipartite dire
ted graph. So, the DAG stru
ture S = (V,A) has the set
V of random variables partitioned into the sets VC = {C1, . . . , Cm}, m > 1, of 
lass variablesand the set VF = {X1, . . . , Xn}, n ≥ 1, of feature variables. Moreover, the set of ar
s A 
an bepartitioned into three sets: ACF , AC and AF with the following properties:1This de�nition takes into a

ount that the obje
tive is to de�ne multi-dimensional Bayesian 
lassi�ers6



• ACF ⊆ VC × VF is 
omposed of the ar
s between the 
lass variables and the featurevariables, so we 
an de�ne the feature sele
tion subgraph of S as SCF = (V,ACF ). Thissubgraph represents the sele
tion of features that seems relevant for 
lassi�
ation given the
lass variables.
• AC ⊆ VC × VC is 
omposed of the ar
s between the 
lass variables, so we 
an de�ne the
lass subgraph of S indu
ed by VC as SC = (VC ,AC).
• AF ⊆ VF ×VF is 
omposed of the ar
s between the feature variables, so we 
an de�ne thefeature subgraph of S indu
ed by VF as SF = (VF ,AF ).In Figure 1, we show a multi-dimensional 
lass Bayesian network 
lassi�er with 3 
lass variablesand 5 features and its partition into the three subgraphs.

Figure 1: A multi-dimensional 
lass Bayesian network 
lassi�er and its divisionDepending on the stru
ture of the 
lass subgraph and the feature subgraph, van der Gaag andde Waal (2006) and de Waal and van der Gaag (2007) distinguish the following sub-families ofmulti-dimensional 
lass Bayesian network 
lassi�ers 2:
• Multi-dimensional naive Bayes 
lassi�er (MDnB): the 
lass subgraph and the feature sub-graph are empty and the feature sele
tion subgraph is 
omplete.
• Multi-dimensional tree-augmented 
lassi�er (MDTAN): both the 
lass subgraph and thefeature subgraph are dire
ted trees.
• Multi-dimensional polytree-augmented 
lassi�er (MDPoly): both the 
lass subgraph and thefeature subgraph are polytrees.In addition to these stru
tures, we have 
onsidered another stru
ture for experimental pur-pouses:
• Multi-dimensional J/K dependen
es Bayesian 
lassi�er (MDJ/K): This stru
ture allowsea
h 
lass variable Ci to have, apart from the 
lass variables, a maximum of J dependen
eswith other 
lass variables Cj , and ea
h predi
tive variable Xi to have a maximum of Kdependen
es with other predi
tive variables Xj .2In van der Gaag and de Waal (2006) and de Waal and van der Gaag (2007) they use the term fully instead ofmulti-dimensional to name the 
lassi�ers. 7



Figure 2: Multi-dimensional 
lass Bayesian 
lassi�ersIn Figure 2, we show the di�erent families of multi-dimensional 
lassi�ers.In van der Gaag and de Waal (2006) and de Waal and van der Gaag (2007), the authors presenta single-obje
tive learning approa
h of MDnB and MDTAN 
lassi�ers 3 In this work we proposea multi-obje
tive learning approa
h of multi-dimensional Bayesian 
lassi�ers. This approa
h alsoallows to learn 
lassi�ers without stru
tural restri
tions in either the 
lass subgraph or the featuresubgraph. In Se
tion 4.3 we will introdu
e this stru
tural learning approa
h in detail.4 Learning multi-dimensional Bayesian network 
lassi�ersby means of multi-obje
tive optimization4.1 Multi-obje
tive approa
h to multi-dimensional 
lassi�
ationAs we have seen in Se
tion 3.1, in one-
lass supervised 
lassi�
ation we have to �nd a 
las-si�er that maximizes the a

ura
y of the 
lass variable given an data set of instan
es D =
{(x(1), c(1)), · · · , (x(d), c(d))}. In multi-dimensional 
lassi�
ation, the aim 
ould be to �nd a 
las-si�er that maximizes the a

ura
y of all the 
lass variables simultaneously (joint evaluation), orto �nd the 
lassi�er that maximizes the a

ura
y of ea
h 
lass variable (single evaluation). Ourapproa
h 
onsiders the learning of multi-dimensional Bayesian 
lassi�ers whose obje
tive is tomaximize the a

ura
y of ea
h 
lass variable. In order to 
arry out this approa
h, we supposethat there are 
lassi�ers whose a

ura
y 
an not been improved for one 
lass variable withoutgetting worse for any other 
lass variable.To 
arry out this approa
h to multi-dimensional 
lassi�
ation by means of multi-obje
tiveoptimization, we use a well-known multi-obje
tive evolutionary algorithm (MOEA): the multi-3In this arti
le we have 
alled them vG-MDnB and dW-MDTAN.8



obje
tive evolutionary algorithm based on de
omposition (Zhang and Li, 2007; Li and Zhang,2009) (MOEA/D). We have 
hosen this algorithm be
ause of its su

ess in experimental domains.Other multi-obje
tive approa
hes to supervised 
lassi�
ation have been developed by the re-sear
h 
ommunity, but none of them takes into a

ount multi-dimensional 
lass predi
tion. Allthe approa
hes developed so far have fo
used on a single 
lass variable and try to optimize dif-ferent aspe
ts su
h as: a

ura
y of the 
lassi�er and number of sele
ted attributes, sensitivityon ROC 
urves, rule mining and partial 
lassi�
ation, model a

ura
y versus model 
omplexity,feature sele
tion, a

ura
y on two di�erent data sets or ensemble learning by means of integrationof diverse 
lassi�ers (Freitas, 2004; Handl et al., 2007).4.2 Multi-obje
tive optimizationA multi-obje
tive optimization problem (MOP) 
an be de�ned as an optimization problem withmultiple obje
tives measured with di�erent performan
e fun
tions, usually in 
on�i
t with ea
hother, and a set of restri
tions. Hen
e, the optimization 
onsists of �nding su
h a solution whi
hwould give the values of all the obje
tive fun
tions a

eptable to a de
ision maker (Osy
zka, 1985),who have to 
hose the prefered optimal solution. The aim is to �nd good 
ompromises (trade-o�s)rather than a single solution (Coello et al., 2006).Formally, a multi-obje
tive optimization problem 
an be formulated as �nding the ve
tor xthat satis�es l inequality restri
tions gi(x) ≥ 0 for i = 1, 2, · · · , l and k equality restri
tions
hi(x) = 0 for i = 1, 2, · · · , k and optimizes (maximizes or minimizes) the ve
tor of obje
tivefun
tions:

f(x) = [f1(x), · · · , fm(x)]An important 
on
ept in multi-obje
tive optimization is the Pareto dominan
e: A ve
tor
u = (u1, · · · , um) is said to dominate v = (v1, · · · , vm) (denoted by u � v) if and only if u ispartially less (on minimization) than v. That is ∀i ∈ {1, · · · ,m}, ui ≤ vi ∧∃j ∈ {1, · · · ,m} : uj <
vj A Edgeworth-Pareto optimal solution (Stadler, 1988) is a nondominated solution, that is, asolution that is impossible to improve in any obje
tive fun
tion without a simultaneous worseningin some other obje
tives. The set of Pareto optimal solutions 
omposes a Pareto optimal setand their images form a Pareto front. The expe
ted solution of a multi-obje
tive optimizationproblem is therefore, a Pareto front representing the values of the performan
e fun
tions for ea
hobje
tive. The Pareto front usually 
ontains more than one element be
ause there exist di�erenttrade-o� solutions to the problem. So, in pra
ti
e, a human de
ision maker have to 
hoose themost suitable solution.MOEA/D de
omposes the multi-obje
tive optimization problem into a number of s
alar op-timization subproblems and then optimizes them simultaneously. We use a T
heby
he� ap-proa
h (Miettinen, 1999) to de
ompose the problem into P subproblems by using a weigh ve
tor
(λ1, · · · ,λP ). It maintains a population of 
lassi�ers 
omposed of the best solutions found sofar for ea
h subproblem. At ea
h step of the algorithm, and for ea
h subproblem i, it develops anew solution 
rossing 
urrent solutions in the neighbour of the i-th subproblem (in the proposedexperimentation we use one-point 
ross-over for binary solutions and PMX 
ross-over for permu-tation solutions (Larrañaga et al., 1999)). A neighborhood of a weight ve
tor λj is deï¬�ned as aset of its T 
losest weight ve
tors in (λj

1
, · · · ,λj

m). The new solution repla
es a maximum of nrsolutions of the neighbourhood that are improved by the new solution. Finally, at ea
h iteration ofthe problem we maintain a external population with the best non-dominated solutions found so far.The main input parameters for the algorithm are:9



• P : The number of subproblems in whi
h we de
ompose the multi-obje
tive optimizationproblem.
• (λ1, · · · ,λP ): A uniform spread of weight ve
tors.
• T : The number of neighbors of ea
h subproblem.
• nr: Number of repla
ements in the neighbourhood.
• A stop 
riterion.The output is the set of best non-dominated solutions found during the sear
h.The algorithm works as follows:
• Step 1: Initialization.� Step 1.1: Initialize an external population EP .� Step 1.2: Compute Eu
lidean distan
es between the P weight ve
tors and �nd the T
losest neighbors of ea
h subproblem.� Step 1.3: Generate an initial population.� Step 1.4: Initilize Z, a ve
tor with the best solution for ea
h subproblem.
• Step 2: Update. For i = 1, · · · , P do� Step 2.1: Reprodu
tion. Sele
tion of 2 solutions and generation of a new solutionbased on geneti
 operators.� Step 2.2: Improvement of the new solution if needed.� Step 2.3: Update of neighborhood solutions.� Step 2.4: Update of external population EP .

∗ Remove from EP all the solutions dominated by the new solutions.
∗ Add the new solution to EP if no solution in EP dominates it.

• Step 3: Stoping Criteria4.3 Stru
tural learning approa
hThis se
tion des
ribes in detail the multi-obje
tive optimization approa
h to learn the multi-dimensional 
lass Bayesian 
lassi�er stru
tures proposed in this work.In our approa
h, we use a multi-obje
tive optimization problem to 
arry out the learning of thestru
ture S of a multi-dimensional Bayesian network 
lassi�er B. The sear
h spa
e is 
omposed ofthe multi-dimensional Bayesian 
lassi�ers with no stru
tural restri
tions in AC , AF and ACF setsof ar
s. The obje
tive fun
tions of the multi-obje
tive optimization problem are the r repeated k-fold 
ross-validation error estimations (k
v) of ea
h 
lass variable separately (the single evaluationof ea
h 
lass):
kcv(ψ) = [kcv1(ψ), · · · , kcvm(ψ)]where ψ is a multi-dimensional 
lassi�er.To 
arry out the sear
h pro
edure, ea
h possible multi-dimensional Bayesian network 
lassi�erstru
ture is 
odi�ed by a ve
tor formed by three parts (Figure 3):10



• The �rst part is a permutation of the 
lass variables VC and represents an an
estral orderover them. Its size is equal to the number of 
lass variables.
• The se
ond part is a binary ve
tor that represents all the possible ar
s of the feature sele
tionsubgraph ACF . Its size is equal to the number of 
lass variables times the number ofpredi
tive variables.
• The third part is a permutation of the features VF and represents an an
estral order overthem. Its size is equal to the number of predi
tive variables.

Figure 3: Codi�
ation of an individualTo re
over a Bayesian network 
lassi�er stru
ture, ea
h individual is de
odi�ed as follows:
• The �rst permutation part represents an an
estral order in VC . Therefore, ea
h 
lass variable
an be a parent of its su

essors in the an
estral order. In order to determine the set of ar
sin AC , we 
arry out a statisti
al test (see below).
• The binary part represents ACF . A value 1 represents an ar
 between a 
lass variable anda feature.
• The last permutation part represents an an
estral order in VF . We let ea
h predi
tivevariable be a parent of its su

essors in the an
estral order. We 
arry out a statisti
al test(see below), in order to determine the set of ar
s in AF .The independen
e test we use to determine if a dependen
e between two variables is strongenough to be part of the model is based on the mutual information between them: It is known(Kullba
k, 1959) that 2NÎ(Xi, Xj), if Xi and Xj are independent, asymptoti
ally follows a

χ2 distribution with (ri − 1)(rj − 1) degrees of freedom where N is the number of 
ases, Xiand Xj are random variables and ri and rj are the 
ardinality of Xi and Xj respe
tively:
LimN→∞2NÎ(Xi, Xj) χ2

(ri−1)(rj−1).Based on this result, a null hypothesis test 
an be 
arried out in a multi-dimensional Bayesiannetwork 
lassi�er to 
he
k the possible dependen
es in AC . The null hypothesis H0 is: �the ran-dom variables Ci and Cj are independent�. So, if the quantity 2NÎ(Ci, Cj) surpasses a threshold
sα for a given test size α =

∫ ∞

sα
χ2

(ti−1)(tj−1)ds, where ti is the 
ardinality of Ci, and tj the
ardinality of Cj , the null hypothesis is reje
ted and there is a dependen
e between Ci and Cj .Therefore the ar
 between Ci and Cj is in
luded in the model. This test was used on single-
lassBayesian network 
lassi�ers to 
he
k the dependen
es among the 
lass variables and the features(Blan
o, 2005).In this work, we use the 
onditional mutual information between a feature Xi and a feature
Xj given its parents Pa(Xj) to determine if the relation between two features Xi and Xj in AFshould be in
luded in the model. We have generalized the previous result to the 
ase of 
onditionalmutual information as follows (Kullba
k, 1959):

LimN→∞2NÎ(Xi, Xj |Pa(Xj)) χ2
(ri−1)(rj−1)(|Pa(Xj)|)11



where ri is the 
ardinality of Xi, rj the 
ardinality of Xj and |Pa(Xj)| the 
ardinality of theparents of Xj .Analogously to the hypothesis test des
ribed before, based on these results we 
an performthe following 
onditional independen
e test. The null hypothesis H0 is: �the random variables Xiand Xj are 
onditionally independent given Pa(Xj)�. So, if the quantity 2NÎ(Xi, Xj|Pa(Xj))surpasses a threshold sα for a given test size α =
∫ ∞

sα
χ2

(ri−1)(rj−1)(|Pa(Xj)|)
ds, the null hypothesisis reje
ted and the random variables Xi and Xj are 
onsidered dependent given Pa(Xj). There-fore the ar
 is in
luded in the model.For example, given a problem with 2 
lass variables and 3 features, the following individual

(1, 2|1, 0.1, 0.1, 0|2, 1, 3), is de
odi�ed in the following way:In order to build AC , we use the �rst permutation part formed by (1, 2, · · · ). It represents thean
estral order (C1,C2). If 2NI(C1, C2) surpasses the previously de�ned independen
e test, thear
 is in
luded in the model. We 
an suppose that in this 
ase the ar
 is in
luded in the model.The se
ond part is a binary ve
tor formed by (· · · , 1, 0.1, 0.1, 0. · · · ) and represent the dependen
esamong the 
lass variables and the features, that is, ACF . There are three features and two 
lassvariables, so the �rst 3 positions of this part (· · · , 1, 0.1, · · · ) represents the dependen
es betweenthe �rst 
lass variable C1 and the features and the following 3 positions (· · · , 0.1, 0. · · · ) the de-penden
es of the se
ond 
lass variable C2 with the features. A 1 in a position represents an ar
.In this 
ase there are dependen
es from C1 to X1 and X3, and from C2 to X2. Finally, we have tobuild AF . In order to do this, we use the last permutation part formed by (· · · , 2, 1, 3). This rep-resents the an
estral order (X2,X1,X3). The ar
s that surpass the previously de�ned 
onditionalindependen
e test are in
luded in the model. In this 
ase we have to 
he
k 2NI(X2, X1|Pa(X1)),
2NI(X2, X3|Pa(X3)) and 2NI(X1, X3|Pa(X3)). In this example, we 
an suppose that the only
onditional dependen
e among variables that does not surpass the independen
e test is the onefrom X2 to X1 (2NI(X2, X1|Pa(X1))), and therefore, it is the only ar
 among features that isnot in
luded in the model. The obtained 
lassi�er stru
ture is given in Figure 4.
Figure 4: The 
lassi�er en
oded in the individual (1, 2|1, 0.1, 0.1, 0|2, 1, 3). We suppose that theonly 
onditional dependen
e among variables that does not surpass the independen
e test is theone from X2 to X15 Experimental set-upIn this se
tion, we present the proposed experimentation in order to evaluate our learning approa
hto multi-dimensional Bayesian network 
lassi�ers. We analyze the following aspe
ts:

• The robustness and stability of the proposed learning approa
h in relation to the variability12



sour
es: How does the Pareto set 
hange in di�erent MOEA/D runs or with di�erent trainingsets?
• We 
ompare the proposed 
lassi�
ation rules.
• The result of our proposal is 
ompared with both single-obje
tive learning approa
hes andsingle-
lass approa
hes to multi-dimensional 
lassi�
ation, in the 
ontext of Bayesian net-works 
lassi�ers.5.1 The experimental pro
essIn order to 
arry out the experimentation required to evaluate our approa
h, we use some arti�
ialmulti-dimensional data sets and one real world data set.The arti�
ial data sets are sampled from multi-dimensional feature-label probability distri-butions p(x, c) represented as multi-dimensional Bayesian network 
lassi�ers. These Bayesiannetwork 
lassi�ers have been 
reated in two steps. First, the stru
ture of the multi-dimensionalBayesian network 
lassi�er was 
reated with the Java Bayes software (Cozman, 2000) and then weobtained the parameters by sampling a Diri
hlet distribution with all parameters equal to one. Wehave 
hosen the following stru
tures: MDnB, MDTAN, MDPoly and MDJ/K. These stru
tureshave been 
reated with 8 predi
tive variables and taking 2 and 3 
lass variables into a

ount. The
ardinality of the predi
tive variables ranges from 2 to 4 and the 
ardinality of the 
lasses from 2to 3. In the 
ase of MDJ/K, we use J = 1 and K = 2 (Figure 2) for 2 
lass variables and J = 2and K = 2 for 3 
lass variables. On
e the multi-dimensional Bayesian network 
lassi�ers havebeen 
reated, we sample 5 data sets from ea
h of them. Spe
i�
ally, we sample 40 arti�
ial datasets (5 for ea
h di�erent stru
ture (4) and number of 
lass variables (2)) of 200 instan
es ea
h.Typi
al ben
hmark data repositories in supervised 
lassi�
ation do not provide data sets withmultiple 
lass variables. However, there is a data set in the UCI Ma
hine Learning Repository(Asun
ion and Newman, 2007) where several attributes 
an be used as 
lass variables: Automobiledata set. This data set has 205 instan
es and 26 predi
tive variables. Some variables are 
ontin-uous and others dis
rete and there are missing values in some instan
es. We pre-pro
essed thisdata set by dis
retizing all the 
ontinuous variables to 2 nominal values (Fayyad and Irani, 1993)and deleting the instan
es and predi
tive variables with missing values (we deleted 2 predi
tivevariables and 13 instan
es). This data set is used 
onsidering two 
lass variables (pri
e and sym-boling) and three 
lass variables (highway-mpg, pri
e and symboling).We use the MOEA/D algorithm as the learning engine. The parameters used for the experi-ments with this algorithm were �xed as follows:
• Number of subproblems: S = 100∗(individual size).
• Number of neighbours for ea
h subproblem: T = 20.
• Stop 
riterion: 100.000 evaluations.
• Number of repla
ements in the neighbourhood: nr = 2.
• Obje
tive fun
tions: We use the 5 repeated 5-fold 
ross-validation error estimation of ea
h
lass variable.In order to study the stability of the proposed learning approa
h with regard to di�erent runs ofthe learning algorithm, we run MOEA/D 5 times for ea
h arti�
al data set.13



So as to make all these experiments possible, we use di�erent open sour
e libraries in Java.For the 
lassi�
ation utilities we use the ICLAB library (Calvo and Flores, 2009) and the wekalibrary (Witten and Frank, 2000) and for the multi-obje
tive optimization utilities we use thejMetal library (Durillo et al., 2006).5.2 Pareto evaluationThe results of the multi-obje
tive learning are presented in a Pareto front 
omposed of non-dominated solutions. Ea
h point of the Pareto front represents the a

ura
ies for ea
h 
lass ofa spe
i�
 
lassi�er. Therefore, in order to 
ompare di�erent runs of the MOEA/D algorithmwith the same data set or the 
lassi�ers obtained with di�erent data sets, we need to 
ompareseveral Pareto fronts. The 
ommunity working in the �eld of multi-obje
tive optimization hasdevised several measures to evaluate di�erent Pareto fronts. Basi
ally a good Pareto front has itspoints uniformly spread around the real Pareto front and 
overs the 
omplete real Pareto front.In this paper, we have adopted di�erent measures to evaluate the obtained Pareto fronts and the
lassi�ers on it:
• Size of the dominated spa
e S(A) (Zitzler and Thiele, 1999): It measures the amount of theobje
tive spa
e that is 
overed by a given non-dominated set of 
lassi�ers A (Figure 5 foran illustration in a two 
lass problem). A high value of S(A) indi
ates that the 
lassi�ersin A have good a

ura
y values for all 
lass variables.

Figure 5: Cal
ulation of S(A).
• Non-uniformity of a Pareto front D(A) (Lee et al., 2005): This quantity measures the non-uniformity of the distribution of a Pareto front, and it is given by the distribution of theEu
lidean distan
e di between ea
h pair of 
losest points along the Pareto front:

D(A) =

√∑
i(di/dm− 1)2

| A | −1This quantity is the standard deviation of the distan
es normalized by the average distan
e
dm. If D(A) = 0, the spa
ing in the Pareto front is uniform. Therefore, a lower value meansa more uniform spread of the Pareto front.14



In addition to the previous two measures and in order to better evaluate the obtained Paretofronts from a 
lassi�
ation point of view, we have in
luded in our analysis some 
lassi�ers of thePareto front we 
all representative 
lassi�ers. Therefore, we have sele
ted the most extreme 
las-si�ers (the most a

urate 
lassi�ers for a single 
lass variable) and the most balan
ed 
lassi�er(the highest average a

urate 
lassi�er) of ea
h Pareto front (Figure 6).

Figure 6: Representative 
lassi�ers of a Pareto front.6 ResultsThe proposed approa
h returns a Pareto front 
omposed of a set of non-dominated 
lassi�ers.The obtained Pareto fronts show di�erent trade-o� solutions to the multi-dimensional 
lassi�-
ation problem. Ea
h point of the Pareto front represents the a

ura
ies of a 
lassi�er for thedi�erent 
lass variables.In order to illustrate the a
hieved results, we have plotted some Pareto fronts produ
ed ina single MOEA/D run. For ea
h multi-dimensional stru
ture (MDnB, MDTAN, MDPoly andMD1/2) with 2 
lass variables, we show the results for one data set sampled with that stru
ture(�gures 7, 8, 9 and 10). Ea
h �gure shows a Pareto front for ea
h 
lassi�
ation rule. We alsoshow the results for the Automobile data set (Figure 11) with 2 
lass variables. 4This results se
tion is organized at follows: First, we measure the robustness and stabilityof the proposed approa
h for di�erent variability sour
es (Se
tion 6.1). Then, the results fordi�erent 
lassi�
ation rules are 
ompared (Se
tion 6.2). Finally, we 
ompare the results of theproposed multi-obje
tive learning approa
h with other Bayesian network 
lassi�
ation approa
hesto multi-dimensional 
lassi�
ation (Se
tion 6.3).4The 
omplete results (for all the data sets and MOEA/D runs) 
an be 
onsulted athttp://www.s
.ehu.es/

wbayes/members/juandiego/MOPLearning/
15



Figure 7: A

ura
y values of 
lassi�ers in the Pareto fronts learnt in one data set sampled froma 2 
lass multi-dimensional 
lassi�er with a MDnB stru
ture in a single MOEA/D run.

Figure 8: A

ura
y values of 
lassi�ers in the Pareto fronts learnt in one data set sampled froma 2 
lass multi-dimensional 
lassi�er with a MDTAN stru
ture in a single MOEA/D run.6.1 Robustness and stability of the proposed learning approa
hWe start by analyzing the stability of our approa
h with regard to di�erent exe
utions of thelearning algorithm. In order to do that, we measure the varian
e a

ross 5 di�erent MOEA/Druns with the same training set. The results 
an be 
onsulted in tables 1, 2, 3, 4, 5 and 6. Ea
hvalue in the following tables represents the average and the standard deviation for 5 MOEA/D16



Figure 9: A

ura
y values of 
lassi�ers in the Pareto fronts learnt in one data set sampled froma 2 
lass multi-dimensional 
lassi�er with a MDPoly stru
ture in a single MOEA/D run.

Figure 10: A

ura
y values of 
lassi�ers in the Pareto fronts learnt in one data set sampled froma 2 
lass multi-dimensional 
lassi�er with a MD1/2 stru
ture in a single MOEA/D run.runs of the 
orrespondingmeasure for ea
h 
lassi�
ation rule and ea
h multi-dimensional stru
ture.Tables 1 and 2 show the mean and the standard deviation of the S(A) value of the Paretofronts obtained from the arti�
ial data sets with 2 and 3 
lass variables respe
tively.The size of dominated spa
e of the obtained Pareto fronts is almost the same for di�erentMOEA/D runs. The standard deviation of S(A) is in the order of magnitude of 10−3 for almostall the data sets, a very low varian
e value be
ause S(A) is a value bound between 0 and 1.17



Table 1: Mean and standard deviation for 5 MOEA/D runs of the S(A) value of Pareto frontsobtained from 2 
lass arti�
ial data sets.
S(A) Data set 1 Data set 2 Data set 3 Data set 4 Data set 5Joint MDnB 0.660 ± 2.8E-3 0.585 ± 2.3E-3 0.546 ± 8.7E-3 0.577 ± 2.5E-3 0.642 ± 1.4E-3MDTAN 0.607 ± 5.8E-3 0.630 ± 1.1E-2 0.630 ± 4.5E-3 0.607 ± 6.1E-3 0.637 ± 6.2E-4MDPoly 0.615 ± 1.7E-3 0.574 ± 6.0E-3 0.649 ± 4.5E-3 0.660 ± 2.2E-3 0.591 ± 8.3E-3MD1/2 0.659 ± 7.6E-3 0.630 ± 3.8E-3 0.662 ± 1.7E-3 0.663 ± 7.3E-3 0.688 ± 8.8E-3Mar. MDnB 0.606 ± 2.7E-3 0.628 ± 8.6E-3 0.629 ± 4.8E-3 0.607 ± 2.9E-3 0.638 ± 9.5E-4MDTAN 0.657 ± 1.5E-3 0.583 ± 1.2E-3 0.544 ± 7.3E-3 0.576 ± 1.3E-3 0.641 ± 1.2E-3MDPoly 0.613 ± 1.2E-3 0.573 ± 3.6E-3 0.649 ± 1.9E-3 0.660 ± 2.6E-3 0.590 ± 4.3E-3MD1/2 0.658 ± 3.5E-3 0.627 ± 1.3E-3 0.660 ± 2.7E-3 0.660 ± 9.0E-3 0.687 ± 9.0E-3Cond. MDnB 0.658 ± 3.2E-3 0.585 ± 1.4E-3 0.542 ± 6.9E-3 0.577 ± 1.1E-3 0.641 ± 1.8E-3MDTAN 0.606 ± 3.0E-3 0.626 ± 4.6E-3 0.630 ± 1.7E-3 0.606 ± 2.5E-3 0.637 ± 1.2E-3MDPoly 0.613 ± 9.9E-4 0.572 ± 3.0E-3 0.646 ± 9.1E-4 0.659 ± 1.2E-3 0.589 ± 3.2E-3MD1/2 0.655 ± 1.1E-3 0.628 ± 1.9E-3 0.660 ± 1.0E-3 0.660 ± 7.2E-3 0.686 ± 6.5E-3Iter. MDnB 0.656 ± 4.9E-3 0.584 ± 8.9E-4 0.542 ± 6.9E-3 0.577 ± 1.3E-3 0.640 ± 1.1E-3MDTAN 0.605 ± 3.3E-3 0.626 ± 3.9E-3 0.629 ± 5.7E-4 0.606 ± 2.2E-3 0.637 ± 5.5E-4MDPoly 0.613 ± 2.1E-3 0.571 ± 1.3E-3 0.647 ± 1.8E-3 0.659 ± 1.8E-3 0.587 ± 5.6E-3MD1/2 0.655 ± 1.3E-3 0.627 ± 1.2E-3 0.660 ± 1.0E-3 0.659 ± 7.3E-3 0.684 ± 6.1E-3

Table 2: Mean and standard deviation for 5 MOEA/D runs of the S(A) value of Pareto frontsobtained from 3 
lass arti�
ial data sets.
S(A) Data set 1 Data set 2 Data set 3 Data set 4 Data set 5Joint MDnB 0.705 ± 5.6E-3 0.735 ± 5.3E-3 0.739 ± 5.4E-3 0.771 ± 3.3E-3 0.858 ± 2.5E-3MDTAN 0.663 ± 1.1E-2 0.695 ± 8.9E-3 0.671 ± 3.9E-3 0.646 ± 6.1E-3 0.677 ± 6.0E-3MDPoly 0.581 ± 6.4E-3 0.589 ± 1.0E-2 0.525 ± 6.4E-3 0.482 ± 1.5E-2 0.591 ± 9.3E-3MD2/2 0.676 ± 8.5E-3 0.727 ± 1.8E-2 0.715 ± 4.1E-2 0.616 ± 9.1E-3 0.615 ± 3.8E-3Mar. MDnB 0.707 ± 5.4E-3 0.726 ± 1.1E-2 0.741 ± 4.2E-3 0.772 ± 4.4E-3 0.859 ± 2.7E-3MDTAN 0.663 ± 2.6E-3 0.695 ± 1.3E-3 0.673 ± 1.9E-3 0.638 ± 1.5E-2 0.679 ± 1.6E-2MDPoly 0.572 ± 1.0E-2 0.594 ± 5.3E-3 0.520 ± 4.4E-3 0.488 ± 1.3E-2 0.576 ± 1.4E-2MD2/2 0.678 ± 1.2E-2 0.725 ± 1.8E-2 0.706 ± 4.7E-2 0.620 ± 9.3E-3 0.612 ± 6.1E-3Cond. MDnB 0.701 ± 8.3E-3 0.728 ± 1.1E-2 0.736 ± 5.5E-3 0.772 ± 4.3E-3 0.860 ± 2.6E-3MDTAN 0.666 ± 3.2E-3 0.697 ± 4.5E-3 0.673 ± 2.8E-3 0.641 ± 1.4E-2 0.688 ± 1.4E-2MDPoly 0.576 ± 7.7E-3 0.596 ± 7.6E-3 0.520 ± 3.3E-3 0.482 ± 1.7E-2 0.586 ± 7.5E-3MD2/2 0.665 ± 3.0E-2 0.731 ± 1.2E-2 0.731 ± 4.0E-3 0.621 ± 7.0E-3 0.612 ± 4.9E-3Iter. MDnB 0.704 ± 5.9E-3 0.735 ± 1.0E-2 0.741 ± 5.7E-3 0.772 ± 1.8E-3 0.856 ± 3.2E-3MDTAN 0.664 ± 3.6E-3 0.689 ± 5.1E-3 0.672 ± 2.4E-3 0.632 ± 1.3E-2 0.687 ± 1.6E-2MDPoly 0.574 ± 6.7E-3 0.593 ± 1.0E-2 0.521 ± 5.8E-3 0.484 ± 9.9E-3 0.587 ± 5.0E-3MD2/2 0.681 ± 3.6E-3 0.725 ± 1.8E-2 0.731 ± 3.9E-3 0.612 ± 8.0E-3 0.612 ± 8.1E-318



Figure 11: A

ura
y values of the Pareto fronts learnt in the Automobile data set with 2 
lassvariables in a single MOEA/D run.Moreover, all the measured values are between 0.48 and 0.86. The varian
e of the size of thedominated spa
e seems to be slightly lower in 2 
lass variable data sets than in 3 
lass variabledata sets. However, the size of the dominated spa
e of the proposed approa
h is very stable fordi�erent learning algorithm runs.Tables 3 and 4 show the mean and the standard deviation of the D(A) value of the Paretofronts obtained from arti�
ial data sets with 2 and 3 
lass variables respe
tively.Contrary to the 
ase of S(A), we observe signi�
ative 
hanges in the non-uniformity of theobtained Pareto fronts for di�erent MOEA/D runs. The standard deviation of D(A) is in theorder of magnitude of 10−1 for almost all the data sets. Another interesting aspe
t is that thevarian
e of the non-uniformity of the obtained Pareto fronts is very similar for di�erent numberof 
lass variables. So, in this 
ase it seems that the number of 
lass variables does not in�uen
ein the uniformity of the Pareto front.Finally, we analyze the representative 
lassi�ers of the obtained Pareto fronts. Tables 5 and 6show the a

ura
y and its standard deviation of the representative 
lassi�ers of ea
h Pareto frontobtained from arti�
ial data sets with 2 and 3 
lass variables respe
tively.The a

ura
y of the representative 
lassi�ers of the obtained Pareto fronts is very similar fordi�erent MOEA/D runs. The standar deviation is in the order of magnitude of 10−3 of the a
-
ura
y for almost all the data sets, a very low varian
e value be
ause all the measured values arebetween 0.56 and 0.95. The varian
e seems to be slightly lower in 2 
lass variable data sets thanin 3 
lass variable data sets, but in the same order of magnitude.If we fo
us on the most extreme 
lassi�ers (the most a

urate for a parti
ular 
lass variable),we show that the varian
e of the a


ura
y for that parti
ular 
lass variable is lower than thevarian
e of the a

ura
y of the rest 
lass variables, a good result if our obje
tive is that 
lass vari-able. Finally, the varian
e of the a

ura
y of the most balan
ed 
lassi�ers (the highest average19



Table 3: Mean and standard deviation for 5 MOEA/D runs of the D(A) value of Pareto frontsobtained from 2 
lass arti�
ial data sets.
D(A) Data set 1 Data set 2 Data set 3 Data set 4 Data set 5Joint MDnB 0.718±7.4E-2 1.022±6.3E-1 0.662±1.6E-1 0.643±8.8E-2 0.513±2.3E-1MDTAN 1.081±1.5E-1 1.357±2.5E-1 0.859±2.1E-1 2.050±4.7E-1 1.467±3.5E-1MDPoly 0.929±6.1E-1 0.483±1.7E-1 0.613±3.1E-1 0.657±1.9E-1 0.711±1.0E-1MD1/2 0.918±7.2E-1 0.678±1.4E-1 0.572±2.1E-1 1.117±5.0E-1 1.005±4.6E-1Mar. MDnB 0.628±8.3E-2 0.581±1.5E-1 0.665±1.5E-1 0.668±1.5E-1 0.591±1.7E-1MDTAN 1.158±1.7E-1 1.491±1.7E-1 0.627±2.4E-1 1.975±2.2E-1 1.378±2.5E-1MDPoly 0.566±1.4E-1 0.592±2.6E-1 0.496±1.1E-1 0.516±9.0E-2 0.655±1.6E-1MD1/2 0.480±1.3E-1 0.604±2.1E-1 0.539±1.5E-1 0.948±6.1E-1 0.603±2.5E-1Cond. MDnB 0.662±9.2E-2 0.575±1.5E-1 0.573±1.0E-1 0.458±1.3E-1 0.431±1.3E-1MDTAN 1.366±2.5E-1 1.478±2.6E-1 0.718±2.7E-1 1.947±2.7E-1 1.363±1.3E-1MDPoly 0.495±2.1E-1 0.493±1.9E-1 0.553±1.1E-1 0.369±9.9E-2 0.665±2.4E-1MD1/2 0.641±1.4E-1 0.532±1.4E-1 0.453±4.6E-2 0.765±3.3E-1 0.960±3.7E-1Iter. MDnB 0.697±1.2E-1 0.601±1.7E-1 0.561±1.7E-1 0.406±1.9E-1 0.531±2.0E-1MDTAN 1.194±1.7E-1 1.459±1.3E-1 0.759±6.3E-1 2.125±2.7E-1 1.425±2.6E-1MDPoly 0.582±1.9E-1 0.666±2.3E-1 0.479±1.2E-1 0.601±9.4E-2 0.620±1.6E-1MD1/2 0.640±1.3E-1 0.694±2.1E-1 0.670±7.3E-2 0.605±2.4E-1 0.921±4.3E-1

Table 4: Mean and standard deviation for 5 MOEA/D runs of the D(A) value of Pareto frontsobtained from 3 
lass arti�
ial data sets.
D(A) Data set 1 Data set 2 Data set 3 Data set 4 Data set 5Joint MDnB 0.852±7.7E-2 0.667±7.9E-2 0.725±9.5E-2 0.845±1.2E-1 1.448±2.6E-1MDTAN 1.245±4.0E-1 0.970±3.4E-1 1.570±3.4E-1 0.851±1.9E-1 0.880±5.0E-2MDPoly 0.849±7.8E-2 0.795±6.2E-2 0.902±1.4E-1 0.777±1.0E-1 0.975±3.5E-2MD2/2 0.926±7.2E-2 0.892±1.0E-1 0.887±1.1E-1 0.698±3.7E-2 0.855±1.1E-1Mar. MDnB 0.961±1.4E-1 0.670±2.6E-2 0.655±5.6E-2 0.730±7.9E-2 1.595±3.7E-1MDTAN 0.971±4.4E-1 0.943±3.3E-1 1.552±4.5E-1 0.869±1.8E-1 0.947±6.1E-2MDPoly 0.914±5.6E-2 0.742±9.1E-2 0.959±8.9E-2 0.723±4.0E-2 1.019±7.2E-2MD2/2 0.922±7.5E-2 0.991±9.4E-2 0.854±2.0E-1 0.774±6.0E-2 0.894±1.2E-1Cond. MDnB 0.883±4.7E-2 0.635±3.9E-2 0.793±1.1E-1 0.705±4.8E-2 1.509±2.8E-1MDTAN 1.217±3.9E-1 0.959±3.9E-1 1.842±5.1E-1 0.875±3.2E-1 0.927±1.0E-1MDPoly 0.900±9.4E-2 0.736±8.2E-2 0.918±7.2E-2 0.864±1.2E-1 1.050±5.5E-2MD2/2 0.907±3.5E-2 1.042±1.4E-1 0.915±7.9E-2 0.729±1.2E-1 0.838±1.0E-1Iter. MDnB 0.945±1.6E-1 0.656±3.8E-2 0.635±4.6E-2 0.787±1.3E-1 1.561±1.7E-1MDTAN 1.018±3.9E-1 1.065±3.0E-1 1.896±4.5E-1 0.794±1.1E-1 0.915±5.0E-2MDPoly 0.938±5.1E-2 0.725±6.9E-2 0.911±1.0E-1 0.697±5.9E-2 1.087±7.1E-2MD2/2 0.912±4.5E-2 0.778±1.0E-1 0.836±1.2E-1 0.691±8.2E-2 0.802±3.1E-220



Table 5: Mean and standard deviation for 5 learning algorithm runs of the a

ura
y of therepresentative 
lassi�ers of Pareto fronts obtained from 2 
lass arti�
ial data sets.Best Classi�er for C1 Best Classi�er for C2 Best average Classi�er
C1 C2 C1 C2 C1 C2Joint MDnB 0.729 ± 3.3E-3 0.794 ± 1.7E-2 0.690 ± 1.1E-2 0.827 ± 2.6E-3 0.711 ± 9.2E-3 0.818 ± 6.2E-3MDTAN 0.716 ± 4.0E-3 0.820 ± 8.0E-3 0.605 ± 1.4E-2 0.872 ± 5.1E-3 0.678 ± 3.7E-2 0.846 ± 1.5E-2MDPoly 0.752 ± 2.5E-3 0.793 ± 8.0E-3 0.709 ± 2.3E-2 0.822 ± 4.6E-3 0.740 ± 6.9E-3 0.809 ± 7.4E-3MD1/2 0.836 ± 3.7E-3 0.745 ± 2.2E-2 0.792 ± 2.2E-2 0.791 ± 4.7E-3 0.824 ± 7.2E-3 0.772 ± 1.1E-2Mar. MDnB 0.727 ± 3.0E-3 0.802 ± 5.4E-3 0.695 ± 6.2E-3 0.825 ± 1.2E-3 0.708 ± 7.5E-3 0.820 ± 5.0E-3MDTAN 0.716 ± 3.1E-3 0.820 ± 8.0E-3 0.605 ± 1.5E-2 0.871 ± 3.0E-3 0.665 ± 3.7E-2 0.853 ± 1.4E-2MDPoly 0.751 ± 1.5E-3 0.794 ± 6.4E-3 0.718 ± 8.5E-3 0.822 ± 3.2E-3 0.736 ± 9.9E-3 0.811 ± 6.6E-3MD1/2 0.835 ± 3.4E-3 0.747 ± 1.9E-2 0.804 ± 8.6E-3 0.789 ± 4.3E-3 0.820 ± 1.2E-2 0.776 ± 1.2E-2Cond. MDnB 0.727 ± 3.1E-3 0.801 ± 4.1E-3 0.697 ± 3.8E-3 0.826 ± 1.3E-3 0.714 ± 7.5E-3 0.816 ± 6.7E-3MDTAN 0.716 ± 2.3E-3 0.820 ± 9.6E-3 0.609 ± 1.1E-2 0.870 ± 2.7E-3 0.697 ± 1.6E-2 0.844 ± 1.5E-2MDPoly 0.751 ± 1.3E-3 0.796 ± 5.6E-3 0.718 ± 9.9E-3 0.821 ± 3.0E-3 0.740 ± 9.5E-3 0.809 ± 7.9E-3MD1/2 0.834 ± 3.0E-3 0.751 ± 1.2E-2 0.803 ± 8.4E-3 0.789 ± 3.0E-3 0.819 ± 1.1E-2 0.778 ± 9.6E-3Iter. MDnB 0.727 ± 2.8E-3 0.803 ± 4.2E-3 0.698 ± 8.1E-3 0.825 ± 2.0E-3 0.711 ± 1.1E-2 0.816 ± 5.4E-3MDTAN 0.716 ± 1.9E-3 0.822 ± 6.7E-3 0.608 ± 8.8E-3 0.870 ± 2.2E-3 0.671 ± 4.0E-2 0.848 ± 1.4E-2MDPoly 0.751 ± 1.6E-3 0.795 ± 6.1E-3 0.720 ± 6.7E-3 0.820 ± 2.1E-3 0.737 ± 8.4E-3 0.811 ± 5.9E-3MD1/2 0.834 ± 2.6E-3 0.755 ± 1.1E-2 0.801 ± 8.6E-3 0.788 ± 2.3E-3 0.820 ± 9.6E-3 0.777 ± 9.1E-3a

urate 
lassi�ers) is similar for all 
lass variables.We also study the stability of the proposed approa
h for di�erent training sets. To that end,we show in tables 7 and 8 the standar deviation for di�erent training sets of the S(A) and D(A)values, and the a

ura
y of the representative 
lassi�ers of the obtained Pareto fronts with arti�-
ial data sets with 2 and 3 
lass variables respe
tively. Ea
h value for ea
h 
lassi�
ation rule andea
h multi-dimensional stru
ture, represents the average of the standard deviation for 5 di�erentdata sets and 5 MOEA/D runs for ea
h data set.We noti
e that the varian
e over di�erent data sets is higher than the varian
e over di�erentlearning algorithm runs. That is be
ause the varian
e for di�erent training sets in
ludes thevariability for di�erent learning algorithm runs. The size of the dominated spa
e of the obtainedPareto fronts is almost the same for di�erent training sets. The standard deviation of the S(A)value is in the order of magnitude of 10−2 for almost all the data sets.The non-uniformity of the Pareto fronts varies for di�erent training sets. The standard de-viation of the D(A) value is in the order of magnitude of 10−1 for almost all the data sets andfurthermore, it is very similar for di�erent number of 
lass variables. So, it seems that the numberof 
lass variables does not in�uen
e the uniformity of the Pareto front.Finally, we fo
us on the varian
e of the a

ura
y of the representative 
lassi�ers of the obtainedPareto fronts. The standard deviation is in the order of magnitude of 10−2 for almost all the datasets, a low varian
e value, and it seems to be slightly lower in 2 
lass variable data sets than in 3
lass variable data sets (but in the same order of magnitude).We 
on
lude the study of the robustness of the proposed approa
h with the following 
on
lu-sion: Although the proposed approa
h seems to return di�erent 
lassi�ers for di�erent trainingsets and MOEA/D runs, they 
over a similar part of the a

ura
y spa
e and maintain similar a
-
ura
y values for the referen
e 
lassi�ers. So, our approa
h seems to be robust for both variability21



Table 6: Mean and standard deviation for 5 learning algorithm runs of the a

ura
y of the representative 
lassi�ers of Pareto frontsobtained from 3 
lass arti�
ial data sets. Best Classi�er for C1 Best Classi�er for C2

C1 C2 C3 C1 C2 C3Joint MDnB 0.807 ± 2.8E-3 0.924 ± 2.5E-3 0.857 ± 7.4E-3 0.733 ± 2.2E-2 0.950 ± 7.8E-4 0.895 ± 9.6E-3MDTAN 0.814 ± 3.6E-3 0.775 ± 1.8E-2 0.929 ± 6.2E-3 0.791 ± 3.8E-3 0.846 ± 2.7E-3 0.926 ± 3.5E-3MDPoly 0.694 ± 7.5E-3 0.721 ± 1.7E-2 0.751 ± 3.8E-2 0.564 ± 1.9E-2 0.825 ± 5.1E-3 0.760 ± 1.5E-2MD2/2 0.830 ± 3.9E-3 0.764 ± 1.1E-2 0.724 ± 3.0E-2 0.720 ± 3.1E-2 0.830 ± 4.7E-3 0.740 ± 5.4E-2Mar. MDnB 0.805 ± 5.3E-3 0.924 ± 3.0E-3 0.860 ± 6.4E-3 0.756 ± 2.1E-2 0.950 ± 3.6E-4 0.889 ± 9.2E-3MDTAN 0.814 ± 3.8E-3 0.772 ± 2.0E-2 0.931 ± 5.8E-3 0.794 ± 4.5E-3 0.846 ± 1.8E-3 0.925 ± 4.0E-3MDPoly 0.692 ± 7.0E-3 0.715 ± 2.0E-2 0.751 ± 3.1E-2 0.560 ± 1.9E-2 0.823 ± 4.7E-3 0.765 ± 1.5E-2MD2/2 0.830 ± 3.8E-3 0.768 ± 1.2E-2 0.727 ± 2.9E-2 0.724 ± 3.1E-2 0.830 ± 6.1E-3 0.741 ± 5.7E-2Cond. MDnB 0.806 ± 4.0E-3 0.925 ± 2.4E-3 0.858 ± 4.8E-3 0.733 ± 2.1E-2 0.950 ± 5.0E-4 0.894 ± 8.7E-3MDTAN 0.813 ± 2.9E-3 0.778 ± 1.6E-2 0.929 ± 6.6E-3 0.792 ± 2.7E-3 0.846 ± 1.5E-3 0.925 ± 3.0E-3MDPoly 0.690 ± 6.0E-3 0.721 ± 1.7E-2 0.757 ± 1.5E-2 0.563 ± 2.1E-2 0.824 ± 4.8E-3 0.749 ± 3.0E-2MD2/2 0.831 ± 3.4E-3 0.768 ± 8.9E-3 0.737 ± 1.5E-2 0.731 ± 3.4E-2 0.828 ± 3.4E-3 0.732 ± 5.4E-2Iter. MDnB 0.807 ± 3.6E-3 0.925 ± 2.0E-3 0.858 ± 6.4E-3 0.742 ± 2.6E-2 0.950 ± 1.1E-3 0.891 ± 1.3E-2MDTAN 0.813 ± 3.0E-3 0.781 ± 1.6E-2 0.932 ± 6.7E-3 0.792 ± 5.0E-3 0.847 ± 2.0E-3 0.925 ± 2.8E-3MDPoly 0.690 ± 4.1E-3 0.727 ± 9.5E-3 0.763 ± 1.0E-2 0.567 ± 2.6E-2 0.822 ± 4.4E-3 0.761 ± 2.2E-2MD2/2 0.829 ± 2.5E-3 0.769 ± 1.2E-2 0.739 ± 1.4E-2 0.730 ± 3.0E-2 0.827 ± 3.3E-3 0.761 ± 3.6E-2Best Classi�er for C3 Best average Classi�er
C1 C2 C3 C1 C2 C3Joint MDnB 0.738 ± 1.1E-2 0.933 ± 4.8E-3 0.924 ± 4.0E-3 0.767 ± 2.8E-2 0.935 ± 1.0E-2 0.893 ± 1.4E-2MDTAN 0.724 ± 3.2E-2 0.806 ± 7.8E-3 0.958 ± 1.1E-3 0.800 ± 3.3E-3 0.814 ± 1.5E-2 0.940 ± 6.2E-3MDPoly 0.609 ± 2.3E-2 0.725 ± 1.3E-2 0.856 ± 3.1E-3 0.623 ± 3.2E-2 0.765 ± 2.9E-2 0.812 ± 3.8E-2MD2/2 0.736 ± 3.1E-2 0.763 ± 1.7E-2 0.839 ± 4.8E-3 0.790 ± 1.8E-2 0.787 ± 1.9E-2 0.786 ± 3.5E-2Mar. MDnB 0.739 ± 6.7E-3 0.932 ± 5.4E-3 0.925 ± 2.9E-3 0.777 ± 1.4E-2 0.935 ± 7.7E-3 0.895 ± 1.8E-2MDTAN 0.758 ± 3.1E-2 0.804 ± 1.0E-2 0.958 ± 1.2E-3 0.800 ± 6.1E-3 0.816 ± 1.5E-2 0.938 ± 9.5E-3MDPoly 0.610 ± 2.5E-2 0.731 ± 2.2E-2 0.856 ± 3.9E-3 0.670 ± 4.1E-2 0.785 ± 2.8E-2 0.805 ± 3.7E-2MD2/2 0.736 ± 3.1E-2 0.764 ± 2.3E-2 0.838 ± 6.2E-3 0.780 ± 2.6E-2 0.797 ± 2.0E-2 0.794 ± 1.9E-2Cond. MDnB 0.736 ± 7.0E-3 0.933 ± 4.5E-3 0.924 ± 3.0E-3 0.774 ± 1.9E-2 0.934 ± 9.9E-3 0.890 ± 1.9E-2MDTAN 0.747 ± 2.7E-2 0.805 ± 8.9E-3 0.958 ± 1.3E-3 0.797 ± 7.2E-3 0.814 ± 2.0E-2 0.944 ± 7.8E-3MDPoly 0.603 ± 2.9E-2 0.738 ± 2.4E-2 0.856 ± 2.6E-3 0.627 ± 2.9E-2 0.781 ± 2.5E-2 0.801 ± 2.8E-2MD2/2 0.741 ± 2.6E-2 0.765 ± 1.9E-2 0.839 ± 4.7E-3 0.791 ± 2.2E-2 0.789 ± 1.5E-2 0.795 ± 2.4E-2Iter. MDnB 0.737 ± 4.0E-3 0.935 ± 2.5E-3 0.924 ± 2.6E-3 0.764 ± 2.8E-2 0.940 ± 6.7E-3 0.900 ± 1.3E-2MDTAN 0.739 ± 5.6E-3 0.810 ± 4.4E-3 0.958 ± 6.5E-4 0.798 ± 4.2E-3 0.810 ± 2.4E-2 0.941 ± 7.6E-3MDPoly 0.614 ± 1.7E-2 0.734 ± 2.2E-2 0.855 ± 3.0E-3 0.625 ± 3.1E-2 0.775 ± 2.6E-2 0.800 ± 4.7E-2MD2/2 0.746 ± 2.1E-2 0.769 ± 1.1E-2 0.837 ± 5.3E-3 0.781 ± 2.3E-2 0.793 ± 1.4E-2 0.796 ± 2.5E-2
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Table 7: Standard deviation for di�erent training sets of the S(A) and the D(A) values, and thea

ura
y of the representative 
lassi�ers of Pareto fronts obtained from 2 
lass arti�
ial data sets.
S(A) D(A)

A

ura
yBest C1 Class. Best C2 Class. Best Av. Class.
C1 C2 C1 C2 C1 C2Joint MDnB 3.9E-2 1.27E-01 3.0E-2 2.1E-2 2.2E-2 2.6E-2 2.3E-2 2.6E-2MDTAN 1.2E-2 3.17E-01 9.0E-3 1.9E-2 4.0E-2 5.3E-3 2.2E-2 1.1E-2MDPoly 2.9E-2 1.13E-01 2.6E-2 2.6E-2 2.4E-2 2.7E-2 2.6E-2 2.8E-2MD1/2 1.3E-2 1.86E-01 7.8E-3 2.2E-2 2.1E-2 2.0E-2 9.5E-3 1.5E-2Mar. MDnB 3.9E-2 3.27E-02 3.0E-2 2.3E-2 2.1E-2 2.6E-2 2.3E-2 2.7E-2MDTAN 1.2E-2 3.47E-01 8.7E-3 1.8E-2 4.2E-2 5.6E-3 3.2E-2 9.1E-3MDPoly 3.0E-2 4.72E-02 2.6E-2 3.0E-2 2.8E-2 2.8E-2 2.6E-2 2.9E-2MD1/2 1.3E-2 1.25E-01 7.3E-3 2.0E-2 1.5E-2 2.0E-2 9.0E-3 1.7E-2Cond. MDnB 3.9E-2 7.62E-02 3.0E-2 2.3E-2 2.1E-2 2.7E-2 2.5E-2 2.7E-2MDTAN 1.2E-2 2.71E-01 8.6E-3 1.8E-2 4.5E-2 6.0E-3 1.1E-2 9.0E-3MDPoly 2.9E-2 7.54E-02 2.6E-2 3.0E-2 3.2E-2 2.8E-2 2.7E-2 2.8E-2MD1/2 1.3E-2 1.54E-01 7.7E-3 1.5E-2 1.6E-2 2.0E-2 1.1E-2 2.2E-2Iter. MDnB 3.8E-2 7.28E-02 3.0E-2 2.3E-2 2.2E-2 2.6E-2 2.3E-2 2.6E-2MDTAN 1.2E-2 3.33E-01 9.1E-3 1.7E-2 4.7E-2 5.0E-3 2.2E-2 1.0E-2MDPoly 3.0E-2 4.73E-02 2.6E-2 2.9E-2 2.6E-2 2.8E-2 2.7E-2 2.7E-2MD1/2 1.3E-2 8.60E-02 8.4E-3 2.2E-2 1.3E-2 2.0E-2 9.6E-3 2.0E-2sour
es, MOEA/D runs and training sets, in terms of the a

ura
y of 
lassi�ers returned.6.2 Comparison of the proposed 
lassi�
ation rulesOne way to 
ompare the di�erent 
lassi�
ation rules is by visually inspe
ting the obtained Paretofronts. For ea
h 
lassi�
ation rule we plotted the Pareto fronts produ
ed in a single MOEA/Drun (�gures 7, 8, 9 and 10). However, these Pareto fronts are obtained for a single data set andwe want to 
ompare the 
lassi�
ation rules for all the data sets. We use statisti
al tests in orderto know when there are statisti
al di�eren
es between the 
lassi�
ation rules in relation with the

S(A) value, the D(A) value and the a

ura
y of the representative 
lassi�ers. Spe
i�
ally, wehave used a Friedmand test (Demsar, 2006) with a Sha�er's stati
 post-ho
 test with α = 0.1(Gar
ía and Herrera, 2008). Following the suggestion of Gar
ía and Herrera (2008), we use theSha�er's stati
 instead of Nemenji post-ho
 test be
ause it is more powerful. The test results 
anbe represented by means of 
riti
al di�eren
e diagrams (Demsar, 2006), whi
h show the meanranks of ea
h 
lassi�
ation rule a
ross all the domains in a numbered line. If there is no statisti-
ally signi�
ant di�eren
e between two methods, they are 
onne
ted in the diagram by a straightline.The results of the experimentation 
an be 
onsulted in tables 9, 10, 11 and 12. Ea
h valuerepresents the average and the standard deviation of the S(A) and the D(A) values for 5 di�erenttraining sets and 5 MOEA/D runs for ea
h 
lassi�
ation rule and ea
h multi-dimensional stru
-ture. The best values for ea
h multi-dimensional stru
ture are in bold.For almost all the domains in the experimentation, multi-dimensional 
lassi�ers that use joint23



Table 8: Standard deviation for di�erent training sets of the S(A) and the D(A) values, and the a

ura
y of the representative 
lassi�ersof Pareto fronts obtained from 3 
lass arti�
ial data sets.

S(A) D(A)

A

ura
yBest C1 Class. Best C2 Class. Best C3 Class. Best Av. Class.
C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3Joint MDnB 4.2E-2 2.16E-01 3.8E-2 1.6E-2 2.4E-2 4.6E-2 1.6E-2 1.7E-2 3.8E-2 1.6E-2 2.4E-2 4.3E-2 1.6E-2 1.9E-2MDTAN 1.3E-2 2.43E-01 1.9E-2 4.4E-2 1.6E-2 1.5E-2 2.8E-2 1.6E-2 1.9E-2 4.4E-2 1.6E-2 1.5E-2 3.1E-2 1.9E-2MDPoly 4.0E-2 6.31E-02 2.8E-2 5.3E-2 7.3E-3 5.0E-2 2.7E-2 3.7E-2 2.8E-2 5.3E-2 7.3E-3 3.0E-2 2.6E-2 2.4E-2MD2/2 4.4E-2 6.15E-02 5.0E-2 1.7E-2 3.7E-2 4.2E-2 1.5E-2 3.1E-2 5.0E-2 1.7E-2 3.7E-2 5.3E-2 1.8E-2 1.9E-2Mar. MDnB 4.3E-2 2.85E-01 3.6E-2 1.5E-2 2.6E-2 3.8E-2 1.5E-2 1.7E-2 3.6E-2 1.5E-2 2.6E-2 4.2E-2 1.9E-2 2.4E-2MDTAN 1.5E-2 1.98E-01 1.8E-2 4.4E-2 1.6E-2 1.7E-2 2.8E-2 1.6E-2 1.8E-2 4.4E-2 1.6E-2 1.9E-2 3.1E-2 2.2E-2MDPoly 3.7E-2 1.11E-01 2.9E-2 4.8E-2 1.4E-2 5.0E-2 2.5E-2 3.0E-2 2.9E-2 4.8E-2 1.4E-2 4.0E-2 2.0E-2 1.6E-2MD2/2 4.2E-2 5.87E-02 5.1E-2 1.6E-2 3.7E-2 3.9E-2 1.5E-2 2.8E-2 5.1E-2 1.6E-2 3.7E-2 5.1E-2 1.6E-2 2.6E-2Cond. MDnB 4.5E-2 2.42E-01 3.9E-2 1.5E-2 2.6E-2 4.0E-2 1.5E-2 1.6E-2 3.9E-2 1.5E-2 2.6E-2 4.3E-2 1.4E-2 2.4E-2MDTAN 1.6E-2 2.93E-01 1.8E-2 4.1E-2 1.7E-2 1.7E-2 2.8E-2 1.8E-2 1.8E-2 4.1E-2 1.7E-2 1.9E-2 2.9E-2 1.3E-2MDPoly 4.1E-2 7.50E-02 3.0E-2 5.1E-2 2.3E-2 4.7E-2 2.7E-2 2.3E-2 3.0E-2 5.1E-2 2.3E-2 1.7E-2 2.7E-2 1.0E-2MD2/2 4.7E-2 8.22E-02 5.0E-2 1.5E-2 4.0E-2 4.1E-2 1.4E-2 3.6E-2 5.0E-2 1.5E-2 4.0E-2 5.2E-2 1.8E-2 2.0E-2Iter. MDnB 4.2E-2 2.69E-01 3.7E-2 1.6E-2 2.3E-2 4.0E-2 1.5E-2 1.6E-2 3.7E-2 1.6E-2 2.3E-2 4.0E-2 1.3E-2 1.3E-2MDTAN 1.6E-2 3.04E-01 1.8E-2 4.4E-2 1.7E-2 1.5E-2 2.8E-2 1.7E-2 1.8E-2 4.4E-2 1.7E-2 1.5E-2 2.4E-2 1.7E-2MDPoly 3.9E-2 1.29E-01 3.0E-2 4.9E-2 1.9E-2 4.2E-2 2.7E-2 2.9E-2 3.0E-2 4.9E-2 1.9E-2 3.4E-2 3.5E-2 2.0E-2MD2/2 4.8E-2 5.62E-02 5.0E-2 1.7E-2 4.1E-2 4.4E-2 1.3E-2 2.1E-2 5.0E-2 1.7E-2 4.1E-2 5.4E-2 1.7E-2 1.9E-2
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Table 9: Mean and standard deviation for di�erent training sets and MOEA/D runs of the S(A)and the D(A) values of Pareto fronts obtained from 2 
lass arti�
ial data sets.
S(A) D(A)MDnB Joint 0.60173±3.89E-2 0.71153±1.27E-1Mar. 0.60010±3.91E-2 0.62645±3.27E-2Cond. 0.60069±3.93E-2 0.54014±7.62E-2Iter. 0.60012±3.85E-2 0.55923±7.28E-2MDTAN Joint 0.62221±1.21E-2 1.36296±3.17E-1Mar. 0.62162±1.21E-2 1.32568±3.47E-1Cond. 0.62097±1.21E-2 1.37436±2.71E-1Iter. 0.62057±1.20E-2 1.39239±3.33E-1MDPoly Joint 0.61786±2.94E-2 0.67856±1.13E-1Mar. 0.61680±2.97E-2 0.56500±4.72E-2Cond. 0.61587±2.93E-2 0.51505±7.54E-2Iter. 0.61539±3.00E-2 0.58965±4.73E-2MD1/2

Joint 0.66037±1.28E-2 0.85792±1.86E-1Mar. 0.65548±1.28E-2 0.62295±1.25E-1Cond. 0.65796±1.31E-2 0.67006±1.54E-1Iter. 0.65720±1.29E-2 0.70611±8.60E-2
Table 10: Mean and standard deviation for di�erent training sets and MOEA/D runs of the S(A)and the D(A) values of Pareto fronts obtained from 3 
lass arti�
ial data sets.

S(A) D(A)MDnB Joint 0.76190±4.22E-2 0.90754±2.16E-01Mar. 0.76090±4.35E-2 0.92197±2.85E-01Cond. 0.75945±4.52E-2 0.90517±2.42E-01Iter. 0.76153±4.22E-2 0.91664±2.69E-01MDTAN Joint 0.67019±1.27E-2 1.10314±2.43E-01Mar. 0.66977±1.52E-2 1.05668±1.98E-01Cond. 0.67297±1.57E-2 1.16390±2.93E-01Iter. 0.66883±1.65E-2 1.13755±3.04E-01MDPoly Joint 0.55373±4.00E-2 0.85971±6.31E-02Mar. 0.55011±3.69E-2 0.87143±1.11E-01Cond. 0.55232±4.07E-2 0.89339±7.50E-02Iter. 0.55201±3.95E-2 0.87141±1.29E-01MD2/2

Joint 0.66975±4.35E-2 0.85140±6.15E-02Mar. 0.63151±4.18E-2 0.89847±5.87E-02Cond. 0.67213±4.73E-2 0.88617±8.22E-02Iter. 0.67204±4.82E-2 0.80380±5.62E-0225




lassi�
ation rule lead to higher S(A) values (tables 9 and 10), indi
ating that better solutions(higher a

ura
ies) are obtained using this 
lassi�
ation rule. This result is 
orroborated with thestatisti
al tests (�gures 12 and 13).
Figure 12: S(A) ranking for the di�erent 
lassi�
ation rules on the 2 
lass arti�
ial domains.
Figure 13: S(A) ranking for the di�erent 
lassi�
ation rules on the 3 
lass arti�
ial domains.If we analyze the non-uniformity of the Pareto fronts produ
ed with di�erent 
lassi�
ationrules (tables 9 and 10), we observe di�eren
es between arti�
ial data sets with 2 and 3 
lassvariables. In the 2 
lass variable 
ase, the Pareto fronts produ
ed with the joint 
lassi�
ation rulehave the worst D(A) values in almost all 
ases, and the values for the rest of the 
lassi�
ationrules are very similar between them. We have applied the previous des
ribed statisti
al test to theobtained results (Figure 14), and we show that there are signi�
ative di�eren
es between 
lassi-�ers that use joint 
lassi�
ation rule and 
lassi�ers that use 
onditional or iterative 
lassi�
ationrules.On the other hand, the D(A) values in the 3 
lass variables 
ase are very similar, and we donot �nd statisti
al di�eren
es in the use of any 
lassi�
ation rule (Figure 15).

Figure 14: D(A) ranking for the di�erent 
lassi�
ation rules on arti�
ial domains with 2 
lassvariables.
Figure 15: D(A) ranking for the di�erent 
lassi�
ation rules on arti�
ial domains with 3 
lassvariables.As in the previous se
tion, we analyze the mean and the standard deviation of the a

ura
iesof the representative 
lassi�ers produ
ed with the di�erent 
lassi�
ation rules (tables 11 and 12).The tables show the results for the arti�
ial data sets with 2 and 3 
lass variables respe
tively. In26



all 
ases, the Pareto fronts of 
lassi�ers that use joint 
lassi�
ation rule 
ontain the most extremesolutions (the most a

urate for a parti
ular 
lass variable) for the given data sets. But it seemsthat they do not �nd the most balan
ed solutions (the highest average a

urate 
lassi�ers).If we apply the previously des
ribed statisti
al test (�gures 16 and 17) we show that the Paretofronts with 
lassi�ers that use joint 
lasi�
ation rule 
ontain more extreme solutions than Paretofronts with 
lassi�ers that use other 
lassi�
ation rules with statisti
al di�eren
es. However, thereare no statisti
al di�eren
es to state whi
h 
lassi�
ation rule leads to the most balan
ed solutions.
Figure 16: A

ura
ies ranking of the best extreme solutions for the di�erent 
lassi�
ation ruleson arti�
ial domains.
Figure 17: A

ura
ies ranking of the best balan
ed solutions for the di�erent 
lassi�
ation ruleson arti�
ial domains.We �nish the study of the 
omparison of the di�erent 
lassi�
ation rules with the following
on
lusion: We found no di�eren
es in the D(A) value for di�erent 
lassi�
ation rules in the 3
lasses data sets, but in the 2 
lasses data sets the Pareto fronts produ
ed with a joint 
lassi-�
ation rule are less uniformly distibuted than 
lassi�ers produ
ed with 
onditional or iterative
lassi�
ation rules. However, it seems that the Pareto fronts produ
ed with a joint 
lassi�
ationrule rea
h better S(A) values. Moreover, we observe that 
lassi�ers produ
ed with a joint 
lassi�-
ation rule are more extreme 
lassi�ers (the most a

urate for ea
h 
lass variable) than 
lassi�ersprodu
ed with other 
lassi�
ation rules. On the other hand, we 
an not state whi
h 
lassi�
ationrule produ
es more balan
ed 
lassi�ers (the highest average a

urate 
lassi�ers).6.3 Multi-obje
tive learning approa
h versus other approa
hes to multi-dimensional 
lassi�
ationWe 
ompare the multi-obje
tive learning approa
h proposed in this paper with the single-obje
tivelearning approa
hes to multi-dimensional 
lassi�
ation proposed by de Waal and van der Gaag(2007) and van der Gaag and de Waal (2006) (vG-MDnB and dW-MDTAN, see se
tion 3.2) 5.We also 
ompare our approa
h with single-
lass oriented Bayesian 
lassi�ers. For that purpose,we have 
hosen a naive Bayes 
lassi�er (nB) (Langley et al., 1992; Minsky, 1961) and a tree-augmented Bayesian 
lassi�er (TAN) (Friedman et al., 1997). For ea
h data set, we train msingle-
lass 
lassi�ers (m nB and m TAN), one for ea
h 
lass variable. Note that ea
h of the pointsin the following �gures that represents single-
lass 
lassi�ers represent, in fa
t, m 
lassi�ers: onefor ea
h 
lass variable. Figure 18 summarizes the experimental pro
ess we propose to 
ompareour approa
h versus other approa
hes to multi-dimensional 
lassi�
ation.27



Table 11: Mean and standard deviation of the a

ura
y for di�erent training sets and MOEA/D runs of the representative 
lassi�ers ofPareto fronts obtained from 2 
lass arti�
ial data sets.Best Classi�er for C1 Best Classi�er for C2 Best average Classi�er
C1 C2 C1 C2 C1 C2MDnB Joint 0.7279±2.97E-2 0.7944±2.09E-2 0.6898±2.24E-2 0.8266±2.62E-2 0.7107±2.34E-2 0.8184±2.62E-2Mar. 0.7268±2.99E-2 0.8024±2.30E-2 0.6948±2.06E-2 0.8254±2.64E-2 0.7084±2.26E-2 0.8200±2.71E-2Cond. 0.7274±3.02E-2 0.8009±2.26E-2 0.6975±2.12E-2 0.8256±2.67E-2 0.7141±2.51E-2 0.8156±2.66E-2Iter. 0.7273±3.02E-2 0.8030±2.28E-2 0.6983±2.24E-2 0.8250±2.57E-2 0.7112±2.29E-2 0.8165±2.56E-2MDTAN Joint 0.7162±9.01E-3 0.8198±1.94E-2 0.6055±4.02E-2 0.8720±5.28E-3 0.6779±2.16E-2 0.8457±1.10E-2Mar. 0.7163±8.74E-3 0.8200±1.80E-2 0.6046±4.21E-2 0.8708±5.55E-3 0.6650±3.22E-2 0.8526±9.07E-3Cond. 0.7158±8.61E-3 0.8200±1.77E-2 0.6089±4.51E-2 0.8704±5.95E-3 0.6972±1.05E-2 0.8436±8.99E-3Iter. 0.7158±9.12E-3 0.8223±1.71E-2 0.6077±4.67E-2 0.8698±4.96E-3 0.6708±2.19E-2 0.8484±1.02E-2MDPoly Joint 0.7519±2.61E-2 0.7932±2.59E-2 0.7090±2.39E-2 0.8224±2.72E-2 0.7405±2.60E-2 0.8093±2.84E-2Mar. 0.7511±2.59E-2 0.7940±2.99E-2 0.7181±2.81E-2 0.8217±2.76E-2 0.7364±2.56E-2 0.8113±2.90E-2Cond. 0.7509±2.59E-2 0.7961±3.05E-2 0.7176±3.17E-2 0.8206±2.80E-2 0.7402±2.74E-2 0.8093±2.76E-2Iter. 0.7507±2.65E-2 0.7946±2.90E-2 0.7204±2.60E-2 0.8201±2.83E-2 0.7373±2.68E-2 0.8110±2.75E-2MD1/2

Joint 0.8356±7.84E-3 0.7455±2.25E-2 0.7920±2.07E-2 0.7913±2.01E-2 0.8236±9.49E-3 0.7720±1.53E-2Mar. 0.8347±7.34E-3 0.7470±1.98E-2 0.8043±1.49E-2 0.7893±2.05E-2 0.8196±9.01E-3 0.7762±1.68E-2Cond. 0.8343±7.74E-3 0.7510±1.54E-2 0.8030±1.61E-2 0.7894±1.98E-2 0.8194±1.07E-2 0.7778±2.19E-2Iter. 0.8342±8.43E-3 0.7548±2.16E-2 0.8015±1.27E-2 0.7885±2.01E-2 0.8204±9.60E-3 0.7773±1.98E-2
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Table 12: Mean and standard deviation of the a

ura
y for di�erent training sets and MOEA/D runs of the representative 
lassi�ers ofPareto fronts obtained from 3 
lass arti�
ial data sets.Best Classi�er for C1 Best Classi�er for C2

C1 C2 C3 C1 C2 C3MDnB Joint 0.80736±3.8E-2 0.92416±1.6E-2 0.85736±2.4E-2 0.73328±4.6E-2 0.95032±1.6E-2 0.89480±1.7E-2Mar. 0.80536±2.4E-3 0.92416±1.5E-2 0.85968±2.6E-2 0.75600±3.8E-2 0.94984±1.5E-2 0.88904±1.7E-2Cond. 0.80632±3.9E-2 0.92480±1.5E-2 0.85824±2.6E-2 0.73296±4.0E-2 0.95008±1.5E-2 0.89448±1.6E-2Iter. 0.80688±3.7E-2 0.92488±1.6E-2 0.85792±2.3E-2 0.74224±4.0E-2 0.94960±1.5E-2 0.89064±1.6E-2MDTAN Joint 0.81426±1.9E-2 0.77489±4.4E-2 0.92863±1.6E-2 0.79136±1.5E-2 0.84570±2.8E-2 0.92560±1.6E-2Mar. 0.81410±1.8E-2 0.77193±4.4E-2 0.93063±1.6E-2 0.79392±1.7E-2 0.84635±2.8E-2 0.92536±1.6E-2Cond. 0.81354±1.3E-3 0.77818±4.1E-2 0.92935±1.7E-2 0.79223±1.7E-2 0.84571±2.8E-2 0.92544±1.8E-2Iter. 0.81266±1.8E-2 0.78082±4.4E-2 0.93231±1.7E-2 0.79176±1.5E-2 0.84658±2.8E-2 0.92529±1.7E-2MDPoly Joint 0.69384±2.8E-2 0.72096±5.3E-2 0.75112±7.3E-3 0.56400±5.0E-2 0.82488±2.7E-2 0.75976±3.7E-2Mar. 0.69160±2.9E-2 0.71552±4.8E-2 0.75056±1.4E-2 0.55976±5.0E-2 0.82288±2.5E-2 0.76480±3.0E-2Cond. 0.69032±3.0E-2 0.72152±5.1E-2 0.75744±2.3E-2 0.56320±4.7E-2 0.82384±2.7E-2 0.74928±2.3E-2Iter. 0.69016±3.0E-2 0.72728±4.9E-2 0.76328±1.9E-2 0.56736±4.2E-2 0.82184±2.7E-2 0.76136±2.9E-2MD2/2

Joint 0.83024±5.0E-2 0.76424±1.7E-2 0.72432±3.7E-2 0.72032±4.2E-2 0.83016±1.5E-2 0.74048±3.1E-2Mar. 0.83000±5.1E-2 0.76832±1.6E-2 0.72672±3.7E-2 0.72360±3.9E-2 0.83024±1.5E-2 0.74072±2.8E-2Cond. 0.83080±5.0E-2 0.76768±1.5E-2 0.73736±4.0E-2 0.73104±4.1E-2 0.82832±1.4E-2 0.73232±3.6E-2Iter. 0.82904±5.0E-2 0.76888±1.7E-2 0.73912±4.1E-2 0.73040±4.4E-2 0.82712±1.3E-2 0.76144±2.1E-2Best Classi�er for C3 Best Average Classi�er
C1 C2 C3 C1 C2 C3MDnB Joint 0.73792±5.7E-2 0.93280±1.7E-2 0.92424±1.5E-2 0.76696±4.3E-2 0.93504±1.6E-2 0.89304±1.9E-2Mar. 0.73880±5.4E-2 0.93192±1.7E-2 0.92496±1.4E-2 0.77720±4.2E-2 0.93544±1.9E-2 0.89512±2.4E-2Cond. 0.73600±5.8E-2 0.93288±1.7E-2 0.92416±1.5E-2 0.77424±4.3E-2 0.93416±1.4E-2 0.89040±2.4E-2Iter. 0.73712±5.6E-2 0.93488±1.6E-2 0.92424±1.5E-2 0.76400±4.0E-2 0.93976±1.3E-2 0.90032±1.3E-2MDTAN Joint 0.72422±5.1E-2 0.80558±3.4E-2 0.95787±1.3E-2 0.80022±1.5E-2 0.81430±3.1E-2 0.94047±1.9E-2Mar. 0.75818±7.8E-2 0.80380±2.8E-2 0.95779±1.2E-2 0.80031±1.9E-2 0.81565±3.1E-2 0.93775±2.2E-2Cond. 0.74685±6.8E-2 0.80521±3.0E-2 0.95819±1.3E-2 0.79685±1.9E-2 0.81426±2.9E-2 0.94367±1.3E-2Iter. 0.73949±8.2E-2 0.80975±2.8E-2 0.95763±1.3E-2 0.79847±1.5E-2 0.80989±2.4E-2 0.94063±1.7E-2MDPoly Joint 0.60864±3.5E-2 0.72528±2.6E-2 0.85552±2.2E-2 0.62264±3.0E-2 0.76552±2.6E-2 0.81208±2.4E-2Mar. 0.60952±4.3E-2 0.73064±2.9E-2 0.85616±2.2E-2 0.60960±4.0E-2 0.78528±2.0E-2 0.80544±1.6E-2Cond. 0.60344±3.7E-2 0.73792±2.3E-2 0.85560±2.2E-2 0.62680±1.7E-2 0.78056±2.7E-2 0.80088±1.0E-2Iter. 0.61360±3.6E-2 0.73416±2.5E-2 0.85512±2.3E-2 0.62464±3.4E-2 0.77552±3.5E-2 0.80040±2.0E-2MD2/2

Joint 0.73648±4.3E-2 0.76256±1.3E-2 0.83864±1.5E-2 0.79032±5.3E-2 0.78712±1.8E-2 0.78584±1.9E-2Mar. 0.73608±4.1E-2 0.76416±1.6E-2 0.83784±1.4E-2 0.77952±5.1E-2 0.79664±1.6E-2 0.79400±2.6E-2Cond. 0.74128±4.8E-2 0.76464±1.9E-2 0.83896±1.5E-2 0.79152±5.2E-2 0.78936±1.8E-2 0.79472±2.0E-2Iter. 0.74560±4.7E-2 0.76944±2.1E-2 0.83728±1.5E-2 0.78152±5.4E-2 0.79312±1.7E-2 0.79648±1.9E-2
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Figure 18: The proposed experimentation to 
ompare the proposed learning approa
h versus otherapproa
hes to multi-dimensional 
lassi�
ation

Figure 19: A

ura
y values of the Pareto fronts learnt with a multi-obje
tive learning approa
hvs. other Bayesian approa
hes in a MDnB stru
ture data set.In order to illustrate the obtained results, we have plotted the obtained Pareto front of theproposed approa
h versus vG-MDnB, dW-MDTAN and m nB and m TAN 
lassi�ers in onearti�
ial data set from ea
h of the proposed stru
tures (�gures 19, 20, 21 and 22) and in theAutomobile data set (Figure 23). The Pareto fronts are 
reated departing from the ones shown in�gures 7, 8, 9, 10 and 11 with 2 
lass variables (we maintain the labels of the di�erent 
lassi�
ation5Remember that vG-MDnB and dW-MDTAN obtain only one 
lassi�er and not a Pareto set30



Figure 20: A

ura
y values of the Pareto fronts learnt with a multi-obje
tive learning approa
hvs. other Bayesian approa
hes in a MDTAN stru
ture data set.

Figure 21: A

ura
y values of the Pareto fronts learnt with a multi-obje
tive learning approa
hvs. other Bayesian approa
hes in a MDPoly stru
ture data set.rules). Note that the Pareto fronts are 
omposed mixing the 
lassi�ers obtained with di�erent
lassi�
ation rules and removing the dominated 
lassi�ers.The �gures 
learly show that the Pareto fronts obtained with the multi-dimensional learningapproa
h dominates the solutions obtained with vG-MDnB, dW-MDTAN, m nB and m TAN forall the data sets. The proposed approa
h o�ers more a

urate 
lassi�ers for all 
lass variables thanvG-MDnB, dW-MDTAN, m nB and m TAN 
lassi�ers. The dW-MDTAN 
lassi�er is the 
losestto the obtained Pareto fronts. For example in the Pareto front plotted in Figure 21, the solution31



Figure 22: A

ura
y values of the Pareto fronts learnt with a multi-obje
tive learning approa
hvs. other Bayesian approa
hes in a MD1/2 stru
ture data set.

Figure 23: Multi-obje
tive approa
h vs. other Bayesian approa
hes in the Automobile data setof a dW-MDTAN is very 
lose to the Pareto front, but it is still dominated by the 
lassi�ers in it.Tables 13 and 14 show the a

ura
ies of the representative 
lassi�ers in the obtained Paretofronts versus the a

ura
ies of vG-MDnB, dW-MDTAN, m nB and m TAN 
lassi�ers in the 2
lass arti�
ial data sets. The 
lassi�ers are evaluated using a 5 repeated 5-
v error estimator.Ea
h value represents the average of the a

ura
y of the 
lassi�ers obtained for ea
h data setstru
ture and the standard deviation for the di�erent traininig sets and learning algorithm runsfor the multi-obje
tive learnt 
lassi�ers and the standard deviation for the di�erent training setsand k
v runs. This value is the best for the di�erent 
lassi�
ation rule. The best values for ea
h32



Table 13: Mean and standard deviation of the a

ura
y for di�erent training sets and MOEA/Druns of the most a

urate 
lassi�ers of the proposed approa
h versus of vG-MDnB, dW-MDTAN,
m nB and m TAN 
lassi�ers in 2 
lass arti�
ial data sets.MDnB MDTAN

C1 C2 C1 C2Best C1 
lass. 0.727±3.0E-2 0.800±2.2E-2 0.716±8.9E-3 0.821±1.8E-2Best C2 
lass. 0.695±2.2E-2 0.826±2.6E-2 0.607±4.4E-2 0.871±5.4E-3Best Av. 
lass. 0.711±2.3E-2 0.818±2.6E-2 0.678±2.2E-2 0.848±9.8E-3vG-MDnB 0.660±7.0E-3 0.772±4.3E-2 0.548±2.1E-2 0.796±1.5E-2dW-MDTAN 0.675±7.7E-3 0.792±3.6E-2 0.699±2.9E-2 0.844±1.3E-2
m nB 0.667±1.9E-2 0.757±3.2E-2 0.539±3.9E-2 0.804±1.7E-2
m TAN 0.657±9.2E-3 0.740±6.0E-2 0.689±1.3E-2 0.857±2.2E-2MDPoly MD1/2

C1 C2 C1 C2Best C1 
lass. 0.751±2.6E-2 0.794±2.9E-2 0.835±7.8E-3 0.750±2.0E-2Best C2 
lass. 0.716±2.7E-2 0.821±2.8E-2 0.800±1.6E-2 0.790±2.0E-2Best Av. 
lass. 0.739±2.6E-2 0.810±2.8E-2 0.821±9.7E-3 0.776±1.8E-2vG-MDnB 0.643±2.6E-2 0.741±3.8E-2 0.770±9.3E-3 0.711±1.3E-2dW-MDTAN 0.716±2.3E-2 0.762±4.9E-2 0.819±7.4E-3 0.720±8.0E-3
m nB 0.662±3.6E-2 0.778±2.0E-2 0.760±8.0E-3 0.707±2.1E-2
m TAN 0.683±1.4E-2 0.779±2.9E-2 0.792±8.4E-3 0.705±1.8E-2multi-dimensional stru
ture are in bold.The proposed approa
h leads to most a

urate 
lassi�ers in almost all 
ases. The extreme
lassi�ers of the obtained Pareto fronts have the best a

ura
y values for all the 
lass variablesin all the data sets. The obtained most balan
ed 
lassi�ers dominate the 
lassi�ers learnt withother learning approa
hes (they have better a

ura
y for all 
lass variables) in all 
ases ex
ept inthe 2 
lasses MDTAN stru
ture data sets. In those data sets, 2 TAN 
lassi�ers seem to improvethe performan
e of the multi-obje
tive learnt 
lassi�ers.Finally, we test the proposed approa
h in the Automobile data set to 
he
k if it improves theperforman
e of other approa
hes to multi-dimensional 
lassi�
ation in real world domains. Tables15 and 16 show the a

ura
ies of the representative 
lassi�ers in the obtained Pareto fronts versusthe a

ura
ies of vG-MDnB, dW-MDTAN, m nB and m TAN 
lassi�ers in the Automobile dataset. Ea
h value represents the average of the a

ura
y of the obtained 
lassi�ers and the standarddeviation for the di�erent learning algorithm runs. The best values for ea
h multi-dimensionalstru
ture are in bold.In the tested real world data set, the 
lassi�ers learnt with the proposed approa
h improve thea

ura
y performan
e of vG-MDnB, dW-MDTAN, m nB and m TAN for all 
lasses. The extreme
lassi�ers of the obtained Pareto fronts have the best a

ura
y values for ea
h of the 
lass variables,and the most balan
ed 
lassi�ers dominate the 
lassi�ers learnt with other learning approa
hes(they have better a

ura
y for all 
lass variables). The proposed approa
h substantially improvesthe performan
e of the other approa
hes to multi-dimensional 
lassi�
ation in real world domains.
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Table 14: Mean and standard deviation of the a

ura
y for di�erent training sets and MOEA/D runs of the most a

urate 
lassi�ers ofthe proposed approa
h versus of vG-MDnB, dW-MDTAN, m nB and m TAN 
lassi�ers in 3 
lass arti�
ial data sets.MDnB MDTAN
C1 C2 C3 C1 C2 C3Best C1 
lass. 0.806±2.9E-2 0.925±1.5E-2 0.858±2.5E-2 0.814±1.4E-2 0.776±4.3E-2 0.930±1.7E-2Best C2 
lass. 0.741±4.1E-2 0.950±1.5E-2 0.892±1.6E-2 0.792±1.6E-2 0.846±2.8E-2 0.925±1.7E-2Best C3 
lass. 0.737±5.6E-2 0.933±1.7E-2 0.924±1.4E-2 0.742±7.0E-2 0.806±3.0E-2 0.958±1.2E-2Best Av. 
lass. 0.771±4.2E-2 0.936±1.5E-2 0.895±2.0E-2 0.799±1.7E-2 0.814±2.9E-2 0.941±1.8E-2vG-MDnB 0.732±6.2E-2 0.925±1.2E-2 0.858±1.4E-2 0.614±2.5E-1 0.607±2.4E-1 0.728±2.9E-1dW-MDTAN 0.761±3.9E-2 0.922±1.3E-2 0.854±1.9E-2 0.646±2.6E-1 0.622±2.5E-1 0.736±2.9E-1

m nB 0.738±7.0E-2 0.920±1.2E-2 0.874±2.5E-2 0.632±2.5E-1 0.625±2.5E-1 0.734±2.9E-1
m TAN 0.740±8.8E-2 0.908±2.2E-2 0.880±2.4E-2 0.575±2.3E-1 0.606±2.4E-1 0.724±2.9E-1MDPoly MD2/2

C1 C2 C3 C1 C2 C3Best C1 
lass. 0.691±2.9E-2 0.721±5.0E-2 0.756±1.6E-2 0.830±5.1E-2 0.767±1.6E-2 0.732±3.9E-2Best C2 
lass. 0.564±4.7E-2 0.823±2.7E-2 0.759±3.0E-2 0.726±4.2E-2 0.829±1.4E-2 0.744±2.9E-2Best C3 
lass. 0.609±3.8E-2 0.732±2.6E-2 0.856±2.2E-2 0.740±4.5E-2 0.765±1.8E-2 0.838±1.5E-2Best Av. 
lass. 0.621±3.0E-2 0.777±2.7E-2 0.805±1.7E-2 0.786±5.3E-2 0.792±1.7E-2 0.793±2.1E-2vG-MDnB 0.560±3.7E-2 0.733±3.9E-2 0.753±2.2E-2 0.679±2.1E-2 0.739±2.6E-2 0.711±3.4E-2dW-MDTAN 0.604±4.2E-2 0.760±3.0E-2 0.793±2.2E-2 0.736±3.4E-2 0.758±1.4E-2 0.740±2.7E-2nB 0.556±2.6E-2 0.752±3.4E-2 0.758±3.8E-2 0.702±3.4E-2 0.756±2.9E-2 0.754±2.1E-2TAN 0.608±7.0E-2 0.724±3.3E-2 0.778±3.8E-2 0.758±6.2E-2 0.742±5.8E-2 0.744±2.3E-2
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Table 15: Mean and standard deviation of the a

ura
y for di�erent learning algorithm runs of themost a

urate 
lassi�ers of the proposed approa
h versus the mean and standard deviation of thea

ura
y for di�erent k-
v evaluations of vG-MDnB, dW-MDTAN, m nB and m TAN 
lassi�ersin Automobile data set with 2 
lass variables.
C1 C2Best C1 Class. 0.959±1.41E-03 0.616±2.50E-02Best C2 Class. 0.908±1.87E-02 0.701±5.64E-03Best Av Class. 0.928±4.89E-03 0.699±6.05E-03vG-MDnB 0.934 ±8.91E-02 0.529±7.18E-02dW-MDTAN 0.927±7.99E-02 0.571±6.65E-02

m nB 0.927±8.72E-02 0.492±8.13E-02
m TAN 0.907±8.18E-02 0.642±3.74E-02

Table 16: Mean and standard deviation of the a

ura
y for di�erent training sets and learningalgorithm runs of the most a

urate 
lassi�ers of the proposed approa
h versus the mean andstandard deviation of the a

ura
y for di�erent k-
v evaluations of vG-MDnB, dW-MDTAN, mnB and m TAN 
lassi�ers in Automobile data set with 3 
lass variables.
C1 C2 C3Best C1 Class. 0.990±3.32E-4 0.927±2.74E-3 0.595±3.73E-3Best C2 Class. 0.962±8.79E-3 0.960±6.63E-4 0.574±9.12E-3Best C3 Class. 0.950±3.02E-2 0.925±7.30E-3 0.683±6.47E-3Best Av Class. 0.979±3.32E-4 0.940±1.66E-3 0.674±2.16E-3vG-MDnB 0.962±3.48E-3 0.910±1.93E-2 0.591±4.89E-3dW-MDTAN 0.889±4.39E-2 0.910±7.69E-3 0.655±6.32E-2

m nB 0.943±2.14E-3 0.930±1.23E-2 0.640±2.60E-3
m TAN 0.964±3.10E-3 0.900±8.40E-3 0.610±1.21E-3
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7 Con
lusions and future workWe 
all multi-dimensional supervised 
lassi�
ation to the generalization of the single-
lass su-pervised 
lassi�
ation problem to the simultaneous predi
tion of a set of 
lass variables. In thispaper, we fa
e the problem of learning Bayesian network 
lassi�ers for multi-dimensional su-pervised 
lassi�
ation problems. To that end, we present a multi-obje
tive learning approa
hto multi-dimensional Bayesian 
lassi�ers. This approa
h returns a Pareto set of non-dominatedmulti-dimensional Bayesian 
lassi�ers learnt from the same data set. In addition, we have de�nednew 
lassi�
ation rules for probabilisti
 
lassi�ers in multi-dimensional 
lass problems.Our approa
h 
onsiders the learning of multi-dimensional Bayesian 
lassi�ers whose obje
tiveis to maximize the a

ura
y of ea
h 
lass variable, and it uses a multi-obje
tive optimizationalgorithm (MOEA/D) to learn a set of non-dominated 
lassi�ers. We have used the 5 repeated
5-fold 
ross-validation error estimation (5
v) of ea
h 
lass variable as obje
tive fun
tions for themulti-obje
tive optimization problem.The robustness of the proposed learning approa
h is measured for di�erent variability sour
es:The varian
e with regard to di�erent learning algorithm runs and the varian
e with regard to
hanges in the training set. The proposed learning approa
h seems to be very robust for bothvariability sour
es. The 
lassi�ers in the Pareto fronts obtained with our approa
h are not evenlydistributed for di�erent training sets and MOEA/D runs, however they 
over a similar part of thea

ura
y spa
e and maintain very similar a

ura
y values.We note that the multi-dimensional 
hara
teristi
 of the problem allows us to develop di�erent
lassi�
ation rules for multi-dimensional 
lassi�ers that would make no sense in single-
lass 
lassi-�
ation be
ause they take into a

ount multiple 
lass variables. We have presented four di�erent
lassi�
ation rules: The joint 
lassi�
ation rule returns the most probable 
ombination of 
lassvariables given the features. By 
onstrast, the marginal 
lassi�
ation rule marginalizes ea
h 
lassvariable for the rest of the 
lass variables given the features, and returns the most probable value.The 
onditional 
lassi�
ation rule begins using the marginal 
lasi�
ation rule and then uses theestimated 
lass values as eviden
e in order to estimate again the 
lass variables values. Finally,the iterative 
lassi�
ation rule 
ontinues estimating the 
lass variable values in di�erent stepssin
e the estimated 
lass variables values do not 
hange in two 
onse
utive steps.We show that the 
lassi�ers produ
ed with the joint 
lassi�
ation rule are more a

urate forea
h 
lass variable, but there are no di�eren
es in the average a

ura
y for all 
lass variablessimultaneously. The Pareto fronts produ
ed with a joint 
lassi�
ation dominate a higher part ofthe a

ura
y spa
e. Their 
lassi�ers are similarly distributed a
ross the Pareto front to the restof the 
lassi�
ation rules in the 3 
lasses data sets, but in the 2 
lasses data sets the Pareto frontsprodu
ed with a joint 
lassi�
ation rule are less uniformly distibuted than 
lassi�ers produ
edwith 
onditional or iterative 
lassi�
ation rules.Finally, we 
ompare the proposed approa
h with other Bayesian 
lassi�
ation approa
hes tomulti-dimensional 
lassi�
ation (vG-MDnB, dW-MDTAN, m nB and m TAN 
lassi�ers). Theresults show 
learly that the 
lassi�ers obtained with the proposed approa
h improve the a

u-ra
y of the 
ompared 
lassi�ers for ea
h 
lass variable and for all 
lass variables simultaneously.Furthermore, it o�ers a very interesting graphi
 representation of the behaviour of several di�erentmulti-dimensional 
lass Bayesian 
lassi�ers learnt from the same data set. So, a de
ision maker
an easily 
hoose the appropriate one from the Pareto front.36



There are some paths where it is worth extending the learning approa
h presented in thispaper. Firstly, we would like to extend the multi-obje
tive learning to unrestri
ted Bayesiannetworks following the work done in A
id et al. (2005). Finally, it would be interesting to developte
hniques to help a de
ision maker in the 
hoosing of an appropriate 
lassi�er from the Paretofront.8 A
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