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Abstract: In this work, a new method for solving a delay differential equation (DDE) with multiple
delays is presented by using second- and third-order polynomials to approximate the delayed terms
using the enhanced homotopy perturbation method (EMHPM). To study the proposed method
performance in terms of convergency and computational cost in comparison with the first-order
EMHPM, semi-discretization and full-discretization methods, a delay differential equation that model
the cutting milling operation process was used. To further assess the accuracy of the proposed method,
a milling process with a multivariable cutter is examined in order to find the stability boundaries.
Then, theoretical predictions are computed from the corresponding DDE finding uncharted stable
zones at high axial depths of cut. Time-domain simulations based on continuous wavelet transform
(CWT) scalograms, power spectral density (PSD) charts and Poincaré maps (PM) were employed to
validate the stability lobes found by using the third-order EMHPM for the multivariable tool.
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1. Introduction

There are many phenomena in different fields of science and engineering where the physical
response of a variable involves not only the value at time t but also the effects that occur in an
earlier state t− τ. Thus, delay systems appear in many engineering problems, such as in the shimmy
effect (wheel vibration) [1], vehicle traffic models [2], feedback stabilization problems [3] and in the
regenerative vibration of machine-tools better known as chatter [4]. In cases where the net force
depends on the current values and some past values (history) such as position and speed, the system
dynamic behavior can be modeled using a differential delay equation (DDE).

It is well-known that during a milling process, unstable vibrations also known as self-excited
vibration or chatter may occur. Chatter reduces the machining efficiency due to low material removal
rate by reducing the workload and affects surface quality, shortens tool life and accelerates tool
wear. Researchers are studying several ways to overcome this limitation. Kuljanic et al. [5] studied
the incorporation of a chatter detection system based on multiple sensors to milling operations for
industrial conditions, Zhuo et al. [6] used a method based on fractal dimension for the flank milling of
a thin-walled blade, which can reflect the chatter severity level through the morphological change
in signal. Paul and Morales [7], to mitigate chatter, presented an active controller based on the
technique of discrete time sliding mode control (DSMC) blended with the type-2 fuzzy logic system.
Moreover, Peng et al. [8] presented a method based on a dynamic cutting force simulation model and a

Appl. Sci. 2020, 10, 7869; doi:10.3390/app10217869 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4083-9647
https://orcid.org/0000-0002-4385-6269
https://orcid.org/0000-0002-7159-8199
https://orcid.org/0000-0002-1573-2787
http://dx.doi.org/10.3390/app10217869
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7869?type=check_update&version=2


Appl. Sci. 2020, 10, 7869 2 of 22

machine learning approach based on statistical learning theory to predict and avoid the cutting chatter.
In addition, to control and suppress chatter vibrations, the use of piezoelectric actuators embedded
in the tool holder [9], electromagnetic actuators integrated into the spindle system [10] and tunable
clamping table [11] has been analyzed. In the milling process, the use of variable pitch cutters has
demonstrated to improve productivity [12]. Different from the uniform pitch cutter, when a variable
pitch cutter is used the dynamics model of cutting vibration changes from DDEs with a single delay
to DDEs with multiple delays [13]. A common technique offline to predict unstable vibrations is the
so-called stability lobes of the DDE based on Floquet theory [14], in which a curve describes the limit
of stable vibration under feasible range values of cutting parameters.

The stability analysis of the milling process with multiple delays has been studied through
different methods. Among all these methods, those with variable pitch tools play a critically important
role [15]. Slavicek [16] was the one who first demonstrated the effectiveness of variable pitch cutters in
suppressing vibrations in the milling process, he assumed a rectilinear tool motion for cutting teeth,
and applied the theory of orthogonal stability to the irregular pitch of the tooth, by assuming an
alternating step variation then, he obtained an expression of the stability limit as a function of the step
angle variation. Budak [17,18] proposed an analytical method for nonconstant pitch milling cutters
from a design point of view, showing for some applications how this variable effect helps to reduce
self-excited vibrations, so he found that chatter stability can be improved significantly even at slow
cutting speeds by properly designing the pitch angles. Altintas et al. [19] used the frequency domain
method to analyze the milling stability of the variable pitch cutter and introduced a method to select
the optimal pitch angles. Olgac and Sipahi proposed a mathematical approach, the cluster treatment of
characteristic roots (CTCR), which optimizes the design of variable pitch cutters [20]. Jin et al. [21]
presented an improved semi-discretization algorithm to predict the stability lobes for variable pitch
cutters, which were verified and compared with previous works such as the Altintas analytical method
(zero-order method) [19]. Comak and Budak [22] showed the optimal design of a tool for milling
operations with variable geometry to widen the stability zones using the semi-discretization method,
validating it experimentally. They also used a design methodology to determine the optimal pitch
angle geometry for a given cutting condition, allowing increased stability.

Zatarain et al. [23] extended the multifrequency solution proposed by Budak and Altintas [24]
to include the helix effect, they pointed out that the variation of the helix angle plays an important
role in stability graphs due to repetitive vibrations driven by impact (flip), they found that the flip
lobes became closed curves that are separated by horizontal lines where the depth of cut is equal to
a multiple of the helix pitch. A similar phenomenon was confirmed using the semi-discretization
method (SDM) in [25], meanwhile, B.R. Patel et al. [26] considered the influence of the helix angle of
the tool to obtain an analytical force model, they found that isolated islands of instability can occur in
the milling processes, which are induced by the helix angle of the tool and lead to separate regions of
period-doubling and quasi-period behavior. Sims et al. [27] by using an adapted and time-averaged
version of the SDM analyzed both the influence on the variation of the helix angle and the pitch angle
of the tool to improve the prediction of vibrations and estimate predictions of surface errors. They used
the semi-discretization method, the time-averaged semi-discretization method and the temporal finite
element method to predict vibration stability for variable helix and variable pitch milling tools. Turner
et al. [28] modeled and compared stability for variable pitch and helix angle cutters, demonstrating
that variable helix angle tools can have higher stability and productivity.

Yusoff and Sims in [29] combined SDM with differential evolution to optimize variable helix milling
tools to minimize vibration, their analysis predicted total vibration mitigation using the optimized
variable helix milling tool at low radial immersion. Furthermore, Dombovari and Stepan [30] introduced
a general mechanical model based on SDM to predict the linear stability of specialty cutters with
optional continuous variation of the helix angle. Using an extended second-order SDM, Zhan et al. [15]
predicted the stability lobe diagrams for tools with variable pitch angles. Meanwhile, Huang et al. [31]
conducted a stability analysis for milling operations with variable pitch mills at variable speed,
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while Cai et al. [32] proposed an integrated process machine model based on the computer graphics
method to simulate the milling process of a variable pitch cutter.

On the other hand, Olvera and Elías-Zuñiga in [33] led to the development of the enhanced
multistage homotopy perturbation method (EMHPM) to solve differential delay equations (DDEs)
with constant and variable coefficients and then this EMHPM was applied to predict the stability of
a multivariate milling tool in which they consider the helix angle and the pitch angle variation of
the cutting edges [34]. Based on the Laplace formulation, Sims [35] studied the stability of milling
operations with a variable helix angle. Using the multi-frequency solution, Otto et al. [36] derived a
dynamic process model where the non-linear shear force and the runout effect are included for milling
with non-uniform pitch and variable helix tools. Niu et al. [37] found that runout can significantly
increase the stability limits regardless of spindle speed ranges, while Olvera et al. [38] in a study for a
thin-walled workpiece demonstrated that by considering the effects of the runout, the helix angle and
characterization dependent on the cutting speed, more precise stability boundaries are achieved.

To demonstrate that one of the effective ways to suppress vibration in milling operations is to use
tools with variable pitch and helix angle, Wang et al. [12] proposed an improved semi-discretization
method based on Floquet′s theory. Since the delay between each cutting edge varies along with the
axial depth of the tool in milling, they discretized the cutting tool in some axial layers to simplify
the calculation. Iglesias et al. [39] presented a method to find the optimal angles between the inserts,
and the stability diagrams were obtained through the iterative brute force (BF) method, which consists
of an iterative maximization of stability through the semi-discretization method. They conclude that,
if an optimal selection of the angle between the inserts is possible then, the material removal rate can be
improved up to three times. Gou et al. [40] proposed an effective optimization method for the variable
helical cutter introducing an index called “suppression factor” to measure stability quantitatively.

Therefore, in the present work, the EMHPM developed in [33] and extended for analysis of
multivariable tools in [34], is now expanded to solve the dynamics of the machining process in milling
in which the approximation to the delay is performed with polynomials of degree two and three.
In order to study the proposed method performance in terms of convergency and computational cost,
a multivariable milling tool with a variable pitch cutter and helix angle is used to determine milling
process in stability domains.

This paper is summarized as follows. Section 2 focuses on the development of second- and
third-order EMHPM for stability analysis of DDE. Section 3 studies the application of the second- and
third-order EMHPM on the milling equation to demonstrate its improvement in the convergence rate.
Section 4 is focused on the use of the third-order EMHPM to compute the stability analysis in milling for
multivariable tools, and theoretical predictions with time-domain simulations are performed. Finally,
some conclusions are drawn.

2. Enhanced Multistage Homotopy Perturbation Method

2.1. Second-Order EMHPM

Olvera et al. enhanced in [33] the multistage homotopy perturbation method (MHPM) proposed
by Hashim [41]. The EMHPM considers the general case in which the nonlinear equation contains
terms of the independent variable. This method is also useful to solve an n-dimensional DDE in the
state-space form

.
x(t) = A(t)x + B(t)x(t− τ) (1)

where A(t + τ) = A(t), B(t + τ) = B(t), x(t), is the state vector, and τ is the time delay. Equation (1)
can be written equivalently as:

.
xi(T) −Atxi(T) ≈ Btxi

τ(T) (2)

where xi(T) indicates the m-order solution for Equation (1) that satisfies the initial conditions xi(0) =

xi−1, At and Bt are the periodic matrix whose values vary with time t. In [42], Puma et al. applied
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the first-order EMHPM to estimate the delayed term xτi (T) in Equation (2), in which the period
[t0 − τ, t0] was discretized in N equally spaced discrete state values, and the function that describes the
delayed term xτi (T) in the delayed interval [ti−N, ti−N+1] was approximated as a first-order polynomial
representation. Defining xi ≡ xi(T) to simplify the notation, Equation (2) can be written as

.
xi(T) = Atxi(T) + Bt

(
xi−N +

N − 1
τ

(xi−N+1 − xi−N)T
)

(3)

Figure 1a shows the representation of the approximation of the delayed term with the first-order
polynomial. In the second-order EMHPM, to approximate the function that describes the delayed
term xτi (T) in Equation (2), the Lagrange equation is used, making use of the discrete values
xi−N, xi−N+1, xi−N+2 as follows:

fn(x) =
n∑

i=0

Li(x) f (xi), Li(x) =
n∏

i=0,i,k

x− xi
xk − xi

(4)

to achieve a second-degree polynomial approximation, we have from Equation (4) that

P2(x) =
(x− ∆t)(x− 2∆t)
(0− ∆t)(0− 2∆t)

f (xi−N) +
(x− 0)(x− 2∆t)

(∆t− 0)(∆t− 2∆t)
f (xi−N+1) +

(x− 0)(x− ∆t)
(2∆t− 0)(2∆t− ∆t)

f (xi−N+2) (5)
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Substituting x = T and ∆t = (N − 1)/τ, we obtain the function that describes the delayed
interval as:

xi−N+1(T) ≈ xi−N +
(N − 1

τ

)
T
(
−

3
2

xi−N+ 2xi−N+1 −
1
2

xi−N+2

)
+

(N − 1
τ

)2 T2

2
(xi−N − 2xi−N+1 + xi−N+2) (6)

When the delay is approximated by a second-degree polynomial it is called second-order EMHPM
and should not be confused with the order of solution m and which is determined by the last deformation
taking into account the approximated solution. Notice that a polynomial of the second-degree requires
three points. Likewise four points in the case of a third-degree polynomial as shown in Figure 1.

The procedure to calculate the second-order EMHPM solution is based on the EMHPM procedure
described in [33]. The solution for second-order EMHPM is recursively expressed of Xik(T) as

Xik = Xa
ik + Xb

ik + Xc
ik, k = 1, 2, 3 . . . . (7)

where
Xa

i0 = xi−1, Xb
i0 = Xc

i0 = 0 (8)
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and
Xa

ik =
T
k

(
AtXa

i(k−1) + g(k)Btxi−N

)
Xb

ik =
T

k+1

(
AtXb

i(k−1) + g(k)
(

N−1
τ

)
BtT

(
−

3
2 xi−N + 2xi−N+1 −

1
2 xi−N+2

))
Xc

ik =
T

k+2

(
AtXc

i(k−1) + g(k)
(

N−1
τ

)2
Bt

T2

2 (xi−N − 2xi−N+1 + xi−N+2)
) (9)

So, the solution of Equation (1) is obtained by adding each of the approximations Xik of Equation (7).

xi(T) ≈
m∑

k=0

Xik(T) (10)

2.2. Third-Order EMHPM Solution

For the polynomial representation of the third-degree, the function that describes the delayed term
xτi (T) is approximated by a polynomial of order three, then Equation (4) of the Lagrange interpolator
is used accordingly. In this case, it is necessary to employ the xi−N, xi−N+1, xi−N+2, xi−N+3 discrete
values. Following the same procedure described in Section 2.1, the function that describes the delayed
interval is given as:

xτi (T) = xi−N+1(T) ≈ xi−N +
(

N−1
τ

)
T
(
−

11
6 xi−N + 3xi−N+1 −

3
2 xi−N+2 +

1
3 xi−N+3

)
+(

N−1
τ

)2 T2

2 (2xi−N − 5xi−N+1 + 4xi−N+2 − xi−N+3) +
(

N−1
τ

)3 T3

6 (−xi−N + 3xi−N+1 − 3xi−N+2 + xi−N+3)
(11)

Following the EMHPM procedure, the recursive solution of Equation (1) Xik(T) is expressed as

Xik = Xa
ik + Xb

ik + Xc
ik + Xd

ik, k = 1, 2, 3 . . . . (12)

where
Xa

i0 = xi−1,Xb
i0 = Xc

i0 = Xd
i0 = 0 (13)

and
Xa

ik =
T
k

(
AtXa

i(k−1) + g(k)Btxi−N

)
Xb

ik =
T

k+1

(
AtXb

i(k−1) + g(k)
(

N−1
τ

)
BtT

(
−

11
6 xi−N+ 3xi−N+1 −

3
2 xi−N+2 +

1
3 xi−N+3

))
Xc

ik =
T

k+2

(
AtXc

i(k−1) + g(k)
(

N−1
τ

)2
Bt

T2

2 (2xi−N− 5xi−N+1 + 4xi−N+2 − xi−N+3))

Xd
ik =

T
k+3

(
AtXd

i(k−1) + g(k)
(

N−1
τ

)3
Bt

T3

6 (−xi−N+ 3xi−N+1 − 3xi−N+2 + xi−N+3))

(14)

The approximate solution of Equation (1) can be obtained by substituting Equation (12) into
Equation (10) adding each of the approximations Xik.

2.3. Stability Analysis

To calculate the stability of the differential Equation (1) using the second-order EMHPM, the
solution of Equation (10) for second-order EMHPM must be rewritten by grouping each of the discrete
values xi, xi−N+2, xi−N+1, xi−N, resulting in

xi(T) ≈ Pi(T)xi−1 + Qi
′(T)xi−N+2 + Qi(T)xi−N+1 + Ri(T)xi−N (15)
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where
Pi(T) =

m∑
k=0

1
k! A

k
t Tk,

Q
′

i(T) =
m∑

k=1

(
1

(k+2)!

(
N−1
τ

)2
Ak−1

t BtTk+2
−

1
2(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1
)

Qi(T) =
m∑

k=1

1
(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1
− 2Q

′

i

Ri(T) =
m∑

k=1

1
k! A

k−1
t BtTk

−Q
′

i −Qi

(16)

Similarly, to compute the stability lobes for the third-order EMHPM, the solution of the differential
Equation (1) for third-order EMHPM is rewritten as

xi(T) ≈ Pi(T)xi−1 + Q”
i(T)xi−N+3 + Q

′

i(T)xi−N+2 + Qi(T)xi−N+1 + Ri(T)xi−N (17)

where

Pi(T) =
m∑

k=0

1
k! A

k
t Tk,

Q”
i(T) =

m∑
k=1

(
1

(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1
(

1
3

)
−

1
(k+2)!

(
N−1
τ

)2
Ak−1

t BtTk+2 + 1
(k+3)!

(
N−1
τ

)3
Ak−1

t BtTk+3
)

Q
′

i(T) =
m∑

k=1


1

(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1 + 1
(k+2)!

(
N−1
τ

)2
Ak−1

t BtTk+2
(
−

7
2

)
+ 1

(k+3)!

(
N−1
τ

)3
Ak−1

t BtTk+3
(

9
2

)
− 15

2 Q
′ ′

i

Qi(T) =
m∑

k=1

(
1

(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1
)
− 3Q

′ ′

i − 2Q
′

i

Ri(T) =
m∑

k=1

1
k! A

k−1
t BtTk

−Q
′ ′

i −Q
′

i −Qi

(18)

The approximate solution obtained from Equation (17) was used to define a discrete map following
the procedure described in [43]:

wi = Diwi−1 (19)

where wi−1 is a vector with dimension equal to the total number of states (displacement and velocity)
for all N discrete intervals:

wi−1 = [x(i−1),
.
x(i−1), x(i−2), . . . , x(i−N)]

T (20)

Di is a coefficient matrix and for the third-order EMHPM it has the form:

Di =



P 0 0 0 · · · 0 Q′′
i Q′i Qi Ri

I 0 0 0 · · · 0 0 0 0 0
0 I 0 0 · · · 0 0 0 0 0
0 0 I 0 · · · 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

...

0 0 0 0
. . . 0 0 0 0 0

0 0 0 0 · · · I 0 0 0 0
0 0 0 0 · · · 0 I 0 0 0
0 0 0 0 · · · 0 0 I 0 0
0 0 0 0 · · · 0 0 0 I 0



(21)
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It is important to point out that in the case of the second-order EMHPM, the matrix Di is like the
matrix of the third-order EMHPM without the matrix Q

′′

i .
Then, the Floquet transition matrix Φ is calculated over the main period τ = (N − 1)/ ∆t, coupling

each of the discrete maps Di, i = 1, 2, . . . , (N − 1), to obtain:

Φ = DN−1DN−2 . . .D2D1 (22)

Thus, the stability of Equation (1) is determined by calculating the eigenvalues of the transition
matrix given by Equation (22). The eigenvalues of the transition matrix are actually the Floquet
multipliers which are the exponents of each complex exponential functions that describe the motion of
Equation (1). If the modulus of greatest magnitude is greater than or equal to one, it implies that the
system will behave in an unstable way and the amplitude of the vibration will increase exponentially,
otherwise it will have a stable behavior.

3. Numeric Solution of the Milling Equation

3.1. Dynamic Model to the Milling Equation

To validate the proposed EMHPM methods, the numerical solution of the delay differential
equation analyzed by Olvera et al., in [33] was calculated, which describes the dynamic model of the
milling process in one degree of freedom (DOF):

..
x(t) + 2ζωn

.
x(t) +ω2

nx(t) = −
aphxx(t)

mm
(x(t) − x(t− τ)) (23)

where ζ is the modal damping ratio, ωn is the natural frequency of the workpiece, ap is the axial depth
of cut, mm is the modal mass, τ represents the time delay corresponding to the hitting period between
each tooth of the tool and hxx(t) is the specific cutting force in the x-direction due to flexibility in
x-direction, which was calculated depending on the position of the tool

hxx(t) =
zn∑

iz=1

g(φiz(t))sinφiz(t)(Ktc cosφiz(t) + Knc sinφiz(t)) (24)

zn is the number of edges of the tool, Ktc and Knc are the average specific cut coefficients in the tangential
and normal direction, respectively, and φiz(t) is the angular position of each left edge described by

φiz = (2πn/60)t + 2πiz/zn (25)

where n is the spindle speed in revolution per minute (rpm). The function g(φiz(t)) is a window
function, which has the value of one when the current edge iz is cutting material, otherwise it takes the
value zero.

In up-milling φst = 0 and φex = cos−1(1− 2ad), conversely in down-milling φst = cos−1(2ad − 1)
and φex = π, ad is the radial immersion ratio of the cut and φst and φex are the angular positions where
each edge enters and leaves the workpiece.

The second- and third-order EMHPM is applied to obtain the solution of Equation (23) and it is
compared with the solution given by the first-order EMHPM [33]; for a regular tool the matrix A and B
are represented as:

At =

 0 1

−ω2
n −

aphxx(t)
mm

−2ζωn

, Bt =

 0 0
aphxx(t)

mm
0

 (26)

At and Bt correspond to the periodic matrix evaluated at time t. For demonstration purposes,
time-domain simulations were computed for a full-immersion down-milling operation. We used
the parameters employed by Insperger et al., in [43] where the stability lobes were also calculated.
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The modal parameters fn = 922 Hz, ωn = 5793 rad/s, ζ = 0.011 and mm = 0.03993 kg corresponds to
a single degree of freedom. The tangential and normal cutting coefficients are Ktc = 6 × 108 N/m2

and Knc = 2 × 108 N/m2 respectively for an end-mill with zn = 2. The time-domain solution was
computed using the EMHPM considering N = 76 discrete intervals and m = 7. Two sets of cutting
conditions were chosen for a fixed spindle speed value of n = 12,000 rpm where the axial depth of cut of
ap = 1.5 mm corresponds to a stable cutting operation while that for an unstable operation ap = 3 mm
was chosen. In Figure 2 we plot the second- and third-order EMHPM solutions and compare it with
the first-order EMHPM and the dde23 routine in Matlab, which is used to integrate DDE.Appl. Sci. 2020, 10, x 10 of 25 
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Figure 2. Numerical comparison of the enhanced homotopy perturbation method (EMHPM) solutions
of the milling equation, Equation (23), with the dde23 MATLAB routine. (a) Stable milling operation
with ap = 1.5 mm, ad = 1 and n = 12000 rpm and (b) unstable milling operation with ap = 3 mm,
ad = 1 and n = 12000 rpm.

3.2. Numerical Comparison between Methods

In order to observe the rate of convergence of the first-, second- and third-order EMHPM, we chose
the stable case with cutting conditions ap = 1.5 mm, ad = 1 and n = 12,000 rpm presented in Figure 3a,
and the unstable case with cutting conditions ap = 3 mm, ad = 1 and n = 12,000 rpm showed in
Figure 3b. The rate of convergence was analyzed by computing the absolute error between the solution
with N discrete intervals and a converged solution. All methods were compared against itself using
the solution provided with N = 200 discrete intervals, which are considered the converged solution. In
Figure 3a it is observed that the convergence is better for the second- and third-order than the first-order,
however, the difference of convergence between second- and third-order with the parameters used was
negligible. On the other hand, Figure 3b shows that for few discrete intervals the third-order EMHPM
had the fastest convergence in comparison with the second- and the first-order EMHPM. However,
the second-order and third-order curves behaved very similarly after N = 50 discrete intervals. It is
important to mention that for a typical stability solution in the ranges of spindle speed 5000–10,000
rpm, N = 40 discrete intervals will be enough to have accurate predictions.
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Figure 3. Convergence rate of absolute error between first-, second- and third-order EMHPM for
down-milling operation. Cutting parameters for (a) ap = 1.5 mm, ad = 1 and n = 12,000 rpm and
(b) ap = 3 mm, ad = 1 and n = 12,000 rpm.

Since the rate of convergence was proved for time-domain simulations, we next explored the
convergence of the methods applied to the stability analysis. The stability lobes computed with the
second- and third-order EMHPM for regular milling tools were compared with its predecessor for
radial immersion value of ad =1 and the other parameters indicated above as it was used in [44].
Figure 4 shows the stability diagrams for spindle speed in the range 2000–3000 rev/min where the
precision of the method was compromised due to the higher value of the time delay. While the shaded
gray area represents the stability lobes computed with N = 200 discrete intervals in all subfigures,
in each subfigure solid black lines draw the stability frontier for a specific discrete interval and using
the first-, second- or third-order EMHPM. In Figure 4 the first, second and third column represents the
solution for the first-, the second- and the third-order EMHPM respectively, while the first and the
second row was for N = 60 and N = 100 discrete intervals, respectively. It is observed that the error
achieved in the third-order EMHPM was less than those attained for the first-order and second-order
EMHPM solutions. This confirms that the third-order EMHPM had the highest rate of convergence.
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Figure 4. Stability diagrams for down-milling operation. The first (a–c) and second (d–f) rows of
subfigures correspond to N = 60 and N = 100 discrete intervals, respectively. First (a,d), second (b,e) and
third (c,f) columns correspond to the first-, second- and third-order EMHPM, respectively. Subfigure
(g) shows a comparison between the third-order EMHPM (black line), the SDM (dot line) and the FDM
(dash line) with N = 60 discrete intervals.

The results were also compared, in Figure 4g, with the semi-discretization method (SDM) presented
by Insperger and Stépán in [43] (dot line) and with the full-discretization method (FDM) presented by
Ding et al. in [45] (dash line). It is observed that the EMHPM converged faster than the SDM and FDM.
Table 1 list the results for computation times for a different number of discretized intervals together
with the absolute error between stability frontiers. Notice that the solution obtained with the EMHPM
with N = 60 discrete intervals was faster than the SDM and the FDM and even the error was less in the
solution by the EMHPM. For N = 100 discrete intervals the computation time for the FDM was similar
to the solution obtained with the EMHPM but it was demonstrated that the solution by second- and
third-order EMHPM requires a smaller number of discretized intervals to converge to the solution and
using a smaller amount of computation time. Notice the error for the SDM was not calculated since
there was no stability frontier in some values of spindle speed.
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Table 1. Comparison of convergence for different methods for down-milling operation with ad = 1

Method
N = 60 N = 100

Time (s) Error Time (s) Error

First-order EMHPM 52.39 1.6276 186.35 0.3203
Second-order EMHPM 54.85 0.3507 194.65 0.0568
Third-order EMHPM 61.48 0.3458 195.86 0.0563

FDM 61.26 1.4097 191.49 0.3998
SDM 278.03 - 570.04 -

It is noticeable that exists a significant improvement in the rate of convergence from first-order to
second-order and third-order EMHPM, however, the difference between the second- and the third-order
EMHPM is negligible if the number of discretized intervals increase. There is no best method between
second- and third-order EMHPM in terms of rate of convergence and computation time since the
precision depends on the nature of the studied problem. However, it is easy to prove that a higher-order
approximation (fourth- and fifth-order EMHPM) could drastically increase the computational time
without a significant improvement in the solution.

4. Stability Analysis of Multivariable Milling Tools

The EMHPM can be generalized for stability analysis of DDEs having multiple delays.
A multivariable tool contains some of the following characteristics: uneven pitch between teeth,
and/or at least one helix angle with a different value from the others. This analysis was developed by
Compeán et al., in [34] by using the first-order EMHPM, where the methodology for the characterization
of the cutting coefficients for a multivariable tool was discussed, and the dynamic behavior was studied
from the productivity point of view. Since the angular spacing at the beginning of the edge is different
between teeth (pitch) and the different values of helix angles of the edges between adjacent teeth,
the angular spacing between teeth at a specific height changes continuously, which produces an infinite
number of delays. A common approach to deal with the DDE with an infinite number of delay is
to discretize the tool by cutting disks in the axial direction with a thickness ∆adsk to induce a DDE
with a finite number of delays. A single disk still has the same number of flutes (discrete flutes) and
considering that the maximum delay in the process is the period of rotation of the tool or the spindle
rotation period τT, then, it can be discretized in N − 1 intervals.

The angular position between two adjacent teeth in each cutting disk changes according to the
axial position of the referred disk and is related to the expression ψ = kβap, where kβ = 2 tan β/2D.
Here D is the diameter of the tool and ψ represents the cutting-edge offset angle due to the helix angle.
A certain interval can be associated with a discrete time delay of each tooth iz and disk l using the
following formulation

Niz,l = round
(
(N − 1)

δφiz,l

2π

)
(27)

where δφiz,l is the angular pitch between consecutive teeth for each disk, the round function converts
the argument to the nearest integer. In Equation (27) Niz, is a table (matrix) of dimension iz × l. Since
this procedure could generate several delayed terms and some of them with the same value of discrete
time delay due to the discretization scheme, it is required to collect all the different (non-repeated)
discrete time delays dn from Niz,l.

Thus, without loss of generality, the DDE with multiple delays can be written as

.
x(t) = A(t)x(t) +

max(dn)∑
d=min(dn)

Bdx(t− τ) (28)
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where x is the vector of states, A(t + τT) = A(τT), Bd(t + τT) = Bd(τT) and τT is the period of rotation
of the spindle. Following the EMHPM procedure, Equation (28) can be written equivalently by
intervals as:

.
xi(T) −Atxi(T) ≈

max(dn)∑
d=min(dn)

Bt
dxi

τd(T) (29)

being xi(T) the solution by intervals of order m for Equation (28) in the i − th interval that satisfies
the initial condition xi(0) = xi−1, the matrices At and Bd

t represent the values of the matrices A(t) and
Bd(t) evaluated at time t respectively.

4.1. Third-Order EMHPM for Multivariable Milling Tool

To approximate the term associated with the delayed terms xτd
i (T) of Equation (29), the interval

of the period τT, [t0 − τT, t0] is discretized in N − 1 intervals that can be equal size. For simplicity,
intervals of equal size ∆t = τT/(N − 1) are chosen. Then it is assumed that the function xτd

i (T),
which is defined in the interval [ti−d−1, ti−d+2], for the third-order EMHPM has the representation of
the form:

xτd
i (T) = xi−d(T) ≈ xi−d−1 +

(
N−1
τT

)
T
(
−

11
6 (xi−d−1) + 3(xi−d) −

3
2 (xi−d+1) +

1
3 (xi−d+2)

)
+(

N−1
τT

)2 T2

2 (2(xi−d−1) − 5(xi−d) + 4(xi−d+1) − (xi−d+2))+(
N−1
τT

)3 T3

6 (−xi−d−1 + 3(xi−d) − 3(xi−d+1) + xi−d+2)

(30)

Defining xi ≡ xi(Ti) to simplify the notation, and substituting Equation (30) in Equation (29), the
following equation is obtained:

.
xi(T) = Atxi(T) +

max(dn)∑
d=min(dn)


Bt

dxi−d−1 + Bt
dT

(
N−1
τT

)(
−

11
6 (xi−d−1) + 3(xi−d) −

3
2 (xi−d+1) +

1
3 (xi−d+2)

)
+

Bt
d T2

2

(
N−1
τT

)2
(2(xi−d−1) − 5(xi−d) + 4(xi−d+1) − xi−d+2)+

Bt
d T3

6

(
N−1
τT

)3
(−xi−d−1 + 3(xi−d) − 3(xi−d+1) + xi−d+2)

 (31)

where

At =


0 1

−ω2
n −

∆adisk
mm

max(dn)∑
d=min(dn)

hd
yy −2ζωn

, Bt
d =


0 0

∆adisk
mm

max(dn)∑
d=min(dn)

hd
yy 0

 (32)

here, hyy is the specific cutting force in the y-direction due to flexibility in y-direction, which is used
for thin wall machining. This force was calculated depending on the position of the tool via the
following equation:

hyy(t) =
zn∑

iz=1

g(φiz(t)) cosφiz(t)(−Ktc sinφiz(t) + Knc cosφiz(t)) (33)
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Then, solving Equation (31) yields

Xi0 = xi−1

Xi1 = TAt(xi−1) +
max(dn)∑

d=min(dn)


TBt

d(xi−d−1) + Bt
d T2

2

(
N−1
τT

)(
−

11
6 (xi−d−1) + 3(xi−d) −

3
2 (xi−d+1) +

1
3 (xi−d+2)

)
+Bt

d T3

6

(
N−1
τT

)2
(2(xi−d−1) − 5(xi−d) + 4(xi−d+1) − xi−d+2)

+Bt
d T4

24

(
N−1
τT

)3
(−xi−d−1 + 3(xi−d) − 3(xi−d+1) + xi−d+2)


Xi2 = T2

2 At
2(xi−1) + At

max(dn)∑
d=min(dn)


T2

2 Bt
d(xi−d−1) + Bt

d T3

6

(
N−1
τT

)(
−

11
6 (xi−d−1) + 3(xi−d) −

3
2 (xi−d+1) +

1
3 (xi−d+2)

)
+

Bt
d T4

24

(
N−1
τT

)2
(2(xi−d−1) − 5(xi−d) + 4(xi−d+1) − xi−d+2)+

Bt
d T5

120

(
N−1
τT

)3
(−xi−d−1 + 3(xi−d) − 3(xi−d+1) + xi−d+2)


...

Xik =
1
k! TkAt

k(xi−1) + At
k−1

max(dn)∑
d=min(dn)


1
k! TkBt

d(xi−d−1) +
1

(k+1)! Tk+1Bt
d
(

N−1
τT

)(
−

11
6 (xi−d−1) + 3(xi−d) −

3
2 (xi−d+1)+

1
3 (xi−d+2)

)
+ 1

(k+2)! Tk+2Bt
d
(

N−1
τT

)2
(2(xi−d−1) − 5(xi−d) + 4(xi−d+1) − xi−d+2)+

1
(k+3)! Tk+3Bt

d
(

N−1
τT

)3
(−xi−d−1 + 3(xi−d) − 3(xi−d+1) + xi−d+2)



(34)

Notice that Equation (34) can be written recursively as

Xik = Xa
ik + Xb

ik + Xc
ik + Xd

ik, k = 1, 2, 3 . . . . (35)

where Xa
i0 = xi−1, Xb

i0,= Xc
i0 = Xd

i0 = 0 and

Xa
ik =

T
k

AtXa
i(k−1) + g(k)

max(dn)∑
d=min(dn)

Bd
t xi−d−1


Xb

ik =
T

k+1

AtXb
i(k−1) + g(k)

max(dn)∑
d=min(dn)

(
N−1
τ

)
Bd

t T
(
−

11
6 (xi−d−1) + 3(xi−d) −

3
2 (xi−d+1) +

1
3 (xi−d+2)

)
Xc

ik =
T

k+2

AtXc
i(k−1) + g(k)

max(dn)∑
d=min(dn)

(
N−1
τ

)2
Bd

t
T2

2 (2(xi−d−1) − 5(xi−d) + 4(xi−d+1) − xi−d+2)


Xd

ik =
T

k+3

AtXd
i(k−1) + g(k)

max(dn)∑
d=min(dn)

(
N−1
τ

)3
Bd

t
T3

6 (−xi−d−1 + 3(xi−d) − 3(xi−d+1) + xi−d+2)



(36)

the solution of order m for Equation (31) was obtained by adding each of the approximations k of
Equation (35). Similar to Equation (15), to obtain the stability graphs the solution of Equation (35) is
rewritten by grouping the discrete states, which results in:

xi(T) ≈ Pi(T)x(i−1) +

max(dn)∑
d=min(dn)

(
Q

”

i
d(T)xi−d+2 + Q

′

i
d(T)xi−d+1 + Qd

i
(T)xi−d + Rd

i
(T)xi−d−1

)
(37)
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The approximate solution obtained from Equation (37) was used to define a discrete map:

wi = Diwi−1 (39)

where wi−1 is a vector represented by Equation (20) and Di is a coefficient matrix given by

Di=
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(40)

The transition matrix Φ over the period τT = (N − 1)/ ∆t was determined by coupling each
solution xi through the discrete map Di, i = 1, 2, . . . , (N − 1). However, the computational cost can be
reduced by computing only the transition matrix up to the maximum delayed term without losing
precision in the calculation of the eigenvalues:

Φ = DNmaxDNmax− 1 . . .D2D1 (41)
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Thus, the stability graphs of Equation (28) were determined by computing the eigenvalues of the
transition matrix of Equation (41). The results obtained from the EMHPM were corroborated with the
stability lobes in the study of multivariate tools [27].

4.2. Experimental Characterization of One Degree of Freedom Milling Equation and Cutting Force Model

4.2.1. Experimental Modal Analysis

An experimental workpiece was assembled with a 7075T6 aluminum block of 101 mm × 172 mm
supported by two thin plates (walls) with a thickness of 4.5 mm. This assembly mimics a DOF as
described in Equation (23). The workpiece assembly was rigidly fixed to the workbench of a Makino
F3 machining center. For modal analysis, tap testing was performed using a 352C68 PCB Piezotronics
accelerometer and an impact hammer model 9722A500. The signals were acquired with a Polytec
VIB-E-220 data acquisition card and processed with VibSoft signal analyzer software as shown in
Figure 5a. Using the CutPro 8 software, the modal parameters were fitted resulting the values ζ = 0.068,
mm = 3.8 kg, fm = 132 Hz and ωn = 829 rad/s.Appl. Sci. 2020, 10, x 18 of 25 
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Figure 5. Scheme of the experimental setup for (a) the modal analysis and (b) cutting forces
characterization.

4.2.2. Experimental Determination of Cutting Coefficients

The force model in Equation (33) was used to predict the cutting force magnitude for a given
depth of cut. It is based on a mechanistic approach that assumes a relationship between forces and the
uncut chip thickness by means of the cutting coefficients. The cutting force model was established by
introducing cutting (shearing) and edge coefficients for the tangential and normal directions of the
milling tool. The characterization procedure assumed the linear relationship between the averaged
experimental cutting forces F̃ and the feed rate fz in x- and y- directions. This relationship is established
as follows:

F̃ = fzF̃c + F̃e (42)

Here, F̃c and F̃e are the cutting shear and edge components, respectively. The experimental forces
at each feed rate are measured, and the cutting-edge components F̃c and F̃e were evaluated

Ktc = 4
F̃yc

znap
, Knc = −4

F̃xc

znap
(43)

A multivariable cutter provided by a local toolmaker was characterized by using Equation (43)
and the experimental setup shown in Figure 5b. Table 2 summarizes the main geometric characteristics
of the multivariable tool. A total of five cuttings were performed for full radial immersion in aluminum
7075T6 during dry machining. The forces were recorded by using a dynamometer 9257B Kistler and
the spindle speed was set at 3000 rpm based on the dynamometer’s natural frequency to avoid the
amplification of milling forces. The force signals were acquired using a VibSoft-20 acquisition card at
a sample rate of 48 kHz and processed in a custom-made MATLAB app to remove drift and noise.
Cutting forces data were collected for the axial depth of cut of 2 mm and four values of feed per
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tooth 0.05, 0.10, 0.015 and 0.20, so the resulting cutting coefficients Ktc for the tooth 1, 2, 3 and 4 were
1215× 106, 1369× 106, 897× 106 and 1799× 106 N/m2 respectively, while that the coefficients Knc for
the tooth 1, 2, 3 and 4 resulted 272× 106, 520× 106, 801× 106 and 859× 106 N/m2 respectively.

Table 2. Main geometric parameters of multivariable tool.
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Diameter 12.7 mm 
Cutting length 25 mm 
Coating type Uncoated 

Number of teeth 4 
Helix angles  39°, 37°, 39°, 41° 
Pitch angles 80°, 100°, 70°, 110° 

Diameter 12.7 mm

Cutting length 25 mm

Coating type Uncoated

Number of teeth 4

Helix angles 39◦, 37◦, 39◦, 41◦

Pitch angles 80◦, 100◦, 70◦, 110◦

4.3. Stability Analysis of 1 DOF Milling with a Multivariable Tool

The stability lobes computed for the multivariable tool using the third-order EMHPM with a
mesh of 400× 200 (n× ap) are shown in Figure 6 together with stability lobes for a regular tool (angles
of 90◦ and helix angles of 30◦ for all flutes). An approximation of order m = 7 was used with N = 241
and ad = 1 mm. Notice from Figure 6 that the stable zone obtained for the multivariable tool was
significantly larger, meaning that the critical depth of cut was higher in most spindle speeds, which
allowed having more global productivity. It is also observed in the range of spindle speed between
2000 and 3000 rpm, a stable peninsula formed with axial depth ranging from 11 to 20 mm or higher
values of critical depth of cut. For instance, for the multivariable cutter at 2500 rpm, the critical depth
of cut ap was 2.17 mm, however it became stable again as shown in Figure 6 for the interval values
between 11 and 20 mm. To validate this unexpected behavior, we performed several time-domain
simulations using the third-order EMHPM solution described by Equation (37).
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Figure 6. (a) Comparison of stability lobes for regular (black solid line) and multivariable (red solid line)
cutters by using the third-order EMHPM and (b) zoom in on chosen cutting conditions for time-domain
simulations. The selected points are marked as follows: unstable (cross mark), stable (circle mark) and
transition (plus mark) cutting conditions.

Furthermore, the simulated vibrations for the chosen cutting conditions were analyzed using
the continuous wavelet transform (CWT), the power spectral density (PSD) and Poincaré maps (PM).
The CWT is a time-frequency representation of a signal that offers the capability to observe how
frequencies evolve in time. The scalograms display the absolute value of CWT of the simulated
vibration and therefore, they were used to detect chatter phenomena that appeared when milling with
a multivariable tool. The PSD is based on the Fourier transform that provides the transformation from
the time-domain to the frequency-domain. Additionally, PSD is defined as the squared value of the
signal and describes the power of a signal or time series distributed over different frequencies [46].
Moreover, a PM represents points in phase space, which are sampled every spindle rotation [47].
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The frequencies f of the CWT and PM were normalized fn = f / fh according to the spindle frequency
fh. When milling with a regular milling tool the excitation frequency fe is equal to zn times frequencies
of the spindle speed fh but in a multivariable tool, there are several excitation frequencies since the
angular spacing between teeth change as a function of the axial depth of cut.

Figure 7 illustrates the CWT, PSD and PM for simulated vibrations using the multivariable tool
with different axial depths denoted as cutting conditions A, B and C for the axial depths of cut of 1.0,
1.7 and 1.7 mm respectively. Figure 7a–c refers to the vibrations of the cutting conditions A marked
in Figure 6, using a regular tool. The scalogram in Figure 7a identifies point A as a stable cutting
since normalized cutting frequencies present a dominant value of fn = 3.2, which corresponds to the
natural frequency fm = 132 Hz. This is also confirmed by the PSD analysis shown in Figure 7b. The
PM illustrated in Figure 7c shows a vibration that decreased with time and sampled data concentrated
in the center confirmed a typical stable case. When the axial depth of cut was increased to 1.7 mm,
the stability diagram predicted unstable cutting conditions according to the stability lobes for the
regular tool. This case is denoted with cutting conditions B and the corresponding scalogram (shown
in Figure 7d) illustrated how the intensity of the dominant frequency increased with time even when
the excitation frequency was the same as the case in A.
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Figure 7. Analysis of cutting conditions A, B and C. Continuous wavelet transform (CWT) scalograms:
(a,d,g); power spectral density (PSD): (b,e,h) and Poincaré maps (PM): (c,f,i) corresponds to the cutting
conditions A, B and C respectively.
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The PM diagram shown in Figure 7f exhibited a vibration far from zero. In fact, the PM diagram
shows that the vibration amplitude grows exponentially because our equation of motion did not
consider nonlinear effects such as those that appeared when the tool lost contact with the workpiece.
Both cutting conditions A and B agreed with the stability boundaries in Figure 6. Now, the cutting
conditions B were used but with a multivariable tool, which was referred to as cutting conditions
C. The CWT plotted in Figure 7g described completely different results since there were no single
dominant frequencies in comparison with cutting conditions A, but appeared several frequencies
around fn = 3.2 and close to fn = 1 that reduced in intensity with time, suggesting a stable cutting.
Figure 7i illustrates how the vibration amplitude approached to zero when using a multivariable tool
in contrast to the PM obtained for the regular tool and exhibited in Figure 7f. This can be explained by
observing that there were several excitation frequencies due to the irregular pitch and helix angles that
break a single excitation frequency avoiding regenerative chatter phenomena.

Figure 8 illustrates the CWT, PSD and PM for simulated vibrations using the multivariable tool
with different axial depths denoted as cutting conditions D, E, F and G for the axial depths of cut
of 2.3, 3.0, 8.55 and 18 mm respectively. Notice that a stable case C was already validated when the
axial depth was 1.7 mm in Figure 7g–i that corresponded to cutting conditions under the stability
boundaries shown in Figure 6. For case D, a transient cutting condition was chosen very close to the
critical axial depth of the cut. It is interesting to point out that transition cutting conditions in the CWT
scalogram shown in Figure 8a not only shows frequencies with higher intensity in comparison with
the stable case B, but also presents shifted frequencies that varied in intensity every single revolution.
This shifting suggests a marginally stable cutting condition that was confirmed by the PM illustrated
in Figure 8c, where circular trajectories were described close to the center point.
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Unstable vibrations that appeared for case E were because of the intensity of frequencies increased
exponentially with time, see Figure 8d. Notice that other frequencies arose with time close to the
values of fn = 0.5 and fn = 1.5. These frenquencies also occurred for cutting conditions D, which is an
indication of the appearance of chatter phenomena. In contrast to Figure 7i for a stable case, Figure 8f
exhibited few trajectories because the vibration amplitude was out of the range selected (±1 mm).
The qualitative and quantitative dynamic behaviour due to cutting conditions F, and illustrated in
Figure 8g-i, were classified as transition cutting behaviour. Here, a more severe shifting in frequencies
was observed in the scalogram (Figure 8g). From Figure 8g, it is seen that drastic shifting occurred in
the time domain in the range of normalized frequencies from 3.5 to 6. It was also evident in the PM
showed in Figure 8i, that the amplitude of vibration remained below 1 mm during several revolutions
of the tool but the amplitude of vibration never aproached to the center point, in contrast to the stable
cutting condition C shown in Figure 7i in which the oscillation aplitudes aproached the center.

An interesting dynamic behaviour was observed in the milling cutting process when the cutting
conditions were selected in the middle of the stable peninsula, above unstable cutting conditions such
as E cutting conditions. The axial depth of the cut was increased from the unstable axial depth of cut of
3–18 mm, 6 times higher of the stable cutting condition C and 2 times higher than the unstable condition
E. Since the vibration quickly decreased in a few revolutions no dominant frequencies appeared in the
CWT and PSD failed to clearly identify a dominant frequency since the vibration amplitude decreased
to zero after few revolutions, as confirmed by the PM shown in Figure 8l.

Figure 9 shows the normalized excitation frequencies that the multivariable tool produced for a
fixed spindle speed of 2500 rpm. The total number of disks of 50 µm of thickness was grouped in sets
of each millimeter in the axial direction. The waterfall plot in Figure 9 explains that a stable peninsula
was formed above 11 mm because the workpiece was excited with several frequencies simultaneously.
For instance, for a milling operation with the axial depth of cut of 1 mm (stable cutting), 80 discrete
disks were cut with four normalized excitation frequencies values (3.3, 3.6, 4.5 and 5.1). On the other
hand, when milling at 18 mm (stable cutting), there were 14 normalized excitation frequencies (3.30,
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3.35, 3.39, 3.44, 3.49, 3.54, 3.60, 4.55, 4.64, 4.73, 4.82, 4.92, 5.02 and 5.13), most of them with at least 115
discrete disks.Appl. Sci. 2020, 10, x 23 of 25 
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5. Conclusions

In this work, quadratic and cubic polynomials were used to approximate the delayed terms
of delay differential equations. Numerical simulations showed that using second- and third-order
EMHPM improved the convergence rate and required less computational time when compared
to the first-order EMHPM, and to semi-discretization and full-discretization methods, since fewer
approximations or less discrete intervals were needed to reduce the computation time.

To further assess the applicability of the proposed method, the third-order EMHPM was used for
determining the stability bounds in one-degree-of-freedom milling operation with a multivariable
tool, demonstrating that the stability zone improved in comparison with a regular tool. For instance,
at 2500 rpm the critical axial depth of the cut was 1.3 mm using the regular milling tool. However,
using the multivariable tool, the critical axial depth of the cut was increased until 2.17 mm but more
interesting, a stable zone appeared above 8.55 mm.

The CWT scalograms, PSD charts and PM were employed to validate the stability lobes found by
using the third-order EMHPM for the multivariable tool. Numerical solutions confirmed the system
dynamics behavior predicted by the third-order EMHPM.

Based on the above results, this paper provided evidence the third-order EMHPM could be used
to study dynamic phenomena that appeared at higher axial depths of cut due to the multivariable
design of the tool, which broke the excitation frequencies at a lower depth of cut.
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