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Abstract  

Indicators of letter frequency and similarity have long been available for Indo-

European languages. They have been not only pivotal in controlling the design of 

experimental psycholinguistic studies seeking to determine the factors that underlie 

reading ability and literacy acquisition but also useful for studies examining the more 

general aspects of human cognition. Despite their importance, however, such indicators 

are still not available for Modern Standard Arabic (MSA), a language that, by virtue of 

its orthographic system, presents an invaluable environment for the experimental 

investigation of visual word processing. This paper presents for the first time the 

frequencies of Arabic letters and their allographs based on a 40-million-word corpus, 

along with their similarity/confusability indicators in three domains: (a) the visual 

domain, based on human ratings; (b) the auditory domain, based on an analysis of the 

phonetic features of letter sounds; and (c) the motoric domain, based on an analysis of 

the stroke features used to write letters and their allographs. Taken together, the 

frequency and similarity of Arabic letters and their allographs in the visual and motoric 

domains as well as the similarities among the letter sounds will be useful for 

researchers interested in the processes underpinning orthographic processing, visual 

word recognition, reading, and literacy acquisition.  

Keywords: Arabic letters, allographs, sounds, frequency, visual similarity, phonetic 

similarity, motoric similarity.  
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The study of letter similarity (or confusability) and letter frequency has a long 

history of several decades within the fields of psychology and psychophysics (see 

Mueller & Weidemann, 2012, for a review). Continued interest in the study of this 

topic is predicated on the widely held belief that a good understanding of what drives 

perceived similarity among letters and reliable statistics about their distributional 

properties are crucial for a number of reasons. First, the study of letter properties lays 

the groundwork for the study of how letters are represented in the cognitive 

system, since letters of individual words are thought to represent the first 

“language-specific” stage of the reading process, following the work done by 

oculomotor control mechanisms enabling fixation on the word and the early visual 

processing that allows visual feature extraction (Carreiras, Armstrong, Perea, & 

Frost, 2014; Dehaene, Cohen, Sigman, & Vinckier, 2005; Grainger, 2008). Second, 

since mastery of alphabetic reading is generally thought to require, as a first step, 

the ability to map letters and letter strings onto the sounds of the language 

(Bowey, 2005; Snowling & Hulme, 2011), the study of letter properties can 

provide valuable information to educators regarding the complexity of letter 

forms and guide the choice of the order in which the learner is exposed to these 

letters. Finally, the investigation of letter properties promotes empirical 

investigations with a view toward gaining a better understanding of how the visual 

system functions. 

For many years, researchers have sought to establish letter frequency 

databases for different languages such as Russian (Gusein-Zade, 1988), English 

(Mayzner & Tresselt, 1965), and Spanish (Li & Miramontes, 2011) in order to 
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provide normative frequency data for researchers interested in verbal learning 

and retention, anagram problem solving, word recognition thresholds, and 

linguistic analyses. Similar interest in developing letter similarity/confusability 

matrices is evident in a long research tradition spanning several decades, with the 

early work, mainly on English, seeking to identify typefaces, fonts, and letters that 

were more or less legible, with the aim of improving printing and typesetting 

(Roethlein, 1912; Tinker, 1928). More recently, research has come to focus on 

understanding the visual system and how it represents and processes letters as 

visual objects, without losing interest, however, in attempting to make written text 

more comprehensible or helping learners to acquire reading skills more easily 

(Boles & Clifford, 1989; Fiset et al., 2009; Liu & Arditi, 2001; Mueller & Weidemann, 

2012). Collectively, these studies have played a fundamental role in allowing the 

design and implementation of many well-controlled empirical studies seeking to pin 

down the dynamics of letter processing (e.g., Evans, Lambon Ralph, & Woollams, 

2017; Grainger, Dufau, Montant, Ziegler, & Fagot, 2012; Kinoshita & Kaplan, 2008; 

Schelonka, Graulty, Canseco-Gonzalez, & Pitts, 2017). 

Despite the importance of having reliable letter similarity matrices and letter 

frequency counts, this type of information is available only for a handful of Indo-

European languages. Other languages, such as Modern Standard Arabic 

(Henceforth MSA), suffer from a lack of lexical resources in general and 

computerized databases about letter similarity and letter frequency in particular. MSA 

is the language taught at most schools, colleges, and universities in the Arab world 

and is the one used in the media, literature, and formal settings such as political 
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meetings (e.g., Kamusella, 2017; Versteegh, 2014). This language, despite its 

importance for the study of letter processing and letter representation by virtue of its 

very special writing system, as we will detail below, has very few published lexical 

resources. Notable exceptions are Aralex (Boudelaa & Marslen-Wilson, 2010) and 

Arabicorpus (Parkinson, 2000). Therefore, researchers interested in the study of Arabic 

letter processing, Arabic reading, and developing better Arabic reading tools and 

psycholinguists interested in cross-linguistics investigations of letter and word 

processing are in dire need of reliable information about the distributional 

characteristics of letters and their similarities.  

The aim of this study is to provide for the first time (a) comprehensive 

statistical information about Arabic letters and their allographs and (b) a 

similarity/confusability matrix among Arabic letters and allographs in the visual, 

auditory, and motoric domains. We begin by providing some relevant background 

about the orthographic system and its importance for the study of letter processing. 

Second, we provide a detailed statistical count of the frequencies of Arabic letters and 

their allographs based on a 40-million-word corpus. Third, we present a visual 

similarity matrix of Arabic letters and their allographs based on ratings by 125 

participants, followed by a phonetic similarity matrix based on theory-driven phonetic 

features and a motoric similarity matrix based on the strokes required to write each 

letter and its allographic variants. We conclude by highlighting the importance of this 

new set of information on the distributional and structural properties of Arabic for 

future investigation of this language in different research fields.  
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The Arabic writing system  

MSA is a Semitic language written from right to left in a cursive manner. The 

MSA alphabet consists of 28 letters, 22 of which always connect to the following letter 

using a ligature, while the remaining 6 connect to the preceding but not the 

following letter. MSA is the fifth most common language in the world, with over 

300 million speakers. One of the most important features of the Arabic writing system 

is “allography,” whereby the shapes of 15 of the 28 letters change considerably 

depending on their location within the letter sequence (initial, middle, final, and 

isolated). For instance, the letter ع, which stands for a voiced pharyngeal fricative 

represented /ʕ/ in IPA notation, takes the shape عــ word-initially, ــعــ word-medially, ــع 

word-finally when preceded by a ligating letter, and ع word-finally when preceded by a 

non-ligating letter. The remaining 13 letters (e.g., ر ,د ,ث ,ب) preserve their shapes 

regardless of their position within the word, but have ligature marks on either 

side (e.g., ـثـ ,ـبـ) or only on their right hand side (e.g., ـر ,ـد). Another important 

feature of the MSA orthographic system is the use of a cursive writing system 

even in typing, a rare feature among the world’s writing systems, including 

typologically related languages such as Hebrew. A final unique aspect of MSA is 

that a given letter can have up to three diacritic symbols superposed on it, thus 

creating a highly complex visual percept. This is illustrated by the second letter خ 

of the word خ ٌّـــم  ‘brain’, which shows a single dot diacritic underneath a 

gemination sign indicating that the consonant خ is doubled, and the nunation sign, 

which denotes the indefinite article -un. 
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The complexity of this orthographic system has given rise to many studies 

across several research areas. For instance, in the field of reading, Asadi, Khateb, and 

Shany (2017) showed that unlike Indo-European languages, where reading 

processes are seen as the product of decoding abilities and listening 

comprehension, MSA requires an extended model that includes the orthographic 

and the morphological domains in order to capture the intricacies of reading in 

Arabic. Relatedly, some researchers have suggested that the complexity of the 

Arabic orthographic system leads to slower processing than in related languages 

like Hebrew (Ibrahim, Eviatar, & Aharon-Peretz, 2002), while others (Taha & 

Saiegh Haddad, 2017) have argued that this feature leads Arabic orthography 

learners to rely on morphological structure much earlier in the course of learning 

to read and spell than their Indo-European counterparts.  

In the visual word recognition domain, researchers have been interested in 

establishing the role of allography and whether Arabic cognitive representations 

contain a level that corresponds to abstract letter identities (Boudelaa, Norris, 

Mahfoudhi, & Kinoshita, 2019; Carreiras, Perea, & Abu Mallouh, 2012; Friedmann & 

Haddad-Hanna, 2012; Perea, Abu Mallouh, & Carreiras, 2010). This line of research 

relates to a much broader set of issues in cognitive science regarding the types of 

representations used in reading and whether letter recognition is subserved by a 

hierarchical processing system that involves both case-specific and case-

independent representations of alphabetic stimuli (Petit, Midgeley, Holcomb, & 

Grainger, 2006; Rothlein & Rapp, 2014, 2017). In this respect Boudelaa et al. 

(2019) reported a series of priming experiments looking at whether or not a target 
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word (e.g., يسعدون ‘be happy’) is facilitated more by a nonword transposed letter 

(TL) prime that does not cause allographic changes (e.g., يعسدون) than a TL prime 

that causes such changes (e.g., يسدعون). The results showed that the non-

allographic TL primes produced significantly larger facilitation than allographic 

TL primes, indicating that Arabic readers use allographic variation to resolve the 

uncertainty in letter order during the early stages of orthographic processing. 

Similar results were reported by Yakup, Abliz, Sereno, and Perea (2015) for 

Uyghur, a Turkic language spoken in Western China that uses the Arabic 

orthographic system, suggesting that visual form changes that Arabic letters 

undergo as a function of their position in the word play a critical role in guiding 

the reading process. 

Finally, in the field of automatic language processing, there has been a recent 

surge in the study of the characteristics of typed and handwritten Arabic letters to 

develop algorithms that can automatically process Arabic written scripts (Abandah, 

Younis, & Khedher, 2014; Cowell & Hussain, 2002; Khorsheed, 2002). The 

development of new lexical resources related to letter frequency and letter similarity 

can only help to spur interest in MSA further and provide the tools necessary to 

conduct well-controlled and replicable research.  

Letter and allograph frequencies  

Here we provide the frequency of Arabic letters and their allographs based on 

the 40-million-word corpus previously used by Boudelaa and Marslen-Wilson (2010) 

to develop the Aralex database. These frequency figures were calculated as percentages 

over the non-diacritized version of Aralex. In Table 1, we provide the frequencies of 
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the 28 letters of the alphabet along with the letter frequencies published online by 

Mohsen Madi (2010) for comparison. 

---------------Table 1---------------  

There are numerous similarities between the frequency statistics of the current study 

and Madi’s (2010), as demonstrated by a Pearson correlation analysis (r = 0.9), 

suggesting a close match between the two sets of frequencies. The small discrepancies 

in the frequency counts between the two studies are probably due to the use of different 

kinds of corpora. The current study’s 40-million-word corpus comes from 

contemporary written sources, namely newspaper articles, as detailed in Boudelaa and 

Marslen-Wilson (2010). In contrast, Madi (2010) relied on a small corpus of a little 

more than 1 million words derived mainly from old Arabic books such as البداية والنهاية 

The Beginning and The End of Ibn Katheer (1300–1373) and  

 The Sealed Nectar by Al Mubarkafoori, which is a compilation of the الرحيق المختوم

sayings of the Prophet of Islam produced in classical Arabic 14 centuries ago, or on 

books that deal with Islamic jurisprudence and hence use mostly older Arabic, such as 

 .The Masterpiece of the Brides by Al-Shuri تحفة العروسين

It is important to note further that the current letter frequency values make 

intuitive sense, because the four letters with the highest frequencies are on the one hand 

the letters و and ل, which respectively correspond to the function words ‘and’ and ‘in 

order to’, and the letters ت ,ي on the other, which are in fact inflectional affixes. At the 

same time, the letters with the lowest frequencies correspond either to marked sounds 

that are very rare across the world languages, such as the pharyngealized alveolar ض 



10  

  

and the pharyngealized interdental ظ, or indeed to letters that do not correspond to 

function words or affixes, such as ذ ,ث and خ. 

In Table 2 below we present for the first time the frequencies of Arabic letters 

broken down by allograph. 

---------------Table 2---------------  

For each letter of the alphabet, we determined the frequency of its allographic form in 

isolation and at the onset, middle, and offset of the word. Thus, for the majority of 

letters, such as ع ain, and غ ghayn, we report the frequencies of 4 allographs, whereas 

for others, such as د daal, ذ thaal, ر raa, and ز zein, we report only two values because 

they have only two allographic forms. For the letter أ alif, we report values for 7 

allographic forms because this letter has different interchangeable variants such as ـأ ,أ, 

and ا. Finally, for the letter ت, taa, we report values for 6 allographs, 4 of which are for 

the taa maftuuha, ‘open taa’, and 2 for taa marbuuta ‘closed taa’. As can be clearly 

seen from Table 2, allographs of the same letter do not occur with the same frequency 

across the board. For instance, the allograph بـ, baa, with a frequency of 2%, is much 

more common than the allograph ـبـ with only 0.22%. The frequencies of other letter 

allographs (e.g., 0.26 ـط,  .are much more evenly distributed (0.76 طـ 

An interesting theoretical question that allograph frequencies can help address 

is whether the effects of allographic changes in visual word recognition experiments, 

such as those reported by Friedmann and Haddad-Hanna (2012) and Boudelaa et al. 

(2019), can be modulated by allographic frequency. From a practical point of view, 

these data can help educators not only make informed choices about the development 

of teaching materials that reflect the frequency of different letters and their allographs 
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but also modulate their instructional focus. For instance, when teaching the letter 

 the instructor can, based on allograph frequency data, dedicate more time to ع

teaching the allograph ع than the allograph ـع, given that the latter is much more 

frequent than the former and may not need as much time to be learned.  

Subjective Letter Similarity Experiment  

The technique that we employed to construct the similarity matrix is based on 

data obtained under normal (untimed) reading conditions and is comparable to the 

approach used in previous studies examining letter knowledge in children (Treiman, 

Kessler, & Polo, 2006; Treiman, Levin, & Kessler 2007, 2012) and letter similarity in 

adults (Simpson et al., 2012). Participants were speakers of MSA who were required to 

rate letter pairs on a scale from 1 (not similar at all) to 7 (very similar). We anticipate 

that the matrix presented here will also prove useful to researchers in any field of 

investigation in which Arabic letters are used as stimuli and a measure of visual 

similarity between stimuli is required.  

Method  

Participants 

A total of 125 participants, aged 20 to 24, were recruited to take part in this 

experiment. All participants were literate MSA speakers who were undergraduate 

students in the female campus of the faculty of Humanities and Social Sciences at 

United Arab Emirates University. All participants spoke English as a second 

language but declared Arabic (i.e., MSA and the Emirate Dialect) their dominant 

language. This experiment was approved by the ethics committee of United Arab 
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Emirates University, and all participants gave their written consent to take part in it in 

return for 50 AED. 

Stimuli  

As in the previous study, we selected four allographs for each letter of the 

alphabet except for the letters (a) ط ,ز ,ر, and ظ, for which only two allographs were 

included; (b) the letter ه, for which only three allographs were used; and (c) the letter أ 

alif, for which eight different allographs were included. This choice, which was based 

on pilot testing, resulted in a total of 110 allographs. Each allograph was paired with 

every other allograph, including itself, resulting in 6105 pairs. These were used to build 

15 experimental lists consisting of 407 experimental pairs each. Each participant was 

randomly assigned to one list. To ensure that subjects were assessing the visual, and 

not phonetic, similarity between the different allograph pairs, further 32 foil pairs were 

built consisting of the 28 Arabic letters paired with Latin letters to create four 

conditions. The first consisted of cross-alphabet letters pairs that were both 

phonetically and visually similar. These are pairs like ل– L, which share the straight 

downward-directed stroke. The second condition consisted of Arabic-Latin pairs which 

were phonetically similar but visually dissimilar, like ن-N, which share phonetic 

features [+coronal, +nasal, +continuant, +sonorant] but look very different visually. 

The third condition consists of cross-alphabet pairs that are phonetically dissimilar but 

visually similar like خ-G, which share the downward-directed semicircular stroke. The 

final condition is made up of pairs that were neither phonetically nor visually similar, 

like ذ- I. The ordering of the letters within each pair was counterbalanced across lists, 
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such that each letter appeared almost half of the time in the first position and half in the 

second. 

Design and procedure  

The presentation of the stimuli and recording of responses were controlled 

by desktop computers running Superlab 5. On each trial, two stimulus allographs 

appeared at the center of the screen in Traditional Arabic 72-point font size in 

black against a white background. Participants were instructed to ignore the 

sounds of the letters and to rate the letter pairs on the computer keyboard purely 

based on visual similarity on a scale from 1 (not at all similar) to 7 (very similar). 

No time limits were imposed, and participants responded at their own pace. 

Participants could advance to the following trial only after providing a response to the 

current trial. To emphasize the importance of paying attention to the shape of the 

allograph, participants were also asked to rate a number of geometrical shapes (e.g., 

squares, rectangles, circles) on their similarity in shape. The experiment lasted about 15 

minutes.  

Results and discussion  

An initial screening was performed on the data in order to detect cases in which 

the participants may have misunderstood or not correctly followed the instructions. 

This resulted in the exclusion of no data points at all. A second screening process 

tested whether participants’ knowledge of the letter sounds exerted a strong influence 

on their responses by examining the ratings assigned to the Arabic-Latin letter pairs. 

We have linearly rescaled the similarity ratings on the 1–7-point scale into distances on 

a 0–1 scale. In order to take into account the fact that human generated similarity 
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judgements are likely to be logarithmic on actual distance, we used the following 

formula: Distance = (exp(7) − exp(Distance1))/(exp(7) − exp(1)), where Distance1 is 

the distance between a given pair of letter allographs. This formula simply rescales 

the similarity score provided by the participants into a distance metric that can be 

fed to the hierarchical clustering technique.  

-----------Table 3--------------  

Table 3 suggests that although the overall perceived visual distance among cross-

alphabet letters is large, the +P+V pairs (e.g., ل-L) and –P+V (e.g., غ-G) pairs were 

perceived as significantly closer in visual space than the +P−V (e.g., ب-B) and the –

P−V pairs (e.g., ش-E). Thus, phonetic similarity did not modulate the perceived 

distance among the cross-alphabet pairs, with the visually similar pairs perceived to be 

the same distance from each other regardless of phonetic similarity, and the visually 

dissimilar pairs being rated as maximally distant from each other regardless of whether 

they were phonetically similar. A series of paired two-tailed t-tests revealed +P+V to 

be significantly different from +P−V (p < 0.00) and –P−V (p < 0.00), but not from 

–P+V (p = 0.48). More interestingly, –P+V was also reliably different from +P−V 

(p < 0.01) and –P−V (p < 0.02). This pattern of results clearly demonstrates that 

participants carried out the task solely based on the visual similarities of the letter pairs 

and completely ignored the phonetic dimension as instructed.  

Where the within-alphabet letter and allograph pairs are concerned, the full visual 

similarity matrix for 110 allographs is accessible here: https://osf.io/yqns4/, with the 

distance measures rescaled using the distance formula mentioned above. The 

%20
%20
https://osf.io/yqns4/
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dendrogram in Figure 1 displays the hierarchical relationships of the 110 Arabic 

allographs used in this experiment.  

-----------Figure 1--------------  

The general technique we use here is hierarchical clustering, which aims to 

group similar objects into groups called clusters (Kassambara, 2017; Jajuga, 

Sokolowski, & Bock, 2002; Stahl, Leese, Landau, & Everitt, 2011). The endpoint 

of such an approach is to create a set of clusters that are distinct from each other, 

while the objects within each cluster are broadly similar to each other. 

Hierarchical clustering typically operates on a distance matrix. It starts by 

treating each observation as a separate cluster, then it iteratively identifies the two 

clusters closest to each other and merges them until no clusters are left unmerged. 

The main output of hierarchical clustering is a dendrogram, which is simply a 

diagram that shows the hierarchical relationships between objects. The main use 

of a dendrogram is to work out the best way to allocate objects to clusters, and 

this usually requires (a) the computation of the distance (similarity) between two 

given clusters using a distance metric (e.g., Euclidean distance, city block, etc.) 

and (b) selecting a linkage criterion to determine whether the distance is 

computed between the two most similar parts of a cluster (single-linkage), the two 

least similar bits of a cluster (complete-linkage), the center of the clusters (mean 

or average-linkage), or some other criterion. 

In this study, all dendrograms are based on the standard Euclidean distance 

metric and use “ward.D2” as a linkage criterion to determine the distance between sets 

of observations as a function of the pairwise comparisons (Murtagh & Legendre, 
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2014). However, since hierarchical cluster analysis can typically yield as many 

cluster solutions as there are cases to be clustered (Clatworthy, Buick, Hankins, 

Weinman, & Horne, 2005), one needs to make a decision about which cluster 

solution to choose using objective formal rules and equations to determine the 

optimal number of clusters in a sample. Here we have opted for the “gap statistic,” 

which operates by taking the input of the hierarchical clustering analysis and 

compares the change in within-cluster dispersion with that expected under a reference 

null distribution. The gap statistic has been reported to outperform other methods 

(Tibshirani & Walther, 2005) and to provide quite stable solutions (Yan & Ye, 

2007). Upon applying this method to our data, the results suggest that the value that 

maximizes the gap statistic was 0.94, with an optimal number of 19 clusters (Table 4). 

-----------------TABLE 4 --------------  

Table 4 shows that the largest of the 19 clusters consisted of 9 allographs and the 

smallest of 2. The within-cluster sum of squares (SS), which measures the amount of 

variance in the data, is < 2 for all clusters except for cluster number 7. Although the 

within-cluster SS is influenced by the number of observations and is therefore often not 

directly comparable across clusters with different numbers of observations, the 

preponderance of low SS for all clusters save 1, suggests that the clusters are highly 

consistent with very little variability. In addition to this, the total SS is 40.62 and the 

between-cluster SS is 21.97, suggesting that data points cluster neatly in a nineteen-

dimensional space of visual attributes.  

The component members of each cluster share a number of characteristics that 

the participants relied on to assign their similarity ratings. For example, Cluster 14 in 
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Table 3 features the allographs طٌّظٌّـطـٌّـظـ, which share the egg-shaped loop with a 

vertical stroke, and the only difference between them is the dot above the first and third 

members of this set. Similarly, the eighth cluster in the same table features the 

following six allographs: ج ح خ ـج ـح ـخ, with the first three ligating to the right, that is to 

the preceding letter, while the second three do not. Two main features cut across the 

members of this cluster: the downward-directed semicircle and the acute angle it makes 

at its upper end. Even Cluster 7, which consists of nine seemingly heterogeneous 

allographs overall, reveals a clear structure at a lower level of granularity, with the 

allographs ن and ـن sharing the downward-directed semicircle, while the ـة ,ـه ,ة ,ه ,ـهـ 

share the closed loop written on or above the line. The final two members of this 

cluster are the isolated ك and the right-ligating ـك. One reason these two allographs are 

grouped with Cluster 7 is arguably the small dot-like shape in the middle of these two 

allographs, which allies them with the four dot-bearing allographs in this cluster.  

Table 4 further suggests that phonetic similarity among allographs played little 

or no role in the similarity judgment process. This is clearly illustrated by Cluster 1, for 

example, where the allograph ء corresponds to a voiceless glottal stop sound, whereas 

the allographs ع عـ ـع and the allographs غ غـ ـغ, respectively, correspond to a voiced 

pharyngeal fricative and a voiced velar fricative. More importantly, perhaps, the cluster 

membership as illustrated in Table 4 is in keeping with recent psycholinguistic and 

neurolinguistics research on Arabic letter allography (Boudelaa et al., 2019; Friedmann 

& Haddad-Hanna, 2012; Yakup, Abliz, Sereno, & Perea, 2014, 2015). For instance, the 

allographs ـج and جـ are two different instantiations of the abstract letter ج, but they 

belong to Clusters 8 and 9, respectively. This strongly suggests that different 
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allographic shapes of the same abstract letter were treated as two different perceptual 

objects in our similarity judgment task. Further credence for this idea comes from the 

recent demonstration by Boudelaa et al. (2019) that Transposed Letter priming (TL-

priming) is modulated by allographic changes, such that a target word like يسعدون ‘be 

happy’ is easier to recognize when preceded by the non-allographic TL-prime دونيعس  

than when preceded by the allographic TL-prime يسدعون. Similar results were reported 

by Yakup et al. (2014, 2015) for Uyghur, a non-Semitic language that uses the Arabic 

writing system, and by Friedmann and Haddad-Hanna (2012), who showed that Arabic 

dyslexic patients’ letter migration errors when reading aloud are reduced for words in 

which letter transposition or letter substitution causes allographic changes.  

The current experiment refines and extends the recent findings of Wiley, 

Wilson, and Rapp (2016) in a number of ways. For example, those authors studied the 

similarity structure of 45 Arabic letter shapes in a timed same-different judgment task 

with experienced and novice speakers. Our study included 110 allographs, allowing us 

to provide the principled similarity structure displayed in Figure 1 above for allograph 

groups absent from Wiley et al.’s study. Consider, for instance, the letter ي: In our 

study, this letter meaningfully clusters with its allographic variant in a right-ligating 

context (i.e., ـي), with the allograph called alif maqsuura in isolation with or without a 

hamza ئ ى, and with the alif maqsuura ligating to the right with and without the glottal 

stop, hamza ـى ـئ. The same letter ي in Wiley et al. (2016) clusters with م and هـ in the 

latency and accuracy data of the expert subjects, respectively, making it more difficult 

to isolate the basis of the visual similarity underlying such clusters. Further, Wiley et 

al. (2016) did not include the glottal stop, hamza, either by itself (ء) or in the context of 
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the different letters that can support it, like alif أ, alif maqsuura ئ, waaw ؤ, or nabrah 

 Presumably, Wiley et al.’s choice is reasonably predicated on the standard view that .ـئـ

the hamza is not a letter of the alphabet. We have opted for completeness and included 

the glottal stop in our analysis. In doing so, we have gained the novel insight that this 

letter is typically treated like a dot when it occurs in the context of a supporting letter. 

Thus, ؤ clusters with و ـو, while ــئ  clusters with ـبـ ـتـ ـنــيـ. In contrast, isolated ء is treated 

like a full-fledged letter allograph and clusters with ع عـ غ غـ ـع ـغ, arguably because it is 

perceived like a miniature عـ. 

Finally, our study provides strong empirical support for Wiley et al.’s 

observation that allographs of letters in the middle position (e.g., ـبـ ـتـ ـثـ ـحـ ـخـ ـجـ) are 

identical to the corresponding allographs in initial position when the ligature to the 

right is ignored (i.e., بـ تـ ثـ حـ خـ جـ). Based on the structure of Clusters 5 and 9 in our 

data, it is clear that participants ignored the right ligation of the middle allographs and 

grouped them with their counterparts in the initial position. This is seemingly a 

surprising outcome since ligation is not only taught as part of the letter-form to Arabic 

learners, but it also provides crucial information about word length and lexical stress 

position (Boudelaa et al., 2019). It is however consistent with recent research that 

reports comparable masked repetition priming effects for isolated letter pairs with 

similar (e.g., ـفـ فـ) and with dissimilar (ـعـ ع) visual features across letter positions 

(Carreiras, Perea, Gil-López, & Abu Mallouh, 2013. Furthermore, event-related 

potential (ERP) data recorded continuously while subjects performed a masked same-

different matching task with visually similar (e.g., ط ـط ) and visually dissimilar (e.g.,  ع

 allographs clearly show an early ERP (P/N150) associated with visual form (ـعـ
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similarity, and a later ERP component (P300) related to abstract letter 

representations. Specifically, allographsٌّlike ـعـ-ع showed clear electrophysiological 

response differences early on in processing, while brain responses later in 

processing were modulated by abstract letter representations such that ـعـ-ع were 

perceived as equally similar as ـط-ط (Carreiras, Perea, Gil-López, Abu Mallouh, & 

Salillas, 2013).  

Phonetic Letter Similarity  

The ability to quantify the phonetic similarity between words is important in 

many fields such as computational linguistics, dialectometry, applied linguistics, 

psycholinguistics, and cognitive neuroscience. The literature provides a number of 

methods for measuring the degree of phonetic similarity between segments. Some of 

these are based on experimental studies showing, for instance, the degree of 

confusability of different segments (Klatt, 1968; Greenberg & Jenkins, 1964; Mohr & 

Wang, 1968). Others are based on more theoretical arguments (Austin, 1957). Others 

still have opted for quantifying the degree of similarity between segments by counting 

the number of differences in their specifications in terms of phonetic/phonological 

features (Ladefoged, 1970). Here we opted for the use of phonetic features to quantify 

the amount of similarity/difference among the various Arabic letter sounds. Our choice 

is predicated on recent reports in the literature suggesting that similarity between 

component speech sounds is much better captured by theoretically driven measures 

based on phonetic/phonological features than empirically derived measures based on 

confusability (Bailey & Hahn, 2005; Hahn & Bailey, 2005). Accordingly, we focused 

on providing a similarity metric that simultaneously compares consonants and vowels 
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using 16 features from phonological theory. Specifically, these consist of a first set of 

three Major Class features that define the major classes of sounds in the language into 

consonantal, sonorant, and approximant. A second set consists of seven Place of 

Articulation features, namely, labial, coronal, dorsal, pharyngeal, anterior, distributed, 

and high, serving to define the specific articulator involved in producing the sound. A 

third set of four features, continuous, lateral, nasal, and strident, pertains to the manner 

in which the letter sound is produced. Finally, a fourth set consists of one Laryngeal 

feature, voicing, that distinguishes voiced from voiceless segments, and a fifth set 

comprises a Quantity feature, categorizing segments as long and short. The full matrix 

of features for the 28 consonants and 6 vowels of the language is accessible here: 

https://osf.io/mx5t7/.  

Using these features, each letter was then converted into a vector consisting of 

16 elements of 0s and 1s (0 if the feature does not apply to the letter and 1 if it does). 

We then performed the same hierarchical clustering procedure on these vectors as 

before in order to determine the similarity structure underlying them (see Figure 2). 

------------Figure 2-----------  

Visual inspection of the dendrogram in Figure 2 suggests that there are 7 

distinct phonetic sound clusters with an average number of letter sounds per cluster 

ranging between 2 and 8. However, to determine more objectively the optimal number 

of groups that the 36 letter sounds cluster into, we used the gap statistic as before. The 

results of this analysis suggest that the optimal number of clusters is 5, with a maximal 

https://osf.io/mx5t7/
https://osf.io/mx5t7/
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value of 0.23. The sizes of these clusters, displayed in Table 5, range between 5 and 10 

members.  

-----------------TABLE 5 --------------  

  

Interestingly, the different clusters make intuitive sense. For instance, the 

members of Cluster 1 are all back fricative consonants except for the voiceless glottal 

stop أ /ʔ/, which is part of this cluster because it shares many features with the voiceless  

glottal fricative هـ /h/, which in turn naturally clusters with the back fricatives غ حٌّخٌّع 

./ʕ x ħ γ/. Similarly, the members of Cluster 2 are all bilabial consonants except for the 

palatal approximant ي /j/ arguably added to this cluster due to its similarity to the 

bilabial approximant و /w/, which shares the place feature of bilabial with all the other 

members of the cluster. The largest cluster, Cluster 3 with 10 members, consists of 

consonants that are all non-back consonants with places of articulation starting with the 

 /θ/ ث ð/ and/ ذ / at the palate and progressing anteriorly to the dental area with the/ ج

sounds. Cluster 4 includes seven sounds, all emphatic. In the environment of such 

sounds, the low front vowel phoneme /æ/ of the language is standardly pronounced as a 

low back vowel /a/, which is the typical manifestation of phonetic emphasis in Arabic. 

The only non-emphatic sound in this cluster is the velar ك /k/, arguably added to this 

cluster by virtue of sharing the features back, voiceless, and plosive with the sound ق 

/q/. Finally, Cluster 5 includes the six vowels of the language. 

It is interesting to note that the within-cluster SS is 8.59 on average, while the 

total SS and between-cluster SS stand at 90.6 and 47.6, respectively, suggesting a high 

degree of consistency within the component members of each cluster. Furthermore, our 
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theoretically driven measure of similarity based on phonetic features is in agreement 

with empirically derived measures based on confusability as shown by Hidden Markov 

recognition systems. For instance, Maaly, Elobeid, and Ahmed (2002) reported that the 

sounds // and /ʔ/ are highly confusable and their automatic Arabic phoneme 

recognizer failed to distinguish between them. It is also with consistent with the 

phonological neutralization processes at play in many Arabic dialects. For instance, in 

the Egyptian dialect spoken in Cairo, the interdental voiceless fricative ث /θ/ is 

typically realized as ت /t/ (e.g., ثمن /θæmæn/ ‘price’ pronounced تمن /tæmæn/) or س /s/ 

(e.g., ثانية /θaanjæ/ ‘second’ pronounced سانية /saanjæ/). These phonemes /θ, t, s/ are 

members of Cluster 3. Analogously, phonological speech errors made by children 

acquiring Arabic (e.g., قلبي /qalbi/ ‘my heart’ produced as كلبي /kalbi/ ‘my dog’) seem 

also to target phonemes that are members of the same clusters (Dyson & Amayreh, 

2000).  

Finally, it is important to note that as far as we know, there are no phonetic 

confusion tables for Arabic like those available for English (e.g., Luce, 1986; Shattuck-

Hufnagel & Klatt, 1979; Wickelgren, 1966). Interestingly, however, Bailey and Hahn 

(2005) have forcefully argued that measures of similarity based on theoretically 

motivated phonetic features, as we have applied here, are superior to similarity 

measures based on confusability from speech perception, speech production, and short-

term memory. Therefore, we feel confident that the current phonetic similarity matrix 

can serve as the basis for further explorations either within a language (Kishon-Rabin 

& Rosenhouse, 2000) or across languages (Boudelaa, 2018; Khattab, 2002).  
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Motoric Letter Similarity  

Our ability to generate similar shapes with different limbs or execution modes 

suggests the existence of a relatively abstract, effector-independent level of 

representation that specifies the forms of letters (Keele, 1981; Rapp & Caramazza, 

1997). If this is so, then language users must somehow develop a motoric scheme that 

represents information about the characteristics of the strokes required to write down a 

given allograph. Research into the written spelling performance of dysgraphic patients 

strongly supports the involvement of multiple representational types, including a 

relatively abstract, effector-independent representational level that specifies the 

features of the component strokes of letters (Rapp & Caramazza, 1997). Specifically, 

dysgraphic patients seem to make well-formed letter substitution errors in written 

spelling such as writing ‘F-A-P-L-E’ for TABLE while correctly spelling the target 

word as [ti, ei, bi, el, i]). Similarly, neuroimaging research suggests that the motoric 

features of letters activate significant portions of the brain in the left IPS and in areas 

previously associated with spelling processes (Rothlein & Rapp, 2014). 

Given the importance of understanding the content of motor plans used to 

execute letter writing, we sought to develop a motoric letter similarity matrix for 

Arabic letters and their allographs based on 26 stroke features we established to be 

necessary to uniquely identify each of 100 letter allographs of Arabic.
1
 We used 10 

generic features to capture the visuospatial characteristics of each allograph in terms of 

a set of strokes. Accordingly, for each letter allograph, we specified the number of 

                                                 
1
 The reason we did not use the 110 allographs used in Experiment 1 is that it was not always easy to 

translate the visuo-spatially defined letter shapes into an appropriate stroke set. This difficulty stems 

from the fact that the letter allographs we left out, آٌّأٌّإٌّاٌّـأٌّؤٌّـؤٌّئٌّـئٌّئـٌّـئـ, were all carrier letters for 

hamza ء and had identical shapes to allographs we have included in this study.  
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strokes (1 to 5) required to create it and the shape of those strokes (i.e., line, curve). 

When the stroke was a line, we specified its shape as downward or upward-directed 

and its orientation, horizontal or vertical. When the stroke was a curve, we defined its 

shape (clockwise or anticlockwise). We also included the number and position of the 

dots as well as the overall shape of the allograph and the number of angles it contains. 

Finally, we determined whether the allograph’s main part is above or below the line 

and whether its overall shape is a half or full loop with no dots. The combination of 

these features allowed us to quantize each of the 100 letter allographs into a 26-element 

vector that captures the motor scheme necessary to create it. These vectors, accessible 

here: https://osf.io/v2gb7/, were then submitted to a hierarchical clustering analysis 

with a view to determine the similarity structure underlying the motor plans of the 

different allographs. The dendrogram in Figure 3 displays the clusters yielded by the 

nearest-neighbor method.  

-------------Figure 3---------  

Using the gap statistic suggests that the data optimally cluster into 12 groups 

with a maximal value of 0.40. The average within-cluster SS is 16.46, while the total 

SS is 418.62 and the between-cluster SS is 221.07, thus suggesting a high degree of 

consistency within clusters. Table 6 displays the members of each cluster along with 

the associated within-cluster SS. 

--------------------TABLE 6------------------------  

According to Table 6, a number of motoric features seem to underlie the way in 

which the 100 Arabic allographs used here cluster. Specifically, these are the presence 

and to some extent the number and position of the dots, as well as the presence and 

https://osf.io/v2gb7/
https://osf.io/v2gb7/
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shape of a loop. Thus, for instance, the six members of Cluster 12, ق قـ ـقـ ـق ي ـي, share 

two dots and four of them exhibit a clockwise downward-directed loop. Similarly, the 

seven members of Cluster 10, ـنٌّـنـٌّـفٌّـضــضٌّضـٌّض , feature a single dot above the 

allograph, while those of Cluster 5 ـشٌّـشـٌّشـٌّشٌّـثٌّـثـ  share the three dots above the 

allograph itself. The importance of the presence and number of dots in this context is 

that they define whether the abstract motoric program required to write down a letter 

allograph can be completed with or without lifting the pen: When a dot is present, the 

letter allograph cannot be written without lifting the pen. Another dimension of 

similarity arising from Cluster 1, ـا بـ جـ حـ ـحـ خـ ـخـ د ذ ك كـ لـ نـ يـ ـيـ, is the presence of an 

angle, which can be either a right angle, as in ـيــك لـ ـا بــ نــ يـ ـ , or an acute angle, as in جـ 

 where the ,صـ ـصـ ط طــ ـطـ ـط ـلـ مـ ـمـ ـم ,A final example is Cluster 9 .حـ ـحـ خـ كـ ـخـ د ذ

presence of a closed loop in all allographs save ـلـ appears to underlie the motoric 

similarity of this group of allographs. One obvious reason the allograph ـلـ clusters with 

this group is the presence of the line segment that it shares in shape and orientation 

with ط طــ ـطـ ـط and in shape only with ـم. 

Overall, then, there is a clear sense in which one might claim that similarity in 

terms of the characteristics of the strokes—number, orientation, and direction—that are 

required to produce the different allographs has a significant weight in the structure of 

each cluster. The viability of the present matrix as a measure of similarity between the 

motoric plans required to write each letter allograph is consistent with performance of 

dysgraphic patients as described by Nashaat, Kilany, Hasan, Helal, Gebril, and 

Abdelraouf (2016). Some of these patients made letter substitution errors in writing 

(e.g., دأيت for رأيت), where the downward-directed stroke that starts above the 
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“discontinuous” line and ends with a straight stroke on the line --د-- substitutes for a 

downward-directed stroke that begins on the line and ends underneath it, -ر--. Further 

research is needed to examine the extent to which the motoric plan of allograph writing 

maps onto the neuro-cognitive domains of Arabic processing. 

Conclusion  

We present new data on the frequencies and similarities of Arabic letters and 

their allographs in the visual, phonetic, and motoric domains. These sets of frequencies 

of Arabic letters and their allographs, which are based on a 40-million-word corpus, 

comprise the only frequencies of letter allographs available for MSA. The visual 

similarity matrix is based on ratings collected from untimed responses of 125 

participants to clearly presented allographic variants of the same letter. This 

methodology pre-empts serious issues likely to be inherent in matrices formed from 

data generated in atypical reading conditions, using, for example, speeded naming or 

degraded presentation conditions. Our visual similarity builds on and significantly 

extends previous findings in the literature (e.g., Wiley et al., 2016). The phonetic 

similarity matrix is based on theoretically motivated major phonetic/phonological class 

features, an approach that has recently been demonstrated to be efficient in picking out 

cognitively relevant similarities while at the same time significantly avoiding spurious 

task-specific similarities that characterize similarity metrics based on the perception of 

speech in noise (Bailey & Hahn, 2005). Finally, the motoric similarity matrix is based 

on a set of stroke features necessary to implement each letter and its allographs. This 

sort of similarity matrix is not very common across languages, and the only one we 

know of is the motoric similarity matrix developed for English (Rapp & Caramazza, 
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1997). Collectively, these new data will be a valuable tool for psycholinguistic research 

interested in the study of letter stimuli and the effects and time courses of their visual 

similarity (Boudelaa et al., 2019; Carreiras et al., 2012; Gutiérrez-Sigut, Marcet, & 

Perea, 2019; Perea et al., 2010). It will be equally useful in informing cognitive 

neuropsychological reading research (Friedmann & Haddad-Hanna, 2012; Khwaileh, 

Body, & Herbert, 2014; Prunet, Béland, & Idrissi, 2000). Finally, since alphabet 

knowledge is consistently recognized as the strongest and most durable predictor 

of later literacy achievement (Jones, Clark, & Reutzel, 2012), the current results 

have clear practical implications for how to increase the effectiveness of teaching 

alphabet knowledge to young MSA learners by capitalizing on the similarity 

structure underlying the different letter and allograph groups (Mahfoudhi, Everatt, 

& Elbeheri, 2011; Perea, Abu Mallouh, & Carreiras, 2013; Taha, 2013).  
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Table 1. Percentage frequencies of the 28 Arabic letters in the current study and in 

Madi 2010.  

Arabic 

Letter  

Current 

Study  

Madi 

2010  

Arabic 

Letter  

Current 

Study  

Madi 

2010  

 أ 

 

1.43  

 

 ض   2.76

 

0.70  

 

0.51  

  0.38  1.10 ط   3.47  4.17 ب 

  0.26  0.23 ظ   3.18  6.87 ت 

  2.84  2.50 ع   0.43  0.43 ث 

  0.37  0.57 غ   1.00  1.51 ج 

  2.64  2.82 ف   1.25  1.84 ح 

  2.13  2.14 ق   0.76  0.88 خ 

  3.17  1.99 ك   1.81  2.57 د 

  11.55  8.40 ل   1.49  0.37 ذ 

  8.08  5.77 م   3.75  4.61 ر 

  8.25  5.44 ن   0.48  0.85 ز 

  4.49  4.91 ه   1.82  2.74 س 

  8.36  8.36 و   0.64  1.11 ش 

  6.64  7.12 ي   0.63  1.06 ص 
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Table 2. Percentage frequency (% Frq) of 116 Arabic letter allographs (Allog).  

 
  %   %   %   %   %   %  

 Allog  Frq  Allog  Frq  Allog Frq  Allog  Frq  Allog  Frq  Allog  Frq  

 0.05 ؤ 0.09 ك 0.00 ظ 0.05 س 0.05 ج 0.51 أ

 0.1 ـؤ 0.72 كـ 0.03 ظـ 1.04 سـ 0.48 جـ 0.92 ـأ

 5.32 و 0.26 ـكـ 0.02 ـظـ 0.12 ـسـ 0.05 ـجـ 0.04 آ

 3.04 ـو 0.92 ـك 0.18 ـظ 1.53 ـس 0.93 ـج 3.39 ا

 0.04 ى 0.11 ل 0.08 ع 0.01 ش 0.05 ح 11.02 ـا

 0.2 ـى 5.02 لـ 0.71 عـ 0.32 شـ 0.51 حـ 0.25 إ

 0.01 ئ 0.37 ـلـ 0.17 ـعـ 0.04 ـشـ 0.1 ـحـ 0.11 ب

 0.47 ـئ 2.9 ـل 1.54 ـع 0.74 ـش 1.18 ـح 2 بـ

 0.19 ي 0.11 م 0.01 غ 0.01 ص 0.01 خ 0.22 ـبـ

 1.79 يـ 1.45 مـ 0.17 غـ 0.26 صـ 0.31 خـ 1.84 ـب

 0.91 ـيـ 1.02 ـمـ 0.02 ـغـ 0.04 ـصـ 0.02 ـخـ 0.71 ت

 4.23 ـي 3.19 ـم 0.37 ـغ 0.75 ـص 0.54 ـخ 1.73 تـ

 0.14 ء 0.44 ن 0.07 ف 0.03 ض 0.69 د 0.32 ـتـ

 0.08 ئـ 1.15 نـ 1.4 فـ 0.19 ضـ 1.88 ـد 4.11 ـت

 0.05 ـئـ 1.3 ـنـ 0.15 ـفـ 0.05 ـضـ 0.11 ذ 0.31 ة

   2.55 ـن 1.2 ـف 0.43 ـض 0.26 ـذ 1.35 ـة

   0.3 ه 0.08 ق 0.02 ط 1.14 ر 0.02 ث

   0.74 هـ 0.55 قـ 0.26 طـ 3.47 ـر 0.14 ثـ

   1.32 ـهـ 0.14 ـقـ 0.06 ـطـ 0.24 ز 0.03 ـثـ

 2.55 ـه 1.37 ـق 0.76 ـط 0.61 ـز 0.24 ـث
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Table 3: Mean (and Standard Deviation) of the visual distance between cross-alphabet 

Roman-Arabic letter pairs. 

+P+V  +P−V  −P +V  −P−V  

0.77 

(0.07) 

0.87 

(0.03) 

0.81 

(0.07) 

0.91 

(0.05) 

Note: +P+V = Phonetically and Visually similar; +P−V = phonetically similar but 

Visually dissimilar; −P+V = Phonetically dissimilar but Visually similar; −P−V = 

Phonetically and Visually dissimilar.  
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Figure 1. Hierarchical clustering (dendrogram) using the nearest neighbor method. The vertical axis of the dendrogram represents the 

distance or dissimilarity between clusters. The horizontal axis represents the 110 Arabic allographs.  

  

Arabic Allographs  
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Table 4: Optimal number of clusters based on visual similarity as suggested by the 

gap method, the members of each class, and its within-cluster Sum of Squares.  

Cluster  

Number  

Cluster Members  

  

Within-

Cluster SS  

  1.083648 غـ ـع ـغ عـ غ ع ء   1

  1.134387 ـأ ـا ا إ أ آ   2

  0.72502 ـؤ ـو و  ؤ   3

  0.056119 ي  ـي ىـئ ـى  ئ   4

  0.909182 تـ ـئـ ـبـ ـتـ ـنـ ـيـ يـ  بـ ئـ   5

  1.736229 ـثـ ـث ـت ـب ثـ ث ت ب   6

  7.776124  ه ن ـهـ ك ـه ـن ـك ـة ة   7

  0.540865 ـج ـح ـخ خ ح ج   8

  0.621634 ـجـ ـحـ ـخـ خـ حـ جـ   9

  0.177571 ـد ـذ نـ ذ د   10

  1.583232 ـر ـز ز ر   11

  0.000000 ـشـ ـسـ ـش ـس شـ ش سـ س   12

  0.307081 ـضـ ـصـ ـض ـص ضـ ض صـ ص   13

  1.515929 ـطـ  ظ ـظـ ط   14

  0.383974 قـ ق ـعـ ـغـ ـق   15

  0.025204 فـ ـفـ ـقـ ف ـف   16

  0.059794 ـكـ كـ   17

  0.000000 لـ ـلـ ل ـل   18

  0.012434 مـ  ـمـ م ـم   19
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Figure 2. Hierarchical clustering (dendrogram) using the nearest neighbor method. The vertical axis of the dendrogram represents the 

distance or dissimilarity between clusters. The horizontal axis represents the 34 Arabic sounds.  
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Table 5: Optimal number of clusters based on phonetic letter similarities as 

suggested by the gap method, the members of each class, and its within-cluster Sum 

of Squares. 

 Cluster  Cluster Members  Within- 

 Number    Cluster SS  

 1  أ ح خ ع غ ه  9.428571  

 2  ب ف م و ي  6.000000  

 3  ت ث ج د ذ ز س ش ل ن  14.700000  

 4  ر ص ض ط ظ ق ك  8.666667  

 5  ــــــي ـــو ا ُ    ُ    .4166667  
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Figure 3. Dendrogram of 100 Arabic letter allographs based on the motor scheme needed to produce them in writing.  
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Table 6: Optimal number of clusters based on motoric letter similarity as 

suggested by the gap method, the members of each class, and within-cluster Sum of 

Squares.  

Cluster  

Number  

Cluster Members  

  

Within-

Cluster SS  

  22.36364 ـيـ يـ نـ لـ كـ ك ذ ـخـ د ـحـ خـ حـ جـ بـ ـا   1

  10.00000 ـسـ ـكـ ـك سـ أ   2

  15.00000 ن ـلـفـ  فـ ـجـ ـغـ ف ـتـ ـت ـبـ ـب ب   3

  12.85714 ثـ تـ ث ت   4

  27.81818 ـشـ ـش شـ ش ـثـ ـث   5

  15.14286 ـعـ ـع عـ ع س ز ر خ ـح ح ج   6

  6.40000 غـ ـغ ـج ـخ ـد ـذ ـر ـز غ   7

  6.80000 ـو و ـهـ ـه هـ ه م ل ـص ص ـس   8

  15.42857 ـمـ ـم ـلـ مـ طــ ـطـ ـط ـصـ ط صـ   9

  16.00000 ـنـ ـن ـف ـضـ ـض ضـ ض   10

  20.40000 ـظــ ظــ ـظ ظ   11

  29.33333 ي ـي ـقـ ـق قـ ق   12

  

  

  

  

  

  

  

  

  


