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Abstract
Accurate mapping of the functional interactions between remote brain areas with resting-state
functional magnetic resonance imaging requires the quantification of their underlying dynamics.
In conventional methodological pipelines, a spatial scale of interest is first selected and dynamic
analysis then proceeds at this hypothesised level of complexity. If large-scale functional networks or
states are studied, more local regional rearrangements are then not described, potentially missing
important neurobiological information. Here, we propose a novel mathematical framework that
jointly estimates resting-state functional networks and spatially more localised cross-regional
modulations. To do so, the changes in activity of each brain region are modelled by a logistic
regression including co-activation coefficients (reflective of network assignment, as they highlight
simultaneous activations across areas) and causal interplays (denoting finer regional cross-talks,
when one region active at time t modulates the t to t+ 1 transition likelihood of another area). A
two-parameter ℓ1 regularisation scheme is used to make these two sets of coefficients sparse: one
controls overall sparsity, while the other governs the trade-off between co-activations and causal
interplays, enabling to properly fit the data despite the yet unknown balance between both types of
couplings. Across a range of simulation settings, we show that the framework successfully retrieves
the two types of cross-regional interactions at once. Performance across noise and sample size
settings was globally on par with that of other existing methods, with the potential to reveal more
precise information missed by alternative approaches. Preliminary application to experimental
data revealed that in the resting brain, co-activations and causal modulations co-exist with a
varying balance across regions. Our methodological pipeline offers a conceptually elegant
alternative for the assessment of functional brain dynamics and can be downloaded at
https://c4science.ch/source/Sparse_logistic_regression.git.

1. Introduction

How the brain is structurally wired at its most global
spatial scale and how information flows between
remote processing centres, are essential questions

7 Author to whom any correspondence should be addressed.

to improve our mechanistic understanding of high-
level behaviours [1]. When it comes to functional
magnetic resonance imaging (fMRI), the mapping
of brain function is commonly performed from
resting-state (RS) recordings through the compu-
tation of functional connectivity (FC), that is, the
statistical interdependence between different time
courses reflective of regional activity [2], as can
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be assessed from an array of measures [3]. This
approach has revealed the presence of a set of
RS networks (RSNs) [4–6], whose properties are
critical landmarks of healthy and perturbed cognition
[7–9].

Over the past decade, it has become increas-
ingly clear that quantifying FC between two brain
regions throughout a full scanning session as only one
scalar is an overly simplistic approach; indeed, it does
not characterise the numerous reconfigurations that
occur at the time scale of seconds [10]. Accordingly,
many methodological pipelines have been developed
to dig into time-resolved FC and map brain function
dynamically (see [11–14] for contemporary reviews).

One of the most notorious family of dynamic
approaches simplifies the originally voxel-wise fMRI
data into a state-level representation: first, whole-
brain FC is computed over successive temporal sub-
windows and then, the concatenated data across the
full subject population at hand is decomposed into
a set of dynamic FC (dFC) states. Each of them is
temporally recurring, short-lived and renders a dis-
tinct set of correlational relationships across indi-
vidual brain parcels, or—if spatial independent com-
ponent analysis (ICA) is performed prior to sliding
window computations—across RSNs [15–17].

In other analytical schemes, whole-brain voxel-
wise activity [18], or activity transients [19], undergo
clustering instead of FC patterns; in this case, each
of the retrieved centroids directly stands for an
RSN. If temporal ICA is directly cascaded to spa-
tial ICA, temporallymutually independent functional
modes that highlight specific RSN combinations are
retrieved [20]. Finally, the use of a hidden Markov
model (HMM) also enables to derive hidden states
reflective of RSNs, or of their interplays, which are
parameterised as (sparse) FC patterns [21–23] or vec-
tors of activation [24].

In all the above cases, one assumes that the
fMRI data can be efficiently understood in terms of
a restricted set of RSNs and that functional brain
dynamics should be investigated from a fixed and
restricted set of spatial patterns. Recent results, how-
ever, challenge the sufficiency of such postulates: first,
some brain regions do not remain attached to the
same network throughout a scanning session, but
instead adjust their modular allegiance over time
in a way that relates to cognitive performance [25,
26]. Second, brain regions and networks morph spa-
tially over time, with this spatial dynamics bearing
promising clinical relevance [27, 28]. Third, spatio-
temporal patterns have been suggested asmore telling
features extracted from the fMRI signal [29–31].

In order to capture such subtle propagation of
activity at the finer regional scale, effective connectiv-
ity (EC) approaches have also been developed. In
opposition to the above correlational tools, they
explore the causal relationships (i.e., from time t
to t+ 1) that link distinct brain areas. Notoriously,

dynamic causal modelling has been leveraged
to the RS setting: the cross-spectral content of
the data is described probabilistically—including
haemodynamic effects—and model inversion yields
the posterior probability density for each EC coef-
ficient (i.e., the probability that it takes a given
value knowing the cross-spectra). Recent technical
improvements have pushed towards making such
computationally greedy approaches applicable at the
whole-brain scale [32, 33]. In other related work that
did not employ a Bayesian framework, EC coeffi-
cients were derived from the empirical cross-spectral
density of the data with an added ℓ1 regularisation
constraint, forcing the set of cross-regional causal
relationships to be sparse [34].

An alternative to a spectral characterisation of
the data is to remain in the temporal domain and
explicitly enforce the causality of the system. If work-
ing in the continuous domain, with a multivariate
Ornstein-Uhlenbeck model, regional activity can be
described by a system of coupled ordinary differential
stochastic equations reaching a steady-state and the
EC coefficients that yield the best set of lagged cov-
ariance matrices (in terms of fitting empirical ones)
are obtained by iterative updates [35, 36]. In the
discrete domain, first-order multivariate autoregress-
ive models have also been applied: with such causal
tools, sliding window-based fluctuations in FC—a
correlational measure, as highlighted above—could
be well replicated [37]. In addition, autoregressive
approaches have shown relevance in the characterisa-
tion of several facets of human behaviour [38].

It transpires from the above that at present, there
are two conceptually distinct ways to view RS dFC:
on the one hand, as sets of simultaneously activat-
ing regions that make networks and on the other
hand, as effective connectivity between individual
areas. Which of these two alternatives offers the best
representation of RS dynamics and whether they
describe overlapping or distinct facets of the data,
remain important questions to explore. In the present
work, we have attempted to progress in answering
them by developing a novel methodological frame-
work that characterises whole-brain activity through
coupled logistic regression equations. Co-activations
and causal couplings are jointly derived for each pair
of brain regions and the inclusion of sparsity con-
straints in our model allows us to only extract a parsi-
monious array of coefficients, while enabling, at the
same time, to modulate the trade-off in data fitting
between both viewpoints.

2. Materials andMethods

2.1. Mathematical framework
Let us denote the activity of a region r (out of R

in total) at time t as h(r)t . We hypothesise two pos-

sible states of activity: baseline (h(r)t = 0) or active
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(h(r)t =+1). We further posit that each region may
interact with all the other areas s ̸= r in two ways:
(1) showing simultaneous activity (that is, episodes
of co-activation), or (2) being causally modulated. To
jointly describe these two phenomena, we character-
ise the probability of a region r to switch between
activity states via logistic regression [39]:

P(h(r)t+1 =+1|h(r)t = 0,h(−r)t ,h(−r)t+1 )

=
1

1+ e−(α
(r)
B +γ

(r)⊤
B h(−r)t+1 +β

(r)⊤
B h(−r)t )

P(h(r)t+1 = 0|h(r)t =+1,h(−r)t ,h(−r)t+1 )

=
1

1+ e−(α
(r)
A +γ

(r)⊤
A h(−r)t+1 +β

(r)⊤
A h(−r)t )

(1)

The baseline-to-active transition is modelled by
the first equation, while the return to baseline from
an active state is governed by the second. Associated
coefficients are respectively written with the ·B and ·A
subscripts. In what follows, for the sake of clarity, we
will omit these subscripts and only consider one set of
equations, as the formulations are strictly equivalent
for both types of transitions.

If all other regions are at a baseline level of activ-

ity at the start (h(−r)t = 0) and end (h(−r)t+1 = 0) of
the transition, only the scalar coefficient α(r) plays a
role in shaping the transition likelihood. The vector
γ(r) ∈ RR−1 contains the co-activation coefficients
for all regions s ̸= r: positive-valued coefficients will
enhance the likelihood of the transition of interest
if h(s)t+1 =+1 (that is, if regions r and s are co-active
at time t+ 1). Negative-valued coefficients will, like-
wise, reduce the transition probability. The reason-
ing is similar for the vector β(r) ∈ RR−1, except that

a modulatory effect is then exerted if h(s)t =+1 (i.e.,
region s is active before the transition in activity level
of region r, resulting in a causal modulation instead
of a co-activation).

The concomitant modelling of co-activations and
causal modulations enables to jointly derive the two
sets of coefficients. Given the fact that the resting
brain is often characterised as a set of RSNs [4–6], we
expect only a sparse subset of non-null co-activation
coefficients. Similarly, only a restricted amount of
areas or networks are believed to causally modulate
each other [40, 41]. To fit these neurobiological pri-
ors, we can consider that the joint set of coefficients is
sparse by imposing an ℓ1 regularisation termon them:

(1− ξ(r))||γ(r)||1 + ξ(r)||β(r)||1 < ρ(r) ∀ r= 1, . . . ,R.

(2)

In the above, ρ(r) controls the extent of regular-
isation casted on all coefficients associated to region r
(it relates to an inversely proportional parameter λ(r)

in equation (3) below). The parameter ξ(r) enables to
balance to what extent the co-activation and causal

sets are regularised for a given area: if ξ(r) = 0, regu-
larisation only operates on co-activation coefficients,
while if ξ(r) = 1, only causal coefficients are made
sparse. This respectively amounts to a description of
regional brain dynamics where causal influences, or
co-activations, dominate. Note that, since each region
is associated to dedicated regularisation parameters,
it becomes possible to address nuanced differences
in influence within the whole-brain circuitry and in
causal/co-activation balance.

2.2. Implementation
Solving the above set of coupled logistic regression
equations requires that the activity levels of all regions
be known. To binarise the input time courses, we
individually z-score each and set to +1/0 the time
points with a value above/below 0. While binarisa-
tion may remove part of the insightful information
from the original data, it has been used in recently
developed methodological pipelines [42]. In the Dis-
cussion, we touch upon possibilities to make the
framework amenable to a case withmore than 2 states
of activity.

After defining the activation states, initial para-
meter estimates can be computed. Co-activation and
modulatory coefficients are all set to 0 and intrinsic
transition probabilities are set to 0.5 (i.e, α(r) = 0).

Following [39], in a regularised logistic regres-
sion, one attempts to solve the following:

min
α(r),γ(r),β(r)

−L(r)(α(r),γ(r),β(r))

+λ(r)
[
(1− ξ(r))||γ(r)||1 + ξ(r)||β(r)||1

]
,

(3)

where r is the assessed region and the log-likelihood
is approximated as:

L(r)(α(r),γ(r),β(r)) =− 1

2|T |
∑
t∈T

ω
(r)
t (z(r)t −α(r)

−γ(r)⊤h(−r)t+1 −β(r)⊤h(−r)t )+C.
(4)

The ensemble T contains all the data points for
which the probed region is in the currently con-
sidered start state at time t (e.g., baseline for the
baseline-to-active transitions) and C is a constant. If
we define the probability of the transition of interest

as p(α(r),γ(r),β(r),h(−r)t ,h(−r)t+1 ), the parameters ω(r)
t

and z(r)t depend on the current estimates of the
coefficients—which we denote with a tilda—as:

ω
(r)
t = p(α̃(r), γ̃(r), β̃

(r)
,h(−r)t ,h(−r)t+1 )

− p(α̃(r), γ̃(r), β̃
(r)
,h(−r)t ,h(−r)t+1 )2

z(r)t = α̃(r) + γ̃(r)⊤h(−r)t+1 + β̃
(r)⊤

h(−r)t

+
1

ω
(r)
t

[
y(r)t − p(α̃(r), γ̃(r), β̃

(r)
,h(−r)t ,h(−r)t+1 )

]
(5)

where y(r)t defines whether there was a change in
activity level in region r from time t to t+ 1 or
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not (respectively, y(r)t = 1 or y(r)t = 0). Coefficients
are iteratively estimated by a coordinate-wise descent
algorithm, following [43]: the initial estimates out-
lined above are used at the maximal regularisation
level λMAX and individual coefficients are successively
re-estimated in random order (note that forα(r) coef-
ficients, which do not enter the ℓ1 regularisation term,
soft shrinkage is not required). After cycling through
all coefficients, the Euclidean distance of the whole
coefficient vector with respect to the prior iteration
is assessed and the algorithm stops either when the
change across two iterations becomes lower than a
defined tolerance threshold ε, or when niter iterations
have been performed. The next regularisation level
is then considered, using warm restarts to speed up
computations (i.e., the estimates obtained at the end
of a regularisation cycle are used as initial values for
the following one).

In all the analyses performed therein, we
compared five levels of trade-off between
co-activation and causal coefficients (ξ(r) =
{0,0.25,0.5,0.75,1} ∀ r= 1, . . . ,R) and used
convergence parameters ε= 10−2 and niter = 5.

In our simulations, we considered a regular-
isation path with λ(r) ∈ [10000,0] ∀ r= 1, . . . ,R
(80 logarithmically distributed values), while for our
application to experimental data, we used λ(r) ∈
[50000,0] ∀ r= 1, . . . ,R (60 logarithmically dis-
tributed values). We always verified that at λMAX, all
coefficients remained equal to 0.

2.3. Determination of final co-activation and
causal modulation values
Upon solving, the framework yields an array of co-
activation and causal coefficients across all examined
regulariser values. In order to determine the optimal
parameters for each region r, we resorted to cross-
validation, using otherwise untouched data. In the
cases considered in this work (both simulations
and experimental data), the cross-validation data-
set always had 60% of the training set size. Follow-
ing z-scoring and binarisation of each regional time
course in the same way as described in section 2.2, the
exact log-likelihood was computed, for each candid-
ate parameter set (ξ(r),λ(r)), as:

L(r)(ξ(r),λ(r))=
1
|T |

∑
t∈T

y(r)t (α(r)+γ(r)⊤h(−r)t+1 +β(r)⊤h(−r)t )

+ log(1+ eα
(r)+γ(r)⊤h(−r)

t+1
+β(r)⊤h(−r)

t ),
(6)

where α(r) = α(r)(ξ(r),λ(r)), γ(r) = γ(r)(ξ(r),λ(r))
and β(r) = β(r)(ξ(r),λ(r)) were used as short-hand

notations for the sake of clarity and y(r)t ,h(−r)t and

h(−r)t+1 are computed from the cross-validation set. For
each region r, optimal coefficients were set as the ones
maximising the above log-likelihood function.

Following this step, coefficients are converted into
a probabilistic equivalent. Let two regions r and s;
we can use equation (1) to define the probability for

region r to undergo a change in activity when region
s is itself active and similarly, when it is not. The dif-
ference is then taken as the measure of interest. For
co-activation, we contrast h(s)t+1 =+1 and h(s)t+1 = 0,

while h(s)t = 0; by this mean, we selectively evaluate
co-activation independently from causal regulation.
This gives the following probability differential:

∆PΓ,s→r = P(h(r)t+1 ̸= h(r)t |h(s)t+1

=+1,h(−r)t = 0,h(−r,−s)t+1 = 0)

−P(h(r)t+1 ̸= h(r)t |h(−r)t = 0,h(−r)t+1 = 0).
(7)

In a similar vein, for causal modulations, we have:

∆PB,s→r = P(h(r)t+1 ̸= h(r)t |h(s)t

=+1,h(−r,−s)t = 0,h(−r)t+1 = 0)

−P(h(r)t+1 ̸= h(r)t |h(−r)t = 0,h(−r)t+1 = 0),
(8)

where this time we contrast the activity of region s at
time t instead. The resulting values can be arranged in
two matrices (one per type of coefficient), where the
rth column contains the R− 1 influences onto region
r (diagonal elements are left empty). Recall that this
process is performed separately for two types of trans-
itions: baseline to active and vice versa. Let us respect-
ively denote the associated co-activation matrices by
ΓB andΓA, whilewe term causalmodulationmatrices
BB and BA.

Considering an example coupling between
regions s and r, a positive-valued ΓB(s, r) element
means that when region s is active at time t+ 1,
region r will have a greater likelihood to transit to
the active state from time t to t+ 1. A positive-valued
ΓA(s, r) value, however, means that upon activity of
region s at time t+ 1, region r is more likely to transit
back from the active to the baseline state from time t
to t+ 1. Similar observations can be made for causal
modulations.

Thus, a simple solution to aggregate both types
of transition is to consider Γ= ΓB−ΓA and B=
BB−BA as the final values of interest. Positive-valued
entries then reflect up-regulatory influences, irre-
spective of the transition type. Figure 1 schematic-
ally recapitulates the undertaken steps to generate the
examined features. Note that, while we stick to such
a simplified representation throughout most of our
work, in figure 5(C), we briefly touch upon the theor-
etical ability of our framework to reveal subtler types
of dynamics that dissociate activity states.

2.4. Validation of the framework on simulated data
To verify the face validity of our framework and
assess its flexibility under different settings, we first
considered simulated data containing cross-regional
causal modulations as well as co-activations. We sim-
ulated activity time courses for R= 35 regions (or
R= 40 in a sub-case presented in figure 5(B)). To
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1. Solve the sparse logistic regression framework on training data

2. Cross-validate on unseen data to extract optimal coe�cients

3. Compute probabilistic in�uences between all pairs of regions

4. Arrange into matrices, and aggregate across transition types

Figure 1. Overview of the framework. (A) Example activity time courses for a set of 9 regions; each can transit between a baseline
state of activity (symbolised by a grey circle) and an active state (red circle). The green, brown and blue underlays highlight the
regions that belong to the same RSN and thus exhibit a similar transitory dynamics. (B) Coefficient matrices associated to the
example presented in (A) for co-activations (top row) and causal modulations (bottom row). The left column pertains to the
transition from the baseline to the active state: a positive-valued coefficient at element (s, r) means that when region s is active, it
enhances the likelihood of a transition for region r at the same time point (for co-activations) or one time point later (for causal
modulations). The middle column similarly characterises transitions from the active to the baseline state; thus, modulations that
enhance the overall activity of an area are here reflected by negative-valued coefficients (i.e., the probability to go down in activity
is lowered). The right column yields total influences summed across both transition types. (C) First, the sparse logistic regression
framework is solved along a regularisation path (λ parameter), for different co-activation/causal coupling balances (ξ parameter),
as described in section 2.2. Second, cross-validation is performed to extract, for each region r, the best set of coefficients that
maximise the log-likelihood of the unseen data (see equation (6)). Third, coefficients are converted into cross-regional
probabilistic modulations (see Equations (7) and 8). Fourth, the resulting values are arranged into matrices and information is
aggregated across transition types by a subtraction. R: region. N: network.

match the experimental data case asmuch as possible,
we considered T= 1200 time points per subject and
we used a number of subjects S that would yield a sim-
ilar amount of available data points for the estimation
of each parameter of the model. In more details, we
have:

S=
nDP(2R+ 4R(R− 1))

T
, (9)

where nDP denotes the number of data points
required for properly estimating one parameter and
2R+4R(R− 1) is the total number of parameters to
estimate. The number of available subjects on exper-
imental data (S= 350, for the estimation of R= 94
regions) is achieved with nDP = 12; applying the same
equation to R= 35 (or R= 40) then yields S= 50 (or
S= 65).

In our initial simulation (presented in figure 2)
and the majority of ensuing ones, we considered
N = 7 separate RSNs, a number that matches data
from the RS literature [6]. In all simulations conduc-
ted with N = 7, each network contained between 4
and 7 areas (from network 1 to 7: 5, 4, 7, 6, 4, 5 and 4
regions) and time courses for all regions belonging to
the same network were similar (prior to the addition

of noise). To examine the flexibility of our pipeline,
we also explored some cases with N = 3 (presented
in figures 3(A) and (B)), where networks 1, 2 and 3
respectively comprised 10, 14 and 11 regions. In the
case examined in figure 5(B), a few additional regions
were also set as hubs that jointly belong to two net-
works and activate as soon as one of the networks
turns on.

Each simulated dynamics was associated to a
probability to switch from the baseline to the active
state and to a probability to transit from the active to
the baseline state. In all examined simulation cases,
both were set to 0.5. Causal modulations were intro-
duced between a subset of networks: when amodulat-
ing network turned active, it could enhance the activ-
ity of the modulated network (both by enhancing the
likelihood of a 0 to +1 transition and reducing that
of a +1 to 0 one), as symbolised by a positive-valued
causal coefficient, or decrease that activity, as reflec-
ted by a negative-valued element. We always con-
sidered a probability modulation equal to 0.4 and in
one case examined in figure 5(C), also considered
distinct pools of causal modulations between the
baseline-to-active and active-to-baseline transition
cases.

5
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The number of simulated networks is directly
related to the density of co-activation coefficients
present in the problem, ρΓ (a largerN lowers ρΓ). The
number of causal modulations across networks then
defines the density of causal coefficients, ρB. In fig-
ure 3, we explored the robustness of our framework
to the exact balance between co-activation and causal
coefficients.

Eventually, all time courses were corrupted with
Gaussian noise with σ2 = 2, apart from the results
shown in figure 4 where our framework is compared
to alternative approaches (described in section 2.6)
while exploring a range of possible noise variances.
Indicative regional time courses for a simulated sub-
ject under such noise settings are presented in figure
2(A), where noise is sufficient not to be able to infer
any cross-regional relationships by mere eyesight.

2.5. Quantification of the ability to retrieve the
ground truth
In order to assess how accurately ground truth para-
meters could be retrieved, we considered an array
of quality measures. Separately for co-activation and
causal coefficients, we first computed Pearson’s cor-
relation coefficient between the ground truth coef-
ficient matrix and the output from our pipeline
(respectively, Γ and B). In what follows, we term this
metric similarity.

For extracted co-activation coefficients, we also
examined whether the contained information was
sufficient to re-order the regions into their underly-
ing networks, by computing Ward’s linkage from the
columns of Γ (having excluded diagonal elements).
We separated all regions into N clusters using the
constructed dendrogram and used the purity meas-
ure [44] to compare the obtained clusters to the
ground truth. A purity of 1 denotes perfect agreement
between both sets.

For causal modulations, we used the ground truth
network structure to construct a directional graph:
first, the elements ofB that were associated to null val-
ues in eitherBB orBA were set to 0, so that the regular-
isation potential of our framework is fully exploited
in yielding a sparse graph. Second, from this modi-
fied matrix B̂, all probabilistic causal couplings asso-
ciated to the same network-to-network modulation
were joined together, resulting in an N ×N graph. In
doing so, we used the median operator instead of the
mean to preserve sparsity. From the generated direc-
tional graph, we computed sensitivity and specificity
in directional edge detection as two separate quality
metrics.

2.6. Comparison of performance to other
approaches
We compared our framework to four alternative
approaches (two that derive co-activations and two
that extract causal modulations), using the metrics
introduced in section 2.5. For each of these methods,

all data points across subjects were jointly analysed in
a population-level analysis, to match the application
of our framework. In addition, the same number of
samples was used for both the training and the cross-
validation datasets.

For co-activation, we first selected the graphical
lasso (GLasso) [45], which also leverages ℓ1 regular-
isation and is widely applied for the estimation of
static or dynamic FC in the literature. We performed
cross-validation to extract the optimal regularisation
parameter and were always able to locate a clear log-
likelihood maximum within the interval of probed
values.

As a second co-activation approach, we con-
sidered the point process analysis (PPA) put forward
in [46], which derives a proxy for FC using only a sub-
set of the available time samples per voxel or region.
We found it interesting to compare our framework to
another methodology that operates at the frame-wise
level, without the reliance on second-order statistics.
The approach relies on a thresholding parameterTPPA

to define themoments of interest in each activity time
course (i.e., those that overcome this threshold): to
set it, we performed cross-validation by computing
Pearson’s correlation coefficient between the estim-
ated FC proxy from the training data and the FCmat-
rix derived from the cross-validation dataset. In all
examined cases, the probed range for TPPA yielded a
clear similarity maximum.

For the estimation of causal coefficients, we first
selected the approach introduced by [34], which
works at the level of the cross-spectral density (CSD)
of the data with an added ℓ1 regularisation constraint,
making it somehow conceptually related to our
framework. No parameter needed to be tuned, but
to enhance sparsity of the output matrix (for which
many non-null, but negligible values remained), coef-
ficients lower than ϵCSD = 10−7 were set to zero.
The rationale for this was to ease the generation of
a network-to-network directional graph representa-
tion, which we use in the evaluated quality metrics.

As a second alternative, we considered the use
of an order-1 multivariate autoregressive model
(MAR) [37], for which we only considered the cross-
regional coefficients. In order to enable sparsity of
the outputs, we generated null realisations in which
regional time courses were independently randomly
shuffled across subjects and assessed significance of
the coefficients at a Bonferroni-corrected p-value of

0.05
N(N−1) (that is, correcting for the known maximal
number of possible cross-network couplings).

All five candidate approaches were examined
across a series of noise values σ2 = 1, 2, 4, 9, 16, 25, for
a total number of subjects in the training dataset equal
to S= 1, 15, 30, 40, 50, 80.We assessed howmuch per-
formancewould decreasewith larger noise and/or less
available subjects to derive coefficients. The results of
these analyses are presented in figure 4.
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2.7. Application of the framework to experimental
fMRI data
We applied our framework to experimental RS fMRI
data from the Human Connectome Project [47]. We
considered one scanning session long of T= 1200
time points. The data from S= 350 subjects served
to extract co-activation and causal coefficients and
SCV = 207 separate subjects were considered for
cross-validation. Finally, a yet distinct pool of SVAL =
350 subjects was leveraged to rerun the framework
at optimal regularisation values, yielding new co-
activation and causal coupling estimates that we com-
pared to the original ones to gauge the generalisability
of our findings.

The data was acquired at a fast TR of 720 ms,
at a spatial resolution of 2 × 2 × 2 mm3; addi-
tional acquisition details can be found elsewhere [48].
We considered ICA-FIX denoised preprocessed voxel-
wise time courses with extra Wishart rolloff filtering
to improve signal to noise ratio, similarly to [49]. The
data was originally parcellated into 376 separate areas
(360 from the Glasser atlas [50] and 16 added subcor-
tical regions), but as we did not have enough data to
our disposal for properly estimating parameters from
such a high-dimensional representation, we down-
scaled these 376 areas into R= 94 separate parcels. To
do so, we computed a weighted average of the parcels
from the Glasser atlas that overlapped with a given
parcel from the AAL atlas [51], where the weights
jointly reflected the size of the original parcels and
their relative overlap with the output parcel.

As a final step, from the fully preprocessed
data, we used a total variation-based denoising
approach [52, 53] to derive cleaned activity-inducing
signals freed from haemodynamic effects. We only
included temporal regularisation in the process,
without any spatial prior, to avoid the need to manu-
ally specify any parameter. By this deconvolution step,
we hoped to minimise auto-correlation in the ana-
lysed time courses.

From columns of the co-activation matrix Γ,
Ward’s linkage analysis was conducted to perform
hierarchical clustering into distinct networks. To
effectively look at network identities, we defined a dis-
tance cutoff by generating 10 000 null realisations in
which each column was independently shuffled prior
to linkage analysis. For each of these null cases, the
maximal distance between columns was sampled and
eventually, we used the 95th percentile of this null dis-
tribution as cutoff.

From the causal coupling matrices BB and BA,
a directional graph representation was generated as
described in section 2.5, using the network assign-
ments derived from the above hierarchical clustering
process.

To compare our findings to those from the
validation dataset, we considered (1) similarity
between the co-activation matrices Γ and ΓVAL, (2)
purity between the network assignments derived

from the training data and the ones extracted by
running hierarchical clustering on the validation
data, using the training-inferred number of net-
works, (3) similarity between the matrices con-
taining causal modulations (B and BVAL) and
(4) comparison between the directional graphs
obtained from the training data and from the val-
idation data, using the training-inferred network
assignments.

3. Results

3.1. Validation of the framework on simulated data
Figure 2 displays the results from an example sim-
ulation for which we go in depth into the informa-
tion provided by our sparse logistic regression (SLR)
framework. At the considered noise level σ2 = 2,
regional time courses cannot easily be assigned to
their underlying networks (figure 2(A), left colour-
coding), although in fact, there is an underlying
organisation intoN = 7 distinct systems (figure 2(B),
bottom left ΓGT matrix). In addition to the co-
activation structure, there are also three positive-
valued causal modulations and two negative-valued
ones, across the networks (figure 2(B), bottom right
BGT matrix). As a function of their network assign-
ment, different regions thus showcase distinct dens-
ities in co-activation coefficients ρΓ (depending on
how many regions are part of the same network) and
in causal ones (ρB; see figure 2(B), top half).

In figure 2(C), example outputs of the framework
(i.e., Γ and B matrices) are provided when the same
ξ and λ values are used across all regions. As anti-
cipated, it can be seen that for ξ= 0, co-activations
are more strongly attenuated, while for ξ= 1, causal
modulations aremore largely removed. Furthermore,
as λ decreases, the overall extent of regularisation is
lowered, yielding a less sparse set of coefficients. There
are two further interesting points to note: first, co-
activation probabilistic influences are generally larger
than causal ones. Second, regardless of the exact ξ and
λ values used, the SLR outputs strongly resemble the
ground truth.

In figure 2(D), the log-likelihood (as computed
on cross-validation data and summed across both
transition types) is plotted for each region as a
function of λ, at the region-specific optimum ξ

∗(r).
Regardless of the region, the log-likelihood was low-
est around the largest regularisation values (right of
the graph), a scheme in which it can be seen from fig-
ure 2(C) that fittingly, the ground truth structure is
then not captured. When λ became lower, the log-
likelihood gradually increased, until it reached a clear
peak at values aroundλ= 100, with the exact location
differing from region to region (see the coloured ver-
tical bars). Note that the regions belonging to network
6 (light brown colour) were those linked to the lowest
optimal regularisation level, fitting the fact that they
had the most elevated overall density in incoming

7
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Figure 2. In-depth analysis of example simulation outcomes. (A) Simulated time courses on R= 35 regions, each displayed as
one row for 200 samples. Colour coding denotes the network attribution of the regions (N1 to N7). (B) Co-activation and causal
ground truth matrices (Γ and B), with associated region-specific density in coefficients (ρΓ and ρB). (C) Example outputs at
selected ξ and λ parameter values (uniformly shared by all regions), for co-activations (top row) and causal modulations (bottom
row). (D) For each region, log-likelihood as a function of the regularisation parameter λ (summed across transition types), with
the colour coding denoting network assignment. Vertical bars outline the log-likelihood maxima for all areas. (E) For all regions
and both types of activity level transition, optimal regularisation parameters ξ

∗(r) and λ
∗(r). (F) Relationship between these

optima and the difference between co-activation and causal coefficient densities (for ξ
∗(r), top plot), or its sum (for λ

∗(r),
bottom). Data points are colour-coded as a function of the network to which they belong. (G) SLR outputs (right) as compared to
the ground truth (left) for co-activations (top) and causal modulations (bottom). (H) Hierarchical clustering result from Γ (top)
and comparison between ground truth and output directional network-to-network graphs (bottom). Red/blue edges denote
up-regulatory/down-regulatory influences and the arrow stands for the direction of the modulation. SLR: sparse logistic
regression.

influences. As regularisation became still weaker, the
log-likelihood decreased back, because many noisy
coefficients then pollute the estimates compared to
the ground truth.

Figures 2(E) and (F) further disentangle the res-
ults from the log-likelihood computation by separ-
ating the optimal ξ

∗(r) and λ
∗(r) for both types of

transitions (baseline to active, or active to baseline).
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In figure 2(E), the regions that belong to the net-
works that do not receive any causalmodulation (net-
works 1, 2, 5 and 7, respectively colour-coded in tur-
quoise, orange, green and dark brown) are associated
to higher ξ

∗(r) values (as co-activations then dom-
inate in such settings) and to higher λ

∗(r) values as
well (since they are associated to less coefficients over-
all). Conversely and fitting the above log-likelihood-
based observations, regions from network 6 (light
brown)—the most heavily causally modulated—
show the lowest ξ

∗(r) and λ
∗(r) values. In figure 2(F),

it can be seen that, expectedly given the math-
ematical underpinnings of the framework, regions
with a higher overall density of coefficients (ρΓ +
ρB) were linked to larger λ

∗(r). Meanwhile, ξ
∗(r) was

lower/larger for regions with a balance in incoming
modulations leaning towards the causal/co-activation
case.

The final outputs of the SLR framework, when the
probabilistic influences onto each region are sampled
from its optimal ξ

∗(r)/λ
∗(r) values, are depicted in fig-

ure 2(G) (right half) and compared to the ground
truth (left half). Similarity was very elevated (SΓ =
0.98 and SB = 0.9). Accordingly, hierarchical clus-
tering from Γ could separate all 7 networks with a
perfect purity of 1 (figure 2(H), top half) and the
directional graph representation generated from the
SLR framework exactlymatched the ground truth one
(figure 2(H), bottom half).

Figure 3 considers the outputs from our frame-
work upon different network structures and co-
activation/causal balances. In figure 3(A), we con-
sidered N = 3 networks with only one up-regulatory
influence fromnetwork 1 to network 2. Similarity val-
ues were high for both types of coefficients (SΓ =
0.97, SB = 0.71), network assignment could be per-
fectly retrieved and so could the network-wise direc-
tional graph. Similar observations were made when
instead, 5 of the 6 possible cross-network couplings
were included (figure 3(B)), demonstrating the flex-
ibility of our SLR framework. Note that themedian of
optimal λ values across regions and transition types
was larger in the former case (λmed = 120 as opposed
to λmed = 60) and so was the median of ξ values
(ξmed = 0.75 as opposed to ξmed = 0.5). This is unsur-
prising, since the former case included less coeffi-
cients to retrieve overall and a balance more in favour
of co-activations.

Figures 3(C) and (D) depict the results from con-
ceptually similar simulations when conducted with
N = 7 networks instead. Given the elevated similar-
ities between ground truth and SLR output matrices
and the perfect network assignments, it can be seen
that our framework graciously handles changes in
the underlying network structure. There was only
one disagreement between ground truth and extrac-
ted values at the level of the directional network-
wise graph representation in figure 3(D): while all
true edges were correctly retrieved, an erroneous one

depicted a down-regulatory influence of network 5
onto network 6 (note that this can already be seen
from B, where some negative-valued probabilistic
influences populate the associated patch of the mat-
rix, as labelled in orange). However, this false pos-
itive edge was also the weakest of all the retrieved
ones.

3.2. Comparison of performance to other
approaches
In figure 4, we compare the performance of the SLR
framework to other approaches: for the quality of co-
activation coefficients, we consider the graphical lasso
(GLasso) and a point process analysis (PPA). Regard-
ing causal modulations, we consider a cross-spectral
density (CSD)-based approach and an order-1 mul-
tivariate autoregressive model (MAR). The ground
truth for these simulations is depicted in figure 4(A):
it is the same as that probed in figure 2, but here, we
consider the evolution of qualitymetrics as noise level
and/or the number of training subjects change(s).

Figure 4(B) presents the results obtained by all
approaches at σ2 = 2 with S= 50 subjects (i.e., same
parameters as in figure 2). Using GLasso, the co-
activation structure is clearly retrieved, as in the SLR
case. With PPA, it is also possible to resolve the dif-
ferent networks, but background intensity is larger.
Regarding causalmodulations, the use ofMAR results
in excellent outputs and in a perfect directional graph
representation, as with the SLR framework. How-
ever, a CSD approach instead yields a sparser mat-
rix of coefficients; while true modulations are indeed
pinpointed, the anti-symmetrical nature of the out-
put matrix prevents from inferring if network i up-
regulates network j, or if instead, network j down-
regulates network i. This is also seen in the directional
graph representation, where edges always appear in
pairs. Furthermore, the more prominent of the two
edges is not always the correct one: while network
3 up-regulates network 6, the CSD approach instead
yields a larger edge for a down-regulation from net-
work 6 to network 3.

The outputs provided by all approaches are
examined under more challenging settings in fig-
ures 4(C) (σ2 = 2 and S= 1) and 4(D) (σ2 = 16
and S= 50). While GLasso still enables to retrieve
the majority of ground truth co-activations, PPA
becomes almost incapable to do so (indeed, only very
faint network-like patterns are seen in the associated
matrices). The outputs from the SLR framework are
intermediate: less coefficients are retrieved than in the
GLasso case, but an underlying structure can still be
discerned.

As for causal modulations, none of the outputs
at such challenging noise settings are truly satisfying.
Note that the MAR results in the single-subject case
(figure 4(C)) are not sparse, because our cross-subject
null strategy would not be applicable in that setting.
Accordingly, it is the only case for which a non-empty
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Figure 3. Flexibility of the framework to changes in network structure and causal modulation density. (A) For N= 3 networks
and a weak extent of causal modulations (ρB = 0.12 compared to ρΓ = 0.32), ground truth co-activation and causal coefficients
(left column), outputs from the SLR framework (middle column), dendrogram obtained upon hierarchical clustering from Γ
(top right) and network-wise directional graphs for the ground truth and the SLR output cases (bottom right). λmed and ξmed are
the median optimal λ and ξ values across all regions and transition types. SΓ and SB are the similarities between ground truth and
output matrices for the co-activation and causal modulation cases, respectively. (B) Obtained results for a larger amount of
cross-network causal modulations (ρB = 0.55) and N= 3 networks. (C) Obtained results for N= 7 networks and a low amount
of cross-network causal modulations (ρB = 0.05 compared to ρΓ = 0.12). (D) Obtained results for N= 7 networks and a greater
amount of cross-network causal modulations (ρB = 0.21). The orange contour in the output Bmatrix shows the patch yielding
the false positive edge found in the directional graph representation. SLR: sparse logistic regression.

10



J. Neural Eng. 17 (2020) 065003 T AW Bolton et al

ØØ Ø Ø Ø

Ground truth

GraphΒΓ
N1

N2

N3

N4

N5

N6

N7

-0.15 0.150

SLR

-0.3 0.30

GLasso

0-4000 4000

PPA

-0.06 0.060

SLR

-0.03 0.030

MAR

0-4 .10-4 4 .10-4

CSD

-0.15 0.150

SLR

-0.3 0.30

GLasso

-150 1500

PPA

-0.06 0.060

SLR

-0.1 0.10

MAR

0-4 .10-3 4 .10-3

CSD

-0.02 0.020

SLR

-0.3 0.30

GLasso

-5200 52000

PPA

-0.012 0.0120

SLR

-0.015 0.0150

MAR

0-4 .10-5 4 .10-5

CSD

A

B

C D

E σ2 = 1
σ2 = 2
σ2 = 4

σ2 = 25
σ2 = 16

σ2 = 9

S = 1
S = 15
S = 30
S = 40

S = 80

S = 50

σ2 = 1
σ2 = 2
σ2 = 4

σ2 = 25
σ2 = 16

σ2 = 9

σ2 = 1
σ2 = 2
σ2 = 4

σ2 = 25
σ2 = 16

σ2 = 9

σ2 = 1
σ2 = 2
σ2 = 4

σ2 = 25
σ2 = 16

σ2 = 9

σ2 = 1
σ2 = 2
σ2 = 4

σ2 = 25
σ2 = 16

σ2 = 9

S = 1
S = 15
S = 30
S = 40

S = 80

S = 50

S = 1
S = 15
S = 30
S = 40

S = 80

S = 50

0.3

1

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

SLR MAR CSD

SLR GLasso PPA

Si
m

ila
ri

ty
Pu

ri
ty

Si
m

ila
ri

ty
Se

ns
iti

vi
ty

Sp
ec

i�
ci

ty

Figure 4. Comparison to other approaches. (A) Ground truth parameters of the examined simulation, including co-activations
(left, Γ), causal modulations (middle, B) and network-wise directional graph (right). (B) Results obtained from all examined
approaches at noise level σ2 = 2 and for S= 50 subjects. Co-activation results are provided at the top and causal ones at the
bottom, with their associated directional graph representations. (C) Results obtained from all examined approaches for σ2 = 2
and S= 1. The empty space symbol denotes empty directional graphs. (D) Results obtained from all examined approaches for
σ2 = 16 and S= 50. (E) Summary of performance across all examined methods and 5 quality metrics, as a function of noise level
σ2 and number of subjects S. The first two rows of heatmaps denote the results for co-activations and the last three for causal
modulations. SLR: sparse logistic regression. GLasso: graphical lasso. PPA: point process analysis. MAR: multivariate
autoregressive model. CSD: cross-spectral density.

directional graph is retrieved: while containing many
erroneous edges, the strongest ones nicely match the
ground truth.

The full results of our comparative assessment are
summarised in figure 4(E). It can be seen that when
noise is increased (going from top to bottom in a
given heatmap), or when less subjects are available for

parameter estimation (going from right to left), per-
formance degrades as quantified by almost all met-
rics. The only exception is specificity, because causal
modulation outputs will become fully sparse under
more challenging simulation circumstances, thus pre-
venting the detection of false positives (except for
MAR at S= 1, as mentioned above).
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Figure 5. Performance under more complex settings. (A) Ground truth parameters for the considered simulation in a ‘simple’
setting (left side) and associated SLR-based outputs (right side). (B) Ground truth coefficient matrices for a more complex case
where hub nodes are added (left), results derived using the SLR framework (middle) and results obtained with the GLasso (for
co-activations) and MAR (for causal couplings) approaches (right). (C) Ground truth coefficient matrices, SLR-based
co-activation matrix and directional graphs for a more complex case where causal modulations are different as a function of the
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While qualitatively similar, it can also clearly
be seen that performance degrades most rapidly in
the PPA case (for co-activation metrics) and in the
CSD case (for causal metrics). GLasso and MAR
are the most precise approaches, shortly followed by
our SLR framework, which performs slightly worse
under more challenging settings. However, we should
emphasise that co-activations and causal modula-
tions are then jointly derived, instead of only one of
the two sets with other competing approaches.

To complement the above, figure 5 provides evid-
ence that our SLR framework may also be of use in
more complex (and possibly more realistic) settings.
We first consider a new simple simulation case, as
depicted in figure 5(A) (noise settings are similar to
those employed elsewhere, with σ2 = 2 and S= 50):
unsurprisingly, the retrieved coefficientmaps convin-
cingly reveal the true underlying co-activation and
causal structures of the system.

In figure 5(B), we consider a first increase in com-
plexity by adding in 5 hub regions that jointly co-
activate with two separate networks. Since we now
deal with R= 40 regions, the number of subjects used
for the estimates was increased to S= 65 (see sec-
tion 2.4). Recovery of the ground truth remained
excellent despite this additional layer of complex-
ity, both for Γ and for B. Interestingly, while with
MAR the causal structure was still very cleanly
recovered, GLasso started mistakenly revealing some
cross-network co-activations between networks 2 and
3, 1 and 5, 2 and 7 and 3 and 7 (see the off-diagonal
patches in the associated matrix).

In figure 5(C), we instead consider a ground truth
scenario in which the causal modulations differ from
one type of transition in activity level to the other.
In more details, network 1 only up-regulates net-
work 2 when the latter is at a baseline level of activ-
ity; mechanistically speaking, this could reflect the
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Figure 6. Results on experimental fMRI data. (A) Optimal regularisation parameters ξ
∗(r) (top plot) and λ

∗(r) (bottom plot)
found across regions and averaged across both types of transition in activity level. (B) Co-activation matrices Γ found from the
main dataset (left) and the validation one (right). (C) Hierarchical clustering results obtained from Γ, with colour coding
reflecting the 5 yielded networks. The red horizontal line denotes the used cutoff for network assignment. (D) Network-wise
directional graph representations obtained from the main dataset (top) and from the validation one (bottom), using the network
assignment results derived from the main dataset. L: left. R: right.

fact that network 2 then starts self-sustaining itself,
becoming immune to external modulations when it
is active. Conversely, network 1 only up-regulates net-
work 3 when the latter is active. Similar state-specific
modulations are also introduced for down-regulatory
influences from network 5 to 4 (only when network 4
is at baseline level of activity) and from network 6 to
5 (only when network 5 is active). Logically, a MAR
approach cannot disentangle both ground truths and
provides a trade-off solution that mixes the different
types of edges, while even discarding one (the down-
regulatory modulation from network 6 to 5). Using
our SLR framework, while the results remain some-
hownoisy, both scenarios can be disentangled, as seen
from the network-wise directional graph represent-
ations, and this is so despite still resorting to only
S= 50 subjects in the estimations.

3.3. Application of the framework to experimental
fMRI data
Figure 6 shows the results when applying our frame-
work to experimental fMRI data (R= 94 regions). A
main dataset of S= 350 subjectswas used to derive the
SLR outputs and the framework was then applied to
a separate validation set of SVAL = 350 subjects at the

extracted region-specific optimal regularisation para-
meters.

Computationally speaking, on an Intel Xeon Plat-
inum 8160 CPU at 2.1 GHz with 24 cores, 512 GB
RAM and Ubuntu 18.04, z-scoring and binarisation
of the time courses were always achieved in a few
seconds, while the selection of time points featur-
ing both types of transition took in the order of half
an hour per dataset. As for SLR framework steps,
average computational time values across regions and
regularisation levels were 0.13±0.03 s for the compu-

tation of z(r)t and ω(r)
t and 153.51±45.6 s for the com-

putation of theα(r),β(r) and γ(r) coefficients. Finally,
the evaluation of the log-likelihood took 0.13±0.02 s.
Thus, the two most time-consuming factors were the
selection of time points and most importantly, the
computation of the coefficients.

In figure 6(A), we can visualise optimal regular-
isation parameters extracted across all the regions at
hand. Values for ξ

∗(r) fluctuated across areas, high-
lighting how some brain regions may highlight more
co-activations, while others undergo more causal
modulations. In general, the values were however
closer to 1 (0.69±0.24, with amedian of 0.75), denot-
ing that co-activation is globallymore influential than
causal interplays. Regarding λ

∗(r), a variable range of
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values could also be seen across areas, denoting that
some are more heavily interconnected with the rest of
the brain circuitry than others.

Figure 6(B) depicts the co-activation matrices
Γ on the main and on the validation datasets.
Visual agreement between both outputs is evident
and this is quantitatively confirmed by a large sim-
ilarity value of SΓ = 0.9. Co-activations resulting
from the main dataset then underwent hierarchical
clustering, revealing a complex multi-scale organ-
isation (figure 6(C)). An extensive analysis of such
data would require to investigate the results at vari-
ous possible numbers of clusters, gradually cutting
the dendrogram at lower distance cutoffs. However,
since our purpose only was the preliminary experi-
mental application of our SLR framework, here, we
solely considered one such cutoff value (dcut = 2.02,
as depicted by the horizontal red line; see section 2.7
for details).

With this partitioning, 5 distinct networks were
extracted: network 1 (in green) included all sub-
cortical regions as well as medial frontal, posterior
cingulate and angular areas characteristic from the
default mode network (DMN) [54]. Note that sub-
cortical and DMN regions would be segmented into
two separate networks at a lower cutoff value. Net-
work 2 (in turquoise) primarily featured frontal areas
reminiscent of executive control, while network 3
(in orange) included temporal regions, likely repres-
enting an auditory network. Network 4 (in purple)
included precentral, paracentral, postcentral and sup-
plementary motor areas typically associated to soma-
tomotor function and also comprised the bilateral
insula. Finally, network 5 (in pink) exclusively con-
sisted in occipital regions characteristic of the visual
system; it would be further split into primary and
secondary sub-systems at a lower cutoff. Overall, the
obtained network assignments are thus in line with
RS neurophysiological knowledge. In addition, when
regional assignments were extracted from the valida-
tion dataset, purity as computed between both clus-
tering outcomes showed a fair value of 0.64, high-
lighting somehow generalisable subdivision of the
regional data into networks.

Causal modulations considered across the extrac-
ted 5 networks are displayed in figure 6(D) for the
main dataset and for the validation one (using sim-
ilar regional assignments). Several observations can
be made: first, more causal modulations are retrieved
in the validation graph, possibly owing to the fact that
the SLR algorithm was rerun only at optimal regu-
larisation values, thus yielding slightly less tailored
estimates to the data at hand. Second, the overlapwith
the main dataset results is nonetheless quite good:
all the edges found from the main dataset are indeed
present in the validation one and are also those with
the strongest values. This provides confidence that
the directional cross-network couplings seen in the
main dataset are generalisable and can thus soundly

be discussed. Third, all these retrieved causal modu-
lations are negative-valued: this means that when the
modulating network is active, it will down-regulate
the activity of themodulated network (either bymak-
ing it more likely to transit from the active to the
baseline state, or by making it less likely to become
active). In particular, the subcortical/DMN, execut-
ive and temporal networks primarily inhibit each
other by this mean, while visual and somatomotor
networks remain more independent in their activity.

4. Discussion

In this work, we introduced a novel mathematical
framework enabling to jointly derive the patterns of
co-activation between brain regions, reflective of the
brain’s functional organisation as a set of RSNs [4,
6], and additional cross-regional causal modulations
that enable to go beyond this network-level charac-
terisation and also model more subtle cross-regional
interplays. One can conceive our strategy as a joint
recovery of FC (embedded in the Γ matrix) and EC
(in B).

Our strategy is an improvement over previous
work that also used a logistic regression character-
isation to describe causal interactions between func-
tional brain networks [41]: in this former methodo-
logy, network maps had to be computed in a separ-
ate analytical step, prior to the establishment of their
causal interplays. As such and much like the majority
of other prominent dynamic FC approaches—see for
instance [16, 19, 22, 55], more subtle relationships at
a smaller spatial scale than that of RSNs are then lost.

On simulated data, both co-activation and causal
coefficient sets could accurately be retrieved by our
framework despite marked noise, and this held true
in various configurations regarding the number of
simulated networks and the balance between co-
activations and causal influences (figures 2 and 3).
In all the assessed cases, clear maxima could be
observed in the log-likelihood curves of the simu-
lated regions, confirming the efficiency of our cross-
validation strategy in selectingmeaningful regularisa-
tion parameters tailored to each area.

In the majority of our simulations, we considered
enough data points for accurate estimation of the
full model, as around 12 data points were available
per parameter. Upon the investigation of more chal-
lenging cases, either due to increased noise or to
a lower available amount of subjects for estimation
(figure 4), only a restricted subset of ground truth
entries were recovered, owing to the ℓ1 norm prop-
erties [56]. These correctly retrieved coefficients were
co-activations, not causal couplings, indicating that
the former could more easily be extracted from our
simulations. This is not so surprising given the used
simulation strategy, where co-activation was mod-
elled by simulating two identical time courses before
noise addition, while causal couplings only changed
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the probability to transit across activity levels. It
will be interesting to consider alternative simulation
schemes in future work, to more comprehensively
evaluate the ease with which each coefficient type can
be extracted.

Across the assessed noise and dataset size set-
tings, our SLR framework was, on the whole, com-
petitive in comparison to other existing methods. It
globally outperformed PPA for the estimation of co-
activations, and CSD-based retrieval of causal coup-
lings. In addition, it came a close second to the widely
appliedGLasso andMAR in the respective recovery of
co-activation and causal coefficients, only providing
worse performance in the most challenging investig-
ated settings.

Importantly, the worse outcomes of the PPA and
CSD-based methods in our analyses do not imply
that such tools are useless: in fact, one of the major
assets of PPA is its computational speed compared to
classical FC estimation [46] and indeed, it was the
fastest of the examined pipelines. As for the use of
CSD information to estimate causalmodulations, res-
ults from such a family of approaches show an anti-
symmetrical structure [57], which does not accom-
modate our underlying simulation assumptions as
well as for other methods. In sum, which tools per-
form the best always depends on the considered met-
rics and simulation specificities.

In any case, our framework showed promising
potential from the examined angles, especially given
that it is the only of the assessed approaches that
jointly retrieves co-activation and causal information
at once. Theoretically speaking, it also enables to go
even further, as two separate maps are obtained: one
for the baseline-to-active transitions and one for the
active-to-baseline ones. Inmost of the presented con-
tent, we treated the 0→+1 and +1→ 0 transitions
as mirrors of each other, subtracting both sets of
probabilistic couplings to obtain the analysed out-
puts. However, more complex information may lie
within the individual coefficient matrices. Figure 5
showed that such activity state-specific modulatory
influences can indeed be disentangled, although we
leave more detailed investigations for future work.

On experimental fMRI data (figure 6), the
optimal balance between co-activations and causal
modulations—rendered by the ξ

∗(r) parameter—
fluctuated across regions, evidencing the fact that
both types of cross-regional interactions are required
to accurately describe functional brain dynamics, in
a way that is not spatially trivial. While the obtained
median value of 0.75 indicates that on the whole, co-
activations play a somehow dominating role, these
results nonetheless highlight the importance of devel-
oping methodological approaches that do not only
focus on one viewpoint, but instead attempt to jointly
capture co-activations and causal interplays.

An important aspect to keep inmind—and a lim-
itation of the present work—is the fact that although

the SLR framework goes beyond the network-level
spatial scale by revealing region-wise interactions, it
still considers a set of spatially fixed parcels in doing
so. The resolution of the used atlas can then be expec-
ted to influence obtained results and here, we only
considered R= 94 separate areas, which remains a
modest amount compared to the most state-of-the-
art parcellations [50, 58]. This was, however, neces-
sary to ensure the presence of enough data points for
sound estimation.

Several technical developments may be envi-
sioned to further improve our approach. First, the
purely ℓ1 regularisation strategy could be turned into
an elastic netmix between ℓ1 and ℓ2 norms [59], but it
would then come at the cost of an extra free parameter
to specify. Second, neurobiologically relevant addi-
tional assumptions could be introduced to the model
formulation, such as symmetry and non-negativity
in the co-activation matrix Γ, or the fact that co-
activations and causal influences should be mutually
exclusive.

Third, instead of the probability to transit from a
given state of activity to another, one could consider
the likelihood to show an innovation [19] (that is, go
up or down in activity regardless of the exact start-
ing point). By thismean, the current framework could
seamlessly be generalised tomore than only 2 states of
activity, which may better represent the dynamics of
some brain regions. This information is already avail-
able (by comparison to phase-randomised null data)
from the total activation pipeline used in the deconvo-
lution of the analysed fMRI data [19, 52, 53]. An addi-
tional interest would then be the easier comparison
of results obtained from datasets acquired at various
TRs, so that the increasingly understood specificit-
ies of fast TR datasets [60, 61] can be better disen-
tangled frommore general effects. To do so, one could
determine whether a transient has just occurred prior
to the assessed time point by jointly examining a span
of a few samples (t− 1, t− 2, etc).

Fourth, the current framework enables to go from
networks to regions, but one could push the same
reasoning further by attempting to further separate
this regional categorisation into smaller individual
units—finer-grained parcels, or voxels. Such a multi-
scale analysis would enable to dig into important
aspects that may for now be blurred, such as the not-
able idiosyncrasy in FC patterns and network identit-
ies known to exist across subjects [62, 63].

Finally, a few promising practical applications of
our framework can be foreseen: first, it will be excit-
ing to compare co-activation and causal coefficients
across different subject populations (e.g., a set of
healthy volunteers as opposed to a diseased popula-
tion). To do so, bootstrapping could be conducted
on each population and statistical testing could then
be applied for each coefficient of interest. The exam-
ination of subject-specific properties will, however,
be more challenging to address, as typically available
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amounts of data only permit sound population-
wise inference. Second, another possible applica-
tion could be in hyperscanning [64], where two sub-
jects are scanned in parallel while they interact. Co-
activations, or causal modulations, could be quanti-
fied across both subjects as a way to shed light on the
functional underpinnings of cooperative processing.
Third, the specificities of our framework may be even
better suited to the analysis of other data modalities
for which temporal resolution enables tomore closely
track neuronal activity; applications to magnetoen-
cephalography, electroencephalography or electro-
corticography datasets are thus interesting avenues to
explore.
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