
Bachelor Degree in Computer Engineering
Computation

Thesis

Music composition and interpretation using
transformer networks

Author
Ruben Naranjo de las Heras

2020

Abstract

This work presents the development of a deep learning model capable of generating and
completing musical compositions automatically through generative algorithms of ma-
chine learning from a language modeling approach.

Throughout the document, different neural network structures are studied and compared
from vanilla recurrent neural networks to transformers, and the representation of data is
discussed, as well as some design aspects for the creation of a model capable of compos-
ing and interpreting musical compositions.

The model is trained and tested three times, one for each of the two different datasets and
finally one with both together. Then, the three resultant models are discussed and one of
them is tested with human subjects to validate the generated musical compositions.

The document also presents the design and implementation of a web-interface aimed at
non-technical users, to assist them in the creative process of music composition.

iii

Contents

Abstract iii

Contents v

List of Figures ix

Table index xi

1 Introduction 1

1.1 Objectives of this work . 2

2 Project Management 5

2.1 Planning . 5

2.1.1 Work breakdown structure . 5

2.1.2 Deliverables . 7

2.1.3 Deadlines . 7

2.1.4 Gantt chart . 8

2.1.5 Time estimation . 8

2.1.6 Risk management . 9

2.2 Monitoring . 10

v

CONTENTS

3 Background 13

3.1 Music . 13

3.2 Music representations . 15

3.2.1 MIDI file standard . 16

3.2.2 MIDI file structure . 17

3.3 Machine Learning . 19

3.4 Artificial Neural Networks and Activation Functions 21

3.5 Recurrent Neural Networks . 22

3.6 Attention and Transformers . 26

3.7 One-Hot encoding and softmax activation function 28

3.8 Quality metrics . 29

4 State of the art 33

5 Model Description 37

5.1 Model architecture . 37

5.1.1 Skewing procedure . 38

5.1.2 Complexity of the model . 39

6 Experiments 41

6.1 Dataset description . 42

6.1.1 Data augmentation . 44

6.1.2 Preprocessing . 44

6.2 Experimental framework . 45

6.2.1 Training experiments . 46

6.2.2 Experiments with human subjects 46

6.2.3 Experiment setup . 47

vi

6.2.4 Training parameters . 47

6.3 Results . 48

6.3.1 Classic-Piano model . 48

6.3.2 MAESTRO model . 49

6.3.3 Joint model . 50

6.3.4 Human evaluation . 52

7 Web-app development 55

8 Conclusions 59

Bibliography 61

vii

List of Figures

2.1 WBS diagram of the project . 6

2.2 Gantt chart of the project . 8

3.1 Stave, clef and notes in music notation. 14

3.2 Accidentals in music notation. 14

3.3 Rhythm hierarchy. 14

3.4 Music Score example . 15

3.5 Pianoroll example . 16

3.6 Basic structure of a MIDI file . 17

3.7 Recurrent neural network 4 . 23

3.8 Structure of LSTM networks 4 . 24

3.9 LSTM cell 4 . 24

3.10 GRU cell 4 . 25

3.11 Scaled Dot-Product Attention 5 . 27

3.12 Multi-Head Attention 5 . 27

3.13 Transformer model structure 5 . 28

5.1 Relative global attention: Top row describes original version. Bottom row
shows skewing process. Gray indicates masked or padded positions. Each
color corresponds to a different relative distance 6 39

ix

LIST OF FIGURES

6.1 Composer chart of the MAESTRO dataset 42

6.2 Period chart of the MAESTRO dataset 43

6.3 Composer chart of the Classic-Piano dataset 43

6.4 Period chart of the Classic-Piano dataset 43

6.5 Accuracy of the Classic-Piano model . 48

6.6 Loss of the Classic-Piano model . 49

6.7 Accuracy of the MAESTRO model . 50

6.8 Loss of the MAESTRO model . 50

6.9 Accuracy of the Joint model . 51

6.10 Loss of the Joint model . 51

6.11 Distribution of votes on the human experiment 52

7.1 Empty main page of the web-app, the score editor 56

7.2 Score editor with some notes added to it 56

7.3 Loading page of the web-app . 57

7.4 Web-app options for the generated music 57

7.5 Web-app playing the generated piece . 58

7.6 Web-app prompt to download the generated MIDI file 58

x

Table index

2.1 Time estimation . 9

2.2 Time estimation vs Reality . 11

3.1 Music dynamics . 15

3.2 Encoding of the two types of MIDI division 18

3.3 One-Hot encoding example . 29

3.4 Confusion matrix . 30

4.1 Details of projects on music generation with language modeling approaches 34

5.1 Model complexity by means of parameters 40

6.1 Dataset detail comparison . 44

6.2 Dataset detail comparison after data augmentation 44

6.3 Human composed pieces used in the experiment with human subjects . . 46

xi

CHAPTER 1

Introduction

With the advancements on technology, each day we can delegate more tasks to machines,
making our lives easier. Nowadays, computers carry out complex processes and tasks
that would be unthinkable not more than a couple decades ago, even imitating human
behaviour. Surely, surpassing and overcoming these advances is becoming more complex,
but, is there really a limit that bounds what can or cannot a machine achieve?

When presented with a problem whose solution is given by some sort of universal rule,
purely logical or mathematical problems for instance, the process of implementation in a
machine is completely trivial. The only work is implementing the algorithm via hardware
or software.

In contrast, when facing a problem whose answer is not given by a certain rule, the com-
plexity increases. The conversion from text to speech or speech to text, emotion detection
in speech, separation of two voices in a conversation, face recognition, etc. are problems
that, although we, humans, can solve relatively easy, do not have a simple way of being
brought to machine language, since there is no exact rule that always indicates what the
correct answer is. In other words, there is no known algorithm that indicates us how to
carry out the process.

What is a face? How does a sad or happy voice sound like? And, how do we, humans, learn
these concepts? It is about learning things that have no clear definition, about learning
from example.

Machine Learning gives us the mechanisms to teach a machine how to learn from example

1

2 Introduction

based induction. Thanks to Machine Learning algorithms, a computer can learn, general-
ize concepts and carry on tasks that, until relatively recently, where considered unique to
living beings.

Thus, we are able to endow machines with mechanisms that mimic brain processes and
solve problems of computational perception, as discussed above.

If we apply this to the generation of paintings, sculptures or music, the paradigm changes.
We are no longer facing a classification or computational perception problem, there exists
a fundamental creative and artistic component, which is associated uniquely with humans.

We have taught machines to identify plants, animals, faces, voices, to diagnose diseases,
to translate texts... But, are computers capable of creating something artistic in nature?

Programming an algorithm to generate musical notes is relatively simple. Programming
it to generate musical notes that follow a melodic pattern according to the human concept
of musical beauty is much more complex. The previous examples had a social consensus
of what the correct answer was, but in this case, there is not, because beauty is subjective.
In other words there is no real correct answer. Although, there is a wrong one.

Every piece of music may not be appealing to everyone, thus the different music gen-
res, but there are certain loose rules that a musical piece needs to follow in order to be
correct, called harmony [1]. Explaining harmony definitely goes out of the scope of this
project, but in order to evaluate the results generated, harmonic coherence will be taken
into account.

This partial subjectivity, adds a new level of difficulty for the modeling of the data. Thus,
generating artistic and creative content, is a challenge for Machine Learning and Artificial
Intelligence, which will be discussed throughout this work.

1.1 Objectives of this work

The main goal of this project is to be able to generate compositions and interpretations
of original pieces of music in a way that requires no technical knowledge about computer
science. The project comprises two parts: The design and validation of a deep neural
network model, and the design and implementation of a web-based interface that allows
a user to apply the model. Generating music in any style or with as many instruments as
wanted goes out of the scope of this project, so the work will be concentrated in generating
classical pieces of music for piano. Still, the idea is to build an expandable model, that

1.1 Objectives of this work 3

could be further developed in the future. To complement this work and provide a user-
friendly way of testing the model, a graphical user interface will be developed as a web-
app using Flask [2].

CHAPTER 2

Project Management

This section describes in detail the planning used through the development of the project.
This planning process is based on an initial planning draft made at the very beginning of
the work that has been evolving as the project advanced.

2.1 Planning

2.1.1 Work breakdown structure

Before anything else, the project has been broken down into smaller tasks to organize
it into manageable sections. These tasks have been grouped into five sections: Learning
process, Research, Development, Documentation and Management.

The identified tasks have been grouped into sections as follows. To better visualize the
tasks in its sections an WBS diagram is presented in Figure 2.1.

T1 - Learning process

T1.1 - Revise Machine Learning Concepts

T1.2 - Learn about Neural Networks

T1.3 - Read articles on the topic of music generation

T2 - Research on neural network approximations to music generation

5

6 Project Management

T2.1 - Model research

T2.2 - Dataset research

T2.3 - Representation research

T3 - Development

T3.1 - Implementation

T3.1.1 - Data preprocessing

T3.1.2 - Model implementation

T3.1.3 - Model evaluation

T3.1.4 - Interface Implementation

T3.2 - Testing

T3.2.1 - Model testing

T3.2.2 - Result analysis

T4 - Documentation

T4.1 - Thesis document

T4.2 - Presentation

T5 - Management

T5.1 - Planning

T5.2 - Monitoring

Figure 2.1: WBS diagram of the project

2.1 Planning 7

Task T1 comprises a revision on the already known concepts of Machine Learning, a
learning process focused on Deep Neural Networks and an extensive research about music
generation.

Work on T2 includes the revision of the most significant approaches to music generation
that use deep learning. This comprises analyzing the characteristics of the models, re-
search on datasets available and investigation of the most suitable representation for the
model.

Task T3 is the development of the project, it includes preparing the dataset and converting
it to the representation chosen in T2, the design and validation of the neural network
model and the analysis of its results.

Task T4 comprises the writing of this thesis document and preparing the slides for the
presentation of the thesis.

Work on T5 includes planning of tasks and time estimations for those tasks, and the later
monitoring of that planning.

2.1.2 Deliverables

To fulfill this project some deliverables will be created, the main ones being: an imple-
mentation of a machine learning pipeline for training and testing a model, a web-app
front-end linked to the model and the thesis document. In the thesis document, the objec-
tives of the project, its management as well as its development process and conclusions
will be detailed, written in the LaTeX document preparation system. In addition, some
slides will be prepared as helpers for the presentation of the thesis.

Apart from the documentation described, the final neural network model for music gener-
ation will also be a deliverable. The code used to preprocess the data, the model itself and
the various notebooks used to train it and later generate music will be made available on
the gitlab platform. In addition, the code of the web-app front-end will also be provided.

2.1.3 Deadlines

This project has some administrative deadlines that need to be taken into account:

• 12th of June 2020: Register the Thesis on the GAUR platform.

8 Project Management

• 12th of June 2020: Thesis tutor gives permission for presentation.

• 21st of June 2020: Upload the project to ADDI platform.

• 29st of June - 10th of July 2020: Presentation of the Thesis.

In addition to the administrative deadlines, some academic deadlines have been defined:

• 1st of February 2020: implement the data preprocessing.

• 15th of April 2020: finish the neural network model.

• 20th of May 2020: first version of the thesis.

2.1.4 Gantt chart

Figure 2.2 shows all previously detailed tasks spread over the duration of the project.

Figure 2.2: Gantt chart of the project

2.1.5 Time estimation

Table 2.1 details the estimated time of each task, grouped into sections.

2.1 Planning 9

Task Estimation
T1 - Learning process 35
T1.1 - Revise Machine Learning 5
T1.2 - Learn about Neural Networks 20
T1.3 - Read articles on the topic 10
T2 - Research 35
T2.1 - Model research 15
T2.2 - Dataset research 10
T2.3 - Representation research 10
T3 - Development 160
T3.1 - Implementation 130
T3.1.1 - Data preprocessing 20
T3.1.2 - Model implementation 70
T3.1.3 - Model evaluation 20
T3.1.4 - Interface implementation 20
T3.2 - Testing 30
T3.2.1 - Model testing 15
T3.2.2 - Result analysis 15
T4 - Documentation 55
T4.1 - Thesis document 50
T4.2 - Presentation 5
T5 - Management 15
T5.1 - Planning 12
T5.2 - Monitoring 3
Total 300

Table 2.1: Time estimation

2.1.6 Risk management

In long-term projects, it is very common to identify risks and prepare a contingency plan
to avoid or reduce the impact that complications that may appear throughout development
can have.

The main identified hazard that can affect this project gravely is the loss of data, this
problem could imply having to restart the project from the very beginning and thus, has
been identified as a critical problem. To avoid and prevent it, the dataset and code are
stored online, on Google Drive and Gitlab.com; it is also stored in a personal hard drive
should those online solutions fail. The thesis of the project is written in the Overleaf.com
platform, and also stored in the previously mentioned hard drive; copies of the generated
documents are stored in Google Drive and Dropbox.

10 Project Management

Other risks include bad results and bad planning; the first issue can be avoided by basing
the model on previously tested ones and carefully studying the code to correct potential
mistakes. The latter will be prevented by carefully setting deadlines taking into account
some extra time just in case.

Another potential risk is the lack or limited availability of hardware resources, the model
used in the project is very complex and requires very potent hardware, since it has a very
high computational cost. To avoid not satisfying the hardware requirements, the code is
executed on the Google Colab online platform which lets the code run in very high-end
CPU and GPUs.

Last but not least, personal issues have been identified as risk, and could potentially lead
to a delay on the project. This problem is hard to avoid as personal issues are hardly
expected and may come in myriad ways. The impact of this risk can be lessened the same
way as the previously discussed bad planning risk.

2.2 Monitoring

Section 2.1.5 shows the expected time to spend on each of the tasks. Now, once the project
is finished, we are going to see a comparison between that estimate and reality in Table
2.2.

2.2 Monitoring 11

Task Estimation Reality
T1 - Learning process 35 31
T1.1 - Revise Machine Learning 5 1
T1.2 - Learn about Neural Networks 20 15
T1.3 - Read articles on the topic 10 15
T2 - Research 35 33
T2.1 - Model research 15 13
T2.2 - Dataset research 10 8
T2.3 - Representation research 10 12
T3 - Development 160 190
T3.1 - Implementation 130 165
T3.1.1 - Data preprocessing 20 25
T3.1.2 - Model implementation 70 80
T3.1.3 - Model evaluation 20 25
T3.1.4 - Interface implementation 20 35
T3.2 - Testing 30 25
T3.2.1 - Model testing 15 20
T3.2.2 - Result analysis 15 5
T4 - Documentation 55 85
T4.1 - Thesis document 50 82
T4.2 - Presentation 5 3
T5 - Management 15 20
T5.1 - Planning 12 15
T5.2 - Monitoring 3 5
Total 300 354

Table 2.2: Time estimation vs Reality

CHAPTER 3

Background

3.1 Music

Music is an art form and cultural activity whose medium is sound. By all accounts there
is no single and intercultural universal concept defining what music might be; in fact,
the border between noise and music is nebulous and always culturally defined [3]. For the
purposes of this work, we will define music as a sequence of sound and silences, expressed
through time; or as organized sound [4]. What is clear is that music is comprised by some
common elements like pitch, rhythm, dynamics, and timbre and texture.

Pitch lets us differentiate between bass and tremble sounds, and depends on the frequency
of the sonic wave. This, determines the tone of a note. In music notation it is represented
with a stave, clef, notes and accidentals of those notes. The clef acts as a reference in the
stave, showing which note corresponds on which position.

Such that the Treble clef, shown in Figure 3.1, indicates that the note on the second line
(counting from below) corresponds to a G. Notes in the musical scale (C, D, E, F, G, A,
B, [C])1 are separated by one tone between them, except for the E-F and B-C that are one
semitone from each other2.

1There are several musical scales used in music. This one is the C Major scale, one of the few that have
no accidentals on the notes.

2A semitone or half-tone is the smallest musical interval commonly used in Western music, a tone is
twice a semitone.

13

14 Background

Figure 3.1: Stave, clef and notes in music notation.

Accidentals, sharp (]) and flat ([) allow to indicate variations of a semitone up or down
respectively. The accidental natural(\) cancels the previous accidentals on a note.

Figure 3.2: Accidentals in music notation.

The second component of music is rhythm, which is associated with several things, such

as beat, repetition, and metric structure. For the purposes of understanding this work, we

are going to focus only on duration, that is, how long the sounds are. This is represented

in music mainly by tempo, note figures and time signature. Tempo is indicated as beats

per minute (bpm), and establishes the velocity on which notes must be played, such that

♩= 60 indicates that the velocity is 60 quarter notes (or crochets) per minute.

Figure 3.3: Rhythm hierarchy.

Once the tempo is established, the rest of the note figures will have a relative duration as

shown in Figure 3.3.

3.2 Music representations 15

On the other hand, time signature acts as metric, dividing a stave into defined time units,

called bars. Time signature is represented at the beginning of the stave, with a fraction, the

denominator indicates the unit of measurement and the numerator the number of measures

on each bar. For example, time signature 4
4 means that each bar must have the equivalent

of 4 1
4 units (quarter notes), such as 1 whole note, 2 half notes, 4 quarter notes, etc.

Dynamics in music refers to the variation in loudness between notes or series of notes.

Dynamics are indicated by specific musical notation shown in Table 3.1. However, dy-

namic markings still require interpretation by the performer depending on the musical

context and the period in which the piece was composed.

Abbreviation Full word Definition
pp Pianissimo Very soft
p Piano Soft

mp Mezzo-piano Medium soft
mf Mezzo-forte Medium loud
f Forte Loud
ff Fortissimo Very loud

cresc. Crescendo Gradually Louder
dim. Diminuendo Gradually softer

Table 3.1: Music dynamics

The other component, timbre, is not specially relevant for the case at hand. This is the

property by which we differentiate one instrument from another.

3.2 Music representations

Music can be represented in a myriad of ways, from the most common music score shown

in Figure 3.4 to the less known pianoroll which is shown in Figure 3.5. This project fol-

lows the advice of Oore et al. [5] and uses the MIDI file standard, whose main advantage

apart from the ones described in [5] is the vast variety of datasets that can be found on

internet.

Figure 3.4: Music Score example

16 Background

Figure 3.5: Pianoroll example

3.2.1 MIDI file standard

Musical Instrument Digital Interface (MIDI) [6] is a specification designed to exchange

information between different electronic musical instruments, computers and various au-

dio recording, editing and playing devices. The information exchanged is not music per

se, but rather a series of events that specify the instructions for music, including (but not

limited to) note’s notation, pitch and velocity. It was originally designed for live perfor-

mances, but subsequent development has shown that MIDI is a great tool for recording

studios, audio and video production and, composition environments; and so, the MIDI

File Standard was created [7].

MIDI communication is done through MIDI messages, that are intended to be received

by only one of perhaps many available devices that can be connected together. The MIDI

channel provides an easy way to differentiate these devices. A message intended for the

device on channel one, for example, will have that MIDI channel number present in its

data. Only devices assigned to listen on channel one will respond to any messages with

this encoding. The current MIDI specification calls for 16 MIDI channels.

A MIDI message is made up of an eight-bit status byte which is generally followed by

one or two data bytes. There are a number of different types of MIDI messages. At the

highest level, MIDI messages are classified as being either Channel Messages or System

Messages. Channel messages are those which apply to a specific Channel, and the Chan-

nel number is included in the status byte for these messages. System messages are not

Channel specific, and no Channel number is indicated in their status bytes.

Channel Messages may be further classified as being either Channel Voice Messages,

or Mode Messages. Channel Voice Messages carry musical performance data, and these

messages comprise most of the traffic in a typical MIDI data stream. Channel Mode mes-

sages affect the way a receiving instrument will respond to the Channel Voice messages.

3.2 Music representations 17

MIDI System Messages are classified as being System Common Messages, System Real

Time Messages, or System Exclusive Messages. System Common messages are intended

for all receivers. System Real Time messages are used for synchronization between clock-

based MIDI components. System Exclusive messages include a Manufacturer’s Identifi-

cation (ID) code, and are used to transfer any number of data bytes in a format specified

by the referenced manufacturer.

MIDI files contain one or more MIDI Streams, with added time data for each MIDI event.

The most notable advantages of MIDI Files include small file size, ease of modification

and manipulation and a wide choice of compatible devices. A MIDI file contains MIDI

event messages and other descriptive information.

3.2.2 MIDI file structure

Figure 3.6: Basic structure of a MIDI file

MIDI files are made of two types of chunks, Header chunks and Track chunks. A MIDI

file always begins with a Header chunk, followed by one or more Track chunks.

3.2.2.1 Header chunk

The Header chunks provides some basic information regarding the entirety of the MIDI

file. Here is the syntax of the Header chunk:

18 Background

chunk_type length format ntrks division

• chunk_type: The ASCII word ’MThd’.

• length: 32-bit representation of the number 6 (high byte first).

• format:

0 = The file contains a single multi-channel track.

1 = The file contains one or more simultaneous tracks of a sequence.

2 = The file contains one or more sequentially independent single-track patterns.

• ntrks: Refers to the number of track chunks in the file.

• division: specifies the meaning of the time-marks. It has two formats, one for met-

rical time, and one for time-code-based time:

bit 15 bits 14 through 8 bits 7 through 0
0 ticks per quarter-note
1 negative frames per second ticks per frame

Table 3.2: Encoding of the two types of MIDI division

• If bit 15 is zero, the bits 14 through 0 represent the number of delta time "ticks"

which make up a quarter-note. For instance, if division is 96, then a time interval of

an eighth-note between two events in the file would be 48.

• If bit 15 is one, delta times in a file correspond to subdivisions of a second. Bits

14 through 8 contain one of the four values -24, -25, -29 or -30, representing the

number of frames per second in negative. The second byte is the resolution within

a frame.

An example header chunk for Sebastian Bach’s BMW 847 [8] could be:

MThd 6 1 10 480

or in its hexadecimal form:

4d546864 00000006 0001 000a 01e0

3.3 Machine Learning 19

3.2.2.2 Track chunk

The Track chunks are where the song data is actually stored. The Track chunk is simply

a stream of MIDI events, preceded by delta-time values. Here is the syntax of a Track

chunk:

chunk_type length MTrk_event

• chunk_type: The ASCII word ’MTrk’.

• length: 32-bit representation of the length in bytes for the Track chunk.

• MTrk_event: A MIDI event preceded by a delta-time value.

The syntax of the MTrk_event is very simple:

delta-time event

• delta-time represents the amount of time before the following event.

• event: the syntax of an event is as follows:

MIDI event | sysex event | meta-event

– MIDI event is any MIDI channel message.

– sysex event is used to specify a MIDI system exclusive message.

– meta-event specifies non-MIDI information useful to software dedicated to

creating MIDI files.

3.3 Machine Learning

Machine learning is a field of Computer Science and one of the primary fields of artificial

intelligence, whose goal is the development of techniques and mechanisms that provide a

system the ability to learn something without being explicitly programmed for it [9] [10].

20 Background

In this case "learning" refers to identifying complex patterns on large amounts of data.

This is, starting from a set of example cases (which we call "training dataset"), being

capable of recognizing the general patterns (and not the particular ones) that follow said

examples. We talk about general patterns, because the goal is to generalize this behaviour,

in such a way that the system can reproduce the results for cases included in those exam-

ples, as well as for new cases.

"Without being explicitly programmed for it" refers to the possibility of applying said

process in a multiple of different cases, without the need to change the algorithm. Instead

of programming an algorithm (explicitly) each time to reproduce an specific behaviour or

knowledge, the same algorithm can reproduce several behaviours depending on the data

on which it has been trained.

Machine learning algorithms can be grouped in two main classes, depending on the ob-

jective of the algorithm and the input data it manages [11]:

• Supervised learning: where a set of example data is provided together with a class,

category or expected result value, which we call label. This kind of algorithms try

to identify patters common to each of the classes, with the goal of generalizing this

knowledge into a rule or set of rules, that predict the labels of new data.

• Unsupervised learning: where data is not labeled. The algorithm tries to recognize

patterns common in all data entries to group them (which is known as clustering),

with the goal of identifying sets of data with similar characteristics, and then, label

the new data with the internal classes created by the algorithm.

There are a lot of different ways to approach these problems, both in supervised learning

as well as in unsupervised learning, such as decision trees, association rules, bayesian

networks... Within supervised learning we can group learning models into discriminative

and generative.

The discriminative models learn the direct conditional probability p(x|y) for data x and

label y (on probabilistic models), or a direct mapping of input x to label y (on non-

probabilistic models), that is, they learn to categorize, they model the dependency of

variable y according to variable x. On the other hand, generative models learn the joint

distribution p(x,y), that is, they model the way data is structured and distributed (and

therefore, the way they are generated), and can make predictions p(y|x) using Bayes’s

theorem.

3.4 Artificial Neural Networks and Activation Functions 21

P(A,B) = P(A|B) ·P(B) = P(B|A) ·P(A) (3.1)

Generally, the error curve of discriminative models presents a lesser asymptote than that

of generative models. However, the latter ones converge at a much faster rate. Therefore,

when the quantity of data is lowered, generative models give better results, and vice-versa

[12].

On this work, we are going to focus on artificial neural networks that, as we will see,

are very potent generative models that, among its multiple uses, are going to let us gen-

erate content (music in our case) thanks to their capability of learning data structure and

distribution, and to deep learning.

Deep Learning constitutes a specific area within Machine Learning. In the field of neural

networks, it is primarily distinguished by the inclusion of multiple layers of neurons that

add depth to the neural network. This, as will be seen later, allows the neural network

to learn characteristics at much higher levels of abstraction than with traditional neural

networks [13].

3.4 Artificial Neural Networks and Activation Functions

Artificial neural networks are network like structures composed by artificial neurons,

whose functioning is inspired in the animal brain [14]. Artificial neurons receive a set

of numerical inputs as a vector, mimic the behaviour of a neuron using mathematical

calculations that we call transfer function (usually a weighted sum), and apply an activa-

tion function to the result to return an output. The most popular activation functions are

the logistic function or sigmoid function (Equation 3.2), the hyperbolic tangent function

(Equation 3.3) and the Rectifier Linear Unit (ReLU) function (Equation 3.4).

σ(x) =
1

1+ e−x (3.2)

tanh(x) =
sinh(x)
cosh(x)

=
ex− e−x

ex + e−x =
e2x−1
e2x +1

=
1− e−2x

1+ e−2x (3.3)

22 Background

f (x) = max(0,x) (3.4)

The sigmoid function was the first to gain popularity as an activation function, due to

not being linear, having a bounded output in range (0,1) and low computational cost of

calculating its derivative (needed for the backpropagation algorithm used to train neural

networks). The hyperbolic tangent function succeeded the sigmoid, since being symmetric

(centered in zero), converges faster.

Both this functions have a very well known downside in common, the Vanishing gradient

problem. The functions map a very large domain of the function (−∞,∞) to an output

of range (0,1), where the majority of the inputs is centered at the proximities of the

asymptotes of the function. This leads to the fact that a large change in the input value is

reflected as a small variation on the output side, which translates to a small gradient.

With multiple linked layers the problem only gets worse, since the mapping of the (−∞,∞)

domain in the output range (0,1) is produced on the first layer, then mapped again in the

next layer and so on. Thus, a large change on the input will result on a tiny variation of the

output. Thereby, the gradient slowly disappears during backpropagation and the neurons

of the first layers do not learn.

This is why the ReLU function has gained popularity on recent years. It is a simple func-

tion to implement and derive 3, it has shown to be more robust to the problem of the van-

ishing gradient and, in consequence, allows to train networks much faster. On the other

hand, neurons that implement a ReLU activation function can reach a point on which the

transfer function always returns negative results (usually due to the bias), and the output

of the activation becomes 0, as well as its gradient, thereby the neuron stops learning and

its said to die. Thus, recently a new variation has appeared, named Leaky ReLU which

behaves better in this cases.

3.5 Recurrent Neural Networks

Classic neural networks take in a fixed size vector as input and generate an output. This,

limits their usage in situations that involve a series type input with no predetermined fixed

3Although not being differentiable at the point x = 0, 0 is taken as a derivative at that point.

3.5 Recurrent Neural Networks 23

size, such as in language translation, where translation is done for sentences of any length.

In this case, if we want to translate the sentence "The cat eats the mouse" into Spanish, we

would call the classic neural network five times, one for each word in the sentence; and

with this particular sentence it might turn out well, but languages have a lot of ambiguity

and to translate the majority of the words on a sentence, our neural network should know

which other words came before the current one.

Recurrent neural networks (RNN) introduce a short-time memory mechanism to accom-

plish this. As we can see in Figure 3.7 , RNNs have loops, allowing information to persist

form one iteration to another, this can be though of as calling the same neural network

repeatedly as in the example above, but this time, passing some information from call to

call. This passed information is called the internal state or hidden state.

Figure 3.7: Recurrent neural network 4

Due to its structure, recurrent neural networks are trained by means of Backpropagation

Though Time (BPTT) [15], which is nothing more than a normal backpropagation adapted

to fit recurrent neural networks. The major difference is that complete sequences are taken

as training samples; whence, if we take into account that the data generated depends on

previous data, to calculate the gradient of the error for a parameter in a certain moment,

we will need to compute the partial derivatives of the elements that precede that particular

data on the current iteration. Thereby, the number of derivatives increments and, if we

consider that the derivative of the sigmoid function return a value between 0 and 1
4 and

hyperbolic tangent returns a value between 0 and 1, the gradient may tend to 0 rapidly.

As a result, recurrent neural networks are specially hard to train, and can also suffer the

vanishing gradient problem. Nonetheless, the use of hyperbolic tangent activation func-

tions is very common.

This is due to the fact that, even if ReLU improves the problem of the vanishing gradi-

ent, there exists another problem that affects both functions, known as Exploding gradi-

4Figure taken from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

24 Background

ent problem, in which the weights of the first layers (or the first temporal elements, in

recurrent networks) reach very high values, making neurons unable to learn [16]. This

problem, which is specially characteristic of recurrent networks, gets much worse when

using ReLU, since its output is not bounded as in the case of the hyperbolic tangent and

sigmoid functions.

To solve these problems, Sepp Hochreiter and Jürgen Schmidhuber introduced in 1997 the

Long Short-Term Memory networks (LSTM) [17]. A type of recurrent network composed

from LSTM modules that implement gating mechanisms to give the network long-term

memory, and solve the gradient problems discussed.

Figure 3.8: Structure of LSTM networks 4

This long-term memory is implemented through the cell state of the LSTM module that

appears represented in Figure 3.9 by the upper horizontal line (C). This cell state is multi-

plied by the output of the first sigmoid (ft), which decides what data is erased. Then, it is

summed to the result of another two gates (sigmoid it and hyperbolic tangent C̃t) that add

new information to the cell state. This new state is passed to the next unit, and is used to

filter ot and produce the output ht .

Figure 3.9: LSTM cell 4

This is mathematically represented in Equation 3.5, ft being the information to forget

(forget gate), it the information to add input gate, C̃t the new memory content that goes

3.5 Recurrent Neural Networks 25

though it , Ct the memory cell and ot the output gate that controls the quantity of memory

that is exposed on output ht .

ft = σ(Wf · xt +U f ·ht−1 +b f)

it = σ(Wi · xt +Ui ·ht−1 +bi)

C̃t = tanh(Wc · xt +Uc ·ht−1 +bc)

Ct = ft ∗Ct−1 + it ∗C̃t

ot = σ(Wo · xt +Uo ·ht−1 +bo)

ht = ot ∗ tanh(Ct)

(3.5)

Later, in 2014, Cho et al. proposed a structure similar to LSTM called Gated Recurrent

Unit (GRU) [18].

Figure 3.10: GRU cell 4

GRU combines the input gate and forget gate into a single update gate. It also merges

the cell state and hidden state, and makes other smaller changes. The resulting model is

simpler than standard LSTM models, and has been growing increasingly popular.

zt = σ(Wz · xt +Uz ·ht−1)

rt = σ(Wr · xt +Ur ·hr−1)

h̃t = tanh(W · xt +U · (rt−1�ht−1))

ht = (1− zt)∗ht−1 + zt ∗ h̃t

(3.6)

In this case, there is no output gate, so all the content from the inner state is exposed.

26 Background

3.6 Attention and Transformers

Although LSTM-s solved a large amount of problems for the structure of recurrent neural

networks, they still suffer from the vanishing gradient problem; struggle learning long-

range dependencies, due to the length of paths that forward and backward signals must

traverse in the network; and are not easy to parallelize, due to the sequential nature of

their computation.

In order to reduce sequential computation and path lengths, several models where pro-

posed, such as ByteNet [19] and ConvS2S [20], all of which use convolutional neural

networks as basic building block, computing hidden representations in parallel for all in-

put and output positions. In these models, the number of operations required to relate

signals from two arbitrary input or output positions grows in the distance between posi-

tions, linearly for ConvS2S and logarithmically for ByteNet. This makes it more difficult

to learn dependencies between distant positions. In 2017, the Transformer model was pro-

posed [21], a neural network structure relying entirely on attention. This model reduces

the number of operations to a constant, albeit at the cost of reduced effective resolution

due to averaging attention-weighted position, this effect is counteracted with Multi-Head

Attention which will be discussed shortly.

Attention is a mechanism that lets the model learn and later focus on the parts of the input

that are important to the current task. An attention function can be described as mapping

a query and a set of key-value pairs to an output, where the query, keys, values, and output

are all vectors. The output is computed as a weighted sum of the values, where the weight

assigned to each value is computed by a compatibility function of the query with the

corresponding key.

The transformer model proposed in [21] has a particular type of attention they call Scaled

Dot-Product Attention. The input consists of queries and keys of dimension dk, and values

of dimension dv. A dot product of each query with all keys is made, then each result is

divided by
√

dk and finally, a softmax function is applied to obtain the weights on the

values. In practice, the attention function is computed on a set of queries simultaneously,

packed together into a matrix (Q). The keys and values are also packed together into

matrices (K and V). The formula for the whole process is shown in Equation 3.7.

5Image taken from [21]

3.6 Attention and Transformers 27

Figure 3.11: Scaled Dot-Product Attention 5

Attention(Q,K,V) = so f tmax
(

QKT
√

dk

)
V (3.7)

Multi-head attention allows the model to jointly attend to information from different rep-

resentation subspaces at different positions [21].

Figure 3.12: Multi-Head Attention 5

MultiHead(Q,K,V) =Concat(head1, ...,headh)W O

where headi = Attention(QW Q
i ,KW K

i ,VWV
i)

(3.8)

Where QW Q
i ∈Rdmodel×dk ,KW K

i ∈Rdmodel×dk ,VWV
i ∈Rdmodel×dv are parameter matrices of

h times linearly projected queries, keys and values.

The transformer uses multi-head attention in three different ways:

28 Background

• Encoder-decoder attention: which allows every position in the decoder to attend

over all positions in the input sequence.

• Encoder self-attention: which allows every position in the encoder to attend over all

position in the previous encoder layer.

• Decoder self-attention: which allows every position in the decoder to attend over

all position in the previous decoder layer.

Additionally, the transformer uses common Position-wise Feed-Forward Networks on

each of the layers of the encoder and decoder, and utilizes learned embeddings to convert

input tokens and output tokens into vectors. The complete structure of the Transformer is

shown in Figure 3.13.

Figure 3.13: Transformer model structure 5

3.7 One-Hot encoding and softmax activation function

The majority of learning models do not handle categorical variables (cat, dog, bird, mouse,...),

thereby, the categorical values are transformed into numerical ones (cat, 1; dog, 2; bird, 3;

mouse, 4). This implies a relation in the order of the variables, cat < dog < bird < mouse.

3.8 Quality metrics 29

As this relation does not initially exist, it is undesirable, so, usually it is transformed into

the One-Hot encoding.

The One-Hot encoding consists in representing a categorical variable in a binary vector.

This vector will have a length equal to the number of values the categorical variable can

have, such that each position corresponds to one of the values.

Cat Dog Bird Mouse
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Table 3.3: One-Hot encoding example

This is specially useful for the softmax activation function.

S(yi) =
eyi

Σ jeyi
(3.9)

The softmax function is a generalization of the logistic function that compresses a vector

with real values into a vector of the same dimension but whose values are in range [0,1].

Following with the previous example, if we have a neural network with 4 outputs (one for

each label), this function will transform the values of the vector into probabilities, so that,

the sum of all values of the resultant vector is 1. Therefore, is largely utilized in the last

layer of a neural network.

The One-Hot encoding is very adequate when using the softmax function, since it repre-

sents data in an equal manner, where the correct variable indicates 1 (100%) and the rest

0 (0%).

3.8 Quality metrics

Quality metrics let us evaluate the performance and results of learning models. While

training a neural network is complicated, for the case at hand, evaluation is specially

complex, since there is no canonical way of evaluating music quality.

This implies that, with the known metrics, the model whose metrics are better will not

necessarily produce better music, but said model will adjusts more to the distribution

30 Background

of data. Generally speaking, it is expected that the model that adjust better to the data

distribution, will produce better music, or at least, will produce music that is more similar

to the one used on training. But not necessarily, since music quality apart from being

highly subjective, is not directly reflected on metrics.

This also has a special relation with what the metrics represent, which could sometimes

be misleading if not correctly interpreted.

The error or loss discussed earlier, is commonly used to train models with backpropaga-

tion. It is a way of calculating the error made in the predictions, and correct the values.

There are many functions that are used as loss functions, such as, Mean Squared Error

(MSE), Mean Absolute Error(MAE), Hinge, CrossEntropy, etc.

It is important to clarify the difference between accuracy, precision and recall.

Considering a problem with two classes as an example, there are 4 parameters that can be

computed from the results:

• True Positive: Positively classified positive samples.

• False Positive: Positively classified negative samples.

• True Negative: Negatively classified negative samples.

• False Negative: Negatively classified positive samples.

This is expressed generally by means of a confusion matrix, where original classes are

disposed on an axis and predicted classes on the other axis, distributing the samples by its

original and predicted classes.

Predicted class: Yes Predicted class: No
Original Class: Yes True Positive False Negative
Original Class: No False Positive True Negative

Table 3.4: Confusion matrix

With these parameters, the accuracy is calculated as the correct responses divided by the

total number of responses. Precision is computed for each of the classes and corresponds

to the number of samples correctly classified in that class divided by the total number

of samples classified as that class. Recall is also computed for each class, corresponding

3.8 Quality metrics 31

to number of samples correctly classified in that class divided by the total samples that

originally belong to each class.

Accuracy =
T P+T N

T P+T N +FP+FN
(3.10)

Precision =
T P

T P+FP
(3.11)

Recall =
T P

T P+FN
(3.12)

This way, if our model classifies nearly all samples as negative, we will have a high preci-

sion (due to the lack of false positives), but that will not mean that our model is working

correctly, since recall will be very low due to the large amount of positives classified as

negatives (false negatives).

As a combination of precision and recall, we have the F-measure, that provides a balanced

value between those two:

F1 = 2 · 1
1

recall +
1

precision

= 2 · precision · recall
precision+ recall

(3.13)

On the other hand, it is very common to use the ROC curve, which is a graphic that

represents recall (True Positive Ratio or TPR) facing specifity (True Negative Ratio or

TNR), or facing the False Positive Ratio (FPR).

T NR =
T N

T N +FP
= 1−FPR (3.14)

FPR =
FP

T N +FP
= 1−T NR (3.15)

One of the most common quality metrics is to calculate the Area Under Curve (AUC),

being better the greater the area is.

CHAPTER 4

State of the art

Music generation is a part of a wider research area that applies machine learning to arts.

This includes painting classification [22], generation [23] and style transfer [24], music

classification [25] and style transfer [26] and many more.

In music generation, different approaches have been investigated such as statistical models

[27], genetic algorithms [28], generative adversarial networks [29], markov models [30]

and recurrent neural networks, to name a few.

One of the most influential projects on recent years about music generation is the work of

Oore et al. [5]. This is a research project by Google Brain and DeepMind that discusses the

differences between the problems of automatically creating music scores and interpreting

them, and proposes that, in fact, it is more valuable to work directly in the space of direct

performance generation, predicting not only notes but also their expressive timing and

dynamics. The authors provide results from an LSTM-based network that show great

performance compared to previous work. They also evaluate the quality of the model

with feedback from professional composers and musicians.

Another important and well known project on music generation is Magenta [31]. A project

from Google that offers a set of pre-trained models, and the possibility of training said

models with a dataset. Among its models we can find both WAV audio synthesis (based

on WaveNet, another Google project), and generation based on MIDI files. Several of

Magenta’s models apply language modeling for generation of music, such as:

33

34 State of the art

• Drums RNN [32]: Generates drum tracks with an LSTM. Uses event sequences to

represent data.

• Melody RNN [33]: Generates music melody using an LSTM. Uses One-Hot encod-

ing to represent data.

• Polyphony RNN [34]: Generates polyphonic music using an LSTM. Represents

data by key words. Inspired by BachBot [35].

• Performance RNN [36]: Generates polyphonic music using an LSTM. Very sim-

ilar to Polyphony RNN, but represents data as event sequences. Also inspired by

BachBot.

• Pianoroll RNN-NADE [37]: Generates polyphonic music using an LSTM in combi-

nation with Neural Autoregressive Distribution Estimator (NADE) [38]. Represents

data with pianoroll binary vectors.

• Music Transformer [39]: Generates polyphonic music using a Transformer network.

Represents data with One-Hot encoding.

Model Texture Representation Reference
Oore et al. LSTM-based polyphony MIDI - one-hot [5]
Drums RNN LSTM persussion only event sequences [32]
Melody RNN LSTM monophony one-hot [33]
Polyphony RNN LSTM polyphony key words [34]
Performance RNN LSTM polyphony event sequences [36]
Pianoroll RNN-NADE LSTM-NADE polyphony pianoroll binary vectors [37]
Music Transformer Transformer polyphony one-hot [39]

Table 4.1: Details of projects on music generation with language modeling approaches

All of them use an encoder-decoder structure called seq2seq. All of them acknowledge

that evaluating the results of a generative model, specially in an artistic area, is complex.

Thus, they provide this tools for artists and musicians.

There are also projects that generate audio manipulating raw audio data (WAV). Examples

of such projects are WaveNet [40] by Google, which uses convolutional neural networks,

both to generate music as well as to recognize and generate phonemes; or GRUV [41],

that uses a combination of LSTM and GRU.

35

In 2019, OpenAi [42] published a project named MuseNet [43], a deep neural network

that can generate 4-minute musical compositions with 10 different instruments, and can

combine styles from country to Mozart to the Beatles. It uses the same general-purpose

unsupervised technology as GPT-2 [44], a large-scale transformer model trained to predict

the next token in a sequence, whether audio or text.

These publications among others agree on the notable result of recurrent neural networks

such as LSTM and GRU, usually on seq2seq structures. Although since the publication

of ’Attention is all you need’[21], there have been an increasing amount of projects using

the transformer network [39][43] that have shown better results understanding long-term

structures than those of previously discussed models.

It is more popular to manipulate data in text or MIDI format than in raw WAV, since the

latter requires a more intensive training and a bigger computational cost.

When it comes to results, it is very common for these projects to present samples of the

generated audio, but only in a few cases is the system available for public use, and most

of the ones that do it, require technical knowledge, that not everybody has, to be able to

use them. They also present comparison of loss results as a way of justifying the chosen

model.

CHAPTER 5

Model Description

Chapter 3 contains a discussion on the most popular models used for music generation.

In this work, a modified version of one of the last models presented in said chapter will

be used, the Transformer. What drives the use of this model is the incredible results it has

achieved in tasks of music generation compared to previous RNN models.

5.1 Model architecture

As explained before, the transformer is a seq2seq model that uses an encoder-decoder

architecture implementing attention mechanisms.

The encoder is composed of a stack of 6 identical encoder layers. Each layer has two

sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple,

position-wise fully connected feed-forward network. There is also a residual connection

around each of the two sub-layers, followed by layer normalization. To facilitate these

residual connections, all sub-layers in the model, as well as the embedding layers, produce

dmodel = 512 dimensional outputs.

The decoder also includes 6 identical decoder layers, but in addition to the two sub-layers

of the encoder layers, the decoder layers insert a third sub-layer, which performs multi-

head attention over the output of the encoder stack. There is also a modification in the

self-attention sub-layer for it to not attend to subsequent positions, this masking ensures

37

38 Model Description

that the predictions from position i can depend only on the known outputs at positions

less that i. This architecture is shown in Figure 3.13.

The Transformer used in this project, is a variation proposed by Huang et al. in December

2018 [39]. The authors proposed a new decoder-wise transformer model that incorpo-

rates a relative attention mechanism and immediately achieved state-of-art performance

on music generation tasks.

This mechanism involves learning a separate relative position embedding Er of shape

(H,L,D); where H is the number of heads, and L and D the dimension (L×D) of Q,K

and V matrices from vanilla attention (Equation 3.7); this Er has an embedding for each

possible pairwise distance r = jk − iq between a query and key in position iq and jk
respectively. The embeddings are ordered from distance −L + 1 to 0, and are learned

separately for each attention head. This relative embeddings interact with queries and give

rise to Srel , an L×L dimensional logits matrix which modulates the attention probabilities

for each head as:

RelativeAttention = So f tmax
(

QKT +Srel
√

Dk

)
V (5.1)

This variant of relative attention was originally proposed by Shaw et al. [45] by instantiat-

ing an intermediate tensor R of shape (L,L,D) for each head, containing embeddings that

corresponded to the relative distances between all keys and queries. Q was then reshaped

to an (L,1,D) tensor, and Srel = QRT , but this incurs an space complexity of O(L2D), re-

stricting its application to long sequences. However, Huang et al., observed that all of the

terms needed for QRT are already available if Q and Er are multiplied. After computing

QErT , its (iq,r) entries contain the dot product of query in position iq with embedding of

relative distance r. Even so, each relative logit (iq, jk) in the matrix Srel from Equation

5.1 should be the dot product of the query in position iq and the embedding of relative

distance jk− iq, to match up with the indexing in QKT . Therefore, Huang et al., proposed

the following skewing procedure, to move the relative logits to their correct positions.

5.1.1 Skewing procedure

The goal of this procedure is to transform an absolute-by-relative (iq,r) indexed matrix

into an absolute-by-absolute (iq, jk) indexed matrix. The row indices stay the same while

5.1 Model architecture 39

the column indices are shifted according to the following equation: jk = r− (l−1)+ iq.

The whole process is illustrated in 5.1. Its outline is the following:

1. Pad a dummy column vector of length L before the leftmost column.

2. Reshape the matrix to have shape (L+1,L).

3. Slice that matrix to retain only the last l rows and al columns, resulting in a (L,L)

matrix again, but now absolute-by-absolute indexed, which is the Srel needed.

Figure 5.1: Relative global attention: Top row describes original version. Bottom row shows skew-
ing process. Gray indicates masked or padded positions. Each color corresponds to a different
relative distance 6

5.1.2 Complexity of the model

On of the most popular ways to compare and measure the complexity of a model is looking

at its trainable parameters, the more parameters a model has to train, the more complex it

is.

As an example, the now very famous GPT model [46] from OpenAI [42] has around 117

million parameters and its second iteration, GPT-2 [44], around 1,500 million parameters.

These, of course, are big-scale models, and such large quantities of parameters are out of

the scope of this project.

The model in this work contains nearly 3 million trainable parameters, most of which are

from the Relative Global Attention layers of the model. The detailed parameter numbers

6Image taken from [39]

40 Model Description

are shown in Table 5.1. Parameters for only one Decoder Stack are shown, since all six of

the have the same amount of parameters.

Layer (type) Parameter Number

Embedding 99840
Dynamic Position Embedding 0
Dropout 0
Decoder Stack (x6) 460,672 (x6)

Relative Global Attention 394240
Dense Layer 1 32896
Dense Layer 2 33024
Layer Normalization 1 512
Layer Normalization 2 512
Attention Dropout 1 0
Attention Dropout 2 0

Output Layer 100487
Sparse Categorical Accuracy 2

Total parameters 2,967,433
Trainable parameters 2,967,431
Non-trainable parameters 2

Table 5.1: Model complexity by means of parameters

CHAPTER 6

Experiments

As discussed in Chapter 1, evaluating the performance of a neural network model in the

field of music generation is a very complex task. To do so, a variety of experiments have

been designed and conducted.

The objective of this work is not so much to create a model capable of generating perfect

musical compositions, but rather to create a model that can generate musical compositions

capable of making a human believe that they those musical pieces have been done by

another human. Human brains have a tendency to be prone to overlooking certain small

errors in a piece of art when evaluating its beauty. Thus, the experiments of this work

will not only evaluate objective data and rules such as harmony, but also, and even more,

will take into account the subjectivity of human musical taste and the concept of musical

beauty.

This Chapter will be divided in three main sections: first the datasets used for the training

of the model will be examined and compared and the preprocessing done to them will be

described, then, the experimental framework will be discussed and the experiments will

be presented, and finally, the results of said experiments will be reviewed and explained.

41

42 Experiments

6.1 Dataset description

For the development of this project two datasets will be used, firstly the very well known

MAESTRO dataset (V2.0.0), provided by Magenta in collaboration with the International

Piano-e-Competition, contains a 1282 virtuous piano performances, with over a total of

over 200 hours, all of it on the MIDI file format. The repertoire is mostly classical music,

including composers from the 17th to early 20th century. The second database, Classic-

Piano is taken from the www.piano-midi.de web-page, an archive with 329 classical

pieces developed at a digital piano by means of a sequencer on MIDI base.

The MAESTRO dataset contains compositions from over 40 different authors, the major-

ity of them being from the romantic period, with some baroque and classic period pieces

as well. Table 6.1 and Figures 6.1 and 6.2 show the data in more detail.

Figure 6.1: Composer chart of the MAESTRO dataset

The Classic-Piano dataset contains compositions from 25 known authors and 5 more well

known compositions from unknown authors, this dataset also contains a majority of pieces

from the romantic period with some classic ones and very few from the baroque period.

More detail can be seen in Table 6.1 and Figures 6.3 and 6.4.

www.piano-midi.de

6.1 Dataset description 43

Figure 6.2: Period chart of the MAESTRO dataset

Figure 6.3: Composer chart of the Classic-Piano dataset

Figure 6.4: Period chart of the Classic-Piano dataset

44 Experiments

Dataset Authors Baroque Classicism Romanticism Total

MAESTRO 42 185 235 862 1282

Classic-Piano 25+ 3 88 238 329

Table 6.1: Dataset detail comparison

One thing to note about the difference between both datasets is that the MAESTRO dataset

is comprised of virtuous interpretations of the original pieces, while the classic-piano

dataset is just the pieces as they were written by their original composers. This implies

that, due to the added layer of complexity from the stylistic choices of interpreters, the

model could have a harder time generalizing patterns on that dataset, and could lead to

the posterior generated pieces mixing certain incompatible stylistic choices and, therefore,

being less appealing for human listeners.

6.1.1 Data augmentation

As shown above, the Classic-Piano dataset only contains 329 compositions as opposed to

the 1282 of the MAESTRO dataset, so in order to equate both datasets, a data augmen-

tation process has been conducted on the Classic-Piano dataset. Following the industry-

standard for data augmentation on music [5][39], the process was done by transposing the

pieces, that is, increasing the pitch of each note on the composition. This was done three

times, increasing one semitone each time, and only in the training set, resulting in 789

new pieces for a total of 1118. That way, the two datasets are much closer to one another,

as shown in Table 6.2.

Dataset Authors Baroque Classicism Romanticism Total

MAESTRO 42 185 235 862 1282
Classic-Piano 25+ 9 301 808 1118

Table 6.2: Dataset detail comparison after data augmentation

6.1.2 Preprocessing

This project uses a One-Hot encoding based on the one proposed by Oore et al. [5].That

is, a MIDI excerpt is represented as a sequence of events from the following vocabulary

6.2 Experimental framework 45

of 388 different events:

• 128 NOTE-ON events: one for each of the 128 MIDI pitches. Each one starts a new

note.

• 128 NOTE-OFF events: one for each of the 128 MIDI pitches. Each one releases a

note.

• 100 TIME-SHIFT events: each one moves the time step forward by increments of

10 ms, from 10ms up to 1 second.

• 32 VELOCITY events: each one changes the velocity applied to all subsequent

notes (until next velocity event).

The preprocessing is done as follows, first, the input MIDI files are preprocessed to extend

note durations based on sustain pedal control events. The sustain pedal is a pedal on the

piano that when pressed, "sustains" all the damped strings on the piano by moving all

the dampers away from the strings and allowing them to vibrate freely; all notes played

will continue to sound until the vibration naturally ceases, or until the pedal is released,

in other words, it lengthens notes that are already playing. In the MIDI Standard, the

sustain pedal is considered to be down whenever a sustain control change is encountered

with a value >= 64; the sustain pedal is then considered up after a control change with

a value < 64. Within a period where the sustain pedal is down, the duration of each note

is extended to either the beginning of the next note of the same pitch or the end of the

sustain period, whichever happens first. If the original duration extends beyond the time

when the sustain pedal is down, that original duration is used instead.

Next, the MIDI note events are converted into a sequence of the previously discussed

vocabulary. Finally, these sequences are stored as a binary stream to later be used by the

model. This is done by means of the Pickle python module.

6.2 Experimental framework

In order to respond to the objectives of this project, the following experiments have been

designed:

46 Experiments

• Training and validation of the model with the Classic-Piano dataset.

• Training and validation of the model with the MAESTRO dataset.

• Training and validation of the model with both previous datasets.

• Evaluation of the best perceived model with human subjects.

6.2.1 Training experiments

Training with the Classic-Piano dataset is done to validate the capabilities of the model in

music generation tasks, while training with the MAESTRO dataset is done to assess the

performance of the model with the layer of complexity added by the interpretation of the

pieces. Since the performance of the model with the MAESTRO dataset is expected to be

lower, due to the stylistic choices of interpreters, training with both datasets is conducted

to check if the model is capable of generating musical compositions with minor stylistic

choices while retaining the performance obtained with the Classic-Piano dataset.

6.2.2 Experiments with human subjects

The experiment with human subjects will be done based on the model that presents better

overall performance, to evaluate the appeal of the compositions generated. It will consist

on rating the probability, on a scale of 1 to 5, in which a heard fragment of a piece is from

a professional human composition; 1 being composed by a machine or a non professional

human and 5 being composed by a professional artist. The fragments will be of about 10

seconds length, and there will be 5 human compositions from the datasets and 5 compo-

sitions generated by one of the models. Table 6.3 shows which real human pieces were

used on this experiment.

Name of the piece Compositor

Images, Book II: III. Poissons d’or Claude Debussy
Suite Bergamasque: II and III Claude Debussy
Sonata no. 5, Op 53 Alexander Scriabin
Fairy Tales Op. 51 No. 1, 2 and No. 3 Nikolai Medtner
Images Book 1, L 110 Claude Debussy

Table 6.3: Human composed pieces used in the experiment with human subjects

6.2 Experimental framework 47

6.2.3 Experiment setup

Implementation and setup of all the experiments, excluding the one with humans, will

been done in the Python [47] programming language in a jupyter-notebook [48] style

environment on the Google Colaboratory [49] platform. The implementation is done with

TensorFlow 2.0 [50] library as a back-end for the neural network and result analysis, for

the managing of data the pretty_midi [51] library was used to manipulate MIDI files and

the Pickle library to store the processed MIDI as binary streams. The hardware provided

by Google Colaboratory includes an NVIDIA Tesla K80, a single core hyper threaded

Intel Xeon CPU @2.3Ghz (1 core, 2 threads), 13GB of RAM memory and 34GB of

storage space. The most useful of this resources has, obviously, been the GPU, since it

allowed for a much faster training process.

6.2.4 Training parameters

The three training experiments where done under the same conditions, with a data parti-

tion of 80% training 20% evaluation and a micro-batch size of 2, since a larger batch size

always resulted in an Out Of Memory (OOM) error from Google Colaboratory. This im-

plies that there were 641 iterations per epoch while training with MAESTRO dataset, 658

with the Classic-Piano dataset and 1299 with the joint dataset. Regarding epochs, initially,

all models were to be trained up to 50 epochs, but, as we will discuss later, results of the

first two training experiments led to the conclusion that around 25 epochs were enough to

train the model and more epochs resulted only in the possibility of overfitting.

The Adam optimizer was used with β1 = 0.9, β2 = 0.98 and ε = 10−9. Learning rate was

varied over the course of the trainings, according to Equation 6.1.

lrate = d−0.5
model ·min(step_num−0.5,step_num ·warmup_steps−1.5) (6.1)

This custom learning rate schedule increases linearly for the first warmup_steps training

steps, and decreases thereafter proportionally to the inverse square root of the step number.

The used value was warmup_steps = 4000.

Dropout was applied to the output of each sub-layer of the model and to the sums of the

embeddings and positional encodings. A rate of Pdropout = 0.1 was used.

48 Experiments

6.3 Results

This section sums up the results obtained in all the experiments discussed above.

6.3.1 Classic-Piano model

During the 7 hour training process, the model achieved a loss value of around 1 and an

accuracy of around 66% both in the train and evaluation sets. Figures 6.5 and 6.6 show

how these values changed during the process, and how they converge at around 20 epochs

into the training.

The results were considered very good since other works on this matter usually achieve a

loss of around 1.5−2 and an accuracy of around 35%−40%. These extraordinary results

are probably due to the dataset being an augmented version of a very small one (329

pieces only), as well as not having any stylistic choices from interpreters, which eases the

learning of generalized patterns.

Figure 6.5: Accuracy of the Classic-Piano model

Although objective data results are very good, perceived quality of the music generated

is sometimes lackluster; the model has a tendency to repeat the same note or group of

notes ad infinitum, making the resultant piece not appealing after a couple of seconds

of repetition. Although unpleasant, this effect has a very logical root if thought about it

properly; music has a lot of repetition, there are a lot of pieces were the same note or

group of notes are repeated, but always in small periods of time, not to be unappealing;

6.3 Results 49

Figure 6.6: Loss of the Classic-Piano model

this could have led to the model giving note in time t more probability to appear again in

time t + 1 than any other note, which, in turn, led to infinite repetition. Apart from this

problem, generated pieces that did not suffer from it were beautiful and very pleasant to

listen.

6.3.2 MAESTRO model

This experiment grounded the objective data results with a loss value of around 2 and an

accuracy of around 38% in both train and evaluation sets. This training process, which

also lasted for 7 hours, converged at around 25 epochs, after which the improvement on

both loss and accuracy was little, as shown in Figures 6.7 and 6.8.

As for the perceived results, overall this model’s generated music suffers less from the

repetition problem; this is due to the fact that, even if the music on this dataset also has

repetitions, this dataset is virtuously interpreted by musicians, and there is a consensus

that all repetitions must be different, that is, with dynamics or articulation; since these

differences are encoded in MIDI, the model perceives them as different notes, and there-

fore does not get stuck on repetitions as much as the experiment above. However, this

virtuous interpretation creates another issue; as the model is not able to generalize style

of interpretation as mush as patterns in music, the generated pieces often show a wild va-

riety of stylistic choices that would not make sense in a human interpretation. This leads

to the generated music sometimes sounding odd and unsettling, and therefore, of worse

perceived quality.

50 Experiments

Figure 6.7: Accuracy of the MAESTRO model

Figure 6.8: Loss of the MAESTRO model

6.3.3 Joint model

This last model was trained with 25 epochs as discussed above, since the first model

converged at around 20 and the second at around 25. The results are a bit of a mixture

between both previous training processes, which was expected, due to this model training

on both datasets.

Accuracy reached a value of 50% in both train and evaluation sets and the loss value

stayed at around 1.5 in the case of the train set and around 2 in the case of the evaluation

set. Figures 6.9 and 6.10 show more detail, as well as the convergence of both values at

around 15-18 epochs.

6.3 Results 51

Figure 6.9: Accuracy of the Joint model

Figure 6.10: Loss of the Joint model

Note that this is the only experiment in which the loss value from the training set and

the one from the evaluation set had a notable difference, this could be a side-effect of the

training set having more samples of one of the dataset than the other, and the evaluation

set having more samples of the other dataset.

The generated music is a meeting point of the two previous experiments. It suffers less

than the first experiment from the repetition problem while not mixing too many stylis-

tic choices at once. The overall generated music is beautiful to hear and presents music

patterns as expected, which confirms that attention mechanisms are working properly.

52 Experiments

6.3.4 Human evaluation

The model used for the human evaluation experiments is the model of the last training

experiment, that is, the one trained in both datasets. This model achieved the best results

from a human listening point of view, so it was the most fitting for this experiment. The

experiment was done with a small set of 20 people, with different age ranges and knowl-

edge about music.

The results were quite uplifting as most subjects found it difficult to differentiate between

the fragments generated by the model and the ones from the dataset. The distribution of

votes was quite similar for both as shown in Figure 6.11, with an average score of 3.08 for

real compositions and 3 for generated ones. This shows how the model achieved its goal of

generating realistic music that humans could not differentiate from musical compositions

from human artists.

Figure 6.11: Distribution of votes on the human experiment

One thing to note is that while most subjects did not find errors in the fragments presented

on the experiment, those with musical training and knowledge found that in some of the

generated fragments there were conflicting dynamics like one-note crescendos or one-note

decrescendos as well as sudden unusual changes from piano to forte and vice versa. These

conflicting dynamics are one of the issues discussed above concerning the odd mixture of

6.3 Results 53

stylistic choices that, although less than in the MAESTRO model, are still present in the

Joint model.

CHAPTER 7

Web-app development

To complete this work and provide a way of testing the model without the needs of tech-

nical knowledge, a graphical user interface was developed as a web-app using the Flask

[2] framework.

The interface was developed using HTML5, CSS3, Javascript, the JQuery and Bootstrap

libraries and the MIDI.js library [52] to play MIDI files. The Flask framework was used

to connect the client-side of the web-app with the server-side in order to utilize the model.

The web-app presents the user with the possibility of introducing a small fragment of mu-

sic via a score editor and generating music based on the introduced input. When clicking

the generate button, a loading page will appear while the model is generating the music,

as illustrated in Figure 7.3. Finally, when the model finishes, the user will be presented

with the options to play (and pause or stop) and download the MIDI file generated, this

can be seen in Figures 7.4, 7.5 and 7.6. The score editor is done completely from scratch

while the MIDI player is from the MIDI.js library.

As shown in Figures 7.1 and 7.2, the score editor presents the possibility to introduce

several types of notes and to add accidentals on each one.

55

56 Web-app development

Figure 7.1: Empty main page of the web-app, the score editor

Figure 7.2: Score editor with some notes added to it

57

Figure 7.3: Loading page of the web-app

Figure 7.4: Web-app options for the generated music

58 Web-app development

Figure 7.5: Web-app playing the generated piece

Figure 7.6: Web-app prompt to download the generated MIDI file

CHAPTER 8

Conclusions

As mentioned in the introduction, the main objective of this project was to build a deep

neural network model to generate compositions and interpretations of original pieces of

music and to provide a way to use it that required no technical knowledge about Computer

Science. The first half of the goal was achieved on each of the three training experiments

done, to a greater or lesser extent. The second objective was achieved through the devel-

opment of the web-interface app which uses the result of what is considered the best of

the three training experiments.

To improve the obtained results and further develop this project, not having to depend on

the hardware limitations of platforms like Google Colaboratory would be recommended,

since these limitations affected some of the training parameters, most notably the batch

size, that could not be increased due to memory limitations.

Additionally, a larger dataset of music interpretations could help the model generalize the

stylistic choices and improve the quality of the generated music.

Finally, a larger, more complex model like GPT-2 could outperform the one on this work,

as already shown in [43], thereby, it is a direction worth to be explored.

However, all the results obtained were better than expected, since the models are overall

capable of deceiving humans to think the generated music was composed by professional

composers; thus, it is fair to say that all experiments and both objectives were successful.

Likewise, this work has fostered the development of certain skills necessary to fulfill the

59

60 Conclusions

project, such as, a substantial knowledge of machine learning and deep learning, focused

on natural language processing models, particularly on the transformer network; a deep

understanding on musical representations in digital format and especially on MIDI format

and its structure; an introduction to web-app development with python using the Flask

micro-framework; and of course, a continued development of project management and

monitoring skills.

Bibliography

[1] R. Da Rios, [Elementa harmonica]; Aristoxeni Elementa harmonica. Officina Poly-

graphicae, 1954.

[2] A. Ronacher, “Flask (a python microframework),” https: // flask.

palletsprojects. com (Accesed: May 2020), vol. 38, 2010.

[3] J.-J. Nattiez, Music and discourse: Toward a semiology of music. Princeton Univer-

sity Press, 1990.

[4] C. Wen-Chung, “Varèse: A sketch of the man and his music,” Musical Quarterly,

pp. 151–170, 1966.

[5] S. Oore, I. Simon, S. Dieleman, D. Eck, and K. Simonyan, “This time with feel-

ing: Learning expressive musical performance,” Neural Computing and Applica-

tions, pp. 1–13, 2018.

[6] I. M. Association et al., “Midi musical instrument digital interface specification 1.0,”

Los Angeles, 1983.

[7] I. M. Association et al., “Standard midi-file format spec. 1.1,” Los Angeles: The

International MIDI Association, 1990.

[8] J. S. Bach, “Prelude and fugue in c minor,” in The Well-Tempered Clavier, BMW

847, 1722.

[9] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM

Journal of research and development, vol. 3, no. 3, pp. 210–229, 1959.

[10] C. M. Bishop, Pattern Recognition and Machine Learning, vol. 4. Springer New

York, 2006.

61

https://flask.palletsprojects.com
https://flask.palletsprojects.com

62 BIBLIOGRAPHY

[11] F. Provost and R. Kohavi, “Glossary of terms,” Journal of Machine Learning,

vol. 30, no. 2-3, pp. 271–274, 1998.

[12] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers: A com-

parison of logistic regression and naive Bayes,” in Advances in Neural Information

Processing Systems, pp. 841–848, 2002.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[14] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,

vol. 61, pp. 85–117, 2015.

[15] J. Guo, “Backpropagation through time,” Unpubl. ms., Harbin Institute of Technol-

ogy, vol. 40, 2013.

[16] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural

networks,” in International Conference on Machine Learning, pp. 1310–1318, 2013.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[18] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the proper-

ties of neural machine translation: Encoder-decoder approaches,” arXiv preprint

arXiv:1409.1259, 2014.

[19] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. v. d. Oord, A. Graves, and

K. Kavukcuoglu, “Neural machine translation in linear time,” arXiv preprint

arXiv:1610.10099, 2016.

[20] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional

sequence to sequence learning,” in Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pp. 1243–1252, JMLR. org, 2017.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information

Processing Systems, pp. 5998–6008, 2017.

BIBLIOGRAPHY 63

[22] A. Lecoutre, B. Negrevergne, and F. Yger, “Recognizing art style automatically in

painting with deep learning,” in Asian conference on machine learning, pp. 327–342,

2017.

[23] Y.-w. Guo, J.-h. Yu, X.-d. Xu, J. Wang, and Q.-s. Peng, “Example based painting

generation,” Journal of Zhejiang University-Science A, vol. 7, no. 7, pp. 1152–1159,

2006.

[24] A. Selim, M. Elgharib, and L. Doyle, “Painting style transfer for head portraits us-

ing convolutional neural networks,” ACM Transactions on Graphics (ToG), vol. 35,

no. 4, pp. 1–18, 2016.

[25] T. Li, M. Ogihara, and Q. Li, “A comparative study on content-based music genre

classification,” in Proceedings of the 26th annual international ACM SIGIR confer-

ence on Research and development in information retrieval, pp. 282–289, 2003.

[26] G. Brunner, Y. Wang, R. Wattenhofer, and S. Zhao, “Symbolic music genre transfer

with cyclegan,” in 2018 IEEE 30th International Conference on Tools with Artificial

Intelligence (ICTAI), pp. 786–793, IEEE, 2018.

[27] D. Conklin, “Music generation from statistical models,” in Proceedings of the AISB

2003 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences,

pp. 30–35, 2003.

[28] B. Johanson and R. Poli, GP-music: An interactive genetic programming system for

music generation with automated fitness raters. University of Birmingham, Cogni-

tive Science Research Centre, 1998.

[29] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang, “MuseGAN: Multi-track

sequential generative adversarial networks for symbolic music generation and ac-

companiment,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[30] A. Van Der Merwe and W. Schulze, “Music generation with Markov models,” IEEE

MultiMedia, vol. 18, no. 3, pp. 78–85, 2010.

[31] Google Brain Team, “Magenta.” https://github.com/tensorflow/magenta.

Accessed: May 2020.

[32] Google Brain Team, “Drums RNN.” https://github.com/tensorflow/

magenta/tree/master/magenta/models/drums_rnn. Accessed: May 2020.

https://github.com/tensorflow/magenta
https://github.com/tensorflow/magenta/tree/master/magenta/models/drums_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/drums_rnn

64 BIBLIOGRAPHY

[33] Google Brain Team, “Melody RNN.” https://github.com/tensorflow/

magenta/tree/master/magenta/models/melody_rnn. Accessed: May 2020.

[34] Google Brain Team, “Polyphony RNN.” https://github.com/tensorflow/

magenta/tree/master/magenta/models/polyphony_rnn. Accessed: May

2020.

[35] F. Liang, “Bachbot: Automatic composition in the style of bach chorales,” University

of Cambridge, vol. 8, pp. 19–48, 2016.

[36] Google Brain Team, “Performance RNN.” https://github.com/tensorflow/

magenta/tree/master/magenta/models/performance_rnn. Accessed: May

2020.

[37] Google Brain Team, “Pianoroll RNN-NADE.” https://github.com/

tensorflow/magenta/tree/master/magenta/models/pianorroll_rnn_

nade. Accessed: May 2020.

[38] M. Abboud, B. Németh, and J. Guillemin, “Modeling temporal dependencies in

high-dimensional sequences: Application to polyphonic music generation and tran-

scription,” Chem. Eur. J, vol. 18, no. 13, pp. 3981–3991, 2012.

[39] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, I. Simon, C. Hawthorne,

A. M. Dai, M. D. Hoffman, M. Dinculescu, and D. Eck, “Music transformer,” arXiv

preprint arXiv:1809.04281, 2018.

[40] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-

brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw

audio,” arXiv preprint arXiv:1609.03499, 2016.

[41] A. Nayebi and M. Vitelli, “Gruv: Algorithmic music generation using recurrent neu-

ral networks,” Course CS224D: Deep Learning for Natural Language Processing

(Stanford), 2015.

[42] “Openai.” https://openai.com. Accessed: May 2020.

[43] C. Payne, “Musenet, 2019,” URL https://openai. com/blog/musenet, 2019.

[44] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language

models are unsupervised multitask learners,” OpenAI Blog, vol. 1, no. 8, p. 9, 2019.

https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/polyphony_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/polyphony_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/performance_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/performance_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/pianorroll_rnn_nade
https://github.com/tensorflow/magenta/tree/master/magenta/models/pianorroll_rnn_nade
https://github.com/tensorflow/magenta/tree/master/magenta/models/pianorroll_rnn_nade
https://openai.com

BIBLIOGRAPHY 65

[45] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative position repre-

sentations,” arXiv preprint arXiv:1803.02155, 2018.

[46] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving lan-

guage understanding by generative pre-training,” URL https://s3-us-west-2. ama-

zonaws. com/openai-assets/researchcovers/languageunsupervised/language under-

standing paper. pdf, 2018.

[47] G. Van Rossum et al., “Python programming language.,” in USENIX Annual Tech-

nical Conference, vol. 41, p. 36, 2007.

[48] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic,

K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al., “Jupyter notebooks-a publishing

format for reproducible computational workflows.,” in ELPUB, pp. 87–90, 2016.

[49] E. Bisong, “Google colaboratory,” in Building Machine Learning and Deep Learn-

ing Models on Google Cloud Platform, pp. 59–64, Springer, 2019.

[50] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learn-

ing,” in 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), pp. 265–283, 2016.

[51] C. Raffel and D. P. Ellis, “Intuitive analysis, creation and manipulation of midi data

with pretty midi,” in 15th International Society for Music Information Retrieval

Conference Late Breaking and Demo Papers, pp. 84–93, 2014.

[52] M. Deal, “Midi. js-sequencing in javascript,” 2015.

	Abstract
	Contents
	List of Figures
	Table index
	Introduction
	Objectives of this work

	Project Management
	Planning
	Work breakdown structure
	Deliverables
	Deadlines
	Gantt chart
	Time estimation
	Risk management

	Monitoring

	Background
	Music
	Music representations
	MIDI file standard
	MIDI file structure

	Machine Learning
	Artificial Neural Networks and Activation Functions
	Recurrent Neural Networks
	Attention and Transformers
	One-Hot encoding and softmax activation function
	Quality metrics

	State of the art
	Model Description
	Model architecture
	Skewing procedure
	Complexity of the model

	Experiments
	Dataset description
	Data augmentation
	Preprocessing

	Experimental framework
	Training experiments
	Experiments with human subjects
	Experiment setup
	Training parameters

	Results
	Classic-Piano model
	MAESTRO model
	Joint model
	Human evaluation

	Web-app development
	Conclusions
	Bibliography

