. mathematics ﬁw\o\w

Article

Advances in Tracking Control for

Piezoelectric Actuators Using Fuzzy

Logic and Hammerstein-Wiener Compensation

Cristian Napole L*[ Oscar Barambones 1*©, Isidro Calvo 1(, Mohamed Derbeli 10,
Mohammed Yousri Silaa 1% and Javier Velasco 2

1 System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz,

Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; isidro.calvo@ehu.eus (I.C.);
derbelimohamed1@gmail.com (M.D.); silaa.mohammed.yousri@gmail.com (M.Y.S.)

Fundacién Centro de Tecnologias Aeronduticas (CTA), Juan de la Cierva 1, 01510 Mifiano, Spain;
javier.velasco@cta.aero

Correspondence: cristianmario.napole@ehu.eus (C.N.); oscar.barambones@ehu.eus (O.B.)

Received: 23 October 2020; Accepted: 17 November 2020; Published: 20 November 2020 E‘P;)e;;tfgsr

Abstract: Piezoelectric actuators (PEA) are devices that are used for nano- microdisplacement due
to their high precision, but one of the major issues is the non-linearity phenomena caused by the
hysteresis effect, which diminishes the positioning performance. This study presents a novel control
structure in order to reduce the hysteresis effect and increase the PEA performance by using a fuzzy
logic control (FLC) combined with a Hammerstein-Wiener (HW) black-box mapping as a feedforward
(FF) compensation. In this research, a proportional-integral-derivative (PID) was contrasted with
an FLC. From this comparison, the most accurate was taken and tested with a complex structure
with HW-FF to verify the accuracy with the increment of complexity. All of the structures were
implemented in a dSpace platform to control a commercial Thorlabs PEA. The tests have shown that
an FLC combined with HW was the most accurate, since the FF compensate the hysteresis and the
FLC reduced the errors; the integral of the absolute error (IAE), the root-mean-square error (RMSE),
and relative root-mean-square-error (RRMSE) for this case were reduced by several magnitude
orders when compared to the feedback structures. As a conclusion, a complex structure with a novel
combination of FLC and HW-FF provided an increment in the accuracy for a high-precision PEA.

Keywords: hysteresis; control systems; feed-forward; piezoelectric; actuators

1. Introduction

Smart materials, like piezoelectric, are widely used in systems where nano- microdisplacement
and precision are required [1,2]. Piezoelectric actuators (PEAs) are derived from this technology,
where not only can they provide high-precision at small displacements, but also support high forces
in comparison to their size [3]; these properties are advantageous due to the downsizing needed for
actuators nowadays [4]. PEAs are also designed and produced in different degrees of freedom (DOF),
which depend on the required application [5]; a vast number of uses for these actuators, such as
computer components [6], machine tools [7], energy recovery [8], and micro-drones [9], are available.
Furthermore, PEAs are also used in medicine, where precision is extremely important for purposes as
cell puncture [10], drug delivery systems [11], and needle positioning for complex injections [12].

Nonetheless, the demeanour of PEA contains non-linearities. like vibration dynamics, creep,
and hysteresis, which yields undesirable operation [13]. Vibration dynamics are caused by the input
voltage excitation that operates the equivalent mechanical system, although this should be considered
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when the input frequency reaches the resonance of the PEA [14]. Creep represents an effect that is
produced by the polarization that remains in time during the actuation in a quasi-static situation [15].
The hysteresis is provoked by the non-linear piezoelectric effect in combination with the mechanical
action and electric field [16].

The hysteresis has not only has been studied in electromagnetic materials [17], but also in PEAs
positioning due to adverse causes in the accuracy and margins of stability [18]; usually, the error inaccuracy
can be up to 22% in an open-loop configuration [19]. The microscopic origin and theory of hysteresis in
PEAs are complex, although an explanation in [20] shows that this feature is associated to the irreversible
restoration of the unit cells when the electric field is reduced; on the other hand, ref. [16] encompass the
theory with the movement of the domain walls. Certainly, for these reasons, the hysteresis not only
depends on the presently applied input, but also in the previous input schedule [21]. Despite the natural
origin of hysteresis, where elimination is inconceivable, it can be diminished while using a suitable control
strategy in order to achieve an ultra-precision in the guidance.

The decline of hysteresis can be done via an advanced control strategy. Feedforward (FF)
compensation aims to map the non-linearity of the device in order to compensate for the phenomena;
it has been demonstrated that when the PEA is unloaded, FF is effective [22]. However, the error
reduction, dynamic changes, and unknown effects are properties in which FF fails to compensate, but
where a feedback strategy can deal with. The latter mentioned offers a solution that can increase the
precision, although the close-loop can result in a low gain margin that narrows the use of high-gain
controllers [13].

Despite the drawbacks of the mentioned strategies, a combination of both frameworks can be a
suitable option to analyse. Feedforward-feedback controllers can increase the control accuracy of PEAs
through the advantages that both techniques can provide separately [23]; furthermore, this strategy
can produce multiple structure combinations. In [24], the hysteresis was compensated with a linear
and artificial neural network (ANN) combined with a conventional proportional-integral-derivative
(PID) and a neural type; results shown that the combination of ANN with the neural PID has been the
most precise one, since the integral of the absolute error (IAE) was reduced to 0.049. The authors of [25]
described the FF compensation by a Prandtl-Ishlinskii hysteresis model merged with sliding mode
control (SMC) as feedback; results unveiled an error less than 1%. Another solution was presented
by [26], where a polynomial based approach mapped the hysteresis curve for FF and combined with a
PID control; the results have shown a precision increment, although the deviation was also significant.
Another advance strategy was used in [27], where the authors employed a mathematical based model,
such as Dhal, merged with i, which provided an error of 0.51%. However, these structures have
certain drawbacks as computational requirements in the case of ANNSs training, time-consumption
to achieve a suitable model when a FF was used, or complexity implementation as the preceding
explained example.

Fuzzy logic control (FLC) is a structure that mimics human knowledge or action based on linguistic
rules that are tuned according to the designer [28-30]; these type of controllers have been used in
applications for maximum power point tracking, such as fuel cells and photo-voltaic systems [31,32],
electrical drivers [33], etc. The author of [34] indicated that FLC that is based on PID grants a high
accuracy for PEAs guidancem, but it can also provide other advantages over alternative control structures.
The authors of [35] compared an H.,, which is a robust controller already used in PEAs [36], with a FLC
for a tracking problem; the results displayed a superior performance in terms of the steady-state error
and overshoot. On the other hand, SMC is another well-used framework for PEAs [37]; however, the
researchers from [38] encourage the use of FLC over SMC due to its practicality and no chattering effect.

In this research, a type-1 FLC based on PID was used; according to [39], this kind of structure
tends to perform better than a conventional PID, since it handles uncertainties that are related to the
controller input and output, operational changes, and disturbances through rules and the fuzzifier.
In combination with the FLC and to improve the uncertainty, analytic methods could have been
used, although certain disadvantages were taken into account. Bouc-Wen is an efficient hysteresis
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model that could be merged as FF; however, its performance decreases when the non-linearity
shows asymmetry [40]. Another option is Prandtl-Ishlinksii model, which is widely used; however,
its inversion is complex, and it could increase the error compensation [41].

Black-box (BB) models are a block based approach that provide a mapping between the
input and the output, but without taking the physical relations of the system into account [42].
Hammerstein—-Wiener (HW) is an advance BB where the shape consists of a linear representation
followed and preceded by non-linear blocks. This identification tool is widely used in non-linear
systems, such as chemical reactors [43], voltage distortion of batteries [44], and motion precision of
electro-mechanical systems [45].

The structure of this paper is organized, as follows: Section 2 provides an overview of the
hardware that was used in the research, a brief description of the hysteresis, and an explanation about
how the HW block works. Section 2.3 resumes the control structures which were involved: in this
investigation, a PID, a type-1-FLC and a type-1 FLC-HW were used and compared. Section 3 presents
the results in two steps, where the PI and type-1-FLC were compared as feedback controllers and the
one that had performed best was contrasted in the following subsection with a complex FF with HW
and FLC to grasp the contribution in terms of performance. Finally, Section 4 concludes and analyses
the results of the work done along with the research.

2. Materials and Methods

Figure 1 shows the framework implemented for hardware and software, where a commercial
Thorlabs PK4FYC2 PEA was used, which is a stack actuator that consists of multiple chips stick with
epoxy and glass beads; the measurement of displacement is acquired with a four attached metal foil
strain gauges that are configured as a Wheatstone bridge circuit. At the maximum drive voltage
(150 V), the displacement is 38.5 pm with a hysteresis that can produce up to 15% of error. The actuator
has a length of 36 mm and squared transverse section with a length of 7.3 mm. The maximum force
that the device can support is 1000 N and the resonant frequency is 34 kHz.

Software Hardware

PK4FYC2PEA

Simulink control

\ -

strategy Smal
ControlDesk | amm—— 2.5 Measured
GUI Signal

A_mpliﬁEd Pre-amplifier
Signal AMP002

Figure 1. Software-hardware flow diagram used in the experiments.

The ancillary equipment consisted of a pre-amplifier Thorlabs AMP002, a measurement cube
reader Thorlabs KSG101, a driver cube Thorlabs KPZ101 (which works in open and close loop
operation), and controller board dSpace DSP1104. The hardware was configured so that the DSPS1104
could generate an analog signal of 0-10 V and sent to the KPZ101 that magnified into 0-150 V for the
PEA actuation. As a result, the strain gauge could monitor the displacement of the PEA and this signal
was augmented through the AMP002, which was afterward sent to the KSG101 and scaled in a 0-10V
signal, which is the input range that the DSP1104 could acquire.
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As means to the software architecture, Simulink by Mathworks was used in order to design
the control frameworks; System Identification Toolbox was used for the FF and FLC Toolbox for the
feedback. The data acquisition, supervision, and tuning of the parameters was done in a graphical
user interface through ControlDesk, which belongs to dSpace. Finally, due to the relation of hardware
limitation versus data acquisition, the sampling time was defined as 1 kHz.

2.1. Hysteresis Description and Reference Design

A hysteresis graph can be obtained using sine or triangular waves in time as an input and as
post-processing, the generation of a plot of input voltage versus displacement. The triangle wave
is a complex source as a reference, since it consists of high-frequency harmonics that can raise the
tracking difficulty, according to [46]. Thus, a triangle wave was used to obtain the hysteresis graph
and as a reference for guidance, a configuration as in [24] where the period chosen was 2 s with a
maximum amplitude of 150 V, since, at the utmost driving voltage, the non-linearity analysed has its
maximum reflection.

Figure 2 is the PK4FYC2 hysteresis graph for two triangle cycles, where the first ascending curve
has its initial point that begins at the origin or also called Initial point and ends at the Upper target
point. Provided that the amplitude and frequency of the input do not change [24], this demeanour only
occurs for the first rising curve, since the following cycles converge to a single hysteresis curve, where
the lower converging point and the upper target point will be permanent. According to this analysis,
the conversion from voltage to displacement for reference design cannot be done by multiplying the
maximum displacement divided by the maximum voltage which implies a straight line between the
initial point and the upper target point. Therefore, a realistic approach is the usage of a straight line as
a reference path, where Displacement [pm] = m*Voltage [V] + ¢, where m is 38.5 —c um/150 V and c is
the vertical offset of the lower converging point.

40 T T
— Upper

target point
3BT

First and second
descending curve .

[
th

.g.";rSecond ascending curve

Displacement [pm]
@ B

o—» First ascending curve

Lower converging point <—<j
Initial point ;’ slu 100 150

Voltage [V]

Figure 2. Hysteresis graph description of the commercial Piezoelectric actuator (PEA).
2.2. Hammerstein-Wiener Model

As previously seen, the hysteresis is highly non-linear not only because there are two different values
for a voltage, but also an asymmetry is present that can be difficult to represent with an analytical method.
Hence, a mapping strategy should be designed to trim the phenomena because there can be two values
of voltage for a single reference point. According to [47], Hammerstein blocks are used when the input
behaves with significant non-linearity; thus, the input u(t) is transformed by a non-linear function f,
which is then multiplied by a linear transfer function B/F. Conversely, the Wiener block uses a non-linear
function h, where the arguments are the input signal multiplied by the linear transfer function and results
in an output y(t). The conjunction between both theories (Hammerstein—Wiener) results in a three-block
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step that maps systems with strong non-linearities in the inputs as in the outputs. The fringes of HW
which correspond to the non-linear functions f and & can be approximated with different methods such as
piece-wise linear functions, sigmoid, dead-band, wavelet, and polynomial. A summary of these theories
is mathematically expressed in Equation (1).

Equation (2) is the linear subsystem B/F, where n;, 1y, and n, denote, respectively, the degree
of B, F and the associated delay. This transfer function is expressed in the time shift operator
q~!, which represents g 'u(t) = u(t — T), where u(#) is the system input and T is the sample time.
The coefficients that correspond with the three functions can be obtained using real the data of the PEA.

Hammerstein block = y(t) = ( ) x(q7h)
Wiener block = y(t) = h( x( ) 1)

HW = y(t) =h<f(u(f))x(q H)

B —ny Z?i] biqil#l
I’lf s
1+ Zj:l b]q J

The MATLAB System Identification Toolbox was used in order to estimate the parameters of HW
block; the software approximates the input and output nonlinearities using a loss function as a first
metric in order to reduce the error between the model output and response measured. The iteration
algorithm was set into automatic choice, so that the software can search the adequate one. The second
metric that was taken into account was the Fit Percent, which is related to “how good the model

x(g ) =q7" ¢)

fits the experimental data”, and it varies from —oo to 100, which represents, respectively, the lowest
and highest fitting accuracy. This metric is expressed as Equation (3) shows, where V055,74 is the
measured output data, ¥;easured 15 its mean and y,,,4.; is the predicted response of the model.

FitPercent = 100 (1 _ _Ymeasurea = Ymoaet| ) 3)

| |ymeasured - ymeasured| |

2.3. Feedback Control Design

The comparison was undertaken with three different types of control frameworks in order to
verify their performance. The progression criterion of the test was done from a simple to a complex
structure, where each controller was embedded into the hardware previously described. Figure 3
shows these configurations that were embedded in Simulink (Figure 4 shows the complex structure
embedded as an example). The contrast of results, which will be presented in the following sections,
was made in two groups: in a first step, feedback controllers (PID and FLC) were analysed and the one
that behaved better was picked for an ultimate comparison with the complex architecture (FLC with
HW), since it was expected to exceed due to the FF compensation.

Since all three structures had gains to be tuned, the IAE was used in order to achieve the best
performance. Equation (4) defines this metric where e(t) represents the error and that resembles a
perceptive expression for positive and negative values.

IAE = / £)dt (4)

Additionaly, in order to quantify the performance of the control frameworks, the root-mean-square
error (RMSE) and relative root-mean-square-error (RMSE) were calculated for the tracking signals.
The expressions of these metrics are shown in Equations (5) and (6), where ¢; and r;, respectively,
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the error and the reference at the i-th sample, the length of the sampling data and the reference
trajectory; N represents the length of the analysed data.

©)

N

362/ Y () % 100% ©

i=1 i=1

RMSE =

(a)
Reference [um] ? IEI PEA

Measurement [um]

3 | FL

[

b I FLC I @ PEA

Measurement [um]

Reference [um]

C |—f{ rpEa

Measurement [um]

©

Reference [um]

Figure 3. Control architectures used during the experiments. (a): Feedback with proportional-integral-
derivative (PID); (b): Feedback with fuzzy logic control (FLC); and, (c): Feedback with FLC
and Hammerstein-Wiener mapping as a feedforward (HW-FF).

jum]  Hysteresis Voltsge C

=

‘ Feedforward compensation

FF

IAE Calculator

FF Compensation [V]
error [um]

IAE_Calculator

Feedback Controller dSpace DS1104

Reference Generator ‘

Referenca fum] () 4 J—— Voltage V] » T oisov

Errar [um] Feedback compensation [V]

Voitage 010V Position [um]

0150V vygltaga Transform

RelGen FDBK DS1104_Input. DS1104_Output

Pasition [um]

Figure 4. FF with feedback control architecture design in Simulink for implementation in dSpace.

2.3.1. PID Control

A simple structure, like PID, can be a suitable launch for many systems to be controlled and, since
the FLC used in this research is based on a PID, a comparison with a conventional controller is fair for
contrasting the performance. The classical expression from Equation (7) was embedded in Simulink
and tuned while taking into account the values that can drive the system to an unstable or unsuitable
performance as well as reducing the IAE. The terms K, K;, and K; are the tuning parameters that
correspond to the proportional, integral, and derivative, which were settled by the reduction of the
IAE that depends on the error e(k).

u(k) = Kpe(k) + K; ie(z’)At n Kyle(k) ;tff(k —1)]
i

@)
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2.3.2. Type-1 Fuzzy Control

If the error value is positive and large with a positive increase, then a big control effort needs
to be applied considering that its magnitude should shrink as the error is reaching the zero so that
overshoots can be avoided, as was experimentally observed. It was considered that with negative
values the situation is symmetric.

An improved procedure from the last presented architecture is a type-1 fuzzy interference,
which is a non-linear controller that operates better than a conventional PID, especially for severe
nonlinearities [39]. The input to the controller consists of the error and its derivative that are multiplied
by the factors K, and Kj; this results in the variables E and AE, which represent error and its change
normalized in the range of [1 1]. The constant Kj, is intended to increase the output of the FLC based
on an incremental control action (Figure 5).

Error [um]

E

Ke

it —RA5

Figure 5. Type 1 fuzzy logic control structure.

A 4

A 4

The structure of the rules was configured, as the Equation (8), where AU is the output of the
fuzzy block, Gy, is the corresponding crisp set in which m goes from 1 to the total number of rules
used; k and [ cover the range of membership functions that corresponds to E and AE, respectively.
The fuzzification process entails triangular overlapped membership functions that are related to each
normalized input. In this research, the membership functions for the inputs were uniformly discretized
in terms of negative big (NB), negative medium (NM), negative small (NS), zero (Z), positive small
(PS), positive medium (PM), and positive big (PB); these values were defined as —1, —0.66, —0.33,
0, 0.33, 0.66, and 1, respectively. Therefore, 25 fuzzy rules were adapted, where its defuzzification
mechanism was configured in constants discretized uniformly in the range of [-1 1].

Rum: IfE = By and AE = By = AU = Gy, ®)

This controller was tested under two frameworks: first, as a feedback structure and, secondly,
the HW was added as an FE. The gains had to be different in both cases, since, with the same values,
the comparison would have had a significant gap in terms of error. Figure 3b presents a feedback
control with FLC that has the role of suppressing errors, alteration of the PEA dynamics, or unknown
uncertainties. Figure 3c displays the same structure, but with an FF that pretends to compensate the
non-linear effects with an HW model.

2.3.3. FLC Stability Proof

Although the scope of the current article is to provide experimental results for PEA tracking
performance, a semi-formal stability proof is presented based on the Lyapunov theory of stability [48]:
if a dynamical system is asymptotically stable, then there exists a positive definite Lyapunov function
V: R" — R, so that V(x) > 0, V(o) = 00, V(0) = 0 & V(x) < 0,Vx # 0, . Therefore, if the normalized
error is defined as E = X,,¢ — X, then a Lyapunov function is defined as Equation (9).

V= %EZ )

V =EE (10)
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Thus, if the derivative (Equation (10)) of the Lyapunov function is negative, then it implies that
the system is asymptotically stable and it converges to a null error. Considering when the control
signal AU is positive, then AX is positive and AE is negative, which implies that E < 0. In the same
way, when AU is negative, AX is negative, which yields to a positive AE and, hence, E > 0. Therefore,
linguistic rules are analysed, as follows:

e Casel:if EisPSorPBand AEis PB,PSor Z | Eis PBand A Eis NS | E is Z and AE is PB or
PS= U = PS, PM or PB.

During this situation, the increment of AU drives to E < Owitha positive E and, hence, the error
converges to the null value because V < 0

e Case2: if EisPSand AEisNB|EisNSand AEisPB= U = Z.

In this condition, the signal AU is null and it means that the feedback control signal does not
change, so that the V <0, although the trend stills tends the error to a null value due to the sign of AE.

e Case3: if Eis NB or NS and AE is NS, NB, or Z | Eis NB and AE is PS | E is Z and AE is NB or
NS = U = NS, NM or NB.

Reciprocally to case 1, when E < 0 and E < 0, which is switched to a positive value, since AU
decreases; thus, this yields the error to converge to a zero value.

For the rest of the linguistic rules, which are the cases of the diagonal of Table 1, the Lyapunov
stability is verified, since, at each moment, V < 0, and the error tends to decrease due to the demeanour
of Eand E.

Table 1. FLC linguistic rules.

E\AE NB NS V4 PS PB

NB NB NM NM NS Z
NS NM NM NS zZ zZ
Z NM NS Z PS PM
PS Z Z PS PM PM
PB z PS PM PM PB

3. Results and Discussion

3.1. Hammerstein-Wiener Training Results

The different options of approximators for the non-linear blocks were tested in order to find the
best solution in terms of the fit percentage. The results provided a fit percentage of 99.58, 93.33, 91.02,
96, and 99.57, which correspond with a piece-wise, sigmoid, dead-zone, wavelet, and polynomial,
respectively. Therefore, the piece-wise had the best fit-percentage, which works, as follows: within
the chosen inputs and outputs, there are breakpoints that are associated (x;, y;) such thati =1
. n so y; = R(x;), where n is the number of breakpoints (input or output), R is the piece-wise
function that is approximated through the breakpoints, where x; and y; are obtained by the algorithm
previously explained.

3.2. Hysteresis Fitting Results

A first step before the control evaluation in feedback with FF structure is to test the mapping
performance for achieving the tracking persistence. The HW was tested in a hysteresis graph to analyse
the fitting of the model although the previous fit percent obtained was suitable. Because the input was
expected to be the main reference so that the voltage was the output to be fed into the control system,
the comparison was done in terms of the voltage error.
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Figure 6a displays the fitting comparison of the HW model with the real data; Figure 6b is
an associated error graph that displays the development of the fitting along one arbitrary cycle.
The comparison shows an acceptable behaviour, since HW could manage to fit the hysteresis graph
from the lower converging point up to the upper converging point, as well as the asymmetry feature
that this PEA has. Moreover, the error graph augments the previously described manner, where it can
be seen that the magnitude fluctuates between —1 and 1 V; a harsh demeanour occurs at 1 s, which is
the moment where the input changes its slope to decrease and, thus, this was an expected unfolding
due to the complex alteration.

(a) o (b)
Hysteresis fitting 08 Ermror

0.6
0.4

=]
[ %]
—L—
=
T —
—

Displacement[j:m)
Voltage[V]
[=]

0.2

oaf ‘

0.6

0.8
0 50 100 150 0 0.5 1 1.5 2

Voltage[V] Time [s]

Figure 6. Hysteresis graph description where (a) corresponds to the fitting and (b) to the associated error.
3.3. Tracking Control Results

The three control architectures were embedded in the hardware distribution that was presented
in Figure 1. The first was a PID as feedback without FF compensation, the second FLC in feedback,
and finally, FLC combined with HW-FFE. The comparisons were performed in two groups by separately
comparing feedback controllers to inspect the performance and emphasize the best feature of each;
from this contrast, the best one was analysed against the complex structure, the FLC with HW-FFE.

As previously seen, all of the controllers had gains to be tuned, which were obtained by reduction
of the IAE so as to pursue the maximum performance. Regarding the FLC, since the input to the rules
block is between [—1 1], this was also monitored, so that the controller behaviour could be suitable.
Furthermore, it was taken into account the limits of the PEA input voltage by implementing saturations
to prevent critical situations for the device.

The gains that were obtained for the PID controller were 10, 1000 and 0 for the K}, K;, and Kj,
respectively. The parameters for the FLC in close loop mode were set as 16.2, 0.008, and 0.8 which
correspond, respectively, to K., K;, and K. Finally, to improve the performance, the constants of the
FLC with HW-FF were switched, so that the obtained values were 4.2, 0.006, and 0.8, which correlate
with K,, K, and Kj,.

3.4. PID vs. FLC

The first contrast was made with a simple PID controller against the FLC. Figure 7a is the error
comparison, where it can be seen that the PID has a maximum value that varies between 0.1 and
0.2 um during the rising and descending. However, the relevant feature appears during the peaks
where the top ones are at 1 and 3 s, and this yields a severe behaviour where the error flips its sign into
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the same absolute value, which is expected due to the slope change. Throughout the lower peak, at 2 s,
the amplitude of the error was reduced with a smaller value as compared to the top one. On the other
hand, the FLC behaves similarly, although the error magnitude was reduced dramatically since its
value is below 0.2 pm. Additionally, the sign change feature previously explained is still present, but
the error was lowered in magnitude during these moments.

As regards the control signal shown in Figure 7b, both of the architectures seemed to behave
similarly, but at the top peak, the FLC increased the performance, since the signal is smooth when
compared to the conventional PID as Figure 7c shows. In a deep analysis near the lower peak in
Figure 7d, it can be seen that, in the descending, the FLC provided a better signal with less noise.
Along the analysed area, the FLC reached 0.42 V, whereas the PID resulted in 0.88 V. This means that
the FLC supplied a control actuation that has the half of the one provided by the PID. On the other
hand, Figure 7e is a reflection of the analysed situation but after the lower peak where the variation is
higher since the PID generate 0.67 V and the FLC 0.18 V, which means a difference of around 3.7 times
lower for the FLC.

Errorfpim]

Voltage [V]

Voltage [V]

Time [s]

Figure 7. Comparison of error and control signal between PID and FLC. (a): Error; (b): Control signal;
(c) Control signal at the top peak; (d): Control signal near the lower peak; and, (e): Control signal after
the lower peak.

3.5. FLC vs. FLC with HW-FF

The previous comparison indicated that the FLC performed better than the PID controller and,
thus, it was compared with the complex structure with FF since it was expected to increase the
performance due to the compensation. Figure 8a shows the error of the two contrasted structures,
where the combination of FLC with FF improved the accuracy; although there is a discrepancy during
the top peaks, the enhanced framework reduces the error variation, and diminishes the issue at
highest levels.

Therefore, the peaks can be analysed in-depth, since the FLC controller still has a change of
error sign every one second as previously was evaluated; the FLC-HW could shrink this difference
at the cost of increasing the error amplitude at around 0.1 um. However, another critical factor is the
speed in which the controller could reduce the error: The FLC has a slow response to reduce the error
after a top peak that has a length of about 0.5 s. In opposition, the FLC-HW could counteract with a
small perception.
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Concerning the control actuation that Figure 8b exposes, the manner is similar to the previous
case where both behaved similarly. Figure 8c discloses the mild demeanour described since the signal
is acceptable for the complex structure at the top peak. Moreover, the control signal during the lower
peak resembles in a similar effort in the FF compensated structure in contrast with the FLC in the
feedback alone. For instance, Figure 8d shows a comparison, where the FLC-HW has an amplitude
variation of 0.16 V and the FLC developed 0.58 V; this means that the difference is 3.6 times less.
Furthermore, this nature is present during the rising at Figure 8e, since the difference is three times
less for the FLC-HW, which implies that the control signal had improved in comparison with the FLC
and the PID.

3
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Figure 8. Comparison of error and control signal between FLC and FLC with FF-HW. (a): Error; (b):
Control signal; (c): Control signal at the top peak; (d): Control signal near the lower peak; and, (e):
Control signal after the lower peak.

3.6. IAE, RMSE, and RRMSE Results

The performance evaluation of all displayed structures was based on the IAE values that were
obtained in each experiment which were calculated on a period of 4 s for two triangle cycles.
Additionally, other metrics, such as RMSE and relative root-mean-square-error (RRMSE), were
calculated to compare the performance in depth. All the values obtained are expressed in the Table 2
according to the progress of complexity of each architecture.

Regarding the IAE, the PID, FLC and its combination with HW-FF provided, respectively, values
of 0.578, 0.111 and 0.048. Undoubtedly, the progression of the complexity of every structure improved
the results which are not only reflected in the error and control figures previously presented but also in
the IAE. The difference in value for FLC is 5.2 times less than the PID one, although the discrepancy was
still enhanced with the FLC combined with HW where the discrepancy was 2.3 times less compared
with the FLC alone.

On the other hand, the RMSE and RRMSE had the same disposition as it was expected. The FLC
compared with the PID, showed a considerable difference since the FLC decremented the RMSE to
0.033 um; the RRMSE was reduced to 0.74%. Finally, the complex feedback with FF structure had a
higher performance since the RMSE was trimmed to 0.017 and the RRMSE decreased 0.36% respect to
the FLC alone.
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Table 2. Results obtained of the integral of the absolute error (IAE), root-mean-square error (RMSE)
and relative root-mean-square-error (RRMSE).

Structure IAE RMSE [um] RRMSE [%]

PID 0.578 0.153 3.42
FLC 0.111 0.033 0.74
FLC + HW-FF 0.017 0.018 0.38

4. Conclusions

The hysteresis of PEAs represents a problem that can produce a performance reduction when
these devices are employed for positioning. In this paper, an analysis of structures was attempted to
diminish the error with an acceptable control signal, so as to increase the effectiveness in tracking. All
of the results were part of experimental tests with a commercial PEA with its respective driver and
measurement device.

First, an HW block was used to map the hysteresis, where it was found that a piece-wise function
reflected the non-linearities with acceptable precision and the errors presented could be compensated
by adding a feedback controller. Subsequently, the structures proposed to be tested were: PID, FLC and
its combination with HW-FF. The first structure was contrasted with the FLC, where the latter presented
an enhancement in regards to the error reduction, even at complex situations as peaks of the triangle
reference; in terms of the IAE, the improvement resulted in a decline of 5.2 times. The control signal
was acceptable, since it mirrored a shrink in the noise, during the delicate situation as in top and lower
peak, which is favourable for the PEA life-span.

The use of the FLC with HW-FF not only showed that the error was trimmed to lower values,
but also it was compensated during slope changes where previous frameworks suffered difficulties to
overcome these variations. As an overall metric, the IAE dwindled 2.3 times less in comparison with
the uncompensated feedback. The control signal raised a significant improvement, as the noise was
even lower than in the previously tested structure. Performance growth was also viewed in during the
peaks, where no saturation or rough changes were observed, which could damage the hardware.

In comparison with recent works that were related to a similar control architecture and device;
the results presented in [24] reached an IAE of 0.049, which means that this research could improve 3%
of the value; as PEAs are for high-precision, then any enhancement in tracking is completely accepted.
Additionally, the authors of [49] provided a similar FLC combined with FF for the PEA with lower
displacement range, but the error is higher than the one reached in this research. On the other hand,
the study that was done in [46] showed that a neural PID implemented in PEA, could produce a
RRMSE of 0.76% for a similar signal.

As future research objectives, there are considerable options and combinations to test with the
experimental PEA rig. An increase in the structural complexity yields to an FF compensation with a
type-2 FLC, which will need to be evaluated in terms of computational limitations; other feedback
structures to be implemented are gain scheduling PID combined with fuzzy logic, also related to the
type-1 used in this research. In terms of the FF compensation, an analysis of Hammerstein versus
Wiener can be analysed in-depth, such as using artificial neural networks as non-linear blocks at the
input or the output.

Author Contributions: Conceptualization, O.B. and C.N.; methodology, O.B., .C. and C.N.; software, C.N.;
validation, C.N; formal analysis, O.B. and C.N.; investigation, O.B. and C.N.; resources, C.N.; writing—original
draft preparation, C.N., M.D.; writing—review and editing, O.B., C.N., M.D. and M.Y.S.; supervision, O.B. and I.C.;
project administration, O.B. and J.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Basque Government and UPV/EHU projects.

Acknowledgments: The authors wish to express their gratitude to the Basque Government through the

project SMAR3NAK (ELKARTEK KK-2019/00051), to the Diputacién Foral de Alava (DFA) through the project
CONAVAUTIN 2 and to the UPV/EHU for supporting this work.



Mathematics 2020, 8, 2071 13 of 15

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PEA
FLC
HW
FF
PID
IAE

Piezoelectric Actuator

Fuzzy Logic Control
Hammerstein-Wiener
Feed-Forward
Proportional-Integral-Derivative
Integral of the Absolute Error

RMSE Root-mean-square error
RRMSE  Relative root-mean-square error
ANN Artificial Neural Networks

SMC Sliding Mode Control
BB Black-box

NB Negative Big

NM Negative Medium
NS Negative Small

Z Zero

PS Positive Small

PM Positive Medium

PB Positive Big
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