
applied  
sciences

Article

Implicit Subspace Iteration to Improve the Stability
Analysis in Grinding Processes

Jorge Alvarez 1,* , Mikel Zatarain 1, David Barrenetxea 1 , Jose Ignacio Marquinez 1 and
Borja Izquierdo 2

1 IDEKO, Basque Research and Technology Alliance, Pol. Industrial Arriaga 2, 20870 Elgoibar, Spain;
mmzatarain@gmail.com (M.Z.); dbarrenetxea@ideko.es (D.B.); jimarquinez@ideko.es (J.I.M.)

2 Department of Mechanical Engineering, University of the Basque Country UPV/EHU, Plaza Torres Quevedo 1,
48013 Bilbao, Spain; borja.izquierdo@ehu.eus

* Correspondence: jalvarez@ideko.es

Received: 9 October 2020; Accepted: 18 November 2020; Published: 19 November 2020
����������
�������

Featured Application: The calculation time reduction of the new methodology for obtaining
the stability maps in grinding processes contributes to the industrialization of chatter
avoidance technologies.

Abstract: An alternative method is devised for calculating dynamic stability maps in cylindrical
and centerless infeed grinding processes. The method is based on the application of the Floquet
theorem by repeated time integrations. Without the need of building the transition matrix, this is
the most efficient calculation in terms of computation effort compared to previously presented
time-domain stability analysis methods (semi-discretization or time-domain simulations). In the
analyzed cases, subspace iteration has been up to 130 times faster. One of the advantages of these
time-domain methods to the detriment of frequency domain ones is that they can analyze the stability
of regenerative chatter with the application of variable workpiece speed, a well-known technique
to avoid chatter vibrations in grinding processes so the optimal combination of amplitude and
frequency can be selected. Subspace iteration methods also deal with this analysis, providing an
efficient solution between 27 and 47 times faster than the abovementioned methods. Validation of
this method has been carried out by comparing its accuracy with previous published methods such
as semi-discretization, frequency and time-domain simulations, obtaining good correlation in the
results of the dynamic stability maps and the instability reduction ratio maps due to the application
of variable speed.
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1. Introduction

Grinding is a finishing process characterized by its ability to achieve workpieces with smooth
surfaces and fine tolerances. One of the most important limitations in grinding processes is the
self-excited vibration or chatter. The appearance of this regenerative effect leads to lower form accuracy
and worse surface finish of the ground parts, loss of productivity, grinding machine damage or even
wheel breakage.

Chatter in grinding occurs when the grinding forces change during the process due to the variations
of the chip thickness in the presence of vibrations, then the corresponding delayed responses to the
forces increase the undulations over the workpiece surface. The generative effect can appear on both
the workpiece and the grinding wheel, adding complexity to the dynamic behavior. The undulations
generated on the workpiece surface grow quite rapidly, whereas those generated in the grinding wheel
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surface grow more gradually [1]. Besides, when the vibration amplitude builds up to a certain limit,
those undulations on the grinding wheel surface are removed through the dressing process. For these
reasons, this paper is only focused on the workpiece regenerative chatter.

Different approaches have been developed to analyze this phenomenon and devise practical
methods for suppressing these vibrations [2]. The first discussion of regenerative stability of a grinding
process was done by Hahn using the Nyquist criteria [3]. Then, Snoeys and Brown [4] performed
a similar analysis by means of a doubly regenerative closed-loop block diagram and obtained the
characteristic equation of the process and a stability criterion. Thompson proposed an alternative
approach obtaining solutions of double regenerative chatter for the stability boundary [5] and chatter
growth [6]. Later, different time-domain simulation approaches were applied to grinding stability
analysis and regenerative chatter prediction [7,8], considering also non-linear effects [9,10].

Alvarez et al. applied the semi-discretization method proposed by Insperger et al. for milling [11]
and turning [12]—later used for selection of variable pitch for chatter suppression in face milling [13] to
infeed cylindrical grinding process [14] and traverse cylindrical grinding process [15]—demonstrating
the potential of this approach to analyze the application of variable speed to chatter avoidance with an
efficient computing effort comparing to previous time-domain simulations. This periodically variable
speed is one of the most extended techniques for chatter suppression in machining processes in
general [12,16,17], and in grinding processes in particular. Inasaki [18] was the first to simulate the
workpiece sinusoidal speed variation effect, concluding that chatter can be avoided with short periods
and large amplitudes of variation. Barrenetxea et al. [19] and Alvarez et al. [20] demonstrated the
application of this technique for infeed and through-feed centerless grinding processes, respectively,
by devising a time-domain dynamic approach for generating stability maps whose axes were the
amplitude and frequency of the sinusoidal variation. The analysis concluded that the sinusoidal
shape is the optimal speed variation signal. Those maps were validated experimentally, but the most
important limitation of that method was the very long time required for obtaining a complete stability
map due to the large amount of simulations needed.

Therefore, the goal of this paper is to obtain a method for computation of the instability lobes
in the time domain with much lower computing effort compared to traditional ones. The method is
based on the implicit subspace iteration presented by Zatarain et al. [21,22] for milling process analysis.
The improvement comparing with the semi-discretization method is achieved by removing the
need for calculating the complete transition matrix whose eigenvalues give the stability degree of
parameter combinations.

This method is applied both in cylindrical and centerless infeed grinding processes and validated by
comparing the results with previously published ones by Alvarez et al. [14] and Barrenetxea et al. [19,23],
respectively, analyzing the accuracy and the calculation time reduction. New formulation has
been included in the method due to the geometrical instabilities that appear during the centerless
grinding processes.

2. Materials and Methods

The stability criterion for discretized time domain simulations is based on the Floquet theorem [24],
as shown by Insperger et al. [11] for milling process and Alvarez et al. for grinding process [14]. This
theorem states that when the coefficient matrices are periodic, the solutions of the homogeneous time
periodic delay Equation:

.
x(t) = A(t)x(t) + B(t)x(t− τ) (1)

have the general form
x(t) = eλtp(t) (2)

where p(t) is also periodic with principal time period T and being A(t) = A(t+T) and B(t) = B(t+T).
Then, the solutions are exponentially increasing or decreasing periodical functions and the decay is
described by the characteristic exponent λ.
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After discretization, the solution at a certain moment and the solution one period later are related
by the transition matrix Z:

qi+m = Zqi (3)

being qi the multidimensional state at time ti and m = ∆t/T. The eigenvectors of the transition matrix Z
are the discretized counterpart of the principal solutions of (1) and the eigenvalues µ of Z, that are
called characteristic multipliers, are related to the characteristic exponents [25]

λ =
1
T

(
ln

∣∣∣µ∣∣∣+ i(arg(µ) + 2kπ)
)

(4)

where k corresponds to the harmonics involved.
The stability condition is that there are no eigenvalues with a magnitude larger than 1. Therefore,

the interesting eigenvalues are those of highest magnitude, as they will characterize the stability of
the process.

The formation of the transition matrix Z is usually a costly procedure. Zatarain et al. proposed a
method based on implicit subspace iteration with the aim of avoiding the calculation of the transition matrix
as well as the resolution of the corresponding eigenvalue problem [21]. Therefore, the computational cost
can be reduced considerably.

Power iteration is the simplest way to obtain the highest magnitude eigenvalue and associated
eigenvector of a matrix but is a relatively slow method. Subspace iteration consists of performing the
power iteration of some vectors S0 representing a guess of the dominant eigenvectors.

S0 = [s0,1, s0,2, s0,3, . . . , s0,n] (5)

Initially there is no way to consider that the vectors in S are the eigenvectors corresponding to
the largest magnitude eigenvalues, nor that they contain a large projection on these eigenvectors.
Nevertheless, after each time period, the projection of all the vectors on the dominant eigenvectors will
increase in proportion to their corresponding eigenvalues.

The use of a group of vectors (subspace S) instead of a single vector and the orthogonalization
of these vectors with respect to the matrix S are the basis of the subspace iteration method and give
rise to a reduction in the calculation time. Therefore, the procedure will consist of multiplying the
subspace by the transition matrix Z once again and proceeding to the orthogonalization of the subspace
after each or after several multiplications. The implicit subspace iteration method [21] follows that
methodology but without calculating the transition matrix.

The multiplication of the subspace S by transition matrix Z is the first step and can be substituted
by the time integration of the vectors in S by a fast procedure

Vi = [vi,1, vi,2, vi,3, . . . , vi,n] = ZSi (6)

Now it is necessary to proceed to the orthogonalization of the vectors in S. The proposed method
performs the orthogonalization, calculating an H matrix as

Hi =
(
Si

TSi
)−1

Si
TVi (7)

and then performing an eigenvalue decomposition on it as

Hi = GiλiGi
−1 (8)

Finally, the calculation of the new subspace is obtained as

Si+1 = GiVi (9)
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After enough iterations, the subspace S will converge to the dominant eigenvectors, and the
eigenvalues of λ will be the dominant eigenvalues.

With this method, it is possible not to form the transition matrix Z, but just to perform the time
integration in one period (corresponding to a workpiece revolution) and obtain the new set of vectors V.
The transition matrix is not required either to perform the orthogonalization of the subspace vectors.

The method of semi-discretization for calculating the eigenvalues requires calculating the transition
matrix, which is highly time consuming, and then obtaining its eigenvalues, also time consuming.
The implicit subspace iteration method avoids calculating the transition matrix, and, instead of
performing multiplications of the subspace vectors by the transition matrix, calculates their time
integration along a time period. As the transition matrix is not calculated and the eigenvalue systems
to solve are very small compared to the size of the transition matrix, the calculation time is reduced
very significantly. If we start with any initial solution for the state over a length of time identified by the
maximum time delay (τmax), we can calculate the state at period T by multiplying the initial solution
by the transition matrix or by performing the time integration over that period. The result of both
methods must be the same, except for discrepancies given by numerical errors. Moreover, efficient time
integration algorithms can result in much faster solutions, depending on the size of the state, than the
time required to form the transition matrix.

The time integration along a period is a process that must be performed many times in this
method. To reduce the calculation time, “step matrices” relating the state at each moment with the
state one time step later are pre-calculated.

The formulation for the calculation of the step matrices in infeed grinding processes is shown
next for the centerless configuration (Figure 1). In the case of cylindrical configuration, the procedure
is the same just subtracting the geometrical parameters of the formulation.
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Figure 1. Centerless infeed grinding process system.

Then, the centerless infeed grinding process is defined by an Equation of motion for a multiple
degree of freedom system (corresponding to considered vibration modes):

M
..
x(t) + C

.
x(t) + Kx(t) = F(t) (10)

where M, C and K are the mass, viscous damping and stiffness matrices of the system, and F(t) is the
grinding force in the normal direction, which follows the next expression:

F(t) = φPkwn[δrw(t− τ) − δrw(t)] (11)
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Normalizing to unit mass, φ is a matrix with the modal displacements of considered modes in
the normal direction of the contacts between the workpiece and the grinding wheel, the regulating
wheel and the support blade. kwn is the cutting stiffness and δrw(t-τ) and δrw(t) are the radius defects
at the cutting point in the previous and the current workpiece revolutions, respectively, being τ the
time between revolutions. P is a dimensionless vector relating the forces at the contact points with the
normal force at the cutting point [26]. Thus, the considered direction of motion of the process system is
corresponding to the normal force F(t), defined as x(t).

In centerless grinding processes, the radius defect depends on a geometric displacement of the
workpiece due to roundness errors passing through the contact points with the blade and regulating
wheel, as well as on the static defection of the system and the vibrations generated in the process.
The radius defect at the current revolution can be expressed as:

δrw(t) = Cφx(t) +
F(t)
kr

+ gbδrw(t− τb) − grδrw(t− τr) (12)

where kr is the inverse of the residual flexibility. It can be calculated by subtracting the flexibility of
considered vibration modes from the process equivalent stiffness keq, which is the sum of the system
static flexibility and the contact flexibility between the workpiece and the grinding wheel, the regulating
wheel and the support blade.

1
kr

=
1

keq
−

Nm∑
i = 1

Cφiφi
tP

ω2
i

(13)

where ωi are the natural frequencies of considered modes. There are different experimental methods
to obtain the equivalent stiffness [27]. δrw(t-τb) and δrw(t-τr) are the radius defects at the contact
points with the blade and regulating wheel (represented in Figure 1 as δb and δr), and gb and gr are
two geometrical parameters depending on the contact angles of the blade and regulating wheel with
the workpiece (ϕb and ϕr), obtained from the geometric configuration of the process represented
by the workpiece height h and the blade angle θ [28]. C is a dimensionless vector representing the
displacement at the cutting point due to the displacements at the contact points [26].

Replacing Equations (11) and (12) in Equation (10) and renaming:

..
x(t) + C

.
x(t) + [K + Vkt]x(t) = φPkt[δ+ gbδb − grδr] (14)

being V = CTφφTP, δi = rw(t− τ), δb = rw(t− τb), δr = rw(t− τr) and kt = kwn

1+
(

kwn
kr

) .

Following the same procedure of integrating and rearranging in state-space mode as [14] for
cylindrical grinding process, the next expression is obtained:

pi+1 = (Ai −Bi)pi + G0,i
(
δi−n + gbδb,i−n1 − grδr,i−n2

)
+G1,i

(
δi−n+1 + gbδb,i−n1+1 − grδr,i−n2+1

) (15)

Bi =

 ∆t2

2
∆t3

6
∆t ∆t2

2

[ Vkt 0
0 Vkt

]
(16)

G0,i =

 ∆t2

3
∆t
2

φPkt , G1,i =

 ∆t2

6
∆t
2

φPkt (17)

Matrix A is constant for all the calculations. It is obtained as [21]. Bi, G0,i and G1,i vary and
they are calculated for each discretized segment. This set of matrices represents the step matrices of
the process.
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Once all the step matrices are calculated, the procedure to obtain the state after one period begins
with the definition of the initial state of the process by including the initial discretized radius defect
and the initial dynamic modal solution, presented in the following mixed system state:

qn =
{
δ1 δ2 . . . δn−2 δn−1 xn

.
xn

}
(18)

For the first segment:
p1 = Apn (19)

δ1 = Tp1 + Wδ1−n + Gbδ1−n1 −Grδ1−n2 (20)

T =
CTφ(

1 + kwn
kr

) , W =
kt

kr
(21)

Reaching the last segment:

δi+1 = Tpi+1 + Wδi+1−n + Gbδi+1−n1 −Grδi+1−n2 (22)

pi+1 = (Ai −Bi)pi + G0,i
(
δi−n + gbδb,i−n1 − grδr,i−n2

)
+G1,i

(
δi−n+1 + gbδb,i−n1+1 − grδr,i−n2+1

) (23)

The calculation of the product of the complete state vector using the step matrices, as proposed
here, leads to a lower requirement of mathematical operations compared to the product by the transition
matrix. Besides, the calculation of the transition matrix is the operation which requires the highest
computational effort compared to the calculation of the step matrices when obtaining the stability
maps for grinding processes.

Another important issue is the calculation time dependence on the size of the state, represented by
the discretization segments. The requirement is that the integration time, equal to the length of the
segment divided by the workpiece rotational speed, must be below 0.1 times the corresponding period
related to the maximum natural frequency considered.

The criterion of stability is the same as the one used in the semi-discretization method. Then, if any
eigenvalue of the relation between the initial and final states has a magnitude larger than 1, then the
system is unstable, whereas when all magnitudes are lower than 1, the system is stable.

Besides dynamic instabilities, there are also geometric instabilities in centerless grinding processes
due to their special geometric configuration [26], named geometric lobing. They are included in the
model by the geometric parameters corresponding to the contact points between the workpiece and
the regulating wheel and the blade support. For that reason, it is necessary to include different lobe
numbers in the initial radius defect of the process. Then, the evolution of this lobe for each geometric
configuration can be analyzed and included in the stability diagrams as a result of the subspace
iteration method. Cylindrical infeed grinding processes do not give rise to that phenomenon.

As in the semi-discretization method in [14], with the developed method to analyze the stability
in grinding processes there is also the possibility to include the continuous workpiece speed variation
in the calculation.

The condition is that the speed variation period is an integer multiple of the workpiece speed
period. Then, the calculation of the step matrices must be done over the speed variation period and
the eigenvectors analysis is carried out between the first and the last system states.

Therefore, the same stability maps presented in [14,19] can be obtained, whose axes are the
amplitude and frequency of the workpiece speed variation.
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3. Results

3.1. Application of the Method to Cylindrical Grinding Processes

First application of the method is carried out for cylindrical infeed grinding process by comparing
the results with the data proposed in Alvarez et al. [14]. In this analysis, a validation of the accuracy of
the new method was done and a comparison of the computational effort of both semidiscretization
and subspace iteration methods is presented.

The process conditions for stability analysis in [14] are shown in Table 1.

Table 1. Process conditions for stability analysis in cylindrical infeed grinding [14].

Modal Analysis

Mode fn (Hz) ξ (%) Φx

1 200 5 0.1
2 300 5 0.09
3 400 4 0.1

Grinding wheel diameter (mm) 600
Grinding wheel speed (m/s) 50
Workpiece diameter (mm) 25

Equivalent stiffness (N/µm) 50
Specific energy (J/mm3) 40

Figure 2a shows the stability map obtained with the subspace iteration method for the process
conditions of Table 1, which represents the stability degree of each combination of workpiece speed
and ground length. Values below the stability limit of 1 are stable combinations and values over
the stability limit are unstable combinations. Almost the same stability map as the one obtained
with the semi-discretization method is achieved. Figure 2b shows isolines with different degrees
of stability. Dash lines correspond to subspace iteration calculations, while solid lines correspond to
semidiscretization calculations. Good correlation between isoline values can be noticed.
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Necessary computational effort for achieving the stability map has been reduced significantly.
The time required for obtaining the map with the semi-discretization method is 11,441 s, while the time
with the subspace iteration method is 256 s (45 times faster), considering that the map corresponds to a
11 × 11 matrix of stability values. For this comparison, an Intel ® Core TM i7-4610M CPU 3.00 GHz
with RAM 16 GB has been used.

One important aspect is the dependency of the number of discretized points on the calculation
time. As mentioned above, the integration time is calculated based on the considered maximum natural
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frequency. Figure 3 shows the comparison of the calculation time of both semi-discretization and
subspace iteration methods related to that frequency. As it can be noticed, the higher the frequency the
higher the difference between both calculations. For a natural frequency of 100 Hz, the subspace iteration
method is six times faster, being 138 times faster for a frequency of 700 Hz. Therefore, the subspace
iteration method is even more suitable for systems with higher natural frequencies.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 13 
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The subspace iteration method is also valid to calculate the stability maps with continuous
workpiece speed variations, whose axes are the frequency and amplitude of the sinusoidal variation.
Figure 4 shows a comparison of the method with that of the semi-discretization method following the
same procedure. Stability maps are calculated with process conditions of [14].
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The time required for obtaining the map with the semi-discretization method is 46,314 s, while the
time with the subspace iteration method is 2773 s (16 times faster), considering that the map corresponds
to a 16 × 26 matrix of instability reduction ratio values.

Calculation time for achieving this type of map is increased due to the necessity of calculating the
step matrices over the speed variation period. Therefore, the higher the speed variation frequency,
the lower the calculation time. Figure 5 shows the time required for frequencies of 0.5 and 3 Hz, where
the matrices must be recalculated six and two times, respectively. In this case, for a natural frequency
of 100 Hz, the subspace iteration method is 2.5 times faster, being 47 times faster for a frequency of
700 Hz.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 
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3.2. Application of the Method to Centerless Grinding Processes

Firstly, the application of the subspace iteration method to centerless grinding processes is
validated by comparing it to the work by Barrenetxea et al. [23], where stability maps are calculated
and validated in the frequency domain. Figure 6a shows the map obtained in the frequency domain
and Figure 6b shows the one by the subspace iteration method. Good correlation between both can
be noticed. The main difference is that the stability limit for frequency domain is equal to zero with
negative unstable conditions, while subspace iteration is equal to 1 with unstable conditions over
that value.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 

 
Figure 5. Comparison of time for calculation of stability maps between semi-discretization and 
subspace iteration methods for cylindrical grinding with the application of continuous workpiece 
speed variation. 

3.2. Application of the Method to Centerless Grinding Processes 

Firstly, the application of the subspace iteration method to centerless grinding processes is 
validated by comparing it to the work by Barrenetxea et al. [23], where stability maps are calculated 
and validated in the frequency domain. Figure 6a shows the map obtained in the frequency domain 
and Figure 6b shows the one by the subspace iteration method. Good correlation between both can 
be noticed. The main difference is that the stability limit for frequency domain is equal to zero with 
negative unstable conditions, while subspace iteration is equal to 1 with unstable conditions over that 
value. 

  
(a) (b) 

Figure 6. Dynamic stability map for centerless grinding by (a) frequency domain method [21]; (b) 
subspace iteration method. 

In the case of centerless grinding processes, aside from the work done by Barrenetxea et al. [19], 
there is no bibliography regarding the obtainment of stability maps with continuous workpiece speed 
variation. Then, the subspace iteration method is compared to the time domain simulation procedure 
by Barrenetxea et al. [19] in terms of calculation accuracy and computational time consumption. 
Figure 7 shows the map obtained in [19] by the time simulation approach while Figure 8 shows the 
one obtained by the subspace iteration method. Good correlation can be noticed again, validating the 
accuracy of the proposed method. 

Figure 6. Dynamic stability map for centerless grinding by (a) frequency domain method [21]; (b)
subspace iteration method.



Appl. Sci. 2020, 10, 8203 10 of 13

In the case of centerless grinding processes, aside from the work done by Barrenetxea et al. [19],
there is no bibliography regarding the obtainment of stability maps with continuous workpiece speed
variation. Then, the subspace iteration method is compared to the time domain simulation procedure
by Barrenetxea et al. [19] in terms of calculation accuracy and computational time consumption.
Figure 7 shows the map obtained in [19] by the time simulation approach while Figure 8 shows the
one obtained by the subspace iteration method. Good correlation can be noticed again, validating the
accuracy of the proposed method.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 13 

 
Figure 7. Instability reduction ratio for centerless grinding by time simulation method [19]. 

 
Figure 8. Instability reduction ratio for centerless grinding by subspace iteration method. 

Calculation time for achieving this type of instability reduction ratio in centerless grinding with 
the application of continuous workpiece speed variation is represented in the Figure 9. In this case, 
the time-domain simulations are independent of the variation frequency, since the simulation is done 
during all the workpiece revolutions of the whole grinding cycle. The time required for achieving the 
time-domain 11 × 11 map of Figure 7 is 63,525 s, while the time for achieving the subspace iteration 
map of Figure 8 is 2541 s, being 25 times faster. 

Figure 7. Instability reduction ratio for centerless grinding by time simulation method [19].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 13 

 
Figure 7. Instability reduction ratio for centerless grinding by time simulation method [19]. 

 
Figure 8. Instability reduction ratio for centerless grinding by subspace iteration method. 

Calculation time for achieving this type of instability reduction ratio in centerless grinding with 
the application of continuous workpiece speed variation is represented in the Figure 9. In this case, 
the time-domain simulations are independent of the variation frequency, since the simulation is done 
during all the workpiece revolutions of the whole grinding cycle. The time required for achieving the 
time-domain 11 × 11 map of Figure 7 is 63,525 s, while the time for achieving the subspace iteration 
map of Figure 8 is 2541 s, being 25 times faster. 

Figure 8. Instability reduction ratio for centerless grinding by subspace iteration method.
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the time-domain simulations are independent of the variation frequency, since the simulation is done
during all the workpiece revolutions of the whole grinding cycle. The time required for achieving the
time-domain 11 × 11 map of Figure 7 is 63,525 s, while the time for achieving the subspace iteration
map of Figure 8 is 2541 s, being 25 times faster.
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3.3. Conclusions

The results obtained from the comparison between subspace iteration and semi-discretization
methods in cylindrical grinding process show that:

• When obtaining stability maps, subspace iteration is between 6 and 138 times faster than
semi-discretization in the analized cases, depending on the natural frequencies of the system.

• Both methods are dependent on the natural frequencies of the system, but subspace iteration is
better when dealing with higher frequencies.

• When obtaining instability reduction ratio maps with continuous workpiece speed variation,
subspace iteration is between 2.5 and 47 times faster than semi-discretization in the analyzed
cases, depending on the natural frequencies of the system.

• The time necessary for the calculation of instability reduction ratio maps is higher than that
required for the calculation of stability maps due to the necessity of calculating the step matrices
over the speed variation period.

Regarding the results obtained comparing subspace iteration and time simulation methods in
centerless grinding process:

• When obtaining instability reduction ratio maps with continuous workpiece speed variation,
subspace iteration is about 27 times faster than time simulation in the analized case.

• Since time domain simulation does not depend on the workpiece speed variation frequency,
the improvement of the subspace iteration calculation time is higher when analyzing higher
variation frequencies.

4. Discussion

The subspace iteration method has been applied successfully to the generation of stability maps for
cylindrical and centerless infeed grinding processes. The method has also been validated to calculate
the instability reduction ratio maps with the application of continuous workpiece speed variation in
cylindrical and centerless infeed grinding processes.
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Accuracy of this method has been validated by comparing it with previously published methods
such as semi-discretization, frequency and time-domain simulations, obtaining almost the same results
and validating the subspace iteration method in grinding processes.

Reduction of calculation time related to the semi-discretization method is achieved in analyzed
cases because the transition matrix is not explicitly calculated and, instead of calculating all the
eigenvectors of the transition matrix, an iterative process calculating only the dominant eigenvalues
is used. In the comparison with the semi-discretization method for cylindrical infeed grinding,
subspace iteration is up to 138 times faster for stability maps and 47 times faster for instability reduction
ratio maps. In the comparison with time-domain for centerless infeed grinding, subspace iteration is
27 times faster for instability reduction ratio maps.

The influence of the number of segments related to the maximum natural frequency of the grinding
system has been analyzed, concluding that subspace iteration has a better performance for a higher
number of segments than semi-discretization.
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