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Abstract

Bootstrap techniques in the frequency domain have been proved to be effective in-
struments to approximate the distribution of many statistics of weakly dependent (short
memory) series. However their validity with long memory has not been analysed yet.
This paper proposes a Frequency Domain Local Bootstrap (FDLB) based on resampling
a locally studentised version of the periodogram in a neighbourhood of the frequency of
interest. A bound of the Mallows distance between the distributions of the original and
bootstrap periodograms is offered for stationary and non-stationary long memory series.
This result is in turn used to justify the use of FDLB for some statistics such as the
average periodogram or the Local Whittle (LW) estimator. Finally, the finite sample
behaviour of the FDLB in the LW estimator is analysed in a Monte Carlo, comparing
its performance with rival alternatives.
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1 Introduction

Bootstrap is nowadays one of the most popular tools to approximate the distribution of

statistics that are unknown or difficult to handle. Originally proposed for iid observations,

its application in time series requires dealing with the possible dependence existing between

distant observations. Some techniques in the time domain such as the sieve or the block

bootstrap have been traditionally used with this purpose. These approaches are based on

finally resampling approximately independent quantities: residuals in the sieve or blocks of

observations in the block bootstrap. But the strong persistence inherent in long memory

time series may invalidate the use of some of these strategies because those quantities may

be far from being independent. See for example Lahiri (1993) for the case of the block

bootstrap. Different techniques and modifications of some traditional bootstraps have been

proposed and their use in long memory series has been theoretically justified in a handful

of papers: Andrews et al. (2006) show that a parametric bootstrap based on resampling

residuals is effective to construct confidence intervals for maximum likelihood estimators

of stationary ARFIMA processes; Poskitt (2008) demonstrates the validity of the sieve

bootstrap for linear stationary long memory; and Kim and Nordman (2011) extend Lahiri’s

results to show the validity of some block bootstrap for the distribution of the sample mean

of stationary long memory series. More recently, it has been proposed to apply the bootstrap

not on the original observations but rather on the fractionally differenced series (1− L)d̂xt

for d̂ a consistent estimator of the memory parameter. This “de-colouring” approach intends

to overcome the problems that the strong persistence may originate by getting rid of it with

the prior filtering. The final bootstrap series are obtained by “re-colouring” integrating back

the resampled series. This strategy has broadened the range of processes and bootstraps

that can be used, covering stationary and non-stationary long memory and many of the

traditional bootstrap techniques that have been shown to be valid in short memory series

(see Poskitt et al. 2015, and Kapetanios et al. 2019). In practice, however, prior fractional

differencing and posterior fractional integration are subject to truncation determined by the

sample size, which may significantly distort the performance of this approach, especially in

small sample sizes.

In addition to the previous strategies in the time domain, some alternative procedures

rely on resampling in the frequency domain, which is specially adequate in the context of

time series because the Fourier transform converts autocorrelation into heteroscedasticity

such that periodogram ordinates of stationary series are asymptotically uncorrelated. Franke

and Hardle (1992) and Dahlhaus and Janas (1996) make use of this characteristic to propose

a bootstrap strategy for short memory series based on resampling periodogram ordinates
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studentised with a consistent estimator of the spectral density. The validity of this proposal

relies on the consistency of the estimation of the spectral density function, which for short

memory time series is simple and well documented but it is especially difficult with long

memory series where traditional techniques usually fail (Arteche, 2015). Kim and Nordman

(2013) suggest normalising the periodogram with a plug-in estimator of the spectral density

when it belongs to a parametric class of functions that covers stationary long memory. They

demonstrate that resampling studentised periodograms leads to a consistent estimation of

the distribution of the parametric Whittle estimator as long as the model is fully and

correctly specified. In a regression context, Hidalgo (2003) proposes a residual bootstrap

in the frequency domain based on resampling discrete Fourier transforms of OLS residuals

normalised with its modulus in order to approximate the distribution of the OLS estimator

in linear regression models. He shows the validity of this strategy for stationary series,

including long memory. To the author’s knowledge no other bootstrap strategy in the

frequency domain has been theoretically justified for long memory series.

This paper focuses on frequencies close to the spectral pole, which are the frequencies

where the long memory has its impact and define the region that contains useful informa-

tion on the persistence of the series. Only the spectral behaviour at those frequencies is

restrained, thus avoiding the need for parametric restrictions at frequencies far from the

origin. Taking into account the difficulties to estimate non-parametrically the spectral den-

sity of long memory series (Arteche, 2015 and Kim and Nordman, 2013), we propose to

normalise the periodogram with an estimation of the local behaviour of the spectral den-

sity function around the spectral pole to form the locally studentised periodogram (LSP).

This approach is similar to the proposal by Franke and Hardle (1992) and Dahlhaus and

Janas (1996) but instead of resampling studentised periodograms we propose to resample

the LSP. The normalisation in the LSP accounts for the strong persistence but the remain-

ing short memory generates a particular structure in the LSP that should be mimicked by

the bootstrap samples, which invalidates the use of a global resampling over the whole band

of Fourier frequencies as proposed in Franke and Hardle (1992) and Dahlhaus and Janas

(1996). This motivates the use of a local bootstrap scheme based on resampling LSP or-

dinates in a neighbourhood of the frequency of interest, guaranteeing in that way that the

global structure of the LSP is mimicked by the locally bootstrapped LSP.

The rest of the paper is organised as follows. Section 2 describes the characteristics

of the long memory processes we deal with. Stationary and non-stationary values of the

memory parameter are allowed. Section 3 introduces the Frequency Domain Local Boot-

strap (FDLB), shows its validity to approximate first moments of the periodogram at any
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Fourier frequency in (0, π] and offers a bound of the distance between the true and the FDLB

distribution of the periodogram at frequencies close to the spectral pole. This result is in

turn used in Section 4 to prove the validity of the FDLB to approximate the distribution

of weighted averages of periodogram ordinates close to the spectral pole, as for example an

estimator of the spectral distribution function or the score of the local Whittle (LW) esti-

mator. Finally, Section 5 analyses the finite sample behaviour of the FDLB to approximate

the distribution of the LW estimator in a Monte Carlo study, comparing its performance

with other rival strategies. All the proofs are relegated to Appendix A, whereas Appendix

B contains additional Monte Carlo results.

2 Long memory processes

We focus on Long Memory processes xt satisfying the following assumptions:

A.1: Let d0 denote the memory parameter of xt. If −1/2 < d0 < 1/2 then xt = vt and

for 1/2 ≤ d0 < 1 then xt = x0 +
∑t

s=1 vs where x0 is a random variable not depending on

t and vt =
∑∞

j=0 bjεt−j ,
∑∞

j=0 b
2
j < ∞ where E(εt|Ft−1) = 0, E(ε2t |Ft−1) = 1, E(ε3t ) < ∞,

E(ε4t ) <∞ where Ft−1 is the σ-field of events generated by εs, s ≤ t− 1.

A.2: The spectral density of vt is

fv(λ) = λ−2dvgv(λ) , 0 < λ ≤ π ,

where −1/2 < dv < 1/2 in the stationary case and −1/2 ≤ dv < 0 for a nonstationary

xt and gv(λ) is a function which is positive, finite, symmetric around the origin and twice

continuously differentiable.

Assumption A.1 avoids the restriction of Gaussianity and only imposes linearity of

vt with bounded fourth moments of the innovations. Nonstationarity is considered as

in Velasco (1999) as Type I long memory1. The pseudo spectral density function of xt

is in this case fx(λ) = |1 − exp(iλ)|−2fv(λ) such that in both the stationary and non-

stationary cases the spectral or pseudo spectral density function of xt satisfies fx(λ) =

gv(0)λ
−2d0(1 + O(λ2)) as λ → 0 for d0 = dv in the stationary case and d0 = dv + 1 if

xt is nonstationary, entailing d0 ∈ (−1/2, 1). Assumption A.2 constrains the possibility of

seasonal or cyclical long memory and only allows for standard long memory at frequency

zero. The analysis could be extended to cover other types of long memory where the spec-

tral density diverges at a positive frequency as in Arteche and Robinson (2000) but it is

constrained here to the empirically more popular case of standard long memory. Note

1Kapetanios et al. (2019) consider instead type II long memory series to cover non-stationary cases.
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also that the class of models satisfying A.1 and A.2 is wider than previously considered

because it includes fractionally integrated processes as particular cases but it also covers

more complex structures not relying on fractional differencing, for example those based on

cross-sectional aggregation, fractional Gaussian noises (increments of fractional Brownian

motions) or self-similar processes.

3 Frequency Domain Local Bootstrap (FDLB)

Many interesting statistics as those discussed in the next section are functions of the peri-

odogram of xt, which for t = 1, 2, ..., T is defined as

Ix(λ) = |Wx(λ)|2 , Wx(λ) =
1√
2πT

T
∑

t=1

xt exp(−itλ)

withWx(λ) being the discrete Fourier transform at frequency λ. The FDLB is here proposed

to obtain bootstrap replicates of Ix(λj) for Fourier frequencies of the form λj = 2πj/T ,

j = 1, 2, ...,m, with m satisfying the conditions specified below. Denote Ij = Ix(λj) and

fx,j = fx(λj). The FDLB consists of the following steps:

1. Estimate d0, say d̂, and construct the locally studentised periodogram (LSP) v̂j =

Ijλ
2d̂
j , for j = 1, ..., [T/2].

2. Select a resampling width kT ∈ N , kT ≤ [T/2].

3. Define i.i.d. discrete random variables S1, ..., Sm taking values in the set ∆T =

{0,±1, , ...,±kT }\{−j} with probability pi, i ∈ ∆T (e.g. equal probability pi = 1/#∆T

for all i).

4. Generate B bootstrap LSP series v̂∗bj = v̂|j+Sj | for b = 1, 2, ..., B and j = 1, ...,m.

5. Generate B bootstrap samples for the periodogram I∗bj = λ−2d̂
j v̂∗bj , for b = 1, 2, ..., B

and j = 1, ...,m.

6. The bootstrap distribution of the periodogram is calculated as the empirical distribu-

tion of the B bootstrap replicates,

F ∗
j (x) =

1

B

B
∑

b=1

I(I∗bj ≤ x)

for I() the indicator function.
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Step 1 has some similarities with the de-colouring approach in Poskitt et al. (2015)

and Kapetanios et al. (2019) in what its purpose is to reduce the effect of the strong

persistence and to get closer to the form of the periodogram of a short memory process.

The LSP intends to achieve this goal by dividing by an estimation of the local behaviour of

the spectral density function (apart from a constant) in Assumption A.2, whereas Poskitt et

al. (2015) and Kapetanios et al. (2019) use fractional differencing. However, the behaviour

of v̂j may still show some structure due to the remaining weak dependence and a global

resampling scheme should be avoided. Steps 2 and 3 propose instead a local approach and

delimit the band of frequencies where to locally resample. The bootstrap replicates of the

periodogram I∗bj are then obtained by resampling v̂j in a neighbourhood of every frequency

λj , maintaining in that way the global structure of the periodogram. Note that ∆T in

Step 3 excludes the value {−j} to avoid evaluation of the periodogram and of the local

approximation of the (pseudo)spectral density at frequency zero, implying that #∆T = 2kT

if kT ≥ j and #∆T = 2kT + 1 if kT < j.

Paparoditis and Politis (1999) propose a similar local bootstrap strategy but applied

to the raw periodogram Ij instead of to the LSP v̂j . This was shown to be valid under

short memory, in a sense that the distance between the original and bootstrap distributions

vanishes, but when applied to long memory series no theoretical justification exists. In

addition, Silva et al. (2006) show with a Monte Carlo analysis that the resampling width

kT should be very small (as low as kT = 1 or 2) to get sensible results when applied on

strongly persistent series, which offers some doubts on the validity of this strategy under

long memory. We avoid this problem by locally studentising the periodogram in Step 1.

The validity of the FDLB requires also the following assumptions:

A.3: 1/kT + kT /T → 0 as T → ∞. Moreover, the sequence {pi; i ∈ ∆T } satisfies

∑

i∈∆T

pi = 1, pi = p−i, pi → 0,
∑

i∈∆T

p2i = O(k−1
T ) as T → ∞

A.4: As T → ∞
kT
T

+
log |j + kT |

k
1/2
T

+
log1/2 |j + kT |

jkT
α → 0,

where α = min{1/2, 1− d0} and jkT = kT if j/kT → 0 and jkT = j otherwise.

An example of pi satisfying A.3 is pi = 1/#∆T . Note that Assumption A.4 implies that

kT → ∞ but j can remain fixed or go to infinity faster or more slowly that kT , which means

that all Fourier frequencies, both close and far from the spectral pole, are covered.

Let E∗ denote the expected value calculated with respect to the bootstrap probability
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conditional on the data x1, ..., xT . The following theorem offers a bound of the difference

between the bootstrap mean of the replicated periodogram ordinates and the spectral density

and shows its convergence under the conditions stated in assumption A.4.

Theorem 1 Under assumptions A.1, A.2 and A.3, if (d̂− d0) = Op(AT ) then

E∗(I∗j ) = fx,j

{

1 +O

(

[

kT
T

]2
)

+Op

(

log |j + kT |
k
1/2
T

I(α=1/2) +
log1/2 |j + kT |

jkT
α I(α<1/2) +AT log T

)}

as T → ∞ uniformly in j = 1, 2, ...,m, m ≤ [T/2]. Additionally, under assumption A,4 and

if AT = o(log−1 T ) then E∗(I∗j )
p−→ fx,j.

Theorem 1 shows that the FDLB is successful in replicating the mean of the periodogram.

In order to analyse further the distributional similarities between I∗j and Ij we use the

Mallows distance between the bootstrap distribution and the true distribution. Consider

the set of distribution functions F2 such that if F ∈ F2 then
∫∞
−∞ |x|2dF (x) < ∞. The

Mallows distance between two distributions F,G ∈ F2 is defined as

d2(F,G) = inf
{

E|X − Y |2
}1/2

where the infimum is taken over all real-valued random variables X and Y with marginal

distributions F and G respectively. In what follows we also write d2(X,Y ) for d2(F,G)

when there is no confusion. Note that convergence in probability of the Mallows distance

to zero implies convergence in distribution and convergence of the first two moments (see

Lemma 8.3 9 in Bickel and Freedman, 1981).

Theorem 1 applies for every Fourier frequency in (0, π]. We focus hereafter on frequencies

close to the origin and bound the Mallows distance between I∗j and Ij for j = 1, ...,m, such

that m/T → 0 as T → ∞. In particular assumption A.4 is strengthen as follows:

A.5: As T → ∞
1

m
+

logm

k
1/2
T

+
m

T
+
kT
T

→ 0.

The restrictions in m imposed by Assumption A.5 entail that only a degenerating band

of Fourier frequencies close to zero can be considered. This rules out the possibility of

extending the analysis to important class of statistics such as spectral mean estimators

(e.g. sample autocovariances) or ratio statistics (e.g. sample autocorrelations), which are

functions of the whole band of Fourier frequencies in (0, π). However, frequencies close to

the spectral pole contain relevant information to analyse the persistence of the series and

important statistics are functions of the periodogram at those frequencies, some of them are

analysed in Section 4.
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Denote by L(X) the probability distribution function of a variable X and let the lo-

cally standardised periodogram be defined as v0j = Ijλ
2d0
j . Theorem 2 bounds the Mallows

distance between the distributions of v̂∗j and v0j .

Theorem 2 Under assumptions A.1-A.3 and A.5, if (d̂− d0) = op(log
−1 T ), then as T →

∞,

d2[L(v̂∗j |x1, ..., xT ),L(v0j )] = op(1) +Op

(

log1/2(kT + j)

jα

)

for j = 1, ...,m.

A straightforward corollary of Theorem 2 is the bound for the Mallows distance between

the distributions of I∗j and Ij :

Corollary 1 Under the assumptions in Theorem 2

d2[L(I∗j |x1, ..., xT ),L(Ij)] = op(λ
−2d0
j ) +Op

(

λ−2d0
j

log1/2(kT + j)

jα

)

for I∗j = λ−2d̂
j v̂∗j and j = 1, ...,m.

4 Weighted averages of periodogram ordinates

Consider now weighted averages of periodogram ordinates of the form

Φm =
m
∑

j=1

ψjIj . (1)

These statistics are interesting per se or as part of more complicated statistics. Consider for

example the following two cases:

Average periodogram: Φm with ψj = T−12π is a discretely averaged periodogram based

on a degenerating band of frequencies around the spectral pole at the origin (Robinson, 1994,

and Lobato and Robinson, 1996). Under stationarity, it estimates the spectral distribution

function at λm. The average peridogram estimator of the memory parameter proposed by

Robinson (1994) is defined as a function of a ratio of discrete average periodograms.

Score of the Local Whittle function: The Local Whittle (LW) estimator of the mem-

ory parameter d0 is obtained by minimizing the function R(d) = log
(

m−1
∑

λ2dj Ij

)

−
m−12d

∑

log λj . Its asymptotic distribution is determined by the weak convergence of the

properly normalized score evaluated at d0:
√
m∂R(d0)/∂d

d−→ N(0, 4). Now
√
m∂R(d0)/∂d
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is asymptotically equivalent to Φm in (1) with ψj = 2m−1/2g−1
v (0)λ2d0j vj for vj = log j −

m−1
∑m

k=1 log k (see Robinson, 1995, for the stationary case and Velasco, 1999, Phillips and

Shimotsu, 2004 or Shao and Wu, 2007, for the nonstationary one).

In these cases it is interesting to analyse if the FDLB can be used to approximate the

distributional characteristics of Φm. Theorem 3 offers a general bound for the Mallows

distance between the bootstrap distribution of Φ∗
m =

∑m
j=1 ψjI

∗
j and the distribution of Φm.

Theorem 3 Under assumptions A.1-A.3, A.5 and (d̂− d0) = Op(AT ), as T → ∞.

d22[L(Φ∗
m|x1, ..., xT ),L(Φm)] = Op

(

[

∑

|ψj |λ−2d0
j B(j, kT , T )

]2
)

+
∑

ψ2
jλ

−4d0
j

[

op(1) +Op

(

log(j + kT )

j2α

)

+ o(1) +O

(

log j

j2α

)]

+
∑

j

∑

l>j

ψjψlλ
−2d0
j λ−2d0

l O

(

log2m

j4α
+

log1/2m

j2αlα

)

where

B(j, kT , T ) = AT log T +
log(j + kT )

k
1/2
T

I(α=1/2) +
log1/2 |j + kT |

jkT
α I(α<1/2) +

k2T
T 2

+
j2

T 2
.

When ψj = T−12π and d0 < 1/2 the discrete average periodogram Φm is an estimator

of the spectral distribution function at λm, which can be used for example to estimate

the memory parameter in stationary long memory series (Robinson, 1994, and Lobato and

Robinson, 1996). The validity of the FDLB in this case is shown in the next corollary, which

is a direct application of Theorem 3 under the following additional assumption:

A.6: As T → ∞,
log(m+ kT )

kαT
+

log(m+ kT ) logm

mα
→ 0.

Corollary 2 Let ψj = T−12π. Under assumptions A.1-A.3, A.5, A.6 and (d̂ − d0) =

op(log
−1 T ) with d0 < 1/2, as T → ∞,

d22[L(Φ∗
m|x1, ..., xT ),L(Φm)] = op(1)

.

Note that Corollary 2 justifies the use of the FDLB to approximate the distributional

characteristics of Φm only when the long memory series is stationary, in which case Φm
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estimates the spectral distribution function at λm. This result can be used also to justify

the use of the FDLB to approximate the distribution of the average peridogram estimator of

the memory parameter, whose limiting distribution was obtained by Lobato and Robinson

(1996) for stationary long memory series.

The validity of the FDLB with the score of the LW function requires the following

assumption on kT and m:

A.7: As T → ∞,
√
m log(m+ kT ) logm

kαT
+

log(m+ kT ) log
2m

m2α
+

√
mk2T logm

T 2
→ 0.

Since α ≤ 1/2 assumption A.7 implies that
√

m/kT → 0 and thus jkT = kT in assump-

tion A.4. Note also that the condition m/kT → 0 in A.7 entails m5/2T−2 logm → 0, which

is the condition required in Robinson (1995) and Velasco (1999) for the asymtotic normality

of the normalized LW score.

Corollary 3 Let ψj = 2m−1/2g−1
v (0)λ2d0j vj for vj = log j − m−1

∑m
k=1 log k. Under as-

sumptions A.1-A.3, A.5, A.7 and (d̂ − d0) = op(m
−1/2 log−1 T log−1m) with d0 < 3/4, as

T → ∞,

d22[L(Φ∗
m|x1, ..., xT ),L(Φm)] = op(1).

Corollary 3 justifies the validity of the FDLB for the score of the LW function for

d0 < 3/4. Note that these are the values for which the score is asymptotically N(0, 4)

leading to an asymptotically normal distribution of the LW estimator. For d0 ≥ 3/4 the

score is not asymptotically normal leading to different asymptotic distributions of the LW

estimator (see Phillips and Shimotsu, 2004 or Shao and Wu, 2007).

The condition on the rate of convergence of the initial estimator d̂ is satisfied by many

semiparametric estimators such as the log-periodogram regression or the LW estimator.

Since these estimators are Op(
√
m1) for a bandwidth m1, the condition on the corollary

entails m
−1/2
1 m1/2 log T logm→ 0 as T → ∞, which implies that m1 should be larger than

m for large enough T .

5 FDLB in LW estimation: Finite sample performance

One of the main applications of the FDLB is the approximation of the distribution of

semiparametric estimators of the memory parameter based on the local behaviour of the
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spectral density at frequencies close to the spectral pole. Among all the existing techniques,

the LW estimator is one of the most popular due to its well known asymptotic properties

and excellent finite sample performance. The applicability of the FDLB strategy for the

LW estimator was theoretically discussed in the previous section. This section focuses on

its validity to approximate the finite sample distribution. Its performance is compared with

the following alternatives:

• The asymptotic distribution obtained by Robinson (1995) for stationary processes

and Velasco (1999) and Shao and Wu (2007) for type I non-stationary long memory

processes as those described in Assumption A.1. When −1/2 < d0 < 3/4 the LW

estimator d̂ is asymptotically normally distributed as

√
m(d̂− d0)

d→ N
(

0,
1

4

)

when the bandwidth m satisfies m−1 +m5n−4 log2m → 0 as T → ∞. Instead of the

variance (4m)−1 we consider the Hessian-based approximation
(

4
∑m

j=1

[

log λj −m−1
∑m

k=1 log λk
]2
)−1

, which has been shown to be significantly

closer to the true variance in finite samples (see Hurvich and Chen, 2000 and Arteche,

2006).

• The sieve bootstrap (SBS) proposed by Poskitt (2008), which is based on fitting an

AR model of a sufficiently large order. In practice, this order of the AR is selected

using AIC and the parameters estimated by Burg’s algorithm. Poskitt (2008) proves

the validity of this strategy with weak dependent and fractionally integrated processes

with d0 < 1/2.

• The prefiletered sieve bootstrap (PFSBS) proposed by Poskitt et al. (2015). This

strategy is based on “de-colouring” the original series using the filter (1−L)d̂ where d̂

is a consistent estimator of d0. The SBS is then applied to the filtered series and the

final bootstrap samples obtained by fractional integration. Poskitt et al. (2015) prove

its validity for fractionally integrated processes with d0 < 1/2, obtaining a faster

convergence of the bootstrap distribution than the SBS. Kapetanios et al. (2019)

extend this results to non-stationary type II fractional integration. We analyse here

its performance in type I long memory.

• The prefiltered spectral-density-driven bootstrap (PFSDDB) based on applying the

spectral-density-driven bootstrap proposed by Krampe et al. (2018) to the fractionally

differenced series (1 − L)d̂Xt. Kapetanios et al. (2019) justify this strategy for type

II fractionally integrated series and recommend it over other alternatives such as the
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block bootstrap based on its finite sample performance. We extend here the analysis

to type I long memory.

The comparison is based on the results obtained in 1000 ARFIMA(1,d0,0) series of the

form

(1− φL)(1− L)d0Xt = ut, t = 1, 2, ..T, (2)

for −1/2 < d0 < 1/2, where the ut are standard independent normal. For d0 ≥ 1/2 the

series is obtained as described in Assumption A.1 by integration of an ARFIMA(1, d0−1, 0)

process. Two values of the autoregressive parameter φ = 0 and φ = 0.6 are considered.

FDLB, PFSDDB and PFSBS are based on a preliminary estimation of d0 obtained by LW

with an initial bandwidth m1.

A simple illustration of the performance of the bootstrap to approximate the finite

sample distribution of the LW estimator is offered in Figure 1. It shows kernel estimates

of the probability density function of d̂ − d0 obtained with 1000 LW estimates of d0 (true

density) together with density estimates of d̂b − d̂ obtained with b = 1, ..., 1000 bootstrap

replicates in four series with T = 64 and T = 128. The PFSDDB is not included for the

sake of visual presentation and because its performance is similar to the PFSBS, as shown

below. The series are generated from the model in equation (2) with φ = 0 and d0 = 0.4, 0.7

and the LW estimates are obtained with m = 8 for T = 64 and m = 15 for T = 128. The

same values m1 = m have been used for the initial estimate in the PFSBS and the FDLB.

Note that this m1 does not satisfy the condition in Corollary 3 but, according to the Monte

Carlo below, this is a valid option. The resampling width used in the FDLB is kT = 10 for

T = 64 and kT = 20 for T = 128.

Figure 1 shows that the three bootstrap strategies can be effective to approximate the

distribution of the LW estimator, the FDLB offering better approximations than the PFSBS

and the SBS, at least for the four series considered. In order to give a more general picture

not only based on four individual realizations, two different comparative global measures are

considered: the root mean squared deviation of the bootstrap probability density function

to the true (obtained with Monte Carlo) density, and the coverage frequencies of confidence

intervals obtained with the asymptotic distribution and the bootstrap estimates in different

models. Both measures are obtained with R = 1000 simulations of fractional Gaussian

noises with memory parameters d0 = −04, 0.4 and 0.7.

The root mean squared deviation is defined as

RMSD(boot) =

√

√

√

√

1

R

R
∑

j=1

(

pboot(d̂j − d0)− pmc(d̂j − d0)
)2
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Figure 1: True and bootstrap distributions

(a) d0 = 0.4, T = 64, m = 8, m1 = 8, kT = 10
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(b) d0 = 0.4, T = 128, m = 15, m1 = 15, kT = 20
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(c) d0 = 0.7, T = 64, m = 8, m1 = 8, kT = 10
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(d) d0 = 0.7, T = 128, m = 15, m1 = 15, kT = 20
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Note: Monte Carlo (1000 replications) and bootstrap (1000 bootstrap samples) distributions for

(1− L)d0Xt = ut, t = 1, ...T , ut ∼ N (0, 1).

where boot represents one of the bootstrap strategies discussed above, R is the number of

simulations, pmc(d̂j − d0) is the ordinate of a kernel based density estimate obtained with

the R estimates d̂k − d0, k = 1, ..., R evaluated at d̂j − d0 and pboot(d̂j − d0) is the average

over the R simulations of the ordinates of kernel density estimates obtained using the B

bootstrap estimates d̂bj − d̂j , b = 1, ..., B evaluated at d̂j − d0. The numbers in Table 1 are

ratios of the RMSD(PFSBS), RMSD(PFSDDB) and RMSD(FDLB) over RMSD(SBS) for

φ = 0, hence a value less than one indicates a better fit of the bootstrap in the numerator

than the SBS. In general the PFSBS, the PFSDDB and the FDLB offer better fits than the

SBS, and only in very few cases the ratio is larger than one, mainly when the bandwidth in

the initial estimate of d0 used to pre-filter (m1) is lower than the bandwidth employed in
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the final estimate (m). A value m1 ≥ m is generally a wiser option, which is in agreement

with the condition in Corollary 3. In 9 out of the 18 cases the FDLB with an appropriate

combination of m1 and kT gives the lowest ratio, whereas in the other 9 the PFSDDB is the

best option. As a rule m1 should be close to but larger than m. Regarding the selection

of kT , no definitive suggestion can be extracted from Table 1. The only conclusion that

seems clear is that a large kT is significantly more harmful than a lower one when m1 < m.

However, when m1 ≥ m a larger kT leads to better results.

Tables 2, 3 and 4 show coverage frequencies and average widths of confidence intervals

obtained with R = 1000 replications of fractional Gaussian noises with memory parameters

d0 = −04, 0.4 and 0.7 respectively, which are values covered by the theoretical results in the

previous section. Note however that the theoretical validity of the SBS and PFSB was not

originally discussed for nonstationary long memory series as those obtained with d = 0.7.

It was only recently when Kapetanios et al. (2019) prove that prefiltering is a valid option

also for nonstationary long memory as long as a consistent estimator of d exists, but their

results only apply to type II long memory processes instead of type I long memory as the

processes considered here.

Tables 2-4 show that the asymptotic distribution tends to lead to under-coverage, al-

though the use of the Hessian-based approximation significantly enlarges the confidence

intervals and improves the coverage (see Arteche and Orbe, 2016). The different bootstrap

strategies tend to improve the coverages, with the FDLB leading in 13 out of 18 times to

the closest-to-nominal coverage for some of the values of m1 and kT , even with narrower

intervals. In general, increasing kT leads to higher coverages with wider intervals, with some

over-coverages. As a rule a larger kT leads to better results for large values of d0, which is

in agreement with the condition in assumption A.7 for the evolution of kT . The selection

of m1 is also important. Those cases with m1 < m tends to lead to under-coverage. This

is in agreement with the condition imposed in the rate of convergence of the estimator of

d0 used to locally studentise the periodogram in Corollary 3, according to which it should

converge faster than m−1/2. It also agrees with the results concerning the RMSD in Table

1, which shows that m1 ≥ m is a wise choice not only for the FDLB but also for the the

PFSBS and PFSDDB.

All the results shown so far come from fractional noises with no additional weak de-

pendence. The conclusions with an ARFIMA(1,d,0) with φ = 0.6 are somewhat similar, as

shown in the results in Appendix B. The FDLB offers now the lowest RMSD in 10 out of

18 cases and the closest coverage to the nominal 95% in 13 out of 18. The main difference

with respect to the results with fractional noises is the twofold biasing effect caused by
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Table 1: Ratio of RMSD: ARFIMA(0,d0,0)

d0 = −0.4, T = 64
m = 3 m = 8 m = 15

m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15
PFSBS 0.593 0.684 0.707 0.888 0.369 0.713 0.899 0.653 0.403
PFSDDB 0.608 0.722 0.761 1.191 0.270 0.729 1.524 1.025 0.300

FDLB (kT = 3) 1.748 0.577 0.702 0.417 0.589 0.309 0.372 0.653 0.649
FDLB (kT = 5) 1.431 0.615 0.641 0.778 0.447 0.307 0.599 0.469 0.468
FDLB (kT = 10) 0.996 0.591 0.641 1.476 0.330 0.640 1.738 0.547 0.375
FDLB (kT = 25) 0.783 0.640 0.680 1.681 0.266 0.636 2.410 1.199 0.325

d0 = −0.4, T = 128
m = 5 m = 15 m = 30

m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30
PFSBS 0.276 0.629 0.677 0.609 0.219 0.483 0.738 0.622 0.456
PFSDDB 0.230 0.629 0.676 0.882 0.171 0.489 1.440 0.867 0.338

FDLB (kT = 5) 0.515 0.386 0.427 0.332 0.354 0.252 0.646 0.838 0.797
FDLB (kT = 10) 0.351 0.437 0.514 0.709 0.291 0.353 0.712 0.736 0.637
FDLB (kT = 20) 0.268 0.519 0.578 1.146 0.276 0.482 1.737 0.665 0.572
FDLB (kT = 50) 0.324 0.612 0.640 1.246 0.255 0.456 2.332 1.041 0.563

d0 = 0.4, T = 64
m = 3 m = 8 m = 15

m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15
PFSBS 0.501 0.962 0.975 0.951 0.349 0.705 1.440 0.838 0.386
PFSDDB 0.350 1.003 1.079 1.249 0.275 0.737 2.208 1.403 0.256

FDLB (kT = 3) 2.224 0.634 0.578 0.317 0.535 0.251 0.382 0.695 0.735
FDLB (kT = 5) 1.581 0.560 0.645 0.792 0.403 0.299 0.707 0.356 0.501
FDLB (kT = 10) 0.656 0.633 0.764 1.483 0.277 0.646 2.191 0.577 0.326
FDLB (kT = 25) 0.349 0.898 0.934 1.697 0.255 0.666 3.050 1.467 0.263

d0 = 0.4, T = 128
m = 5 m = 15 m = 30

m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30
PFSBS 0.293 0.790 0.832 0.797 0.178 0.542 1.314 0.847 0.399
PFSDDB 0.231 0.793 0.842 1.154 0.199 0.555 2.251 1.456 0.379
FDLB (kT = 5) 0.475 0.498 0.548 0.341 0.450 0.311 0.329 0.556 0.559
FDLB (kT = 10) 0.189 0.569 0.659 0.835 0.330 0.373 0.847 0.335 0.316

FDLB (kT = 20) 0.298 0.678 0.735 1.407 0.312 0.562 2.520 0.726 0.359
FDLB (kT = 50) 0.446 0.784 0.803 1.507 0.270 0.546 3.331 1.561 0.468

d0 = 0.7, T = 64
m = 3 m = 8 m = 15

m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15
PFSBS 0.589 0.730 0.793 0.763 0.463 0.770 1.369 0.915 0.573
PFSDDB 0.563 0.731 0.789 1.028 0.343 0.737 1.983 1.326 0.374

FDLB (kT = 3) 1.195 0.406 0.442 0.369 0.453 0.315 0.399 0.636 0.637
FDLB (kT = 5) 0.843 0.493 0.568 0.812 0.344 0.441 0.740 0.421 0.405
FDLB (kT = 10) 0.456 0.585 0.648 1.430 0.285 0.705 2.088 0.706 0.396
FDLB (kT = 25) 0.430 0.749 0.752 1.624 0.380 0.732 2.873 1.477 0.486

d0 = 0.7, T = 128
m = 5 m = 15 m = 30

m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30
PFSBS 0.292 0.704 0.737 1.000 0.204 0.684 1.952 1.210 0.592
PFSDDB 0.250 0.706 0.743 1.343 0.141 0.651 3.115 1.812 0.439

FDLB (kT = 5) 0.327 0.499 0.516 0.381 0.519 0.349 0.657 1.028 1.036
FDLB (kT = 10) 0.155 0.538 0.582 1.090 0.399 0.427 1.122 0.791 0.742
FDLB (kT = 20) 0.276 0.641 0.671 1.806 0.394 0.698 3.282 1.054 0.894
FDLB (kT = 50) 0.419 0.742 0.744 1.931 0.379 0.713 4.420 2.040 1.057

Note: The numbers in each cell show the ratio of RMSD obtained with the different bootstrap
strategies with respect to the sieve. In bold the lowest ratio for every m.

15



the short memory component for large bandwidths. First, a large m induces a bias in the

estimation of d0 that deteriorates the coverage of all the confidence intervals, using both

the asymptotic distribution and the bootstrap approximations. Second, a large m1 worsens

the initial estimation of d0 used in the de-colouring step, which in turn causes a deterio-

ration in the PFSDDB, PFSBS and FDLB approximations of the LW distribution. This

implies that m1 ≥ m is not always beneficial because the bias in the initial estimate of d0

may significantly deteriorate the performance of the filtered approaches. In any case the

bootstrap significantly improves the coverage over the asymptotic distribution, in a much

greater degree than in the case of fractional noise. This improvement is more evident with

the FDLB, where the coverage can go from less than 10% using the asymptotic distribution

to more than 60% using the FDLB (see Tables 6-8 in Appendix B).

6 Conclusion

Pre-filtering either in the time domain, as in the PFSBS or the PFSDDB, or in the frequency

domain, as in the FDLB, is shown to be a beneficial strategy prior to resampling. The SBS

has instead the advantage of being fully automatic because the order of the autoregression

can be selected by widely accepted strategies, for example minimising some information

criteria as the AIC. The pre-filtered approaches require the intervention of the user to select

m1 and the FDLB needs in addition a prior selection of kT . However, a combination of m1

and kT can be found for which the FDLB performs better than the SBS and in many cases

also better than the PFSBS and the PFSDDB. According to the results obtained in the

Monte Carlo analysis, selecting m1 close to (but larger than) m seems a sensible option, at

least when there is not a significant short memory component. As far as the selection of kT

is concerned, the Monte Carlo results show that a too large kT leads to over-coverage when

m is small but a too small kT leads to under-coverage when m is large. A sensible option, at

least in terms of coverage, is then to select a value of kT slightly larger than m but low when

m is small and large for bigger m. However a more rigorous analysis is necessary before

offering general advices on the choice of both m1 and kT and it is left for future research.
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FDLB (kT = 10) 1.000 1.000 1.000 0.914 0.966 0.985 0.863 0.913 0.940

(2.628) (2.533) (2.560) (1.392) (1.145) (1.109) (0.968) (0.708) (0.678)
FDLB (kT = 25) 1.000 1.000 1.000 0.980 0.979 0.994 0.656 0.863 0.945

(2.911) (2.815) (2.800) (1.534) (1.261) (1.195) (1.026) (0.781) (0.723)
T = 128

m = 5 m = 15 m = 30
m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30

Asymp. 0.921 0.921 0.921 0.925 0.925 0.925 0.921 0.921 0.921
(1.542) (1.542) (1.542) (0.670) (0.670) (0.670) (0.428) (0.428) (0.428)

SBS 0.995 0.995 0.995 0.924 0.924 0.924 0.948 0.948 0.948

(1.879) (1.879) (1.879) (0.753) (0.753) (0.753) (0.472) (0.472) (0.472)
PFSBS 0.994 0.998 0.997 0.905 0.966 0.988 0.889 0.921 0.947

(1.780) (1.838) (1.848) (0.727) (0.731) (0.736) (0.468) (0.465) (0.463)
PFSDDB 0.985 0.999 1.000 0.819 0.953 0.996 0.684 0.835 0.936

(1.779) (1.836) (1.848) (0.720) (0.727) (0.733) (0.455) (0.455) (0.458)
FDLB(kT = 5) 0.961 0.992 1.000 0.899 0.900 0.935 0.894 0.881 0.887

(1.540) (1.563) (1.596) (0.669) (0.649) (0.653) (0.426) (0.401) (0.403)
FDLB(kT = 10) 0.984 0.999 1.000 0.885 0.947 0.982 0.892 0.900 0.903

(1.759) (1.669) (1.714) (0.773) (0.668) (0.673) (0.481) (0.413) (0.418)
FDLB(kT = 20) 1.000 1.000 1.000 0.781 0.956 0.989 0.718 0.903 0.946

(1.921) (1.779) (1.781) (0.847) (0.700) (0.688) (0.545) (0.437) (0.429)
FDLB(kT = 50) 1.000 1.000 1.000 0.834 0.961 0.993 0.508 0.818 0.931

(2.063) (1.888) (1.861) (0.930) (0.759) (0.731) (0.600) (0.469) (0.453)
Note: The first number in each cell is the coverage frequency obtained with 1000 replications. The
number between round brackets is the average width of the confidence intervals. In bold the closest

coverage to 0.95 nominal coverage for every m.
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A Appendix: Proofs of the theorems

Proof of Theorem 1:

E∗(I∗j ) =
∑

i∈∆T

piλ
−2d̂
j v̂j+i =

∑

i∈∆T

pi

∣

∣

∣

∣

1 +
i

j

∣

∣

∣

∣

2d̂

Ij+i (A.1)

and

∑

i∈∆T
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j
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∣

2d̂

Ij+i − fx,j = λ−2d0
j
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pi|λj + λi|2d0Ij+i − fx,j (A.2)

+
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∣

2(d̂−d0)

− 1

}

(A.3)

Now the right hand side of (A.2) is equal to

λ−2d0
j

∑

i∈∆T

pi|λj + λi|2d0(Ij+i − fx,j+i) + λ−2d0
j

∑

i∈∆T

pi|λj + λi|2d0fx,j+i − fx,j (A.4)

By assumption A.2 the second summand in (A.4) is bounded by

λ−2d0
j

∑

i∈∆T

pi
λ2i
2

max
λi≤λ≤λj+λi

|g′′x(λ)| = O
(

λ−2d0
j (

∑

p2i )
1/2(

∑

λ4i )
1/2
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j k

−1/2
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k
5/2
T

T 2

)

= O

(

λ−2d0
j

(

kT
T

)2
)

by assumption A.3, where gx(λ) = gv(λ) if d0 < 1/2 and gx(λ) = gv(λ)|2λ−1 sin(λ/2)|−2 if

d0 ≥ 1/2. Now the first summand in (A.4) is equal to

λ−2d0
j

∑

i∈∆T

pi|λj +λi|2d0(Ij+i−|αj+i|2Iε,j+i)+λ
−2d0
j
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pi|λj +λi|2d0(|αj+i|2Iε,j+i− fx,j+i)

(A.5)
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where αj+i = α(λj+i) for α(λ) =
∑∞

k=0 bke
ikλ in the stationary case and α(λ) = (1 −

eiλ)−1
∑∞

k=0 bke
ikλ if d0 ≥ 1/2. Using (3.17) in Robinson (1995) and formula (A1) in Velasco

(1999) for the nonstationary case we get that the first term in (A.5) is
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if j/kT → 0, and in any other case, using Lemma 1 below, (A.6) is
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such that the first term in (A.5) is

Op

(

λ−2d0
j
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log |j + kT |
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I(α=1/2) +
log1/2 |j + kT |
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))

where jkT = kT if j/kT → 0 and jkT = j otherwise.

Now the second term in (A.5) is equal to

λ−2d0
j

∑

i∈∆T

pigx(λj + λi)(2πIε,j+i − 1)

22



which has mean zero and variance
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by for example, Proposition 10.3.2 in Brockwell and Davis (2006).

Finally, in order to get a bound for (A.3) consider the case kT > j (when kT ≤ j the

analysis is similar but there is not need to split ∆T in two sets, before and after −j). Then
(A.3) is equal to
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Proof of Theorem 2: Let v̄∗j = G2πĪεj where G = gv(0) and Īεj takes values from

the set {Iεj+i}i∈∆T
with probability pi. For simplicity of notation denote d2(v̂

∗
j , v

0
j ) =
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uniformly in j. Now
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Taking into account that E

∣

∣

∣

∣

Ij+i

Gλ
−2d0
j+i

∣

∣

∣

∣

< constant for j = 1, ...,m (see Robinson, 1995,

formula (3.16) for the stationary case and Velasco, 1999, formula (A1) for nonstationary

series) and that (d̂− d0) = op(log
−1 T ) then
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Now
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and by assumptions A.1, A.2 and formulae (3.17) and (A2) in Robinson (1995) and Velasco

(1995) respectively
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such that using Cauchy–Schwarz inequality and assumption A.3,

d22(v̂
∗
j , v̄

∗
j ) = Op





∑

i∈∆T

pi
[

λ4j+i + |j + i|−2α log |j + i|
]



+ op(1)

= op(1) +Op

(

k
−1/2
T

[

(j + kT )
4

T 4
k
1/2
T + j−2αk

1/2
T log |j + kT |

])

= op(1) +Op

(

j−2α log |j + kT |
)

where the op(1) term holds uniformly in j = 1, ...,m and the Op() term comes from the

bound in Lemma 1.
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for v̄j = G2πIεj and v̄+j = GKj where Kj are independent standard exponentially dis-

tributed variables. By Lemma A.1 in Paparoditis and Politis (1999) and using the conver-

gence of Iεj to the exponential distribution and Lemma 8.3 in Bickel and Freedman (1981),
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and using (A.7), assumptions A.2 and A.4, formula (3.16) in Robinson (1995), formula (A1)

in Velasco (1999),
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0
j ) = o(1) +O
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because using the results in Robinson (1995), pages 1648-1651 (for the stationary case) and

the proof of Lemma 1 in Velasco (1999) (for nonstationary series), E|Ij/fx,j − 2πIεj |2 =

O(j−2a log j).
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Proof of Corollary 1: Let Ī∗j = λ−2d0
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Proof of Theorem 3: For simplicity of notation denote d2(Φ
∗
m,Φm) =

d2[L(Φ∗
m|x1, ..., xT ),L(Φm)]. Consider also the following statistics:
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using Minkowski inequality and the facts that (d0−d̂) = Op(AT ) and E
∗|v̂∗j |2 =

∑

i∈∆T
pi|v̂j+i|2 =

Op(1).
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The inequality is based on Minkowsky inequality and the bound in probability is because
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by Theorem 1 and assumption A.2.
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by the uniform convergence of 2πIεj to a standard exponential, E(2πIεj) = 1 and V ar(2πIεj) =

1.

Finally d22(Φ̄m,Φm) is bounded by
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using the results in Robinson (1995), pages 1648-1651, for the stationary case and page 118

in Velasco (1999) for the non-stationary one.
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Proof of Corollary 3: The proof is a direct application of the results of Theorem 3

noting that
∑

ψ2
jλ

−4d0
j =

4

mgv(0)

∑

v2j → 4

mgv(0)

because
∑

v2j = 1 + o(1). The only modification required is in the bound of d22(Φ̄m,Φm),

which can be strengthened in this case as follows. Note that d22(Φ̄m,Φm) is bounded by

E

{

∑

ψjλ
−2d0
j G

(

Ij

Gλ−2d0
j

− 2πIεj

)}2

= E
{

∑

ψjλ
−2d0
j G (A1j +A2j)

}2
for A1j =

Ij

Gλ−2d0
j

− Ij
fj

and A2j =
Ij
fj

− 2πIεj

Now E
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j GA1j

)2
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= O





1
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j
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= O

(

m4

T 4
log2m+

m5

T 4
log2m

)

= o(1)
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under assumption A.7, using

E
(

A2
1j

)

=

(

1−
Gλ−2d0

j

fj

)2

E

∣

∣

∣
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2
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and

E (A1jA1l) =
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fl
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l
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= O(1)

using the results in Robinson (1995, pages 1648-51) and the details in the proof of Lemma

1 in Velasco (1999).

Next
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 . (A.8)

Using Minkowski inequality, the first bound in (A.8) is
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because E(A2
2j) = O(j−2al log j) using the results in Robinson (1995), pages 1648-1651, for

the stationary case and page 118 in Velasco (1999) for the non-stationary one. Finally, using

summation by parts the second bound in (A.8) is
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 . (A.9)

Because |vr+1 − vr| = | log(1 + r−1)| ≤ r−1 and using Minkowski inequality the first bound

in (A.9) is

O









1

m











m−1
∑

r=
√
m+1

|vr − vr+1|



E

∣

∣

∣

∣

∣

∣

r
∑

i=
√
m+1

A2i

∣

∣

∣

∣

∣

∣

2



1/2










2








O









1

m











m−1
∑

r=
√
m+1

1

r



E

∣

∣

∣

∣

∣

∣

r
∑

i=
√
m+1

A2i

∣

∣

∣

∣

∣

∣

2



1/2










2








O





1

m







m−1
∑

r=
√
m+1

1

r
[a+ b]1/2







2

 (A.10)
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where a and b are as defined in Robinson (1995, page 1648) and Velasco (1999, page 118).

Using the results in both papers, (A.10) is
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under assumption A.7 if d0 < 3/4 such that α > 1/4. Finally the second bound in (A.9)
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Lemma 1 Let ∆T = {0,±1, , ...,±kT }\{−j}. If β > 0 then

∑

i∈∆T

|j + i|−β = O(log |kT + j|I(β≥1) + kT j
−β

I(β<1))

.

Proof: Consider first the case kT < j such that ∆T = {−kT , ..., kT }. Then, if kT /j → 0

as T → ∞,
kT
∑

i=−kT

|j + i|−β = j−β
kT
∑

i=−kT

∣

∣

∣

∣

1 +
i

j

∣

∣

∣

∣

−β

= j−βO(kT ).

If kT = bj for b < 1, then

kT
∑

i=−kT

|j + i|−β ≤ 3kT |j − kT |−β = O(j−βkT );

and if j − kT = constant > 0 then
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∑

i=j−kT
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)

.

Next, if kT = j then ∆T = {−kT + 1, ..., kT } and

kT
∑

i=−kT+1

|j + i|−β =

j+kT
∑

i=1

|i|−β = O
(

log |j + kT |I(β≥1) + kT j
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I(β<1)

)

.
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Finally, consider the case kT > j such that ∆T = {−kT , ...,−j − 1} ∪ {−j + 1, ..., kT }.
When j = bkT for b < 1 or kT − j = constant > 0, as before

kT
∑
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.
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B Appendix: Monte Carlo results in ARFIMA(1,d,0)

We complement the results in the Monte Carlo in Section 5 with an analogous analysis

applied to the ARFIMA model:

(1− 0.6L)(1− L)d0Xt = ut, t = 1, 2, ..T, (B.1)

where the ut are standard normal. For values of d0 ≥ 1/2 the series is obtained as described

in Assumption A.1 by integration of an ARFIMA(1, d0 − 1, 0) process. The number of

replications is 1000 and the memory parameters considered are d0 = −04, 0.4 and 0.7.
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Table 5: Ratio of RMSD: ARFIMA(1,d0,0), φ = 0.6

d0 = −0.4, T = 64
m = 3 m = 8 m = 15

m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15
PFSBS 0.596 0.887 1.043 1.133 1.163 0.879 0.971 1.030 1.030
PFSDDB 0.704 0.970 1.189 1.334 1.302 0.749 0.913 1.046 1.090
FDLB (kT = 3) 2.259 0.942 0.996 1.546 1.543 1.094 1.039 1.141 1.114
FDLB (kT = 5) 1.895 0.861 1.048 1.448 1.438 0.799 0.998 1.125 1.098
FDLB (kT = 10) 1.292 0.838 1.085 1.552 1.383 0.660 0.948 1.071 1.074
FDLB (kT = 25) 0.983 0.985 1.159 1.587 1.380 0.746 0.963 1.045 1.089

d0 = −0.4, T = 128
m = 5 m = 15 m = 30

m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30
PFSBS 0.242 0.789 1.004 1.599 1.533 0.936 1.008 1.025 1.010
PFSDDB 0.207 0.805 1.080 1.714 1.861 0.744 0.958 1.035 1.034
FDLB (kT = 5) 0.673 0.510 0.739 2.102 2.012 1.357 1.012 1.042 1.033
FDLB (kT = 10) 0.505 0.611 0.941 1.878 1.850 0.821 0.988 1.042 1.027
FDLB (kT = 20) 0.513 0.713 1.012 1.995 1.869 0.699 0.966 1.035 1.022
FDLB (kT = 50) 0.797 0.933 1.075 1.998 1.878 0.788 0.965 1.032 1.034

d0 = 0.4, T = 64
m = 3 m = 8 m = 15

m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15
PFSBS 0.572 0.885 0.977 0.694 0.715 0.520 0.920 0.944 0.940
PFSDDB 0.487 0.913 1.064 0.807 0.874 0.450 0.878 1.004 1.037
FDLB (kT = 3) 1.795 0.460 0.484 1.014 0.998 0.704 0.987 1.089 1.058
FDLB (kT = 5) 1.304 0.480 0.670 0.958 0.935 0.529 0.949 1.073 1.042
FDLB (kT = 10) 0.692 0.629 0.787 1.027 0.901 0.449 0.917 1.020 1.025
FDLB (kT = 25) 0.716 0.950 0.970 1.059 0.919 0.506 0.940 1.003 1.054

d0 = 0.4, T = 128
m = 5 m = 15 m = 30

m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30
PFSBS 0.171 0.978 1.310 0.763 0.693 0.395 0.965 0.991 0.972
PFSDDB 0.132 0.993 1.376 0.858 0.893 0.339 0.921 1.013 1.014
FDLB (kT = 5) 0.687 0.639 0.952 1.072 1.011 0.683 0.990 1.027 1.017
FDLB (kT = 10) 0.313 0.776 1.191 0.982 0.932 0.425 0.964 1.028 1.012
FDLB (kT = 20) 0.427 0.891 1.269 1.059 0.953 0.374 0.947 1.020 1.008
FDLB (kT = 50) 0.854 1.078 1.310 1.061 0.980 0.416 0.949 1.016 1.025

d0 = 0.7, T = 64
m = 3 m = 8 m = 15

m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15
PFSBS 0.694 0.800 0.886 0.918 0.868 0.728 1.026 1.018 1.013
PFSDDB 0.681 0.846 0.954 0.946 0.963 0.687 1.028 1.097 1.109
FDLB (kT = 3) 2.149 0.589 0.597 1.033 1.007 0.779 1.058 1.169 1.134
FDLB (kT = 5) 1.563 0.584 0.724 0.970 0.958 0.628 1.012 1.150 1.114
FDLB (kT = 10) 0.885 0.671 0.811 1.044 0.943 0.570 0.973 1.091 1.108
FDLB (kT = 25) 0.788 0.877 0.899 1.064 0.973 0.618 1.005 1.053 1.157

d0 = 0.7, T = 128
m = 5 m = 15 m = 30

m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30
PFSBS 0.359 0.841 1.022 0.843 0.785 0.595 0.995 1.000 0.994
PFSDDB 0.353 0.854 1.065 0.878 0.937 0.555 0.986 1.036 1.047
FDLB (kT = 5) 0.520 0.591 0.791 1.051 1.006 0.755 1.030 1.068 1.055
FDLB (kT = 10) 0.266 0.702 1.002 0.945 0.938 0.520 0.995 1.065 1.047
FDLB (kT = 20) 0.396 0.804 1.075 0.979 0.963 0.446 0.966 1.051 1.044
FDLB (kT = 50) 0.653 0.926 1.098 0.987 1.010 0.511 0.970 1.045 1.067

Note: The numbers in each cell show the ratio of RMSD obtained with the different bootstrap
strategies with respect to the sieve. In bold the lowest ratio for every m.
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Table 6: Coverages and widths of confidence intervals: ARFIMA(1,-0.4,0), φ = 0.6

T = 64
m = 3 m = 8 m = 15

m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15
Asymp. 0.947 0.947 0.947 0.820 0.820 0.820 0.317 0.317 0.317

(2.495) (2.495) (2.495) (1.053) (1.053) (1.053) (0.670) (0.670) (0.670)
SBS 1.000 1.000 1.000 0.985 0.985 0.985 0.450 0.450 0.450

(2.689) (2.689) (2.689) (1.239) (1.239) (1.239) (0.774) (0.774) (0.774)
PFSBS 0.982 0.998 1.000 0.889 0.951 0.932 0.532 0.491 0.409

(2.469) (2.597) (2.721) (1.238) (1.239) (1.235) (0.793) (0.777) (0.768)
PFSDDB 0.981 1.000 1.000 0.817 0.938 0.921 0.583 0.654 0.467

(2.475) (2.642) (2.789) (1.250) (1.216) (1.214) (0.801) (0.747) (0.739)
FDLB (kT = 3) 0.939 0.960 0.967 0.775 0.768 0.737 0.393 0.391 0.362

(1.967) (2.073) (2.251) (1.119) (1.026) (1.061) (0.762) (0.652) (0.670)
FDLB (kT = 5) 0.982 0.980 0.987 0.811 0.817 0.760 0.520 0.459 0.364

(2.222) (2.207) (2.410) (1.290) (1.086) (1.113) (0.886) (0.682) (0.689)
FDLB (kT = 10) 1.000 1.000 0.999 0.820 0.879 0.766 0.624 0.554 0.342

(2.522) (2.450) (2.562) (1.406) (1.174) (1.144) (1.047) (0.755) (0.704)
FDLB (kT = 25) 1.000 1.000 1.000 0.812 0.913 0.866 0.677 0.687 0.455

(2.883) (2.735) (2.762) (1.628) (1.373) (1.246) (1.094) (0.870) (0.760)
T = 128

m = 5 m = 15 m = 30
m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30

Asymp. 0.899 0.899 0.899 0.735 0.735 0.735 0.067 0.067 0.067
(1.542) (1.542) (1.542) (0.670) (0.670) (0.670) (0.428) (0.428) (0.428)

SBS 1.000 1.000 1.000 0.532 0.532 0.532 0.072 0.072 0.072
(1.862) (1.862) (1.862) (0.742) (0.742) (0.742) (0.467) (0.467) (0.467)

PFSBS 0.991 1.000 1.000 0.852 0.808 0.559 0.126 0.101 0.084
(1.784) (1.850) (1.864) (0.757) (0.743) (0.742) (0.489) (0.472) (0.467)

PFSDDB 0.975 1.000 1.000 0.785 0.851 0.547 0.222 0.275 0.053
(1.764) (1.858) (1.876) (0.765) (0.738) (0.735) (0.493) (0.461) (0.455)

FDLB(kT = 5) 0.962 0.976 0.975 0.763 0.735 0.675 0.138 0.114 0.089
(1.516) (1.601) (1.747) (0.717) (0.684) (0.715) (0.484) (0.434) (0.448)

FDLB(kT = 10) 0.984 0.995 0.995 0.770 0.745 0.561 0.321 0.172 0.069
(1.708) (1.702) (1.852) (0.831) (0.706) (0.730) (0.557) (0.449) (0.456)

FDLB(kT = 20) 1.000 1.000 1.000 0.730 0.794 0.466 0.554 0.348 0.049
(1.900) (1.814) (1.872) (0.893) (0.749) (0.737) (0.659) (0.488) (0.457)

FDLB(kT = 50) 0.999 1.000 1.000 0.802 0.871 0.592 0.648 0.608 0.138
(2.220) (2.041) (1.951) (1.098) (0.892) (0.778) (0.730) (0.563) (0.485)

Note: The first number in each cell is the coverage frequency obtained with 1000 replications. The
number between round brackets is the average width of the confidence intervals. In bold the closest

coverage to 0.95 nominal coverage for every m.
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Table 7: Coverages and widths of confidence intervals: ARFIMA(1,0.4,0), φ = 0.6

T = 64
m = 3 m = 8 m = 15

m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15
Asymp. 0.880 0.880 0.880 0.830 0.830 0.830 0.376 0.376 0.376

(2.495) (2.495) (2.495) (1.053) (1.053) (1.053) (0.670) (0.670) (0.670)
SBS 0.994 0.994 0.994 0.984 0.984 0.984 0.685 0.685 0.685

(2.929) (2.929) (2.929) (1.260) (1.260) (1.260) (0.796) (0.796) (0.796)
PFSBS 0.991 0.997 0.999 0.887 0.933 0.927 0.562 0.512 0.418

(2.672) (2.861) (2.827) (1.171) (1.207) (1.195) (0.757) (0.760) (0.742)
PFSDDB 0.998 1.000 0.999 0.789 0.921 0.915 0.558 0.687 0.529

(2.715) (2.882) (2.809) (1.205) (1.192) (1.178) (0.768) (0.733) (0.718)
FDLB (kT = 3) 0.933 0.960 0.971 0.786 0.775 0.776 0.441 0.434 0.401

(2.041) (2.061) (2.162) (1.163) (1.028) (1.061) (0.771) (0.643) (0.662)
FDLB (kT = 5) 0.979 0.979 0.988 0.835 0.826 0.797 0.578 0.492 0.420

(2.360) (2.217) (2.307) (1.361) (1.082) (1.109) (0.914) (0.673) (0.682)
FDLB (kT = 10) 0.999 0.999 0.997 0.832 0.892 0.827 0.661 0.600 0.418

(2.713) (2.568) (2.512) (1.516) (1.172) (1.135) (1.131) (0.743) (0.695)
FDLB (kT = 25) 1.000 1.000 1.000 0.851 0.934 0.913 0.676 0.697 0.543

(2.979) (2.887) (2.779) (1.790) (1.354) (1.216) (1.230) (0.837) (0.736)
T = 128

m = 5 m = 15 m = 30
m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30

Asymp. 0.891 0.891 0.891 0.752 0.752 0.752 0.092 0.092 0.092
(1.542) (1.542) (1.542) (0.670) (0.670) (0.670) (0.428) (0.428) (0.428)

SBS 0.995 0.995 0.995 0.944 0.944 0.944 0.177 0.177 0.177
(1.880) (1.880) (1.880) (0.765) (0.765) (0.765) (0.494) (0.494) (0.494)

PFSBS 0.972 0.998 1.000 0.831 0.813 0.584 0.174 0.123 0.082
(1.822) (1.855) (1.829) (0.748) (0.739) (0.733) (0.488) (0.471) (0.462)

PFSDDB 0.970 0.996 0.999 0.768 0.841 0.575 0.290 0.336 0.093
(1.831) (1.861) (1.835) (0.758) (0.736) (0.726) (0.493) (0.464) (0.453)

FDLB(kT = 5) 0.956 0.980 0.982 0.789 0.751 0.699 0.186 0.166 0.142
(1.614) (1.655) (1.762) (0.723) (0.684) (0.712) (0.484) (0.432) (0.445)

FDLB(kT = 10) 0.986 0.993 0.994 0.798 0.779 0.631 0.364 0.225 0.119
(1.865) (1.762) (1.851) (0.853) (0.704) (0.725) (0.560) (0.444) (0.450)

FDLB(kT = 20) 0.998 1.000 1.000 0.734 0.831 0.544 0.591 0.384 0.094
(2.124) (1.879) (1.871) (0.958) (0.746) (0.729) (0.676) (0.477) (0.451)

FDLB(kT = 50) 1.000 1.000 1.000 0.811 0.881 0.667 0.650 0.619 0.190
(2.424) (2.079) (1.912) (1.196) (0.848) (0.755) (0.785) (0.531) (0.465)

Note: The first number in each cell is the coverage frequency obtained with 1000 replications. The
number between round brackets is the average width of the confidence intervals. In bold the closest

coverage to 0.95 nominal coverage for every m.
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Table 8: Coverages and widths of confidence intervals: ARFIMA(1,0.7,0), φ = 0.6.

T = 64
m = 3 m = 8 m = 15

m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15 m1 = 3 m1 = 8 m1 = 15
Asymp. 0.928 0.928 0.928 0.852 0.852 0.852 0.509 0.509 0.509

(2.495) (2.495) (2.495) (1.053) (1.053) (1.053) (0.670) (0.670) (0.670)
SBS 0.987 0.987 0.987 0.987 0.987 0.987 0.855 0.855 0.855

(2.855) (2.855) (2.855) (1.245) (1.245) (1.245) (0.806) (0.806) (0.806)
PFSBS 0.986 0.998 1.000 0.909 0.958 0.984 0.674 0.665 0.607

(2.566) (2.635) (2.549) (1.151) (1.152) (1.132) (0.757) (0.730) (0.710)
PFSDDB 0.996 0.999 0.998 0.810 0.956 0.978 0.625 0.733 0.702

(2.613) (2.620) (2.514) (1.184) (1.131) (1.103) (0.769) (0.705) (0.679)
FDLB(kT = 3) 0.937 0.958 0.971 0.789 0.782 0.792 0.546 0.518 0.496

(1.963) (1.908) (1.962) (1.138) (0.992) (1.020) (0.731) (0.616) (0.630)
FDLB (kT = 5) 0.993 0.981 0.990 0.848 0.843 0.829 0.652 0.566 0.518

(2.298) (2.072) (2.119) (1.340) (1.048) (1.066) (0.875) (0.642) (0.650)
FDLB (kT = 10) 0.999 0.999 0.999 0.870 0.904 0.875 0.695 0.656 0.557

(2.622) (2.372) (2.301) (1.501) (1.117) (1.084) (1.110) (0.698) (0.658)
FDLB (kT = 25) 1.000 1.000 1.000 0.881 0.930 0.946 0.696 0.702 0.608

(2.796) (2.610) (2.474) (1.718) (1.223) (1.110) (1.202) (0.758) (0.675)
T = 128

m = 5 m = 15 m = 30
m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30

Asymp. 0.907 0.907 0.907 0.764 0.764 0.764 0.177 0.177 0.177
(1.542) (1.542) (1.542) (0.670) (0.670) (0.670) (0.428) (0.428) (0.428)

SBS 0.990 0.990 0.990 0.987 0.987 0.987 0.283 0.283 0.283
(1.850) (1.850) (1.850) (0.764) (0.764) (0.764) (0.505) (0.505) (0.505)

PFSBS 0.987 0.998 1.000 0.835 0.813 0.695 0.211 0.147 0.114
(1.757) (1.765) (1.701) (0.722) (0.701) (0.681) (0.477) (0.455) (0.443)

PFSDDB 0.985 0.997 0.999 0.782 0.848 0.712 0.299 0.336 0.156
(1.763) (1.758) (1.696) (0.738) (0.696) (0.669) (0.491) (0.443) (0.421)

FDLB(kT = 5) 0.958 0.980 0.983 0.782 0.740 0.709 0.248 0.218 0.189
(1.550) (1.565) (1.619) (0.689) (0.656) (0.679) (0.452) (0.409) (0.420)

FDLB(kT = 10) 0.989 0.995 0.997 0.810 0.767 0.652 0.414 0.260 0.184
(1.764) (1.649) (1.678) (0.810) (0.675) (0.692) (0.519) (0.420) (0.426)

FDLB(kT = 20) 0.999 1.000 0.999 0.740 0.810 0.622 0.613 0.406 0.169
(2.000) (1.746) (1.704) (0.902) (0.708) (0.695) (0.624) (0.448) (0.428)

FDLB(kT = 50) 1.000 1.000 1.000 0.801 0.844 0.690 0.624 0.579 0.247
(2.219) (1.878) (1.724) (1.088) (0.771) (0.702) (0.710) (0.481) (0.433)

Note: The first number in each cell is the coverage frequency obtained with 1000 replications. The
number between round brackets is the average width of the confidence intervals. In bold the closest

coverage to 0.95 nominal coverage for every m.
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