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Introduction and objectives

Physical cosmology is a field that combines physics and astronomy to study the fun-
damental properties of the universe, its origin and its evolution. One of its branches
deals with the large-scale structure (LSS) of the universe and its dynamics: from plan-
etary systems and galaxies to superclusters and beyond, modern observations show
that our universe is full with rich and varied structure, on every scale and in every direc-
tion.

Formany years, detailed data about LSSwas scarce, and as a consequence the field
remained a mostly qualitative line of research. However, the last few decades have
seen the rise of precision cosmology, with accurate measurements of the Cosmic Mi-
crowave Background (CMB) and systematic redshift surveys of galaxies, amongmany
other observations. These have given cosmologists the opportunity to test their mod-
els against actual measures, and at the same time they have highlighted the need for
accurate theoretical models that can explain the new observations. As a result, a ro-
bust paradigm has been developed: the standard model known as the Lambda-Cold
DarkMatter (ΛCDM) cosmology, which combines Einstein’s General Relativity with the
most recent observational evidence.

On the one hand, measurements of the CMB have shown that the primitive uni-
verse was extremely homogeneous, with fluctuations on the order of one part in ten
thousand. On the other hand, galaxy surveys indicate that at the present time the uni-
verse is dominated by compact structures, with large voids between them. These ob-
jects are called ”halos” and much of their mass is in the form of cold dark matter, a
mysterious substance whose presence can only be inferred from its gravitational ef-
fects. But then, how did the universe evolve from its initial homogeneity to this very
different configuration?

Thegrowthof LSS is therefore a very active areaof researchwithin physical cosmol-
ogy (Springel, Frenk, and S. D. M.White 2006). For early times after the Big Bang, when
the universewas very smooth, density fluctuations can be treatedwithin linear pertur-
bation theory. At the same time that the universe expanded from a very small initial
size, initially overdense regions of space became increasingly dense, while underden-
sities also became even less dense. At some point, the fluctuations became so large
that they cannot be treated as perturbations, and most matter clustered in collapsed
structures called halos.

For the early researchers of LSS, this nonlinear stage of evolution was only acces-
sible through analytical approximations. But in the last few decades, the steady ad-
vancement of computing technology has equipped researchers with a powerful new
tool in the form of numerical simulations. By discretizing the contents of the universe
into finite elements, they allow to study the dynamics and statistics of halo evolution,
and to generate semi-analytic fits that attempt to predict the structure of halos de-
pending on the values of the free parameters of the ΛCDMmodel.
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In the near future, gravitational lensing surveys will provide abundant information
about the internal structure of halos, and particularly their concentration parameter, c.
Comparing these observational results to the simulated halos will allow cosmologists
to further constrain the cosmological parameters and also test the viability of exten-
sions or alternatives to the current models.

Simulations, however, are not a perfect tool – they are subject to different kinds of
biases and artifacts. If a suite of simulations is to be used to develop a new fit, those
numerical effects have to be carefully accounted for to ensure the robustness of the
results.

This project was carried out as part of an internship at the Computational Cosmol-
ogy group of the Donostia International Physics Centre (DIPC). The main objectives
were:

• Studying the bibliography concerning theΛCDMcosmology and its physicalmo-
tivation.

• Understanding the physical processes that lead to the linear growth of cosmo-
logical structure, and their influence on the internal characteristics of collapsed
objects.

• Learninghowthenonlinearevolutionof thedensityfield is studied throughstate-
of-the-art numerical simulations.

• Testing the results of a suite of N-body simulations in several cosmologies, with
special attention to the effects ofmass, redshift and cosmological parameters on
halo concentration, as well as their numerical limitations.

The rest of this report is organized as follows. Chapters 1-4 follow each of the four
objectives, with the first three being largely theoretical and the last being dedicated to
the main results. After those, the conclusions of the project are presented, as well as
themainbibliographical references. AppendicesAandBcontainmathematical deriva-
tions deemed too long to be included in the main text; Appendices C and D contain
extra plots of some results; and Appendix E provides a list of all the symbols that are
used across the report’s notation. Footnotes through the text provide contextual infor-
mation that may be of interest to the non-specialized reader.
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Chapter 1

The smooth universe

This chapter consists of three sections. In thefirst one, somepreliminary definitions are
given that will be useful for developing the theoretical framework. Then, themetric of
the flat universe is briefly derived from first principles. Finally, in the third section the
physical motivation for the ΛCDM cosmological model is given, which serves as the
main framework for the subsequent chapters.

1.1 An expanding universe

In General Relativity there are no inertial reference systems, and therefore the concept
of ”observers at rest” does not exist. Still, there is a class of observers that ”move with
the flow” of the universe; for instance, themean velocity of galaxies is zero whenmea-
sured in their reference frames. These observers are called comoving observers.

Comoving coordinates

Letusconsideranexpandinguniverse. Amoreexactdefinitionof this is given inSection
1.2, but for now it is sufficient to know this means that, even if each of two comoving
observers can be said to be at a ”fixed” point in space, the distance between themwill
increase over time. In other words, observers that feel no movement relative to the
universe as a whole will still measure a relative velocity between them.

The usual way to capture this time-dependence is to define both a proper distance
r⃗ and a comoving distance x⃗. The proper distance between two points is the distance
measured the usual way; the comoving distance is the distance that would be mea-
sured between two comoving observers that were located at those points at a refer-
ence epoch, which is often taken to be the present day. The two are related by

r⃗(t) = a(t) · x⃗, (1.1)

where the dimensionless function a(t) is called the scale factor and measures the ex-
pansion of the universe. It is customarily normalized to its present value: a(t0) = 1, so
that the comoving distance between two objects is equal to the current proper dis-
tance.

To put it another, perhapsmore intuitiveway: we can think of the universe as a grid
where each cell is a comoving observer. The comoving distance between two points
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is the number of cells between them, while the proper distance is the number of cells
multiplied by the (time-dependent) size of the cells.

We shall now, for the sake of clarity, drop vector notation andworkwith themoduli.
Differentiating with respect to time the proper distance x between two observers, we
get two velocity terms:

˙⃗x ≡ d

dt
(a · r⃗) = ȧr⃗ + a ˙⃗r = aHr⃗ + v⃗p (1.2)

Here we have defined the peculiar velocity vp, which is zero if the two points are both
comoving; we have also defined theHubble parameter,

H(t) ≡ ȧ(t)

a(t)
, (1.3)

which will be important later on.

Cosmological redshift

The evolution of the scale factor has an important effect on the propagation of light.
Let us consider a comoving source at some time te that emits radiation with wave-
length λe, and therefore two successive wave-crests are emitted with a separation of
λe/c, where c is the speed of light. The space between them is stretched as they travel,
and a comoving observer at the present time t0 measures a proper distance between
wave-crests (i.e. a wavelength) λ0. The comoving distance traversed by each can be
obtained by integrating equation (1.1) over time; since both comoving distances are
equal, we get∫ t0

te

dt

a(t)
=

∫ t0+λ0/c

te+λe/c

dt

a(t)
⇒

∫ te+λe/c

te

dt

a(t)
=

∫ t0+λ0/c

t0

dt

a(t)
. (1.4)

The universe expands very slowly on the typical period of an electromagneticwave,
sowe can assume the scale factor to be constant along each interval of integration and
therefore:

λe

a(te)
=

λ0

a(t0)
= λ0 ⇒ λ0

λe

=
1

a(te)
≡ z + 1, (1.5)

where z is called the cosmological redshift: the light emitted in the past arrives at us
with its wavelength stretched by the expansion of space itself, in a way that is com-
pletely independent of the special-relativistic Doppler effect caused by the peculiar ve-
locity.

Ifweknow the functional formof a(t), bymeasuring the redshift in the spectral lines
of observed objects, we can calculate the instant at which the light was emitted, as
well as our comoving distance and current proper distance to said objects. As a con-
sequence of this, redshift is often used interchangeably as a measure of time and as a
measure of distance.

1.2 TheCosmologicalPrincipleandFriedmann’sequa-
tions

InSection1.1wehaveassumed theuniverse tobeexpanding. Now,weshall seeamore
rigorous description of that phenomenon.
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General Relativity asserts that the geometry of spacetime (and the gravitational in-
teractions that happen in it) is entirely determined by themetric, a 4x4 symmetric ten-
sor1 gµν that defines the length of a line element dxµ:

ds2 = gµνdx
µdxν. (1.6)

Themetric of the universe

We will assume, for now, that the universe is homogeneous and isotropic, i.e. it looks
the same everywhere and in every direction. This is known as the cosmological princi-
ple and is a somewhat crude approximation; a weaker but more reasonable version
asserts that the universe is ”homogeneous and isotropic enough” at ”large enough”
scales.

For the sake of brevity (but at the cost of generality), we will also assume that the
universe is flat, which used to not be obvious for cosmologists in the past but is now
true as far as we know. Along with the cosmological principle, this implies that the
geometry can only depend on time:

ds2 = −dt2 + a2(t) [dx2 + dy2 + dz2] , (1.7)

where dx2+dy2+dz2 is the Euclideanmetric for flat 3D space in comoving coordinates,
and the speed of light c = 1 for convenience. Anymetric that satisfies equation (1.7) is
called a Robertson-Walker metric for a flat universe.

The adimensional function a(t) is the scale factor first referenced in Section 1.1. It
represents the ratioof thedistancebetween twocomovingpoints and thevalueof said
distanceat a reference time t0, which is usually taken tobe thepresent time; thus, it can
also be thought of as describing the ”size of the universe” relative to some reference
epoch.

In General Relativity, the relation between the geometry of spacetime (i.e. themet-
ric) and the energy andmatter that it contains (the energy-momentum tensor) is given
by Einstein’s field equation:

Rµν −
1

2
gµνR = 8πGTµν, (1.8)

where G is Newton’s gravitational constant, Rµν is the Ricci curvature tensor, R is the
Ricci curvature scalar, and Tµν is the energy-momentum tensor. The Ricci tensor and
Ricci scalar are constructed from the first and second derivatives of themetric; the cal-
culation is fairly straightforward but not vital to our purposes, and thus has been rele-
gated to Appendix A.

The Friedmann equations

In order to know the behavior of a(t)wemust

• Model the dynamics of the universe’s matter and energy content,

1We will use here Einstein’s notation, where Latin indices run from 1 to 3 (i.e. they only cover the
spacelike dimensions) and Greek indices run from 0 to 3 (i.e. they also cover time). Indices that appear
as both a subscript and a superscript are summed over.
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• Use that model to construct the energy-momentum tensor, and

• Plug the tensor into Einstein’s equation and solve it for themetric.

As a simple but effective approximation, we will assumematter and energy, what-
ever their composition, behave like a perfect fluid that is at rest in comoving coordi-
nates, and are therefore well-described by a scalar field with homogeneous density ρ
and pressure p (Carroll 2014). Then the 4-velocity vector is

Uµ = (1, 0, 0, 0). (1.9)

Thismeans that its velocity is 0 in the spacelike dimensions, i.e. it onlymoves in the
forward time direction. Since only the energy density and pressure terms at zero, the
energy-momentum tensor is almost trivial:

Tµν = (ρ+ p)UµUν + pgµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.10)

It is worth noting that, since the equation is a relation between 4x4 symmetric ten-
sors, in themost general case it is actually a system of ten nonlinear, coupled, second-
order PDEs. This is amathematical problemof formidable difficulty2, and indeedmany
exact solutions bear the names of the people that discovered them.

However, the assumptions that we have made so far (the cosmological principle,
theperfect fluid)make the taskmuch lessdaunting. Pluggingeverything intoEinstein’s
equation (1.8),

3
(
ȧ

a

)2
0 0 0

0 −2aä− ȧ2 0 0
0 0 −2aä− ȧ2 0
0 0 0 −2aä− ȧ2

 =


8πGρ 0 0 0
0 8πGp 0 0
0 0 8πGp 0
0 0 0 8πGp

 .

(1.11)
The left-hand side of the equation is a diagonalmatrix. Therefore, the perfect fluid was
not just an approximation, but a necessary conditionmandated by the RWmetric and,
ultimately, by the cosmological principle. Any other choice of (1.9) would have intro-
duced cross-terms into (1.10).

We cannow,with a little algebra, extract the systemof equations that describes the
time evolution of the scale factor:

(
ȧ

a

)2

=
8πG

3
ρ, (1.12)

ä

a
= −4πG

3
(ρ+ 3p). (1.13)

These are called the Friedmann equations and ȧ/a is theHubble parameterH . Its
value at the present time is, by convention,

H0 = 100h
km

s ·Mpc
, where h ≈ 0.6− 0.7. (1.14)

2Thenumber of independent equations canbeactually lowered to 6, using theBianchi identities. The
remaining four degrees of freedom correspond to the choice of coordinate system.
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Asaconsequenceof theuncertainty in theexactvalueofh,manyquantities (likemasses
and distances) are usually quoted as a function of h.

We nowhave two equations for three variables: the scale factor a, the density ρ and
the pressure p. In order to close the system the equations, we need an equation of
state that relates ρ to p. The simplest such equation for a perfect fluid is

p = wρ, (1.15)

where w is a time-independent constant that depends on the nature of the specific
perfect fluid we are dealing with.

We can also simplify the equations by explicitly writing the a-dependence of the
density ρ, i.e. the evolution of the energy density of the fluid as the universe expands
or contracts. There are several ways to do it; here we shall derive it from the First Law
of thermodynamics. Consider a volume V of flat 3-dimensional space which contains
total energy U . Then, if the scale factor a changes,

dU = −pdV ⇒ d(ρa3) = −wρd(a3) ⇒ a3dρ+ 3ρa2da = −3wρa2da

⇒ a3dρ = −3(w + 1)ρa2da ⇒ dρ

ρ
= −3(w + 1)

da

a
. (1.16)

This can be easily integrated to obtain the general formula

ρ ∝ a−3(1+w), (1.17)

and, by introducing this dependence into the first Friedmann equation, we obtain{
a ∝ t

2
3 (1+w), if w ̸= −1

a ∝ eHt, if w = −1
. (1.18)

1.3 The ΛCDM cosmology

In the previous section we have derived a general equation for the evolution of a flat
universe that is valid as long as its contents can be approximated by a perfect fluid.
However, knowing what the universe is made of is not a trivial task, and therefore the
cosmological models have evolved substantially over the last century.

Whatwe can see

Themost obvious contents of the universe are those that can be directly observed: ra-
diation and baryonic matter. Radiation is composed of the photons that are emitted
in all electromagnetic interactions. Thesemassless particles can be treated as a quan-
tumgas, and statistical physics gives an equation of state p = 1/3 ρ. Plugging this value
of w into eqs. (1.17) and (1.18) we obtain

Radiation w =
1

3
⇒ ρ ∝ a−4, a ∝ t1/2. (1.19)

The energy density decreases quartically: there is an a−3 factor that corresponds to
the decrease in the number density of photons, and an additional factor of a−1 due
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to the fact that photons lose energy as their wavelength increases with redshift. A
radiation-dominated universe would grow slowly, as a power lawwith exponent 1/2.

Baryonicmatter ismuchtrickier. Firstofall, itsname ismisleading: inparticlephysics
a ”baryon” refers to a composite particlemade fromanoddnumber of quarks (typically
three). In cosmology, however, ”baryons” refers to anything made from the charged
fermions of the Standard model, i.e. all flavors of quarks plus electrons, muons and
taus. Neutrinos were traditionally neglected, but they have been shown to have some
relevant effects, which will be discussed in Section 1.3. The rest of this report will use
the term ”baryon” in the latter, cosmological sense.

These particles all interact through gravity, electromagnetism and the weak force;
quarks also interact through the strong force. As a consequence, it cannot be mod-
elizedby aperfect fluid: oneof the simplest equations of state, the ideal gas law p ∝ Tρ,
has non-constantw – it is temperature-dependent.

Whatwe cannot see

However, in the 1970s the combination of several observed phenomena previously
thought to be unrelated (Swart, Bertone, andDongen 2017) led cosmologists to realize
that baryons are only a small fraction of the total matter present in the universe. Most
of thematter density is actually due to so-called darkmatter Its nature is still specula-
tive, but there is agreement that some of its basic properties are:

• It interacts gravitationally, i.e. it is massive, which explained some phenomena
like the excess circular velocity of stars in outer regions of galaxies (respect to the
apparent inner masses measured through the surface brightness method) and
theanomalousvelocitydistributionsofgalaxies inclusters. More recently, thishas
been confirmed by gravitational lensing observations: the measured distortion
to the images of background objects due to local perturbations to the metric in
galaxy clusters needsmuch largermasses than the ones that are calculated from
direct observations.

• It might interact through the weak force.

• It does not interact electromagnetically nor through the strong force, or in any
case the cross-section is extremely small. That is why it is dark: it does not emit
any kind of radiation, and it is also completely transparent to light.

• Therefore it is also collisionless (it is not scattered by other matter nor by itself)
anddissipationless (it cannot lose kinetic energy through cyclotron radiation nor
any other radiative process).

Together, these properties make its dynamics easier to model. Since pressure is
drivenby inter-particle collisions, a fluid composedof collisionlessparticleswill bepres-
sureless and have an equation of state w = 0.

Darkmatter w = 0 ⇒ ρ ∝ a−3, a ∝ t2/3. (1.20)

Thismeans theenergydensityofdarkmatterdecreasescubicallywitha: the totalnum-
ber of particles stays constant, but they occupy a cubically growing volume as the uni-
verse expands. A darkmatter-dominated universe expands following a power law of
index 2/3, and is also known as an Einstein-de Sitter (EdS) cosmology.
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The cosmological constant

There is another equation of state, which is mathematically simple but with a non-
obvious physical meaning. It is the so-called cosmological constant, Λ: a fluid with
pressure equal in magnitude and opposite in sign to its energy density.

Cosmological constant w = −1 ⇒ ρ ∝ a0, a ∝ eHt. (1.21)

The energy density stays the same even as the universe expands; that is why it is called
a constant. An universe dominated by the cosmological constant expands exponen-
tially.

The Friedmann equations (1.12) and (1.13) can be rewritten by taking the cosmo-
logical constant out of the energy density term and writing it as a separate term:(

ȧ

a

)2

≡ H2 =
8πG

3
ρ+

Λ

3
(1.22)

ä

a
≡ Ḣ +H2 = −4πG

3
(ρ+ 3p) +

Λ

3
(1.23)

The standardmodel

The cosmological constant was originally added by Einstein to the left-hand side3 of
(1.8) in order to have a static universe, but dropped when Hubble discovered that the
universe is actually expanding. Then, in the 1990s it was discovered that the expansion
is accelerating, which led again toΛ > 0. On the other hand, current evidence suggests
that the universe contains a large amount of cold dark matter (CDM), i.e. dark matter
with a non-relativistic velocity distribution.

These twofacts, togetherwithEinstein’sGeneralRelativityand theFriedmannEqua-
tions derived from it, conform the current standard model of cosmology: the ΛCDM
model. In this model, the time-dependent energy density ρi of each component is ex-
pressed as a fraction of ρc = 3H2/8πG, the total density required for the universe to be
flat:

Ωi =
ρi

ρc

= ρi ·
8πG

3H2
(1.24)

The approximate current values of these densities areΩb ≈ 0.05 for baryons,ΩCDM ≈
0.26 for colddarkmatter andΩΛ ≈ 0.69 for thecosmological constant. Ωγ for radiation is
currently negligible, but due to the different evolution of each component, it is thought
that the universe went initially through a radiation-dominated phase, then became
matter dominated, and now its expansion is mainly driven by the cosmological con-
stant. TheΛCDMmodel has proven very effective at explaining the observable proper-
ties of the universe, and several extensions have been proposed to address some of its
flaws,which are briefly discussed at the endof this section. It is also a strong theoretical
framework for explaining how large scale-structures grow from a near-homogeneous
initial state, which is themain topic of Chapter 2.

3Therefore it did not have the modern physical interpretation of a negative-pressure fluid. It was in-
steadapurelygeometric factor countering the scalar curvatureR, perhapsan intrinsicpropertyof space-
time itself.
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We can take advantage of the fact that Friedmann’s equation (1.12) is linear in H2

and write its explicit dependence on the relative densities Ωi and their current values
Ωi,0. Assuming baryons can be absorbed into a CDM-dominatedΩm, it reads:

ȧ2(t)

a2(t)
≡ H2(t) = H2

0 [Ωγ,0a
−4(t) + Ωm,0a

−3(t) + ΩΛ,0] (1.25)

Extensions to the standardmodel

Cosmological neutrinos

Until now, we have ignored the particularities of neutrinos, which were abundant in
the early universe: these particles only interact via gravity and the weak force, and
have such small masses that, at high temperatures, they were relativistic and had a
radiation-like (ρν ∝ a−4) behavior. However, at lower temperatures they become non-
relativistic and their behaviour is more similar to that of darkmatter (Zennaro 2017).

Since neutrinos do not interact electromagnetically, they decoupled from the rest
of the universe at an earlier time than photons decoupled from matter. The epoch
at which this happened is roughly the time when the weak force’s time scale became
slower than the expansion rate H . In other words, a Cosmic Neutrino Background
(CνB) was created when the neutrinos’ mean free path became sufficiently long and
they ceased to collide with other particles.

The presence of massive neutrinos has an effect on the background metric: since
they behave like radiation at early times and like matter at later times (well after de-
coupling), they introduce an additional term in the evolution of the scale factor (1.25).
Additionally, due to their long free-streaming distances, they suppress the fluctuations
of the linear density field on small scales (the meaning of this will become clearer in
section 2.1).

The cosmological parameter that is commonly used to parametrize the effects of
neutrinos is the sum of the three neutrinomasses4:

Mν = mν1 +mν2 +mν3 (1.26)

Beyond the cosmological constant

Thecosmological constant is actually the simplest formofwhat is called, in amoregen-
eral sense, dark energy. The exact origin of this element of nature (for lack of a better
term) is currently unknown and remains a field of intense research at the intersection
of cosmology and quantum field theory.

The next simplest form of dark energy is an ΩΛ that varies in time. The equation of
state is usually parametrized as

p = w0(1 + wat)ρ, (1.27)

where w0 is the current equation of state of dark energy, and wa describes its rate of
changewith respect to time. The cosmological constant is recovered forw0 = −1,wa =
0, and any other values lead to a different solution to Friedmann’s equations.

4Neutrinos have three weak-force eigenstates νe, νµ, ντ , but each is a quantum superposition of the
threemass eigenstates
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Chapter 2

The linear density field

2.1 The seeds of structure

Until nowwehave assumed, in accordance to the cosmological principle, that the den-
sity ρ(t) of the universe is constant across any spacelike slice t = const., which means
that its value varies onlywith time. While this could be an acceptable approximation at
very large scales or at very early times, it is evident fromobservation thatmatter tends
to cluster: it forms stars and other bodies, which formgalaxies, which in turn formclus-
ters and superclusters separated by large cosmic voids (figure 2.1).

Therefore, a description of cosmic structure requires a measure of the deviation
from homogeneity and isotropy. If ρ(x⃗, t) is the density field of the universe, we can
define an average density ρ̄ and a ’density contrast’ or ’overdensity field’ δ such that

ρ(x⃗, t) = ρ̄(t) + ρ̄(t) · δ(x⃗, t). (2.1)

This adimensional scalar field δ describes the deviation from homogeneity at each
point of spacetime, so by construction its mean value, averaged across space, is zero:
⟨δ(t)⟩ = 0.

Gaussian randomfields

Before continuing further, we shall revisit somemathematical definitions. Let Φ(x⃗) be
a 3-dimensional, real-valued random scalar field. Thismeans that, for each point x⃗, the
valueΦ(x⃗)of thefield is theoutcomeofa randomprocesswithanormalizedprobability
distribution px⃗(Φ). At each point, the expected value of the field (i.e. the ensemble
average over all possible realizations of the random field) is:

ξ1(x⃗) = ⟨Φ(x⃗)⟩ =
∫

Φpx⃗(Φ)dΦ. (2.2)

This is also called its one-point correlation function. We can define its two-point
correlation function as well,

ξ2(x⃗1, x⃗2) = ⟨Φ(x⃗1)Φ(x⃗2)⟩ =
∫ ∫

ΦΦ′px⃗1,x⃗2
(Φ,Φ′)dΦdΦ′, (2.3)

which is ameasure of how the similarity between the values of the field at each pair of
points, averaged across all realizations.
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Figure 2.1: In this picture with data the 2dFGRS survey, each point represents the ob-
served position of a galaxy. Originally from Peacock 2003.

Wecoulddefinehigher-order correlation functions, andanygeneralN-variable ran-
dom field would be completely described by its first N correlation functions. If the
expected value of the field is zero, then ξ1 = 0. If the field is statistically homoge-
neous (i.e. the random process p is the same for all points) then ξ2 = ξ2(x⃗1 − x⃗2): it
only depends on the relative position of the points, and is therefore invariant under
translations. If it is also isotropic, it depends only on the distance between the points:
ξ2 = ξ2(|x⃗1 − x⃗2|) ≡ ξ2(∆x).

There is a special class of random fields, called Gaussian fields. These fields are
the result of the sameGaussian process everywhere, and therefore homogeneous and
isotropic. Their statistics are entirely determined just by theirmeanand their two-point
correlation ξ(∆x) ≡ ξ2(∆x).

The cosmological power spectrum

There are good reasons to believe that the initial fluctuations (such as those seen in
the CMB) were the result of a Gaussian process in the very early universe, possibly dur-
ing inflation, so at those early times the overdensity δ was Gaussian distributed. This
implies that its statistics were entirely determined by ξ(∆x).

However, in the real universe we only have access to one realization of the random
field, and therefore we cannot compute an ensemble average. Still, it is reasonable to
assume the field is ergodic: points far enough from each other are uncorrelated, so an
average over many large cells of volume V is equivalent to the ensemble average.

ξ(∆x) =

∫
δ(x⃗)δ(x⃗+∆x⃗)d3x, (2.4)

where the direction of∆x⃗ is irrelevant because of isotropy.
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We can do a change of basis to express ξ in Fourier space:

ξ(r) =

∫
P (k)eikrd3k (2.5)

where P (k) is the power spectrum of δ,

P (k) =
1

(2π)3

∫
ξ(r)e−ikrd3r (2.6)

It shouldbenoted that, even if the integrals are computedover the threedimensionsof
both r-space and k-space, we have already incorporated the assumption of (statistical)
anisotropy and thus only themoduli of the positions andwavenumbers are used. From
nowon,weshall refer toeachplanewavewithcomovingwavenumberk andamplitude
P (k) as a ”Fourier mode” or ”mode” for short.

The shape of the power spectrum determines the dominant scales of the fluctua-
tions: a universe with strong long modes will exhibit a lot of large-scale structure like
voids and filaments; if there is short-wavelength power, there will be small-scale fluc-
tuations and itwill look ”noisy”, whereas a suppression of thosemodeswillmake it look
more ”clustered” (see Fig 2.1).

Inflationary theory also gives a prediction for the primordial power spectrum: it is
thought to have the shape of a power law:

P (k) ∝ kns−1 (2.7)

where ns is called the scalar power index and is an important cosmological parameter.
Current measurements of the CMB give a value close to, but not quite equal, to 1. The
value ns = 1 is called a scale-free cosmology: the early universe would have looked
(statistically speaking) exactly the same at all scales, like a fractal.

The usual normalization of the power spectrum is σ8, the amplitude of density fluc-
tuations on (comoving) scales of 8Mpc/h.

σ8 ≡ P (
h

8Mpc
) = (

h

8Mpc
)ns−1 (2.8)

2.2 Fluid description

The density fluctuations of the early universe can be thought of as the seeds of all the
structure seen at later times. Intuitively, it seems easy to imagine initially over-dense
regions accreting mass from their surroundings and thus increasing their density fur-
ther, while initially under-dense regions are hollowed out and become cosmic voids.
However, it is not trivial to formulate an analytical description of this process.

Here wewill use a simplified version of classical Lagrangian fluidmechanics, which
consists of following each fluid element and ensuring that the balance of mass and
momentum is fulfilled at every point and time. (The validity of this approach will be
discussed later).

First of all, we write down the continuity equation. It reflects the conservation of
mass: the rate of change in the density at some point has to be equal to the inflow or
outflow ofmass. In proper coordinates, it reads:

∂

∂t
ρ(r⃗, t) + ∇⃗ · [ρ(r⃗, t)v⃗(r⃗, t)] = 0. (2.9)
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P(k) k1.5, cold P(k) k1.5, warm P(k) k1.5, hot

P(k) k0.5, cold P(k) k0.5, warm P(k) k0.5, hot

Figure 2.2: Several random fields with the same phase spectrum. Upper row: P (k) ∝
k1.5, which favours large-scale structure. Lower row: P (k) ∝ k0.5, which shows more
small-scale fluctuations. Left column: an untruncated power spectrum, expected in a
CDM scenario. Middle column: power spectrum suppressed on small scales, similar to
a warm dark matter case. Right column: suppressed on small and medium scales, as
seen with hot dark matter, like a (very massive and abundant) neutrino. All units are
arbitrary; the power-law are exaggerated for visual clarity and do not correspond to
realistic values of ns.

Nextwewrite downEuler’s equation, which conveys the conservation of linearmo-
mentum:

∂

∂t
v⃗(r⃗, t) +

[
v⃗(r⃗, t) · ∇⃗r

]
v⃗(r⃗, t) = − 1

ρ(r⃗, t)
∇⃗rp(r⃗, t)− ∇⃗rΦ(r⃗, t), (2.10)

where ∇⃗r is the gradient with respect to coordinates r⃗, and Φ is the total gravitational
potential.

The third relation is Poisson’s equation, which describes the evolution of the poten-
tial:

∇2Φ(r⃗, t) = 4πGρ(r⃗, t). (2.11)

In order to solve the system, it is useful to change from the proper to the comoving
coordinates:

δ̇ +
1

a
∇⃗ [(1 + δ)v⃗p] = 0, (2.12a)

∂v⃗p
∂t

+
ȧ

a
v⃗p +

1

a

(
v⃗p · ∇⃗

)
v⃗p = − 1

aρ̄(1 + δ)
∇⃗p− 1

a
∇⃗Φ, (2.12b)
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∇2Φ = 4πGρ̄a2(1 + δ). (2.12c)

The calculation of this transformation is somewhat messy, so it is detailed in appendix
B.

2.3 The linear growth of perturbations

As long as δ ≪ 1, we can treat cosmic structure as a perturbation on the smooth back-
ground ρ of the ΛCDM cosmology, which we covered in section 1.3. We can calculate
its evolutionwithin the framework of linear perturbation theory, whichmeans approx-
imating the density and velocity fields, as well as the potential, by a mean value and a
small deviation. Hence if we take only the terms that are of first order in the perturba-
tions δ, v⃗p and φ (potential perturbation),

δ̇ +
1

a
∇⃗ · v⃗p = 0, (2.13a)

˙⃗vp +Hv⃗p = −c2s∇⃗δ

aρ̄
− 1

a
∇⃗φ, (2.13b)

∇2φ = 4πGρ̄a2δ, (2.13c)

where the upper dot denotes a time derivative, v⃗p is the peculiar velocity as defined in
eq. 1.2,H is the Hubble parameter as defined in eq. 1.3, and c2s = ∂p/∂ρ is the squared
speed of pressure waves in the fluid (for a perfect fluid, cs = w).

If we take the time derivative of (2.13a) and the divergence of (2.13b), substituting
(2.13c) we can combine them all into an equation for δ:

δ̈ + 2Hδ̇ =

[
c2s∇2

a2ρ̄
+ 4πGρ̄

]
δ. (2.14)

Theequation is linear, soeachFouriermodeevolves independently as longas δ ≪ 1.
The exact evolution of δ will be, in general, scale-dependent: the pressure term will
damp the gravitational collapse at small scales. Themodeswith very longwavelengths
are not causally connected, and therefore are not covered by this Newtonian formal-
ism1, requiring an special treatment in terms of relativistic perturbation theory.

Let us now consider a special case of particular interest. Consider an instant in the
matter-dominated epoch, with all the relevant Fourier modes well inside the particle
horizon and therefore satisfying (2.14). We can neglect cs ≃ 0, and from (1.20) H =
2/3t, ρ̄ = ρ̄i/t

2, where ρ̄i = ρc = 3H2/8πG is the average density at our initial instant.
Introducing a Fourier mode D(t) exp(ikr) with a comoving wavenumber k, we get an
evolution equation for the amplitudeA(t):

D̈(t) +
4

3t
Ḋ(t) =

2

3t2
D(t) ⇒ D(t) = At2/3 +Bt−1 = Aa+Ba−3/2 (2.15)

Thedecreasingmodevanishesover timeso theamplitudeof theperturbation isD(t) ∝
a. Thismeans in this epoch theoverdensity fieldgrows self-similarly, i.e. allmodesgrow
at the same rate regardless of their scale. D is called the linear growth factor.

1These modes are said to be outside the particle horizon: the frontier of the sphere around us con-
taining all the sources whose signals have had enough time to reach an observer (Davis and Lineweaver
2004)
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It is customary towrite the evolutionof the power spectrumas the product of three
factors:

P (k, t) = P0(k)T
2(k)D2(t), (2.16)

where P0(k) is the initial shape of the power spectrum. T (k) is the transfer function,
whichdescribes the accumulated change in the amplitudeof eachmodeas it traverses
different regimes (pressure-dominated, etc.) until reaching theeraof self-similargrowth.
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Chapter 3

The nonlinear density field

Once the perturbations δ reach order unity, the linear approximation breaks down for
two reasons. First, the perturbation equation 2.14 is no longer valid, because the as-
sumption δ ≪ 1 does not hold; therefore the Fourier modes start coupling to each
other and the growth becomes k-dependent. Second, the overdensity field deviates
significantly from its initially Gaussian statistics. The linear growth equations predict
that the probability distribution px⃗(δ) becomes increasingly wide, to the point where
the amplitude of some underdensities grows to a value of δ < 1. That is unphysical
because it would imply that these regions have a negative total density.

When the linear approximation breaks down, the overdensity field enters a phase
of strongly scale-dependent, nonlinear growth. In the ΛCDM cosmology this happens
during thematter-dominated phase, before the universe becomes Λ-dominated.

In this nonlinear regime, the evolutionof the density field cannot be treated exactly,
and the problemof structure formationmust be tackled in an approximateway. There
are several ways to do this: higher-order perturbation theory, the spherical collapse
model, the Zel’dovich approximation, and numerical simulations (Mo, van den Bosch,
and S.White 2010). The rest of this chapter covers the latter two.

3.1 The Zel’dovich approximation

In the regimewhere theoverdensity fieldgrows self-similarly, the linear evolution takes
the form

δ(x⃗, t) = D(a(t))δi(x⃗), (3.1)

where the subindex i denotes the value of a function at an initial time, and a andD are
normalized so that ai = D(ai) = 1.

Since the linear growth factor satisfies theperturbation equation (2.14), the Poisson
equation gives us the evolution of the gravitational potential Φ. Taking into account
that ρ̄ = ρ̄ia

−3,{
∇2φ = 4πGρ̄a2δ = 4πG ρ̄i

a3a
2Dδi = 4πGρ̄i

D

a
δi

∇2φi = 4πG ρ̄i

ai
a2
i δi = 4πGρ̄iδi

⇒ ∇2Φ =
D

a
∇2Φi ⇒ Φ =

D

a
Φi. (3.2)
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We can now integrate the linearized Euler equation:

˙⃗vp +Hv⃗p = −1

a
∇⃗φ ⇒ d(av⃗p)

dt
= −∇⃗φ ⇒ v⃗p = −1

a

∫
∇⃗φdt

⇒ v⃗p = −∇⃗φi

a

∫
D

a
dt. (3.3)

The integral term can be written explicitly, using again the fact thatD satisfies the
perturbation equation.

D

a
=

1

4πGρ̄

[
D̈

a
+

2ȧḊ

a2

]
=

1

4πGρ̄i

[
a2D̈ + 2aȧḊ

]
⇒

∫
D

a
=

Ḋ

4πGρ̄a
. (3.4)

Combining eqs. (3.3) and (3.4) and integrating again with respect to time, the dis-
placement of a particle initially at comoving position x⃗i is described by

˙⃗x =
1

a
v⃗p =

Ḋ

4πGρ̄a2
∇⃗φi(x⃗) ⇒ x⃗ =

∫
Ḋ

4πGρ̄a3
φi(x⃗)dt. (3.5)

Keeping only the first-order terms of the potential, φi(x⃗) ≃ φi(x⃗i),

x⃗ = x⃗i −
D

4πGρ̄a3
∇⃗φi(x⃗i). (3.6)

The extrapolation in (3.6) is known as the Zel’dovich approximation. In this frame-
work the particles move in a straight line following their initial peculiar velocity. Even
though this might sound simple, it is actually a powerful method for evolving pertur-
bations in the δ ∼ 1 regime. In one dimension it is indeed exact, because higher-order
effects cannot possibly change the direction of a particle.

Now, conservation of mass requires that

ρ̄(1 + δ)d3x⃗ = ρ̄i(1 + δi)d
3x⃗i ⇒ 1

a3
(1 + δ)d3x⃗ = (1 + δi)d

3x⃗i. (3.7)

We can neglect δi ≪ δ and then a3/(1 + δ) is just the determinant of thematrix[
d3x⃗

d3x⃗i

]
= δjk −

D

4πGρ̄a3

∂∇⃗φi

dx⃗
= δjk −

D

4πGρ̄a3
H(φi), (3.8)

where δjk is the Kronecker delta andH is the Hessian matrix, whose elements are the
second derivatives.

Thematrix (3.8) has threeeigenvaluesλ1(x⃗) ≥ λ2(x⃗) ≥ λ3(x⃗), such that at eachpoint
the overdensity field evolves as

1 + δ(x⃗, t) =
1

(1− λ1(x⃗)D(t))(1− λ2(x⃗)D(t))(1− λ3(x⃗)D(t))
. (3.9)

This equationgives a gooddescriptionof thenon-linear evolutionof anoverdensity
once it becomes dense enough to counteract the Hubble expansion and gravitational
collapse ensues. The distribution of matter first collapses along the direction of the
eigenvector associated to λ1, forming a flat structure called a sheet or pancake. Then
it collapses in the second direction, forming a filament. Finally, when it collapses along
the third axis, it forms a compact structure called a halo.
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Figure 3.1: This still from a videomade by Jens Stücker visualizes the result of a N-body
simulation. The fully non-linear power spectrum is visible here, with small high-density
halos (in white) at the intersection ofmedium-density filaments (in yellowish green). A
Zel’dovich pancake can be seen near the centre, surrounded by cosmic voids. The full
VR video can be accessed at https://www.youtube.com/watch?v=uMBvgCYiUiI

3.2 N-body simulations

The Zel’dovich approximation is only valid into themildly non-linear regime, δ ∼ 1, and
breaks downwhen the real particle trajectories start to deviate significantly from their
original direction.

The most common way to follow the dynamics of gravitational collapse into the
fully non-linear regime are N-body simulations (3.2). These simulations work by lever-
aging the great numerical power of modern computers to follow the flow of matter
and its gravitational interactions.

AnycosmologicalN-body simulationworksbymaking some (hopefully reasonable)
simplifications of the dynamics it attempts to recreate. Themost important elements
that are needed are: a discretization of the density field, a set of initial conditions, and
equations of motion to evolve them.

Discretizing the density field

Physical spacetime is, at least atmacroscopic scale, a continuouscanvas throughwhich
particles move. Computers, however, have limited storage and processing power, and
therefore discretization is needed. This means slicing time into discrete steps ∆t, and
doing the same to either space or its contents.
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In a N-body simulation, space is kept continuous1, and its contents are divided into
N finite-size particles.

In cosmological simulations involving cold darkmatter, each of these particles typ-
ically has a mass mp = 106 ∼ 1011M⊙/h. These particles are a finite element version
of the infinitesimal fluid elements that we used in the Lagrangian approach of section
2.2, and each can be thought as representing a set of dark matter particles that move
roughly together. The smaller the particle mass, the bettermass resolution the simu-
lation is said to have.

Since the volume of space that can be simulated in a computer is only a finite por-
tion of the entire universe, a cube-shaped box is usually used. The boundary condi-
tions are periodic (i.e. matter that leaves the box comes in on the opposite side) and
the length of the box’s sides is typically L = 100 ∼ 1000Mpc/h. The larger L, the better
spatial resolution.

Setting up the initial conditions

As seen in section 2.3, density fluctuations in the early universe evolved through differ-
ent stages until the universe reached the matter-dominated regime. After that, grav-
itational interactions became the only ones relevant to the formation of large-scale
structure.

In order to keep the computational cost, simulations start at a redshift late enough
that it fulfills two conditions. First, non-gravitational interactions can be neglected, at
least at scales larger than galaxies. Second, gravity can be formulated in purely Newto-
nian terms.

As a consequence, setting up the initial conditions requires calculating the evolu-
tion of the density and velocity fields up until the starting redshift. In other words, the
transfer function and linear growth rate have to be calculated, either analytically or nu-
merically, taking into account general-relativistic effects.

Themost commonway to do this, shown schematically in figure 3.2, is applying the
Zel’dovich approximation to an initial density field calculated from a theoreticalmodel
of the early universe.

Implementing gravity

If we start our simulation at a low enough redshift that gravity can be consideredNew-
tonian, the mutual force between two particles will follow the classical inverse-square
law

F⃗ = −G
m2

p

r2
r̂, (3.10)

where F⃗ is the force between the two particles, r is the distance between them, and r̂
the direction of themutual force.

However, in this formulationparticlescanbesubject toveryhighaccelerationswhen
passing very close to each other. This, combinedwith the discrete time steps, can lead

1Floating-point arithmetic imposes a limit on this continuity, because coordinates can only be stored
in computermemory to a certain level of precision. This is however a very weak limitation compared to
the ones imposed by discrete time-steps.
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Figure 3.2: This slice of a 3-dimensional box shows schematically how the Zel’dovich
approximation is used to set up the initial conditions. Upper row: the positions of the
particles. Lower row: the interpolated density field (yellow is denser, blue is less dense).
Thefirst columnshows thehomogeneous initial conditions. The secondcolumnshows
the situationat a short timeafter the systemstarts evolving. In the last column, thepar-
ticles have already formed aweb of filaments and halos, and the simulation is ready to
start. This pattern looks similar to the luminous caustics at the bottom of a swimming
pool, and indeed it is mathematically equivalent.

to inelastic two-body scattering. Such inelasticity is unphysical, becausecolddarkmat-
ter being collisionless and dissipationless (as seen in section 1.3) its interactions must
necessarily conservemechanical energy.

The standardworkaround is introducing a softening length ϵ in eq. (3.10), such that
themutual force converges to afinite valuewhenparticles get very close to eachother:

F⃗ = −G
m2

p

r2 + ϵ2
r̂ ⇒ lim

r→0
F = −G

m2
p

ϵ2
. (3.11)

This solves the problemof inelastic scattering, but also introduces potential numer-
ical effects on themass distribution at small scales. Therefore simulations with smaller
ϵ are said to have better force resolution.

There are threemain ways to compute the total force acting on each particle:

• Particle-Particle (PP): every 2-body interaction is explicitly calculated using (3.11).
This can be computationally costing, because it scales asN 2.

• Particle-Mesh (PM): anM-cell discretized potential field is created by summing
over all particles, which scales asM 3 logM 3. Then, the force acting on each parti-
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cle is calculated by interpolating the local gradient of the potential. This scales as
N , at the cost of being less accurate, particularly at small scales.

• Particle-Particle-Particle-Mesh (P3M): this hybrid approach consists of using the
PPmethod for the force exerted by nearby particles, and the PMmethod for the
effect of the rest of the mass present in the simulation. The threshold for using
onemethod or the other determines the trade-off between numerical accuracy
and computational efficiency.

3.3 Properties of halos

The NFWprofile

Let ρ(r, θ, ϕ) be the local density field of a halo, with r = 0 corresponding to the point
with the lowest gravitational potential. This is in general a function that varies strongly
from halo to halo, since the shapes can vary significantly from a spherical distribution.
By integrating the density over the angular coordinates, we can define a spherically-
averaged radial density profile:

ρ(r) =

∫
ρ(r, θ, ϕ)dΩ =

∫ 2π

0

dϕ

∫ π/2

−π/2

dθ sin θρ(r, θ, ϕ). (3.12)

It is not obviouswhether halos should share a similar profile or not. However, it was
noted in an influential 1996 paper (Navarro, Frenk, and S.White 1996) that most halos
in N-body simulations could be fit remarkably well to a two-parameter function, now
called theNFWprofile:

ρNFW(r) =
ρ0

x (1 + x)
2 , x ≡ r

rs
, (3.13)

where ρ0 is a characteristic density and rs is called the scale radius.
The profile is a double power-law: it approaches the centre as∝ r−1 and infinity as

∝ r−3, so the logarithmic slope d ln(ρ)/d ln(r) is -1 at the inner region of the halo and -3
at the outer parts. rs marks the point at which the logarithmic slope is exactly -2, and
thus it is often denoted by r−2 as well.

A crucial parameter calculated from theNFWprofile is the concentration of a halo:

c ≡ r200c
rs

, (3.14)

where r200c is the radius at which the density decays to 200 times the critical density
of the universe ρc(z), an approximate threshold for virialization2. A low concentration
means thedensity of thehalo ismoreuniform,while ahigh concentration implies there
is a dense central region and amuch larger outer part of lower density.

2A many-particle system is said to have ”virialized” or reached ”virial equilibrium” when its total ki-
netic and potential energies stay constant. The ratio between both is related only to the nature of the
interactions, not to the initial conditions
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The characteristic density is related to the virial massM200c by

M200c =

∫ r200c

0

ρNFW(r)4πr
2dr = 4πr3sρ0

∫ c

0

x

(1 + x)
2dx = 4πr3sρ0

[
1

x+ 1
+ ln(1 + x)

]c

0

= 4πr3sρ0

[
ln(1 + c)− c

1 + c

]
⇒ ρ0 =

M200c

4πr3s

1

g(c)
, (3.15)

where g(c) = ln(1 + c)− c/(1 + c). It is also equal to ρ(rs)/4.
Another useful function is the cumulative densityM(r), i.e. the mass enclosed in-

side a sphere of radius r concentric with the halo. For the NFW profile it reads

M(r) = 4πρ0r
3
s

[
ln(1 + x/c)− x/c

1 + x/c

]
= M200c

g(x/c)

g(c)
. (3.16)

The c(M,z) relation

The relation between the concentration of halos and theirmasses and redshifts is gen-
erally difficult to predict, with a wide scatter in the distribution (Neto, Gao, Bett, et al.
2007).

In general, allmodels predict concentrations to increasewith time (i.e. at lower red-
shifts) and decrease with halo mass. Qualitatively, the main reason can be explained
in terms of bottom-up accretion of mass and the critical density ρc and its redshift-
dependence (Correa,Wyithe, Schaye, et al. 2015).

At fixedmass, halos that had saidmass at earlier times (i.e. higher redshift) accreted
their outer shells when the average density of the universewas higher. Therefore there
is moremass in regions far from the halo centre, resulting in a lower concentration.

At fixed redshift, the argument is similar: lessmassive halos are younger and there-
fore have their outer shells have been accreted in a low-density epoch. As a result, a
higher fraction of mass is in the halo centre, and the concentration is higher.

In addition, the boundary defined by 200ρc expands outwards as the critical den-
sity of the universe decreases. This brings lower-density regions into the halo without
large changes to the inner density profile. This effect causes the concentration to in-
crease with time in a pseudo-evolution process, which partially offsets the previously
explained dependences.

The halo mass function n(M) is also expected to have a downward slope, which
means that for any two masses, halos with the lower mass will be more abundant.
Qualitatively speaking, this comes fromthe fact that the initial fluctuationswereGaussian-
distributed, and therefore the large overdensities that seeded the heaviest halos were
comparatively rarer.

Models of concentration

There are severalmodels that attempt to predict themedian concentration for a given
mass, redshift and set of cosmological parameters; three of themare presented below.
Thesemodels work by devising a formula that quantitatively parametrizes the relation
between c and ρc, and then fitting the free parameters using numerical simulations.
The influence of the cosmological parameters is included by making the appropriate
changes to the formulae that are used, e.g. the definition of ρc.
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Prada et al. (2012)

This model, presented in (Prada, Klypin, Cuesta, et al. 2012), does not useM and z di-
rectly, and insteadusesσ(M, z), theRMSfluctuationonscales3 ofM , andanewvariable
x ≡ (ΩΛ,0/ΩM, 0)1/3a(z). The analytic expression is

c = B0(x)A ·
[(

σ′

b

)c

+ 1

]
exp

(
d

σ′2

)
, σ′ = B1(x)σ(M,x), (3.17)

whereA, b, c, d are constants and

B0(x) =
cmin(x)

cmin(1.393)
, cmin(x) ≡ c0 + (c1 − c0)

[
1

pi
arctan(α(x− x0)) +

1

2

]
, (3.18a)

B1(x) =
σ−1
min(x)

σ−1
min(1.393)

, σ−1
min(x) ≡ σ−1

0 + (σ−1
1 − σ−1

0 )

[
1

pi
arctan(β(x− x1)) +

1

2

]
. (3.18b)

The are a total of 12 fitted parameters:

A = 2.881, b = 1.257, c = 1.022, d = 0.60, c0 = 3.681, c1 = 5.033

α = 6.984, x0 = 0.424, σ−1
0 = 1.047, σ−1

1 = 1.646, β = 7.386, x1 = 0.526
(3.19)

Ludlow et al. (2016)

The model presented in (A. Ludlow, Bose, Angulo, et al. 2016), takes into account the
massassemblyhistory (MAH)ofhalosandmodels theconcentrationasadoublepower
law of the peak height ν , which reflects the amplitude of the initial density fluctuation
fromwith each halo formed:

c = c0

(
ν

ν0

)−γ1

[
1 +

(
ν

ν0

)1/β
]−β(γ2−γ1)

, ν ≡ δc
σ(M, z)

, (3.20)

where c0 and ν0 are normalization parameters; γ1 and γ2 are the asymptotic power law
indices; and β determines thewidth of the intermediate region. All of these are depen-
dent on the scale factor a = 1/(1+z) through linear (and in one case, polynomial) fitted
relations with a total of 13 parameters:

c0 = 3.395a0.215, ν0 = (4.135− 0.564a−1 − 0.210a−2 + 0.0557a−3 − 0.00348a−4)D(z)

γ1 = 0.628a0.047, γ2 = 0.317a0.893, β = 0.307a−0.54 (3.21)

Diemer et al. (2018)

Themost recent of the threemodels (Diemer and Joyce 2019), its analytical derivation
explicitly takes into the account the pseudo-evolution of halos. It uses three variables:

3”Scales of M” refers to a radiusR(M) such that a sphere of said radius and homogeneous density ρc
encloses amassM .
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the peak height ν , as well as the effective slope of the power spectrum neff and the
effective exponent of linear growth αeff:

neff ≡ −2
d lnσ(R)

d lnR
− 3 αeff ≡ − d lnD(z)

d ln(1 + z)
(3.22)

where δc is the critical density contrast; σ is the mass fluctuation in spheres of a radius
such that the enclosed mass, at the mean density ρm, isM , andD is the linear growth
rate.

Here ν is a proxy for halomass, neff aims to capture the influence of the power spec-
trum slope on concentration, and αeff accounts for the effects of the expansion history.
In addition to κ, themodel uses another five fitted parameters (a0, a1, b0, b1, cα).

c = (1− cα (1− αeff)) · G̃
[
a0 (1 + a1 (neff + 3))

ν
·
(
1 +

ν2

b0 (1 + b1 (neff + 3))

)]
(3.23)

where G̃ is the inverse function of

G(x) =
x

[g(x)]
5+neff

6

(3.24)

and g(x) is a function related to themass profile as defined in (3.15).
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Chapter 4

Testing a suite of simulations

One of the limitations of the existing models for the c(M, z) relation is that they are
only valid in the range of cosmologies where they were calibrated. These ranges tend
to be rather limited, covering only a small bracket around themost likely value of each
cosmological parameter.

As a way to improve upon this, one of the current aims of the Computational Cos-
mology is to develop a model that is valid in a much wider array of cosmologies. The
expectedway todo this is either bydeveloping anewparametric formulaor by refitting
the parameters of one of the existingmodels.

As a first step, a suite of simulationswas run by Sergio Contreras in the Atlas cluster
of the DIPC Computer Centre, described in section 4.1. The practical part of the project
consistedofperformingseveral tests to study the robustnessof the results andaccount
for numerical artifacts. These tests and their results are covered in the subsequent sec-
tions of this chapter.

4.1 The Target simulations and bacco library

The Target simulations are a suite of 69different runs of the GADGET-2N-body codede-
veloped by Volker Springel et al. This code also implements a friends-of-friends (FoF)
algorithm1 to identify halos.

The simulations cover a total of 33 cosmologies: a ”main” cosmology plus four vari-
ations of each of eight different cosmological parameters. For each cosmology, two
independent runswere computedwith different realizations of the initial randomfield.
The values of these parameters are quoted in table 4.1.

Additionally, three extra ResolutionTest simulations were run in the standard cos-
mology but with different resolutions. Table 4.2 shows the numerical parameters of
the standard simulations, as well as those of the additional lower-resolution runs.

The analysis of the simulation data was primarily done using bacco (Bias And Clus-
tering Computation, Optimized), a software library writtenmainly in Python and in de-
velopment from 2016 onwards by Raúl Angulo et al. with funding from the ERC. It im-
plements several classes2 that extract information from a N-body simulation for inter-

1AFoF algorithmworks by iteratively finding particles that are close to each other and bundling them
into a halo. The process is then repeated for the remaining particles until all halos in the simulation have
been identified.

2In object-oriented programming languages like Python, a class is a piece of code that defines a data
type, along withmethods to initialize an object of that type and to extract or modify its properties
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Ωm Ωb σ8 ns h Mν w0 wa

Lowest
0.730 0.920
0.770 0.940

Low
0.230 0.040 0.815 0.965 -1.30 -0.30
0.270 0.045 0.860 0.990 -1.15 -0.15

Standard 0.315 0.050 0.900 1.010 0.60 0.00 -1.00 0.00

High
0.360 0.055 0.65 0.10 -0.85 +0.15
0.400 0.060 0.70 0.20 -0.70 +0.30

Highest
0.75 0.30
0.80 0.40

Table 4.1: Values of the cosmological parameters that have been used in the simula-
tions. For each simulation one parameter was changed to one of the non-standard
values, and all others kept at their standard values. mν is the sum of the masses of all
neutrino flavours and is in units of eV.

Resolution L [Mpc/h] ϵ [kpc/h] N mp [M⊙/h]
Very low 133.0 10.4 2563 12.27·109

Low 133.0 6.9 3843 3.64·109

High 133.0 5.2 5123 1.53·109

Very high 133.0 3.5 7683 0.45·109

Table 4.2: Numerical parametersused for eachResolutionTest resolution. All thenon-
standard resolutions were run with the standard cosmological parameters, as a way
to discover potential numerical artifacts. The resolution of the Target simulations is
roughly similar to the ”Low” parameters seen here.

pretation by researchers. The ones that have been used in this project are:

bacco.Simulation It holds all the information about oneN-body simulation at a cer-
tain redshift. Its main attributes are:

• Simulation.fof is a dictionary containing all the data about the halos that the
FoF algorithm has identifies inside the simulation, such as the number of halos,
their positions, and data like their masses, radii and NFWparameters.

• Simulation.header is another dictionary containing the numerical parameters
of the simulation, such as the softening length and the particle mass.

bacco.Cosmology It implements a cosmological model. It provides functions to cal-
culate ρc(z) and other constants. It also implements the semi-analyticmodels, provid-
ing the predicted halo concentration for any given halomass.

bacco.Visualization It provides tools for creating visually attractive plots from the
positions of particles in the simulation. It has been used for figures 3.2 and 3.2.
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4.2 Loading a simulation

The first task had the aim of becoming familiar with the tools provided by the bacco
environment, as well as forming a preliminary idea of the numerical effects that have
to be taken into account. A Jupyter notebook was written that did the following:

• Reading the halomass and concentration data from the Simulation.fof of both
runs and combining them.

• Using the cosmology class to calculate the theoretical concentrations according
to each of the threemodels.

• Plotting themasses and concentration of the halos, both themeasured and the-
oretical values, using the matplotlib.pyplot class.

The c − M relation is plotted in figure 4.2. It shows that the mass function peaks
in the 1012 ∼ 1013M⊙/h range, with more massive halos being less numerous. Af fixed
mass, the concentration is roughly log-normally distributed. There is also a sharp cutoff
around 1012M⊙/h, which can be attributed to insufficientmass resolution. Some halos
have c = 0, which is bacco’s way of indicating that they could not be fitted to a NFW
profile.

There are two conclusions we can take from this plot. First, when processing any
halo data, wewill have to exclude anyhaloswith unphysical (< 1) concentration, aswell
ashaloswithmassesbelow 1012M⊙/h. Second,we shouldbecarefulwhen studying the
most massive halos statistically, because the sample size will be small.

Figure 4.1: The dots are a sample of 105 halos chosen randomly from the simulation.
The dashed line is themedian concentration of the valid halos. The shaded area repre-
sents to the 68% scatter interval around themedian.
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4.3 The c(M,z) relation in 33 cosmologies

The first step to check the robustness of the results is to compare the concentration-
mass-redshift relation with the models presented in section 3.3. To accomplish this, a
Jupyter notebook was written to implement the following steps for every cosmology
and redshift:

• Combine the halos from the two phase-shifted simulations, in order to have a
better sample.

• Purge thehaloswithnull concentration, i.e. those that bacco couldn’t fit to aNFW
profile.

• Sort the remaining halos bymass and dividing them into logarithmically-spaced
mass bins.

• For eachmass bin, compute themedian concentration, aswell as the 68% spread
range.

• Calculate the ratio between the median concentration as measured from the
simulation and as predicted by eachmodel.

Figure 4.3 shows a sample of the plots, using two cosmological parameters: σ8 and
ΩM . High-resolution plots for all eight parameters can be found in Appendix C.

At z = 0, thegeneral picture isoneofonlyqualitativeagreementwith themodels. In
themass range of interest, roughly between 1012.2−1014.2M⊙/h, themodels agreewith
the simulation to 20% or better. That is, the for every mass bin in that range, the halo
concentration predicted by the models stays between 0.8 and 1.2 times the median c
measured from the simulation.

In this case, Pradaet al. 2012 seems toprovide thebest agreementof the three,with
the simulation-model ratio stayingmostly constant across two orders ofmagnitude in
mass. In contrast, both Ludlow et al. 2016 and Diemer et al. 2018 predict a steeper
decrease of c with increasing mass. Ludlow et al. 2016 agrees at the lower mass end
and under-predicts concentration for higher masses, while Diemer et al. 2018 over-
predicts c at lowermasses and agrees with the simulation at the higher end.

At a higher redshift, z = 1, the situation is somewhat different. In general, the
model/simulation ratio stays mostly flat across mass ranges. The quality of the pre-
diction is thereforemass-independent, but overall worse than at z = 0.

For this redshift Diemer et al. 2018 shows the best agreement of the three, espe-
cially in the massive neutrino cosmologies. Prada et al. 2012 and Ludlow et al. 2016
fare worse: in some cosmologies they overpredict c by at least 20% relative to the sim-
ulation. The fact that the overprediction happens at all masses suggests some kind of
systematic effects.

There are two main takeaways from this test. First, the concentration predicted
from the models and the simulation data only agree to a certain level, roughly 20%,
particularly at higher redshift. Second, the models don’t show good agreement with
each other either, with more than 25% differences in some cases. As a result, none of
the models can be trusted outright, and instead additional testing should be carried
out in order to find the origin(s) of the discrepancies.
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Figure 4.2: The solid lines in the main plots are the c(M, z) relation in all σ8 and ns cos-
mologies. The shaded areas show the corresponding 68% scatter interval. The small
panels below each plot show the ratio of the concentration expected from themodels
relative to the one measured in the simulation. Only halos with at least 1000 particles
andmass bins with at least 25 halos have been counted.
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4.4 Resolution effects on concentration

In order to study potential resolution effects on concentration, the ResolutionTest
runs were studied with a procedure similar to that employed in the previous test. Fig-
ure 4.4 shows the median concentration and the scatter in each resolution, with each
panel displaying a different redshift from z = 0 to z = 3.

1011 1012 1013 1014

M200c [M /h]

2 2

4 4

6 6

8 8

10 10

12 12

14 14

c

z = 0.0

1011 1012 1013 1014

M200c [M /h]

2 2

4 4

6 6

8 8

10 10

12 12

14 14

c

z = 1.0
N256
N384
N512
N768
L+16
P+12
D+18

1011 1012 1013 1014

M200c [M /h]

2.0 2.0

2.5 2.5

3.0 3.0

3.5 3.5

4.0 4.0

4.5 4.5

5.0 5.0

5.5 5.5

6.0 6.0

c

z = 2.0

1011 1012 1013 1014

M200c [M /h]

2.0 2.0

2.5 2.5

3.0 3.0

3.5 3.5

4.0 4.0

4.5 4.5

5.0 5.0

5.5 5.5

6.0 6.0

c

z = 3.0

Figure 4.3: The colored lines show the median concentration, while the shaded areas
represent the 68% scatter range. The grey lines show the predicted concentrations ac-
cording to each model. Only mass bins with at least 25 halos are plotted, in order to
ensure a reasonably large sample. This leads to the lowest-resolution simulation not
appearing at the highest redshift.

It is clear fromthefigure that the lower-resolution simulationsarenot robust athigh
redshift, as they predict substantially lower concentrations than the high-resolution
simulation. The four of them only converge to similar results at z = 0. In a similar
way, agreement with themodels is only reached at z = 1 or lower.
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4.5 Radial density profiles

The other test involves studying the full density profiles instead of just the concentra-
tion parameter. The idea is that, if the structure of halos in the simulations does not ac-
tually conform to the NFWprofile, the fitted parameters cmight not be entirelymean-
ingful.

As a way to check this potential issue, a Jupyter notebook has been written that
does the following:

• Load the halo data from each simulation.

• Create three mass bins containing halos with masses in of approximately 1013,
1013.5 and 1014M⊙/h, respectively.

• For eachmass bin, calculate themedian of the radial profilesmeasured from the
simulation.

• Plot the ratio of the theoretical profiles (NFW profiles with c predicted by each of
the threemodels) to themedian profiles.

The radial density profiles are calculated by dividing the halo into 24 concentric
spherical shells,with logarithmically spaced radii. Foreachshell, themassofall particles
in the shell is summed and then divided by the volume of the shell to obtain the aver-
age density of the shell. The density at the inner region of halos scales as r−1, whereas
the volume of the shells scales as r−3, resulting in the innermost shells being resolved
by a smaller number of particles. Consequently, the cumulative mass functionM(r)
has been studied instead of the radial density function ρ(r), as away to avoid statistical
noise in small halo samples.

Figure 4.5 shows a selection of the results (the rest are included in appendix D). In
all cosmologies at z = 0, the NFW cumulative mass profileMNFW(r) seems to hold to
10% or better, except at the inner part of halos. At z = 1, the agreement is similar for
the cosmologies closest to the standard value, but only to 20% or better in the most
extreme cases.

For halos with small masses (1013M⊙/h), 3ϵ seems like a good boundary for the re-
gion where the results appear to be robust. Below that radius, the measured mass is
smaller than that expected from themodels.

At higher masses, particularly themostmassive halos (1014M⊙/h), 3 times the soft-
ening length does not appear to be a sufficient threshold, the region where the mea-
suredmass is lower than expected extends to around 20kpc/h. Since there also seems
to be a dependence on resolution, it seems necessary to find an alternative (possibly
mass- and resolution-dependent) definition for the region in which we can trust the
simulation results.
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Figure 4.4: Cumulativemass profiles for halos in threemass ranges, relative to theNFW
cumulativeprofile. Themass ranges includeall haloswithin 0.1 dexof thequotedmass.
TheNFWprofile has been calculated by introducing themedian concentration of each
sample into (3.16). Solid lines are for z = 0, dotted lines are for z = 1. The vertical line
marks r = 3ϵ.
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4.6 Force resolution and convergence radius

A recent paper (A. D. Ludlow, Schaye, and Bower 2019) explored the idea of a conver-
gence radius rconv in simulated halos. This radius is the smallest distance from the cen-
tre for which the radial density profile can be considered free of numerical artifacts. It
is defined as

trelax(rconv) ≡ κt200(z), (4.1)

where trelax(r) is the relaxation time at radius r, i.e. the time it takes a particle to ”lose
memory” of its initial trajectory; κ is a parameter related to the strictness of the con-
vergence criterion; and t200(z) is the period of a circular orbit at the edge of the halo.

For a halo withN particles and radius R200c, the convergence radius rconv is given as
a function of κ by the solution to

κ =

√
N

4

[
ln
(
R2

200c

ϵ2
+ 1

)
+

ϵ2 − 2R2
200c

3(ϵ2 +R2)
− ln

2

2

]√
200ρc

ρ̄(rconv)
, (4.2)

where ρ̄(r) ≡ M200c/M(r) is the cumulative density function of the halo. Thus for each
halo conv is fixed by the choice of κ. Due to the functional form of (4.2), a more strict (i.e.
higher) choice of κwill lead to a larger convergence radius,meaning a larger part of the
halo density profile is deemed unreliable due to lack of relaxation.

In bacco, the absolute inner limit for calculatingNFWfits is set as 3ϵ. The third round
of tests thus aimed to check if rconv imposes a more strict limit: if an unreliable part of
the density profile has been included in the fit, it may lead to systematic errors in the
calculation of halo concentration.

Figure 4.6 shows, for each smaller resolution, the deviation of the density profiles
relative to the highest-resolution simulation.

For all halo mases and resolutions, rconv > 3ϵ. A value of κ = 5 gives an agreement
to within 5% or better, except for the N384 simulation at z = 1. With a higher value of
κ, we could obtain an even better agreement, at the cost of discarding a larger portion
of the density profile.

The most important result of this test is that the region of the halo density profile
between 3ϵ and rconv is not numerically robust. As a result, if the simulations are used in
the future to calibrate a semi-analyticmodel, the calculation of concentrations should
ignore the part of the halos that is below the convergence radius.

Going forward, this also means that the concentrations that have been used in the
previous test have to be recalculated. Since those tests aimed to evaluate the agree-
ment between the simulation and themodels, some difference in the result may arise
from the new fit, potentially erasing at least part of the disagreement between the
models and the simulated data.
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Figure 4.5: Ratio of the median cumulative massM(r) in each simulation relative to
the high-resolution run. The solid segment of the colored lines represents the part at
r > rconv for κ = 5, while the dotted segment is the part of the profile that falls be-
low the convergence radius. The horizontal bars mark the 10% interval around the
high-resolution value. Each panel has been calculated with halos within 0.1 dex of the
quotedmass.
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Conclusions and acknowledgments

Thefieldofphysical cosmology is notablywideanddeep. Oneof its branches, the study
of the origin and evolution of large-scale cosmic structure, has been the focus of this
project. Asan introduction to the researchenvironment, a variedbibliographyhasbeen
studied, from introductory texts to state-of-the-art articles from academic journals.

In this thesis, we have started by deriving from simple principles the Friedmann
equations, which govern the background evolution of the Universe. Second, using La-
grangian perturbation theory, we have described the self-similar growth of the initially
small density perturbations. Third, we have studied the Zel’dovich approximation for
the mildly nonlinear regime, as well as N-body simulations that attempt to describe
how those initial density fluctuations, after their linear growth, turn into large-scale col-
lapsed structures in the fully nonlinear regime. We have also examined the properties
of dark matter halos learned from simulations, with particular attention to the NFW
density profile, the concentration parameter c and its relation to the halo massM and
redshift z.

In the practical aspect, we have studied the robustness of a suite of N-body simula-
tions, with the aim of eventually being able to use it to calibrate an analytical model of
the c(M, z) relation. After several tests, we have concluded that there is a convergence
radius rconv which sets a lower limit on the radii at which the density profile of halos is
free of numerical artifacts. In the future, the interpretation of data from this suite of
simulations should take into account rconv to avoid fitting invalid data and ensure the
robustness of the resultingmodels.
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