

Leioa, 2020ko irailaren 7a

Gradu Amaierako Lana
Ingeniaritza Elektronikoko Gradua

Implementation and performance analysis of
several versions of a Realistic Ray Tracer

(Python, CUDA and C++)

Egilea:

Kerman Alonso Ajuria
Zuzendariak:

Iñigo Arredondo Lopez de Guereñu

Jon Sanchez Herrasti

© 2020, Kerman Alonso Ajuria

Contents

1 Introduction 1
1.1 A bit of history . 1
1.2 Objectives . 2

2 Development of the ray tracer 3
2.1 Choosing the development tools . 3

2.1.1 Programming language . 3
2.1.2 Version control . 4
2.1.3 Operating system and hardware 4

2.2 Ray casting . 5
2.3 Scene objects and lights . 6

2.3.1 An object-ray intersection example: spheres 7
2.3.2 The general intersection algorithm 8

2.4 Local illumination . 8
2.4.1 Diffuse reflection . 9
2.4.2 Shadows . 9
2.4.3 Specular reflection . 10
2.4.4 Ambient light . 12

2.5 Color . 12
2.6 Accelerating Python . 14

2.6.1 A small survey of the available tools 14
2.6.2 Numba . 15

2.7 Global illumination . 18
2.7.1 Reflection . 19
2.7.2 Transmission . 20
2.7.3 Attenuation . 22
2.7.4 The ray_trace algorithm . 22

3 Enhancements 24
3.1 Anti-aliasing . 24

3.1.1 Uniform supersampling and jittered supersampling 24
3.1.2 Adaptive supersampling . 25

3.2 Further development on scene objects . 25
3.2.1 Triangle meshes . 26
3.2.2 Boolean operations with primitives 27

3.3 Steps towards photorealism . 29
3.3.1 Depth of field . 29

i

Contents Contents

3.3.2 Soft shadows . 30
3.3.3 Glossy reflections . 31

4 Performance comparison 33
4.1 Preparation . 33

4.1.1 Features and variables . 33
4.1.2 The designed scene . 34

4.2 Measurements . 34
4.2.1 Time . 35
4.2.2 CPU and memory utilization . 37
4.2.3 GPU utilization . 39

5 Conclusions 40

Bibliography 42

ii

1 Introduction

With the release of Nvidia’s GeForce RTX GPU series, the computer image rendering
technique known as ray tracing has caught the attention of the public. Ray tracing
simulates the propagation of light rays in 3D scenes, and can generate or render highly
realistic images. The main drawback is that it is computationally intensive, which has
limited its applicability in the past. However, hardware technology has greatly advanced
since the conception of the technique, and Nvidia’s RTX technology has made possible
to render ray traced images at a fast enough rate to be applied in video games. This is
called real time ray tracing and it means that the whole ray tracing rendering process is
completed between 30 and 60 times per second.

1.1 A bit of history

Ray tracing computer models were first developed in the 1960s, based on the principles
of classical geometrical optics. Much like physics undergraduate students calculating the
path a light ray follows after being refracted by a lens, ray tracers apply these principles
to trace the path of rays through virtual 3D scenes. Considering its basis, it should not
come as a surprise that, in addition to being used to produce realistic images in the
field of computer graphics, ray tracing has applications in the fields of optical design
and thermal radiation analysis [1, 2]. However, this work lies in the field of computer
graphics, which emphasizes on the quality of images and the speed of the rendering
process, rather than on the accurate representation of physical processes.
Most of the basic techniques that ray tracers employ were developed in the 1970s. These
include direct illumination models that describe how rays interact with the surfaces in the
3D scene to produce color, shading models that render shadows, and global illumination
models that simulate reflection and refraction. Despite the considerable realism of the
rendered images, they required too much time to be rendered due to the limitations of
the hardware at the time. The 1980s saw a rise in ray tracing research that mainly
focused on accelerating techniques. More efficient algorithms were developed, as well
as hardware acceleration techniques based on parallel computing. However, ray tracing
continued to be too slow, and during the 1990s other image rendering techniques were
favored.
As hardware acceleration improved, many image rendering software began to include ray
tracing techniques to compute some illumination features. In computer generated movies
ray tracing slowly but steadily substituted other techniques, becoming the preferred
movie rendering technique [3].

1

1. Introduction Objectives

The major advancement in hardware acceleration in recent years has been the afford
mentioned RTX technology that was released in Nvidia’s Turing architecture GPUs in
2018. This has renewed the interest in hardware acceleration research, and has made
real time ray tracing accessible to game developers and the general public [4, 5].

1.2 Objectives

Modern ray tracers are very complex algorithms that model a wide range of optical
phenomena and apply several acceleration techniques. It would be unrealistic to attempt
to implement such an algorithm in this work, so a more basic model has been developed,
more akin to the ray tracers of the 1970s.
The basic ray tracer has the capability of rendering simple geometric shapes, and it can
reproduce the reflection and transmission of light rays. Its characteristics and limitations
are explained throughout chapter 2. Then, some of this limitations are overcome by the
enhancing techniques presented in chapter 3.
On the other hand, the basic ray tracer model has been used to explore some of the
acceleration tools available for the Python language, the language used to develop the
model. The ray tracer has also been compared to a similar model implemented in the
C++ language, provided by the DigiPen Institute of Technology. The procedure followed
to do the comparison and the results can be found in chapter 4.

2

2 Development of the ray tracer

Ray tracers are a type of image renderer or synthesizer ; they take a 3D scene as an
input and produce a 2D image. So, in essence, ray tracers fulfill the same function as a
real camera, and can be understood as a model of one. In principle, one could design a
ray tracer that models a complex camera with all its complex optics, however, the usual
approach is to model a pinhole camera.
Section 1.2 of chapter 1 in [1] explains how pinhole cameras work and how ray tracers
implement them. A pinhole camera consists on a box with a small hole in the middle of
one of its faces and a photographic film that covers the inside side of the opposite face.
The pinhole lets through a small number of rays into the box, so that each point in the
photographic film receives only the rays coming along the direction of the line joining
that point and the hole. By eliminating all the other rays, pinhole cameras get a 2D
image of the 3D scene outside the box. Ray tracers also render the scene by projecting
a ray that goes through a eye point (that functions as the pinhole) into each point of
the screen (that is analogous to the photographic film). However, the screen in a ray
tracer is placed between the eye point and the scene, as oppose to behind the eye point
like in the pinhole camera. If the film was placed outside the box, the pinhole camera
wouldn’t work, but it does work for the ray tracing computer model; in fact, it simplifies
the model without any compromise.
There are multiple ways to implement a ray tracers depending on what kind of scenes
and optical phenomena one wants to render. That said, there are some features that
all ray tracers share, and that are explained across many introductory level ray tracing
books. In this case, the the basic ray tracer was mainly developed using [6], but as
stated, many other references like [1] or [7] could be used instead.

2.1 Choosing the development tools

Before starting to code the ray tracer, the development tools to be used were explored.
This section presents the tools that were selected and the reasoning behind the choices
that were made.

2.1.1 Programming language

A quick look into ray tracing textbooks is enough to see that ray tracers are commonly
written in C++ (or C) [1, 8, 7, 9]. Its high performance and memory management
features make C++ one of the most common language used in image rendering.

3

2. Development of the ray tracer Choosing the development tools

Before beginning the project, the student had taken courses that taught the basics of
Python, Java and Fortran. Learning C++ was considered at the beginning, as it would
allow the student not only to develop a well performing ray tracer, but to create a both
a C++ and a Python version to analyze performance differences. Nonetheless, the idea
was discarded due to time constraints. Speed of development was an important factor,
so Python 3 was chosen, due to familiarity and its inherent beginner friendly features
(interpreter, dynamic typing...). In addition, NumPy was used to ease array creation,
but the necessary vector and matrix operations were programmed from scratch.
The implementation of a ray tracer is challenging in itself, but to make the project more
complete, it was decided to compare the Python version with a C++ one. With this
in mind, Jon Sanchez from Digipen Institute of Technology became a co-director, and
provided a compiled C++ ray tracer of similar characteristics.

2.1.2 Version control

The tools chosen to keep track of the project versions were Git and GitLab, which also
allowed to store the project in a remote repository and keep the team up to date on its
development. Learning and applying the basics the version control software was enough
to drastically improve the development process, and Git became an invaluable tool to
create and manage the various versions of the code.
This was specially true in the process of measuring and comparing the performance
of the ray tracers implemented using different coding languages and tools (chapter 4).
Each version was contained in a different branch, and switching between versions was
reduced to just typing a Git command. While working on a branch locally, GitLab was
used to view the code of any branch stored in the remote repository. Thus, making small
corrections across the ray tracer implementations became simpler with the usage of these
tools.

2.1.3 Operating system and hardware

The capabilities of the student’s personal computer were determined to be sufficient to
use it as the sole development platform. The relevant specifications of the computer are
listed in table 2.1, for use as a reference in the performance measurements of chapter 4.

Table 2.1: Computer specifications.

OS Microsoft Windows 10 Home
RAM 8.0 GB DDR3
External memory TOSHIBA MQ02ABD100H
CPU Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 2592 Mhz
GPU NVIDIA GeForce GTX 950M

4

2. Development of the ray tracer Ray casting

2.2 Ray casting

The fist step to implement the ray tracer was to parameterize the screen and the eye
point, that together form what from now on will be referred to as the camera. Chapter
2 of [6] presents one way to achieve this by first establishing some conventions, and then
defining the necessary parameters.
The conventions are that all vectors are defined in a right-handed coordinate system,
and that even though the units of length are arbitrary, the magnitude of the vectors that
define the scene objects (section 2.3) are generally close to unity.
On the other hand, the camera is defined by three vectors (u, v, e) and a point (C).
Point C is the center of the screen which has a rectangle shape. Horizontal vector u and
vertical vector v are orthogonal vectors that define both the orientation of the screen
(the direction of its the horizontal and vertical symmetry axes), and its dimensions (2|u|
wide and 2|v| tall). The addition of vector e and point C gives the position of the eye
point (Pe). It is important to note that e must be orthogonal to both u and v in order to
produce images with correct perspective. Figure 2.1 shows the components of a camera.

Figure 2.1: Components of a camera (u, v, e, C) and a point on the screen (Q).

As stated in section 1.1 ray tracing is based on tracing the paths of light rays in a scene.
In the model, light rays are defined by some spatial information, and the corresponding
color is stored separately (sections 2.4 and 2.5). For now, let’s focus on the light rays
that go through both the screen and the eye point, which are known as eye rays; these
are the rays that ultimately contribute to the rendering of the 2D image. The spatial
information such rays is expressed as line segments (ρ) that have one end at point Pe,
and go through a point Q in the screen into the scene:

ρ(t) = {Pe + t(Q− Pe) | 0 ≤ t ≤ ∞} (2.1)

Point Q can be seen on figure 2.1 and can be written as follows:

Q = {C + αu + βv | − 1 ≤ α ≤ 1, −1 ≤ β ≤ 1} (2.2)

5

2. Development of the ray tracer Scene objects and lights

Now that the camera and light rays have been defined, there remain two key ideas to
complete the understanding of how a ray tracer renders an image.
The first one illustrates an important difference between the source of light rays in reality
versus their source in a ray tracer. In reality, light rays originate in light sources (that
will be referred to as lights) and travel through the scene before reaching the pinhole
camera. One can easily realize that most light rays do not reach the pinhole, and do
not therefore contribute to the image formed in the photographic film. Ray tracers take
the inverse approach, originating light rays in the eye point and casting them into the
scene. The rays travel through the scene until they reach a light. This method greatly
reduces the number of created light rays, limiting it to the ones that contribute to the
final image. This idea is explained in further detail in sections 2.1 and 2.2 of chapter 1
in [1].
The final idea is that the virtual screen, the analog to the photographic film in the
pinhole camera, is directly related to the rendered image in the following way. The
screen is subdivided into rectangular areas depending on the size of the image (the
number of horizontal and vertical pixels). Each rectangular area corresponds to one of
the pixels of the image, and all the light rays that go through this area contribute to the
final color of the pixel. This is shown graphically on figure 2.2.

Figure 2.2: A light ray that originates in the eye point Pe, goes through a screen area that
corresponds to a pixel and intersects a sphere in the sceene. The green color of the intersected
object is displaied on the corresponding pixel.

2.3 Scene objects and lights

The 3D scenes that the ray tracer renders are constituted by light sources and objects.
Ray tracers often implement several kinds of light sources, that can have different shapes
and characteristics [10]. Nonetheless, the implemented ray tracer only includes point
lights, which are defined by a color and a point in space. Scene objects are 2D or 3D

6

2. Development of the ray tracer Scene objects and lights

geometric shapes that have surface properties that define how light rays interact with
them.
This section will focus on explaining how the intersection of geometric shapes and light
rays is computed. The surface properties of objects will be mentioned in sections 2.4 and
2.7, along with the explanations of what each represents and how is used in the model.
An algorithm that solves the object-ray intersection problem first determines if the object
and the ray intersect. If they do, it outputs the point of the intersection (P), the normal
vector to the surface of the object at that point (n) and the distance between the origin
of the ray and P (tP). An object and a ray can intersect at multiple points, but for ray
tracing purposes only the point closest to the origin of the ray is needed. The reason
is that once a light ray reaches an object surface, its direction and color change; which
means that it disappears, and that new reflected or refracted rays are created in its place
(section 2.7). n is always chosen to point outside the objects if they are 3D, to make
shading easier (subsection 2.4.2). In the case of 2D objects, the normal always points to
the region in space where the incident ray comes from.

2.3.1 An object-ray intersection example: spheres

Chapter 3 in [6] describes how to compute object-ray intersections for spheres, boxes
(quadrilaterally-faced hexahedron), polygons and ellipsoids; all of which have been im-
plemented in the model. Although each object has each own nuances, studying one of
them is sufficient to get a good idea of how P , n and tP are computed. Since the sphere
is the easiest to implement, it is the best candidate to illustrate the procedure.
The first step is to parameterize the spatial information of the object. The sphere is
defined by giving the position of its center (C) and its radius (r). Every point P in its
surface is defined by this equation:

(P − C) · (P − C) = r2 (2.3)

The light ray must also be parameterized, by determining the point of origin of the ray
(P0) and the direction vector (i), and using them to define the line that constitutes the
spatial information of the ray.

ρ(t) = P0 + ti (2.4)

Then, equations (2.3) and (2.4) are used to create a system and get the t value at which
the sphere and the ray intersect. This leads to the following second order equation:

at2 + bt+ c = 0, where


a = |i|2

b = 2[(P0 − C) · i]
c = |P0 − C|2 − r2

(2.5)

7

2. Development of the ray tracer Local illumination

Finally, the various kinds of solutions equation (2.5) have to be interpreted to give the
correct output of the intersection. The following pseudocode shows the logic behind this
analysis:

if b2 − 4ac < 0 :
no intersection

else:
t± = (−b±

√
b2 − 4ac)/(2a)

if t+ < 0 :
no intersection

elif t− < 0 :
P = P0 + t+i, n = P − C, tP = t+

else:
P = P0 + t−i, n = P − C, tP = t−

The basic idea, that holds true for every object-ray intersection, is that the algorithm
must find the intersection with the smallest non-negative t value.

2.3.2 The general intersection algorithm

Scenes usually contain more than one object, so apart from the functions that compute
each kind of object-ray intersection, the model has a general intersection function to
manage multiple objects. The function is invoked for every light ray, and outputs the
P , n and tP values of the closest object-ray intersection to the origin of the ray. To
achieve this, the algorithm simply loops through all the objects of the scene calling the
appropriate object-ray intersection function in each case. If the tP value for the current
object-ray intersection is smaller than the previous one, the P , n and tP values are
updated.

2.4 Local illumination

Section 2.2 explained how the camera renders a 2D image from light rays, and section
2.3 showed how scene object and light ray intersections are computed. This section
completes the explanation of the basic model by illustrating how the color of the light
rays is computed.
Chapter 4 in [6] begins by explaining that a local illumination model is a model that
computes the interaction between first order light rays and scene objects. First order
light rays are the ones that, after being casted from the camera, intersect an object,

8

2. Development of the ray tracer Local illumination

reflect off of it and reach a light source without interacting with any other object in the
process. Therefore, a ray tracer that implements a local illumination model renders the
scene objects (or rather object surface points) that are directly visible for the camera
and are directly lit by at least one light.
The local illumination model attempts to emulate lights behavior by implementing two
kinds of reflection (diffuse and specular), shadows and ambient light. But, before going
into the explanation of these features, it is necessary to introduce the concepts of radiant
flux (φ) and radiance (ρ). As stated in [7], radiant flux is the amount of electromagnetic
energy that passes through a surface per second. Radiance measures the radiant flux
at a specific point coming from a specific direction, and is defined as the radiant flux
per unit of projected area (perpendicular to the direction) per unit of solid angle. Its
association to a specific direction makes radiance very well suited to quantify the color
of light rays.

2.4.1 Diffuse reflection

Diffuse reflection, also known as matte reflection [8], models the reflection phenomena
that gives color to most objects in reality: the absorption of photons by surfaces and their
subsequent re-emission in a different spectra [1]. The model implements this photon-
surface interaction by multiplying the radiance of the incident ray at a specific wavelength
λ (ρi(λ)) with a diffuse reflection coefficient (kd), which is a property of the surface.
The re-emitted photon can leave the surface in any direction, and it can be assumed
that the probability of all the possible directions is equal. Therefore, with respect to
geometry, the amount of reflected light at any given direction will only depend on the
relative orientation of the incident light ray (i) and the normal vector to the object
surface (n). The model takes this into account introducing a |i · n| term. Figure 2.4a
presents a graphical representation of diffuse reflection, showing that the reflected ray
can have any direction.
Taking the photon-surface interaction and the geometry term into account, one can get
the formula for the radiance of the diffusely reflected ray (ρd(λ)) [1, 6]:

ρd(λ) = kd|n · i|ρi(λ) (2.6)

2.4.2 Shadows

Shadows were implemented following the method described in section 4.2 of [6]. The
model is based on the idea that a point P in the surface of a scene object is directly lit
by a light only if the line segment linking P and the light does not intersect any object in
the scene. This line segment is appropriately called a shadow feeler, and is implemented
using this formula:

ρ(t) = {P + tl | 0 ≤ t ≤ D} (2.7)

9

2. Development of the ray tracer Local illumination

where D is the distance from P to the light, and l is a normalized vector that points to
the light if placed at point P.
There is a important note to make about the implementation of the shadow feeler in the
model. If a light ray hits a surface from outside, there is a possibility of spawning the
shadow feeler inside the object, due to finite precision in floating point representation.
To avoid this, a normal outward vector with a small magnitude (ε) is added to point P
before using it to calculate the shadow feeler. This addition ensures that the shadow
feeler is always spawned outside the object that contains P. Figure 2.3 shows where
shadow rays are spawned and their orientation.

Figure 2.3: Two shadow rays spawned from a point slightly above P , represented by their
direction vectors l1 and l2. The first shadow ray reaches the light, but the second intersects a
scene object. The yellow vector represents the direction of the incident ray that has intersected
the surface at point P .

Each time the intersection point P between a light ray casted from the camera and
the nearest object is computed, shadow feelers are spawned to find out which lights
directly illuminate P. Then, local diffuse and specular reflections are computed taking
into account only those lights.
This simple shadow model has a big limitation that will become more apparent at sub-
section 2.7.2: transparent objects cast a shadow as dark as opaque objects do.

2.4.3 Specular reflection

The implementation of specular reflection in a ray tracer aims to reproduce the reflection
phenomena that produces bright highlights in polished surfaces, like the ones seen in cars
on a sunny day. This kind of reflection was implemented in the program by using the
Phong reflection model, described in subsection 4.3.2 of [6].
Specular reflection is related to the reflection law of light waves. According to this law,
the incident ray, the reflected ray and the normal vector (n) to the surface lie in the

10

2. Development of the ray tracer Local illumination

same plane, and the angle of incidence and the angle of reflection are the same (but the
incident ray and the reflected ray are at opposite sides of the normal). The expression
of the direction vector of the reflected ray (r) in terms of the direction of the incident
ray (i) can be derived from the stated law:

r = i − 2(i · n)n (2.8)

where all vectors are assumed to be normalized. Note that the program follows the
convention that n and r point away from the surface, and i points towards the surface.
Perfect specular reflections on a point P are only visible when the viewer is looking in
the exact direction of the reflected ray. In the program, the direction vector of the line
of sight (v) points towards the surface. Therefore, perfect specular reflections are only
visible when r and v are anti-parallel to each other. However, specular reflection on real
objects is not perfect, due to microscopic surface irregularities, and the reflected ray does
not always have the direction vector given by (2.8). The Phong model approximates this
by applying a |r ·v| term, that is equal to one when the direction vectors are anti-parallel
and decreases towards zero as the angle between vectors decreases. This can be seen in
figure 2.4b. The specular reflection radiance of the model is given by:

ρs(λ) = ks|r · v|mρi(λ) (2.9)

where ks is the specular reflection coefficient (the fraction of light that is specularly
reflected), m is the specular reflection exponent (which controls how close the reflections
are to perfect reflections) and ρi(λ) is the radiance at the wavelength λ of the incident
ray [6, 7]. Note that if r · v > 0 the ρs(λ) is set to zero, as the viewer would not be able
to see the specular reflection in this case.
It is important to note that the Phong model is an empirical model and that it is not
physically accurate. For instance, it does not conserve energy (section 15.1 in [7]) and
does not take into account that the color of the reflected ray can be slightly affected by
the surface (subsection 4.1 of chapter 4 in [1]).

(a) Diffuse reflection (b) Specular reflection (c) Ambient light

Figure 2.4: Diagrams of the local ilumination components. The yellow vectors correspond to
incident rays, and the blue ones to reflected rays.

11

2. Development of the ray tracer Color

2.4.4 Ambient light

Ambient light is used as an approximation of indirect diffuse illumination; which happens
when an object A is illuminated by diffusely reflected light rays coming from a object
B [6, 7]. In figure 2.4c, ambient light is represented by yellow incident rays coming
from all directions. Ambient light is a light present at every point in the scene, and
its radiance component (ρa(λ) = kdρi(λ)) added to the diffuse and specular reflection
radiance components every time local illumination is computed. The results obtained
by implementing a local illumination model are shown in figure 2.5.

Figure 2.5: Render of a scene using the local illumination model. A brown polygon object, a
green box, a white ellipsoid and two red spheres can bee seen. There are two sources of light, so
shadows are either partial or complete. The color of the objects comes mostly from the diffuse
component, but specular highlights can be seen on the spheres and the ellipsoid.

2.5 Color

Up until this point the radiance of the light rays has been given in terms of wave length
λ. There are ray tracers that use spectral distributions to implement the radiance of each
light ray, specially in the fields of optical analysis and thermal radiation transfer analysis.
However, the ray tracer implemented in this work is not aimed to be physically accurate,
but to render a realistic seeming scene. On that note, radiance has been implemented
using the linear RGB color space.
RGB stands for Red Green Blue, which are the three components of the vectors used
to represent colors in this color space (values of red, green and blue components range
from 0.0 to 1.0 in linear RGB). The “linear” part of the name specifies that linear
RGB is a linear color space. In linear color spaces one can apply math (addition and
multiplication) to colors and expect the same result as one would get in reality. For

12

2. Development of the ray tracer Color

example, if one adds two light rays of the same color, the result is a light ray with a
color twice as bright. Therefore, linear RGB is well suited to implement the radiance of
a light ray, because it is compatible with all the mathematical operations performed in
the rendering process.
Nevertheless, it turns out that the human eye does not perceive light linearly. For
instance, in a monochromatic linear color gradient, it is far better sensing differences
of brightness between darker shades than between brighter ones. Because of this, most
digital images are encoded in non-linear color spaces (like sRGB), that devote more
information bits to darker shades. At the same time, display monitors assume that
images are encoded in non-linear color spaces, and apply corrections to the images to
return to a linear color space before displaying them. If the ray tracer outputs an image
encoded in linear RGB, the image displayed by the monitor would look wrong. On the
other hand, as stated in [11], computing color addition or multiplication on non-linear
color spaces leads to incorrect results, so they should not be used in the rendering process.
Figure 2.6 is an illustrative example of the difference between rendering a scene using
linear RGB and rendering the same scene using sRGB.

(a) Linear RGB render (b) sRGB render

Figure 2.6: Rendring of a withe sphere lit by two lights of yellow ((R,G,B) = (1,1,0)) and
magenta ((R,G,B) = (1,0,1)) colors respectively. Figure 2.9a shows the spected white ((R,G,B)
= (1,1,0)) color in the region lit by both lights. Figure 2.9b shows a diferent, and therefore
erroneous, color in the same region.

The above explanations lead to the conclusion that the program needs to be able to
transform colors between the linear RGB and sRGB color spaces. This is done by using
the following formulas [12]:

sRGB to linear RGB:
if R, G, B ≤ 0.04045

XL = X/12.92 (2.10)
if R, G, B ≥ 0.04045

XL = ((X + 0.055)/1.055)2.4 (2.11)

13

2. Development of the ray tracer Accelerating Python

Linear RGB to sRGB:
if RL, GL, BL ≤ 0.0031308

X = 12.92XL (2.12)
if RL, GL, BL ≥ 0.0031308

X = 1.055X(1/2.4)
L − 0.055 (2.13)

where XL stands for one of the three primary color components (RL, GL or BL) of a
linear RGB color, and X for one of the color components of a sRGB color (R, G or B).
The implemented ray tracer assumes that the input colors are given in sRGB. So first, it
transforms all colors into linear RGB, and then performs the rendering process in that
color space. Finally, it transforms the colors of the rendered image to the sRGB color
space, so that the resulting image is shown correctly by the monitor.

2.6 Accelerating Python

The ray casting camera, the scene objects and lights, and the local illumination model
are the backbone of the ray tracer. Once a functioning ray tracer had been implemented,
it was decided to find tools to accelerate its execution.
Ray tracers are very costly algorithms that require a lot of calculations to render each
pixel. However, the rendering process of one pixel does not depend on the rendering of
another, they are completely independent. This makes the ray tracing algorithm “em-
barrassingly parallel”. Therefore, the simplest and most effective method of accelerating
a ray tracer is to render pixels in parallel.
As stated before, the C++ language is well suited to efficiently render each pixel. In
addition, its native multithreading capabilities allow the programmer to access all the
CPU cores of the computer to run parallel processes. In contrast, Python performs
serial operations slower than C++, and it has a built in global interpreter lock (GIL)
that limits a program’s execution to a single core [13].

2.6.1 A small survey of the available tools

There are several tools that can be used to accelerate the serial execution of Python code
and to enable parallel programming [14]. Some tools allow to call functions written in
other languages; examples include Cython for C/C++ [15], F2Py for Fortran [16], and
Jython for Java [17]. Cython and Jython also allow to compile Python code into C code
(that can be compiled by a C/C++ compiler into runtime code) and into code that runs
in the Java Virtual Machine respectively. Both these compilation processes create code
that runs faster than the native Python byte code created by CPython (the standard
built-in Python compiler). IronPython is another alternative to CPython [18]; it creates

14

2. Development of the ray tracer Accelerating Python

byte code that runs in the Common Language Runtime virtual machine that is part of
the Microsoft .NET Framework. Cython, Jython and IronPython also allow to release
the GIL and execute code in multiple CPU cores simultaneously.
Despite the advantages offered by the afford mentioned tools, all of them require to write
code using specialized syntax or programming languages other than Python. Fortunately
there are at least two tools that can speed up the execution of code written in the core
Python language: PyPy and Numba [19, 20]. These are both just in time (JIT) compilers,
that compile the code during its execution to optimize it and shorten the runtime. They
both support the basic NumPy features used in the ray tracer program, and could offer
a substantial performance improvement in the serial execution of the code. Nonetheless,
Numba has a big advantage when compared to PyPy: it allows parallel programming
in the CPU and the GPU. PyPy has a version that implements Software Transactional
Memory to implement parallel programming in the CPU, but it does not support Python
3 [21]. For this reason, Numba was chosen to accelerate the ray tracer program.
It has to be mentioned that Python does offer the option to do parallel programming by
using the threading and multiprocessing modules [22, 23]. The threading module
does not allow to release the GIL; instead it is used to create several threads and switch
from one to another whenever one of them is waiting for some external process to finish
(creating a program that seemingly runs on parallel). This can greatly reduce execution
time in I/O bound applications, which expend most of their time waiting for data from a
remote source. However, the ray tracer program is a CPU bound program, as it expends
the majority of the time performing arithmetic operations in the CPU. This means that
using the threading module would not improve performance. The multiprocessing
module on the other hand, can be used to create several processes. Each process is
executed in a different CPU core and has its own GIL, so different sections of the program
truly run in parallel. In principle the multiprocessing module could have been used
to improve the performance of the ray tracer, but since Numba already offers parallel
programming in the CPU its use was not necessary. Nevertheless, the module was used
to create a process that runs in parallel to the ray tracer program and measures its
performance (chapter 4).

2.6.2 Numba

Numba performs JIT compilation by using the LLVM compiler library, producing ma-
chine code at runtime. As stated in [24], it works best when optimizing code that relies
heavily on loops and NumPy arrays. This makes it very well suited to accelerate the ray
tracer algorithm.
Numba is based on the use of decorators that specify how to compile Python functions.
The decorators are simply written above a function, and Numba takes care of the JIT
compilation and optimization. The basic decorator is @numba.jit(), which has some
arguments to select compilation options. The relevant ones for this work are nopython
and parallel. There is also an option to specify the types of the arguments of the
function, but Numba can perform type inference so this feature was not used.

15

2. Development of the ray tracer Accelerating Python

The nopython argument is related to the two Numba compilation modes: the nopython
mode and the object mode. The first mode generates code that does not access the
Python C API, and is much faster than the code generated by the object mode. Numba
always tries to use the first mode, but it switches to object mode when nopython cannot
be applied. Setting a True value to nopython avoids this by issuing an error message
if nopython mode fails. Fortunately, all the functions of the ray tracer are compatible
with the nopython mode, and the nopython=True option ensures that only this mode is
used.
On the other hand, parallel marks if a function makes use of automatic parallelization
in the CPU. When set to True, some array operations are automatically parallelized. It
also offers the possibility of explicitly parallelizing loops when there are no cross iteration
dependencies. “Embarrassingly parallel” algorithms can be easily parallelized by using
this second capability. In the ray tracer, the only necessary change is to write prange
instead of range in the loop that iterates over the pixels of the image.
As previously mentioned, Numba also supports GPU programming. More specifically,
it is compatible with Nvidia GPU devices that use the CUDA interface [25]. GPUs
have hundreds of cores, and are purposefully built to process parallel programming,
which in CUDA is based around CUDA kernels and device functions. Numba offers
the capability of turning Python functions into kernels and device functions by using
decorators @cuda.jit() and @cuda.jit(device=True) respectively.
CUDA kernels are functions that are called from the CPU but execute on the GPU.
When a kernel is called, its code is executed in multiple threads at the same time. This
threads are grouped into blocks, that all together form a grid. The programmer can select
the total number of threads and the number of threads per block, which are specified
each time the function is called. On the other hand, device functions are functions that
are executed on the GPU and can only be called from the GPU (by kernels or other
device functions).
In the Numba CUDA implementation of the ray tracer, a kernel function performs the
rendering process of a subsection of the image, calling various device functions in the
process. The size of the image section depends on the number of total threads used: the
bigger the number of threads, the smaller the section of the image each of them has to
render. It is apparent then, that the speed of the rendering process will depend on the
total number of threads that is selected. The number of concurrently executing threads
is limited by the hardware, and is far smaller than the amount of pixels the ray tracer
renders. However, the total number of threads called by the programmer can be as big
as the number of pixel. This leads to the following question: is it better to call as many
threads as there are pixels, even though they will not all be executed at the same time?
Or is it better to create the maximum number of threads that can be executed at the
same time, and let each of them handle multiple pixels?
As it turns out, the number of threads per block also influences the speed of rendering,
so getting the answer to the question required some testing. First, the execution time
for different numbers of total threads were measured, with fixed values of threads per
block. The results are shown in figure 2.7, that lead to the conclusion that in general the
“as many threads as there are pixels” approach works better. Knowing this, the next

16

2. Development of the ray tracer Accelerating Python

step was to measure the execution time for a variety of block sizes keeping the number of
total threads equal to the number of pixels. Figure 2.8 shows the results of this second
test, which established that a number 32 threads per block was the optimum, at least
for the tested scene.

Figure 2.7: Execution time of the Numba CUDA ray tracer with respect to the total number
of threads. Each line corresponds to a two dimensional block size, indicated by the number of
threads the block has in its horizontal and vertical directions.

Figure 2.8: Execution time of the Numba CUDA ray tracer for various kernel block dimensions.
The total number of threads is fixed and equal to the total number of rendered pixels. Each dot
corresponds to a different two dimensional block size.

17

2. Development of the ray tracer Global illumination

When discussing the performance of CUDA functions memory use is very important.
Numba gives access to three main types of memory: global device memory, local memory
and on-chip shared memory. Global device memory is the memory that is used when
an array is transferred from the CPU to the GPU, and can be accessed by all threads.
Local memory is private to each thread, and shared memory can be accessed by all the
threads in a block. Local and global memory access speed is similar, and much slower
than shared memory access. However, shared memory is limited and requires much more
careful management.
At the beginning of the project an attempt was made to use shared memory to store the
read-only data of the camera, the objects and the lights. The results can be seen in figure
2.9, in which the surface colors of the rendered objects change following a checkered
pattern. The size of the squares that form the pattern changes when the number of
threads per block is altered, but the underlying reason for that was not found. Due to
this complications, shared memory was not used in subsequent versions of the CUDA
ray tracer.

(a) (5, 5) block size (b) (10, 10) block size

Figure 2.9: Incorrect renderings of a scene caused by poor use of CUDA shared memory. Each
image is the result of a kernel call with a different block size.

After including Numba acceleration, there are 4 versions of the Python ray tracer:
the core language version, the mono-threaded Numba CPU version, the multi-threaded
Numba CPU version and the Numba CUDA GPU version. The performance comparison
between all of them and the C++ ray tracer can be found in chapter 4.

2.7 Global illumination

A global illumination model is defined as a ray tracing model that computes the color
contributions of light rays of second order or higher. These rays are reflected more than
once before reaching a light source, as shown in figure 2.10.

18

2. Development of the ray tracer Global illumination

Figure 2.10: The paths followed by two rays from the eye point Pe to a light. The 1st order
ray reflects once, and the 2nd order ray reflects twice.

2.7.1 Reflection

When a light ray reflects off a surface its direction and color change. In the model, these
changes are implemented by first calculating the new spacial and color values, and then
creating a new reflected ray.
As in the case of the shadow feeler, the point of origin of the reflected ray is placed
at a distance ε from the surface, to prevent the ray from intersecting the surface it
reflected off of. The direction of the reflected ray is computed by applying equation
(2.8). This makes all the reflections perfect, so the model only implements surfaces that
are perfectly smooth. Section 24.4 of [7] points out that assuming the reflections on the
global illumination model are perfect is inconsistent with the implementation of glossy
specular reflections (Phong model) in the local model. Since the glossiness of a reflection
is determined by the object surface, the amount of glossiness applied to global reflections
should be the same to the one applied to specular reflections on the local illumination
model.
When a light ray reflects off a surface, a fraction of its energy is lost. This can be
modeled by simply multiplying the color vector of the incident ray by the specular
reflection coefficient (ks). On top of that, if the surface isn’t fully reflective, a fraction of
the energy of the incident ray will end up in the transmitted ray. Since the implemented
model includes transmissive objects, it is necessary to compute what fraction of the
incident ray’s energy the reflected ray has. This fraction is called the reflection coefficient
(R), and can be obtained from the Fresnel equations. Since the model assumes that all

19

2. Development of the ray tracer Global illumination

light is unpolarized, R is computed by using the following equation:

R = 1
2
{
R⊥ +R‖

}
(2.14)

where R⊥ is the reflection coefficient for light polarized in a perpendicular direction to
the surface, and R‖ is the reflection coefficient for light polarized in a parallel direction
to the surface. Their values are given by:

R⊥ =


ni

nt
cos θi − µi

µt

√
1−

(
ni

nt

)2
(1− cos2 θi)

ni

nt
cos θi + µi

µt

√
1−

(
ni

nt

)2
(1− cos2 θi)


2

(2.15)

R‖ =


µi

µt
cos θi − ni

nt

√
1−

(
ni

nt

)2
(1− cos2 θi)

µi

µt
cos θi + ni

nt

√
1−

(
ni

nt

)2
(1− cos2 θi)


2

(2.16)

where subscript i refers to incident, t to transmitted, θi is the angle between the surface
normal n and −i (following the convention given in subsection 2.4.3), µ is the relative
magnetic permeability (assumed to be equal to 1 in the equations implemented in the
model) and n is the index of refraction.
To be able to apply these equations in the model, it is necessary to know in which medium
the incident ray travels and which medium the transmitted ray will travel in. Following
the convention of subsection 5.2.3 of [6], all objects are assumed to be surrounded by air.
The model keeps track of the value of ni; if it’s equal to 1, the incident ray is traveling
through air and nt is computed from the surface properties of the intersected object, if
it’s not, the incident ray is traveling inside the object and nt = 1.
Once R is computed, the color of the reflected ray is computed multiplying the color of
the incident ray by ksR.

2.7.2 Transmission

Up until this point, light rays haven’t been allowed to enter and travel thorough any
object, so all the rendered scenes have contained opaque objects. With the implemen-
tation of transmission, the ray tracer becomes able to render translucent objects. The
implementation of transmission is very similar to the implementation of reflection: each
time a light ray intersects an object surface a transmitted ray is created.
The color of the transmitted ray is obtained multiplying ks and the transmission coeffi-
cient (T = 1−R) to the color of the incident ray.

20

2. Development of the ray tracer Global illumination

On the other hand, the computation of the direction of the ray is based on Snell’s Law
of Refraction. This equation can be rearranged to get an expression for the direction
vector (t) [6]:

t =
[
(t · n)− ni

nt
(i · n))

]
n + ni

nt
i (2.17)

In the model, n can be on either side of the surface, so (i · n) and (t · n) can be
negative. This is not a problem, because the n outside the brackets compensates the
sign. However, the signs of (i · n) and (t · n) must be the same. (t · n) is calculated
using the following equation:

(t · n) =

− cos θt, if (i · n) ≤ 0
cos θt, if (i · n) > 0

(2.18)

where cos θt is given by:

cos θt =
√

1−
(
ni
nt

)2
(1− (i · n)2) (2.19)

Finally, as in the case of the reflected ray, the origin point of the transmitted ray has
to be placed a small ε distance away from the surface to avoid false collisions. However,
the origin of the transmitted ray and the origin of the reflected ray have to be placed at
opposing sides of the surface. So, if the incident ray is outside an object, the origin of
the reflected ray is placed outside and the origin of the transmitted ray inside.
As stated in subsection 5.2.4 of [6], the biggest limitation of this implementation of
transmission is that the shadows of the translucent objects are as dark as the ones the
opaque objects cast. The implemented shadow feeler is directly aimed at the point light
sources, and is not allowed to go through any scene object. Since the shadow feeler
and the spatial part of a light ray are mathematically the same, the transmission model
could be applied to compute transmitted shadow feelers. The problem is, that these
transmitted rays would no longer be aimed at the light source, and thus couldn’t be
used as shadow feelers.
More complex ray tracers implement photon maps to render correct shadows of trans-
missive objects and simulate caustics (like the bright spot that can be produced by
concentrating sunlight with a magnifying glass). Photon mapping is performed before
rendering. First, many photons (analogous to the implemented light rays) are emitted
from each light source. Then, the photon-object intersections are computed, and the
photons are reflected, refracted or absorbed based according to probability functions.
Finally, the scene points in which photons have been absorbed are stored to create a
photon map. After the standard rendering process is finished, the photon map is super-
imposed to create the final image [26].

21

2. Development of the ray tracer Global illumination

2.7.3 Attenuation

Light attenuation refers to the absorption of light as it passes through a material [6].
The model implements the Beer-Lambert Law that can be written in the following way:

ρλ(d) = ρλ,0A
d
λ (2.20)

where ρλ,0 is the radiance of the ray at its origin point, d is the distance traveled inside
the material and Aλ is the attenuation coefficient.
Attenuation is applied each time a light ray intersects an object; multiplying the color
vector of the ray by the attenuation factor Adλ.

2.7.4 The ray_trace algorithm

The ray_trace function is the main function of the part of the program that renders the
image. At its core, the function takes a light ray as an input, calls the intersection
function to get the P , n and tP values of the closest object, and uses this information
to apply the local illumination model and get the color of the ray.
To render a scene applying local illumination only, it would be sufficient to pass each
ray that originates in the eye point to the ray_trace function, and use the output ray
colors to set the image pixel sRGB values. However, global illumination requires the
implementation of higher order rays, which will also need to be passed to ray_trace in
order to get their color. For this reason, ray_trace has been implemented as a recursive
function in the case of the CPU implementations [6].
On each iteration, the function spawns a reflected and a refracted ray, and then calls
itself with each of the new rays as the new ray argument. Once the color of the reflected
and the refracted rays have been computed, they are added to the color given by the
local illumination model. Finally, tP is used along with the surface properties of the
closest object to apply attenuation and get the final color.
The recursion is set to terminate if a given ray doesn’t intersect any object, and there is
also a maximum depth of recursion that limits the maximum order of the rays.
Recursion is the easiest solution to implement ray_trace, but unfortunately, Numba
CUDA doesn’t support recursion. Therefore, in the GPU implementation, recursion was
substituted by a equivalent iterative algorithm, based on the indications and procedures
given in [27].
The iterative version first computes the maximum possible number of rays (N) for a
given value of depth of recursion (d) by using the following equation:

N = 2d+1 − 1 (2.21)

d = 0 means that only first order rays are considered (local illumination only), d = 1
that up to second order rays are considered and so on. Equation (2.21) arises from the

22

2. Development of the ray tracer Global illumination

fact that that each lower order ray spawns two higher order rays: a reflected ray and a
refracted one.
The characteristics of each ray depend on the ray from which it originated (parent ray),
up to the first order ray. For this reason the information of all the rays is stored in a
2D array (ray_data) with N rows that contains information about a ray in each row.
Specifically, each row stores the defining parameters of a ray, the index of refraction of
the medium it is traveling through and the cumulative factors that account for the effect
of the reflection, transmission and attenuation coefficients of the parent rays.
The algorithm loops through the rows in ray_data, applying local illumination for each
ray and multiplying it by the cumulative factors before adding the resulting color to
the color of the corresponding pixel. Much like in the recursive version, each iteration
spawns a reflected and refracted ray, that in this case are stored on higher index rows of
ray_data.
Either by using recursion or iteration, the ray tracers use higher order rays to implement
global illumination and enhance the local illumination model by adding reflection and
transmission. The results of this can be seen on figure 2.11.

(a) Local illumination only (b) Global illumination included

Figure 2.11: Renders of the same scene using local illumination only, and local illumination
with global illumination. The render that includes global illumination shows the reflections of
objects on the surfaces of other objects, and also reveals that there is a hidden red sphere behind
the green box.

23

3 Enhancements

Once the basic ray tracer was completed, the model was further developed by imple-
menting some enhancement techniques. These can be organized in three categories:
anti-aliasing techniques, more advanced scene object creation and enhancements that
improve photorealism.

3.1 Anti-aliasing

In the context of image rendering, aliasing refers to the stair-like borders (informally
known as “jaggies”) that appear where smooth borders are expected. Since computer
screens are made up of pixels and pixels are not infinitesimally small, aliasing cannot be
completely avoided. However, there are several anti-aliasing techniques that can reduce
aliasing and effectively hide it from the human eye. This is achieved by taking multiple
samples per pixel, computing the average color of those samples and assigning the result
to the pixel. The process is known as supersampling, and the results it can produce are
shown in figure 3.1. There are various supersampling techniques, among which three
have been implemented in the model: uniform supersampling, jittered supersampling
and adaptive supersampling.

3.1.1 Uniform supersampling and jittered supersampling

These techniques are considered brute force supersampling techniques, because they ap-
ply the same level of supersampling to every pixel of the image. Anti-aliasing is only
needed when there is a big color difference between adjacent pixels, so brute force super-
sampling techniques are inefficient. Nevertheless, they are the simplest to implement,
and produce good results.
In uniform supersampling, each pixel (region of the screen) is subdivided into smaller
equally sized subareas. The center of the subareas is used, in conjunction with the eye
point, to aim the light rays. Once the colors of all the rays that go through a pixel are
computed, the color of the pixel is computed using the following formula:

ρpixel(λ) = 1
N

N∑
i=1

ρi(λ) (3.1)

where ρpixel(λ) is the radiance that corresponds to the pixel, ρi(λ) are the radiances of
the pixel subareas and N is the number of subareas per pixel.

24

3. Enhancements Further development on scene objects

Jittered supersampling combines uniform supersampling and the Monte-Carlo integra-
tion technique. The pixels are subdivided in the same way, but instead of using the
center of the subareas to aim, a random point is chosen. This choice makes an image
rendered by applying jittered supersampling different from one rendered by using uni-
form supersampling. Jittered supersampling is better eliminating the undesired lines
that can appear between the triangles that constitute a polygon. However, it can worsen
the render of vertical and horizontal borders when the number of samples is small.
As a final note, it must be mentioned that with a high enough number of samples per
pixel uniform and jittered techniques give the same result.

3.1.2 Adaptive supersampling

Adaptive supersampling increases the efficiency of supersampling by applying it only
where necessary. Instead of taking a sample of the center of the pixel, the algorithm
uses the corners of the pixel to aim the rays. If the colors of the casted rays are similar
to each other the color of the pixel is computed by taking the average. However, if
the colors differ more than a specified amount the pixel is subdivided into 4 equal sized
subareas. The color of each subarea is computed the same way as the color of a pixel.
So each subarea might be divided into smaller and smaller subareas until the colors of
the corners of the smallest subarea are similar enough or a specified maximum recursion
depth is reached.

(a) Without supersampling (b) With supersampling

Figure 3.1: Amplified sections of renders obtained without supersampling and with supersam-
pling. The horizontal border of the yellow object presents smother color transitions between
adjacent pixels in the render that includes supersampling.

3.2 Further development on scene objects

Section 2.3 explained how simple shapes, also known as primitives, were implemented.
Spheres, boxes, polygons and ellipsoids are enough to create some interesting looking
scenes, but the kinds of scenes that can be created are quite limited. With that in
mind, two additional features were included as an enhancement to the basic ray tracer
described in [6]: triangle meshes and Boolean operations with primitives.

25

3. Enhancements Further development on scene objects

3.2.1 Triangle meshes

Triangle meshes are 3D shapes constituted by interlocking triangles with common edges
and vertices. With enough triangles, meshes can be used to represent any shape and are
widely used in commercial modeling, rendering and animation software [7].
Triangle meshes are defined in a similar way to other objects with the same surface
properties and some spatial data. The spatial data contains the spatial data of each
constituent triangle, but unlike in the case of primitives some this information is stored
in a separate file. There are several file formats that store triangle mesh data. The model
uses Wavefronts OBJ file format (.obj) to store the mesh definition [28]. The mesh of
the OBJ file contains triangles defined relative in a certain frame of reference that might
not coincide with the scene in which the mesh must be placed. For that reason, there
are three additional fields that constitute the spatial data of a triangle mesh: a origin
position (to place the mesh in the scene), Euler angles (to orient the mesh) and a scaling
factor (to determine the size of the mesh in the scene).
Among the information that OBJ files can store, the model only uses the vertex (v)
and face (f) fields. Vertex fields store the spatial positions of all the vertices of the
constituent triangles, without repetition. The face fields reference the vertices to define
the constituent triangles (or polygons). When parsing a OBJ file (using the mesh_-
parser function), the model extracts the vertices of each and uses them to create triangle
primitives (a kind of polygon previously implemented). It then applies a rotation matrix
based on the Euler angles to each vertex [29]. Followed by the scaling factor, and a
translation using the origin position. Finally, it adds the surface properties information
to each newly created triangle primitive.
Section 2.3 explained that the normal vectors of 3D objects are always defined as pointing
outward from the object, but the normal vectors of 2D objects are defined as pointing to
the side the incident ray comes from. In principle, triangle meshes are 3D objects, so the
normal vectors should point outward. However, the model parses meshes by creating a
bunch of 2D triangle primitives. Because of this, when a ray traveling inside a mesh hits
a constituent triangle, the shadow feeler is spawned inside the object and never reaches
a light. If the shadow feeler was instead spawned outside it might have reached a light,
contributing color to the pixel that is being rendered. This means that, when a light
ray exits a mesh, the local illumination contribution that should be added is not. It is
important to note that this doesn’t affect the orientations of the reflected and refracted
rays, which are spawned in the correct sides of the triangles and can contribute to the
color of the pixel.
There are methods to correctly define the normal vectors, like the ones explained in sec-
tion 12.5 of [8] and subsection 23.4.2 of [7]. However, the model gives correct results for
non-refractive meshes, and correct enough for refractive meshes (it only makes translu-
cent objects a bit more see-through). An example of a rendered mesh is shown in figure
3.2.

26

3. Enhancements Further development on scene objects

Figure 3.2: Render of the Stanford bunny mesh object.

3.2.2 Boolean operations with primitives

Boolean operations with primitives or constructive solid geometry consists on building
complex objects by combining simpler primitive objects. The most common operations
are the OR operation (also called union operation) and the AND operation (also called
intersection operation). The first combines primitive objects to create a single object
that includes points inside at least one of the constituent primitives. The second cre-
ates an object that only includes points that are inside all constituent primitives. The
implementation of Boolean operations with primitive objects is discussed in chapter 14
of [8] and chapter 3 of [1]. The information found there was used to get a general idea
of how this feature should work, as the specifics of the implementations there described
were not necessarily compatible with the ray tracer developed so far.
As a consequence, the developed version has some limitations when compared to the
ones described in [8] and [1]. The main one is that objects can only be constructed by
combining multiple primitives with OR operations or by combining multiple AND op-
erations, but not by combining OR and AND operations. In addition, all the combined
objects need to have the same surface properties, to maintain consistency with the im-
plemented attenuation model. Finally, only spheres, boxes and ellipsoids can be used as
constituent primitives, so polygons are excluded. The reason is that the implementation
relies on determining inside which of the constituent primitives a ray is, and a ray cannot
be inside a polygon. An example of an OR and an AND construct created by combining
the same primitives is shown in figure 3.3.
The implementation of this feature required the addition of a medium parameter to
both objects and rays. In the case of objects the parameter determines if the object
is an isolated object or if it forms part of an OR or AND construct. In the case of
rays, it determines if a ray is outside OR/AND constructs, inside an OR construct or
inside an AND construct. If a ray is inside an OR construct, the medium parameter
also determines inside which of the constituent primitives it is. Medium information is

27

3. Enhancements Further development on scene objects

used by two new intersection algorithms that correspond to constructed objects: OR_-
intersection and AND_intersection.

OR_intersection

This algorithm takes in a list of constituent primitives and an incident ray and returns
the closest intersection of the OR construct and the ray. If the ray incident ray is
outside the OR construct, the algorithm simply returns the intersection with the closest
constituent primitive. However, if the ray is inside one of the primitives the algorithm
needs to compute where the ray would get outside the OR construct. The problem is
that it has to do this by calculating ray primitive intersections. It does this by entering
a loop that computes the closest ray primitive intersection, and then spawns the ray to
be used in the next iteration on the other side of the intersected surface. At the same
time, it keeps tack of which of the primitives have been entered or exited, and the loop
is iterated over until the newly spawned ray is outside all the primitives.

AND_intersection

As the previous algorithm, this one takes in a list of constituent primitives and an
incident ray and returns the closest intersection of the respective construct and the ray.
In this case the simple part is computing the intersection when the incident ray is inside
the AND construct. The algorithm simply returns the intersection between the ray and
the closest primitive. When the incident ray is outside, the algorithm employs a similar
loop to the one described for the OR_intersection algorithm. However, in this case
the loop is exited when the newly spawned ray is inside all the primitives, or when it is
outside a primitive that had been entered in a previous iteration.

(a) OR operation (b) AND operation

Figure 3.3: Renders created by combining a box and a sphere by using the OR operation and
the AND operation.

28

3. Enhancements Steps towards photorealism

3.3 Steps towards photorealism

The aim of this section is to present three techniques that were implemented to make
the rendered images look more photorealistic: depth of field, soft shadows and glossy
reflections. In this context, the term “photorealistic” refers to how realistic a rendered
image looks, and does not necessarily imply that the rendering process is more physically
accurate.

3.3.1 Depth of field

In photography, depth of field refers to the range of distance where the image in the film
is in focus. In perfect pinhole cameras where all the rays go through a infinitesimally
small pinhole, the depth of field is infinite and the entire image is in focus. However, in
real cameras the rays go through a lens with a finite radius, and only a plane parallel
to the lens (located at focal distance do) is in perfect focus: the focal plane. With the
inclusion of depth of field, the ray tracer becomes able to reproduce this “shortcoming”
of real cameras, rendering images that more closely resemble real photographs.
As explained in chapter 10 of [7], the simplest way to simulate depth of field in a ray
tracer is to implement a camera with finite-radius (r) lens, assuming the thin-lens ap-
proximation. Under this assumption, all the objects at distance do from the lens produce
a perfectly focused image at distance di (image distance) from the lens. Therefore to
render a perfectly focused image of the objects at distance do the screen of the ray tracer
should be positioned at distance di. The scene objects at other distances (d′o) are out of
focus, and the amount of blurriness increases the more d′o differs with respect to do. The
blurriness also increases when the radius of the lens is increased, because this allows a
higher amount of rays with different directions to reach the same point in the screen.
In the implemented model, distance di can be derived by calculating the norm of vector
e define in section 2.2. Then, the needed additional parameters to define a thin-lens
camera are the focal distance and the lens radius. This parameters are used to modify
the 3.6 and 2.2 equations that define the eye rays.
The lens radius is used to get a random point Pl inside the lens plain; this substitutes
the eye point Pe. The focal distance is used, along with the screen point Q, to calculate
the point where the eye ray intersects the focal plane (Qo). To understand how this is
done, it is convenient to define vectors pi and po:

pi = Q− C po = Qo − C (3.2)

The thin-lens theory says that the components of pi and po parallel to the lens plain
satisfy this relation:

pou
piu

= pov
piv

= do
di

(3.3)

where subscripts u and v refer to orthogonal vectors u and v inside the lens plain.

29

3. Enhancements Steps towards photorealism

The e component of po is a vector that goes from point C to the center of the focal
plane, and its magnitude is defined as:

poe = −(do − di) (3.4)

With this, Qo can be written in terms of the known parameters:

Qo = C + po = C + (αu + βv)do
di
− (do − di)

e

|e|
(3.5)

Finally, the equation for the eye ray in a thin-lens camera is given by:

ρ(t) = {Pl + t(Qo − Pl) | 0 ≤ t ≤ ∞} (3.6)

The results of implementing the thin-lens camera to the model can be seen in figure 3.4.
When rendering images that include depth of field, the out of focus images can present
considerable noise, due to the randomness introduced when calculating Pl. This noise
can be reduced by applying supersampling, which uses a different Pl for each sample.
Figure 3.4 includes supersampling, but some noise is still present.

(a) Red box in focus (b) Green box in focus

Figure 3.4: Renders of a scene with two settings of depth of field. The renders present noise
in the borders of the objects that are out of focus, instead of a uniform blur.

3.3.2 Soft shadows

The shadow model presented in subsection 2.4.2, produces shadows that have a clearly
defined sharp edge. This is kinds of shadows are consistent with the point like nature
of the lights that the model uses, and could be reproduced in reality by using one-
dimensional sources of light. The problem is that most real light sources have a finite
area, and create shadows that have a soft edge often referred to as the penumbra. The

30

3. Enhancements Steps towards photorealism

regions on the penumbra receive light only from a part of the light, and are therefore
partially in shadow. Including soft shadows in the model greatly enhances photorealism,
bringing the rendered shadows closer to those seen in reality.
Implementing soft shadows in ray tracer normally involves creating area lights or light
emitting objects as explained in chapter 18 of [7] and chapter 6 of [10]. However, the
method described in exercise 18.1 of [7] is much simpler, and produces good soft shadows.
It consists on giving a radius parameter r to each point light, and computing the local
illumination at point P by casting multiple shadow feelers. Each shadow feeler is aimed
at a random point r distance away from the point light, so some of them may return that
point P is in shadow while others determine that it is not. After each shadow feeler is
casted, the model applies local illumination to get the corresponding color for P. Finally,
all the computed colors are averaged to get a final value of the color of P.
If the number of casted shadow feelers is small, the resulting shadow will present noise
with big variations in the lightness of adjacent pixels. Nevertheless, with as the number
of shadow rays is increased, the lightness of each pixel converges to a certain value, and
the noise disappears. A render of soft shadows with reasonably low noise is shown in
figure 3.5b and can be compared to figure 3.5a that presents hard shadows.

(a) Hard shadows (b) Soft shadows

Figure 3.5: Renders of the same scene using the basic shading model and using the more
advanced soft shadow model.

3.3.3 Glossy reflections

Glossy reflections are the imperfect or blurry reflections that occur when the reflective
surface is not completely smooth. In subsection 2.7.1, it was mentioned that the perfect
specular reflection model used in global illumination is not consistent with the Phong
model applied in local illumination. The problem is that the reflections of point lights
are blurry while the reflections of scene objects are perfect. The solution to this lies in
substituting perfect reflections by Phong reflections in the global illumination model.
The procedure to achieve glossy reflections in global illumination is described in detail
on chapter 25 of [7]. It is based on the Phong model, that states that glossy reflection
rays (with direction rg) follow a distribution proportional to (cos θ)m, where m is the

31

3. Enhancements Steps towards photorealism

specular reflection exponent and θ is the angle with respect to the direction of the
perfectly reflected ray (r). This was applied to compute radiance of specular reflections
in equation 2.9, where the direction of the glossy reflection (denoted by the symbol v in
that equation) and r were known.
The difficulty in this case is that rg is unknown, so instead of using its value to compute
the radiance, the distribution (cos θ)m has to be used to get rg. This is done by first
writing rg in terms of azimuth and polar angles (φ, θ) on a hemisphere with a symmetry
axis parallel to r. Then, random values of (φ, θ) that follow a (cos θ)m distribution are
computed following the indications of sections 7.1 and 7.2 of [7]. Thus, a rg direction
that follows the Phong model distribution is obtained.
As in the case of soft shadows, spawning a single ray to compute the radiance produces
noisy results. For this reason the model offers the possibility to select how many reflected
glossy rays are spawned on each recursion iteration of ray_trace. When multiple rays
are created, the resulting radiance is computed by averaging the values of all the rays,
taking into account that each of them has to be multiplied by the corresponding (cos θ)m
factor. However, reducing the noise in this case is far more expensive than in the depth
of field or soft shadow cases, because increasing the number of reflected rays on each
recursion iteration produces an exponential increase in the total number of casted rays.
That is why the results of glossy reflections shown in figure 3.6b present considerable
noise.

(a) Perfect mirrors (b) Glossy mirrors

Figure 3.6: Renders of two parallel mirrors with a pink sphere in between. When the mirrors
are perfectly reflective, all the reflections of the sphere are perfectly sharp. When the mirrors
are glossy the sphere reflections are blurry, and get blurrier with each reflection iteration.

32

4 Performance comparison

With various version of a functioning ray tracer model at hand, it became possible
to setup a performance comparison. The main objectives of this comparison were to
quantify the acceleration that Numba provides to the core Python implementation, and
to measure how the accelerated Python versions fare when measured against the C++
ray tracer.

4.1 Preparation

The previous chapters have shown that ray tracers can include various kinds of features,
and that they depend on a large amount of variables. Therefore, before comparing the
various ray tracer versions, the student had to decide what features to include in the
comparison, as well as what were the adequate values for the variables. A scene was also
designed for the specific purpose of making the performance comparison.

4.1.1 Features and variables

To make a fare comparison, all the ray tracer versions need to include the same features.
Since the Numba CUDA version does not support Boolean operations with primitives and
the enhancement techniques that improve photorealism, all these features were disabled
in the rest of the versions. Attenuation was also disabled in all the versions, because the
C++ ray tracer does not include it. Finally, anti-aliasing and shadows were excluded,
mainly for simplicity sake, but also to minimize possible algorithmic differences between
the C++ ray tracer and the Python versions.
Under these conditions, the performance of the ray tracer depends on four main variables.
First, there is the total number of pixels (p) that depends on the size of the rendered
image. Then, there is the maximum order of the light rays (d), that refers to the
maximum number of times a light ray can reflect or refract in the process of rendering
the color of a pixel. Finally, there are the number of scene objects (o) and the number
of scene lights (l). This variables indicate the number of iterations on the relevant loops
of the ray tracing algorithm. When shadows are disabled, the loop hierarchy can be
represented in pseudo code as:

33

4. Performance comparison Measurements

loop over pixels (range = p)
loop over recursive rays (range = d)

loop over objects (range = o)
loop over lights (range = l)

Therefore, the time complexity (T) of the simplified ray tracers can be written as:

T (p, d, o, l) = O(p · d · (o+ l)) (4.1)

4.1.2 The designed scene

There were two important factors that guided the design of the comparison scene. First,
the scene had to be simple, and include as few as possible features to avoid the effect
of possible algorithmic differences between the C++ and Python versions. With that
in mind, the only kind of objects included in the scene were fully reflective spheres that
didn’t allow transmission. This choice prevented the execution of the intersection algo-
rithms of boxes, ellipsoids and polygons, as well as avoiding the creation of transmitted
rays. The second guiding factor was that the execution time of the fastest version of
the ray tracer had to be measurable while not making the execution time of the slowest
one too long. This balance was found by placing 48 reflective spheres on a regular grid
(o = 48) lit by three lights l = 3. Besides that, the size of the image was set to 512×512
pixels (p = 262144) and the maximum order of light rays to 10 (d = 10).
Despite the attempts to minimize the effects of differences between the C++ and Python
versions, they were not completely avoided. Figure 4.1 shows the rendering of the same
comparison scene by the two versions, and the results are not equal. Some testing
indicated that the differences are probably caused by discrepancies in how math is applied
to color and the specifics of the implementation of specular reflections. However, this
was not confirmed by Jon Sanchez, so the real causes could be other.

4.2 Measurements

After establishing the conditions under which the performance comparison was to be
made, it was decided begin the measurements. This section addresses the parameters
that were measured, the methods used and the results gotten.

34

4. Performance comparison Measurements

(a) Python render (b) C++ render

Figure 4.1: Render of the comparison scene by the Python and C++ ray tracers.

4.2.1 Time

The standard procedure to evaluate the acceleration provided by a programming tool
is to measure the execution or run time of the different versions of a program. Nor-
mally, acceleration techniques can only be applied to certain portions or functions of the
program, and it is not rare to only measure the run time of this subsets.
The ray tracer algorithm can be divided in three parts: scene loading, rendering and
image displaying. In the first, the scene file is read and its information parsed into data
structures that the program can use. The rendering process is where the actual ray
tracing is performed, by casting the rays and getting the color of each pixel. Finally, the
image displaying consists on taking the colors and locations of each pixel and forming
the final image. Numba acceleration was only applied to the rendering portion of the
program, so only the run time of the rendering portion of the program was measured.
In the Python versions, run time measurements were made using Python’s time module’s
perf_counter() function. This function provides the best time precision among the
timers of the time module, with a precision of 150ns. Its main drawback is that it
includes time elapsed during sleep, so if the measured Python process is temporarily set
to sleep to execute some other process, the time spent in the second process is included
in the measurement. This is generally not a concern when the Python program only
uses one CPU core, as the Windows OS uses other cores for other processes. However,
when Python uses multiprocessing, external processes might interfere in the run time
measurements. In the C++ version, rendering time measurements were made using
std::chrono::steady_clock, which also includes time elapsed during sleep.
Measuring run time in the C++ and the core Python versions is straight forward; one
just needs to take the time at which the rendering process starts the time at which it
ends and compute the difference. However, section How to measure the performance of
Numba? of [24] explains that when measuring the performance of a function accelerated

35

4. Performance comparison Measurements

by Numba one has to be careful with the time JIT compilation takes. The recommended
approach is to not include JIT compilation time in the run time. This is done by first
calling the function without making any measurements to make Numba JIT compile it,
and then calling it a second time to measure its run time after it has been compiled.
The measurements of the Numba versions were done following this procedure, with the
reasoning that, when measuring the run time of the C++ executable, the compilation
time it took to create it is not taken into account either.
This way of measuring the run time of Numba does not give an accurate idea of the
real run time improvement that Numba provides. Depending on the application, Numba
JIT compilation can take a long time, so the run time of Python programs is not always
improved by applying Numba. This is not the case for the implemented ray tracer, but
JIT compilation does take a considerable time: about 30s in the regular Numba version,
35s in the version that includes CPU parallelization, and 15s in the Numba CUDA
version. Numba does provide a facility for Ahead of Time (AOT) compilation, but it is
not compatible with Numba CUDA, and adds further limitations to the acceleration on
code that runs in the CPU [24]. For this reason, and due to time constraints, Numba’s
AOT compilation was not explored in this work.
After setting up the measuring procedures described above, it was decided to make 10
measurements to compute the average of the rendering times of all the ray tracer versions
in two cases: when the complete image is rendered, and when only one pixel is rendered.
The first case would be indicative of the real performance of each version, and the second
case would prevent parallelization, which according to expectations should eliminate the
advantages the multi-threaded and GPU versions have.
The results of the measurements can be seen in table 4.1. The complete image rendering
times show that Numba greatly accelerates the core Python code, by decreasing the
rendering time by two orders of magnitude. Applying multi-threading to Numba also
improves performance, but it only reduces the rendering time by a factor of 1.6, which
is rather small when compared to the maximal theoretical factor of 8. This is probably
caused by the overhead related to spawning parallel processes. C++ multi-threading
seems to work better, improving performance by a factor of 3.5 when compared to its
mono-thread counterpart. Comparing the mono-thread versions of Numba and C++
indicates that the latter is an order of magnitude faster, so the significant acceleration
provided by Numba still is not enough to mach the performance of the C++ language.
Lastly, there is the rendering time of the Numba CUDA version, which is surprisingly long
considering how well ray tracing lends itself to parallelization. The GPU implementation
does outperform the C++ mono-thread version, but not by much, and the multi-thread
C++ is faster. There might be many reasons behind this, but the main one is probably
the poor use of GPU capabilities. Although the kernel dimensions were modified to
optimize the rendering time of the comparison scene, features that can greatly improve
the performance of a kernel were not used. The main example of this is shared memory,
which when applied correctly reduces the overall time spent in accessing memory.
The “one pixel” rendering times do show the expected elimination of the advantages
parallelization offers. In fact, comparing the CPU Numba implementations to the GPU
one indicates that a single GPU thread is slower than a CPU thread. Therefore, one

36

4. Performance comparison Measurements

can conclude that the difference between Numba and Numba CUDA complete image
rendering times comes from the the amount of parallelization that characterizes the
GPU. As a final note, it has to be mentioned that despite rendering the color of one
pixel, the rendering process in the python version includes the creation of an array with
dimensions of the full image; which explains why multiplying the rendering time of one
pixel in the mono-threaded Numba version by the total number of pixels does not give
the rendering time of the complete image.

Table 4.1: Rendering times of ray tracing implementation versions for one pixel and for the
complete picture. Variables: scene = comparison.txt, p = 512× 512, d = 10. The core Python
averge for the complete image was computed by only using 5 measurements, due to the long
amount of time each takes. All table values are in seconds.

one all
Python 0.0365± 0.0005 14800± 100
Numba 0.0051± 0.0002 149± 1
C++ 0.000149± 0.000006 11.22± 0.03
Numba & mult. 0.0041± 0.0001 95.6± 0.4
C++ & mult. 0.000140± 0.000008 3.22± 0.02
CUDA 0.0075± 0.0003 10.112± 0.002

4.2.2 CPU and memory utilization

CPU utilization and memory usage are the next most common measurements used to
evaluate the performance of programs. CPU utilization indicates the usage of processing
resources by a program during its execution, and it can be expressed by percentages
with respect to the total capacity of the CPU. The memory usage of a program is
usually measured by taking the peak memory usage value of any process spawned by the
program during its execution. There are two kinds of memories that can be measured:
Resident Set Size (RSS) refers to the non-swapped physical memory a process has used,
and Virtual Memory Size (VMS) indicates the total amount of virtual memory used by
the process [30].
Measuring a process’s CPU and memory utilization necessarily takes CPU process-
ing and memory resources, so the measurements of one process have to be taken us-
ing another process. This was achieved by creating a Python program that uses the
multiprocessing library to create a process to execute the ray tracers and another
process that measures the performance of the first. The second process is appropriately
called measurer, and makes use of psutil library functions to get information about the
ray tracer process periodically during run time.
CPU utilization is measured by calling the cpu_percent() function, and dividing the
result by psutil.cpu_count() to get the appropriate percentage. Since the computer
used to make the measurements has 8 logical CPU cores, the maximum CPU utilization
of a program that runs in a single logical core is 12.5%. Ray tracers make heavy usage of
the CPU, so the CPU utilization should be close to 12.5% in the single thread versions
and close to 100% in the multi-thread versions.

37

4. Performance comparison Measurements

The measurements shown in figure 4.2 are generally in good agreement with the expecta-
tions, however there are a couple things to note. Firstly, the red line of the multi-threaded
Numba version clearly jumps from about 12.5% to 100% some time after the beginning
of the execution. The time spent before the jump is mostly JIT compilation time, and
once compilation is done, the multi-threaded rendering process begins pushing the CPU
utilization close to 100%. In fact measurements of single-threaded Numba and Numba
CUDA also include measurements taken while JIT compilation occurred. The second
notable thing is that the brown line of the Numba CUDA version clearly dips at some
points in time, probably due to the GPU taking over to handle the rendering process.
However, while the GPU is processing the rendering, the CPU utilization generally re-
mains close to 12.5%. It is unknown what the CPU is processing during this time, or
if the measured behavior is common or not, and may require consulting an expert on
GPUs.
On the other hand, both RSS and VMS are measured using the memory_info() func-
tion. In this case, the measurements should show that the Python versions use more
memory than the C++ versions, due to the difference approach to memory management
each language has. Python handles memory management automatically using a garbage
collector, while in C++ it is handled manually which pushes developers to make a better
use of it. Table 4.2 shows the results of the measurements, which indicate that C++
performs better according to these measurements. There is also a difference between
the core Python version and the Numba CPU versions, with the latter requiring more
memory due to the usage of additional libraries. Finally, the reason for Numba CUDA
not appearing in the table is that this version uses GPU memory in addition to CPU
memory, so it cannot be compared to the CPU versions in a meaningful way.

Figure 4.2: CPU utilization of the ray tracer versions during execution. Variables: scene =
comparison.txt, p = 512× 512, d = 10.

38

4. Performance comparison Measurements

Table 4.2: Peak virtual and physical memory used by each ray tracer version. Variables: scene
= comparison.txt, p = 512× 512, d = 10.

RSS (MB) VMS (MB)
Python 73± 2 54.3± 0.7
Numba 202.1± 0.5 178.0± 0.3
C++ 8.3± 0.1 4.8± 0.2
Numba & mult. 200.2± 0.6 182.2± 0.4
C++ & mult. 8.61± 0.05 4.93± 0.06

4.2.3 GPU utilization

GPU utilization measures the usage of processing resources by a program during its exe-
cution in the GPU. It was measured mainly to make sure that the Numba CUDA version
did indeed use the GPU, after seeing that its rendering time was longer that expected.
This was done by calling calling nvidia_smi module’s nvmlDeviceGetUtilizationRates()
function inside the measurer process. The results shown in figure 4.3 indicate that after
JIT compilation, GPU utilization suddenly increases to 100% and maintains that value
until the rendering process is completed.

Figure 4.3: GPU utilization of the CUDA ray tracer during execution. Variables: scene =
comparison.txt, p = 512× 512, d = 10.

39

5 Conclusions

In this work a basic ray tracer has been developed from scratch using the Python pro-
gramming language. This has required the application of basic concepts of fields like
linear algebra, optics, color theory, programming and computer hardware. Computer
graphics combines all this fields and some more in an attempt to recreate the intricate
way light interacts with the physical world and the human eye. Ray tracing has proven
to be a rather successful attempt at that.
Even the basic ray tracer implemented in chapter 2.2 is remarkably realistic in many
aspects. It is easy to understate the precision with which this simple algorithm computes
the perspective of the scene, the projection of the shadows and the effects of reflection
and refraction. The enhancement techniques that were developed were also simple,
but provided great improvements to scene creation and photorealistic rendering. For
this reason, this work could serve as material for an introductory course in computer
graphics, along with the books on which it is based. It may also be interesting for people
who have heard of Nvidia’s RTX technology and want to know how this “ray tracing
thing” that everybody is talking about works.
As stated many times through the work, the implemented ray tracer has many lim-
itations, so another possibility is to use it as the base of a more complex ray tracer
that overcomes these limitations. Improving the Boolean operations with primitives by
adding the complement operator and the possibility to mix different operators for exam-
ple, would greatly expand the range of scenes that can be created. Other features that
are relatively simple to include are volume rendering that can be used to render clouds or
smoke, and texture mapping that maps 2D images to object surfaces [10]. With respect
to illumination, the biggest limitation is that transparent objects cast completely dark
shadows, but implementing photon maps to solve this would require much more work.
In the end, there is always another feature that can be added to a ray tracer. They
are in a certain sense infinitely extendable, as the titles of Peter Shirley’s books on the
subject suggest: Ray Tracing in One Weekend, Ray Tracing: The Next Week and Ray
Tracing: The Rest of Your Life [9, 10, 31].
However, the most relevant part of the work may be the application of Numba’s accel-
eration tools and the measured results. Although the measurements in chapter 4 were
performed for a ray tracer under very specific conditions, the results show promise in the
use of Numba for the acceleration of Python in scientific applications. The performance
of C++ is still very superior to the performance of Python, but Numba is in continuous
advancement, and the performance gap might become smaller in the future.
To conclude, it has to be mentioned that the most attractive feature of Numba is CUDA
GPU programming. The results of the GPU performance were not as good as expected,

40

5. Conclusions

but this had more to do the poor use of the tool than with the tool itself. The program
could probably been better optimized, and it would probably have benefited from the
proper use of features like shared memory. Regardless, being able to program GPUs
using Python is by itself remarkable, as it offers the power of a new hardware device to
Python developers.

41

Bibliography

[1] Andrew S. Glassner, An introduction to ray tracing. Academic Press, 1989.
[2] Edward R. Freniere and John Tourtellott, “A Brief History of Generalized Ray

Tracing.” SPIE, 1997.
[3] Per H. Christensen and Wojciech Jarosz, “The Path to Path-Traced Movies,” Foun-

dations and Trends in Computer Graphics and Vision, vol. 10, pp. 103–175, 2016.
[4] V. V. sanzarov, A. I. Gorbonosov, V. A. Frolov, and A. G. Voloboy, “Examination

of the Nvidia RTX.” CEUR workshop proceedings, 2019.
[5] “Nvidia Geforce RTX.” [Online]. Available: https://www.nvidia.com/es-es/geforce/

20-series/rtx/
[6] Jason Hanson, CS 500: Ray Tracing, Course Notes. DigiPen Institute of Technol-

ogy, 2011.
[7] Kevin Suffern, Ray Tracing from the Ground Up. AK Peters Ltd., 2007.
[8] Don Cross, “Fundamentals of ray tracing,” 2013. [Online]. Available: http:

//cosinekitty.com/raytrace/
[9] Peter Shirley, “Ray tracing in one weekend,” 2018. [Online]. Available:

https://raytracing.github.io/
[10] ——, “Ray tracing: The next week,” 2018. [Online]. Available: https:

//raytracing.github.io/
[11] Larry Gritz and Eugene d’Eon, GPU Gems 3, 2007, ch. 24, pp. 337–343. [Online].

Available: https://developer.nvidia.com/gpugems/gpugems3/foreword
[12] I. E. Commission, “Iec 61966-2-1:1999/amd1:2003,” IEC Webstore, Tech. Rep.,

2003.
[13] “Python global interpreter lock.” [Online]. Available: https://docs.python.org/3/

glossary.html#term-global-interpreter-lock
[14] “Accelerating python for scientific research.” [Online]. Available: https:

//developer.ibm.com/articles/ba-accelerate-python/
[15] “Cython c-extensions for python.” [Online]. Available: https://cython.org/

#documentation
[16] “F2py users guide and reference manual.” [Online]. Available: https://numpy.org/

doc/stable/f2py/
[17] “Jython.” [Online]. Available: https://www.jython.org/index

42

https://www.nvidia.com/es-es/geforce/20-series/rtx/
https://www.nvidia.com/es-es/geforce/20-series/rtx/
http://cosinekitty.com/raytrace/
http://cosinekitty.com/raytrace/
https://raytracing.github.io/
https://raytracing.github.io/
https://raytracing.github.io/
https://developer.nvidia.com/gpugems/gpugems3/foreword
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://developer.ibm.com/articles/ba-accelerate-python/
https://developer.ibm.com/articles/ba-accelerate-python/
https://cython.org/#documentation
https://cython.org/#documentation
https://numpy.org/doc/stable/f2py/
https://numpy.org/doc/stable/f2py/
https://www.jython.org/index

Bibliography Bibliography

[18] “Ironpython: the python programming language for the .net framework.” [Online].
Available: https://ironpython.net/

[19] “Pypy.” [Online]. Available: https://www.pypy.org/index.html
[20] “Numba.” [Online]. Available: https://numba.pydata.org/
[21] “Pypy. software transactional memory.” [Online]. Available: https://doc.pypy.org/

en/latest/stm.html#python-3-cpython-and-others
[22] “Python threading module documentation.” [Online]. Available: https://docs.

python.org/3/library/threading.html#module-threading
[23] “Python multiprocessing module documentation.” [Online]. Available: https:

//docs.python.org/3/library/multiprocessing.html#the-process-class
[24] “Numba user manual.” [Online]. Available: https://numba.pydata.org/numba-doc/

latest/user/index.html
[25] “Numba for cuda gpus.” [Online]. Available: https://numba.pydata.org/

numba-doc/latest/cuda/index.html
[26] Henrik Wann Jensen, Realistic Image Synthesis Using Photon Mapping. AK Peters,

2001, ch. 5, pp. 55–65.
[27] Yanhong A. Liu and Scott D. Stoller, “From recursion to iteration: what are the

optimizations?” ACM Press, 2000.
[28] James D. Murray and William vanRyper, Enciclopedia of Graphics File Formats.

O’Reilly & Associates, Inc., 1996.
[29] D. Rose, “Rotations in three-dimensions: Euler angles and rotation matrices,”

2015. [Online]. Available: http://danceswithcode.net/engineeringnotes/rotations_
in_3d/rotations_in_3d_part1.html

[30] “psutil documentation.” [Online]. Available: https://psutil.readthedocs.io/en/
latest/

[31] Peter Shirley, “Ray tracing: The rest of your life,” 2018. [Online]. Available:
https://raytracing.github.io/

43

https://ironpython.net/
https://www.pypy.org/index.html
https://numba.pydata.org/
https://doc.pypy.org/en/latest/stm.html#python-3-cpython-and-others
https://doc.pypy.org/en/latest/stm.html#python-3-cpython-and-others
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html#the-process-class
https://docs.python.org/3/library/multiprocessing.html#the-process-class
https://numba.pydata.org/numba-doc/latest/user/index.html
https://numba.pydata.org/numba-doc/latest/user/index.html
https://numba.pydata.org/numba-doc/latest/cuda/index.html
https://numba.pydata.org/numba-doc/latest/cuda/index.html
http://danceswithcode.net/engineeringnotes/rotations_in_3d/rotations_in_3d_part1.html
http://danceswithcode.net/engineeringnotes/rotations_in_3d/rotations_in_3d_part1.html
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://raytracing.github.io/

	Contents
	1 Introduction
	1.1 A bit of history
	1.2 Objectives

	2 Development of the ray tracer
	2.1 Choosing the development tools
	2.1.1 Programming language
	2.1.2 Version control
	2.1.3 Operating system and hardware

	2.2 Ray casting
	2.3 Scene objects and lights
	2.3.1 An object-ray intersection example: spheres
	2.3.2 The general intersection algorithm

	2.4 Local illumination
	2.4.1 Diffuse reflection
	2.4.2 Shadows
	2.4.3 Specular reflection
	2.4.4 Ambient light

	2.5 Color
	2.6 Accelerating Python
	2.6.1 A small survey of the available tools
	2.6.2 Numba

	2.7 Global illumination
	2.7.1 Reflection
	2.7.2 Transmission
	2.7.3 Attenuation
	2.7.4 The ray_trace algorithm

	3 Enhancements
	3.1 Anti-aliasing
	3.1.1 Uniform supersampling and jittered supersampling
	3.1.2 Adaptive supersampling

	3.2 Further development on scene objects
	3.2.1 Triangle meshes
	3.2.2 Boolean operations with primitives

	3.3 Steps towards photorealism
	3.3.1 Depth of field
	3.3.2 Soft shadows
	3.3.3 Glossy reflections

	4 Performance comparison
	4.1 Preparation
	4.1.1 Features and variables
	4.1.2 The designed scene

	4.2 Measurements
	4.2.1 Time
	4.2.2 CPU and memory utilization
	4.2.3 GPU utilization

	5 Conclusions
	Bibliography

