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Preface

“In most sciences one generation tears
down what another has built and what
one has established another undoes. In
mathematics alone each generation

adds a new story to the old structure.”

—Hermann Hankel.

April 8th, 1796. A young Carl Frieldrich Gauss (1777-1855) woke up and
wrote the entry, “Numerorum primorum non omnes numeros infra ipsos residua
quadratica esse posse demonstratione munitum.” ! to his diary [Kle03]. He had
just devised the first correct proof of the quadratic reciprocity law. Previous
efforts from Fermat, Euler and Legendre among others, had helped to establish
this law and partial results on its veracity. Gauss was amazed by the beauty
of this law, which he called Theorema Aureum (Golden Theorem), and he
managed to provide seven more different proofs in his lifetime (three of them
were published along the first one in his Disquisitiones Arithmeticae in 1801
[Gau01]). Today, more than two hundred different proofs of this law have been
published.

Quadratic reciprocity shows an impressive simmetry that allows to deter-
mine if a prime p is a square modulo a prime ¢, by looking whether ¢ is a
square modulo p. A natural generalization is to find higher reciprocity laws,
i.e. cubic, cuartic, quintic, etc. This leads directly to extending the field of ra-
tionals to more elaborated number fields. Ernst Kummer’s (1810-1893) ideal
numbers, a precursor for ideals later developed by Richard Dedekind (1831-
1916), came to existence in search of these higher reciprocity laws.

In 1900, David Hilbert (1862-1943) made up a list of twenty three problems
concerning some of the most relevant unsolved questions of his time. Among
those problems, Problem 9th deals with general reciprocity laws [Hil00]:

'Prime numbers below (modulo) all numbers may not be quadratic residues, possesses
a tough proof.

ii



“Fiir einen beliebigen Zahlkorper soll das Reciprocitiatsgesetz der [ ten
Potenzreste bewiesen werden, wenn [ eine ungerade Primzahl bedeutet und
ferner, wenn [ eine Potenz von 2 oder eine Potenz einer ungeraden Primzahl
ist. Die Aufstellung des Gesetzes, sowie die wesentlichen Hiilfsmittel zum Be-
weise desselben werden sich, wie ich glaube, ergeben, wenn man die von mir
entwickelte Theorie des Korpers der [ ten Einheitswurzeln 1) und meine The-
orie 2) des relativ-quadratischen Kérpers in gehoriger Weise verallgemeinert.”?

Theory of ideals was further developed and Emil Artin (1898-1962) pro-
vided the first proof for his general reciprocity law in a series of papers around
1927, which implies all known reciprocity laws. This was deduced proving the
main theorem of global class field theory, which describes abelian extensions
of a global field in terms of its arithmetic intrinsic properties. A good account
of this procedure is given in [Lan94] for example.

Later, the approach turned about to the local-global principle. The local
version of class field theory, i.e. for local fields, was first proved by determining
the Brauer group of a local field (see Chapter 3), and the global version was
obtained by considering all primes at once via ideles and adeles. This proce-
dure turned out to be better understood in the language of group cohomology,
and this is the way it is currently presented [AT09].

Nowadays, generalisations to non abelian extensions are being developed
extending the theory for abelian extensions. In this work we shall seek to study
local class field theory.

Let us show the reader an intuitive motivation for class field theory. Given
a field K and a finite Galois extension L/K, the main theorem of Galois the-
ory describes the intermediate field extensions in terms of the subgroups of
the Galois group. However, this procedure needs the finite extension field L
to be fixed first. We may wonder if we can give a description of all the finite
extensions of a given field. This is not an easy feat to accomplish with all
generality?, but it is easier if we restrict our attention to finite abelian exten-
sions. In the case where the base field is either the field of complex numbers
or the reals, this description is trivial since C is algebraically closed and R has
a unique abelian extension, namely C.

2For any number field the reciprocity law for Ith residues should be proved, when [ is
an odd prime and when [ is a power of 2 or of an odd prime. The list of laws, as well
as complementaries for the proof itself should be obtained, in my opinion, from my well-
developed lth cyclotomic field theory 1) and an appropiate generalization of my theory 2)
of relative-quadratic fields.

3There are still open problems concerning the Galois group Gal(Q® /Q), such as whether
each finite group occurs as a quotient of it [Mil20].



Let E and F be two finite abelian extensions of K. Then, the composite
EF is also Galois. What is more, Gal(EF/K) is isomorphic to a subgroup of
the cartesian product Gal(E/K) x Gal(F/K), which is abelian; thus, EF/K
is abelian too.

But, what can be said about the composite of a countable number of
abelian extensions? Let us see a motivating example. Let the base field be the
field of rationals. Then, it is known from the course in Algebraic Equations
that for each natural number n, the nth cyclotomic extension is abelian. Since
the degree of the nth cyclotomic extension is precisely ¢(n), these degrees are
not bounded and the composite of them all is an infinite extension. We leave
to the reader the details on why this composite is an abelian Galois extension
of Q, as a preparation for the following explanations which shall generalize
this example to a general field extension L/K.

Let L/K be a general Galois infinite field extension and define the set
L :={FE : FE finite Galois intermediate extension of L/K}.

Note that for any pair E, F' € L their composite EF € L. This makes £ into
a directed poset with respect to the inclusion. Also, note that for any pair
E F € L the natural inclusions ¢gr : F — F' lift the elements in E to F,
whenever F C F'. This makes £ into a direct system over itself. Note that the
same natural liftings g : E — L exist for each £ € £. What is more, these
liftings are compatible with the ones in the direct system, i.e. ,op = Yprer
whenever £ C F. Then, by the universal property of the direct limit (see
Chapter 1), L can be regarded as the direct limit h_Ir;E = |JE. Then, any
element in L lies in a finite Galois extension of K, E, and there is a very
natural way to describe the K-automorphisms of L: as coherent tuples (0g)g.

An expected, but which the reader should prove, property of an infinite
Galois extension L/K is that its Galois group is infinite (hint: show the de-
grees of intermediate fields are not bounded).

We could expect the finite Galois correspondence to generalize immedi-
ately to the infinite case. Sadly, this is not the case. In particular, not all
finite index subgroups of Gal(L/K) need correspond to finite intermediate
extensions, i.e. they may not be of the form Gal(L/E) (see Problem A.1).
However, this may be fixed by endowing the Galois group with a special
topology where these subgroups are precisely open, turning Gal(L/K) into
a topological group. Let G denote the Galois group of the extension L/K.
Given an intermediate field E Galois over K, there is a natural projection
from G to Gal(E/K) by restriction of automorphisms. Also, for intermediate
Galois field extensions K C E C F C L, there is a natural composition of



restrictions G — Gal(F/K) — Gal(E/K) which is no more than the usual
restriction G — Gal(E/K). What is more, for any pair of intermediate Galois
field extensions K C E, F' C L, there exists another intermediate Galois ex-
tensions field, namely the composite E'F', containing both E and F' and whose
corresponding subgroup Gal(L/EF) is precisely the intersection of both sub-
groups Gal(L/FE) and Gal(L/F). Then, these subgroups form a filter of normal
subgroups. This filter can be used to give a topology to G, which is called the
Krull topology. Also, it gives us as the data of an inverse system, where the
objects are the finite Galois groups Gal(E /K ) endowed with the discrete topol-
ogy and the connection homomorphisms are the above restrictions. Thus, we
may identify G with the inverse limit @Gal(E /K) via the aforementioned
projections and the universal property of the inverse limit (see Chapter 1).
We shall see in Chapter 1 that both constructions coincide up to isomorphism
and endow G with the same topology.

Now, we restrict our attention to abelian extensions of a field K. Applying
previous reasoning with the added condition the extensions are abelian, i.e.
letting £ := {E : E/K is finite abelian}, the direct limit exists and it con-
tains all the abelian extensions of K. This direct limit is called the mazimal
abelian extension of K and denoted by K. Then, by the infinite Galois cor-
respondence (see Chapter 1), studying the finite abelian extensions of K is
equivalent to studying open subgroups of Gal(K%/K). The drawback is we
have defined these open subgroups as the ones coming from finite intermediate
extensions and a priori we have no way to distinguish among them. The spe-
cial case where K is a finite field is very well known and we shall study it first
to come up with a motivation for other fields. And this is precisely the objec-
tive of class field theory: studying these open subgroups via an easier-to-study
group. What is more, we shall show this easier-to-study group is related to the
arithmetic of the base group K, making the data of abelian finite extensions
of K intrinsic to K, which, in my humble opinion, is a result of an astonishing
beauty.

We aim to provide a complete proof of local class field theory. To fulfill
this goal, we take a more algebraic approach, rather than the modern coho-
mological perspective. We follow the outline in [KKS11] and fill in the details
from other sources and ourselves, trying to make the proof as short and as
easy as possible since most texts take a lot longer to provide a full proof of this
theorem. Inevitably we will be missing many interesting concepts and theories
that arise in our discussion, which could take a whole book by themselves. We
have no space either to deduce the global version of class field theory, which
is a beautiful application of the local-global principle.

In the first chapter we introduce some preliminary concepts such as topo-
logical groups, profinite groups, character groups and Pontrjagin’s duality,



which shall appear in the rest of the work. We follow mostly [RZ10].

In the second chapter, we present basic facts about local and global fields
and describe ramification of prime ideals in their abelian extensions. Due to
lack of space, concepts such as differents or discriminants are not even men-
tioned. We provide a short introduction to topological groups and fields, in
order to state Pontrjagin’s duality, which is fundamental for the proof of lo-
cal class field theory. We follow mostly [FV02] and [SG80] to state and prove
results on completions. For the rest of the chapter we follow [KKS11].

The third chapter is devoted to determining the Brauer group of local
fields. For that, we introduce the theory of division algebras, simple central
algebras, crossed products and cyclic algebras, as well as a little introduction
to classic group cohomology. We follow mostly [Jac85] for the theory of simple
central algebras and [KKS11] for the determination of the Brauer group of a
local field. The cohomological introduction is taken from [Mor96].

The last chapter is where a proof for local class field theory is given. We
first show the finite field case as a precursor for local fields.Then, we prove
local class field theory with all the tools from previous chapters. We follow
and complete the proofs in [KKS11].

We have summarized some minor results that had no place on the main
flow of the text in an appendix as solved exercises, just for completeness. Most
problems are taken from the same sources as the main text, but some are taken
from other sources. For example, Dedekind’s Independence Theorem has been
taken from [Jac09], which is not used for the main text. A second appendix
contains the essentials of the theory of inverse limits, direct limits and profi-
nite groups, just in case the reader is unfamiliar with these notions, allowing
the reader to follow the explanations in this work flawlessly.

The reader is not assumed to have any prior knowledge apart from what
is taught in this degree.

Lastly, a little notation issue. Map composition will be written multiplica-
tively from left to right, i.e. for maps f and g, their composition (also called
product) will be written fg where first we apply f and then g.

Commutative rings will be assumed to have an identity, see [Pool4] for a
short nice discussion on this.






List of Symbols

Anng(M)
Br(k)

Z(G)

Ca(S)

G*

X(K)

C

homeont (A, B)
Hg

[L: K]

iy, G,
Ae
Np/x

L/K

Annihilator of M

Brauer group of a field &

Center of G.

Centralizer of the set S in G.

Character group of G.

Character group of Gal(K%/K).
Complex numbers

Continuous homomorphisms from A to B
Core of the subgroup H in the group G.
Degree of a field extension L/K

Direct limit.

Enveloping algebra of the k-algebra A
Field norm of L/ K

Finite field of ¢ elements

Field extension K C L

G-invariant part of M

Galois Group of the extension L/K
Multiplicative group of units of a ring R
Group ring

Image of ¢

Integers

Integers modulo n

Inverse limit.

Kernel of ¢

n-dimensional matrix ring with coefficients in R
Maximal abelian extension of K.
Minimum of the ordered set S
n-coboundaries

n-cocycles

nth cohomology group

nth primitive root of unity

Opposite algebra of the k-algebra A
p-adic valuation

viii



N
=

bS]

=N eR=Hoe;

p-adic Integers

p-adic numbers

Profinite completion of G
Quaternions

Rational numbers

Real numbers

Ring of endomorphisms of M

Ring of integers of a number field K
Tensor product of k-algebras A and B
Valuation ring of a valuation field K






Chapter 1

Preliminaries

In this work we will be working thoroughly with topological groups, profi-
nite groups and character groups. Thus, we present briefly the basics, mostly
without proofs, just for the reader to be more familiar with these notions and
to ease the understanding of the proof of local class field theory. We follow
mostly [RZ10].

1.1 Topological groups and fields

We can endow a group with a topology to have at the same time an algebraic
structure and a structure of a topological space. However, this topology must
satisfy some compatibility conditions with the algebraic structure. Namely,
both the product and the inversion map in the group must be continuous. If
these conditions are satisfied, then the group is called a topological group.

In topological groups there are two important homeomorphisms, I, (x) :=
ax called the left translation map and r,(z) := xa the right translation map.
Thus, cosets of an open (closed) subgroup, are again open (closed).

This shows how a topology on a group should work like, but it does not
give a way to define such a topology on a general group. Luckily, given a group
G there is a natural way to make it into a topological group. Let A be a filter
of normal subgroups, i.e. a set of normal subgroups such that for each pair in
N the intersection is an overgroup of a normal subgroup in N. Since in topo-
logical groups a fundamental system of open neighborhoods of the identity
gives us a fundamental system of open neighborhoods for any other element
in the group via these translation homeomorphisms, N defines a fundamental
system of open neighborhoods and thus a topology. Since subgroups contain
the identity by definition, open subgroups are precisely overgroups of the nor-
mal subgroups in A. The special case when the elements in A/ are all those
normal of finite index is called the profinite topology. Here, open subgroups



1.2. Topological groups and fields

are precisely all those subgroups of finite index, since the core of any subgroup
is normal and of finite index if the subgroup itself is of finite index. For that,
note that if a subgroup H is of finite index, its core Hg is of finite index too
since it is precisely the kernel of the action of the left multiplication map over
the set of left cosets of H in G.

The following proposition takes account of elemental properties of topo-
logical groups.

PROPOSITION 1.1. Let G be a topological group and H a subgroup of G. Then,
1. If H is open, it is closed too.
2. If H is closed and of finite index, it is open too.
3. If G is compact, H is open if and only if it is closed and of finite index.

PROOF. For the first assertion, note G is a union of cosets of H, then, G\ H is
a union of cosets which are all open since they are left translations of H. Then,
the complementary of H is open too; hence, H is closed. The same argument
proves the second assertion where we need finite index since an arbitrary union
of closed sets need not be again closed, we need finiteness of the union. Now,
the third assertion follows from the definition of compactness and the first two
assertions. [

Now, we shall see a little useful lemma to check a group homomorphism
is continuous.

LEMMA 1.2. Let f: G — H be a group homomorphism of topological groups.
If ker f is open in G, then f is continuous.

PROOF. Let U be an open subset of H, and let V := f~1(U). Then, V =
U f~'(h) where h runs over all the elements in U. Thus, it is enough to show
each f~1(h) is open. We claim f~!(h) = {Jgker f where g runs over elements
in f~1(h). Then, since the kernel is open, all its cosets are open too and the
union of cosets is open too proving the lemma. To prove our claim note for
any g € f~!(h) we have g -1 € gker f. For the reverse inclusion, just note

flgker f) = f(g)f(ker f) = f(g) = h. O

If we have now a topological group with respect to the addition, R, which
is also a ring for the product and the product is continuous, we say R is a
topological ring. If R is also a field and the inverse map for the product is
continuous over the subspace of units, R is called a topological field.

A Hausdorff topological space such that each element possesses a compact
neighborhood is called a locally compact space. A topological group (field) that
is a locally compact space with respect to a nondiscrete topology is called a
locally compact group (field).



Chapter 1. Preliminaries

1.2 Profinite groups

Profinite groups arise naturally as Galois groups. In fact, it can be proved
all profinite groups can be realized as Galois groups [RZ10]. We showed in
the introduction how Galois groups are actually profinite. We define here the
notions of inverse and direct limits and profinite groups.

Let Z = (Z, <) be a directed partially ordered set or directed poset, i.e. a
partially ordered set such that for each pair i,j € Z, there exists some k € 7
such that 7,7 < k. Let {X;}iez be a collection of objects in a category C and
a collection of morphisms in this category ¢;; : X; — X; defined whenever
j =i making the diagrams

Xi Pik Xk

X

commute whenever k < j =4 and ¢;; is the identity map. Then, {X;, pi;}i jer
is named an inverse system over Z. Later, we shall restrict out attention to
the category of topological groups whose morphisms are continuous group
homomorphisms. A directed system is the dual notion of the inverse system,
so it is obtained by simple reversing of arrows in the definition of an inverse
system, i.e. a collection {X;};ez and morphisms ¢;; : X; — X; whenever j <4

making the diagrams
Pi

X; b Xy
X

commute whenever k < j < 1.

Given an inverse system { X;, ;; }i jez, we define the inverse limit T&lie . X;
@Xi as an object X in C together with morphisms ¢; : X — X; which are
compatible, i.e. p; = @;p;;, satisfying the universal property:

y Yo x

m l@i
X

whenever Y is an object in C and ¢; : ¥ — X; is a set of compatible mor-
phisms, then there is a unique morphism v : ¥ — X such that 1; = ¥y;.
Intuitively, ¢ is determined by looking at each ; and building ¢ upon them
since they form a coherent tuple (at the level of morphisms) (v;)iez, i.e. a tu-
ple whose components satisfy the compatibility condition. What is more, we

3



1.2. Profinite groups

may construct the inverse limit as the closed subset of the cartesian product
[I;ez Xi formed by all coherent tuples (at the level of elements), i.e. the tuples
(xi)iez such that ¢;;(z;) = x; whenever j < 4. It is left to the reader to prove
this construction satisfies the universal property of the inverse limit [RZ10].
This reduces many times properties of inverse limits of objects in C to prop-
erties of the objects in C. In particular, if the objects are finite groups, then
the resulting inverse limit will behave similarly to a finite group and many
properties will be deduced by reducing it to the finite case.

Again, the definition of the direct limit is the dual notion of the inverse
limit and it is left to the reader the details of its definition (hint: reverse all
arrows in the definition of the inverse limit). Intuitively, the direct limit is a
union. In the category of abelian topological groups X = liﬂXi = U; pi(X)
and X = (J; X; if the projections are onto [RZ10]. In the introduction, we
have seen how a field extension may be seen as a direct limit, and we shall
see how taking its group of automorphisms dualizes it turning into an inverse
limit and finally applying the hom functor gives us a direct limit again. This
scheme applies in other situations too and it will be vital for us.

We will be working with finite groups, which can be endowed with the
discrete topology to turn them into topological groups. In this context, the
inverse limit is compact, Hausdorff and totally disconnected [RZ10] and it is
called a profinite group.

Given a group G we may define the directed set of normal subgroups
N = {N <; G : G/N finite}. Then, we define the profinite completion of
G, denoted by G as the inverse limit @G /N where N runs over N. Then,
G is naturally embedded into its profinite completion by the obvious map

g+— (gN)n.

The topological closure of a subgroup of a profinite group can be obtained
as follows.

LEMMA 1.3. Let G be a profinite group and H a subgroup of G. Then, the
topological closure of H in G can be obtained as

F:ﬂHN%@HN/N,
N

where N runs over all open normal subgroups in G.

We shall see in the next section that we are interested in the open sub-
groups of the Galois group Gal(K/K). Class field theory will be based upon
an easier-to-study group whose profinite completion is precisely this Galois
group (up to isomorphism). Then, the following proposition [RZ10] is vital for
us to translate the Galois correspondence to this easier-to-study group.

4



Chapter 1. Preliminaries

PROPOSITION 1.4. Let G be a residually finite group, i.e. the intersection
of all its normal subgroups of finite index is trivial. Then, there is a 1-to-1
correspondence between the open subgroups in G and the open subgroups in its
profinite completion G given by H — H and K — K NG respectively.

1.3 Infinite Galois correspondence

We state without proof the infinite version of the main theorem of Galois
theory [Mor96] even if we just need the assertion on finite extensions.

THEOREM 1.5. Let L/K be an infinite Galois extension and G its Galois
group endowed with the Krull topology. Then, there is a one-to-one inclusion
reversing correspondence betweeen the closed subgroups of G and the inter-
mediate extensions of L/K. What is more, the intermediate extension E is
normal if and only if its corresponding closed subgroup N := Gal(L/E) is
normal in G, in which case G/N = Gal(E/K) as topological groups. Also,
if we restrict to finite extensions, this correspondence is one-to-one between
finite intermediate extensions and open subgroups of G.

We shall see the inverse limit @Gal(E /K) is isomorphic to G with the
Krull topology as topological groups. Since the natural projections G —
Gal(F/K) are compatible with the connection homomorphisms for being the
usual restrictions as above, by the universal property of the inverse limit, there
exists a unique group homomorphism ¢ : G — 1£1 Gal(E/K) compatible with
the corresponding projections. By construction, this homomorphism is pre-
cisely the one given by o — (0|g)p. We shall see it is an isomorphism. The
kernel is trivial since the only automorphism that restricts to the identity in
all finite intermediate fields is the identity. For that, recall L = hﬂ E=UpFE
where E runs through all the finite intermediate extensions in L /K. Then, for
each s € L, s € E for some E and since og(s) =s forall Eandallse€ L, o
is the identity as wanted.

To show it is onto we shall see that each infinite coherent tuple (og)g lifts
to an automorphism in Gal(L/K) where coherence means that for intermedi-
ate fields £ C F and a tuple (og)g, the component of restricts to og in E.
Then, since each s € L is contained in some finite Galois extension of K, F/, we
may define the automorphism o € G as s — o(s) := og(s). It is well defined
since if s is in another intermediate Galois extension field F, og(s) = op(s).
To see that!, note that K(s) C E, F, and for being coherent, the restrictions
of o and op to K(s) coincide; thus, their image on s too. Note this auto-
morphism is actually an automorphism and fixes K; thus, o € G. Clearly, all
automorphisms in G can be obtained in this fashion, since their restriction to

"We could have used EF instead of K(s) too and apply coherence there.



1.4. Character groups and Pontrjagin’s duality

each intermediate finite extension form coherent tuples (og)g.

Then, we obtain an isomorphism of groups between G and the inverse limit
lim Gal(E/K). We need to make it into a homeomorphism. We shall copy the
topology in the inverse limit to G’ through the above isomorphism. We know
that a fundamental system of open neighborhoods in I'&nGal(E /K) is given
by the kernels of the projection homomorphisms (Lemma 2.1.1 in [RZ10]).
Thus, since these are usual restrictions/projections of G into Gal(E/K) =
G/Gal(L/FE) for intermediate finite Galois extension fields E the kernels are
precisely the normal subgroups Gal(L/FE). Then, {Gal(L/FE)}g forms a fun-
damental system of open neighborhoods in G, which is precisely the way we
defined the Krull topology.

1.4 Character groups and Pontrjagin’s duality

The character group or dual of a topological group, G*, is the group of con-
tinuous group homomorphisms from G to T, i.e. G* = homcon (G, T), where
T is the multiplicative subgroup of complex numbers of unit norm.

We will be dealing with character groups throughout the proof of local
class field theory. Then, we shall fix some special notation and show a cou-
ple of results. For a field K we denote the character group of Gal(K%/K)
by X(K). Since we restrict to continuous homomorphisms, we see that the
preimage of any atom in T is open, since T is given the discrete topology.
But open in compact topological groups implies finite index. In particular,
the kernel is of finite index, i.e. the image of the given homomorphism is of
finite order. Thus, the image groups of these homomorphisms are mapped to
Q/Z via the usual isomorphism e2™* + z + Z. Then, for a profinite group
G* = homeont (G, Q/Z). Also, if we define addition of homomorphisms via
addition of their images, X (K) can be seen as an additive group and since
for a homomorphism ¢, o(p) = lem(o(p(9)))gec, the additive order of any
homomorphism is finite and X (K) is torsion.

All characters of an abelian profinite group arise as charactes of a finite
abelian group. Note that for any y € G*, ker x is normal in G and open too
for being the preimage of 0 and Q/Z being discrete. Then, we can regard x as
the natural composition G — G/ ker x — Q/Z.

A useful property of characters is that given a group homomorphism
¢ : G — H where H is abelian and finite, it will be onto if and only if
the only character annihilating the image of ¢ is the trivial character, i.e. if
Anng-(p(G)) = 0. Note the only if part is trivial. For the if part assume by

6



Chapter 1. Preliminaries

contradiction that there exists an element h € H such that h ¢ Im x. We shall
find a nontrivial character x € H* such that x(¢(G))=0. For that consider the
non-trivial but finite quotient H/p(G). Since the quotient is finite and abelian,
Nye(t/o(c)) Ker x = 0, there is at least one character x in (H/¢(G))* which
is non-trivial and we may lift it to a character in of H by x' := 7y, getting
a non trivial character of H annhilating the image of G by ¢, arriving to a
contradiction and proving the desired property.

Putting everything together, let L/K be an infinite Galois extension. Let
us recall the definition of the set £ and how natural it is to construct the
direct limit of this direct system, hg E = FE = L, which is no more than the
infinite Galois extension L. Now, we shall consider the Galois groups of each
finite Galois extension of K in £. These groups Gal(E/K) together with the
usual restrictions ppr : Gal(F/K) — Gal(E/K) give us the data of an inverse
system over the same directed poset £. Now, it is natural again to consider
the inverse limit lim Gal(E/K) = Gal(L/K). Note that Galois correspondence
being inclusion reversing turns inclusions into restrictions, dualizing the con-
struction, turning a direct limit into an inverse limit. This had been shown so
far in our discussion.

Now, consider the dual of each finite Galois group, i.e. the homomor-
phisms from Gal(E/K) to Q/Z. Note that a character xg : Gal(E/K) — Q/Z
lifts to a character xp : Gal(F/K) — Q/Z whenever E C F and xp(o) :=
xe(og) for each o € Gal(F/K). Intuitively, we are plugging the bigger group
Gal(F/K) in the left via a restriction. This allows us to lift the characters of
the smaller group Gal(E/K) to the bigger group Gal(F/K). This gives us the
data for a direct system over the same directed poset £. Naturally, we build
the direct limit liﬂGal(E JK)* = Gal(L/K)*. To obtain that isomorphism,
recall the image of each character is finite. Hence, any character can be ob-
tained in this lifting fashion. To see that, note this kernel is a subgroup of
the form Gal(L/FE) where E is a finite Galois extension of K for the kernel
being open. Then, this character can be obtained from a character of the finite
Galois group Gal(E/K) by plugging in the left Gal(L/K) through the usual
restriction. Then the isomorphism follows from the universal property of the
direct limit, since the liftings are compatible with the connection homomor-
phisms as they are also usual inclusions.

Lastly, we want to build the bidual Gal(L/K)**. For that, consider the
bidual of each finite Galois group, Gal(E/K)**. These form an inverse system
over the same directed poset L. Just note a character yg : Gal(E/K)* — Q/Z
restricts to a character xp : Gal(F/K)* — Q/Z since the bidual of a finite
group is known to be isomorphic to the original finite group through the
evaluation homomorphism and we may define this restriction through these
isomorphisms and the usual restriction in the Galois groups. Then, we consider
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the inverse limit l'gl(}al(E/K)** =~ Gal(L/K)**. Note these evaluation iso-
morphisms are compatible with the restrictions by definition; thus, we obtain
the evaluation isomorphism of inverse limits Gal(L/K)** = Jim Gal(E/K)** =
Y&nGal(E /K) = Gal(L/K). This is known with more generality for profinite
groups as Pontrjagin’s duality and even in more generality for locally compact
abelian groups.

THEOREM 1.6 (PONTRJAGIN’S DUALITY). Given a locally compact abelian
group G and its character group G*, the character group of G* and the group
G are naturally isomorphic, where this isomorphism is given by the evaluation
map.

The interested reader is advised to check [Pon46] for a full proof of Pon-
trjagin’s duality for locally compact abelian groups and [RZ10] for profinite
groups.

REMARK. The reader may be wondering why we are using restrictions instead
of liftings when considering the Galois groups. In the case of characters we
are able to do these liftings because we are considering just homomorphisms,
not automorphisms. If we try to lift an automorphism in this fashion it will
have a non-trivial kernel and thus it will not be injective, it will not be even
a homomorphism since field homomorphisms are injective. This shows why in
this case it is natural to consider restrictions and therefore the inverse limit
whilst with characters it is more natural to lift them and consider the direct
limit.

Let us analyze the case K = F,. Then, all finite intermediate fields are
known to us to be cyclic and we have a more precise description of £ =
{F4n : n € N}. Then, ng = F;? = liqun = (JF4 and the Galois group
Gal(ng/Fq) = @Gal(quL/Fq) = @Z/nZ = 7. Finally, since Q/Z is dis-
crete and each finite group in £ is discrete, to know all continuous homomor-
phisms Gal(Fg» /F,;) — Q/Z is just to know all such group homomorphisms.
For being the base group finite and cyclic, it is enough to provide the image of
the Frobenius automorphism, and choose it to be an element in Q/Z of order
divisor the order of the group, i.e. any element in (1/n + Z) where n is this
order. Then, X(F,) = ligGal(Fqn/Fq)* = li_Ir}(l/n—}—Z) =U{l/n+2Z) =Q/Z.
Thus, X (F,) = Q/Z where this isomorphism is given by x = x», — k/n + Z,
where k/n is the image of the nth Frobenius automorphism under x,, = m,x.
In other words, this isomorphism is obtained mapping each character x to its
image in the Frobenius automorphism of Gal(ng /Fg). Note this argument is
valid for any finite field, in particular for F ;. Then, X(F;) = X(F,). But
we know explicitly a very natural homomorphism between these two charac-
ter groups (which is not an isomorphism, caution!). Since the Galois groups
Gal(Fg4n /IF,) are cyclic, whenever f divides n there is a unique subgroup of
index f, namely Gal(Fg»/F s). What is more, an fth power of a Frobenius
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automorphism in Gal(F,» /F,) is a Frobenius automorphism in Gal(Fgn/F ).
Thus, given a homomorphism Gal(Fy»/F,) — Q/Z, 0 — k/n+Z we obtain a
homomorphism Gal(Fg /I ;) by the multiplication-by-f map in Q/Z and the
usual power-by-f map in the Galois groups, o +— fk/n +7Z
Gal(Fgn /Fq) —— Q/Z
restrictionJ{ lmultiplication by f
Gal(Fqn/]qu) —_— Q/Z
whenever n divides f. Multiplication-by-f is an epimorphism in each term
of the directed set, and if we consider the character groups and the natural
isomorphisms mapping a character to its image in the corresponding Frobenius

automorphisms, we get the following commutative diagram which we shall use
in the proof of local class field theory.

LEMMA 1.7. The diagram
X(Fq) —— Q/Z
restrictionJ{ J{multiplication by f

X(F,) — Q/Z

18 commutative.



Chapter 2

Global and Local Fields

The first example of a field seen in an elementary algebra course is usually the
field of rational numbers, Q. Finite extensions of Q are called number fields,
and they are the main object of study in algebraic number theory. Along with
number fields (and finite fields), function fields are the best known examples of
fields. Of special interest in algebraic geometry are finite extensions of Fy(7"),
where Fy(T) is the field of rational functions in one variable with coefficients
in [F,. We call the latter fields global function fields. These two types of fields
may look rather different at first glance, but they share many properties. This
analogy between both of them motivates the definition of a global field as ei-
ther a number field or a global function field. Pursuing these analogies has
been shown fruitful for both algebraic geometry and number theory. In this
chapter we develop the basic theory of both global and local fields that is used
in subsequent chapters.

We will use the following equivalent [Mil17]| definitions of a Dedekind do-
main throughout the chapter.

DEFINITION 2.1 (DEDEKIND DOMAIN). An integral domain A is said to be a
Dedekind domain if it is a field or any of the following equivalent conditions
is satisfied.

1. Any proper ideal a in A factors uniquely into a product of prime ideals.
2. A is noetherian, integrally closed and every nonzero prime ideal is max-
imal.
2.1 Discrete valuations

DEFINITION 2.2 (DISCRETE VALUATION). Let K be a field. Let v : K* —
Z be a non-trivial surjective group homomorphism satisfying the additional
condition

10
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(i) v(a+0b) > min(v(a),v (b)), Va,be K*,

and set v(0) = oo to extend v to the entire field K. Then, v is said to be a
discrete valuation of K. A field with a discrete valuation is called a discrete
valuation field.

The first example of a discrete valuation of a field is the map ord, : Q* — Z
defined as follows for a rational prime p. For any rational number a, let us
write it as an irreducible fraction in the form

a
a :p"—o, n € Z and ptag,a;.
ay

We define ord,(a) = n and set ord,(0) = co. It is easy to check that ord,
is a discrete valuation of Q. This map is called the p-adic valuation.

Similarly, for a Dedekind domain A and its field of fractions K, we de-
fine the p-adic valuation, ord, : K* — Z for a nonzero prime ideal p of A,
by writing the fractional ideal (a) for any a € K* as the unique product of
prime ideals (a) = p™[[q;" with n,n; € Z and q; # p for all 4, and defining
ordy(a) = n. Note that we set ord,(0) = oo as before.

Let K be a discrete valuation field for v. Then, it is immediate from the
definition of a discrete valuation that the set O, = {a € K : v(a) > 0} forms
a subring of K and it is called the valuation ring of K.

ProproSITION 2.3. Let K be a field and v o valuation of K.

(i) Let O, be the valuation ring of K with respect to v. Then, O, is a
principal ideal domain and thus a Dedekind domain. The only nonzero
prime (and mazimal) ideal of O, is

p={aec K:v(a) >1},

and v coincides with ordy. Any element a in K such that v(a) = 1
generates p; any ideal of O, is of the form (a™) = {b € K : v(b) > n}
for such an element a and n € N, and any fractional ideal of O, of the
form (a™) = {b € K : v(b) > n} for same a and n € Z. The group of
units of O, is exactly the set of the elements with null valuation, i.e.
Of ={a € K :v(a) =0}.

(i) Conversely, let A be a Dedekind domain with a unique non-zero prime
ideal p. Then, A coincides with the valuation ring for the discrete valu-
ation ordy.

(iii) Given an integral domain A, the following conditions are all equivalent.
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(a) A is the valuation ring of a discrete valuation of its field of frac-
tions.

(b) A is a principal ideal domain with a unique nonzero prime ideal.

(c) A is a Dedekind domain with a unique nonzero prime ideal.

An integral domain A satisfying any of the last three equivalent condi-
tions is called a discrete valuation ring.

PrOOF. First note that an element ¢ € O,, of null valuation is a unit in the val-
uation ring since 1 = cc! in K implies taking valuations, 0 = v(c) + v(c™!);
thus, v(c™1) = 0 and ¢ € OF. Similarly, if ¢ € O, then v(c) = 0. Let a
be an element of K such that v(a) = 1. Now fix a nonzero ideal a of O,.
Let n = min{v(b) : b € a}. Then, by the definition of an ideal, a C b :=
{b € K :v(b) > n} D (a™). To prove these inclusions are actually equali-
ties, let first b € b. Then, b = a"¢c where ¢ = a7 "b € K. Taking valuations,
v(c) = v(a™™) + v(b) > 0. Thus, ¢ € O, proving b € (a"). Let now b € a
such that v(b) = n. Then, b = a™c for some ¢ € K and taking valuations,
v(b) = v(e) + v(a™). Thus, v(c) = 0 and ¢ € OF, so a® = ¢ b € a getting
both equalities. The other asssertions in (i) are straightforward to check now.

For (ii) just note A is trivially contained in the valuation ring. For the
reverse inclusion note that for an element a € Ouq,, (@) = p" with n > 0;
thus, a € A.

Now, (iii) follows from (i) and (ii). O

A generator 7 of the unique maximal ideal p of a discrete valuation ring
is called a uniformizer or a prime element of O, or K. The natural quotient
field O, /p is called the residue field of O,.

We shall see how prime ideals origin embeddings of global fields into what
we call local fields. For that, we need to attach a special topology to these
fields.

2.2 Completion and local fields

From a discrete valuation v, we can obtain a metric. Let ¢ be a real number
such that 1 < ¢ < co. Then, it is easily checked that the map d, : K x K — R
defined as d,(z,y) = ¢ V&Y for z # y and d,(z,y) := 0 for z = y, defines
a metric in K. This metric induces a Hausdorff topology where V,,, = {b €
K :v(b—a) > n} can be taken as a fundamental system of open (and closed)
neighborhoods for each point @ in K.

12
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As with respect to the usual metric in Q, a Cauchy sequence in K with
respect to d, may not converge in K. Thus, we may complete K with respect
to this metric to make all Cauchy sequences converge.

LEMMA 2.4. Let A be the set of all Cauchy sequences in K. Then, A is a
ring with respect to componentwise addition and multiplication. The set of
all Cauchy sequences convergent to 0 form a mazimal ideal of A, m. The
field A/m is a discrete valuation field with discrete valuation U defined as
((an) +m) = limv(ay).

PRrROOF. Proving A is a ring is straightforward; thus, it is left to the reader.
To prove m is maximal, let m’ be an ideal strictly containing m. We shall prove
m’ = A. Take a Cauchy sequence (a,) in m’\ m. Then, there exists a positive
integer ng such that a,, # 0 for n > ng. Let (b,) be a sequence such that for
n > ng, b, = a,!. Then, (b,) is clearly Cauchy and (a,)(b,) + m = (1) + m.
Thus, since m’ is an ideal, (1) is in m’ and m’ = A as wanted. The fact ¥
is a discrete valuation for A/m follows now from the properties of the usual
limit. O

A discrete valuation field K is called a complete discrete valuation field
if every Cauchy sequence in K converges in K. A discrete valuation field K
with valuation 7 is called a completion of K if it is complete, P = v and K

is a dense subfield of K with respect to d,. This completion is unique up to
isomorphism.

PROPOSITION 2.5. Every discrete valuation field K has a unique completion
up to K-isomorphism.

PrOOF. We shall prove that the field A/m in previous lemma is the unique
completion of K. For that, first note that K is embedded in A/m by the
natural map a — (a) + m. Now, for a Cauchy sequence (a,) in K and any
real number M, there exists a positive integer ng such that for m,n > ng,
v(am — an) > M. Thus, if we take (ap,) which clearly converges in K, we get
D((an,) — (an)) > M, proving that K is dense in A/m. To prove complete-
ness, let ((anm))n)m be a Cauchy sequence in A/m (with respect to dp). Let
ni,ns, ... be an increasing sequence of positive integers such that for ¢, j > n,,

ﬁ(a(m) —a§~m)) > M. Then, (aﬁﬁ))m is a Cauchy sequence in K and the limit of

(]

((a&m))n)m in A/m (with respect to dj). This proves A/m is a completion of K.

For uniqueness, assume (K1,71) and (K3,7) to be two completions of
K. Let 1k be the identity map in K. Then, we extend this isomorphism by
continuity from K, as a dense subfield of K 1, to K. This means, for an element
ac K 1, we take a Cauchy sequence (a,) in K such as limj a,, = a and we
map it to b = limoa, € Ko. This map is well defined. For that note that if
we consider two distinct Cauchy sequences converging to a, (ay,) and (al,), by
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completeness of K 2, they must converge and since (a,, — a;) converges to 0, its
image too and this limit is unique. What is more; thus, b = lims a,, = limz a/,.
It is straightforward to check now that the extension 1k : K 1 — Kg is a field
isomorphism and ; = 09 o k. L]

From this proposition and the construction of A/m it follows immediately.

COROLLARY 2.6. Let K be a discrete valuation field and K its completion.
Then, O, is dense in Oy, the unique prime ideal p is dense in p and residue
fields O, /p and Oy /p are equal up to isomorphism.

Given a global field K and a discrete valuation v := ord, for a non-zero
prime p in the ring of integers of K we define the local field K, as the comple-
tion of K with respect to v (R and C are also considered as local fields, but
they can be dealt with separately).

LEMMA 2.7. Let K be a global field and v a discrete valuation. Then, Oy
is compact and the residue field Oy /9 is finite. Thus, the local field K, is a
complete valuation field whose residue field is finite.

PRrROOF. By Problem A.2 it is known O = @n O, /p™ as topological rings;
thus, compactness follows. From Problem A.3, p*/p" ! =2 O, /p; thus, since K
is a global field, its residue field is finite (see Problem A.4) and it follows from
the third isomorphism theorem and Corollary 2.6 that all the rings O, /p" are
finite, just note (Op/p"*1)/(p"/p" 1) = O, /p™ and take orders. O

In the literature, some authors prefer to define local fields as complete val-
uation rings with finite residue field which by previous lemma and its converse
[Neu99| is an equivalent definition. Local fields are locally compact.

PRrROPOSITION 2.8. Let K be a global field and v a discrete valuation of K.
The local field K, is locally compact.

PrROOF. We shall see a + Oy is a compact neighborhood of a for each a € K,,.
Recall that the left translation map lp(z) = b+ z is an homeomorphism of the
topological group (K, +); thus, it is enough to prove O, is an open neighbor-
hood of 0 since compactness is known. For that, note that by definition O, is
the open ball of radius ¢ centered at 0; hence open by definition. 0

2.3 Prime ideals in finite extensions of global and
local fields

For this section, let A be a Dedekind domain, K its field of fractions, L a
separable extension of K and B the integral closure of A in L. A basic result
on Dedekind domains shows B is a Dedekind domain too'. What is more, B

'This is true for a general finite extension, separability need not be assumed.
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is a finitely generated torsion-free A-module.

Now, let q be a prime ideal of B. Let p = qN A. Then, p can be shown
to be a prime ideal of A (checking this is straightforward and it is left to the
reader). In this situation we say q lies above p or p lies below q. Let p be a
prime ideal of A. Then, the ideal it generates in B decomposes as a finite
product of distinct prime ideals over B as pB = [[7_; q7’, where the positive
integers e; are called the ramification indices of q; over p and denoted by
e(p,q;). Then, {q;} coincides with the set of primes lying above p.

The residue field A/p is embedded naturally into B/q;; hence, B/q; may
be regarded as a field extension of A/p. Since B is a finitely generated A-
module, it is a finite extension. The degree of the extension [B/q; : A/p] is
called the residue degree of qi over p and denoted by f(p,q;). We say p is
totally decomposed in L if g = [L : K]. If e(p,q;) = 1 and B/q; is a separable
extension of A/p, we say q; is unramified over K. We say p is unramified in
L if all primes lying above p are unramified over K. Otherwise, p is said to
be ramified. Lastly, note that the completion of L at q; can be regarded as a
field extension of K, by noting that coherent tuples in K modulo p can be
regarded as coherent tuples in L modulo q.

The following proposition shows a basic relation of these concepts which
is known from algebraic number theory; thus, we omit its proof.

PROPOSITION 2.9. Let L/K be a finite field extension. Then,
g
[L:K] =7 e(p,q)f(p.q5)-
7=1

When the underlying field is a local field we have a simple description of
prime ideals on its finite extensions.

We shall prove that if A is a complete discrete valuation ring, then B is
so. First, recall a result from commutative algebra.

LEMMA 2.10. Let R be a commutative ring and let I, J be ideals of R satisfying
I+ J=R. Then, IJ =1NJ and the natural map R/IJ — (R/I) x (R/J) is
an isomorphism.

Note the isomorphism in this lemma is a diagonal isomorphism, which we
should keep in mind for the following results. Now, recall non-zero prime ideals
in a Dedekind domain are maximal.
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COROLLARY 2.11. Let R be a Dedekind Domain and let q; be distinct nonzero
prime ideals of R fori=1,...,g9. Letn; > 1 fori=1,...,g. Then,

g

e |

qrt - qg i1

Now, if we set R = B and pB = q7* - ng with e; > 1, by the previous
corollary, we get the isomorphism,

B
qe1n — qegn ~ H B/qem.
1 g

B/p"B =

Since the isomorphisms are compatible with the reductions modulo the
prime ideals, passing to the inverse limit, we obtain the following result.

COROLLARY 2.12. In the above situation, we get the isomorphism T&nn B/y"B
9.0
i=1%Y4q:-

Note all previous isomorphisms are diagonal. We now prove some technical
results needed to show B is again a complete discrete valuation ring.

LEMMA 2.13. Let aq,...,ap be a K-basis of L. Then, aq, ...,y form a K-
basis of [1{_y Lg,. Here, each «; is regarded as an element of [[{_ Lq, through
a diagonal embedding L < T[_; Ly,.

PROOF. We shall construct an explicit isomorphism K™ = [[7_; L,,. Note B
is a finitely generated A-module. Thus, we can find nonzero elements a,b € A
such that aB C Aoy + --- + Ay, and b(Aag + -+ + Aay,) € B. Note a
can be taken as the product of all the denominators of the coefficients of the
generators of B in terms of the basis aq,...,a,. Also, b can be taken to be
the product of all denominators of the a; when they are written in the form
bi/a; with b; € B and a; € A. For that, note any u € L satisfies an equation
anu+---+aju+ag = 0 with all a; € A. Then, multiplying by a”~! we obtain
the expression (a,u)” + - - - + a1a”2(a,u)=0, i.e. a,u € B. Thus, a,u = b for
some b in B and any element in L can be written as a quotient b/a with b € B
and a € A. Now, by the universal property of free modules, we define the
isomorphism,

L AP o Aaq + - - + Aay,

Now we define the maps s : B — A®" and t : A®™ — B as the compositions
s =l ! and t = ulp, where I, and [, are left multiplication maps by a and
b respectively. Note st = ts = l,;, where [y is multiplication by ab in the
appropiate context, i.e. usual multiplication by ab when in B and the product
by ab componentwise in A®". Now, passing to the inverse limit (with respect
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to the ideals p™) and applying Corollary 2.12, s and t induce the following
homomorphisms of Op-modules,

9 9
§:[[0q — 02", i:05" - ] O, (2.1)
=1 =1

where §t = {5 = l,; again, understood componentwise again. By a little abuse
of notation we shall denote by § : [[7_; Ly, — K" and t: K™ — T1-) Ly,
the homomorphisms induced in the respective fields of fractions. Note here
§t = 1§ = I, happens too in the exact same sense as before. Now, the homo-
morphism ¢ : K?” — [17_, Lq, given by (z;) — >z, coincides with lp-1t,
whose inverse is given by [,-15. Thus, ¢ is an isomorphism as wanted. O

REMARK. When we introduce the tensor product in Chapter 3, we could state
this lemma in the form K, ®x L = [[{_, Ly,

PROPOSITION 2.14. Let p be a non-zero prime ideal of A and qi,...,q4 all
the prime ideals of B lying above p. Let v be such that L = K(«) and let f be
the minimal polynomial of o over K. Let f = thzl fi be the factorization into
irreducible polynomials over Ky, and o; a root of f;. Then, h = g. We obtain

the field isomorphisms, [({]‘Zi[)t] & Ly, via the assignmentst — «; fori=1,...,g.

PRrOOF. By the universal property of Kp-algebras, we define the diagonal ho-
momorphism K,[t] = [ Lg;, t — (). This is onto for 1,...,a" ! being a basis
and applying previous lemma. Note f(«a) = 0; hence, (f) is in the kernel, and

the equality follows from dimension counting. Thus, K’}[t] =119, Ly, via this
diagonal embedding. What is more, by Corollary 2.11, we have the diagonal
isomorphism, %’c[)t] =~ 11", K,[t]/(fi). Now, each K,[t]/(f;) can be regarded

as a subfield of [[{_; L,, via the usual embedding K,[t]/(f;) — Ky[t]/(f) 5
[1Lg;, t = t+— (a;) for a root a; of f;. If we compose it with the projection
into a field Ly,, it is a field homomorphism since it maps 1 to 1. Then, each
K,[t]/(fi) must be isomorphic to a subfield of one of the L,,. By dimension
counting and the isomorphisms seen beforehand, h = g and the isomorphisms
in the assertion follow. O

PROPOSITION 2.15. Let p be a nonzero prime ideal of A and q a prime ideal
of B lying above p. Then,

1. The valuation ring Oy of Lq coincides with the integral closure of the
valuation ring Oy of Ky in Ly.

2. The ramification index and the residue degree of the prime ideal qOy
with respect to the prime ideal pOy of O, are given by,

€(p0p,q0q) :e(paq)a f(popaqoq) :f(paq)
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3. q is unramified over K if and only if qOq is unramified over K.

Proor. We prove the first statement. We shall see first Oy, is a finitely gen-
erated Op-module. Recall the homomorphism 8 : [[_; Oy, — O™ of O,-
modules appearing in the proof of Lemma 2.13. Now, note §f = I, left mul-
tiplication understood componentwise and this composition is then injective,
since [y, is injective. Now, if a composition of two maps is injective, necessar-
ily the first map is injective. Thus, 3 is injective and Oy, is isomorphic to an
Op-submodule of OSB"; hence, it is a finitely generated Op-module for being
O, a PID. Recall from commutative ring theory that this is equivalent to Oy,
being integral over Op. Then, since Oy, is integrally closed, it is the integral
closure of Oy in Ly,.

Statement 2 is easy to prove, we prove the equality of indices for the sake
of illustration. Let pB = q°[] q;*B. Then, since q is the unique prime ideal
of Oq and B C Oy, pO4 = q°0y. Thus, the statement follows. Statement 3 is
immediate now from statement 2. O

Finally we can prove our main result.

PROPOSITION 2.16. If A is a complete discrete valuation ring, then B is also
a complete discrete valuation ring. Thus, there is a unique prime ideal of B
that lies above the unique nonzero prime ideal of A.

PRroOOF. This follows from Propositions 2.14 and 2.15. Since A is complete, g =
1 and there is a unique prime ideal q lying above the unique prime ideal of A,

~

p, by Proposition 2.14. This proposition gives us the isomorphism K,[t]/(f) =
Lg, via the assignment ¢ — o, which together with the isomorphism K[t]/(f) =
L given by t — a and completeness of K (K, = K) shows completeness of L,
i.e. Ly = L. Thus, B is the integral closure of A in Ly and by Proposition 2.15,

B = O,. This proves B is a complete discrete valuation ring, as wanted. [J

Note that in a separable extension of a complete valuation field L/K there
is a unique prime in B q lying above the unique prime in A, namely p. If
p’ generates p, then, it generates pB = q°, and if q is generated by m, then
p' = er® with € a unit in B. Thus, for any k¥ € K we have the relation
vi(k) = evi(k), since any element can be written as k = u(er®)” with u a

unit in A and taking valuations in K yields n, but looking from L it yields en.

PROPOSITION 2.17. Let K be a complete discrete valuation field, L a finite
separable extension of K and vk and vy their respective discrete valuations.
If f is the residue degree of L over K, then for any a € L, we have

VK(NL/K(G)) = [ -vi(a).
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PROOF. Since K is a complete discrete valuation field, its separable extension
L is also a complete discrete valuation field by Proposition 2.16. Then, there
is a unique prime ideal, q, lying above p. Let e denote its ramification index
and f the residue degree. Let a € L*. Then, since pOr, = q¢, we have a® = ku
where k € K* and u € Of. Note this holds because er® generates p with
¢ € Of and then any element a can be written as a product of an integral
unit w € O and an integral power of 7. Now, since

vic(Npyi(a%)) = evk (Npk(a)) and  vp(a®) = evp(a),

by the properties of discrete valuations and the norm map, it is sufficient to
show

vk (N (k) = f-vi(k),

since u is an integral unit; thus, of null valuation. Now, note that the left-hand
side is equal to vk (N /i (k)) = vic(kFE]) = [L : K]vg (k) and the right-hand
side is equal to fvr (k) = fevk (k) = [L : K|vk (k) by Proposition 2.9, proving
the desired equality. O

PropoSITION 2.18. Let K be a local field of null characteristic. Then,
1. Forn € N, (K*)™ is an open subgroup of finite index of K*.
2. Every subgroup of finite index of K> is an open subgroup.

PROOF. (K*)™ is clearly a subgroup of K*. We shall see first it is open. For
that, let p and 7 be as before and note for any e € 1 4 p*,

" = (14 7%a)" = 1+ nrfa + 718 = 1 4+ nata (mod pF*t).
Thus, any unit € € 14 p* is of the form
€= (1 + n—lﬂ_k‘a)n + 7rk:+16 — (1 + n_lﬂ'ka)n(l + ﬂ'k—H’y),

where 3,~v € O. Since K is a local field, it is complete and we may follow this
process until we obtain an nth root of . Thus, e € (K*)™. This shows that the
open subgroup 1+ p is contained in (K *)"; hence, (K*)" is open. Now, note
that the units of a local field are generated by the unique prime element and a
set of representatives of the residue field, Since the residue field is finite, it is
finitely generated, and it is abelian for being a field. Thus, since K*/(K*)" is
torsion by noting that any x € K* satisfies 2™(K*)" = (K*)", it must be of
finite order, proving |K* : (K*)"| < oco. Lastly, let H be a subgroup of finite
index n. Then, (K*)" < H since for any = € K*, 2"H = H by Lagrange’s
Theorem. Then, H is open too. O
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Lastly, note that K™ is generated by the prime elements in K. For that,
note that a prime element is of valuation 1 and since a unit in the valuation
ring has valuation 0, their product is again a prime; thus, all elements of
valuation 0 can be obtained as division of primes and any nonzero element
can be obtained from primes, as a power of a prime times an element of null
valuation. This will be important in Chapter 4 to reduce proofs to the case of
a prime element.
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Chapter 3

The Brauer Group

In the axiomatic definition of a field K, we assume K to be a commutative
ring. We may relax this definition not asking for commutativity. If we do so,
we get a kind of non (necessarily) commutative fields. These will be called
division algebras or skew fields and they are nothing but identity rings where
division is possible, i.e. all non zero elements are invertible. Most of the di-
vision algebras seen in undergraduate courses are usually commutative and
thus, usual fields. The first example of a non commutative division algebra
was the so-called quaternion algebra, H, discovered by William Rowan Hamil-
ton (1805-1865) in 1843 while walking along the Royal Canal in Dublin (he
carved the defining formula for quaternions i? = j2 = k% = ijk = —1 into the
stone of Broome Bridge in an impulse after years of thinking). Quaternions
came to existence as an effort to understand rotations in a three dimensional
space, just as complex numbers describe rotations in two dimensions.

The theory presented in this chapter is further richer and more extensive
than the one given in our presentation. We have developed just a minimal
amount of theory due to space constraints. Thus, the interested reader is
strongly encouraged to check [Jac85], for example, for more details.

Even if not stated explicitly, all k-algebras in this work are assumed to be
associative.

3.1 Central simple algebras and the Brauer group

Let k be a field and A a k-algebra. If the center of A is exactly k, A is said
to be central over k and if the only (two-sided) ideals of A are 0 and A itself,
A is said to be simple. If A is both central over k and simple, A is called a
central simple algebra over k. As an example of central simple algebras we
have division algebras over their center. For instance, H is a central simple
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3.1. Central simple algebras and the Brauer group

algebra over R.

Our aim is to define a group, for a field k£, whose elements will be some
similarity classes defined upon simple central algebras over k. To define a
group, we need an operation, and this operation will be based on the tensor
product. Then, we need first to define the tensor product of two vector spaces.
For that, let A and B be two k-vector spaces. A balanced product of A and
B is defined to be an abelian group G together with a map f: Ax B — G
satifying for all a,a’ € A, b,b' € B and \ € k,

1. fla+d,b) = f(a,b)+ f(d,b),
2. fla,b4+0) = f(a,b) + f(a,b),
3. f(Aa,b) = f(a, \b).

It is denoted as (G, f). If (G, f’) is another balanced product, a mor-
phism from (G, f) to (G', f’) is a group homomorphism n : G — G’ such
that f' = fn. Now, the tensor product of A and B is a balanced product
(A ® B,®) such that for any other balanced product (G, f), there exists
a unique morphism from (A ®; B,®) to (G, f), i.e. (A ® B,®y) is univer-
sal for this property. An explicit construction of the tensor product via the
cartesian product A x B where its elements are written as sums of the ele-
mentary tensors a ®x b with (a,b) € A x B is given in Problem A.6. Note
dimg (A ®k B) = dimg(A) dimg(B) and that A ®; B can be endowed with a
natural product (a @ b)(a’ @ V') = (aa’ ®j, bV'), making A @, B a k-algebra.

Now, we need to define the aforementioned similarity relation on central
simple algebras over a field k. With that goal in mind, we state and prove
a criterion to know under which conditions can an algebra over a field k£ be
factored as the tensor product of two k-subalgebras. We consider just the finite
dimensional case.

PROPOSITION 3.1. Let A and B be subalgebras of a finite dimensional algebra
D over a field k. Then, D = A ®; B if the following conditions are satisfied.

1. ab=ba for alla € A and b € B.
2. D=AB and [D : k| = [A: K|[B : k].

PRrROOF. The first condition ensures the map ¢ : AQ;r B — D mapping a®b —
ab is a ring homomorphism and k-linear. For the sake of illustration we shall
show that the product is preserved thanks to first condition, other properties
are easy to check from the definition of the tensor product and are left to the
reader.

o((a®b)(d @b)) = pad’ @ bb') = ad'bb' = aba't/ = p(a @ b)p(d' @ b').
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Chapter 3. The Brauer Group

The second condition implies ¢ is surjective; thus, an isomorphism by
dimension counting of vector spaces. O

Let us see a direct application of this criterion.

PROPOSITION 3.2. Let A be a k-algebra. Then, M,(A) = M,(k) @ A. In
particular, My, (k) = My, (k) @, M, (k).

PrOOF. It is straightforward to check that the subalgebras M, (k) and Al,
where 1,, is the identity in M, (A), satisfy the conditions in Proposition 3.1.
Just note Mal,, = al,, M for any M € M, (k) and any a € A and that any
M € M, (A) can be expressed uniquely as an A-linear combination of elements
of a given basis {e;;} for M,, (k) since a k-basis for M, (k) automatically gives
an A-basis for M, (A). Last assertion follows now from the first one by taking
A= My, (k). O

Now, we are in position to define the similarity relation. Let A and B
be two finite dimensional central simple algebras over k. We will say A and
B are similar and write A ~ B when M,(A) = M,,(B) for some positive
integers n, m. This similarity relation is clearly reflexive and symmetric. To
see transitivity, let M, (A) = M,,(B) and M;(B) = M,(C), then

My (A) = My (k) @ A= My (k)@ M(k) @ A= M(k)® M,(A)

~ My(k) @ My (B) = M(k) @ My, (k) ® B 2 My,(k) ® M(B)
= My (k) @ My (C) = My, (k) @ My (k) @ C = My (k) @ C
= Mmr(c)7
where we have used associativity and commutativity of the tensor product and

the formulas obtained in Proposition 3.2. Thus, ~ is an equivalence relation
and we may consider equivalence classes

[A] = {B finite dimensional simple central algebra : B ~ A}.

Now we shall define a binary operation via the tensor product for the
set of these equivalence classes. Let A ~ A’ and B ~ B’. We claim now
A® B~ A" ® B'. Since A ~ A" and B ~ B’ we know by definition of ~ that
M, (A) = M,,(A") and M;(B) = M,(B’), or equivalently by Proposition 3.2,
A® M, (k) =2 A ® My,(k) and B® M;(k) = B' ® M, (k) for positive integers
n,m,l,r. Then

My(A®B) 2 A® B® My (k) =2 A® M, (k) ® B® M(k)
=A@ Mpy(k)® B @ M, (k)= A'® B @ My, (k)
~ My, (A" ® B'),
proving our claim. This means that the binary operation [A] + [B] := [A® B|
is well defined.
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The opposite algebra of A, denoted AP, is defined by dualizing the product
in A, i.e. reversing the product in A or, in other words, assigning the element
ba to the product a-b. The enveloping algebra of A, denoted A€, is defined as
the tensor product A¢ = A ® A°P.

To make this set of equivalence classes into an abelian group we need
to prove first associativity, commutativity, existence of an identity and an
inverse for all equivalence classes. Associativity and commutativity follows
directly from associativity and commutativity of the tensor product. Note
that M, (A) =2 A® M,(k); thus, A ~ A® M, (k). Hence, [M, (k)] = 0 acts as
the identity for +. We shall see [A] 4+ [A°?] = 0 and [A°P] acts as the inverse
of [A] with respect to +, or equivalently by definition, that the enveloping
algebra acts always as the identity.

Primitive rings and the Density Theorem

For an abelian group M, the set of endomorphisms of M, Endz M or End M,
has a natural ring structure. With ring of endomorphisms, we mean a subring
of End M for an abelian group M. We define a ring representation, as a ring
homomorphism p : R — End M for an abelian group M. A representation p of
R acting on M, i.e. its image is in End M, yields a left R-module structure for
M by defining am = p(a)m for any a € R and m € M. Conversely, given a left
R-module M, M is an abelian group and we can define p = pps : R — End M
via the assignment a — aps for any a € R, where aps € End M is left multi-
plication by a. Thus, p is a ring representation. For an R-module M, Endgr M
will denote the group of R-linear endomorphisms.

An irreducible representation of a ring is a representation such the module
M is nonzero and whose only submodules are 0 and itself. We may say M is
R-irreducible if there is such a representation and it is completely reducible if
it is the direct sum of irreducible R-modules. The kernel of a representation
p is called the annihilator of M, Anng(M):={r € R:rm =0, Ym € M}. If
Anng(M) = kerp = 0, we say p (or sometimes the R-module M) is faithful.
This kernel is obviously an ideal of R. A ring R is called (left) primitive if it
has an irreducible and faithful representation.

The structure of primitive rings is totally determined by the important
Density Theorem from Nathan Jacobson ([Jac85], p. 199). For our means we
only need the partial result on finite dimensional case that given a primitive
ring R acting on an abelian group M, R is isomorphic to the finitely dimen-
sional vector space! Enda M where A = Endg M. Thus, when refering to the
Density Theorem we will be refering to this partial result. Note irreducibility

'We shall use the term wvector space for modules over a division ring and not just over
fields, just to agree with the terminology in [Jac85].

24



Chapter 3. The Brauer Group

of M is just needed to ensure A = Endr M is a division algebra via Schur’s
Lemma. Then, if we can ensure this ring of endomorphisms is a division alge-
bra, it is enough M being completely reducible. For a more in detail discussion
on this see [Jac85].

We have a natural module action of A on A defined by (3 a; ® a))x =
> a;zal. Direct verification shows it is a well defined module action. A°-
submodules of A are two-sided ideals of A; thus, if A is simple A is A°-
irreducible.

Regarding A as a left (right) A-module in the natural way, the elements of
End4A are the right (left) multiplication maps x — xa (z — az) since if an
endomorphism f maps 1 — a, then, f(z) = f(x - 1) = za. Note the reversing
of left and right. Then, End 4. A is the set of maps that are both left and right
multiplications. Just note that if f maps 1 +— a then, f(z) = f(1-1-2) =
ax =xa = f(x-1-1) = f(z). These are precisely the ones x +— cx where c is
in the center of A. If A is central over k, then x — «ax, where o € k.

THEOREM 3.3. Let A be a finite dimensional central simple algebra over a
field k. Then, A® = A ®y A°? = M, (k) where n = dimy, A.

PrOOF. Regarding A as an A% module as above, A is A®irreducible and
Ends4eA = k for being simple and central over k respectively. Since A is
finite dimensional over k, by the Density Theorem A maps onto End A.
Now, since both vector spaces are of dimension n? over k (note dimy(A¢) =
dimy,(A) dimy (A%) = n?), it is an isomorphism A° = Endy A = M, (k). O

A¢ = M, (k) is known to be simple (see [Gri07], Proposition 1.4, p. 360).
Thus it is simple central over k and by Theorem 3.3, [A°P] acts as the inverse
of [A] with respect to +. Thus, it is only left to check this set of equivalent
classes is closed under the operation +.

THEOREM 3.4. Let A be a finite dimensional central simple subalgebra of an
algebra B. Then, B =2 A ®; C where C is the centralizer of A in B. The
ideals of B are in correspondence with the ideals of C' by the bijection a — Aa.
Moreover, the center of B coincides with the center of C.

PROOF. We shall use Proposition 3.1. Since A€ is simple B is a direct sum of
irreducible A°-modules and for A being A°-irreducible, they are all isomorphic
to A (note that two irreducible A°~-modules are always isomorphic since if M is
an irreducible R-module then M = R/m for a maximal ideal m and since R is
simple they are all isomorphic, see Problem A.7). Now, note that the generator
of A as an A°-module, 1, satisfies the condition (a®;1)1 = al = la = 1(1®%a)
and (a ®j 1)1 = 0 implies a = 0. Thus, since all irreducible A°-modules are
isomorphic we may choose an element ¢; in each irreducible A°-module satis-
fying (a ® 1)¢; = acj = cja = ¢j(a ®; 1) and (a @ 1)c; = 0 impliyng a = 0.
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Applying this to B as an A°-module and noting the map from A to each ir-
reducible A°-module mapping 1 — ¢; extends to an isomorphism by linearity,
we may write B = @ Ac; where ac; = cja for all a € A and ac; = 0 implies
a = 0. Then, clearly ¢; € C and any element of B can be uniquely written
as a finite sum ) ajc; for a; € A. For any ¢ € C, ¢ = ) ajc;, but ac = ca
implies aa; = aja for any a € A. Thus, a; € k (for A being central over k)
and ¢ € ) kcj. Hence, C'= ) kc; and ¢; is a basis for C and clearly B = AC
and [B : k] = [A: k][C : k]. Thus, by Proposition 3.1, B = A®j, C, as wanted.

Now, let a be an ideal in C. Then, Aais an ideal in B = AC. We claim that
AanC =a. Let B4 ={z1 =1,...,2,} be a k-basis for A. Since B = A®; C,
any element in B can be uniquely written as a C-linear combination of the
k-basis 54. Thus, the elements of Aa are a-linear combinations of 84. In par-
ticular, elements both in Aa and in C' are of the form cix1 = ¢; € a. Hence,
AaNC = a as claimed. This proves that the map a — Aa is injective since
Aa = Ab implies a = b by taking the intersection with C. To check surjectiv-
ity, let b be an ideal of B. Then, b is an A°-submodule of B. Hence, b = }_ Ab;
where b; € a := bN C. This implies, b = Aa, proving surjectivity. Thus, we
get a one-to-one correspondence between the ideals of C' and those of B.

Lastly, we show the center of B coincides with the center of C'. Clearly the
center of B is contained in C and thus, in the center of C'. For the converse,
any element in the center of C' commutes with every element of B = AC' and
thus, it is in the center of B. O

Thus, when C'is simple and central over k, B is simple and central over k.

COROLLARY 3.5. The tensor product of two finite dimensional central simple
algebras over a field k is again a finite dimensional central simple algebra
over k. In general, the tensor product of a finite number of finite dimensional
central simple algebras over a field k is again a finite dimensional central
simple algebra over k.

Then, the set of equivalent classes is closed under + and it can be regarded
as an abelian group. This group is called the Brauer group of k and it is de-
noted by Br(k). The Brauer group was first introduced by Richard Brauer
(1901-1977) in 1929.

Now, let L be a field extension of k. Then, for any k-algebra A, A®y L can
be regarded as an L-algebra. This L-algebra is denoted as Ay and is called
the algebra obtained from A by extending the base field to L. If A is finite
dimensional central simple over k, it can be seen as a corollary to Theorem
3.4 that Ay is finite dimensional central simple over L. Let A be a finite di-
mensional central simple algebra over k. A field L is called a splitting field for
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Aif A, = A®y L = M,(L) for some positive integer n.

Now, let L be a finite extension of k. Then, if A is finite dimensional cen-
tral simple over k, Ay is finite dimensional central simple over L. We have
(A®p B)r =2 Ap®r Br, and M,,(k)r, = M,(L). Thus, a group homomorphism
may be defined from Br(k) to Br(L) mapping [A] — [AL]. The kernel of this
homomorphism, i.e. the classes [A] in Br(k) such that Ay, ~ 0, are exactly the
classes of k-algebras with splitting field L. This kernel forms a subgroup that
is denoted by Br(L/k).

Recall that for a field F' and an n-dimensional F-vector space V', Endp (V) =
M, (F). If commutativity is not assumed, we should take the opposite ring
when passing from endomorphisms to matrices (see Problem A.8).

LEMMA 3.6. Let A be a central simple algebra over k and L/k a finite field
extension such that L is a subfield of M, (A) = Endgep V' for V an A°-vector
space. Then, the centralizer of L in M, (A) coincides with End gorg, 1, V.

PROOF. We shall see the centralizing L condition is equivalent to A°P? ®j L-
linearity regarding V' as an A°? ®j L-module via the action (d ® )z = dlx =
ldx. Let I € L C Endgop V. Then, lc = ¢l for some endomorphism ¢ means
le(v) = e(l(v)) for all v € V. But ¢ is A°P-linear; thus, ¢((I ® a)v) = c¢(lav) =
lac(v) = (I ®k a)c(v) and it is AP’ ®j, L-linear. The same reasoning proves the
converse. O

THEOREM 3.7. Let A be a finite dimensional central division algebra over k.
Then, a finite extension L/k is a splitting field for A if and only if L is a
subfield of an algebra A = M, (A) such that C4(L) = L.

PROOF. We just need the only if part, for a proof of the converse see [Jac85].
Let L be a subfield of A = M,,(A) which is self-centralised. Recall A may be
identified with Endas V for an n-dimensional vector space V over A’ = A,
Then, we regard V as an A’ ®, L-module as before. Since both A’ and L
are simple, by Corollary 3.5, A’ ®; L is simple too and this action is nec-
essarily faithful. Now, since A’ ®, L is finite dimensional over k, V is com-
pletely reducible as a A’ ® L-module. By previous lemma, the centralizer
of L in A is Endargr, V and this is L by assumption, which is a field,;
thus, a division algebra. Then, we may apply the Density Theorem to ob-
tain A’ ® L =2 Endy, V = M, (L) and L is a splitting field for A’; hence, for
A. O
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3.2 Group cohomology, crossed products and
cyclic algebras

Given a group G and an abelian group M, we say M is a (left) G-module if
we can define a (left) G-action on M, i.e. a map G x M — M, such that for
any g,h € G and any n,m € M we have

gm+n)=gm+gn, g(hm)=(gh)m, 1Im=m.

Now, let G be a group and M a G-module. We define the group of n-
cochains, denoted as C™(G, M) as the set of maps from G™ to M for any
n € N. For n = 0, C°(G, M) = M by convention. This set can be endowed
with a group operation by defining the sum of maps componentwise. This way,
it becomes an abelian group.

Let us define the maps d,, : C"(G, M) — C""}(G, M) via the assignments,
on(f)(01, s on41) =01 f(02, ..., Ont1)
+ > (1) f(01,.0505 11, ey Ont1)

J
+ (=) f(oy, ..., 00),

for n € N and dp(m)(c) = om — m for n = 0. The maps J,, define group
homomorphisms and §2 = §,,0,11 is the trivial map. Comprobation of these
facts is straightforward but tedious; thus, it is left to the reader. The maps 6,
are called differentials.

Since 62 = 0, Im J,_; is inside kerd,, and it makes sense to define the
quotient group H"(G, M) = Z"(G,M)/B" (G, M), where Z"(G, M) := ker 6,
and its elements are called n-cocycles and B"(G, M) := Im 0,1 and its el-
ements are called n-coboundaries. For n = 0 we define BY(G, M) = 0. The
group H"(G, M) is called the nth cohomology group of G with coefficients in
M. Two n-cocycles are called cohomologous if they are equal up to a cobound-
ary, i.e. if they represent the same element of H" (G, M).

The G-invariant part of M is defined as the subset of M that is invariant
under the action of G, i.e. MY = {m € M : om = m, o € G}. Whenever
G is cyclic with generator o, the norm group, N(G), is defined as the set
N(G) := {3 ¢*m : m € M}. In this cyclic case, the second cohomology group
can be described by these constructions (Problem 16 in [Mor96], p. 105-106).

THEOREM 3.8. Let G be a cyclic group and M a G-module. Then, H*(G, M) =
MY /N(G).

PRrROOF. See Problem A.9. O
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We introduce now a way of constructing a k-algebra based on a finite
Galois field extension. Let L/k be a finite Galois field extension and let {z,}
be a collection of symbols in 1-1 correspondence with the elements of G :=
Gal(L/k). We regard the k-algebra A as a vector space over L with basis {z,},
i.e. A= Lx,, and we define a product on A by the relations

Tolr = KorZor, Lol =02, VIEL,

where K, r are elements of L* and L is regarded as a G-module by the natural
action of G, i.e. ol = o(l) for any 0 € G and any [ € L.

Since {z,} is an L-basis for A, any element of A can be uniquely rep-
resented as a finite sum > [ 2, with coefficients in L. Thus, the product of
two elements > l,x, and Y I, x, is defined as Y kg rly0l 24, by the above
relations.

To make A into an associative k-algebra, the xs; must be chosen appro-
priately. Since

(xO'xT)'rp = RoslorLp = KorRor,pLog.,

To(¥72p) = Totir,ptrp = (Orp) Ko, rpTarp,

and to ensure associativity we need, ko rKor,p = (07 p)Ko,rp, Which is exactly
the 2-cocycle condition we have seen before in multiplicative notation for the
map k : G x G — L*, (0,7) — kg r. Distributive laws are straightforward
to check from definition. Since by the 2-cocycle condition 1, = k1,1 and
Kg,1 = OK11, the element 1 = nl_&xl is the identity for the multiplication as
a simple computation shows. Finally, since the elements of k£ are fixed by all
k-automorphisms of L, the ring multiplication and the k-scalar multiplication
as a vectorial space are compatible, i.e. A(ab) = (Aa)b = a(Ab) for all A € k
and a,b € A. Thus, A is a k-algebra. We shall denote A in the following as
(L, G, k). We shall see these k-algebras are simple central over k and identify
the subgroup Br(L/k) with the second cohomology group H?(G, L*).

PROPOSITION 3.9. Let A = (L,G, k). Then, A is a simple central algebra over
k and [A : k] = n? where n = [L : k]. Regarding L as a subfield of A (L14) it
coincides with its centralizer in A, i.e. Ca(L) = L.

PROOF. The relation [A : k] = [A : L][L : k] = [L : k]> = n? holds from
the definition of the crossed product. Now we shall see A is simple. For that,
we shall see first all x, are invertible. The product x,z,-1 = Ky ,-1/111 is
a nonzero element of L; thus, x, is invertible in A. Now, let a be a proper
ideal of A. We shall see it is trivial. We write @ = a + a for a € A. Then,
A = A/a # 0 since it is proper. Hence, the usual projection restricted to L,
[ — [ is a monomorphism into A, since L is a field and this homomorphism
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is non-trivial. Therefore, the elements Z,, are all invertible in A. The relations
Z,l = 0lZ, hold for all ¢ € G and by the Dedekind independence argument on
shortest relations (see Problem A.10) the Z, are all left linearly independent
over L = {l : 1 € L}. Thus, [A : L] = n and since a is proper, L Na = 0
and we get L = L and k = k via the canonical isomorphisms = + Z. Thus,
[A: k] =[A:L][L:k] =n?=[A:k]and we get A = A as k-vector spaces and
it follows a is trivial; hence, A is simple. Now we see it is central over k. Let
[ € L and suppose an element Y l,x, € A commutes with [. Then, rearranging
terms, > (I — ol)l,z, = 0, which implies [ = o(l) for all o such that [, # 0
for L being an integral domain. Thus, for > l,z, to commute with every
l € L, necessarily [, = 0 for all 0 # 1. Then, ) l;xs = l1z1 = l1ik1,11 € L and
CA(L) = L as wanted. Lastly, let ¢ be in the center of A. Then, ¢ € C4(L) = L
and in particular, cx, = z,c for all 0 € G. Thus, oc = ¢ for all ¢ € G and ¢
is in the fixed field of G, i.e. in k. Hence, k is the center of A and A is simple
central over k. O

Then, we may define the map ¢ : H*(G,L*) — Br(L/k) via the assign-
ment k — (L, G, k) which is well defined since A = (L,G, k) is a central
simple algebra over k with splitting field L, for L being a subfield of A such
that C4(L) = L and a direct application of Theorem 3.7. We shall see ¢ is
indeed a group isomorphism. This is summarized in the following proposition:
the first assertion shows it is onto, the second one makes it into a group ho-
momorphism and the third one proves injectivity. We omit the proofs due to
lack of space and refer the reader to [Jac85] instead.

PROPOSITION 3.10. Let A be a finite dimensional central simple algebra over
k with splitting field the finite extension L/k. Then,

1. There exists a factor set k such that A ~ (L, G, k).

2. (L,G,k) ® (L,G,n) ~ (L,G,kn) for any pair of factor sets k and v.
3. (L,G, k) ~ 0 if and only if k is a 2-coboundary.

Summarizing, we have reached the following important theorem.

THEOREM 3.11. The map ¢ : H*(G, L*) — Br(L/k) given by [r] — [(L, G, k)]
is an isomorphism. Thus, Br(L/k) can be identified with H*(G,L*).

Now we turn our atention to the special case when L/k is a cyclic extension.
In this case, a crossed product (L,G, k) takes a very simple form. In this
situation G = (o) and let k : G x G — L* be defined as,

1, i4+j5<n,
Kgigi =
7 a, i+j>m,
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Chapter 3. The Brauer Group

for a € k*. We shall denote £, ,; simply by &; ;. Then, it is straightforward
to check k is indeed a 2-cocycle as we did in Problem A.9. In fact, any crossed
product for a cyclic extension can be obtained through such a simple 2-cocycle.
The k-algebra A will be called a cyclic algebra and denoted by (L, o, «).

Combining the isomorphism in Theorem 3.8 with the one obtained in The-
orem 3.11, we obtain the fundamental property of cyclic algebras.

THEOREM 3.12. Let L/k be a cyclic finite field extension. Then, the map
¢ L*/Np(L*) — Br(L/k) such that [a] — [(A, o, a)] is an isomorphism.

A cyclic algebra is completely determined by a character y : G — Q/Z and
a. If we consider a character x of Gal(k®/k), its kernel is open; thus it is of the
form Gal(K%/L) and L is the cyclic extension associated to the kernel of .
What is more, there is one and only one character with kernel Gal(K /L) for
each generator of Gal(L/K) = Gal(K%/K)/Gal(K®/K) if we fix the image
of the generator. Then, we may determine a cyclic algebra by the pair (y, «).
From now on a cyclic algebra will be denoted via such a pair (x,a) and the
operations on the Brauer group can be written as (x,a) ® (x,8) ~ (x,af)
from Proposition 3.10, (x + X/, @) ~ (x,a) ® (', @) and (y, «) ~ 0 if and only
if @ € Np,p(L*) where L is the cyclic extension corresponding to the kernel
of x from Proposition 3.10 too and Theorem 3.12.

3.3 Brauer group of a local field

We will turn our attention now to local fields. In this context, we know that
there is a unique prime in a Galois extension field L lying above the unique
prime in the local field K by Proposition 2.16. Thus, we will say L/K is an un-
ramified extension when the unique prime in L lying above the unique prime
in K is unramified. We say a character is unramified if the corresponding cyclic
extension is unramified. Unramified extensions of local fields are very easy to
study since we claim they are in one-to-one correspondence with separable
extensions of their residue fields. Since these are finite fields, we know there is
a unique cyclic unramified extension for a local field of degree n for any n € N.

To prove our claim, recall from Chapter 2 the degree formula [L : K| =
ef since in a finite extension of a local field g = 1. If the finite exten-
sion L/K is also unramified, then e = 1 and [L : K| = f = [E : F]
where E and F' are the residues fields of L and K respectively. We shall
see Gal(L/K) = Gal(E/F). For that, we shall construct an explicit isomor-
phism ¢ : Gal(L/K) — Gal(E/F) in the natural way, i.e. restricting each
automorphism in Gal(L/K) to O and composing with the natural projection
onto E. Note this is well defined since automorphisms fix minimal polynomi-
als and if p is the unique prime in Ok and ¢ the unique prime in O, above
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3.3. Brauer group of a local field

pOr, any automorphism fixes q for being an isomorphism. Note ¢ is a group
homomorphism since it preserves composition. By order counting we just need
to prove ¢ is injective to make it into an isomorphism. For that, note the ker-
nel of this homomorphism is precisely the inertia subgroup of Gal(L/K), i.e.
the automorphisms that restrict to the identity in Gal(E/F'). This subgroup
is known to have order e from the course on algebraic number theory [lang
ANT]; thus, since the extension is unramified e = 1 and it is trivial. Hence, the
homomorphism is injective and Gal(L/K) = Gal(E/F) as wanted by order
counting.

From this result we see unramified extensions of local fields are all cyclic
and thus abelian for being essentially the same as the corresponding extensions
of the residue field which is finite for the base field being local. For that, note
the composite of unramified extensions is again unramified since the degree
of the composite is equal to the degree of its residue field; thus, e = 1. Hence,
we may define the mazimal unramified extension of K and denoted it by K.
Thus, K% C K% and Gal(K" /K) = Gal(F®/F), where last isomorphism
is obtained via the universal property of the inverse limit since each isomor-
phism Gal(K""/K) = Gal(F/F) is compatible with the restrictions.

Also, it is known any finite dimensional central division algebra over a
local field K has an unramified cyclic extension field K, /K as splitting field
(see Theorem 9.21 and its converse in [Jac85], p. 607-608) and we shall write
Xn for its corresponding character. Thus, any element of Br(K) is contained
in Br(K,/K) for some unramified extension K, /K of degree n. Note, any
element of Br(K,,/K) may be lifted to an element in Br(K,,/K) whenever n
divides m by simple tensoring by K,,. Then, Br(K) may be seen as a direct
limit.

PROPOSITION 3.13. Let K be a local field and K,, the unique unramified ex-
tension of K of degree n. Then, Br(K) = @Br(Kn/K) =, Br(K,/K).

We want to show each Br(K,/K) can be generated by the algebra (xpn, 7),
with 7 a prime in K.

LEMMA 3.14. Let K be a complete discrete valuation field, Ok its valuation
ring, m its mazimal ideal and F the residue field O /m. Let A be an O-
algebra that is a finitely generated free O -module such that A/mA = M, (F)
as an F-algebra. Then, A= M,(Ok) as an Ok-algebra.

PROOF. Since A is a finitely generated free Ox-module, we can write A =
1 Ok for some positive integer m. Hence, we have the following isomor-
phisms as F-vector spaces

m m n
Ox . @, 0k _ A
et = m Tomo mA n (F) N
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Chapter 3. The Brauer Group

and as both sides are finite vector spaces over the residue field F, their dimen-
sions must be equal, yielding m = n?. Now, we need to show existence of a ring
homomorphism ¢ : A — M,,(Ok). For that, we may define such a map using
the universal property of modules, giving an image for an Og-basis of A. Then,
these images must satisfy some multivariate square-free equations over O in
order to ensure this to be a ring homomorphism, namely p(v;v;) = ¢(v;)p(v;)
for all the elements in the Og-basis {v;}. But, these are known to have a
solution over the residue field F' by assumption. Then, by the multivariate
Hensel’s Lemma', there exists a solution over Ok and it gives us the desired
isomorphism as an Og-algebra. O

PropPOSITION 3.15. Let K and K, as in Proposition 3.18. Let Oy be the
valuation ring of K and m a prime element of K. Then, Ny, /i (K,S) coincides
with the subgroup of K* generated by Op and ©™. Thus, K* /Ny, /(K;) is
a cyclic group of order n generated by the class of .

PROOF. Since K,,/K is an unramified extension, the prime element  is still
a prime element in the valuation ring O, . Thus, the group of units K, is
generated by OIX<n and 7. Since the norm map has image on the base field,
we have the inclusion Ng, /x(Og ) € Og NK = Og. Then, the norm group
Nk, /k(K;) is contained in the group generated by O and N, /x(7) = 7.
We are only left to prove Ox C N, /x(K;). For that, let o € Op. By
the isomorphism ¢ in Theorem 3.12, it is sufficient to show that ¢([a]) =
[(Xn,a)] =0, ie.

(XTZ7 Ck) = MR(K)7

as a K-algebra. Let R be the subring of (xn,«) = @?:_01 K, such that

n—1
1=0

R is clearly an Og-algebra and a finitely generated free Ox-module. If the
residue field of K is of order ¢, i.e. Ok /p = F,, we get

R n—1
_ ]F n,
pR ejo !

which is clearly a cyclic algebra over the finite field IF,. But, by Problem A.11
Br(F,) = 0; thus, R/pR = M,(F,) as an Fy-algebra. Now, it follows from
Lemma 3.14, R = M, (Ok) as an Og-algebra. Tensoring the isomorphism
with ®p, K yields the wanted isomorphism of K-algebras. ]

'See https://en.wikipedia.org/wiki/Hensel%27s_lemma#Generalizations
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3.3. Brauer group of a local field

From this last proposition and Theorem 3.12, we have the isomorphisms

Br(K,/K) = ~7/Z, (3.1)

for all n € N given by the assignment
divides m the diagram

n,T) = 1/n + Z. Note that if n

Br(K,/K) —=— Br(Kn/K)

=| =

i7)7 —=— 1777

commutes. Thus, we may combine the isomorphisms in (3.1) applying Propo-
sition 3.13 to obtain

Br(K) = JBr(K./K) = J %Z/Z =Q/Z,

where this isomorphism is denoted by invg.

THEOREM 3.16 (BRAUER GROUP OF A LOCAL FIELD). The aforedefined map
invg : Br(K) — Q/Z is a group isomorphism.
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Chapter 4

Class Field Theory

The reader may be wondering what the last chapter has to do with abelian
extensions of local fields. The aim of this chapter is to establish these links
and to use the theory of the previous chapters to prove the main theorem of
local class field theory following [KKS11].

4.1 Finite fields

We start by considering finite fields. It is already known that Gal(Fg/Fy) is
isomorphic to the additive group Z/nZ, which is very well understood. Our
aim is to approximate the absolute Galois group Gal(ng JFg) = 7 by an easier
group. In this case, by Z. The reason for this choice is we are interested in
the Galois group for the Galois correspondence of finite extensions, i.e. we
are interested in its open subgroups. Then, the Galois group Gal(Ing /Fq) is
isomorphic to the profinite completion of Z and by Proposition 1.4 its open
subgroups are in one-to-one correspondence with open subgroups of Z, which
are precisely nZ for each n € N. Then, Z gives us a one-to-one correspon-
dence between its open subgroups and the finite abelian extensions of a finite
field. What is more, we may define a map pr, : Z — A= Gal(F‘;b /Fq), which
is no more than the usual inclusion of a group in its profinite completion
composed with the isomorphism of profinite groups Z = Gal(ng /F,), namely
n +— (nZ)y — (0n)n, where o(oy,) = n for each n € N. In addition, this map
induces the isomorphisms Z/nZ = Gal(F /F,) for each natural n.

This does not shed any new light on abelian finite extensions of a finite
field since we knew already there is one for each natural number. But, this
way of reasoning will be mimicked in the case of a local field, where we use
the group of units instead of Z to define such a map K* — Gal(K%/K)
giving this one-to-one correspondence between open subgroups and inducing
the isomorphisms K* /Ny, /i (L*) = Gal(L/K). What is more, local class field
theory can be seen as proving the open subgroups of finite index with respect
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4.2. Local fields

to the p-adic topology in K™ are precisely those norm groups, and its profinite
completion being isomorphic to the Galois group Gal(K®/K).

4.2 Local fields

THEOREM 4.1 (LocAL CLAsS FIELD THEORY). Let K be a local field. Then,
1. There exists a unique continuous homomorphism

p : K* — Gal(K/K),

satisfying the following conditions.

a) For a finite abelian extension L of K, pk induces an isomorphism
K*Npg(L*) 5 Gal(L/K).

b) If K is a complete discrete valuation field with finite residue field
Fy, then the diagram

K* X, Gal(K™/K)

S

7 24 Gal(Fe/R,).

is commutative, where vy 1is the discrete valuation in K and the
map Gal(K®/K) — Gal(ng/Fq) is the composition

Gal(K®/K) — Gal(K" /K) 5 Gal(F®/F,),

where Gal(K%/K) — Gal(K"" /K) is the restriction of automor-
phism of K% to KV,

2. There is a one-to-one correspondence through px between open subgroups
of Gal(K®/K) and open subgroups of finite index of K*, i.e. finite
abelian extensions of K lie in one-to-one correspondence with open sub-
groups of finite index of K*.

The remainder of the section is devoted to proving this important theo-
rem. We will assume at some points K has characteristic 0 for the sake of
simplicity, but the results are still valid in positive characteristic even if the
proofs tend to be more tedious. The cases K = R and C are dealt separately
(see Problem A.12). Now, let K be a complete discrete valuation field with
finite residue field.
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Chapter 4. Class Field Theory

PROPOSITION 4.2. Let K be a local field and L a finite separable extension of
K. Then,

1. The following diagram is commutative.

Br(K) 25, Q/z

J{ J{multiphcation by [L:K]

invy,

Br(L) =L, Q/Z.

2. The order of Br(L/K) is exactly [L : K].

ProOF. First note second assertion follows from the first one. Since inv is an
isomorphism, the kernel of the multiplication by [L : K] in Q/Z is isomorphic
to the kernel of the restriction Br(K) — Br(L), which we denoted by Br(L/K).
Since the first kernel is precisely {n/[L : K] + Z} and has order [L : K],
Br(L/K) has order [L : K] too. Now we prove the first assertion. Let e and
f be the ramification index and residue degree of L over K respectively. By
Proposition 2.9 we have [L : K] = ef. Let m be a prime element in L and er®
a corresponding prime element in K and recall from Lemma 1.7 the following
diagram is commutative

X(Fy) —— Q/Z
restrictioni lmultiplication by f

X(F,r) — Q/Z.

where the horizontal arrows are mapping x + x (o) and xr + x(o7), where
Xz is the restriction of x to X(F,r) viewed as an element of X (L) and o
and o/ are the Frobenius automorphisms in the corresponding absolute Galois
groups. Now the first assertion follows from this since the isomorphism invg is
mapping (x, er®) — (o) whilst invy, is mapping (x,7) — x(o7). Then, since
[L: K] =ef, we see (x,en®) — x(0) — efx(o) and (x,en®) — (xr,en®) =
(xr,7®) = e(xz,7) — ex(cf) = efx(o) coincide proving the commutativity
of the diagram in the first assertion. O

PROPOSITION 4.3. For each finite abelian extension L of K, there is an iso-
morphism

K*/Npg(L*) 5 Gal(L/K)* 5 Gal(L/K),
given by the composition o — (x — invi(x,a)) — o.

PrOOF. First note the map K* — Gal(L/K)** — Gal(L/K) given by the
composition a — (x — invg(x,«)) — o, has kernel containing the norm
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4.2. Local fields

map. For that, since the last homomorphism is the evaluation isomorphism
from Pontrjagin’s duality and since in finite abelian groups (1, cq+ ker x = 1,
it is enough to check that the cyclic algebras (x, Np/x(L*)) are trivial in
Br(K) for any character x € Gal(L/K)*. Let K, the cyclic extension corre-
sponding to the character x. Then, by Theorem 3.12, (x, Nk, /x(Ky)) =0
in Br(K). But, by the transitive property of the norm, we get Ny /x(L*) =
Nk (Npyr, (L)) € Ni, /x (KY) and the induced map K™ /Ny g (L*) —
Gal(L/K) is well defined.

For injectivity it is enough to prove the inequality [K*/Np (L) <
|Gal(L/K)| once we prove it is onto. Note for two field extensions K C F C

N
L, NL/K = NL/ENE/K Then, EX/NL/E(LX) E—/>K KX/NL/K(LX) is Well
defined and the sequence

N
E*/Npp(L™) =5

K*/Np(L*) = K™ /[Ng/g(E™) — 1

is exact. Then, |K* /Ny g (L*)| < |E* /N p(L*)||K* /Ng/k(E*)|, showing
it is enough to consider finite extensions of prime degree by induction on the
prime factors of [L : K. But, in this case the extension is cyclic and combining
Theorem 3.12 and previous proposition |K* /Ny, i (L*)| = |Br(L/K)| = [L :
K] = |Gal(L/K)|, which implies [K* /Ny, /i (L*)| < |Gal(L/K)| for a separa-
ble extension L/K. Hence, we are only left to prove it is onto to obtain an
isomorphism. For that, we have seen in Section 1.4 that this homomorphism
will be onto if the only character annihilating its image is the trivial character.
Such a character must satisfy (x, K*) = 0 in Br(K) by definition. Then, by
Theorem 3.12 we have Br(K, /K) = 0 and by the second assertion in Propo-
sition 4.2, we have the formula [K, : K| = |Br(K,/K)| = 1; thus, K, = K
and y = 0 proving surjectivity. O

Now, note that for any finite Galois extensions M C L of K, the diagram

K> /Ny (L¥) — Gal(L/K)

l J{restriction

K> /Ny (M) —— Gal(M/K)

commutes where the horizontal arrows are precisely the ones defined in the
previous proposition and the left vertical arrow is a usual projection since
Nk (L) € Ny (M*). Then, the isomorphisms from the previous Propo-
sition are compatible with the connection homomorphisms and by the univer-
sal property of the inverse limit they induce a homomorphism px : K* —
Gal(K®/K), a + o := (o). This is the celebrated homomorphism of local
class field theory. We shall show it has the properties described in Theorem
4.1.
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PROPOSITION 4.4. Let K be a complete discrete valuation field with finite
residue field. Then, px has the property (b) in Theorem 4.1(1).

PROOF. Let us see commutativity of the diagram for a prime element 7 since
K> is generated by prime elements. The valuation of a prime element is 1
and 1 generates Z as a group and Gal(ng /Fg) is isomorphic to the procyclic
profinite completion of 7Z, Z, generated topologically by the Frobenius auto-
morphism x — z%. Then, the image of the prime 7 through the composite
VK pr, is the Frobenius automorphism in Gal(ng /Fg). On the other way, the
image of m through px satisfies x(pr (7)) = invi(x,7) = 1/n + Z for each
unramified character y, where n is the index of the kernel of y in Gal(K®/K).
This element of the bidual is mapped via the evaluation isomorphism to an
automorphism o in Gal(K%/K) such that x(c) = 1/n + Z for each unram-
ified character, i.e. it induces generators in each cyclic unramified extension
K,; thus, its restriction is a generator of Gal(K""/K), which is mapped to
the Frobenius automorphism in Gal(ng /F4) by the canonical isomorphism
Gal(K""/K) = Gal(Ing /F,), proving commutativity of the diagram. O

PROPOSITION 4.5. For a local field K, px is continuous.

PROOF. Assume for simplicity char K = 0. Since Gal(K/K) is a profinite
group, to check continuity of the map pr : K* — Gal(K/K) it is enough
to show continuity of each induced map K* — Gal(L/K), by the universal
property of the inverse limit noting we are working over the category of topo-
logical groups. Since each finite Galois group is discrete, it is enough to check
the kernel is open by Lemma 1.2. Since the kernel is of finite index for the
image group being finite, it follows from Proposition 2.18 it is open. O

REMARK. We assumed K to be of null characteristic in order to apply Propo-
sition 2.18.

Now, we show the map pg is unique in the sense of Theorem 4.1.

PROPOSITION 4.6. Let jp: K* — Gal(K®/K) be an homomorphism satisfy-
mng,

1. Let L be a cyclic extension of K. Then, the composite map,

K* 5 Gal(K®/K) — Gal(L/K),

maps N /i (L*) to {1}.

2. Let L be a finite unramified extension of K. Then, the image of a prime
by the same composite map of (1), is a generator of the cyclic Galois

group.

Then, p = pk.
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PROOF. As before, it is enough to prove p'(7) = pg(m) for prime elements
7w € K*, as they generate the group of units. We shall see x(p'(7)) = x(px (7))
for all y, which is easier to check and implies previous equality since the iso-
morphism in Pontrjagin’s duality is the evaluation isomorphism. Let n be the
order of x(pk(m)). Let K,,/K be the unique unramified extension of degree
n. Then, pg (7) restricts to a generator of Gal(K,/K). Hence, there is some
unramified character ¢» € X(K) such that ¥ (px (7)) = x(px(7)). Now, let
L/K be the cyclic extension corresponding to the character ¢ — x. Then, the
composite K> 25 Gal(K%/K) — Gal(L/K) maps 7 to 1. Thus, by Proposi-
tion 4.4, 7 is in the norm group Ny x(L*). By the first property of p, p'(m)
maps to 1 too, and we obtain (¢ — x)(p/(w)) = 0. By the second property,
»(p' (7)) = Y(pk (7)) and we have the equality

X(p'(m)) = (' (7)) = ¥ (px (7)) = x(pK (7)),

concluding the proof. O

Now, to conclude we need to prove there is a one-to-one correspondence
between abelian extensions and open subgroups of finite index of the group
of units of the base field. We have seen this is equivalent to having a one-to-
one correspondence between open subgroups of finite index in Gal(K%/K)
and open subgroups of finite index in K*. For a profinite abelian group G,
we claim its open subgroups of finite index are in one-to-one correspondence
with the finite subgroups of its character group G* given via the assign-
ments H < G — ¢o(H) :={x € G*: xg =0} and H < G* — ¢Y(H) =
Nyem ker x (see Problem A.13). Thus, if we set X (K ™) := homeont (K™, Q/Z),
it is sufficient to prove there is an isomorphism X (K) = X(K*) given by
the assignment x — pxx. To prove injectivity, just note that the compos-
ite K* 25 Gal(K®/K) — Gal(L/K) is surjective for all abelian extensions
L/K; thus, since taking the dual homcon(—,Q/Z) is a contravariant func-
tor mapping an exact sequence K* — Gal(L/K) — 0 to an exact sequence
0 — Gal(L/K)* — X(K*), this inclusion is injective for the duals of each
finite Galois groups; hence, for the dual of the Galois group Gal(K/K) too.
Now, we prove surjectivity.

First, we shall check L is an extension of K for any separable extension
L/K. By definition, it is enough to see K% /L is an abelian extension. Note
that Gal(K/K) is abelian and Gal(K /L) is one of its subgroups; thus it is
abelian too. This shows the restriction Gal(L% /L) — Gal(K%/K) given by
the usual restriction of automorphisms is well defined. Then, we may define
a natural map X(K) — X (L) by plugging the Galois group of the maximal
abelian extension of L through the usual restriction in the left hand side, i.e.
X+ XL = 7 kX where 77,/ denotes this restriction.
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PROPOSITION 4.7. Let K be a local field and L a finite separable extension of
K. Then, the diagram

L* —2- . Gal(L®/L)

wl

K* 25, Gal(K®/K).

is commutative, where the right vertical map is the homomorphism obtained
by restriction of automorphisms of L% to K.

PrROOF. Let K be a complete valuation field with finite residue field, since
the real and complex cases are easy to check and thus left to the reader.
Note that, as before, it is sufficient to prove invy (x, Ni k(7)) = invi(xr, 7)
for all x € X(K), where xr denotes the image of x by the inclusion map
X(K) — X(L). Let f be the residue degree of the extension L/K. Then, we
may choose an unramified element ¢ € X(F ;) € X(L) such that (¢, 7) =
(xz, ™). Note such an element exists since all the classes of the Brauer group
contain such an element. Now, since the multiplication by f map Q/Z =
X(Fy) — X(Fyr) = Q/Z is surjective we may choose an unramified element
¢ € X(F;) € X(K) such that ¢y = 1. Let L'/L be the cyclic extension
corresponding to ¢r — xr. Since (¢, — xr,7) = 0, 7 is a norm element by
the main property of cyclic algebras, i.e. 7 = Np//p(b) for some b € (L')*.
Now, consider the cyclic extension K’/ K corresponding to the character ¢ — .
Since (¢ — x)rr = 0, K/ C L. Thus, by transitivity of the norm,

Ny (m) = Npjk(Npyn(b)) = Ny () = Ngoryg (N (b)) € Ny ((K')™).
Thus, (¢ — x, Nk (7)) = 0 and we get
invg (x, Nk (7)) = inv (o, Npyg (7))
= vi (Npyic(m)) (image of ¢ by X (Fy) = Q/2)
= [ - (image of ¢ by X(F,) > Q/Z)
= (image of ¢y, by X (F ) = Q/Z)
= invy (¢, m) = invy(xL, ),

where v is the discrete valuation of K and second and fifth equalities follow
from Proposition 4.4, third from Proposition 2.17 and 7 being a prime element
in L and fourth equality from the map X (F;) — X (qu) being multiplication
by f. This concludes the proof. O

LEMMA 4.8. Let K be a local field of characteristic 0. Then,

1. Form e N, let Xp(K) :={x € X(K) : nx =0} and X,,(K*):={x €
X(K*) : nxy =0}. If K contains a primitive nth root of unity, we have
an isomorphism X,(K) = X,(K™), given by x — pxX-
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2. Let L be a finite extension of K and x € X (K™). If Ny jgx € X (L) lies
in the image of X (L) — X (L*), x lies in the image of X (K) — X (K*).

PROOF. Let us prove first the first assertion. We shall see the sequence of
maps

K*/(K*)" = X, (K) = X,,(K™),

is a sequence of injective maps and that K*/(K*)" and X,(K*) are finite
and have same order, implying the desired isomorphism X, (K) = X, (K*).
Note the second map is given by x — pg, i.e. it is obtained by plugging the
group K* in the left hand side.

Let K contain a primitive nth root of unity ¢,. Then, K ({/a) is an abelian
extension for any a € K*. Thus, we may define a group homomorphism
K* — X, (K) via the assignment a — x, where x,(c) =r/n and r is chosen
such that o({/a) = (] ¢/a. This is a well-defined group homomorphism and
note that x, = 0 for all a € (K*)™; thus, it induces a group homomorphism
K> /(K*)" — X, (K). We shall see it is injective, it is actually an isomorhism
by Kummer Theory but we just need injectivity for our means. For that, we
see the kernel is trivial. For a € K* and x, = 0, we have {/a is fixed by the
Galois group, i.e. it is in K *; hence, a € (K *)™ and the kernel is trivial proving
injectivity. We show in Proposition 2.18 that [K* : (K *)"] is finite; thus, the
quotient group is finite. Since X,,(K*) can be identified with X (K> /(K*)")
via x(k) <> x(k(K*)™) and the character group of a finite abelian group has
same order as the group itself since they are isomorphic, although not natu-
rally, we obtain the desired isomorphism.

Now we prove the second assertion of the lemma. By transitivity of the
norm, it is sufficient to consider intermediate fields of the finite abelian exten-
sion L/K, i.e. we may assume without loss of generality that L/K is cyclic.
Let G := Gal(L/K) and consider the action of G over the groups X (L) and
X (LX) defined by ox : Gal(L®/L) — Q/Z, T + x(6~'75), where & is an
element of Gal(L/K) whose image in Gal(L/K) is o for x € X(L); and
ox = o~y for x € X(L*) respectively for each o € G. Now, let x1 € X (K*)
and assume Ny x1 € X (L) is the image of xo € X(L). Recall from previ-
ous chapter that we write M© for the elements of a G-module M invariant
under the G-action. Then, clearly Ny gxx1 € X (L*)C, since Galois conju-
gates have the same norm. Note the map X (L) — X(L*) is a homomor-
phism of G-modules, this is easy and left to the reader, and injective; thus,
neccesarily 2 € X(L)® noting that oNp/kx1 = Np/rxi1 and using injec-
tivity to obtain oxs = x2. Now let us prove X (L) is contained in the im-
age of the map X(K) — X(L), x — xr. Let o be a generator of G and
fix an element &. Then, if p is the order of G any element of the group
Gal(L®/K) can be uniquely written as hé’ for some h € Gal(L%/L) and
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some j = 0,1,...,p— 1 since Gal(L®/K) = Gal(L*/L) x Gal(L/K). Now,
for y € X (L)%, choose an element s € Q/Z such that y (o) = ps and define the
map X' := Gal(L%/K) — Q/Z via the assignment 7 = h&7 +— x(h) + js. This
map is clearly a group homomorphism (note Gal(L%/K) is abelian and thus
it is easily verified x'(7p) = x'(7)X'(p)) and it induces a map Gal(K%/K) —
Q/Z and it can be regarded as an element of X (K) and its image x’ coincides
with x. For that, note that any automorphism 7 € Gal(L%/L) has j = 0 in
the above form; thus, x7(7) = x(7) and x} = x. Thus, the homomorphism
X(K) — X(L)% is surjective and there exists an element x3 € X (K) such
that (x3)r = x2. From previous proposition pxx3 and x; map to the same
element in X (L*) via Ny x; thus, x1 — pxxs annihilates Ny, r(L*). Hence,
the composition x4 : Gal(L/K) — Q/Z of x1—pxx3 : K*/Np/x(L*) — Q/Z
and the induced isomorphism K* /Ny, (L*) = Gal(L/K) can be seen as an
element of X (K) and we have x1 = px(x3 + x4), i.e. x1 lies in the image of
X(K) — X(K*) concluding the proof. O

Now, assuming char K = 0let y € X (K*). We shall see it lies in the image
of X(K) — X(K*). Note both groups are torsion; thus, let n be the order of
X. We shall assume K contains an nth primitive root of unity, since K (¢,)/K
is a finite abelian extension, and by Lemma 4.8.2 all cases are reduced to this
one. Then, by Lemma 4.8.1, the map X,,(K) — X,,(K*), X' — pr X' is an iso-
morphism for all natural n and surjectivity follows and we are done with the
proof of the local class field theory. As usual, these isomorphisms are compati-
ble with usual inclusions whenever n divides m and we obtain an isomorphism
of the direct limits, i.e. X(K) = X (K™*), concluding the proof of Theorem 4.1.

To conclude, I would like to highlight again the astonishing beauty of local
class field theory: how local fields encode the data of all their finite abelian
extensions in their inner arithmetic in a rather unexpected but simple way.
This is a nice representative of the charm of algebra and number theory:
objects may seem to be so distant from each other but happen to be linked
in an out of the blue but easy way. And, generation after generation more
of these links are developed and we realize that even if we thought we fully
understood a theory, we were just scratching the surface of a whole new world
making you to keep learning constantly, which, for me, is the most captivating
aspect of the queen of mathematics.
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Appendix A

Solved Problems

A.1 Preliminaries

PrOBLEM A.1. Show the Krull topology and the profinite topology need not
coincide.

SoLuTION. We shall follow the procedure in [Mil20]. It is enough to show
there is some Galois group with at least one subgroup of finite index non-open.
Let Gal(Q/Q) and the intermediate field E := Q(v/—=1,v2,v3,..., /D, ...).
Then, it is an easy exercise to check G := Gal(E/K) = @Gal(@(ﬁ, V2,

..,/P)/Q) and since each finite Galois group is a finite product of groups
7./27, G is a closed subgroup of the direct product of a countable number of
groups Z/27. Now, consider the subgroup N of G of tuples with only a finite
number of non-trivial components, i.e. a direct sum of a countable number
of groups Z/27. Also, it is clearly dense in G and we may make the quotient
I' := G/N, which is a vector space over Fy. Then, by Zorn’s Lemma I" contains
a maximal set of linearly independent vectors, which is necessarily a basis.
Then, take n elements out of the basis and define the subspace spanned by
the remaining set as G,,. Then, I'/G,, is of dimension n over Fy, i.e. of index
2" in I'. If G, were open in I, it would be closed too, but that it is impossible
since N is dense in G. Then, G,, is of finite index and non-open, proving our
claim. O

A.2 Global and local fields

PROBLEM A.2. Let A be a complete valuation ring and m its unique maximal
ideal. Then, A = 1&nn A/m™ as topological rings.

PROOF. We shall see the canonical map ¢ : A — lim | A/m™ is an isomor-
phism. It is clearly a ring homomorphism. Thus, since the kernel is (>, m" =

0, it is injective. To check surjectivity, note that an element s € @n A/m" is
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given by an infinite tuple s = (s,,) where

Sp = a4+ a1+ -+ ap_7 1,
for a; are taken in a set of representatives of the cosets and 7 a uniformizer of
A. Thus, (sp) is nothing but the image by ¢ of the element >°, >, a,7" € A.
Hence, ¢ is bijective and an isomorphism of rings.

We are left to see it is continuous for it to be a homemorphism too. It is
enough to check that the basis of neighborhoods m™ of 0 in A are mapped
to a basis of neighborhoods of 0 in gnn A/m™. Since the open sets N,, =
1>, A/mF form a basis of neighborhoods of 0 in [],s; A/m* and ¢(m") =
N, N lim A/m™, ¢ is continuous and thus an homemorphism. O

PROBLEM A.3. Let A be a complete valuation ring and m its unique maximal
ideal. Then, m"/m"*! = A/m.

PROOF. Note the elements a € A may be written as the sums

a= E anm",

n>0

where a,, are taken in a set of representatives of the cosets and 7 is a uni-
formizer of A. The elements of the ideal m™ are the sums

My = Z akwk.

k>n

Thus, the elements in m”/m"*! are of the form a, 7" + m"*! and are in a
clear one-to-one correspondence with the elements in the residue field (given
by the canonical epimorphism) proving the result. O

PROBLEM A.4. The residue field of a global field K is finite.

PROOF. Let first K be a global function field. Then, K = F[t] and it is a
principal ideal domain (PID) and a nonzero prime ideal is a maximal ideal
given by a nonzero irreducible polynomial f. Then

F,[t

ﬁ = {ao +ait+ -+ anfltn_l ra; € Fq} = Fqn,

(f)
where n = deg f. Hence, the residue field is finite as it is a finite dimensional
vector space over a finite field.

Now, let K be a number field, i.e. a finite extension of Q. Then, Ok is
finite dimensional over Z. Thus, it is enough to show that for any positive
prime integer p, and v = ord,, the residue field O, /p is finite where O, = Lp)
(i-e. the localization of Z at the prime ideal (p)) and p = pZ,). We shall see
Ou/p = L)/ L) = Fp. This follows directly from the following Lemma. [
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LEMMA A.5. Let A be a commutative ring and m be a maximal ideal. Then,
Ap/mAn = A/m.

PROOF. Since m is maximal, A/m is a field and any k € A\ m is a unit in the
quotient. Then, the map

©: An/mAy — A/m

% +mAp — ak™! +m,

is well defined since for two representatives a/k + mAy, = b/l + mAy,, we get
their images ak~! +m = bl~! + m noting

ak ' — b7t = (al —bR)kHT! € m.

It is indeed a ring homomorphism since

b
o (G ]+ man) = (al 4 BREN = a0

b
:@(Z+mAm)+SO(l+mAm>-

For the product it is straightforward to check it too.

The homomorphism ¢ is clearly surjective since for any a + m € A/m we
have p(a + mAy) = a +m.

To check injectivity, we compute the kernel of the homomorphism, which
is easily computed noting

SD(ZerAm) =m = ak ' €m.
Since m is an ideal, ak~'k = a € m and consequently, a/k € mAy, i.e.

ker p C mAy, = {0}, and ¢ is injective. Thus, ¢ is an isomorphism as wanted.
O

REMARK. We only needed ¢ to be an injective map, since such a map would
give us the inequality in the orders of the fields necessary to prove finiteness
of the one in the left hand side.

A.3 The Brauer group

PROBLEM A.6 (EXPLICIT CONSTRUCTION OF THE TENSOR PRODUCT). Let
A and B be two k-algebras. Then, give an explicit construction of the tensor
product A ®; B.
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SOLUTION. Let F'(A x B) be the free abelian group with basis all elements
in the cartesian product A x B denoted by a * b. We shall define the normal
subgroup N generated by the elements of the form:

1. —ax(b+bV)+axb+axl,
2. —(a+d)xb+axb+ad xb,
3. —(a-N)xb+ax(A-b),

where a,a’ € A, b,/ € B and A € k. This subgroup N has been chosen so
that the natural map

p:AxB— F(Ax B)/N,

is a balanced product. What is more, it has been chosen minimal satisfying this
property; hence we shall show the pair (F/(Ax B)/N, ®) satisfies the universal
property of the tensor product. For that, recall the universal property of free
modules. Let A x B be a basis for the k-module F'(A x B), then, the inclusion
map ¢ : Ax B — F(AXx B) is universal in the sense that any arbitrary function
¢ : A x B — C to another k-module C factors through ev, : F(A x B) = C
where this module homomorphism is obtained by >-; Adjv; — >_; Aip(v;), i.e.
evaluating the function ¢ on the basis A x B. Also, recall the universal property
of the quotient of abelian groups. Given an abelian group G and a normal
subgroup N, any group homomorphism ¢ : G — H for an abelian group
H such that N C ker ¢, factors through 7y, i.e. there exists a unique group
homomorphism v : G/N — H such that ¢ = m,1. Putting all of this together,
we see if (C, f) is another balanced product, then, the following diagram,

Ax B —— F(Ax B) = F(A x B)/N

commutes, since clearly N C kerevy by the choice of IV and thus, 1 is unique
and gives the desired morphism on the universal property of the tensor prod-
uct, by noting ®x = tmy. It is only left to check it is a k-algebra (we have
proved it is a k-module), but this is straightforward to do if we define the
natural product on F(A x B)/N, [axb][a’ *b] = [(a-ad") x (b-V')]. O

PrOBLEM A.7. Let M be an irreducible module over a ring R. Then, M =
R/m for a maximal ideal m of R. In particular, if R is simple, any two nontrivial
irreducible modules over R are isomorphic.

PROOF. Let m € M~ {0} and consider the corresponding nonzero submodule
Rm C M. Since M is irreducible, necessarily, Rm = M, i.e. it is cyclic. Thus,
M = R/a for a := Anng(m). To see that, note the canonical homorphism
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r +— rm is clearly onto and has kernel Anng(m). Now, since the ideals in R/a
are in one to one correspondence with the nontrivial R-submodules of M and
M is irreducible, we must have a is maximal as wanted. Lastly, if R is simple,
the only possibility is M = R if M is taken to be non-trivial; hence, all such
R-modules must be isomorphic. O

PrROBLEM A.8. For a central simple algebra A and an n-dimensional A°P-
vector space V' we have the isomorphism Endor V' = M, (A).

PRrROOF. An endomorphism is completely determined by its image on an A-
basis. Let us fix an A-basis 8 and let M be the matrix whose columns are
precisely the images of the elements of 5 of a given endomorphism ¢. We
check A°P-linearity and leave the rest of the properties that make this map an
isomorphism to the reader since they are analogous to those in linear algebra.
Let us denote the product on AP via x. We shall check ¢(a *xv) = a* p(v) =
a x (Mwv). For that, note

a * U1 mi1a *x vl + -+ mMipa * Uy
plaxv)=M| = |= :
a * Up Mp1Q * V1 + -+ Mppa * Uy
miivia + - - - + Mipna
= : = (Mv)a=ax(Mv) =ax*p(v),

Mmp101a + -+ + MpnUna
proving our claim. O
ProBLEM A.9. Proof of Theorem 3.8.

PrOOF. Let m € MY n = |G| and f,, be the cochain defined as,

1, 147 <n,
m, 1+j>n.

fm(ai,aj) = {

It is straightforward to check f,, satisfies the 2-cocycle condition,
fm(aivaj)fm(0i+ja0k) = (UifM(UjvUk))fm(0i70j+k)~

Just classify the possible choices of i, j, k depending upon their pairwise sums
and their total sum is lesser than n or not, and check in all possible choices the
2-cocycle condition is satisfied. Note for these computations that if i + j > n,
then ¢'t7 = i+ modn A cocycle of this form is called a normalized cocycle.

Now, we can define a map ¢ : MY — H?(G, M) such that m — f,,, which
is clearly a group homomorphism by the definition of f,,.
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We claim ker ¢ = N(G) and Im ¢ = H*(G, M).

For the first part, we show that f,, and f; are cohomologous if and only
if m/l € N(G). For fp, and f; to be cohomologous there must exist ¢; € M
such that fi,(0%,07) = fi(c",07)cio"(¢;)ci);. For the only if part, recall that
N(e1) = [I1o%(c1). Thus, by the 2—coboundary condition,

fm(gi’o-j) = fl(o-i’o-j)cl (CJ) 7,+]7

and taking the product over all ¢ and fixing j = 1,
Hfm(ai,a HflO' o)eiol (e, = m—chZ (c1)eihy
% A
- = HO’ Cl .
i

Hence, m/l € N(G) as claimed. For the converse, let m € N(G). Then, by a
little abuse of notation define f,, := fH ok(m We shall see f,, satisfies the

coboundary condition f,(c?, 07) = ¢;0(c;)cp, ﬂ for some ¢; € M. Let

i mod n

¢ = H ok (m).

k=1

Then, it is straightforward to check f,, satisfies the coboundary condition.

For the second part, we show any cocycle f € Z2(G, M) is cohomol-
ogous to a normalized cocycle f,, for m = H"fl f(ot,0), i.e. there exist
c; such that fo, (0% 07) = f(o%,07)cio'(cj)cy, Zﬂ For that, let ¢g = ¢; =1
and ¢; = H;-fl f(od7,0)7! for 1 < i < n. Then, the reader can check the
2-coboundary condition is satisfied and that m € M& using the 2-cocycle
condition (hint: prove it for j = 1 and then use induction). Thus, by the
First Isomorphism Theorem for groups, we obtain the desired isomorphism

H?(G, M) = M%/N(G). O
PROBLEM A.10 (DEDEKIND INDEPENDENCE THEOREM). Distinct characters
of a group! into a field are linearly independent, i.e. if x1, ..., x» are distinct
characters of a group H into a field F', then the only elements ay,...,a, € F
such that

ale(h) +--- 4+ aan(h) =0, (Al)
foral he H area; =--- = a, = 0.

1We shall just use this theorem once for a group, but we could have replaced group with
monoid flawlessly.
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PRrROOF. For n =1 the result is clear since otherwise, ax(h) =0 for all h € H
with @ # 0 implies x(h) = 0 for all h € H for F being an integral domain,
which is a clear contradiction since x(1) = 1 # 0 (see next remark). Now, we
proceed by strong induction on n. Let n > 1 and assume the result true for
k < n characters. We shall prove the result by means of contradiction. Thus,
suppose there exist a; # 0 satisfying (A.1), we may assume all are distinct
from zero since we are assuming the result holds for &k < n. Since x1 # X2,
there exists an a € H such that xi(a) # x2(a). Thus, let us replace h by ah
in (A.1) giving us the relation

arxi(a)xi(h) + azxa(a)x2(h) + - + anxn(a)xn(h) =0,

since ; are characters into a field. On contrast, if we multiply the expression
(A.1) by x1(a) we get the expression

arxi(a)xi(h) + azxi(a)xz(h) + -+ anxi(a)xn(h) = 0.

Substracting both expressions we get a new relation afx2(h)+- - -+al, xn(h) =
0 where a} = a;(x;(a) — x1(a)) for i = 2,...,n. Since a5 # 0 this is a contra-
diction by the induction hypothesis, completing the proof. O

REMARK. It is known that 0 = 1 happens just in the trivial ring, i.e. when
R = {0}. But, in the axiomatic definition of a field we impose all elements
but 0 are units, and if we apply this to the trivial ring we see the 0 is a unit
which is not appealing to us. Thus, we do not consider such a concept as a
trivial field or a field of one element.

PROBLEM A.11 (WEDDERBURN’S LITLLE THEOREM). Let F be a finite field.
Then, Br(F) = 0.

PrOOF. We shall see that any finite division algebra A is commutative, i.e. a
field. Thus, Br(F') = 0 since the only possible simple central algebra over F' is
I itself. To prove that, let us proceed by strong induction on the order of A.
Clearly, the center of A, Z(A), is a field, so A is a finite dimensional vector
space over Z(A). Let n := dimya) A and ¢ := [Z(A)|. We shall see n = 1.
Now, for any d € A\ Z(A), the ring centralizer Ca(d) is a division algebra
and thus a field, since it is a strict subring of A, by induction hypothesis and
it is also a vector space over Z(A). We may see A as a vector space over
Cz(a)(d) too; hence, the order of the centralizer is ¢ with [ a strict divisor of
n by the multiplicative property of dimensions. Now, if we consider the unit
groups A, Z(A)* and Cz(a)(d)* we may consider the class equation

n_1
A =120 + T JA: Oy (@) = " =1=q-1+ X L=,
d

lln
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where the sum over the elements d is taken over a set of representatives of
nontrivial conjugacy classes. Now, recall the polynomial identity,

" —1= H@l(x),

lln

where ®; is the [th cyclotomic polynomial. Then, since all [ in the class equa-
tion divide n, necessarily, ®,(q) divides ¢ — 1 and we get |®,(q)| < ¢ — 1.
We shall see |®,(q)] > ¢ — 1 for n > 1; thus, forcing n = 1. But, this is
straightforward to see. Just note that over the complex numbers we have the
factorization

n—1

Pn(2) = [[ (=~ G,

=0

where (,, denotes an nth primitive root of unity. Then, evaluating it at x = ¢
and noting that for any n > 1 and ¢ > 2 we have the inequality |¢—C| > |¢—1]
fort=1,...,n — 1 and the equality at ¢« = 0, we get the desired result. 0

REMARK. This proof and a nice discussion can be found at [Art50].

A.4 Class field theory

PROBLEM A.12. Describe the local class field homomorphism of R and C.

SOLUTION. Let us consider first R. Then, R% = C and Gal(C/R) = Cs. The
only open subgroups of finite index of R* are R} and itself, where the for-
mer is the one of positive real numbers. For that, note that for a subgroup
H of index n < oo, we have R} < H since z = ({/z)" € H for all z € R};
thus, H is either R} or R* since R} is of index 2. It is straightforward to
see that Ng/r(R*) = R* and Ng/r(C*) = {|z|* : z € C*} = R}. Thus, the
only homomorphism satisfying the conditions of the Theorem 4.1 is precisely
pr : R* — Gal(C/R) mapping positive real numbers to the identity and neg-
ative ones to conjugation.

The case of C is even easier as C* = C. Thus, the Galois group Gal(C*/C)
is trivial and the only possible homomorphism with image on it is the trivial
one. Thus, if there is just one open subgroup of finite index in C* conditions
of Theorem 4.1 are satisfied by this unique trivial homomorphism. But, this
is precisely the case of C*, since its only open subgroup of finite index is itself

arguing by taking roots as before. Thus, local class field theory is proved for
R and C. O

PROBLEM A.13. Let G be an abelian profinite group. Then, there is a one-
to-one inclusion-reversing correspondence between its open subgroups of finite
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index and finite subgroups of its character group via the assignments H < G —
o(H):={x € G":xyg =0} and H < G* = Y(H) =, ep ker x.

PROOF. First we see these maps are well defined. For that, let H < G be
open of finite index. Then, the characters in ¢(H) are in one-to-one corre-
spondence with the ones of G/H and since H is of finite index |p(H)| =
(G/H)*| = |G : H| < oo. Now, let H < G* be finite. Then, ¢(H) is mapped
into P, ey G/ ker x and since each G/ ker x is finite and H too, G//H is finite
proving it is of finite index. Also, it is the intersection of open sets; thus, open.

Now, we shall see ¥)(p(H)) = H and ¢(¢(H)) = H. First, let H < G open
of finite index. Clearly, ¢/(¢(H)) < H. Should this inclusion not be an equality,
the quotient ¥ (¢(H))/H would be non-trivial and there would be a character
X € G* such that x € ¢(H) but x|y (s)) 7 0, which is a contradiction.

Now, let H < G* finite. Clearly, H < ¢(¢(H)). Now, ¢()(H)) can be
identified with (G/v(H))* and H with a subgroup of it. But H clearly sepa-
rates any two points in G /¢ (H), but no proper subgroup of (G/¥(H))* does
so; thus, H cannot be proper and we get the equality H = p(¢(H)). O
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