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A B S T R A C T

Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, re-
quire a significant amount of time and experimental resources to provide accurate predictions under realistic
operating conditions. At the same time, there is significant interest from industry in the introduction of new data
collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world
battery operation data. In this context, the development of ageing models able to learn from in-field battery
operation data is an interesting solution to mitigate the need for exhaustive laboratory testing.

In a series of two papers, a data-driven ageing model is developed for Li-ion batteries under the Gaussian
Process framework. A special emphasis is placed on illustrating the ability of the Gaussian Process model to learn
from new data observations, providing more accurate and confident predictions, and extending the operating
window of the model.

This first paper focusses on the systematic modelling and experimental verification of cell degradation
through calendar ageing. A specific covariance function is composed, tailored for use in a battery ageing ap-
plication. Over an extensive dataset involving 32 cells tested during more than three years, different training
possibilities are contemplated in order to quantify the minimal number of laboratory tests required for the design
of an accurate ageing model. A model trained with only 18 tested cells achieves an overall mean-absolute-error
of 0.53% in the capacity curves prediction, after being validated under a broad window of both dynamic and
static temperature and SOC storage conditions.

1. Introduction

Lithium-ion (Li-ion) battery technology has gained a significant
market share as the principal energy storage solution for many in-
dustrial applications, mainly due to its high energy efficiency and high
specific energy and power [1,2]. However, Li-ion batteries are still re-
latively expensive compared to other storage technologies, and their
performance is known to decline over time and use, which threatens
their competitiveness against more affordable solutions [2,3]. In order
to overcome such barriers, the global research in Li-ion batteries fo-
cusses on different paths. On the one hand, the next generation battery
technology is wanted to be developed working on improved or new
materials, in order to increase the specific energy and energy density

[4,5], minimise side reactions [6], improve safety [7] and reduce ma-
terial costs [8]. On the other hand, optimised sizing of the storage
systems [9], second-life business strategies [10] and the design of ef-
fective operation strategies for the currently commercialised Li-ion
battery technologies allow the reduction of the total cost of ownership,
making profitable the implementation of large-scale Li-ion energy sto-
rage systems [11]. The latter points are strongly conditioned by the
development of accurate battery ageing models. In fact, accurate ageing
predictions could help to identify too heavy battery operating condi-
tions and avoid the need for system replacement. Inversely, scenarios of
more intensive use of the battery could be contemplated to increase the
profitability of the application [12].

Different forms of ageing models have been widely proposed in the
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literature, with varying levels of complexity, accuracy and representa-
tiveness of the internal physics and chemical processes in the battery
[13]. Electrochemical models are known to provide a good mathema-
tical representation of the internal variables of the battery, such as the
thickness and conductivity of the Solid Electrolyte Interface (SEI)
[14,15]. However, such a detailed mathematical representation implies
increased levels of complexity and computational cost. Moreover, the
development of electrochemical models supposes an extensive para-
metrisation phase typically requiring cell disassembly [13]. Models
based on in-field measurable variables are argued to be more suitable
for implementation in real-world applications [16]. Empirical models
rely on experimental ageing tests while semi-empirical ageing models
add a physicochemical support to the mathematical empirical data
fitting phase [17,18]. Developing such ageing models generally consists
of capturing the relations between battery's health indicators (e.g. ca-
pacity or internal resistance [19]), and stress-factors; the most widely
used factors cited in the literature include operating time, temperature,
State of Charge (SOC), Ah-throughput, C-rate and depth of discharge
[16].

A significant challenge for the development of such conventional
ageing models is the amount of laboratory tests required to verify the
accuracy of the model under realistic operating conditions.
Conventional models are typically parametrised using laboratory tests
carried out at constant ageing conditions [20,21]. Furthermore, ex-
tensive validation procedures involving constant ageing conditions,
slowly varying dynamic conditions and realistic ageing profiles are
recommended to surround accurate lifetime predictions in a context of
real-world operation [16]. However, even such a time and cost-in-
tensive validation procedure cannot ensure accurate predictions for a
large diversity of dynamic or realistic profiles, particularly when taking
into account the reported path dependence within many battery ageing
factors [22].

As suggested in a previous publication, a suitable solution to reduce
the number of laboratory tests could be the development of ageing
models capable to continuously learn from streaming data [23]. Fol-
lowing this approach, reduced laboratory tests could be used to develop
a preliminary ageing model. Further, once the battery pack has been
implemented and deployed, in-field data extracted by the data acqui-
sition system could allow updating the preliminary ageing model. In
this way, the ageing model would be continuously upgraded, improving
prediction accuracy, extending the operating window of the model it-
self and providing useful information for predictive maintenance,
adaptive energy management strategies or business case redefinition.

In a previous study, a critical review on self-adaptive ageing models
for Li-ion batteries was presented, in which the Gaussian Process (GP)
method was identified as the most promising candidate [23]. In fact,
beyond their ability to perform probabilistic, relatively robust and
computationally acceptable predictions, these models enjoy the very
interesting advantage of being nonparametric: in other words, the
complexity of these models depends on the volume of training data.
Within the context of Li-ion battery ageing prediction, this implies:

- A progressive spread of the operating window for the model. Each time a
new data sample related to previously unobserved operating con-
ditions is included within the training set, additional knowledge is
obtained about the influence of stress-factors on ageing. The re-
sulting models should provide an increasingly comprehensive pic-
ture of the ageing of Li-ion batteries.

- A higher level of specialisation of the model. The preliminary ageing
model developed from the laboratory ageing data could be upgraded
by including new training data extracted from the in-field operation.
In-field data encodes the intrinsic operating profiles of each appli-
cation, as well as the corresponding battery ageing. This implies the
possibility to move from a generic ageing model to a specialised
model tailored to the specific applications.

Each time input values are presented to the model to perform a
prediction, the GP model retrieves similar data samples in the training
dataset to produce analogous predictions. A continuously fed training
dataset implies an increased number of similar data, allowing more
accurate and confident predictions.

From a broader perspective, the most critical gaps identified in the
literature regarding data-driven Li-ion ageing models are i) the under-
utilisation of key predictive features (e.g. values of the different stress-
factors) and ii) the insufficient validation of the proposed models [23].
These gaps strongly limit the accuracy and applicability of the models
within the context of real deployment. In this sense, investigation in
data-driven Li-ion ageing models should be more focussed on the im-
plementation or discovery of features presenting strong predictive
capabilities (as suggested in [24]), as well as the deeper validation of
the developed models under broad operating conditions. Moreover,
most of the data-driven ageing models proposed in the literature refers
to the degradation of the Li-ion batteries when the cell is electrically
cycled. However, some applications are characterised by a dominant
storage operation of the battery system (e.g. Uninterruptible Power
Supplies, Electric Vehicle applications, etc.), and the development of
pure calendar ageing models is also necessary.

The GP framework has already been introduced for Li-ion battery
ageing predictions [25-33]. The present study aims to extend existing
research by integrating the following main contributions:

(i) The analysis of the ability of GP models to learn from new data,
illustrating their capability to provide more accurate and confident
ageing predictions when integrating previously unobserved oper-
ating conditions, extending this way the operating window of the
model.

(ii) The introduction of compositional covariance functions tailored to
Li-ion battery ageing prediction. In the literature, the ageing models
based on the GP framework are limited to the utilisation of con-
ventional covariance functions, selected to achieve a minimal pre-
diction error for a specific dataset. Nevertheless, the covariance
function encodes the basic assumptions of the model about the
system under study and have a significant impact on the prediction
and learning capabilities of the GP. Therefore, the development of
the covariance function should be tailored to the application of Li-
ion battery ageing and justified beyond the intrinsic patterns of a
specific dataset.

Additionally, this study also explores several points uncovered in
the literature, introducing the following secondary contributions:

(i) The quantification of the minimal number of laboratory tests re-
quired for the design of an accurate calendar ageing model for a
broad operating window.

(ii) The validation of the proposed ageing model with an extensive
experimental ageing dataset, involving 30 cells tested during more
than three years at static conditions, and 2 additional cells tested at
dynamic operating conditions.

(iii) The sensitivity analysis of the capacity loss with respect to the
different stress-factors, from the point of view of the developed
model. As explained in this paper, the developed covariance
function shares the particularity of quantifying the relevance of
each input variable for predicting the defined output variable. This
could provide some intuitions about e.g. which stress-factors are
the most impactful on the capacity loss, producing useful insights
for the design of energy management strategies. Such analysis was
not performed in the field of Li-ion battery ageing prediction.

The body of the research undertaken is presented through a two-
part series. This paper focusses on the systematic modelling and ex-
perimental verification of cell degradation through calendar ageing.
Conversantly, the second paper [34] addresses the same research
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challenge when the cell is electrically cycled. During many real-world
conditions, the cell will be subject to both calendar and cyclic ageing.
The relative importance of each will be highly dependent on the nature
of the use-case. The integration of both forms of ageing, within the
context of defining a holistic view of lithium-ion degradation modelling
is a challenging research task, discussed further within [35,36] and is
the subject of ongoing research by the authors further extending the
research presented here and in [34].

This paper is structured as follows, Section 2 describes the experi-
mental ageing tests carried out in order to produce the ageing data. The
raw data obtained from the experimental tests are analysed and pre-
processed before the development of the model. Section 3 details the
processing of the raw data and evaluate the relevance of the obtained
data for ageing modelling. Section 4 introduces the general background
of the GP theory, and Section 5 presents the development of the pro-
posed calendar ageing model under the GP framework. In Section 6 and
7, the prediction results of the developed model are presented for the
cells tested at static and dynamic storage conditions, respectively.
Furthermore, both sections aim to illustrate the ability of the GP model
to learn from new data observation. Section 8 discusses the obtained
results, leading to the identification of the limitations of the study and
opening the way to further works. Finally, Section 9 closes the study
depicting the main conclusions.

2. Experimental calendar ageing data

Within the context of the European project titled as Batteries2020,
extensive experimental works were carried out over a time span of more
than three years, in order to analyse the ageing of Li-ion batteries,
covering different possible operations. The capacity retention of a 20
Ah Lithium Nickel-Manganese-Cobalt (NMC 4:4:2) cathode-based
pouch cell with a graphite anode was evaluated. The nominal char-
acteristics of the cell, as well as the operating conditions recommended
by the manufacturer are specified Table 1.

A testing batch of 124 cells, related to the study of the ageing in
cycling operation, is described in the second paper of the series corre-
sponding to the development of a cycle ageing model [34]. In this first
paper, the experimental works associated with the study of the calendar
operation will be presented.

From the ageing point of view, the operation of a Li-ion battery in
storage is conditioned by the level of different stress-factors, mainly
identified in the literature as the storage temperature and State-Of-
Charge (SOC) [16]. A total of 32 cells were tested in temperature-
controlled climatic chambers, at different combinations of such stress-
factors. Periodical characterisation tests were carried out at 25 °C in
order to evaluate the progressive capacity retention of the cells. The
determination of the capacity started 30 min after its surface tem-
perature reached 25 °C degrees, ensuring that the cells has stabilised at

the target temperature. The test started with a constant current – con-
stant voltage (CC-CV) charge: the CC charge was done at 6.667 A (C/3)
until reaching 4.15 V, and the following CV charge was stopped when
achieving current values below 1 A (C/20). After a period of 30 min, the
cell was discharged using a CC discharge current at 6.667 A (C/3) until
the terminal voltage measured 3 V, followed by a pause period of
30 min. The procedure was repeated three times. The capacity value
obtained in the last repetition was considered as the cell capacity.

Depending on the variability of the stress-factors’ profiles in the
whole duration of the tests, two types of ageing experiments were
distinguished, namely i) the ageing tests at static operating conditions
and ii) the ageing tests at dynamic operating conditions.

2.1. Experimental ageing tests at static operating conditions

In the ageing tests performed at static conditions, the value of the
stress-factors remained constant throughout the whole duration of the
tests. A total of 30 cells were tested at 10 different storage conditions,
specified in Table 2. These tests were performed in the laboratories of
ISEA-RWTH, which was a partner of the Batteries2020 European pro-
ject consortium. The cells were characterised approximately every 28
days. In order to ensure the repeatability of the results, 3 cells were
allocated to each testing condition. The capacity curves resulting from
the experimental ageing tests at static conditions are observable in
Fig. A1(a–c), Appendix A. The variability of the capacity curves ob-
tained for each tested storage conditions is indicated in Table A1,
Appendix A. As already reported in the literature [37], a clear effect of
temperature and SOC levels is observable, as higher temperature and
SOC levels are known to induce faster capacity loss.

2.2. Experimental ageing tests at dynamic operating conditions

As the battery stress conditions in real-world applications are not
constant over time, the developed ageing models should be able to
perform accurate predictions at dynamic operating profiles. The ability
of the GP model to learn from dynamic profiles should also be analysed.
Therefore, 2 additional cells were tested in the laboratories of Ikerlan
Technology Research Centre, under variable ageing conditions, namely
the temperature and SOC level were modified between each periodic
characterisation experiment. The cells were characterised approxi-
mately every 28 days. The obtained capacity curves and the corre-
sponding dynamic operating profiles are depicted in Fig. A1(d-e),
Appendix A. It is noteworthy that the lower capacity measurement
observable in Fig. A1(d), between days 1200 and 1300 were induced by
environmental testing errors, due to temperature control issues in the
climatic chambers.

3. Data preprocessing

In the context of data-driven modelling, an important step is to
analyse and preprocess the raw data before any modelling task, in order
to address data inconsistency and noise issues and achieve effective
models [38]. The capacity curves obtained from the experimental
ageing tests described in Section 2 could be decomposed into four
distinct phases, as illustrated in Fig. 1.

The first phase corresponds to an initial capacity rise appearing at

Table 1
Nominal characteristics of the tested cell.

Electrical characteristics

Nominal voltage [V] 3.65
Nominal capacity [Ah] 20

AC impedance (1 kHz) [mOhm] < 3
Specific energy [Wh.kg-1] 174

Energy density [Wh.L-1] 370

Operating conditions

End of charge voltage [V] 4.15
End of discharge voltage [V] 3.0

Recommended charge current [A] 10
Maximum discharge current (continuous) [A] 100

Operating temperature [ °C] −30/+55
Recommended charge temperature [ °C] 0/+40

Table 2
Calendar ageing tests matrix, for the tests at static ageing conditions.

Temperature [ °C] SOC [%]
100 80 65 50 35 20

25 3 3
35 3 3 3 3 3 3
45 3 3
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the Beginning Of Life (BOL). This is clearly observable in cells exposed
to relatively light ageing conditions (e.g. low temperature and SOC
levels, Fig. A1, Appendix A) and matches with the calendar experi-
mental data already published in the literature [40,41]. According to
the literature, the capacity recovery could be induced by a slow, com-
pensating flow of active lithium between the passive and the active part
of the anode, where the passive part represents the geometric excess of
the anode with respect to the cathode [41–43]. However, no clear re-
lationship was found between the initial capacity recovery and any
ageing mechanism. Therefore, it was assumed that the initial capacity
recovery phenomenon is not provoked by an ageing mechanism itself
and does not have any influence on the subsequent ageing trend of the
cells. This assumption should be verified in further work (see
Section 8). Accordingly, the data corresponding to Phase 1 was dis-
carded for the development of the ageing model. During the data pre-
processing stage, the maximal capacity point of each cell was desig-
nated as the BOL point and assigned to the ‘zero storage days’ state.

After the initial capacity increase, a progressive rate-constant de-
crease of the cell capacity is observable, identified in Fig. 1 as Phase 2.
This phase is the main phase corresponding to the regular degradation
of Li-ion batteries, mainly linked to the growth of the SEI, in calendar
operation [44].

After a rate-constant decline of capacity, some cells showed a clear
acceleration of the ageing rate (Phase 3), especially those stored at high
temperature and SOC levels (e.g. black curves, Fig. A1(b), and green
and blue curves, Fig. A1(c), Appendix A). Similar behaviour has been
reported in the literature for calendar ageing [19,37,45]. One of the
cells stored at 35 °C and 100% SOC (black curves, Fig. A1(b),
Appendix A) was reserved to carry out post-mortem analysis, and re-
vealed lithium plating at one electrode edge, even after a short storage
time of 240 days [39]. The early appearance of lithium deposition for
this cell suggests a most advanced propagation of lithium plating for the
cells aged at similar and more significant ageing conditions. Therefore,
the sudden capacity drop was linked to the occurrence of lithium de-
position. The turning point of the sudden capacity drop, often referred
to as “knee point” [10], was diagnosed as the state in which lithium
deposition starts to become irreversible [46]. Lithium plating me-
chanism usually takes places in cycling conditions, and its occurrence in
calendar ageing is not widely reported in the literature. According to
[39], the plating phenomena in these cells could have been provoked by
overcharging during the periodical characterisation tests, or uneven

charge distribution within the float storage.
In some cases, a fourth phase describing a slowdown of the capacity

loss was also observable (black curves since ca. 500 days in Fig. A1(b),
and a green curve since ca. 300 days in Fig. A1(c), Appendix A). The
references to similar observations are scarce in the literature. Petzl et al.
introduced the theory of self-weakening phenomenon of the lithium
plating mechanism, explaining the decrease of the ageing rate by a
counter-effect of the lithium deposition [47]. Their hypothesis was that
pore clogging induced by the lithium plating leads to a loss of the active
material and obstructs the full charge of the cell, making electro-
chemically impossible for the graphite anode to reach low voltages
close to the metallic lithium's voltage. This leads to a continuous re-
duction of the lithium plating after the turning point of the sudden
capacity reduction, until the whole disappearing of the lithium plating
mechanism.

In order to develop ageing models able to predict the capacity fade
corresponding to Phase 3 and 4, a deep research work would be ne-
cessary to extract and validate consistent features which could explain
such occurrences, as suggested in [24]. However, this requires of large
amount of data, and resulted impossible with the available dataset. For
this reason, modelling the Phase 3 and 4 remained out of the scope of
this research work, and the corresponding data was discarded from the
modelling dataset.

Therefore, in the context of this study, the modelling work focussed
on capturing the relations between the storage conditions and the ca-
pacity loss of the cells, during the progressive degradation corre-
sponding to the second phase in Fig. 1.

Besides, some unexpected trends were identified within the ex-
perimental data, for instance, a clear capacity recovery for the cells #26
and #28 at day 480 (respectively green and blue curves, Fig. A1(c),
Appendix A). Such deviations are related to procedural errors during
the capacity tests (e.g. exchange of the testing device, etc.). These noisy
data samples could affect the performances of the model and were
therefore removed from the modelling dataset.

On average, 64.64% of the initial experimental data corresponding
to static ageing conditions was preserved after the preprocessing stage.
The percentage of the remaining data for each cell is indicated in
Table 3. Overall, all the ageing conditions of the initial experimental
ageing matrix were still represented in the processed dataset. However,
a large part of the cells exposed to light ageing conditions were dis-
carded, mainly due to neglecting of the initial capacity recovery phe-
nomenon. One of the cells stored at 35 °C and 35% SOC depicted in-
creasing capacity values until the end of the tests and was therefore
completely removed from the modelling dataset. Regarding to the cells
submitted to dynamic ageing profiles, 75.56% and 52.17% of the
ageing data was maintained for the cells # 31 and #32 respectively.
Fig. 2 illustrates the resultant ageing data obtained after the processing
stage.

4. Gaussian process theory

This section aims to provide a brief overview of Gaussian Process

Fig. 1. The four different phases of the capacity retention curve of the cells. The
first phase is an increase of the capacity, the second is progressive degradation,
the third phase is a sudden capacity drop and the fourth phase is a slowdown of
the capacity loss. Modified from [39].

Table 3
Remaining data percentage ranges for each storage condition, after the data
preprocessing.

Temperature [ °C] SOC [%]

100 100 80 65 50 35 20

25 94.4 –
100%

14.3 –
64.7%

35 66.6 –
87.5

95.2% 85.7 –
90.5%

70.0 –
90.0%

10.0 –
50.0%

10.0% –
15.0%

45 30.0 –
75.0%

52.9 –
88.2%
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models, introducing the main concepts and the predictive equations.
Detailed explanations are available in [48].

The GP is a random process, i.e. a random entity whose realisation is
a function f(x) instead of a single value. Rather than assuming a para-
metric form for the function to fit the data, f(x) is assumed to be a
sample of a Gaussian random process distribution. Since the GP is a
nonparametric model, even when observations have been added, the
model is always able to fit the new upcoming data.

A GP is fully determined by its mean and covariance functions.
Defining the mean function m(x) and the covariance function κ(x, x') of
a real process f(x) as:

=
=

m f
f m f m

x x
x x x x x x
( ) [ ( )]

( , ) [( ( ) ( ))( ( ) ( ))] (1)

the GP can be expressed as

f mx x x x( ) ( ( ), ( , )) (2)

where x and x' are two different input vectors.
Both mean and covariance functions encode the prior assumptions

about the function to be learnt. They also express the expected beha-
viour of the model when the prediction inputs diverge from the inputs
observed during training. The covariance function, also called the
kernel, underpins the information about how relevant one target ob-
servation y of the training dataset is to predict the output y*, on the
basis of the similarity between their respective input values x and x*.

The mean and covariance functions depend on some hyperpara-
meters θ, which must be learnt from the training dataset. From a GP
point of view, the mean and covariance function selection and learning
the corresponding hyperparameters are the main tasks which must be
carried out during the training phase. Hyperparameters are typically
estimated by the maximisation of the marginal likelihood logarithm,
using the gradient of the marginal likelihood with respect to such hy-
perparameters [48]. The marginal likelihood is defined as the integral

of the likelihood times the prior.
Under the GP framework, the prior is gaussian X Kf 0| ( , ), and

the likelihood is a factorised gaussian Iy f f| ( , )n
2 , where f is the

vector of latent function values as = …ff x x( ( , , ))n
T

1 ; X is the matrix of
the training input values; is the gaussian (normal) distribution; K is
the covariance matrix for the (noise free) f values; y is the vector of the
training target values; n

2 is the noise variance and I is the identity
matrix.

The obtained log marginal likelihood is expressed in Eq. (3)

= + +p X K I K I ny y ylog ( | ) 1
2

( ) 1
2

log
2

log 2T
n n
2 1 2

(3)

The GP predictive equations are expressed in Eqs. (4), (5) and (6).

X Xf y f f*| , , * (¯
*, cov( *)) (4)

with

= + +X K X X K X X I Xf m y m¯
* ( *) ( *, )[ ( , ) ] ( ( ))n

2 1 (5)

= +K X X K X X K X X I K X Xfcov( *) ( *, *) ( *, )[ ( , ) ] ( , *)n
2 1 (6)

where f*, f̄*, and cov(f*) are the GP posterior prediction, its corre-
sponding mean and its covariance, respectively; X* is the matrix of test
inputs;m(X) andm(X*) are the vectors of mean functions for the
training and test inputs respectively; K(X, X), K(X*, X*), and K(X, X*) are
the covariance matrices between training inputs, the test inputs, and
training and test inputs, respectively.

5. Development of the calendar ageing model

5.1. Input selection

For an accurate prediction of Li-ion battery ageing at several static
and dynamic operating conditions, it is necessary to consider the effect
of the different stress-factors and their influence on the ageing

Fig. 2. Normalised (with maximum value Qmax) capacity, obtained after the preprocessing phase of static ageing tests at (a) 25 °C, (b) 35 °C and (c) 45 °C. (d)
Normalised capacity obtained after the preprocessing phase of the dynamic ageing tests for the cells #31 and #32.
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mechanisms.
In the literature, a significant percentage of the ageing models based

on Machine Learning methods do not consider the influence of such
stress-factors [23]. Apart from the authors’ recent work [33], only two
publications were found to this effect [26,49]. Both proposed to classify
and count “load patterns” depending on the stress-factors’ values, de-
fining a subset of stress-factor ranges for which the ageing is assumed to
be equivalent. Then, the counted “loads” at different conditions are
applied to the model. However, the definition of such “equivalency
ranges” independently of the data inference could be a difficult and
uncertain task, and could significantly vary from some commercial
battery reference to another. The selection of too broad ranges supposes
a low resolution in the input space and could lead to a poor accuracy of
the model. The selection of too narrow ranges induces an increased
number of inputs, increasing the computational cost and the un-
certainty associated to each range.

The GP framework allows quantifying the similarities of the input
space with respect to the output through data inference, depending on
the kernel properties. Therefore, a better solution could be to introduce
the stress-factors’ values directly as an input, as already highlighted in a
previous publication [33]. As a result, the “equivalency” or “similarity
ranges” of each stress-factor are directly inferred from data and updated
each time new data is available.

Within the context of calendar ageing, in addition to the time-de-
pendence, the main stress-factors involved are assumed to be the cell
temperature and the SOC [37]. Therefore, the model we proposed in
this section considered three inputs:

- Δt: the storage time for which the ageing is predicted.
- T 1: the reciprocal of the temperature corresponding to this storage

time (for alignment to the Arrhenius law).
- SOC: the SOC level corresponding to this storage time.

The output of the model was the capacity loss ΔQ corresponding to a
Δt storage time at T and SOC storage conditions.

5.2. Kernel construction

As explained in Section 4, the kernel κ(x, x') specifies how similar or
correlated the outputs y and y' are expected to be for two inputs x and
x', respectively. The selection of the structural form of the kernel is the
most important challenge in nonparametric regression [48]. However,
it remains a largely subjective process based on trial and error and
designer experience, as there is not any broadly accepted method to
perform this task [50]. For all the GP ageing models presented in the
literature, the selection of the kernel was based on trial and error
methods. In this way, the kernel function presenting the lowest error
with respect to a specific dataset was considered as the most suitable.
Following this method, the suitability of the selected kernel in the
general context of Li-ion battery ageing prediction could hardly be
guaranteed, due to its high correlation to the used dataset. In order to
develop GP models tailored to Li-ion battery ageing application, a
stronger justification of the kernel selection is desirable.

As noted in Section 5.1, the model must be able to handle different
input dimensions. Consequently, compositional kernels’ framework is a
suitable solution to construct a main kernel composed of interpretable
components, each one related to a specific input dimension [50]. In
order to focus on the behaviour of the composed kernels, a zero-mean
function was defined in this work. This is not a significant limitation,
since the mean of the posterior process is not confined to be zero [48].

5.2.1. Selecting individual kernel components
As explained in Section 4, the GP framework is a nonparametric

model, and therefore the learning problem is the problem of finding the
suitable properties of the function (isotropy, anisotropy, smoothness,
etc.), rather than a particular functional form [48].

The range of the SOC input dimension is intrinsically limited be-
tween 0 and 100%. This is defined to be a local modelling problem. In
the context of the development of ageing models oriented to learn from
the data observed after their deployment in real application, the defi-
nition of the similarity using the Euclidean distance seems suitable, as it
could allow the model to cover the whole SOC range after the ob-
servation of a few data points. Therefore, the kernel components cor-
responding to the SOC input space could be represented by isotropic
kernels. Furthermore, the operation window corresponding to the
temperature input is limited by the recommendations of the manu-
facturer (i.e. storage temperatures between −30 °C and 55 °C), speci-
fied in Table 1. Accordingly, isotropic kernel could also be assigned to
such input dimensions. Furthermore, different kind of isotropic kernels
could be selected for these inputs, depending on the smoothness as-
sumption for the process. The Ornstein-Uhlenbeck kernel, detailed in
[48], was deemed too rough to describe the influence of the stress-
factors on ageing. Besides, although the squared-exponential kernel is
the most widely used isotropic kernel, its strong smoothness assumption
was claimed to be unrealistic for modelling many physical processes
(e.g. implication of charging C-rate deviations on underlying capacity
loss) and the Matérn kernel class was recommended instead [48].
Therefore, a 5/2 Matérn kernels were selected to host independently
the input dimensions corresponding to each stress-factor.

The kernel component related to the Δt input dimension requires
several Δt values to be involved in the training data, in order to opti-
mise the associated hyperparameters. In order to limit the training
computation time, only three different values of Δt were processed in
the training data (which are 30, 60 and 90 days). Table 4 illustrates the
structure of the training data. In this context, the use of an isotropic
kernel requires a large amount of different values of Δt for long-term
prediction, implying a large quantity of training data and increased
computation times. Therefore, this kernel component should be aniso-
tropic. In the second phase of the Li-ion cells ageing described in Fig. 1,
the capacity loss seems to be linear with respect to Δt. Therefore, a
linear kernel component was selected for this input dimension.

Although the data vectors "CELL002 – data vector 1" and "CELL002
– data vector 4" in Table 4 have the same inputs values, the target is
different because both correspond to a the capacity loss from a different
starting point, in the capacity curve of the CELL002. The data vectors
with identical input values and different outputs are useful for the de-
termination of the noise hyperparameter of the GP models (see Eq. (7)).

5.2.2. Composing the whole kernel
In the GP framework, the kernel function is also a covariance

function and therefore must be positive semidefinite [48]. Moreover,
positive semidefinite compositional kernels are closed under the addi-
tion and multiplication of basic kernels. The effect of these operations is
well explained in [50], for example: “A sum of kernels can be understood
as a [logical] OR operation. Two points are considered similar if either

Table 4
Example of the training data structure.

Input vector x Target y
Δt [days] T 1 [K 1] SOC [%] ΔQ [%]

CELL02 data vector 1 30 0.0034 80 −0.041
data vector 2 60 −0.136
data vector 3 90 −0.181
data vector 4 30 −0.095
data vector 5 60 −0.140

… … … … … …
CELL09 data vector 1 30 0.0032 100 −0.310

data vector 2 60 −0.572
data vector 3 90 −0.949
data vector 4 30 −0.261
data vector 5 60 −0.638

… … … … … …
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kernel has a high value. Similarly, multiplying kernels is a [logical] AND
operation, since two points are considered similar only if both kernels have
high values”.

Additive kernels assume the added stochastic processes to be in-
dependent. However, the inputs T and SOC interact in the kinetics re-
actions inside the electrode [15], hence additive kernel composition
should be avoided. In order to account for the interactions between the
different input dimensions, the tensor product is suggested within
[48,50] and is used in the composed kernel (Eq. (7)).

=

+ +

+ +

+

+

( )
( )

x x

I

x x( , ) ·

1 5 · · ·exp 5 ·

· 1 5 · · ·exp 5 ·

· ( · )

·

f

x x x x x x

x x x x x x

t

n

2

5
3

5
3

3 3 ·
2

2

T T T

SOC SOC SOC

1 1 1 1
2

2
1 1

2 2 2 2
2

2
2 2

(7)

where x and x′ are different input vectors structured as = x x xx ( , , )1 2 3 ,
with =x T1

1, =x SOC2 , =x t3 ; θT, θSOC, and θΔt are the hyperpara-
meters related to the T, SOC and Δt inputs respectively. The additional
hyperparameters σf2 and σn2 are respectively the signal variance, which
plays the role of scaling the outputs in the dimension of the capacity
loss ΔQ, and the noise variance, which models an additive Gaussian
noise from the data.

6. Learning from static operating conditions

This section aims to illustrate the ability of the developed GP model
to improve its prediction performances while observing an increasing
number of battery calendar operation data. Indeed, as new observations
of storage conditions are presented to the model, the training dataset of
the model involves a more comprehensive view of the influence of the
different combinations of stress-factors on the capacity loss. Therefore,
for each prediction, the covariance function is able to find more similar
examples in the training dataset, in term of storage conditions. The
prediction performances of the model improve throughout the whole
operation window of the Li-ion cells.

In this section, the improvement of the model performances was
evaluated in terms of:

(i) Accuracy of the prediction: as the training dataset increases, a re-
duction of the prediction errors is expected over the whole opera-
tion window. The metrics used to evaluate the prediction error are
detailed in Section 6.1.

(ii) Confidence in the prediction: as the training dataset increases, the
model disposes of more information about the ageing throughout
the whole operation window. In accordance with the covariance
equation Eq. (6), the confidence intervals of the predictions are
expected to reduce, signifying that the model is more confident
about its predictions. The metric used to evaluate the accuracy of
the confidence intervals is detailed in Section 6.1.

6.1. Evaluation metrics

Six different metrics were used to assess the prediction perfor-
mances of the two ageing models. The first one was the root-mean-
square error (RMSE) of the output of the model, which was the capacity
loss ΔQ, defined according to Eq. (8).
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where ŷi is the predicted output, yi is the measured output and NT is the
number of points to be evaluated. The second metric was defined as the
RMSE of the predicted capacity curve:

=
=

RMSE Q Q
N

Q Q( ^ , ) 1 ( ^ )Q i i
T i

N

i i
1

2T

(9)

where Q̂i is the predicted capacity calculated by accumulation of the
output and Qi is the measured capacity. This second metric is useful in
order to evaluate the accumulative error of the model.

The RMSE is useful to assess the prediction performances of a
model, with an emphasis on the high deviations which are strongly
penalised. In order to evaluate the ability of the model to capture the
main trends of the data, the analysis was completed with the im-
plementation of the mean-absolute-error (MAE), defined in Eqs. (10)
and (11) in terms of model output and capacity curve, respectively.
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In the context of this study, the main objective of the model was to
capture the main trends of Li-ion battery ageing in different operating
conditions, rather than achieving a perfect fit of each data point.
Therefore, a 2% MAEQ threshold was defined as acceptable prediction
error.

The final metric was the calibration score, which aimed at quanti-
fying the accuracy of the uncertainty estimates. It is defined as the
percentage of measured results in the test dataset that are within a
predicted credible interval. Within a ± 2σ interval, corresponding to a
95.4% probability for a Gaussian distribution, the calibration score is
given by Eqs. (12) and (13).
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Therefore, CS2σ should be approximately 95.4% if the uncertainty
predictions are accurate. Higher or lower scores indicate under- or over-
confidence, respectively [26].

6.2. Training case studies to illustrate the learning of new operating
conditions

In order to illustrate how the GP model could learn from new ob-
servations and improve prediction performances, 7 distinct training
cases were defined, each one involving a different number of training
data from the ageing dataset presented in Section 3. From the training
case 1 to the training case 7, the number of training data increased: the
data corresponding to new storage conditions was included progres-
sively, revealing one by one the influence of the different levels of the
different stress-factors.

Accordingly, the distinct temperature values were introduced from
case 1 to case 2, followed by the different SOC levels from case 3 to case
7. The training case 1 involved the single 80% SOC condition at the
temperature extrema of the static test matrix (25 °C and 45 °C). The
temperature range was completed in case 2 with the additional value of
35 °C. Since the training case 3, different SOC storage values were in-
troduced, starting by the 50% SOC value at the three temperatures. The
SOC range was then progressively completed alternating the in-
corporation of highest and lowest values, i.e. 100%, 20%, 65% and 35%
SOC respectively in training cases 4, 5, 6, and 7. The characteristics of
each training case are summarised in Table 5, specifying the different
storage conditions involved during the training process, as well as the
corresponding ratio of the amount of training data with respect to the
whole available data.
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6.3. Prediction results

6.3.1. Accuracy improvement
The black curves in Fig. 3 indicate the prediction accuracy of the GP

model proposed in Section 5, trained with the different training cases
defined in Section 6.2, in term of MAEΔQ and MAEQ. The corresponding
RMSE values are indicated in Table B1, Appendix B. For each training
case, the error calculation was performed separately for:

(i) The training cells: the mean value of the prediction errors obtained
for all the cells involved in the training case was calculated
(Fig. 3(a)). Such errors are informative about the ability of the
model to fit the training data.

(ii) The validation cells: the mean value of the prediction errors ob-
tained for all the cells not involved in the training case was cal-
culated (Fig. 3(b)). Such error is relevant to evaluate the

generalisation ability of the model.
(iii) All the cells: the mean value of the prediction errors obtained for

all the cells (Fig. 3(c)). Such error is informative about the global
accuracy of the model.

As expected, the predictions errors of the training cells in Fig. 3(a)
fulfil the 2% MAEQ threshold for all the training cases. Regarding the
validation cells, the threshold of the 2% MAEQ is reached for the
training case 2 (see Fig. 3(b)). For the training case 3, the model
achieved 0.64% MAEQ accuracy and the performances of the model
seem not to improve significantly since such training case.

Fig. 4(a–d) illustrates the capacity predictions of the GP model re-
sulting from the training case 3, for different storage conditions in-
volved in the training data. The average MAEΔQ and MAEQ errors of the
model corresponding to the training case 3 were 0.27% and 0.47%,
respectively, for the training cells. The average CS2 Q and CS2 Q

Table 5
Summary of the different case studies, specifying the different cells involved and the related storage conditions, as well as the ratio of the amount of training data
with respect to the whole available data.

Learning Temperature Learning SOC # Training data / # Total data [%]

CASE 1 T 25 45 24.86
SOC 80

CASE 2 T 25 45 35 42.40
SOC 80

CASE 3 T 25 45 35 25, 35, 45 70.13
SOC 80 50

CASE 4 T 25 45 35 25, 35, 45 35 79.70
SOC 80 50 100

CASE 5 T 25 45 35 25, 35, 45 35 80.44
SOC 80 50 100 20

CASE 6 T 25 45 35 25, 35, 45 35 95.43
SOC 80 50 100 20 65

CASE 7 T 25 45 35 25, 35, 45 35 100
SOC 80 50 100 20 65 35

Fig. 3. Prediction results corresponding to each training case, in term of MAEQ and CS2σ, distinguishing the errors of (a) all the training cells, (b) all the validation
cells and (c) all the cells.
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were respectively 94.54% and 83.03%.
Fig. 4(e–h) aims to underpin the improvement of the generalisation

performances of the GP, while increasing the number of training values
in the input space of the SOC. To this end, the capacity predictions were
represented for the cells stored at 35 °C and 65% SOC, using GP models
obtained from different training cases. The model obtained from the
training case 1 did not have any information neither about the de-
gradation at 35 °C nor about the effect of SOC on the capacity loss, as
the training data involved the single input of 80% SOC. At this stage,
the prediction at lower SOC levels were over-estimated (see Fig. 4.(e)).
The mean error obtained at 35 °C and 65% SOC storage condition was
3.15% MAEQ. In the training case 2, the incorporation of the 35 °C
storage temperature in the training data improved significantly the
prediction, reaching a 1.12% MAEQ, Fig. 4.(f). In the training case 3, the
model started to learn the effect of the SOC by incorporating a 50% SOC
condition in the training data. The mean error of the prediction im-
proved drastically (0.34% MAEQ), as the model could infer from two
different SOC values and gain a numerical intuition about the effect of
the SOC on capacity loss (see Fig. 4(g)). For comparison, the results
obtained with a fully trained GP (training case 7) were also plotted in
Fig. 4.(h): there was not significant improvement in term of error re-
duction. However, the confidence intervals were slightly reduced, in-
dicating a higher confidence of the model to perform predictions in at
65% SOC, since such operating condition was represented in the
training data (more details in Section 6.3.2). At this point, it is note-
worthy that the model corresponding to the training case 7 is only used
in this study for a sake of comparison with the previous cases. In fact,
such a model would be unreliable for deployment, as it involves all the
available data for training and then its performances would not be
further validated under static conditions.

6.3.2. Increase of confidence
As stated by the variance equation Eq. (6), the confidence intervals

of a prediction reduce if the training dataset involves data samples

similar to the predicted input values. Informally, this means that the
model feels more confident to do predictions in case it already observed
similar operating conditions in training data. Therefore, the analysis of
the width of the confidence intervals – or equivalently the standard
deviation value - along a large operating range of each stress-factor is
informative about how confident the model feels to perform predictions
throughout a broad operating window. In this sense, the evolution of
the standard deviation throughout the input space testifies about the
learning process of the model.

Fig. 5 shows the evolution of the standard deviation of the GP model
predictions throughout the whole operation window of the Li-ion cell
under study, for the different training cases. In Fig. 5(a), the standard
deviation of the model obtained from the training case 1 indicates
lowest values around 25 °C and 45 °C, which are the only storage
temperatures experienced at this stage. The observation of the effect of
a 35 °C operation in the training case 2 flattened the curve around such
temperature: at this stage, the obtained model felt relatively confident
to perform predictions within the 20 °C - 50 °C temperature range. It is
noteworthy that the model presented high standard deviation values at
low and negative temperatures, due to the lack of information in such
storage regions. Fig. 5(b)–(e) corresponds to the learning of the influ-
ence of the SOC, showing the evolution of the standard deviation of the
GP model predictions throughout the whole SOC range and at constant
15 °C, 25 °C, 35 °C and 45 °C, respectively. As expected, the lowest
standard deviation stood near 50% and 80% for training case 3, and the
observation of intermediate SOC levels from the training cases 4 to 7
lead to reduced values in the whole range, unless below 20% SOC op-
eration which still was an unknown storage condition. It is noteworthy
that the lowest standard deviation values are observable at 35 °C,
Fig. 5(d), as the SOC input space was explored at this temperature.
Besides, the standard deviation of the predictions at 15 °C, Fig. 5(b),
achieved highest values for the training case 7. This is due to the higher
relevance associated to the temperature in such training case (see
sensitivity analysis in Section 6.3.3), which led to a higher gradient in

Fig. 4. Capacity predictions with the GP model trained at training case 3, for the training cells stored at (a) 25 °C and 80% SOC, (b) 35 °C and 50% SOC, (c) 35 °C and
80% SOC, (d) 45 °C and 50% SOC. Capacity predictions for the cells stored at 35 °C and 65% SOC, with the GP models trained at (e) training case 1, (f) training case 2,
(g) training case 3 and (h) training case 7.
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the evolution of the standard deviation throughout unknown tem-
peratures, e.g. colder temperatures than those involved in the training
dataset.

The reduction of the standard deviation in Fig. 5 testifies about the
increment of the model's confidence to perform prediction throughout a
broad operating window, as input spaces are progressively explored.
Furthermore, the accuracy of the confidence level of the model was
evaluated using the calibration score metric, introduce in Section 6.1.
As previously explained, the CS2σ values should be approximately
95.4% if the uncertainty predictions are accurate. Higher or lower
scores indicate under- or over-confidence of the model, respectively
[26].

In Fig. 3, the evolution of the mean value of the calibration scores
were plotted for each training case of the GP model, in term of capacity
loss and accumulated capacity. Since the training case 3, the overall
CS2 Q values converge into approximately 86.55% (Fig. 3(c)). This
traduces a slightly over-confident behaviour of the model in term of the
accumulated capacity. However, regarding the calibration scores values
corresponding to the output of the model, the overall CS2 Q values
converge into approximately 96.19%.

6.3.3. Sensitivity of the capacity loss to the stress-factors
For many covariance functions, the observation of the hyperpara-

meters allows one to interpret how the GP model understand the data.
For isotropic kernels, the hyperparameters play the role of character-
istic length-scale. Such covariance functions implement automatic re-
levance determination, since the inverse of the length-scale determines
how relevant an input is: if the length-scale has a very large value, the
covariance will become almost independent of that input, effectively
removing it from the inference [8]. Therefore, the sensitivity of the
capacity loss to the different stress-factors could be analysed by ob-
serving the inverse of their respective hyperparameters. Fig. 6 displays,
for each training case, the inverse of the hyperparameters corre-
sponding to the temperature and SOC, relatively normalised to each
other.

In the training cases 1 and 2, only the temperature involved dif-
ferent storage values in the training dataset, as the single value of 80%
was available for the SOC input. In absence of data to guide the opti-
misation of the corresponding hyperparameters, a high initial hy-
perparameter value was imposed to the SOC input, in order to hinder its
optimisation and then remove its effect from inference. In this context,
the unique relevant stress-factor for the GP model was the temperature.

From the training case 3 to 7, different SOC levels were progres-
sively included in the training dataset, and the corresponding hy-
perparameter was ‘released’ for optimisation. In Fig. 6, it could be ob-
served that the relative relevance of the SOC input with respect to the
capacity loss increased for the training case 3; however, the tempera-
ture variations was still considered slightly more impactful on the ca-
pacity loss than SOC variations. The training case 4 included the data
corresponding to 100% SOC storage condition, which present a rela-
tively high acceleration of the capacity loss: this increased the relative
weight of the SOC with respect to the temperature. The following cases
5, 6 and 7 included the data corresponding to the lower SOC levels,

Fig. 5. Evolution of the standard deviations of the GP model predictions
throughout the whole operation window of the Li-ion cell under study, from
training case 1 to 7. (a) Evolution throughout the temperature space, at con-
stant 80% SOC (b) Evolution throughout the SOC space, at constant 15 °C, (c)
Evolution throughout the SOC space, at constant 25 °C, (d) Evolution
throughout the SOC space, at constant 35 °C and (e) Evolution throughout the
SOC space, at constant 45 °C.

Fig. 6. Evolution of the relative relevance of the different stress-factors, from
the training case 1 to 7.
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highlighting that the variation of SOC at its low values has a reduced
effect on capacity loss (observable in Fig. 2(b)). This resulted in the
mitigation of the relative relevance of the SOC input, compared to the
temperature. At this point, it is important to highlight that although
such comparison could clarify how the GP model understand the data, it
does not imply causality.

7. Learning from dynamic operating conditions

The operating conditions of Li-ion batteries are barely constant in
real applications. This implies that the ageing models developed in the
basis of ageing tests realised at constant operating conditions must be
validated at dynamic operating conditions. Furthermore, as this study
focusses on the development of ageing models oriented to learn from
ageing data collected from real-world operation, the analysis of the
possibility to infer about the correlations among the different stress-
factors and the capacity loss directly from dynamic operation profile is
necessary.

For this purpose, the model developed in Section 5 was employed to
perform ageing predictions for cells #31 and #32, the operating pro-
files of which were presented in Fig. 7(b). In Section 6, the GP model
reached satisfying prediction results for the training case 3 achieving an
overall error of 0.53% MAEQ, and the performances of the model did
not improve significantly since such training case. In this section, such
training case was therefore selected as initial state of the model, in
order to evaluate the prediction performances of the model at dynamic
operating conditions. The obtained predictions are presented in black
line (mean prediction) and grey area (confidence intervals) in Fig. 7(a),

for the cells #31 and #32.
The errors of the predictions for the model obtained from training

case 3 were 0.72% and 0.42% in terms of MAEΔQ, and 1.78% and 0.62%
in terms of MAEQ, for the cells #31 and #32 respectively. At approxi-
mately 368 days in storage, the whole range of the temperature profile
was experienced for the cells #31 and #32, Fig. 7(b). For the cell #32,
different combinations of the temperature and SOC level were also
observed, some of them reproduced on the remaining storage profiles
(e.g. the combinations between ca. 0 and 368 days were reproduced
between ca. 368 and 641 days). Such point was then deemed to be a
suitable updating point for the model, to be able to evaluate the
learning ability of the model at dynamic operating conditions. There-
fore, the operating conditions as well as the corresponding capacity loss
values observed between 0 and 368 days were included in the training
dataset in order to obtain an updated GP model.

The predictions performed with the updated model were re-
presented in blue in Fig. 7(a), for cell #32. The initial model predicted
larger confidence intervals at cold temperatures (between 15 °C and
25 °C), as the coldest temperature experienced in the training case 3
was 25 °C. The inclusion of such values in the training set increased the
confidence of the model to perform predictions in this range. This is
traduced in Fig. 7(a) by reduced confidence intervals at cold tempera-
tures, compared with the initial predictions.

When updating the model with the different temperature and SOC
combinations observed in the dynamic profiles, the confidence of the
model for predicting throughout the whole window of the storage
conditions accordingly improved. This is observable in Fig. 8, which
reflects the evolution of the standard deviation of the model's

Fig. 7. (a) Normalised capacity (with initial value Qmax) of the cells #31 and #32, after the preprocessing of the raw data obtained from the dynamic ageing tests
(dotted grey lines) and the corresponding ageing predictions for the initial model (training case 3, black line and grey area) and the updated model (blue line and
area). (b) Storage temperature and SOC dynamic profiles, applied during the dynamic ageing tests for the cells #31 and #32.
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predictions, for the model corresponding to the training case 3 and the
model updated with the data obtained from dynamic storage profiles
until 368 days. Regarding the range of the storage temperatures,
Fig. 8(a), it is remarkable that the model gained confidence at coldest
temperatures, which is reflected by a reduction of the standard devia-
tion in such region. This is also observable in Fig. 8(b), which indicates
the standard deviations of the predictions at constant 15 °C and

throughout the whole SOC range: the models’ predictions are clearly
more confident at such temperatures, with minimal values around 35%
and 100% SOC levels, which are the values at which the cell was stored
when experiencing cold temperatures (Fig. 7(b), between 240 – 309
storage days). Fig. 8(c), (d) and (e) depicts the evolution of the standard
deviation respectively at 25 °C, 35 °C and 45 °C. It could be observed
that the model gained confidence notably between the range of 0% -
40% SOC storage conditions.

8. Discussion, limitation of the study and further works

The model developed in Section 5 demonstrated suitable perfor-
mances to fit the data, independently from the number of training data
and involved stress-factors. This is observable in Fig. 3(a), where both
MAEΔQ and MAEQ curves of the training cells showed a constant level
under the defined 2% threshold, from the training case 1 to 7.

Regarding the amount of experimental ageing tests necessary from
the laboratory for the development of the initial ageing model, the
training case 3 seems to present an adequate trade-off between the
performances and the development cost of the model, insofar as the cell
is used at the operating conditions recommended by the manufacturer
(Table 1). In fact, the model achieved an overall error of 0.53% MAEQ,
which is below the defined 2% MAEQ threshold, and the performances
of the model seem not to improve significantly since such training case
(see Fig. 3(b) and (c)).

The reduction of the standard deviation in Figs. 5 and 8 testified
about the increment of the model's confidence to perform prediction
throughout a broad window of the storage conditions, as the tem-
perature and SOC input spaces are progressively explored. However,
the developed GP model turned out to be slightly over-confident, ac-
cording to the calibration scores curves represented in Fig. 3. As pre-
viously explained, the CS2σ values should be approximately 95.4% if the
uncertainty predictions are accurate: the obtained CS2 Q and CS2 Q
values converged approximately into 86.55% and 96.19% respectively
(Fig. 3(c)). It could be observed that the confidence intervals of the
model output are relatively close to the target value of 95.4%. The
difference between the CS2 Q and CS2 yQ suggests that the over-
confidence of the model is induced by the error accumulation of the
iterative prediction process. Therefore, further investigations would be
required in order to study the propagation of model's uncertainty
throughout the long-term ageing prediction [51].

In Section 7, the developed model was validated at dynamic oper-
ating conditions, and the ability of the model to learn directly from
dynamic operating conditions was illustrated with 2 cells. This study
should be extended involving more cells stored at dynamic conditions.
Additionally, the validation procedure should be completed by ver-
ifying the performance of the models at realistic storage conditions,
involving daily temperature fluctuations [52]. The author's plan to
address this important topic in further research, based on extensive
experimental ageing data obtained for different real operating sce-
narios.

Before the training of the developed model, the data was submitted
to a preprocessing stage (Section 3). It was assumed that the initial
capacity rise (Phase 1) identified in the capacity curve of several cells is
not provoked by any ageing mechanism and does not have any influ-
ence on the further ageing trend of the cells. These assumptions should
be verified in further work. Furthermore, the preprocessing method
presented in Section 3 requires a slightest knowledge of the ageing

Fig. 8. Evolution of the standard deviations of the GP model predictions
throughout the whole operation window of the Li-ion cell under study, from the
model trained at case 3 and the model updated at dynamic operating condi-
tions. (a) Evolution throughout the temperature space, at constant 80% SOC (b)
evolution throughout the SOC space, at constant 15 °C, (c) evolution
throughout the SOC space, at constant 25 °C, (d) evolution throughout the SOC
space, at constant 35 °C and (e) evolution throughout the SOC space, at constant
45 °C.
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trajectory, in order to distinguish the different phases in the capacity
curves. Within the context of model deployment, the capacity data are
obtained one by one according to the progressive ageing of the cells,
and it could be difficult to classify each point immediately within the
different phases. However, it is noteworthy that the model updating
procedure should not necessarily be performed immediately after the
obtention of each new data point, as the ageing of a Li-ion cell is a
relatively slow procedure (especially on an early degradation stage). In
fact, a “mini-batch” training approach consisting on waiting until the
observation of several data points could be a better strategy: this could
allow to assess the relevance of the upcoming data points, minimise
data acquisition deviation, and classify correctly the corresponding
capacity curve phases, which is necessary to the appropriate modelling
of the target degradation mechanisms.

Moreover, cycle-induced calendar ageing is another important
source of capacity degradation. If the cells are severely degraded due to
cycling, they may suffer more capacity degradation even under mod-
erate storage conditions. In order to undertake such occurrence, the
calendar ageing model should be paired with a cycle ageing model. The
second paper of the series provides a detailed description of a coun-
terpart ageing model, focussed on cycle battery operation [34]. The
integration of both ageing models, within the context of defining a
holistic view of lithium-ion degradation modelling is a challenging re-
search task, and is the subject of ongoing research by the authors fur-
ther extending the research presented here and in [34].

Finally, notice that the time and memory complexity of the GP is
n( )3 and n( )2 , respectively [23]. Therefore, the required computa-

tions rapidly become prohibitive within the context of increasing
training datasets. Fortunately, a large number of approximation
methods were proposed to overcome this problem [48,53], and the
implementation of such solutions may be required once the training
dataset becomes critically large. However, such issue should be miti-
gated regarding calendar ageing models, as i) the number of stress-
factors is relatively low, leading to a reduced number of hyperpara-
meters, and ii) the degradation in calendar operation is typically slower
compared to a cycling use-case, and then larger time periods are needed
to observe degradation, which reduces the number of training data
extracted from real operation. This implies a limited growth of the
training data and subsequently a restricted increase of computation
time for the periodical update of the calendar ageing models. Never-
theless, this issue could be more critical for cycle ageing models, as
commented in the Part B [34]. Lastly, it is noteworthy that the issue of
the computational complexity of ageing models must be contrasted
with the fact that Li-ion battery ageing is a relatively slow process,
which does not require a rapid computation for the periodical update of
the models.

9. Conclusions

In this paper, a calendar capacity loss model is developed based on
the Gaussian Process framework. The model presents 0.31% MAEΔQ and
0.53% MAEQ average prediction errors for 30 cells operating between
25 °C-45 °C and 20–100% SOC storage conditions, using only 18 cells

tested at 6 storage conditions for training.
This study illustrates the ability of GP-based ageing models to learn

from the operating conditions progressively observed, increasing both
accuracy and confidence of the model. The learning abilities of the GP
models are validated at static and dynamic operating conditions. This
makes the GP framework a suitable candidate to develop Li-ion ageing
models able to evolve and improve their performances even after de-
ployment in real application. Within this context, the suitability of
isotropic kernel components to host the features corresponding to
temperature and SOC storage conditions is also explored and validated.
The sensitivity analysis shows that the developed model tends to assign
a higher influence of the temperature variations on the capacity loss,
compared to the SOC.

The model developed in this first paper is oriented to perform
ageing predictions for applications implying large storage period of the
Li-ion battery systems. Following an analogous method, the second
paper of the series provides a detailed description of a counterpart
ageing model, focussed on cycle battery operation.
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Appendix A. Raw data obtained from experimental calendar ageing tests, and variability of the resulting capacity curves

Fig. A1, Table A1

Fig. A1. Normalised (with initial value Q0) capacity, obtained from the experimental static ageing tests at (a) 25 °C, (b) 35 °C and (c) 45 °C. (d) Normalised capacity,
and (f) corresponding temperature and SOC storage conditions, obtained from the experimental dynamic ageing tests for CELL31. (e) Normalised capacity, and (g)
corresponding temperature and SOC storage conditions, obtained from the experimental dynamic ageing tests for CELL32.

Table A1
Mean variance of the capacity curves, for the three cells tested at identical storage conditions (in [%²]).

Temperature [ °C] SOC [%]
100 80 65 50 35 20

25 0.09 0.67
35 0.05 0.42 0.02 0.03 0.04 0.03
45 3.51 0.95
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Appendix B. Results obtained with the models resulting from the different training cases

Table B1
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