*

eman ta zabal zazu
LTF-FCT
N Zientzia eta Teknologia Fakultatea
() !

) . 'o.b Facultad de Ciencia y Tecnologia
Universidad  Euskal Herriko °¢
del Pais Vasco  Unibertsitatea %

Groups of Piecewise Linear
Homeomorphisms

Final Degree Dissertation
Degree in Mathematics

Jon Merladet Urigiien

Supervisor:
Gustavo A. Fernandez Alcober

Leioa, September 6, 2020






Contents

List of notation

Introduction

1

Free groups and presentations

1.1
1.2
1.3
14
1.5
1.6

Free groups . . . . . . ..o
Construction of F(X), a free group with basis X . . . .. ..
The universal property of free groups . . . . . . . ... .. ..
Presentations . . . . .. ..o oo
Presentations of ordered products of subgroups . . . . . . ..
Group laws and free subgroups . . . . . . ... ... ...

Some groups of piecewise-linear homeomorphisms of R

2.1
2.2
2.3

A presentation of PLF(R) . . . . ... ... ... ......
G(p), an infinite finitely presented subgroup of PLF(R) . . .
Properties of PLF(R) and commutators . . . . . .. ... ..

Laws and free subgroups

3.1
3.2

Group laws and actions . . . . . . ... ... ... ...
Free subgroups of rank greater than 1 . . . . ... ... ...

Solved exercises
A.1 Exercises of Chapter 1 . . . . . .. ... ... ... ......
A.2 Exercises of Chapter 4 . . . . . . . ... ... ... ......

Bibliografy

iii

vii

ix

33
33
39

45
45
49

51









vi




List of notation

Gy

g, h]

G/
(G, G]

5d(g1, .

HG

7g2d)

Pointwise stabilizer of Y
Action of g on x

Commutator g~ 'h~1gh
Commutator subgroup of G generated by [G, G|
Set of all commutators of G

Commutator of higher degree, do(g9) = g, da(g1,---

[0a—1(g1,- -+, goa—1), 5d_1(92d71+1, ey God)]
Conjugate h~1gh
Normal closure in G of the subgroup H

Semidirect product of H and N
Cyclic group of order n

Image of ¢ by the map f
Set of positive natural numbers

Set of real numbers
Set of real positive numbers

vii

792d)



viii List of notation




Introduction

The aim of this dissertation is to study free groups, group laws and the
relation between these two algebraic concepts.

Free groups can be thought of as the parents of all groups, as all groups
are isomorphic to a quotient of a free group. From them comes the concept
of presentation of a group. Free groups are the groups that satisfy no trivial
relation. Their elements are symbols and concatenations of symbols.

Group laws are intuitively relations that are satisfied by all elements of
a group. We see that non-abelian free groups, as their name suggests, do
not satisfy group laws. Most groups studied at the graduate level satisfy
group laws (finite groups, abelian groups, soluble groups), but we see in this
dissertation two examples of groups that are not free but do not satisfy laws:
PLF(R), the group of orientation-preserving homeomorphisms of the real
line R which are linear in a finite partition of R and, an interesting subgroup
of PLF(R), denoted by G(p), which is closely related to Thompson’s group
F.

We know that if a group satisfies a group law, it is also satisfied by its
subgroups. Therefore, if a group G contains a non-abelian free subgroup,
then G satisfies no laws. We are interested in studying the relation between
not satisfying group laws and containing a non-abelian free subgroup. In
finitely generated linear groups, this relation is an equivalence, but in gen-
eral, it is not so. We will see that PLF(R) and G(p) are groups that do not
satisfy group laws but do not contain non-abelian free subgroups.

In addition, we studied the presentations of PLF(R) and G(p), obtaining
a finite presentation of the latter. Along the way, we discovered a pattern
that repeated when finding the presentations of PLF(R) and G(p), so we
defined a new type of group that generalized this pattern, and found a single
method to find their presentations.

For our presentation of the groups PLF(R) and G(p), we mainly followed
an article by Matthew G. Brin and Craig C. Squier in the journal Inventiones
Mathematicae [2], but we had to add numerous explanations to make the
proofs suitable to a graduate but not expert in the area. Furthermore, we
also used [4] to find a more general way of finding groups that satisfy no
laws.

X






Chapter 1

Free groups and
presentations

In this work we are going to frequently discuss about free groups and presen-
tations. We will define these concepts and prove some interesting properties,
which come mainly from [3] and [5].

1.1 Free groups

Let G be a group and let X be a subset of G. We will denote by (X) the
smallest subgroup of G that contains X, which we call the subgroup of G
generated by X. It can be easily proven that it exists and its elements can
be obtained as follows:

(X) ={af" x| 2, € X, ¢, €{1,-1}, ne N}

When (X) = G, all elements of G can be written as z{' --- x5 for some
x; € X. In a special type of groups these expressions are unique, so two
“different” expressions (we will discuss this more formally later) define two
different elements of G. Some immediate consequences are that these groups
are not abelian, and all of its elements have infinite order (the group G is
torsion-free).

These special groups are called free groups, but before defining them,
we need to emphasize what “different” expressions means. For example,
T1T2T3T5 L and z1 29 seem different but they define the same element in any
group when replacing x1, zo and x3 with elements of the group. We will also
formalize what we mean by expressions.

Let X be an arbitrary set. A finite sequence w = x1 - - - x,, of elements
of X is called a word in X with length n, denoted by |w| = n. We denote
by € the empty word. If x € X, we define 2! as a formal expression (notice
that X need not be a group) and X! = {z7! | z € X}.
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2 1.2. Construction of F(X), a free group with basis X

From now on we call a word in X UX ! a group word in X. Let G be a
group and let w = z{} - - - 2" be a group word in aset X = {x1,..., 2} with
i1,...,ip €{1,...,m} and ¢; = £1 for j = 1,...,n, then we can replace the
symbols x; with some elements g; € G and denote by w(gi, g2, ...,gm) the
resulting element of G. We will call this process evaluating the word w at
(915 ---,9m). By convention, evaluating the empty word € in a group yields
the identity.

To talk about different words we will introduce reduced words.

Definition 1.1.1. A group word w = y; - - -y, in a set X with y; € XUX !
is said to be reduced if y; # yi__:l fori=1,...,n— 1.

So in principle, evaluating two different reduced words in a group might
yield two different elements. But this is not always the case. Let us see
some easy examples.

I Let C), = (g) be the cyclic group of order n and let w = zzz - - - xx = 2"
be a word in the set {z} and e the empty word. Evaluating both
reduced words at elements of C), yields the identity in C,,.

IT Let G be an abelian group and let a,b be two arbitrary different ele-
ments of G. Then let X = {x,y} be a set of symbols and let w; = zy,
and wy = yx be two different reduced words in X. It is clear that
wi(a,b) = ab = ba = wa(a,b).

As it has been shown, in these groups, for any generating set S, different
reduced words in S may correspond to the same element in G. Or, equiva-
lently, non-empty reduced words in S may correspond to the trivial element
in G (as seen in example I). So these groups are not what we call free groups.

Definition 1.1.2. Free Group Let GG be a group. We say that G is a
free group if there exists a generating set S C G such that any non-empty
reduced word in S defines a non-trivial element of G. In this case we say
that S freely generates G or that S is a basis of G.

We will see in Exercise 1 in Appendix A that all bases of a free group
have the same cardinality, which we call the rank of the free group.

Free groups do exist, for example the infinite cyclic group C' is free of
rank 1 and the only one that is also abelian. In the next section, we see how
to construct free groups with arbitrary rank.

1.2 Construction of F(X), a free group with basis
X

Let X be an arbitrary set, denote by F(X) the set of all reduced group
words in X. We will define an operation in this set and see that we obtain
a group that is free on X.



Chapter 1. Free groups and presentations 3

For w1 = y1y2 -+ - yn and we = 2129 - - 2, two reduced words in F(X),
we can define the product as follows:

Wiw2 = Y1Y2 - YnZ122 " Zm-

But this concatenation of words need not be in F'(X), as it may not be
reduced (since we may have y,, = 2, 1).

This can be seemingly easily solved “reducing” the word. Let us discuss
this reduction process in detail.

Let w = uyy~'v be a word in X, where u, v are words and y € X UX 1,
then reduce it as follows:

uyyilv — uL.

We call this transformation an elementary reduction. Now for any non-
reduced word, the reduction process consists of applying elementary reduc-
tions until the word is reduced. We also consider the trivial reduction of a
word w as w — w.

But we do not know yet if there could be different reductions of the
same word applying the reduction process in different order. To construct a
well defined product in F'(X') we must check that all possible reductions end
up with the same reduced word. For this end we will prove the following
proposition.

Proposition 1.2.1. Let w be a group word in X. Then any two reductions
of w:

W= wy — - —w,

W= w, == w;
sqfch that w/n and w;/l are reduced result in the same reduced form, i.e.,

"
w,, = W,,.

Before proving this result, we will prove two lemmas regarding elemen-
tary reductions.

Lemma 1.2.2. For any two elementary reductions w A, wy and w LN wo
of a group word w in X there exist elementary reductions wy — wg and
wo — Wy, So that the following diagram commutes.
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Proof. Let A1 and Ay be two elementary reductions of the word w that
correspond to deleting some pairs y1y; L Y2Usy Lin w respectively. Let us
consider two different cases. If the pairs y1y; L and Y2Ysy L are disjoint, then
we can apply one reduction and then the other and the order does not
matter. So we have the following diagram.

w

/AI/ K

w1 w2
X /
wo

In the other case, the pairs overlap as follows: w = ---y1y; Lyp - and
Y 1 = y5. Then the lemma clearly holds since both elementary reductions
(A1 and \2) end up with the same word. O

Lemma 1.2.3. Let w be a group word in X and w iy w; for i = 1,2 be
two elementary reductions. If wy is reduced, then we = wy.

Proof. Apply the previous lemma and obtain the diagram above. Since w; is
reduced, we have that w; = wy (as it can no longer be further reduced). Also,
we have that we = wy, since otherwise by applying the non-trivial reductions

w 22wy — wo we would delete two pairs, deducing that |wg| = |w| — 4 but
this is impossible since wg = w; and |w;| = |w|—2 (we exclude the case that
A1 is the trivial reduction, otherwise the lemma would be also trivial). [

Now we have the tools to prove Proposition 1.2.1.

Proof. Assume that n < m, then applying Lemma 1.2.2 repeatedly we ob-
tain the following diagram:
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Notice that at the level of w), (at the bottom left), we have w,, reduced and
both w;l and w} are elementary reductions of w;_l, then by Lemma 1.2.3 we
deduce that w} = w;L and therefore, w} is reduced. Repeating this process
on the similar elementary reductions to the right we arrive at the conclusion
that

w,=wl =w = =uw=w, (1.1)
so w, is reduced.

Up to this point we have that w; = w;; and since w;: is reduced, we have in
the bottom-right end of the diagram that

" 7 "
wn:w,Hl:---:w

(1.2)

m

’ 1"
so w,, = w,, as we wanted. O

For w a group word in X, denote by w the unique reduced form of w.

So now we can finally give a well defined product to the set of reduced
words F(X).

For w1 = y1y2 -+ Yn, wo = 2122 - 2y two reduced words in F(X), we
define the product as the reduction of their concatenation, i.e., wy - wo =
WiwW2 = Y1 Yn21 " Zm-

It is easily seen that F'(X) is a group, with the product previously defined
and the empty word as the identity element (the inverse of w = y; - - -y, is
naturally w=! =gy 1. yfl).

It is also immediate that F'(X) is a free group with basis X. (X is the
generating set, and non-empty reduced words in X are naturally not the
identity element, i.e., the empty word).

In the previous section, we defined words in a arbitrary set of symbols X,
which we may evaluate at some elements in a group G to obtain the corre-
sponding element. To make the notation easier to follow, we will sometimes
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suppose that X is a subset of G and use the same notation for the words
and for the elements. But it is important to make the distinction between
words made of symbols and elements in a group.

1.3 The universal property of free groups

In vector spaces, knowing a basis we could determine all linear maps to
another vector space by assigning the images of the vectors in the basis.
Something similar can be done with free groups.

Theorem 1.3.1. Let G be a group with a generating set X C G. Then
G is free on X if and only if the following universal property holds: every
map ¢ : X — H with H an arbitrary group can be extended to a unique
homomorphism ¢* : G — H, so that the diagram below commutes.

*

X —— G
X

N

with i denoting the inclusion map from the subset X to the set G.

H

Proof. Let X freely generate GG, then any element g in G can be uniquely
determined by a reduced group word in X, i.e.,

— pfl €
g_:L‘l ...:L'n”’

for elements z; € X. So define ¢*(g) as follows:

©"(9) = o(@1) " p(22)? - - - p(T0) ™ (1.3)

Since X freely generates G, this map is well defined. We can also define ¢*
for non-reduced group words in X in the same way since the image will not
change after reducing the word.

Finally ¢* is a homomorphism. Indeed, let wi = y1-- -y, and we =
z1 - 2zp be group words in X. Then

e (wiwz) = ©" (Y1 ynz1- - 2n) = @(y1) - 0 (yn) - p(21) -+ p(2n) =
@* (w1)p* (w2).
Clearly ¢* makes the diagram commutative. It is also clear that any
homomorphism that makes the diagram commutative must satisfy (1.3), so

©* is unique and G satisfies the required universal property.

Suppose now that G satisfies the universal property with X a generating
subset of G. Then let H = F'(X) be the free group on X (in the group H the
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elements of X are treated as symbols) and define ¢: X — H by ¢(z) = =.
Then by the universal property, ¢ extends to ¢*: G --+ H.

Finally, let us see that any non-empty reduced group word w € (X)
defines a non-trivial element in G, i.e., G is free on X. Indeed, ¢* sends
w in G to ¢p*(w) = w in F(X) and since w is reduced and non-empty,
©*(w) = w # € (recall that e represents the empty word in F(X)). Then
w € (X) is necessarily non-trivial, since otherwise its image under ¢* would
be the empty word e. ]

Corollary 1.3.2. Let G be a free group on X. Then the map X C F(X) —
G (that sends a word x € X to the corresponding element z in G) extends
to an isomorphism F(X) — G.

A free group on a set with more than one element is clearly not abelian,
but we can define a similar group that is: a free abelian group.

Definition 1.3.3. Let G be a group, we say that G is a free abelian group
if it is abelian, and for some generating set X, the elements of G can be
uniquely expressed as

g =a'xs? - xpn for z; € X and some unique a; € Z.

There is also a similar universal property of free abelian groups, with
the difference of only mapping to abelian groups.

In F(X) it is trivially easy to operate, just concatenating words and
reducing. It would be convenient to be able to do something similar in an
arbitrary group. Unfortunately, there are extra difficulties since it is difficult
deciding whether two reduced words in a non-free group are different (this
is called the word problem). Let us see what we can do in the next section.

1.4 Presentations

Let G be an arbitrary group. We want to operate with the elements of G in
a similar way as in free groups. First take a generating set S of G and the
following set of symbols:

X={z,|seS}

We know that if G is free on S, then by Corollary 1.3.2, FI(X) ~ G. Let
us try something similar without assuming that G is free.

Let ¢ : X — G be the map defined by ¢(x5) = s. Then by the universal
property of free groups we have
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with ¢* defined as follows:

o F(X) — G

— €162 | € * = g%1g2...
w=2lrd - x — o (w) = s8-8

S
This homomorphism is surjective (since ¢*(F (X)) = (S) = G), but it
is injective if and only if G is free on S. But by the First Isomorphism
Theorem, we obtain:

for gl -+ - 25" a reduced group word in X.
n

F(X
(X) L@
Ker ¢*
So all groups are isomorphic to a quotient of a free group. So now we can

operate with the generators of G treating them as symbols and reducing
them when the corresponding word in F'(X) is in Ker ¢*.

If a subset R C Ker ¢* generates Ker ¢* as a normal subgroup of F(X)
(i.e. Kerp* = ( R)FX) ) then it is termed as a set of defining relations of G
relative to the generating set .S. The words in Ker ¢* are called relators of
G and the pair ( X | R ) is termed as a presentation of G, which determines
G up to isomorphism.

Exercise 1. Find a presentation of the group of permutations of {1,2,3}
Ss = {17 (12)7 (13)7 (23)7 (123)a (132)}

o T

~ =
Take S = {(123), (12)} as the generating set, X = {z,y} the set of sym-
bols and F(X) the free group on X. Define the following homomorphism.

p: F(X) — Sz=/{o,71)
T — o
Yy — T

lor =071, the

It is clear that 22, y? are elements of Ker ¢, and since 7~
corresponding word y~!'zyz is also in the kernel. But how do we know that
this is enough for a presentation? Denote B = (z3, y?, y~'zyz)FX)

have the following diagram to the left.

and we
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Since F(X)/Kerp =~ Sz, we know
F(X) = {z,y) that |F(X)/Kerp| = 6, let us see that
|F'(X)/B| = 6 to prove the equality.
Indeed, let us see that |F'(X)/B| < 6
Ker ¢ (since the other inequality is obvious by the
diagram to the left). In F(X)/B we can ap-
ply the reduction

yT = yryy = v ly.

So any element in F'(X)/B can be reduced to
a normal form z"y™ for n and m integers by
applying this reduction.
Then since T,y have order at most 3 and 2 respectively, we conclude that
there are at most 6 elements in F'(X)/B.
Thus a presentation of Sz is { z,y | 3, ¥?,y 'zyr ). Sometimes, instead
of writing the defining relations as words, we will write equalities, so we
rewrite the presentation of Sg as (z,y |23 =1, y? =1,y lay =271 ).

1

As we have insinuated, a group has more than one possible presentation.
Here we present four transformations of a presentation of a group that define
the same group.

Theorem 1.4.1. Let G be a group with a generating set S. Let (X|R), with
X ={x; |s € S} and R a set of defining relations with normal closure N, be
a presentation of G given by the homomorphism ¢: F(X) — G that sends
Ts to s.

Then the presentations resulting after the following transformations, called
Tietze transformations, are also presentations of G.

(T1) Add words in (RYFX)\ R to the set of defining relations R.

(T2) If there exists R' C R such that (RYFX) = (RYF(X) | then remove the
relations of R\ R’ from R.

(T3) If w is a word in F(X), then adjoin a new symbol x to the set X and
add the relation x = w to R.

(T4) If there is relation in R which can be expressed as vy = w withxg € X
and w is a word in the remaining symbols of X, then delete xy from X,
remove the relation xy = w from R, and in the remaining relations,
replace xy with w.

Proof. (T1) and (T2) are straightforward since the normal subgroup N =
(RYF(X) remains the same after the transformations so the isomorphism
F(X)/N ~ G holds after both transformations.
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For (T3), denote the free group F(X U {z}) by F’. Define the homo-
morphism ¢*: F/ — G that extends ¢ to F’ by assigning the image of x
as p(w). Denote by N’ the normal closure generated by RU {zw~!}. Tt is
clear that N’ is contained in the kernel of ©*, so ¢* induces an epimorphism
from F(X')/N’ to G. It remains to be seen that it is also injective.

Let vN’ be an element in the kernel of the induced epimorphism. We
will see that vN' = N’.

Since * N’ = wN’, replace z for w in v to deduce that vN’ = v* N’ for
some word v* in X. Then, since v* is a word in X, the image of v* N’ under
the induced epimorphism, is equal to ¢(v*), which is at the same time equal
to the identity of G by hypothesis. Hence, v* is contained in kerp = N C N’
and vN' = v* N’ = N’ as wanted.

For (T4), notice that we can transform the resulting presentation with
transformations (71), (T2) and (T3) to revert the changes after transfor-
mation (74). Indeed, apply (73) to add the generator xy and the relation
g = w. Then apply (T1) and (T2) repeatedly to replace the modified
relations with the originals (add the original relations with (7'7), which are
deduced from the modified ones and the relation zy = w, and then delete
the modified ones with (72), using the original relations and the relation
zy = w to deduce the modified relations). Since these transformations do
not change the group defined by a presentation, neither does transformation

(T4)- O

Recall that by the universal property of free groups, assigning the images
of the generating set of a free group determines a homomorphism, and it is
in fact a characterisation of free groups. As not all groups are free, we can
not always do the same. We can not assign the images arbitrarily, as they
have to satisfy the same relations as the generating set.

Theorem 1.4.2. Von Dyck’s theorem.

Let G be a group with a presentation (X|R). If ¢: X =Y is a map, where
Y is a subset of a group H and the elements of p(X) satisfy the relations of
R replacing the symbols of X with their images, then there exists a unique
homomorphism from G to H that extends the map .

Proof. By the universal property of free groups, we can extend ¢ to a homo-
morphism ¢*: F(X) — H. By hypothesis, R C ker(¢*), so N := (R)FX) is
also contained in ker(¢*) since we know that the kernel of a homomorphism

is normal. For this reason, ¢ induces a well-defined homomorphism from
F(X)/N to H:

F(X)
*, 2 H
w=2x 2N o oF(w) = (1) o)™
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Finally, since G ~ F(X)/N, we obtain a homomorphism from G to H that
extends ¢ as wanted, and it is clearly unique since the homomorphism is
determined by the images of the generators of G. O

Using Von Dyck’s theorem can ease finding the presentation of a group.

A possible presentation of a group consists of taking all elements as the
generators, and taking the complete multiplication table of the group as the
relations. We will prove that this is indeed a presentation in Exercise 4
in Appendix A. For finite groups, this presentation has a finite number of
generators and relations, in this case, we say that finite groups are finitely
presented.

Definition 1.4.3. Let G be a group. We say that G is finitely presented if
there exists a presentation (X|R) with X and R finite sets.

1.5 Presentations of ordered products of subgroups

Let G be a group and suppose that G is the semidirect product of some
subgroups H and N, with N a normal subgroup, denoted by G = H x N.
Then every element g in G can be written uniquely as g = hn with h €
H,n € N. In this section, we will work with a generalization of this property,
from two subgroups to an infinite number of subgroups, maintaining the
requirement of uniqueness.

Let G be a group and let {H;}ic;r be a family of subgroups. If I is
an ordered set, we say that {H;}ier is an ordered family of subgroups. For
elements h;; € H;; with i; € [ for j = 1,...,n, n € N, we say that the
product

hi, - hy (1.4)

n

is an ordered product if 11 < --- < 1,. Otherwise, we say that it is badly
ordered.

Definition 1.5.1. In the conditions above, the set of all ordered products,
which we denote by [[,c; H;, is said to be the ordered product of {H;}icr.

The ordered product of {H;};c; need not be a subgroup of G, but we
are interested when [[,.; H; is the whole group. In this case, all elements
can be expressed as an ordered product, but not necessarily uniquely. For
that we will introduce an independent ordered family.

Definition 1.5.2. Let G be a group and let {H;}ier be an ordered family
of subgroups. We say that the ordered family is independent if two ordered
products h;, ---h;, and hgl e h;n, involving the same set of indexes, are

equal if and only if each factor is.
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Any two ordered products can be expressed as products involving the
same set of indexes by adjoining 1’s. Thus, if the ordered family is inde-
pendent in the conditions above, suppressing 1’s, any element of G has a
unique representation as an ordered product. Furthermore, as [[,c; H; = G,
any badly ordered product corresponds to an element in G. Obtaining its
correspondent representation as an ordered product is called reordering the
badly ordered product. Notice that for the ordered product of some sub-
groups to be closed under the operation of the group, it needs some relations
to reorder any badly ordered product.

Now in the next theorem we present a method to construct a presentation
of an ordered product under some conditions, in particular, we need some
relations to be able to reorder any badly ordered product. These relations
will be of the following form:

For ¢ < jin I and z; € X;,z; € Xj,

TjT; = T;Tp, (1.5)

with 7 < k, zp € X}, and

:cjxl-_l = :ci_la:l, (1.6)

with 7 < [, x; € X].

These relations allow us to reorder any badly ordered product of two
components. Let us verify that we can also reorder arbitrary badly ordered
products by induction on its length.

Let w = uz;v be a badly ordered product, with v and v arbitrary prod-
ucts and x; € X;, with 4 the minimal index in the set of indexes of the
product w and x; the first apparition of a generator in X; (it can be simi-
larly proved if the first occurrence is the inverse of a generator). Then using
the relations mentioned above repeatedly we get w = x;u’v, with v/ a word
with the same length as u, then by the induction hypothesis, we reorder the
subword u/v to obtain its ordered representation w’. Finally, noticing that
the set of indexes of w’ are greater than or equal to i (notice that with the
relations above, we do not obtain smaller indexes than the ones involved),
we deduce that w = z;w’, with z;w’ ordered as we wanted.

Theorem 1.5.3. Let G be a group. Suppose that G is the ordered product of
an independent ordered family of subgroups {H;}ic; of G with I an ordered
set. If (X;|R;) is a presentation of H; for alli in I, and S is a set consisting
of the two types of relations (1.5) and (1.6), then (Ujc1 X;|Uier R;US) is a
presentation of G.

Proof. Denote the free group F(U;crX;) by F' and the normal closure of
UierR; US by N. Let ¢: U;er X; — G be the correspondence from symbols
to generators of G (we will sometimes write p(z;) = z; to simplify the
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notation). By Von Dyck’s theorem, the map

*: FIN — G
wN +— w,

where w denotes a word in F', is a homomorphism, which is surjective since
©(UjerXi) generates G by hypothesis. Let us see that it is also injective by
proving that ker ¢* = {N}.

Let wN be an element in ker ¢* for w a word in F' (so with some abuse
of notation we have that ¢*(wN) = w = 1), then using the relations in S
we reorder w to obtain some word w* = w; wj, - - - w;, where w;; 1s a word
in X, and i1 < --- < iy,. Thus, wN = w*N and

n

" (wN) = " (W'N) =w* = wyy -+ w;, = 1.
Since w* is an ordered product in G and {H, };c is independent, then w;, =
-+ =wj, = 1. Then, since (X;,|R;;) is a presentation of H;, forj =1,...,n,
we have that w;; € (Rij>F(XiJ') C N. Hence, w* = w;,w;, ---w;, € N and
wN = w*N = N as wanted. O

There are many variations of this theorem, for example, we could replace
the condition G = [[;c; H; with G = (X; | i € I), and then deduce with
relations (1.5) and (1.6) that G = [],c; H;. In some special cases, it is
possible to discard the second type of relations. Rewriting the relations as
conjugations, we have mfl = x, provided ¢ < j, for the first type of relations.
In the second type, we need to conjugate by inverse of x;, but from the first
type we deduce: z; = x,% . Thus, if the following condition holds for all
1 € I, the second type of relations are deduced from the first:

For all z; € X;, let Y = Ujer ;> X, then the map

Mgt Y — Y (1.7)
xj — Ty

is bijective.
When this condition holds, we know how to conjugate with the inverses:

-1

i —1
In addition, if z; has finite order for a particular x; in Xj;, its inverse is a
positive power of itself and since conjugating by a positive power is repeated

conjugation, we do not need the second type of relations with :1:;1.

As we have enunciated it, the conditions of the theorem are very restric-
tive and are not adequate for most ordered products, even for a semidirect
products H X N (since if H = (X) and N = (Y), then for x € X,y € Y,
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the conjugate y* is in (Y') but it need not be an element of the set Y of
generators of V), but these conditions are simpler and enough for this work.
In Exercise 3 of Appendix A, we consider other conditions, which can be
applied to all semidirect products, and still allow us to give a presentation
of most ordered products of independent families of subgroups.

1.6 Group laws and free subgroups

A group law is intuitively a relation that is satisfied by all elements of a
group. Evidently, a non-abelian free group will satisfy no laws.

Given a reduced group word w in variables x1,...,x; for £ € N and a
group G, we call the map

w:Gx-xG — G (1.8)
(gla"'vgk> = w(glv"'agk)

the word map w of G.

Suppose w is a relation of G, then as we know, there exist some g1, ..., gx
such that w(g,...,gx) = 1g. But, replacing some g; with another element
of G may yield a non identity element of G. For example, if G is the cyclic
group of order 10, then we know it has an element of order 5, say g5, thus,
w = xgs is a relation of GG, but evidently, the generator of order 10, g19, does
not satisfy g{’o = 1, hence the word map w is not the constant map that
sends all tuples to the identity. In contrast, we know that all elements of
the cyclic group of order 10 satisfy the relation x'% = 1, hence we say that

w = z'0 is a group law of G.

Definition 1.6.1. Let GG be a group and let w be a non-trivial reduced word
in some variables 1, ...,z for k € N. If the word map w (1.8) maps to the
identity for all elements of G x --- x G, we say that w is a group law of G
in k variables.

Examples:
I A group G is abelian if and only if it satisfies the law [z,y] = 1.

IT A group G is soluble of derived length d or less if and only if it satisfies
the law 04(z1, ..., 29a) = 1.

III A free group F of rank k satisfies no laws in k or less variables.

Indeed, if w is a non-trivial reduced word in r variables, with r < k,
then evaluating w at r different generators of the basis of F' yields a
non-trivial reduced word, and thus, a non identity element of F'.
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It is evident that if a group G satisfies some law w, then it is also satisfied
by all its subgroups and quotients. Thus, it is obvious that if a group G has
a subgroup that does not satisfy some law w, then neither does G. With
this property in mind, let us see that a free group F' of rank greater than
one satisfies no laws (free groups of rank 1 are cyclic, and thus abelian, so
they satisfy the law w = [z, y]).

Since F' has rank greater than 1, it contains a free subgroup of rank 2
(the set of words in two generators of the basis of F'). Then, by Exercise
2 in Appendix A, F' has a free subgroup of countable rank, and thus, F
contains free subgroups of all finite ranks. Therefore, ' does not satisfy any
law by Example III above, since for any particular law in a finite number &
of variables, we can find a subgroup of F' of rank k that does not satisfy the
law w.

This could make us think that if G satisfies no laws, it is because it has
a free subgroup of rank greater than 1. We will disprove it by finding two
interesting groups in Chapter 2 (we will call them PLF(R) and G(p)), and
we will see that they are counterexamples in Chapter 3.






Chapter 2

PLF(R)

A continuous function f: R — R is called piecewise-linear if there is a
discrete subset B of R such that f’ exists and is constant in R\ B. The set
of points where f’ fails to exist is denoted by B(f).

We denote by PL(R) the set of all piecewise-linear functions that are
orientation-preserving (i.e. f’ > 0 wherever f’ exists). This set PL(R) is a
group under composition.

Indeed, it easily checked that the composition of two piecewise-linear
functions is also piecewise-linear (by applying the chain rule of derivation,
the derivative of the composition is constant wherever it exists and the set of
points where it does not is discrete). On the other hand, since the functions
are orientation-preserving, the inverses exist and are also piecewise-linear
with positive inverse derivative wherever they exist.

Then PLF(R) denotes the subset of PL(R) consisting of all f € PL(R)
such that B(f) is finite. So if f € PLF(R), then f is of the form at + b
with @ € RT and b € R in every closed interval in between two consecutive
points of B(f).

ot

ot
=¥
(==

-10 -5

PLF(R) is naturally a subgroup of PL(R): it is closed under composition
since we can deduce by the chain rule of derivation that |B(fg)| < |B(f)|+
|B(g)|, and the inverse of a piecewise-linear function has the same number
of singularities as the original one.

17
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2.1 A presentation of PLF(R)

Our first objective is to find a presentation of PLF(R). For this goal, we
will use the procedure presented in [2].

Take f in PLF(R). Due to B(f) being finite, we can find the slope of f
at the left of the left-most element in B(f) (which we call the slope of f near
—0), so we compose f with a multiplication so that the result has slope 1
near —oo, then with a translation we obtain a map that is the identity near
—o0. Finally, we will see in Theorem 2.1.2 how we can eliminate elements
in B(f) until we obtain the identity after composing f with a series of maps
that we will define shortly. Since PLF'(R) is a group, the composition of all
the maps that we used to reduce f determines f~!'. Thus, we will see that
with the following maps, we can generate PLF(R).

Definition 2.1.1.

(a) For p € RT, we define the map M,: R — R by tM, = pt. We call it
multiplication by p.

(b) For a € R, we define T,,: R — R by tT, =t + a. We call it translation
by a.

(c) For b € R*, we define X3 ,: R — R by the formula

t x < b,
tXb,q—{ b+q(t—0b) z>b.

Notice that M;, To and My are the identity of PLF(R). Let us see
that this family of elements generates PLF(R).

Theorem 2.1.2. Any f € PLF(R) can be written uniquely as

f=M,TaXp, 0 Xvsgo - - Xp (2.1)

n,qn

where p and each q; are in RY, with q; different from 1, and a and each b;
m R with by <by < ---<b, and n > 0.

Proof. Let f be an element in PLF(R). Call p the slope of f near —ooc.
Then the product M, L f has slope 1 near —oo, so for ¢ near —oo we have

1y
tM, " f=t+a

for some a in R.
Thus T;lMglf is equal to the identity near —oco. Let g = TglMglf.
If g is the identity in all R, then

g=T, "M f=1p = [ = M,T, (2.2)
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with p and a uniquely determined by f.
In the other case that the resulting function g is not the identity in all
R, for the left-most by € B(g) we have

tg=t fort <b. (2.3)

Now notice that if | B(g)| = n and ¢ is the slope at (b1+), which exists since
B(g) is finite, then since X, 4, is the identity to the left of by, we can reduce
B(g) by composing g with Xl;,lql' Let g1 = Xl;lqlg. Notice that we have
removed b; from B(g;) and again b; and ¢; are uniquely determined by f.
Now repeat this process until |B(g,)| = 0, i.e., g, = 1lg. With the same
argument as in equation (2.2), we deduce that

9= Xoy.00 Xtngs - X (2.4)

n,dn

with b; and ¢; uniquely obtained through the iterative process discussed
above. And finally, since g =T, 1Mp_ 1 f. we obtain the result of the theorem:

f= MPT@X517Q1X527Q2 i 'Xbmqn'

O]

Notice that with this theorem, we have proved that PLF(R) is an or-
dered product of subgroups. Denote by Hjs and Hp the multiplication and
translation subgroups respectively, then for b € R, let

Hy,={X,, € PLF(R) |pe R} (2.5)

Then, PLF(R) = [[,c; H; with I = {M,T}UR the set of indexes, extending
the natural order of R defining M < T < b for all b € R. Now, to apply
Theorem 1.5.3, we need relations for each subgroup H;, and a set S of
relations to reorder any badly ordered product of generators.

Lemma 2.1.3. Let p,q € RT and let a,b € R. Then
(a) MpMg = Mpq,
(b) TaTy = Tarp,
(¢) TaMp = MpTop,
(d) XpqTo =TaXptayq,
(e) XoqMp=MpXppq,
(f) XoqXbp = Xopg
(9) XbgXap = XapXatpb—a),q, Provided a <b.

Proof. These relations are easy to prove, let us see how we prove (g). For
visualization, this is how X} , X, , looks like.
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XbqXap

a+p(b—a)
a

Then since X pXqip(h—a),q has the same graphic as X, X, (notice that
after the first change of slope of X, X, pp—a),q at ¢ = a, the next one is
when tX,, = a+ p(b—a), i.e., t = b), we have the equality X ,X,, =
XG,PXa—i-p(b—a,),q- O]

Relations (a) correspond to the whole multiplication table of the sub-
group Hy, (b) to Hr, (f) to Hy for each b € R, and the rest correspond
to the set S. Beware that the relations with inverses are not explicitly
shown since Mp_1 = Mp_1,Ta_1 =1T_, and XI;; = X} p-1, which follow from
relations (a), (b) and (f) respectively.

Theorem 2.1.4. Let X be the set of generators from (2.1.1) and let R be
the set of relations from (2.1.3). Then (X | R) is a presentation of PLF(R).

Proof. Apply Theorem 1.5.3, since PLF'(R) = [[,c; H; with I = {M,T}UR,
and R contains all the necessary relations required in the theorem.
O

2.2 (G(p), an infinite finitely presented subgroup of
PLF(R)

Now we are going to discuss some subgroups of PLF'(R), including one that
contrary to PLF(R), is finitely presented, i.e., with a presentation with a
finite number of generators and relators. PLF(R) is indeed not finitely
generated since it would imply that it is countable (we can easily list the set
of words generated by a finite set, ordering by length and by lexicographical
order the elements of same length), which is not as PLF(R) contains the
set of translations by a real number, which is in bijection with R, so it is
not countable.

Similar arguments as used in Theorem 2.1.2 and Theorem 2.1.4 can be
used to present some subgroups of PLF(R).

Let PLF{(R) be the subset of PLF(R) that consists of the maps that
are the identity near —oo. We can similarly define PLF, (R) formed by the
functions of PLF(R) that are the identity to the left of a. Both subsets
are subgroups and it can be proven, as in Theorem 2.1.2, that PLF (R) =
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[Licr Hi and PLF,(R) =[]

presentations.

)Hi. By Theorem 1.5.3, here are their

i€[a,00

Corollary 2.2.1. PLF(R) can be presented with all the generators shown
in Definition 2.1.1 (c) and all the relations shown in Lemma 2.1.3 (f) and
(g). Similarly presented is its subgroup PLF,(R) by only including the gen-
erators with b > o and relators with b,a > «.

Let K be a multiplicative group of R, we define PLF®(R) consisting
of all f € PLF(R) such that tf’ € K for all t ¢ B(f) (basically, wherever
the slope exists, it must be in K). It is a subgroup of PLF(R) and it can
be proven, as in Theorem 2.1.2, that PLFX(R) = [[,.; H} where H} =
H; N PLFX(R). By Theorem 1.5.3, here is its presentation.

Corollary 2.2.2. PLFK(R) can be presented with all generators shown in
Definition 2.1.1 and all relations in Lemma 2.1.8 with p,q € K.

Finally, the subgroup we are interested in. Let K be defined as above,
and A an additive subgroup of R such that for p € K and a € A, pa € A.
Then let PLFE(R) be the set consisting of all f € PLFX(R) such that
B(f) € A. It is a subgroup of PLF(R) and it can be proven, as in Theorem
2.1.2, that PLF{(R) = [[;c5 Hf, where Hf = H;NPLFX(R). By Theorem
1.5.3, here is its presentation.

Corollary 2.2.3. PLFf(R) can be presented with all the generators shown
in Definition 2.1.1 such that p,q € K and b € A and all relations shown in
Lemma 2.1.83 with p,q € K and a,b € A.

Notice that in relations (2.1.3 deg), the definition of A and K shows
how PLFE(R) is closed under composition.

Our goal now is to find a finitely presented subgroup of the form PLF;(R)N
PLFE(R). So, for p a positive integer greater than 1, let

K={p'|ieZ}
A={5€QlaieZ}
Define G(p) = PLFy(R) N PLFE(R). Let us see that G(p) is finitely-

presented.
We first obtain the following presentation: with generators

Xy with 0 <be€ A, and i € Z, (2.6)

D
and relations

XbmiXb’pj = Xb’pi+j with0<be A, and i,j € Z, (2.7)

Xb’ijami = XajpiXberi(b,a)’pj with 0 < b€ A, and i,j € Z, (28)
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provided a < b.

To see that this is indeed a presentation of G(p), repeat the same ar-
gument as in Theorem 2.1.2 to prove that G(p) = [[;cp,00)nn H, where
HY = H; N PLFX(R). Then, with relations (2.7) and (2.8), apply Theorem
1.5.3.

Our goal now is to reduce this presentation to obtain a finite one using

the tools developed in Chapter 1.
Theorem 2.2.4. G(p) is finitely presented.

Proof. Begin by deducing relations X i = Xg,p from relations (2.7), so we
obtain that for b € [0,00)NA, Hy, is cyclic generated by X3 ,. Then, to apply
Theorem 1.5.3, we need the two type of relations involving these generators
mentioned in the theorem:

XppXap = XapXatpb—a)p (2.9)
and
XopXop = X p Xoip1(b—a)p- (2.10)
But, notice that we can discard the second type of relations. Indeed, as
mentioned in Chapter 1, the map myx, , defined as in (1.7):
mxa’p : Y — Y
Xa,
Xop — Xy " = Xotpo—a)p
. .. . . . -1
is bijective. Its inverse is defined by my, . (Xap) = Xagp-1(@—a) p-

So simplifying the notation denoting X, , by z,, we get the following
presentation. The generators are

Zq with a € A and 0 < a, (2.11)
and relations are
TpTo = TaTaip(h—a) With a,b € A, provided 0 < a < b. (2.12)

Now, we will reduce this presentation with a,b in A to N with Tietze
transformations (7'7), (72) and (74). For that end, notice that relations
(2.12) with a = 0 are equivalent to xalajbxo = Tp, so for k € N we obtain
To ka:bx’g = z,rp. So for a € N we deduce by reversing the previous equation
that

_ k. =k
To/pk = T(TaZg - (2.13)

Since A = {Z% € Q| a,i € Z}, it is clear that we can apply (T4) to reduce
the generators to NU{0} and change the relations accordingly. But first, we
will rewrite relations (2.12) and then modify them. Since we can suppose
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that a and b in relations (2.12) have the same denominator (we can equalize
the denominators if necessary), we rewrite them as

Ib/kaCa/pk = xa/pkxa/karp(b/pkfa/pk’)' (214)

with a, b,k € NU {0}, provided a/p* < b/pF.

Now we use equation (2.13) to put the previous relations in terms of x,
with @ € NU {0}. So we use relations (2.13) to modify relations (2.14): we
use (T1) to add the relations below (which are deduced from (2.14) and
(2.13)), then we use (72) to remove the original ones (which are deduced
from the relations below and equation (2.13)):

k

k — k —k
ToTpLaly = ToLaLa4p(b—a)lo - (215)

with a,b, k € NU {0}, provided a/p* < b/pF.

Now, it is clear that with relations (2.13) and relations (2.12) with a,b €
N, we can deduce all relations (2.15). Hence, we use transformation (72) to
delete the other relations. Finally, we can use transformation (74 ) to delete
the generators z, /p with a,k € N, a/ P ¢ N, and also delete the respective
relations (2.13). In the end we obtain the presentation: with generators

xq with a € NU {0} (2.16)
and relations
TpTq = TaTaip(h—a) With a,b € N, provided a < b. (2.17)

Now we must take the big final step, going from an infinitely presented
presentation to a finite one.
Denote z = 27 'xg. Then using relations (2.17) we can deduce that

2 apz = Thi (p—1)- (2.18)

Thus, G(p) can be generated by Y = {z,21,...,2p—1}. First we use trans-
formation (T3) to add z and z = xl_laco to the set of generators and relations
respectively, then we will use (T4) to remove the generator xg, remove rela-
tion z = a:l_lacg < xg = z12 and change the remaining relations involving xg
accordingly, which after some manipulation, can be replaced with relations
Fayak = Tyy(p—1)k for k € N. The
presentation we are left with has generators

2oy = Tpy(p—1), Which we extend to 2z~

2,1, L9, .. (2.19)

and relations
2Rk = Tyt (p—1yk With b > 1,k € N, (2.20)

TpTa = TaTqip(h—a) With a,b € N\ {0}, provided a < b. (2.21)
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Now, we use transformation (74) to delete all generators x, with a >
p — 1 and the respective relations (2.20). Then we have to change the
relations involving the deleted generators with relations (2.20). Begin by
rewriting relations (2.21) as ¥pTa = TaTp4(p—1)(v—a), then for 1 < a < b we
have

—(b—a) b—a

TpTa = LaTpt(p—1)(b—a) = TpTg = TqZ Tpz <~

& (zb*“mgl)xb = xb(zb*“x(;l)

b—a,.—1

So 2%z 1 commutes with z;, and we write 20=%x ;! < xy,.

Now we use Euclid’s Algorithm for a,b > 1 and p—1. Soa=r+q(p—
1), b =1+ ¢ (p — 1), making sure that r,7" € {1,...,p — 1} (if r = 0 we
can subtract 1 to g). Then x, = 279,29 and x;, = 27 2,.27 | substituting
in 2071 & 13, we obtain . ¢ 27 TP D g1~ -0

Thus, after the above transformations of relations (2.21), we obtain the
presentation with generators

Y ={z,z1,...,2p-1}, (2.22)
and relations
xy < 2P 1™ provided no> 0 or a < b, (2.23)

with n € Nand a,b € {1,...,p—1}.
To simplify the notation, denote Ay 4, = 2bma Pl S0 @y < Apan-
Let us see that finitely many relations of (2.23) suffice. We have that

_ 2 1 — 2 p— 1 —n -
Ab,a,n+p — zb a+pn+p x; lz (n+p) _ P Zb GH_pnﬂ?alZ n,—p

— Apanz

— o xb_lAbya’nxbz_p

= (zp2xb_lz_p)(szbﬂ’nz_l)(szz_p)
= Ab,b,pAb,a,n+1Ab_’;717

using that Ay, ., and x; commute in the third line.

It is clear that if 2, commutes with Ay, Apant1, Ab_,lil separately, then
it also commutes with the product. Thus with relations (2.23) restricted to
n < p we can obtain all (2.23), applying transformation (72), we obtain a
finite presentation as we wanted. O

2.3 Properties of PLF(R) and commutators

In this section we are going to show that PLF(R) is a totally ordered group,
i.e., we can define a binary relation < so that PLF(R) is a totally ordered
set and the order is maintained by the operation of the group. Then we will
prove some properties of the commutators of PLF(R).
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Definition 2.3.1. Totally ordered set.

Let A be a set with a binary relation <. We say that the tuple (4, <) is
a totally ordered set if the relation < is transitive (if a < b and b < ¢ for
a,b,c € A, then a < ¢ ), anti-symmetric (if a < b and b < a for a,b € A,
then a = b) and connex (Va,b € G, a <bor b<a).

Definition 2.3.2. Totally ordered group.
Let G be a group that is a totally ordered set with a binary relation denoted
by <. We say that G is a totally ordered group if:

Ve,y,z € G, v <y = zz <yz and zz < zy. (2.24)

Denote by P = {z € G | x > 1}, with 1 denoting the identity element
of the group, the set of “positive” elements, sometimes called the positive
cone. If x > 1, then 2 > x > 1, and in general 2" > 1. Thus, a totally
ordered group is torsion free.

Lemma 2.3.3. Let G be a totally ordered group and P its positive cone,
then

1) PPCP,

2) PnpP~t={1},

3) g7'Pg C P,Vg € G,
4) PuPl=aG.

Proof. Let us see 1), the rest are similarly proven using the definition of
totally ordered group.

Let z,y be two elements in P. Then using the definition and equation
(2.24), we obtain xy > y > 1. Which, by the transitivity of the order
relation, means that zy > 1 and thus, xy € P. O

An easy example of a totally ordered group is R with addition, with
P ={z € R | x > 0} the positive cone.

We can use these four properties of P from the previous lemma to prove
the converse.

Lemma 2.3.4. If G is a group with a subset P satisfying 1)—4), then we can
define an order relation making G a totally ordered group and P its positive
cone.

Proof. Notice that initially, we only have a group G and a set P, so the first
step should be to define the order relation <.

If we want P to be the “positive” elements, then it is natural to define p
> 1V p e P. Now, for any two elements x and y in GG, we must define the
relation between the two.
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Notice that if we are to define an order relation < satisfying equation
(2.24), then for z,y € G, the order relation should satisfy the following:

r<y<s=l=ar <yl =yl cP (2.25)

So we define z < y when yz~! € P.
Now, we must check if GG is a totally ordered set with the defined relation.

(i)

(iii)

Transitivity.

If 2 < y < z, then, as we have defined it in equation (2.25), yz~!

and zy~! are in P, so zz7! = z2(y"ly)z7! = (zy H(yxt) € P (by
hypothesis, we have that PP C P). Thus zz~! € P and = < z as
wanted.

Anti-symmetric.

If a < b and b < a then, as we have defined it, ba~!, ab~!' € P. Notice
that ba=! = (ab~!)~! and therefore ba=! € PN P~! = {1}, thus we
deduce that a = b.

Connex.

Let a,b € G, we want either a < b or b < a. That translates to either
abl e Porba!eP. Equivalently, able Porab ! = (bafl)*l c
P~!. This is obvious since ab~! € PU P! = G.

Finally, the binary relation < defined by equation (2.25) is maintained
under the product: if x <y, then for any z € G, we have that xz < yz since
(y2)(xz)~! = yo=t € P and 22 < zy since (2y)(z2)"! = 2(yz~ 1)zt e P
because of property &) that P satisfies by hypothesis. O

To prove that PLF(R) is a totally ordered group, we will need some
lemmas.

If f € PLF(R) and a € B(f), then by (a+)f’ we denote the slope to the
right of a (notice that this slope can be determined since B(f) is discrete).

Lemma 2.3.5. Let G be a subgroup of PLF(R) generated by some g1, ..., gn.
Then:

(i)
(i)

(iii)

The function “slope at —o0” is a homomorphism from G to R.

2

If all g; have slope 1 near —oo, the function “translation near —oo” is
a homomorphism from G to R.

If all g; are the identity near —oo, let a be the largest real number such
that for each t < a and each i, tg; = t. Then the function g — (a+)g’
is @ homomorphism from G to R.
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Proof. (i) Let f,g € PLF(R). Near —oo, they behave just like some linear
functions tf; = at +b, tg; = ct +d for a,c € R* and b,d € R. The slope of
the composition is clearly a - ¢, i.e., the product of the slopes.

(ii) The proof is analogous to (i), using in this case that all g; are trans-
lations near —oo.

(iii) Let f,g € (91,92,---,9n), then tf =t and tg =t for all t < a. At
(a+) they can still be the identity, and with the notation f; = (a+)f’ and
g1 = (a+)g’, we have that tf = f1t + b, and tg = g1t + ¢ for some b,c € R
in the interval a <t < h for some h greater than a. Then it is obvious that
the slope of the composition fg in this interval is the product of the slopes,
so as we wanted, we have: (a+)(fg) = (a+)f" - (a+)g'. O

Theorem 2.3.6. PLF(R) is a totally ordered group.

Proof. Define a subset P of PLF(R) consisting of all g € PLF(R) such that
one of the following holds:

(i) g has slope > 1 near —oo,
(ii) g is a translation by a positive number near —oo,

(iii) g is the identity near —oo and the leftmost slope different from 1 is
greater than 1.

Then P satisfies properties 1)-4) and the result will follow from Lemma
2.3.4. As it only requires a little checking, we will only check property 3).

Let p be an element in P and let g be an arbitrary element of PLF(R).
Then let us see that ¢~ 'pg is in P, distinguishing the three possible be-
haviours of p near —oo.

(i) If p has slope > 1 near —oo, the by Lemma 2.3.5, we know that the
slope of g7 !pg is the same as the slope of p, and thus, ¢~ 'pg is in P.

(ii) If p is a translation by a positive number a near —oo, so (t)p =t + a,
and (t)g = bt + c for t near —oo, with b € RT and ¢ € R, then

t— t—
(t)g 'pg = ( bc)pQZ( bc—i-a)g:t—c—i—ab—i-c:t—l—ab.

Thus, ¢~ 'pg is a translation by ab, which is positive since both a and
b are. Hence, g~ !pg is in P.

(iii) If p is the identity to the left of some point b € R, so (t)p =t for t < b,
and the leftmost slope different from 1 is greater than 1, denoted by
a, then g~ 'pg will also be the identity near —oo to the left of (b)g. Let
us see the slope of g~ !pg after (b)g.
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Suppose that for b <t < ¢, for some ¢ € R, we have that (t)g = dt +e
and (t)p = at + h. Then for (b)g <t < (c)g, we have that (t)g~! =
(t —e)/d. Then, for (b)g <t < (c)g, we have that

_ t—e t—e
(g ™'pg = (—)pg = (a—— + h)g = alt —¢) + hd +e,

so g~ 'pg has positive slope after (b)g, and thus, g~ !pg is in P as we
wanted.

O]

With this order relation defined by P in the theorem, we have ordered
the maps in PLF(R) in the order (i, ii, iii) displayed in the theorem, so if
g,h € PLF(R) and g has greater slope at —oco than h, then g > h in terms
of the total ordered defined. Something similar happens for the remaining
conditions of P. Intuitively, we are comparing the elements of PLF(R) by
their behaviour near —oco. As a consequence, PLF(R) is torsion-free.

Finally, we discuss some properties of the commutators of PLF(R) and
characterize PLF(R)’, the commutator subgroup generated by all commu-
tators. For f € PLF(R), we define the support of f as the set of points that
are not fixed by f, with notation supp f = {t € R | tf # t}.

Lemma 2.3.7. Let f,g € PLF(R), then:
(i) The commutator [f,g] has slope 1 near —oo and +oc.

(ii) If f and g have slope 1 near —oo and 400, then supp|(f, g] has compact
closure.

(iii) If f and g share a common fixed point ty, then [f,g] is the identity in
an open interval containing tg.

(iv) If f and g have slope 1 near —oo and +o0, then the closure of supp|f, g]
is a compact subset of supp f U suppg.

7

Proof. (i) Since we have seen in Lemma 2.3.5 (i) that “slope at — c0” is a
homomorphism (the analogous at + oo is similar), the result is clear applying
this homomorphism to the commutator [f,g] = f~'g~' fg.

(ii) By Lemma 2.3.5 (i) and (ii), we know that [f, g] has slope 1 and is
the null translation near —oo and +oo, thus [f, g] is the identity near —oo
and +o00. This clearly means that supp[f, g is bounded which implies that
the closure is bounded, therefore the closure is closed and bounded, i.e.,
compact in R.

(iii) Observe that in a sufficiently small neighbourhood of ¢y, f and g
are linear maps at both sides of ¢y (albeit maybe not the same, i.e., ¢y could
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be in B(f) or B(g), but it will not change the result). So we are going to
prove the result for linear functions.

Notice in the figure below that from the point of view of the common
fixed point tg, the functions behave like linear maps of the type th = at.

Since linear maps of this type commute, it seems natural to think that
f and g commute. Let us prove it rigorously.

If f and g are the functions on the left-hand side of the picture above
and ty is the fixed point of f and g, then the functions on the right-hand
side are (t +to)f — to, (t +to)g — to (adding tp “moves” the graphics to the
left and subtracting ¢ty moves them down). Denote by f; and g; the latter,
then (t)f1 = at and (t)g; = bt with a and b being the slopes of f and g near
to respectively. It is clear that f; and g; commute, so:

tfig1 =tgi1fr =
= ((t+to)f —to)gr = ((t +to)g —to) Jr =
= ((t+1t0)f —to +to)g —to = ((t +to)g —to +to) f — to =
= ((t+to)f)g —to= ((t+to)g)f —to =
((t+t)g)f =
(

So f and g conmute at t 4 tg for all ¢, so it is clear that f and g commute:
just replace ¢t with ¢ — ¢y above to obtain that (t)fg = (¢t)gf.

(iv) Firstly, it is easy to see that supp|f, g] C supp f U supp g. Secondly,
by (iii), if to ¢ supp f U suppg, then ¢y, has a neighbourhood that does
not intersect supp[f,g]. So, by the characterization of the closure of a set
with neighbourhoods, we have that ¢ty ¢ supp|f,g|, and thus, we deduce
that supplf, g] C supp f U suppg. Lastly, by (ii), the closure of supp|f, g] is
compact. O]

Of these properties, (i) will be used shortly and (iv) will be used for
Theorem 3.2.7 in Chapter 4.

Notice that in the previous lemma we have seen that [f, g] has slope 1 at
—oo and 400, so having slope 1 at —oco and +oo is a necessary condition for
a function to be in PLF(R)’. But it is not only necessary but also sufficient.
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Corollary 2.3.8. PLF(R)" consists precisely of the elements in PLF(R)
with slope 1 at —oo and +oc.

Proof. One inclusion follows from Lemma 2.3.7 (i), now we need to prove
that any f € PLF(R) with slope 1 at +oo is in PLF(R)’".

Let us see first that a translation is in PLF(R)’. For arbitrary a € R,
t € RT, let us calculate [T}, My] using the relators of PLF(R) in Lemma
2.1.3:

T—aMt—lTaMt — Mt—l —a,t_lTaMt — Mt—lMtTt(—at—1+a) — Ta(tfl)

So for appropriate a and ¢, we deduce that all translations are in PLF(R)'.
We can similarly obtain another commutator:

TaXb—l—a,tT—aXa-q-b,t— 1= Xb,tXa—i-bJ— 1

for a,b € R and t € RT. So for arbitrary a and b, we deduce that KXot Xpp—1
is in PLF(R)'.

Now with these two commutators, we will reduce any f with slope 1 at
400 in a similar way as we did in the theorem where we found the generators
of PLF(R), thus proving the theorem.

The method proceeds as follows: if f is a translation by a near —oco, we
compose f with T_,, which is in PLF(R)’, then if the result g :== T_,f is
not the identity in all R (but it still has slope 1 at +oo since T, has slope
1), it will be the identity to the left of some a; € R and to the right of a4 it
will have some slope ¢; different from 1 until some other point in R where
the slope changes again (notice that there must exists a second point with
a change in slope since it must have slope 1 at +00). Then let

9= KXo 419 (2.26)

which has slope 1 at —oo and tfl at +oo.

Now ¢} has one less singularity (a; ¢ B(g})). Next denote by ay the
next change of slope (singularity) of ¢i and then define g := X, ¢} so
g1 = X@’thaht;l g (notice that g, has at least one less singularity than g
and we have reduced it with an element in PLF(R)’).

By repeating this process, we can reduce the number of singularities
with elements in PLF(R)’ resulting in the identity. Beware in the last step,
when g := XaZ,thal’th e Xa%thaniht;lg only has two singularities, it
is reduced in only one step with the procedure explained above (the slopes
found in the next step must be inverses of each other). Also notice that it
can not happen that g; only has one singularity, since it must have slope 1
at both sides of the singularity.

So in the end, say step k + 1, we will have that gi4; is equal to:

Xazﬂleal,tl_l U Xaz 1T o f = 1R

X _
(k+l)7tk+1 a2k+1,tk+1



Chapter 2. Some groups of piecewise-linear homeomorphisms of R 31

for some a;, t; obtained throughout the process.

Thus deducing that f can be generated with elements in PLF(R)" and
concluding that f € PLF(R). So we have proved the last inclusion, thus
proving the equality as desired. O

Corollary 2.3.9. PLF(R)/PLF(R)’ is isomorphic to RT x RT.

Proof. Let ¢ be the map from PLF(R) to RT x RT that sends an element f
of PLF(R) to the pair (a,b) where a and b are the slope of f at —oo and 400
respectively. By Lemma 2.3.5, we know that this is indeed a homomorphism,
and by Corollary 2.3.8, we deduce that its kernel is precisely PLF(R)'.
Furthermore, ¢ is surjective since we can easily find maps in PLF(R) with
arbitrary positive slopes in +0o. Hence, by the first isomorphism theorem,
the map

¢': PLF(R)/PLF(R)) — R"xRT
fPLE(R) +— (a,b),

where a and b are the slope of f at —oo and 400 respectively, is an isomor-
phism. O






Chapter 3

Laws and free subgroups

In Section 1.6, we briefly discussed the relation between free subgroups and
group laws. We were interested in the veracity of the following conjecture:

“If a group G does not satisfy any law, it is because GG contains a free
subgroup of rank greater than 1.”

In this chapter, we will give two counterexamples to this conjecture:
PLF(R) and G(p). The elegant proofs that they do not satisfy any laws are
given in [4], and the proof that they do not contain free subgroups of rank
greater than 1, as many other results of this dissertation, are given in [2].

3.1 Group laws and actions

In this section, we will prove that certain groups do not satisfy any laws.
For that, we will view the elements of a group G as permutations of a set
X, and we will give a condition pertaining these permutations, which when
satisfied by a group G that acts on a set X (the elements of G are viewed
as permutations of X ), guarantees that G' does not satisfy any law.

Definition 3.1.1. Action of a group G on a set X

Let G be a group and let X be a set. A group action of G on the set X is
a function f: X x G — X (we denote f(z,g) by 29) satisfying the following
properties:

(i) z'¢ =z, for all z € X.
(i) 29" = (x9)" for all g,h € G and x € X.

In the conditions of the definition, we say that G acts on X, and restrict-
ing the action to a single element of the group, we get a permutation of the
set. Indeed, let g be an element in G, then the restriction of the action to
g, which we denote by -9, is:

IX - X

r — 29,

33



34 3.1. Group laws and actions

which is bijective since its inverse is 97" We call -9 the action of gon X.

In the conditions above, let Y be a subset of X. Then by Gy we denote
the subset of G that consists of the elements whose actions fix all elements of
Y, which we call the pointwise stabilizer of Y. We also say that Gy stabilizes
Y. It can be easily proven that Gy is a subgroup of G. By convention, we
say that the pointwise stabilizer of () is the whole group.

With these concepts, we can establish a connection between subsets of X
and subgroups of G. A subset Y C X maps to Gy, and a subgroup H < G
maps to the subset of X consisting of the points of X that are fixed by all
elements of the subgroup H.

This connection need not be bijective, since Gy may stabilize more points
outside Y. But when this connection is bijective restricting to finite subsets,
we say that G separates X.

Definition 3.1.2. Let G be a group acting on a set X, we say that G
separates X if the following property holds: for any finite subset Y C X,
the pointwise stabilizer Gy does not stabilize any other point outside of Y.

For x € X, the set {29 | g € G} is called the orbit of x. If G separates
X, then since Gy = G, we deduce that G can not fix any element of X, so
there are no orbits of one element, and we see in the next lemma that there
are no finite orbits.

Lemma 3.1.3. Let G be a group that acts on X. If G separates X, then
all orbits of this action are infinite. Also, for a finite set Y C X, the orbits
of the action of Gy on X \'Y are all infinite.

Proof. Suppose X' is a finite orbit, take o € X' and let Y = X'\ {xo}. YV
is finite but we claim that the stabilizer Gy stabilizes x(, contradicting the
separability.

Indeed, let us see that Gy fixes xg. Let ¢ € Gy be any element, then
since X’ is a orbit, g is a permutation of X’. We are given that the action
of g fixes all the elements of X’ except xg, but this implies that ¢ must also
fix 29, as f can not be nothing else by the injectivity of the action of g.

The second statement is easily deduced from the first one. Firstly, we
must see that Gy acts on X \ Y. So let g € Gy, since Gy is a subgroup of
G, then g permutes the elements of X and fixes the ones in Y, and thus, ¢
permutes the elements of X \ Y. Secondly, Gy separates X \ Y because for
any finite subset Z of X \ Y, the stabilizer (Gy)z is equal to Gyz, which
does not fix any element outside Y U Z. O

Since we are going to talk about group laws, we are going to fix some
notation concerning words.

Let G be a group that acts on a set X, and let w = vy ... v, be a reduced
word of length n in variables f1,..., fi for & € N. Let w; = viva...v; be
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the jth beginning segment of w, with 0 < j < n. Then recall that by

w;i(g1,...,gk) we denote the image of (g1, ...,gx) under the word map wj,
as introduced in Section 1.6. Finally, if 2 € X, then z%(91-9%) is the action
of the element w;(g1,...,gx) of G on .

Now, in the conditions above, we say that a k-tuple (g1, go, ..., ) € GF
is distinctive for a word w of length n in k variables and a point xg € X if

the points z; = J:E)Uj(gl"“’gk) are all distinct for 7 = 0,1,...,n. Notice that
x = xgl(gl””’g’“), and in general z; = a;q;j_(lgl"“’gk).

Notice that in this case, we have that

o # xg)n(ghmgk) — 2,
SO W(g1y---y9n) = Wn(g1-..,9n) # 1, and thus, in this case, w is not a group
law in G.

Theorem 3.1.4. If G separates X, then G does not satisfy any group law.

Proof. Assume without loss of generality that GG acts transitively on X, i.e.,
X is the one and only orbit. (Notice that if G separates X, then it also
separates its orbits).

Our claim is that for any zg in X and w a word in k variables fq,..., fi,
there exists a tuple (g1, ..., gr) distinctive for w and xg. This would imply
that for any law w, there exists (g1, ..., gx) in G* that does not satisfy it.

Let us prove this claim by induction on the length of w. For n =1, we
have w = fiil for i € {1,...,k}. Thus, we have to find an element g € G so
that

gt
r1=2x) # To, (3.1)

which is possible since by Lemma 3.1.3, we know that G does not stabilize
-

Now assume by induction that it is true for any reduced word of length
smaller than n, and let us prove it for an arbitrary reduced word w = vy ... v,
of length n.

We can deduce by the induction hypothesis that there exists (hq,. .., hg)
distinctive for wy,—1 = vy ...v,—1 and zg, so the points z,; = xg)j(hl""’hk) for
j=1,...,n—1 are all distinct. If x,, = mg(hl’“"hk) ¢ {xo,...,Tn_1}, then
(h1,...,hy) is distinctive for the word w and zo and we are finished.

Otherwise, assume that x, = z; for j < n. Let m be the index of
Vp = fm or f.1. We can assume that v, = f,,, replacing f,, by f,,} and h,,
by h,, ! if necessary. So

n(h1yesh .
In = 131,;,(11 k) = .%‘Zil.
Now, we will replace h,,, with another element g,, so that 29", ¢ {zo,...,2,-1},

making sure xg,...,T,_1 are not altered as a consequence. Set
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Y = {l’o, e ,Infg},
and let ¢ € Gy be an element, which is to be chosen later. If we set
gm = ch.,, then we claim that:
vi(h17"'7hm7"'7hk) — $vi(h17"'70hm7"'7hk)

T =x; il fori=1,....n—1. (3.2

Fori=1...,n—2, Equation (3.2) is clear since ¢ € Gy. But fori = n—1,
if v,_1 = f,,1, then we would have that
. -1 _—1 _
Zz_(};h---ﬁhmv---ahk) _ iUZ’fgc _ xc_l
is not necessarily equal to x,,_1 as we want, since ¢ need not fix x,_1. But
Vn_1 # [} since v, = f,, and w is reduced. Finally, for the new z,, we
want:
_ chm c hon! h
Tp =x,"" & {zo,...,on1} = b & {zg™ ..., 2, )
Since the orbits of the action of Gy on X \ Y are infinite by Lemma
3.1.3, there must exist ¢ € Gy that satisfies the above. Therefore (hq,... -
chp, - .., hi) is distinctive for w and xy as we wanted. O

This theorem, granted by Miklés Abért, allows us to find groups that
do not satisfy any laws. For example, the group S, of permutations of N of
finite support.

For n a natural number, S,, denotes the group of permutations of the set
{1,...,n}. The groups Si,Ss,... can be naturally embedded in the group
of permutations of N, which we denote by S(N), as an ascending chain of
subgroups. Then the union of all S,’s is the group of permutations of N
with finite support, denoted by S,. We can easily see some properties of
S,: it is a normal subgroup of S(N) (we will see in Lemma 3.2.1 that the
conjugate of a permutation of finite support has finite support), all elements
have finite order, and as a consequence, it contains no free subgroups. And
finally, S,, satisfies no laws.

Indeed, let us see that S, separates N. Let Y be a finite subset of N and
x € N\Y, then we can easily find a permutation of S, that fixes all elements
of Y but does not fix = (for example, take the cycle (xz) where z is another
point outside of Y'). In conclusion, S, is a group that does not satisfy any
law and it contains no free subgroups, achieving the goal of this chapter.
But, S, is a very simple counterexample: first, all elements have finite order
and secondly, it is not finitely generated. Indeed, since the supports of the
elements of S, are finite, for a finite subset S of S,,, there is always a point ¢
fixed by all elements of S, and thus, all elements of the subgroup generated
by S also fix t. Hence, S, can not be finitely generated.

We are interested in counterexamples that are torsion-free and finitely
generated, as they allow us to better glimpse at the relation between group
laws and free subgroups.
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In contrast, we know that there is a type of groups where we can not find
finitely generated counterexamples, they are linear groups. These algebraic
structures consists of groups that can be embedded in a general linear group
GL(n,K) (a group of matrices with multiplication). There is this deep
theorem, called Tits alternative [1], that tells us that if a finitely generated
linear group does not satisfy any law, then it must contain a non-abelian
free subgroup.

Theorem 3.1.5 (Tits alternative). Let G be a linear group over a field k,
and suppose that G is finitely generated. Then one of the following holds:

(i) G contains a non-abelian free subgroup.

(ii) G contains a normal solvable group of finite index.

Now, in the conditions of the theorem, if G contains no non-abelian
free subgroup, it must contain a normal solvable group N of degree d of
finite index n, which we mentioned in Chapter 1 that satisfies the group law
dq(x1,...,29a) = 1. Since N has finite index n, we know that for all g € G,
g" € N, and thus, G satisfies the law 04(z7, ..., z04") = 1.

Our objective in this chapter is to find not only a finitely generated but
a finitely presented group that satisfies no laws and contains no non-abelian
free subgroups. Let us start with PLF(R).

Corollary 3.1.6. PLF(R) does not satisfy any law.

Proof. PLF(R) acts naturally on R, let us see that it separates R. Let
Y ={y1,...,yn} be a finite set of points in R sorted in ascending order, and
let = be a real number outside Y. We will prove that there always exists a
map f € PLF(R) that fixes the points of ¥ but does not fix x. This will
prove that PLF(R)y, the stabilizer of Y, does not fix any other point in R,
and by the previous theorem, this proves the corollary.

Assume without loss of generality that x is in between two consecutive
points y; < y;+1 of Y (if x is bigger than all points in Y, we can always pick
p > x and apply the argument to Y U {p} since the stabilizer of Y U {p} will
be contained in Gy). Then we construct the map that is the identity in all
R to the left of y; and to the right of y;11, and in between y; and y;+1 we
make it so that f is not the identity. We obtain the following graph.
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yi Y2 - - ¥ /'{ Yizr - - ¥n

As we see, f satisfies what we want: it fixes all elements of Y but not . [

Now we want to prove that G(p) also separates R. We will do it in a very
similar way as in Theorem 3.1.6. But in G(p) there are extra difficulties since
slopes must be powers of p and singularities must be p-adic fractions. We
will construct a map in G(p) that is the identity until some p-adic fraction
a/p"™, then from a/p"™ to (a + 1)/p™ it has slope 1/p and finally extends
with slope p until the map is the identity again. We will need the following
lemma to ensure that we can construct this map with support in between
two arbitrary real numbers.

Lemma 3.1.7. Let b= a/p™ be a p-adic fraction, where n > 0. Then there
is a map f € G(p) such that

(i) f is the identity in (—oo,b] U [b+ 1/p™ + 1/p"*L, +0),
(ii) f has slope 1/p in [b,b+ 1/p"], and

(iii) f has slope p in [b+1/p", b+ 1/p™ +1/p"+1].
Proof. Let us try to construct a linear map with the specifications above.
First, draw the identity segments, then extend linearly with a segment of
slope 1/p, finally extend linearly with slope p as specified above, hopefully
meeting the identity segment at the point b+ 1/p" + 1/p" "1, which we will
denote by c.

e |
=

pa+1
pn+1

S
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Now we must guarantee that this procedure produces a linear map. The
only possible discontinuity is after the segment of slope p, we must make
sure that the right endpoint of this segment of slope p is in the diagonal
Y=z

At the point (a + 1)/p", the height of the graph is a/p" + 1/p™ - 1/p =
(pa + 1)/p™*1. Then in the segment of slope p, we ascend p - 1/p"*1 so
the endpoint of this last segment has height (p(a + 1) +1)/p"*! = ¢, as we
wanted. O

Theorem 3.1.8. G(p) satisfies no laws.

Proof. Let us see that G(p) separates R. Let Y C R be finite, and let
x € R\ Y. We claim that there exists f € Gy that does not fix x.

Indeed, let n € N be sufficiently large so that the interval (z — 1/p", z +
1/p™ 4+ 1/p"*1) is contained in R\ Y. Then find a p-adic fraction a/p" for
a € N in the interval [x — 1/p™, x). Finally, apply Lemma 3.1.7 to obtain
the map f. Notice that f is in Gy, since it fixes all elements of Y, and that
f does not fix z. I

3.2 Free subgroups of rank greater than 1

Before going deeper into free subgroups, we will need some basic definitions
and properties of the support of a permutation f in the group of permutation
S 4 of some set A.

Recall that the support of f is the set of points not fixed by f, which we
denoted by supp f. Sosupp f = {t € A | tf # t}.

Lemma 3.2.1. Let f,g € Sa. Then

(i) supp(f~'gf) = (suppg)f,

(ii) f is a permutation of supp f, i.e., (supp f)f = supp f,
(111) If supp f Nsuppg = 0, then f and g commute.
Proof. (i) By definition, ¢t € supp(f~lgf) if tf~gf #t, and

tflgf Atetflg#tfT e tf7 esuppg &t € (suppg)f.

(74) Since f is the identity in A \ supp f, we have that (A \ supp f)f =
A\ supp f, and since f is bijective, it follows that (supp f)f = supp f.

(#i7) If t ¢ supp f Usuppg, then tfg = tgf = t. Otherwise, assume that
t € supp f and ¢ ¢ suppg (for the other case, t ¢ supp f and ¢ € suppy,
argue similarly). On the one hand, we know that tgf = tf. On the other
hand, since t € supp f, then by (ii), tf € supp f and thus, ¢f ¢ suppg, so
tfg=1tf. We conclude that tgf =tf =tfg as we wanted. O
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Remark. Property (i) is already known when A is finite, generally in the
notation of permutation (i iz 33)7 = ((i1)f (i2)f (i3)f). This can be proved
again with property (i).

Lemma 3.2.2. Let A be a set, and let X be a subset of S4. Then if

(i) all permutations of X have infinite order, and

(i1) for any f,g € X, f # g implies supp f Nsuppg = 0,
then X freely generates a free abelian group of permutations of A.

Proof. Hypothesis (i7) together with the previous lemma guarantees that X
generates an abelian group. Then any element ¢ in the subgroup generated
by X can be expressed as g = fi'' ... fo» for some distinct f; in X. Let us
see that g is equal to 1 if and only if all a; are equal to 0.

Notice that the restriction of the permutation g to the set supp f; is equal
to fi" (by hypothesis (i¢) and previous lemma (i7) and (éi7)). Thus if g = 1,
then by the previous argument, f;"* =1 for all ¢, and by hypothesis (¢), this
implies that a; = 0 for all 7 as required. O

As it will be useful later, we note that if A is a Hausdorff topological
space and f is a homeomorphism of A, then supp f is an open set.

Lemma 3.2.3. Let A be a Hausdorff space and f: A — A a homeomor-
phism. Then supp f is an open subset of A.

Proof. Let t € supp f. Then by Hausdorff hypothesis there exist U,V C A
disjoint open subsets of A with ¢t € U and f(t) € V. Hence, ¢t is in the open
set f~Y(V)NU, which is contained in supp f (since no point in f~*(V)NU
can be fixed by f because its image would be in V and U). Thus, doing this
argument for all points in supp f proves that supp f is open. O

Corollary 3.2.4. If f € PLF(R), then supp f is a finite disjoint union of
open intervals.

Proof. Since supp f is open in R, it is a union of open intervals, and by
adjoining the intervals that intersect, we get a disjoint union of intervals.
It is easy to realize that inside each disjoint interval (a,b) of the union

(excluding the case of a = —oo or b = +00), there must be a point in B(f)
(notice that a and b must be fixed by f). Since B(f) is finite, there can only
be a finite number of such disjoint intervals as we wanted. O

Now with these tools, we will prove that PLF(R) has no free subgroups
of rank greater than 1. For that goal, we will show that any two elements
in PLF(R) satisfy a non-trivial relation.
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Lemma 3.2.5. Let f be an orientation-preserving homeomorphism of R. If
[c,d] C supp f, then cf™ > d for some integer n.

Proof. Since [c¢,d] C supp f, we deduce that either tf < t for all ¢ € [c,d]
or tf >t for all t € [¢,d]. Suppose for now the latter, then we claim that
lim,, o0 (cf™) > d.

Indeed, let us see that lim,,_,.(cf™) is either +o00 or a fixed point of f.
If it is not 400, then since f is continuous, we have that (lim, . (cf™))f =
lim,, o0 (cf™1) = lim, o0 (cf™). Thus, ¢f™ > d for some n € N since the
limit can not be in [¢, d] because of being fixed by f. It is analogously proven
in the case that tf < t replacing f for f=! (notice that tf < ¢ implies that
t < tf~! since f is orientation-preserving). O

For the comprehension of the next lemma, a pencil and somewhere to
draw are recommended.

Lemma 3.2.6. Let f and g be orientation-preserving homeomorphisms of
R. If [e,d] C supp f Usuppy, then there exists a word z in f and g such
that cz > d.

Proof. By Corollary 3.2.4, supp f and supp g can be expressed as finite dis-
joint unions of open intervals {/;}? ; and {Jj}gnzl respectively. Omit repe-
titions and the intervals that don’t intersect with [c,d]. We will prove the
lemma by induction on the sum of the number of open intervals n 4+ m that
cover [c,d].

The base case n+m =1 (supp f and supp g are the same open interval)
is easily resolved applying Lemma 3.2.5.

If n+m > 1, by symmetry of f and g, we may suppose that the left
endpoint of the interval ¢ is in I; for some I; in {I;}?_,. Let ¢t denote the right
endpoint of this I;, if t > d, then the previous lemma suffices to prove this
lemma. Otherwise, we have t < d and t € J; for some j (it cannot happen
that ¢ is in another I since the I;’s are open and disjoint). Let s denote the
left endpoint of Jj;, if s < ¢, then I; can be omitted from the cover of [c, d],
thus applying the induction hypothesis. If s > ¢, then since the interval
[c, s] is contained in I;, we can apply Lemma 3.2.5 and obtain ¢ := ¢f" > s
for some integer n. Notice that the new interval [¢/,d] can be covered by
fewer intervals (I; can be omitted), thus, by the induction hypothesis, there
exists a word 2’ in f and ¢ such that ¢f™z’ > d, thus proving the lemma
with z = f72/. O

Now we will prove a theorem which is essential to prove that PLF(R)
and G(p) have no free subgroups of rank greater than 1.

Theorem 3.2.7. Let G be a subgroup of the commutator group PLF(R)’.
Then either G is abelian or G contains a free abelian subgroup of infinite
rank.
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Proof. If the subgroup G of PLF(R)’ is not abelian, then there exists f, g €
G such that the commutator [f,g| is not the identity homeomorphism of
G. We will use Lemma 3.2.2 to construct a free abelian subgroup of infinite
rank, thus proving the theorem.

By Corollary 3.2.4, we know that supp f U supp g = U*_, (a;, b;), a finite
union of pairwise disjoint open intervals, with perhaps a1 = —oo or b =
+00. Then by Lemma 2.3.7 (iv), the closure of supp|f, g] is a compact subset
of supp f U supp g.

Therefore, we can say that supp[f,g| is a finite union of disjoint open
intervals, and each interval is strictly inside one of the intervals (a;, b;), i.e.,
the endpoints of the intervals are also inside the interval (a;,b;). Indeed,
since otherwise, the closure would not be contained in supp f U suppg,
contradicting Lemma 2.3.7.

Let W ={w € (f,g) | w# 1, suppw C supp f U supp g}, which is not
empty since [f,g] € W. Let w € W be a word whose support intersects with
a minimal number ¢ of the intervals (a;,b;). Note that ¢ > 1. Now choose
i so that suppw has non-empty intersection with the interval (a;,b;), then
since supp w C supp f Usupp g, there exist ¢,d € R such that a; < ¢ < d < b;
and

suppw N (a;, b;) C (e, d). (3.3)
Now we can safely use Lemma 3.2.6 to find a word z in f and g such that
cz >d.

For each integer n, let w, = z7"wz"™. Then by Lemma 3.2.1, supp w, =
(supp w)z", so supp w,N(a;, b;) C (cz™,dz"). Clearly, the intervals (cz™, dz")
are pairwise disjoint subintervals of (a;, b;) because of the condition cz > d,
so by Lemma 3.2.2, the restriction of the w,’s to the interval (a;, b;) generate
a free abelian group of infinite rank. Therefore, for integers n and m, we
have that

n

supp[wn, wm] N (ai7 bz) =0 (3'4)
Since supp|wy,, Wy,] € supp wy, U supp w,, and supp w, intersects supp f U
supp g at the same components as supp w (since z is an orientation-preserving
homeomorphism, it fixes the endpoints of the intervals (a;,b;) Vi =1,...,k
and supp wy, = (supp w)z"), then by Equation (3.4), supp|wy, wy,] intersects
supp f U supp g at less components than supp w, and by minimality of g,
this implies that [wy,,w,] ¢ W. Recalling the conditions for an element in
W, [wp, wy,] must be the identity, so the w,,’s commute and we claim that
they generate a free abelian group of infinite rank.
Indeed, suppose that wfll wf: = 1g for some e¢; € Z and i; € Z
for j = 1,...,n, then restricting to (a;,b;), we deduce that a; = 0 for
i=1,...,n. O

Now we are going to transfer this theorem to PLF(R): instead of saying
that the subgroup G of PLF(R) is abelian, we will say that its commutator
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subgroup [G,G] is abelian. In this case, we say that G is a metabelian
subgroup.

Corollary 3.2.8. Let G be a subgroup of PLF(R). Then either G is
metabelian or G contains a free abelian subgroup of infinite rank.

Proof. Consider the commutator subgroup [G, G] of G, which is a subgroup
of PLF(R)’. Then by the previous theorem, the subgroup [G,G] is either
abelian or contains a free abelian subgroup of infinite rank. Since a subgroup
of [G,G] is also of G, then G is either metabelian or contains a free abelian
subgroup of infinite rank. O

Corollary 3.2.9. PLF(R) contains no free subgroup of rank greater than
1.

Proof. Suppose by contradiction that there is a free subgroup F of PLF(R)
of rank greater than 1. Then by the previous corollary, F' should either be
metabelian or contain a free abelian subgroup of infinite rank. But firstly,
metabelian groups are soluble groups of derived length 2, which satisfy group
laws contrary to non-abelian free groups. Secondly, the generators of a free
abelian group of infinite rank commute but are not powers of a common
element, which we see in Exercise 8 of the appendix that is impossible inside
the free subgroup F. O

As a consequence, since G(p) is a subgroup of PLF(R), we deduce that
G (p) contains no non-abelian free subgroup. So we conclude this dissertation
with the following corollary.

Corollary 3.2.10. G(p) is a finitely presented, torsion free, group that does
not satisfy any law and contains no non-abelian free subgroup.

G(p) is a generalization of a famous group, called Thompson’s group [6],
denoted by F'. This group consists of orientation-preserving piecewise linear
homeomorphisms of the interval [0, 1], whose slopes and singularities are
powers of two and dyadic rationals respectively. There is a finite presentation
of F: (a,b | [ab=t,a"tba] = [ab™1, a=2ba?] = 1).

This group can be easily embedded in G(2), extending a map in F as the
identity to the left and right of the interval [0, 1]. With the tools developed
in this dissertation, we can easily deduce that the group F' also satisfies the
properties mentioned in Corollary 3.2.10.

The End






Appendix A

Solved exercises

A.1 Exercises of Chapter 1

Exercise 1. If G is free on X and also on Y, then |X| = |Y].

Solution. Use the universal property of free groups to determine all possible
homomorphisms from G to the cyclic group C5 of order 2. Since for each
x € X, we can assign its image in Cy arbitrarily, we deduce that there are
exactly 2/X! such homomorphisms. Then repeating the argument for Y, we
deduce that

ol Xl = oY, (A1)

If | X| or |Y] are finite numbers, the previous equation proves the exercise.
In the case that both of them are infinite, we would need to assume that
the Generalized Continuum Hypothesis from set theory is true to prove the
exercise. 0

Exercise 2. The free group F'({a,b}) of rank 2 contains a free subgroup of
countable rank.

Proof. For n € N, let x,, denote the word b~"ab™. Then we claim that the set
X = {wo,x1,...} freely generates a free subgroup of F({a,b}). Indeed, let
w be a non-trivial reduced word in X. Then let us see that w is a non-trivial
element in F'({a,b}). We know that w is of the following form:

w=b""1a b 2a2b2 .. hTin g pin (A.2)

where for each j = 1,...,n, i; € N, ¢; € {—1,+1}, and since w is reduced
in X, we have that either i; # ij11 or €; + €41 # 0.

An elementary reduction of w with respect to the free generators a, b of
F' is only possible when i; = i;41 for some j = 1,...,n, but in this case,
since w is reduced in X, we have that €; +¢€;41 # 0. With this reduction we
obtain

W= - b U-1gG-1pli-1p~ g8 G+ plipliH2 g2 plite L. (A.3)

45
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Now, we can see that further reductions will not suppress any a%’s. Indeed,
observe in Equation (A.3) that if we can continue reducing, then it must

be because either i;_; = 4; or 440 = ¢;. But this implies that either
a1 = @% = @%+! or a%t2 = %+l = @%. In either case, no a%’s are
deleted, if only, they are gathered together. O

Exercise 3. Let G be the ordered product of an independent ordered family
of subgroups {H;}ic;. In the conditions of Theorem 1.5.3, we can replace
S with the following more general type of relations: for ¢ < j in I and
T; € Xi,xj S Xj,

TjT; = T;Wp, (A.4)

where wy, is a word in X, with k € I, ¢ < k and the index k only depends
on z; and 7, and similarly

R T (A.5)

)

where w; is a word in X; with [ € I, i < [ and the index [ only depends on
x; and j.

Solution. Notice that in relations (A.4) (analogously in (A.5)), if we replace
x; with another element in X (or with an inverse), say z’;, by the conditions
we required to the indexes, we deduce that @’z; = z;wj, where wj, is also a
word in Xj. This will be specially useful to reorder badly ordered products.
Indeed, let
.IIjIE}JZ;/J}Z‘

be a badly ordered product, with i < j, zj,2%,27 € X; and x; € X;. Then
using relations (A.4) three times, we obtain that

1

/ U AU / AN I / ’o
TjTL5 T = TiT;T,Wy, = TjT;WpWy, = TWEWLW,

where wy,, w, w) are words in Xj.

Since the concatenation wiwjwy is just another word in Xj, denoting
it by wy, we have that x;2%2’z; = z;wj. So in general, if we have a badly
ordered product w;z;, with w; a word in X; and z; € X;, we deduce with
(A.4) that

W;T; = TV, (A.6)

where vy is some word in X;. We can similarly deduce that

wjz; b= x (A7)

where v; is some word in Xj.

Then, if wjw; is a badly ordered product, with w; and w; words in X
and X; respectively, using (A.6) and (A.7) repeatedly for each component
of the word w;, we deduce that

W ;Wi = W;Vp, (A8)



Appendix A. Solved exercises 47

where vy, is a word in X with ¢ < h.

This relation is analogous to relations (1.5) of Chapter 1, just replacing
elements with words. Then, the proof that relations (A.4) and (A.5) allow
us to reorder any badly ordered product, is also analogous to the one with
relations (1.5) and (1.6), just replacing elements with words, and length of
the badly ordered product with number of words. O

Exercise 4. Let G be a group, and let X = {z, | g € G} be a set of symbols
in bijection with G. Prove that (X | R), where R is the whole multiplication
table of the group G, ie., R = {z4zp, = 2, | g,h € G, z = gh}, is a
presentation of G.

Solution. By Von Dyck’s theorem, if NV is the normal closure of R in F'(X),
then the map

o: F(X)/N — G

xgl

€ €1 €

is a well defined homomorphism, which is surjective since p({z4N | g €
G}) = G. Let us see that it is also injective.
Indeed, begin by deducing that

z1oN =€eN =N, (A.9)

where € is the identity element of F'(X) (which is inside N because N is a
subgroup), from the relation z1,x1, = 1, of R. Then, from the equalities

Tg1xgN =21, N = eN = a:;lng, (A.10)

we deduce that x;th = xg+1N. Next, using these relations and the ones in
R repeatedly, we obtain that zg} ---xg» N = x;, N, where h = g1t -+ g5, for
g€Gandeg=x1Vi=1...,n.

Now suppose that xg!l ---2g" N is in the kernel of . Then using the
relations mentioned in last paragraph, we obtain that

p(ag - 2gN) = p(zpN) = h = 1g, (A.11)

so pN = 21,IN = eN = N. Thus proving that the kernel of ¢ is trivial.
Hence, ¢ is an isomorphism and (X | R) is a presentation of G. O

Exercise 5. Let G be a group. Then G is abelian if and only if all word
maps on G are homomorphisms.

Solution. Let w be a word in some variables 1, ..., zg. Recall that the word
map w is defined as follows

wGx-"xG — G

(917”- 7916) — w(gla"‘vgk)‘
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Let us see that if G is abelian, this map is a homomorphism. Let (p1,...,pk)
and (q1,...,qr) be two elements of G x - - - x G, denoted by P and () respec-
tively. We must check if

w(P - Q) =w(p1q1, - -, prgx) = w(P) - w(Q).

Since G is abelian, we can just reorder w(p1qi,...,prqx), putting the p;’s
(and their inverses) to the left and the ¢;’s (and their inverses) to the right.
Then, we have that w(piqi,...,prqx) = w(p1,...,pk) - w(q,--.,qx), as we
wanted.

Now suppose that all word maps are homomorphisms. Then in partic-
ular, the word map w = xy in variables x and y is. Now, let g, h be two
arbitrary elements in G. Then we have that

w((1,9) - (h,1)) =w(h,g) = hg = w(1,g)w(h,1) = gh. (A.12)

So, we have that hg = gh. Since this holds for all elements of G, we conclude
that G is abelian. O

Exercise 6. Find a presentation of S3 using Exercise 3.

g T

~— A~

Solution. We know that (123) and (12) generate S3. Furthermore, denoting
the subgroups ((123)) and ((12)) by N and H respectively, we know that
G = H X N since G = HN and NN H = 1. Then, N and H have
presentation (o | 03 = 1) and (r | 72 = 1) respectively. Finally, since
771 = 7, the relation o7 = 70! is sufficient to apply Theorem 1.5.3 with
the type of relations mentioned in Exercise 3 to obtain the presentation of
S3 given by (0,7 |03 =1,72=1,0" =07 1). O

Exercise 7. Let G be a group and let H and N be two subgroups of G,
with N being normal. If H = (X) and N = (Y) and G = H x N, find a
presentation of G using Exercise 3.

Solution. First, let (X | R1) and (Y | R2) be a presentation of H and N
respectively. Then, since N <G, we obtain the following relations: for x € X
and y €Y,

yr = 2w, (A.13)

where w is a word in Y, and
yr~t =27t (A.14)

where w' is a word in Y.

Now, since G is the ordered product of the independent ordered family of
subgroups { H, N}, denoting by R the set of relations mentioned in Equations
(A.13) and (A.14), we can use Exercise 3 to deduce that (XUY | RUR1URy)
is a presentation of G. O
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A.2 Exercises of Chapter 4

Exercise 8. Let F' be a non-abelian free group on a set X. Then prove that
the only elements that commute are powers of a common element of F.

Solution. Let w = wy...w, and v = vy ...v,, be two reduced words in X
that commute, with w; € X UX ' Vi =1,...,n and v € XuXx-tyj=
1,...,mand n,m € NU{0}. Suppose without loss of generality that n < m.
We have that w and v commute, so

Wy.. . Wy V1...Vp =V1...Up W1...Wn,
then reducing when possible we obtain
Wl Wy Vpa] Uy = V1 ... VUpg* Wsi] - W, (A.15)

with r,s e Nand 0 <r,s < n.

Notice that both sides of the equation above are reduced, then since we
are in a free group, the lengths of the two reduced words in both sides must
be equal. Therefore, (n —r) 4+ (m —r) = (m — s) + (n — s), thus deducing
that r = s. So we have

Wl e Wy " Vpg] -+ Uy = U1« Uy * Wyt ] - - - Wy, (A.16)
and v; = fw;_lz n

Let us see that w and v are powers of a common element of F' by double
induction on the lengths n and m of w and v respectively.

The bases cases n = 0 or m = 0 are straightforward (the identity is a
power of any element since, by convention, ¢° = 1 for g an element of a
group). For the general case, we consider three cases.

Case 1): r = 0. From Equation (A.16), we deduce that w; = v; Vi =
1,...,n. Then we rewrite v as follows:

— 1 .
randw;=wv~,  Vi=1,...,r.

w =u
~—
v=(v1...0p) (Vpt1-..0m) = wu,

and since from wv = vw we can deduce that w and v commute, by induction
hypothesis on the reduced words u and w, we deduce that v and w are powers
of some common element g of F'. Hence, since v = wu, v is also a power of
g.

Case 2): r = n. In this case, we have that v; = w;l

it Vi=1,...,n.
Then we rewrite v as follows:

v= (V1. 0) (Vg1 V) = (W o w ) (w) = wl, (A.17)
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and since from wv = vw we can deduce that w and v commute, by induction
hypothesis on the reduced words u and w, we deduce that v and w are powers
some element ¢ of F. Hence, since v = w™u, v is also a power of g.

Case 3): 0 < r < n. From Equation (A.16), we deduce that w; = vy,
Wy, = V] 1, U = Wy, and vy, = wy 1 Then we make the necessary reductions
to obtain that

w2...Wp-1:V2...Upm—-1=V2...Up—-1"W2...Wnp_-1.

By induction hypothesis, we can deduce that wy...w,—1 and vy...v,—1 are
powers of some common element g. So, for some integers p and ¢, we have
that w = wigPw, and v = vig%vy,. Finally, since wy = v; = w,," =v,,", we
deduce that

w = vlgpvfl = (vlgvfl)p,

v = vlgqvl_l = (vlgvl_l)q,

as we wanted.



Bibliography

1]

2]

Jacques Tits, Free subgroups in linear groups, Journal of Algebra 20
(2) (1972) 250-270.

Matthew Brin and Craig Squier, Groups of piecewise linear homeo-
morphisms of the real line, Inventiones mathematicae 79 (1972) 485-
498.

Alexei Myasnikov, Free groups, (https://www.math.unl.edu/
~mbrittenham2/classwk/990s08/public/myasnikov.1.free.
groups.pdf), 2008.

Miklés Abért, Group laws and free subgroups in topological groups,
Bulletin of the London Mathematical Society 37 (4) (2005) 525-534.

Wilhel Magnus, Abraham Karrass, Donald Solitar, Combinatorial
Group Theory: Presentations of Groups in Terms of Generators and
Relations, Dover Publications, 2004.

José Burillo, Introduction to Thompson’s group F, (https://web.
mat .upc.edu/pep.burillo/F%20book.pdf).

Dee LaMont Johnson, Presentations of Groups (2nd ed., London
Mathematical Society Student Texts). Cambridge: Cambridge Uni-
versity Press, 1997.

o1






