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Abstract 

Lightweight components of electric vehicles will face new challenges related with 

their noise and vibration performance because, in the absence of the internal combustion 

engine, the noise generated by their vibration will become more apparent. To overcome 

these new challenges, traditional design and material selection must be reconsidered. In 

this context, thermoplastic vulcanizates (TPVs) are interesting materials due to their light 

weight, recyclability, ease processing and design flexibility. This Thesis aims to advance 

on the design and development of high-performance TPVs for structural vibration 

damping applications. For that, novel TPVs based on polyamide 6 (PA6) and 

hydrogenated acrylonitrile butadiene rubber (HNBR) have been developed and their 

microstructure-property relationship thoroughly investigated. First, the reactive 

compatibilization of PA6/HNBR blends by means of carboxylic HNBR (XHNBR) 

addition was studied. Secondly, peroxide cured PA6/XHNBR blends containing metal 

oxides and phenolic antioxidants were formulated as a new concept to design high-

performance vibration damping TPVs. Lastly, the relationship between microstructure of 

TPVs and their nonlinear quasi-static and dynamic mechanical behaviour was explored. 

Overall, the results obtained pointed out the potential of carboxylic TPVs as high-

performance vibration damping materials. On one hand, the explored approach based on 

the reactive compatibilization of PA6/HNBR blends by adding XHNBR revealed new 

approaches to develop thermoplastic elastomer blends with superior thermal and 

mechanical properties by controlling interfacial interactions and morphology. 

Furthermore, the achieved results highlighted that the generation of ionic crosslinks, via 

the addition of metal oxides, represents a very promising way to develop high-

performance TPVs with a broad vibration damping temperature range. Besides, the 

investigation of the material’s microstructure and their nonlinear mechanical performance 

allowed to link the identified micromechanical deformation processes to the 

corresponding underlying microstructural features. Finally, physical interpretations for 

the observed deformation mechanisms have been introduced in order to build a 

knowledge-base for the micromechanical modelling of TPVs. In conclusion, this Thesis 

opens new possibilities to obtain high-performance TPVs with customized thermal, 

mechanical and vibration damping properties as well as to foresee their performance by 

means of micromechanical modelling tools.  

 

 

 

 



 

 

 

Resumen 

Los componentes ligeros de vehículos eléctricos se enfrentarán a nuevos 

requerimientos relacionados con su generación de ruido y vibración debido a que, en 

ausencia de un motor de combustión interna, el ruido que se genere por su vibración se 

hará más evidente. Para afrontar estos nuevos desafíos, los conceptos de diseño y 

selección de materiales tradicionales deberán reconsiderarse. En este contexto, los 

termoplásticos elastómeros vulcanizados (TPVs, por sus siglas en inglés) son materiales 

interesantes debido a su baja densidad, reciclabilidad, facilidad de procesamiento y 

flexibilidad de diseño. Esta Tesis se enfoca en el diseño y desarrollo de TPVs de alto 

rendimiento para aplicaciones de amortiguación de vibraciones estructurales. Para ello, 

se han desarrollado nuevas formulaciones de TPVs basadas en poliamida 6 (PA6) y 

caucho de acrilonitrilo butadieno hidrogenado (HNBR) y se ha investigado a fondo la 

relación existente entre su microestructura y sus propiedades. En primer lugar, se estudió 

la compatibilización reactiva de las mezclas de PA6/HNBR mediante la adición de HNBR 

carboxílico (XHNBR). En segundo lugar, se formularon mezclas de PA6/XHNBR 

vulcanizadas con peróxido que contienen óxidos metálicos y antioxidantes fenólicos 

como un nuevo concepto para diseñar TPVs de amortiguación de vibraciones de alto 

rendimiento. Finalmente, se investigó la relación entre la microestructura de los 

materiales desarrollados y su comportamiento cuasi-estático y dinámico mecánico no 

lineal. En general, los resultados obtenidos han señalado el potencial de los TPVs 

carboxílicos como materiales de amortiguación de vibraciones de alto rendimiento. Por 

un lado, el enfoque explorado, basado en la compatibilización reactiva de las mezclas de 

PA6/HNBR añadiendo XHNBR, reveló nuevas estrategias para desarrollar mezclas de 

elastómeros termoplásticos con propiedades térmicas y mecánicas superiores mediante el 

control de las interacciones interfaciales y la morfología. Además, los resultados 

obtenidos resaltaron que la generación de reticulaciones iónicas mediante la adición de 

óxidos metálicos, representa una estrategia muy prometedora para desarrollar TPVs de 

alto rendimiento con propiedades de amortiguación de vibraciones en un amplio rango de 

temperaturas. Además, la investigación de la microestructura y el comportamiento 

mecánico no lineal de los materiales permitió identificar y vincular los procesos de 

deformación micromecánica con sus correspondientes características microestructurales. 

Finalmente, se han presentado interpretaciones físicas de los mecanismos de deformación 

observados con el fin de construir una base de conocimiento para el modelado 

micromecánico de TPVs. En conclusión, esta Tesis abre nuevas posibilidades para 

obtener TPVs de alto rendimiento con propiedades térmicas, mecánicas y de 

amortiguación de vibraciones personalizadas, así como para prever su comportamiento 

mediante herramientas de modelado micromecánico. 



 

 

 

Laburpena 

Ibilgailu elektrikoen osagai arinek zaratari eta bibrazioari lotutako eskakizun berriei 

egin beharko diete aurre; izan ere, barne-errekuntzako motorrik ezean, osagaien 

bibrazioek sortutako zarata nabarmenagoa izango baita. Testuinguru honetan, 

termoplastiko elastomero bulkanizatuak (TPV-ak, ingeleseko siglak direla eta) material 

interesgarriak dira, beraien dentsitate bajua, birziklagarritasuna, prozesatzeko erraztasuna 

eta diseinu-malgutasuna direla eta. Tesi honen helburua errendimendu handiko TPV-en 

diseinua eta garapena sustatzea da, auto osagaien egiturazko bibrazioak moteltzeko. 

Horretarako, poliamida 6-an (PA6) eta akrilonitrilo butadieno hidrogenatuko kautxuan 

(HNBR) oinarritutako TPV berriak garatu dira, eta hauen mikroegituraren eta 

propietateen arteko erlazioa sakonki ikertu da. Lehenik eta behin, PA6/HNBR nahasketen 

bateragarritasun erreaktiboa aztertu zen, HNBR karboxilikoa gehituta (XHNBR). 

Bigarrenik, bibrazioak moteltzeko errendimendu handiko TPVak diseinatzeko kontzeptu 

berri gisa, peroxido bidez bulkanizatutako eta oxido metalikoak zein antioxidatzaile 

fenolikoak dituzten PA6/XHNBR nahasteak formulatu ziren. Azkenik, mikroegituraren 

eta portaera kuasi-estatiko eta dinamiko mekaniko ez-linealaren arteko erlazioa ikertu 

zen. Oro har, lortutako emaitzek, TPV karboxilikoek bibrazioak moteltzeko 

errendimendu handiko material gisa duten potentziala adierazi dute. Alde batetik, 

XHNBR gehitzean oinarritzen zen, PA6/HNBR nahasteen bateragarritasun erreaktiboa 

burutzeko aztertutako estrategiak, propietate termiko eta mekaniko altuko termoplastiko 

elastomero nahasketak garatzeko estrategia berriak badaudela demostratu zuen. 

Estrategia berri horiek, faseen arteko interakzioak eta morfologia kontrolatzean 

oinarritzen dira. Gainera, lortutako emaitzek nabarmendu zuten, oxido metalikoak 

gehituz, erretikulazio ionikoak sortzea etorkizun handiko estrategia dela tenperatura-tarte 

handi batean bibrazioak moteltzeko propietateak dituzten errendimendu handiko TPVak 

garatzeko. Gainera, mikroegituraren eta portaera mekaniko ez-linealaren arteko 

erlazioaren ikerketak, deformazio mikromekanikoko prozesuei dagozkien ezaugarri 

mikroestrukturalak identifikatzea eta lotzea ahalbidetu zuen. Azkenik, behatutako 

deformazio-mekanismoen interpretazio fisikoak aurkeztu dira, TPVen modelizazio 

mikromekanikorako ezagutza-oinarri bat eraikitzeko intentzioarekin. Laburbilduz, Tesi 

honek aukera berriak irekitzen ditu propietate termiko, mekaniko eta bibrazioak 

moteltzeko propietate pertsonalizatuak dituzten errendimendu handiko TPVak lortzeko, 

bai eta, modelizazio mikromekanikoko tresnen bidez, horien portaera aurreikusteko ere. 
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Introduction 

1.1.  Motivation 

Automotive and transportation applications have dominated the market of 

thermoplastic elastomers (TPEs) in 2019. As shown in Figure 1.1 about 44% of all TPE 

products, consumed worldwide, were used in the automotive industry [1]. The key 

reasons for adoption of TPEs in automotive applications are their lightweight, ease-of-

processing and recyclability.  

 

Table 1.1 summarizes the global TPE market in automotive applications for the years 

2014 and 2019 [2]. As can be seen in the table, thermoplastic vulcanizates (TPVs) have 

become one of the fastest growing TPE types in the automotive industry. The main 

Figure 1.1. Global market for TPEs in 2019. 
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reasons for this high growth are ascribed to their outstanding properties and design 

flexibility. The formulation of TPV materials enables the blending of different rubber, 

thermoplastic and crosslinking systems to develop elastomeric materials with tailored 

properties. Currently, classical vulcanized rubbers are starting to be replaced by high-

performance TPVs in a wide range of automotive applications. These high-performance 

TPVs are based on high-performance rubber and thermoplastics, other than those general-

purpose TPVs based on PP and EPDM.  

 

Table 1.1. Global automotive market for TPE types in the years 2014 and 2019 

(thousand tonnes). 

TPE type 2014 2019 

TPS 382.8 504.4 

TPO 498.7 684.5 

TPV 326.0 460.6 

TPU 199.9 254.3 

TPC 78.4 108.4 

TPA 32.0 42.3 

Others 20.0 29.8 

 

In recent years, environmental protection and alternative green energies have become 

one of the main social and political concerns due to the greenhouse gas emissions and the 

high pollution in modern cities. The road transport is responsible of 75 % of total 

greenhouse gas emissions of the transport industry [3]. Furthermore, according to the 

United Nations the world population will experience an increase of 30% from 2017 to 

2050, and the number of road vehicles is expected also to grow accordingly [4]. All these 

factors, together with the introduction of new climate policies, such as the European 

Union policy to reduce transport greenhouse gas emissions to 60% below 1990 levels by 

2050, are accelerating the replacement of conventional internal combustion engine 

vehicles with electric vehicles (EVs), becoming the electrification of road vehicles one of 

the leading automotive trends [5]. A great number of original equipment manufacturers 

(OEMs) have taken a significant step in the field of green transportation by introducing 

EVs to their product range. This step implies a variety of new technological challenges 
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that OEMs must face in several engineering fields including new lightweight concepts, 

new requirements and new materials, among others. 

Lightweighting has long been a technological challenge in vehicles powered by 

combustion engines to aid the climate target of reducing CO2 emissions. In electric 

vehicles, lightweighting still will play a critical role in terms of increasing the driving 

range by means of lowering the energy consumption. However, the main new challenges 

that lightweight electric vehicle components will face is related with their noise and 

vibration performance. Noise and vibration performance will be a key aspect in EVs 

because, in the absence of the internal combustion engine, the noise generated by the 

vibration of lightweight components will become more apparent [6–8]. Consequently, 

electric vehicle components will have to meet higher noise and vibration standards than 

the components of internal combustion engine vehicles. At this point, advanced 

lightweight materials with vibration damping properties will need to be used to minimize 

or eliminate the vibration of lightweight EV components in order to increase the acoustic 

comfort in the vehicle’s interior [9]. In the next decades the focus on material research 

and technology for automotive industry will be driven by these challenges. 

To overcome these new demands, traditional design and material choices must be 

revisited. In this context, thermoplastic vulcanizates are interesting materials due to their 

light weight, recyclability, easy processing and design flexibility. Moreover, the 

commercial availability of so many rubbers and thermoplastics with the desired properties 

for blending, allows the development of advanced TPV materials specifically for EV 

applications. Thus, a huge number of opportunities arise when looking at the 

contributions that the mentioned materials can have in the electric vehicles of the future. 

Nevertheless, still few works exist about the design of high-performance TPV materials 

for vibration damping applications, which means that there is a great deal of room for 

research and development in this field. The key for tailoring these new TPV materials 

will be to understand how their microstructure influences the macroscopic material 

properties, such as the thermal, mechanical or vibration damping performance, and how 

to control and modify their properties as desired. 
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1.2. State of the art 

This section summarizes the state of the art concerning to thermoplastic elastomers 

(TPEs) and the different approaches to obtain high-performance TPEs by blending rubber 

and thermoplastics, emphasizing on the preparation, structure and properties of TPV 

materials. 

1.2.1.  Thermoplastic elastomers (TPEs) 

Thermoplastic elastomers (TPEs) are multi-functional polymeric materials that have 

the processing characteristics of thermoplastics, i.e. they can be processed by traditional 

melt manufacturing methods such as injection moulding and melt extrusion, while 

exhibiting the performance properties of conventional vulcanized rubbers [10, 11].  

Figure 1.2 highlights the main differences when processing conventional rubbers and 

TPEs. As it can be seen in the figure, processing of TPE materials is simpler and more 

economical. Furthermore, TPEs offer the advantage of scrap and waste material recycling 

since they are not vulcanized during the fabrication into end-use parts [12, 13]. 

 

In recent years, TPEs are attracting a considerable attention, both in industry and in 

academia, and are becoming the fastest growing elastomers to replace unrecyclable 

vulcanized rubbers due to the requirements of environmental protection and resource 

savings [1]. 

Figure 1.2. Comparison of (a) rubber and (b) TPE processing steps. 
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 Phase structure 

The unique feature of TPE materials is their biphasic morphology, in which one phase 

is hard and solid at ambient temperature whereas the other is soft and rubbery in nature. 

The hard phase provides to the TPEs their strength, while the soft phase provides the 

elasticity and flexibility to the structure. Without the hard phase, the rubbery phase would 

be free to flow under stress and the polymeric material would not be functional. So, in 

some way, the hard phase acts as the crosslinking sites in conventional vulcanized 

rubbers. However, in comparison with vulcanized rubbers, the hard phase is based on 

physical interactive forces and gives to TPE materials the melt processability of 

thermoplastic polymers [14].  

Both phases are thermodynamically immiscible and, consequently, act as individual 

phases. Thus, each phase exhibits its specific glass transition temperature (Tg) or 

crystalline melting temperature (Tm). As an example of the biphasic nature of TPEs, 

Figure 1.3 illustrates the change of the modulus with the temperature, where three 

different regions can be observed.  

Below the Tg of the rubbery phase, both phases are hard and, therefore, the TPE 

material is stiff and brittle. Above its Tg the rubbery phase becomes soft and so the TPE 

presents an elastic behaviour, which is comparable to the behaviour of conventional 

vulcanized rubber. Finally, when the Tg or Tm of the hard phase is reached the TPE 

becomes fluid and so melt processable. Therefore, the service temperature range of TPE 

materials lies between the Tg of the rubbery phase and the Tg or Tm of the hard phase [15]. 

 Classification  

TPEs can be divided in two main categories, namely TPEs based on block copolymers 

and TPEs based on rubber-plastic blends. A-B-A triblock copolymers and (A-B)n 

multiblock copolymers are the two main types of block copolymer TPEs, whereas TPE 

blends, which are the focus of this PhD research work, can be divided into thermoplastic 

polyolefin blends (TPOs) and thermoplastic vulcanizates (TPVs) (Figure 1.4) [16]. 
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TPEs based on A-B-A tri-block copolymers have two terminal hard blocks, that 

usually are polyesters, connected to a soft elastomeric central block. The most common 

triblock copolymer-type TPE is the polystyrene-block-polybutadiene-block-polystyrene 

(SBS) [17]. (A-B)n multiblock copolymers contain repeating hard and soft blocks. The 

most common multiblock copolymer-type TPEs are copolysters (COPE), copolyamides 

(COPA) and thermoplastic polyurethanes (TPU). Typically, soft blocks are based on 

polyethers and hard blocks on polyesters, polyamides or polyurethanes [18]. At service 

temperature, the hard blocks act as physical crosslinks between the soft blocks creating a 

three-dimensional network, as is schematically shown for a SBS copolymer in Figure 1.5. 

Thermoplastic 
elastomers (TPEs)

Block copolymers

A-B-A 
triblock 

copolymers 

(A-B)n 

multiblock 
copolimers 

Blends

Thermoplastic 
polyolefin blends 

(TPO)

Thermoplastic 
vulcanizates (TPVs)

Figure 1.4. Classification of TPE materials. 

Figure 1.3. Stiffness of typical thermoplastic elastomers at various 

temperatures. The service temperature range is highlighted.  
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Above the Tg or Tm of the hard blocks, the physical crosslinks disappear, and the 

copolymer becomes melt-processable [19].  

TPE blends are defined as mechanical mixtures of rubbers and semi-crystalline 

thermoplastics [20]. The main difference between TPOs and TPVs is that the former are 

co-continuous biphasic systems with neither of the phases crosslinked whereas in the 

latter the rubber phase is crosslinked and dispersed in a semi-crystalline thermoplastic 

matrix (Figure 1.6) [21, 22]. The crosslinking of the rubber phase leads to TPEs with 

superior properties [23–25]. Commercial TPVs possess a high amount of crosslinked 

rubber particles (≥ 50 wt%) and most of them are based on blends of ethylene-propylene-

diene (EPDM) and polypropylene (PP).  

The earlier classes of TPEs were based on block copolymers. However, TPE blends 

are becoming technologically more interesting because, unlike copolymer-type TPEs, 

both the rubber and thermoplastic phase in TPE blends are usually commercially 

available, and thus do not require development of new monomers or polymerization 

routes. Hence, blending represents a smart and economical way to develop new TPE 

materials. 

 

 

  

Figure 1.5. Schematic representation of the 

morphology of a SBS copolymer-type TPE 

material. The scale bar represents the phase 

separation length between the hard and soft 

phases, which usually is around 100 nm. 
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1.2.2.  Preparation of TPEs from rubber-thermoplastic blends 

As explained earlier, the elastomeric properties of TPEs are the result of a hard-soft 

phase-separated structure, i.e., a heterogeneous morphology, which means that in TPE 

blends the rubber and thermoplastic materials must be thermodynamically not miscible.  

 Thermodynamics of phase separation 

Miscibility is a thermodynamic term that defines the number of phases and the 

composition that is formed when blending a pair of polymers [26]. The state of miscibility 

of polymer blends is governed by the free energy of mixing (∆𝐺𝑚), which is defined as: 

∆𝐺𝑚 = ∆𝐻𝑚 − 𝑇 ∙ ∆𝑆𝑚                                                (1.1) 

where ∆𝐻𝑚 is the enthalpy of mixing, T is the absolute temperature and ∆𝑆𝑚 the entropy 

of mixing. A polymer blend is miscible if the free energy of mixing is negative, while 

immiscible if not. ∆𝑆𝑚 approaches to zero as the molecular weights of the components 

become large. So, when two high-molecular weight polymers are blended, the free energy 

of mixing will be negative only if the enthalpy of mixing is negative too. That means that, 

in order to obtain a completely miscible blend, the mixing must be exothermic, i.e., strong 

interactions are needed between the components [14].  

(a) (b) 

Figure 1.6. Schematic representation of the morphology of 

(a) TPOs and (b) TPVs. 
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Polymer blends can be classified in three groups in terms of miscibility: completely 

miscible, partially miscible and fully immiscible. A completely miscible blend presents a 

homogeneous morphology with a single Tg, whereas partially miscible and immiscible 

blends exhibit a heterogeneous morphology with at least two Tg values. Partially miscible 

blends, also known as compatible blends, present a fine phase morphology with part of 

one component dissolved in the other and Tg values that are dependent on the blend 

composition. On the other hand, fully immiscible blends exhibit a coarse morphology, 

sharp interface, poor adhesion between the blend phases, and Tg values that are 

independent of blend composition, which generally results in performance properties that 

are inferior to those of the pure components [27].  

TPE blends with improved final properties can be obtained only if the rubber and 

thermoplastic are compatible [28] . But, most of high-molecular weight polymers are fully 

immiscible due to the low interactions that usually exist between them [29]. Therefore, 

in order to obtain a technologically useful TPE blend, surface energies of the rubber and 

thermoplastic phases need to be compatibilized, i.e., the surface energies need to be 

matched [30–35]. It is therefore necessary to consider the compatibilization of immiscible 

blends as a key strategy to develop new TPE blends with superior properties. 

Compatibilized immiscible blends can be prepared by adding interfacial active agents 

(physical blending) or through interfacial reactions (reactive blending) [36].  

 Physical blending 

In physical blending, pre-made copolymers are synthetized prior to the blending 

operation, and subsequently added to an immiscible blend. Those copolymers are usually 

based on block or graft structures. The most widely used are the ones with blocky 

structures, being one constitutive block miscible with one of the blend components and 

the other block miscible with the other component. The addition of pre-made copolymers 

results in an anchoring in the respective homopolymers. Owing to its chemical and 

molecular characteristics, those copolymers are expected to be located at the interface 

between the two phases, reducing the interfacial tension and so improving their 

compatibility (Figure 1.7) [37].  
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Many works that analyse the use of copolymers as a strategy to prepare compatible 

TPE blends can be found in the literature [38–41]. However, this strategy seems not to be 

suitable in large-scale production due to the commercial unavailability of the materials 

and the high production cost of specific copolymers by synthesis. Moreover, the obtention 

of compatible blends by physical blending presents some technical limitations as well. 

The most important ones are the high viscosities of most block copolymers at the melt-

blending temperature, which makes the copolymer diffusion to the interface difficult, and 

the formation of micelles prior to their location at the interface [42]. Due to these 

drawbacks, most of the actual efforts are directed to the obtention of TPE blends by 

reactive blending. 

 Reactive blending 

Reactive blending is a cost-effective technique that is based on the formation of 

compatible blends by in situ chemical reactions that occur at the interface during the melt-

mixing. For that, functional groups are incorporated onto the polymeric components of 

the blend. The chemical reactions between the functional groups generate block or graft 

copolymers just at the zone where they are needed, i.e., at the interface between the phases 

[43]. Consequently, the possibility for micelle formation is lower than in the physical 

blending, which results in a higher compatibilization effectiveness [44].  

Figure 1.7. Schematic representation of the ideal location of diblock, 

triblock and graft copolymers at the interface of an immiscible A/B 

polymer blend. 
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For most binary polymer blends, the appropriate reactive groups are not presented. In 

such cases a reactive polymer must be added as a third component of the blend [45]. The 

reactive polymer must fulfil two main conditions: needs to be miscible with one of the 

blend components and reactive with the other blend component (Figure 1.8). During melt-

blending, the functional groups of the reactive polymer can react with the complementary 

groups of the other phase. This enables the formation of graft or block copolymers at the 

interface of the two phases and, consequently, the compatibilization of the immiscible 

binary blend [46]. 

 

Polyamides are one of the most extensively investigated polymers for reactive 

blending due to the high reactivity of their inherent amine and carboxylic functionalities 

[47, 48]. Several works have demonstrated that TPE blends obtained from reactive blends 

based on polyamides generate high levels of block or graft copolymers during the melt 

blending process [49–55].  

The reactive blending of TPE blends can be carried out using either batch or 

continuous mixing machines. In a batch mixer the blending process is carried out within 

a single isolated volume. The most common batch mixing machine is the internal mixer, 

which is composed of two rotors that are enclosed in a mixing chamber [56]. On an 

industrial scale, TPE blends are typically fabricated using continuous extrusion processes 

due to the high flexibility that the extrusion process offers. The reactive blending by 

Figure 1.8. Schematic representation of the compatibilization 

strategy of an immiscible A/B blend using a third polymer (C) as 

reactive precursor. 
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extrusion is also known as reactive extrusion [43]. The most widely used continuous 

processing method for the preparation of TPE blends by reactive blending is the reactive 

extrusion by using co-rotating twin screw extruder machines [57]. 

Co-rotating twin screw extruder for reactive blending 

The co-rotating twin-screw extruders are the most important commercial machines for 

the fabrication of TPEs by reactive blending. Besides, they are particularly suitable for 

the reactive blending between immiscible rubber and thermoplastics because they can 

cover the whole range of viscosities that each kind of polymer can have in a single reactor. 

This permits the fabrication of a wide range of TPE blend formulations. Different size 

twin-screw extruders which can cover production rates from laboratory scale levels up to 

industrial production levels are available in the market [58]. 

A co-rotating twin screw extruder is based on two shafts mounted with various screw- 

elements that are self-wiping in pairs. The self-wiping design cancels the stagnation of 

the materials and so its subsequent degradation during its flow along the twin-screw 

extruder. Screw elements can be divided into three categories depending on their mixing 

function: conveying, kneading and distributive. Conveying screw elements are used to 

transport the material, both in forward and reverse way. Kneading screw elements are 

used for melting, dispersing and homogenization. Distributive mixing elements 

homogenize the spatial distribution of the previously dispersed and homogenized blend 

components [59]. Figure 1.9 illustrates the effect of dispersive and distributive mixing in 

an immiscible blend.  

The design of twin-screw extruders is based on a modular architecture having modular 

barrel and screws. This modular architecture provides a high versatility by facilitating the 

change of the length of different operations that can be done, such as the melting, mixing 

and homogenization operations, and also the change in screw configurations in order to 

achieve the optimum design for each kind of compound to be blended. Figure 1.10 shows 

a photograph of the two shafts mounted with a particular screw configuration.  
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Figure 1.9. Schematic representation of distributive and dispersive mixing 

effects in immiscible blends. 

Figure 1.10. Photography of the two shafts mounted with modular screw 

elements. 
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1.2.3. Thermoplastic vulcanizates (TPVs) 

After reviewing the general state of the art related to the preparation of TPEs from 

rubber-thermoplastic blends, this section will be entirely dedicated to TPVs, as they 

represent the central topic of this work.  

 Preparation of TPVs 

TPVs are prepared by a complex reactive blending process characterized by the 

selective crosslinking of the rubber phase during the melt-blending with the thermoplastic 

under high shear conditions. This process is known as dynamic vulcanization because 

contrarily to the crosslinking of rubber materials that takes place under static conditions 

(applying pressure and temperature in a mould), the crosslinking of TPVs is done under 

high shear or dynamic conditions. The processing temperature must be high enough not 

only to melt the thermoplastic material but also to crosslink the rubber phase [60].  

The idea of dynamic vulcanization process was claimed by Gessler in 1962 [61]. Ten 

years later, in 1972, Fisher produced the first TPV that was introduced to the market. This 

TPV was composed of a partially peroxide crosslinked ethylene propylene diene 

monomer rubber (EPDM) and polypropylene (PP). The rubber phase was partially 

crosslinked in order to ensure the melt-processability of the TPV material. In 1978, Coran 

and Patel were able to obtain TPVs that were melt-processable and acquire superior 

properties by fully crosslinking the rubber phase under dynamic shear [62]. In 1980 they 

carried out an extensive research on TPVs based on several thermoplastic-rubber 

mixtures [63, 64]. This research work was followed by the first commercialization of 

PP/EPDM TPVs by Monsanto (ExxonMobil) in 1981. This commercial TPV was named 

as “Santoprene” [65].  
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The evolution of the TPV material morphology during the dynamic vulcanization 

process is schematically shown in Figure 1.11. The selective crosslinking of the rubber 

phase causes the increase of its viscosity and so a change in the biphasic structure of the 

blend from a co-continuous morphology to a morphology based on crosslinked rubber 

droplets dispersed in a thermoplastic matrix. This change in the morphology is known as 

the phase inversion phenomena. Due to the phase inversion phenomena, a droplet matrix 

morphology can be obtained within a TPV material even if the rubber phase represents 

more than the 50 wt% of the blend. The applied high shear hinders the coalescence and 

causes the breakup of the rubber droplets, thus facilitating the obtention of the 

characteristic morphology of TPVs based on fine dispersion of crosslinked rubber 

particles in a thermoplastic matrix [66]. 

 

Figure 1.12 illustrates the two methods that are mostly used to prepare TPVs by means 

of the dynamic vulcanization process in recent times. The first method consists on the 

melt-blending of the rubber and thermoplastic materials and the following addition of the 

crosslinking agents. The melt-blending of the three components is continued under the 

same temperature and shear rate conditions in order to foment the dynamic vulcanization 

process and the further mixing of the rubber and thermoplastic phases to obtain a fine 

dispersion of rubber droplets. The second method comprises the cold-mixing of the 

rubber and the crosslinking agents and subsequent melt-blending of the premixed rubber 

compound with the thermoplastic material.  

Figure 1.11. Schematic representation of the morphology development during 

the dynamic vulcanization process. 
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Production of high-performance TPVs 

Conventional TPVs, such as the ones made from PP and EPDM, exhibit a progressive 

change of their mechanical properties when exposed to heat and oil, i.e. they are not heat 

and oil resistant. High-performance TPVs, also known as special TPVs, possess good oil 

and high temperature resistance properties, consequently, they can operate under 

aggressive temperature and oil environmental conditions for prolonged time periods 

without any deterioration of their properties [67].  

Over the past decade, many research works explored different strategies to produce 

high-performance TPVs and highlighted that the main aspects that determine the 

obtention of high-performance TPVs are the understanding and control of the relationship 

between the microstructure and the mechanical properties of the TPVs and the selection 

of high-performance rubber and thermoplastic materials.  

 

 

Figure 1.12. Schematic representation of the two major preparation 

methods of TPV. 
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Microstructure-mechanical properties relationship  

The mechanical performance of TPVs is governed by their microstructural features 

[68]. Consequently, understanding the relations between microstructure and mechanical 

properties represents a key strategy to provide a guidance and encourage the field of high-

performance TPVs development. The microstructure-mechanical properties of a TPV 

system depend on the following features:  

1) Rubber/thermoplastic composition ratio 

Many research works have revealed that a rubber to thermoplastic ratio larger than 1 

is necessary to fabricate high-performance TPV systems [66, 69–72]. Usually, the 

rubber phase comprises more than 50 wt% of the compound in order to obtain TPVs 

with high elasticity due to the higher intrinsic elasticity of rubber materials [73, 74]. 

However, several studies revealed that the use of a high amount of rubber could cause 

an increase of the rubber particle size. For example, Chatterjee et al. [66] stated a 

significant increase of the rubber particle size when increasing the rubber content from 

50 wt% to 70 wt% in carboxylated acrylonitrile butadiene rubber (XNBR)/polyamide 

12 (PA12) TPV systems. The increase of the rubber particle size with increasing the 

rubber content is ascribed to the higher probability of coalescence during melt-mixing 

[75, 76]. On the other hand, several studies described that an increase of the 

thermoplastic content causes a decrease of the elongation at break of the TPV and an 

increase in the tensile strength. The stress-strain behaviour shifts to a more 

thermoplastic-like behaviour [77–79].  

2) Size of the rubber particles 

Several research works highlighted that a fine dispersion of rubber particles is needed 

to obtain TPVs with superior properties [80–84]. Usually, a decrease of the rubber 

particle size produces an improvement in the elastomeric properties by increasing the 

tensile strength, elongation at break and the elastic recovery capacity [85–88]. 
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3) Crosslinking degree of the rubber phase. 

Typically, an increase of the crosslinking degree generates a decrease of the rubber 

particle size [89–91]. The tensile strength, elongation at break and elasticity increase 

with the crosslink density of rubber phase. Nevertheless, several studies have found 

that an additional increase of the crosslinking agent content causes a deterioration of 

the properties [92–94]. Babu et al. studied the effect of peroxide concentration in 

PP/ethylene octene copolymer (EOC) TPV systems and found that the addition of high 

amount of peroxide provokes the formation of coarse rubber particles that may act as 

stress concentrators [93].  

4) The rubber network structure 

The addition of different types of crosslinking agents generates different rubber 

network structures [95–97]. For instance, Nakason et al. analysed the microstructure-

mechanical properties relationship in epoxidized natural rubber (ENR)/PP TPVs 

containing different mixed crosslink systems. They observed that a rubber network 

structure comprising carbon-carbon (C-C), carbon-sufur (C-S) and sulfur-sulfur (S-S) 

crosslinks leads to TPVs with enhanced elongation at break and tensile strength [95].  

5) The interfacial interaction between rubber and thermoplastic phases 

As discussed in earlier sections, the compatibilization of the rubber and thermoplastic 

materials represents an essential step in order to obtain TPVs with improved 

properties. Generally, when interfacial interactions between the rubber and 

thermoplastic phases are created, a fine dispersion of the rubber particles is obtained, 

which leads to upgraded elastomeric properties [98–101]. 

6) Addition of fillers 

Characteristically, the addition of fillers has a reinforcing effect on TPV materials and, 

therefore, causes an increase of tensile strength and modulus [102–105]. Besides, the 

addition of fillers may decrease the elasticity of TPVs [106].  
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7) Crystallinity degree of the thermoplastic phase 

Generally, an increase of the crystallinity degree of the thermoplastic phase causes a 

decrease in the elasticity of TPVs [107, 108]. 

8) The thickness of the plastic ligaments of the thermoplastic phase  

Interestingly, TPVs are able to deform elastically and with good elastic recovery 

capacity, even though their microstructure is based on a thermoplastic matrix 

(continuous phase) which is supposed to deform through a non-reversible plastic 

deformation. Several studies have demonstrated that the presence of thin plastic 

ligaments in the thermoplastic phase determines the deformation and elastic recovery 

ability of TPV materials [109–112]. Oderkerk et al. studied the deformation behaviour 

of polyamide 6 (PA6)/EPDM TPVs and demonstrated that the thinner the plastic 

ligaments are, the better the elastic recovery ability of TPVs is [109]. Therefore, the 

stretching of thin plastic ligaments in the thermoplastic matrix phase represents a key 

mechanism of the mechanical performance of TPVs [113, 114].  

The strong influence of all the above-mentioned microstructural features on the 

mechanical properties has been proved by many studies, and so they represent crucial 

aspects to be controlled in order to obtain high-performance TPVs. However, in spite of 

the numerous research works on the characterization of the microstructure and the 

corresponding mechanical properties of TPV systems, the effects of the thermoplastic and 

rubber microstructural constituents in their mechanical behaviour are still not clear [68].  

Selection of high-performance rubber and thermoplastics  

The melt-blending of high-performance rubbers and thermoplastics represents an 

effective strategy to produce high-performance TPV compounds. Depending on the 

selected rubber and thermoplastic, high-performance TPVs can be classified as follows 

[115]: 

1) High-performance TPVs composed of high-performance heat resistant 

thermoplastic materials such as polyethylene terephthalate and polyamide. 



20    CHAPTER 1: Introduction 

 

2) High-performance TPVs composed of high-performance heat resistant 

rubbers such as acrylate rubber, fluorinated rubber and hydrogenated nitrile 

rubber. 

3) High-performance TPVs obtained by blending high-performance 

thermoplastic and rubbers. In this case they are named super-TPVs.  

Table 1.2 presents a summary of the high-performance TPVs that have been studied 

and developed up to the present time.  
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Table 1.2. Review of high-performance TPVs. 

ACM, acrylic rubber; EVA, ethylene-co-vinyl acetate copolymer (VA content<50%); EVM, ethylene-vinyl acetate rubber (the content of vinyl acetate (VA) is 50%); FKM, 

fluoroelastomer; HNBR, hydrogenated acrylonitrile butadiene rubber; NBR, nitrile butadiene rubber; PA, polyamide; PBT, poly(butylene terephthalate); PDMS, polydimethylsiloxane 

silicone rubber; PET, polyethylene glycol terephthalate; PLA, poly (Lactic acid); PU, polyurethane; PVDF, poly(vinylidene fluoride); TPU, thermoplastic polyurethanes;. 

 

TPVs 
Blend components 

(thermoplastic/rubber) 
Crosslinking agent Distinctive property Commercial availability References 

Silicone rubber 

(SiR) based 

(SiTPVs) 

PA/ SiR; PVDF/ SiR; 

EOC/PDMS; PU/PDMS 
Peroxide 

Soft touch; outstanding 

heat and oil resistance 

Commercialized by Dow 

Corning since 2004 under the 

trade name TPsiV®. 

[116–124] 

Acrylic rubber 

(ACM) based  

PA6/ACM; PBT/ACM; 

PET/ACM; PLA/ACM; 

PVDF/ACM; PP/ACM 

Hexamethylenediamine carbamate 

(HMDC) 

Good heat and oil 

resistance 

PA6/ACM Zeotherm® TPV 

commercialized by Zeon 

since 2002 

[125–127] 

Nitrile-butadiene 

rubber (NBR) 

based  

PP/NBR Phenolic resin; peroxide 

Outstanding oil 

resistance, mechanical 

properties and 

processability 

- [128–131] 

Ethylene-vinyl 

acetate rubber 

(EVM) based 

EVA/EVM; PVDF/EVM; 

TPU/EVM 
Peroxide  

Good heat and oil 

resistance 
- [132–135] 

Isobutylene-

isoprene rubber 

(IIR) based  

PA/IIR, PP/IIR 

Sulfur; peroxide; N, N’-m-

phenylene dismaleimide/zinc 

oxide(ZnO); zinc 

diethyldithiocarbamate 

(ZDEDC)/ZnO 

Outstanding gas barrier 

properties 
- [136–140] 

Hydrogenated 

nitrile rubber 

(HNBR) based 

PA/HNBR; PA/XNBR Peroxide; phenolic resin 

High temperature and oil 

resistant; outstanding 

mechanical properties 

- 
[115, 141, 

142] 

Fluorinated rubber 

(FKM) based 

PA6/FKM; PP/FKM; 

PVDF/FKM 

Hexamethylenediamine carbamate 

(HMDC); peroxide 

Excellent mechanical 

properties; good oil and 

heat resistance 

PVDF/FKM Fluoroprene® 

TPV commercialized by 

Freudenberg-Nok since 2003 

[143–148] 
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Among all of the analysed high-performance TPV systems, PA6/HNBR based TPVs 

represent an interesting choice for the development of high-performance TPVs with 

vibration damping properties due the outstanding dynamic performance of HNBR rubbers 

(Figure 1.13) [149]. However, no research work has been found in literature that studies 

the formulation of PA6/HNBR high-performance TPVs for vibration damping 

applications. 

 

HNBR is produced by catalytic hydrogenation of NBR (Figure 1.14). HNBR rubbers 

with a broad range of final properties can be obtained by changing the amount of 

acrylonitrile, the hydrogenation level and the molecular weight. Regarding to the 

crosslinking agents, HNBR is commonly cured by using peroxides because, compared 

with the sulfur crosslinking, the peroxide crosslinking leads to rubbers with good high 

temperature resistance and elastic recovery capacity. HNBR rubbers crosslinked with 

peroxide are able to retain their properties for long term periods of time over the 

temperature range from -40 to 150 °C [150]. 

Bayer was the first company in introducing HNBR to the market under the trade name 

of Therban. Currently, different Therban grades are supplied by Arlanxeo. Figure 1.15 

illustrates a comparison of Therban with other high-performance rubbers. Due to its 

outstanding properties Therban HNBR is mainly used in automotive components such as 

belts, hoses and dynamic seals [151]. 

Figure 1.13. Comparison of the dynamic properties of various high-performance rubbers. 
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Figure 1.14. Chemical structure of NBR and 

HNBR. 

Figure 1.15. Comparison of the properties of 

Therban HNBR with other high-performance 

rubbers. 
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1.3. Objectives of the thesis 

The electrification of vehicles is adding new challenges to transport industry related 

with the noise and vibration of the different vehicle components. As the elimination of 

the internal combustion engine will eliminate the noise generated by it, the noise 

generated by many lightweight components that are susceptible to vibrate will become 

more apparent and so, not comfortable. Consequently, it exists a demand for new 

solutions based on advanced vibration damping materials that enable multi-material and 

lightweight designs.  

Driven by these demands, the main objective of this thesis is to generate knowledge 

for the design and development of high-performance thermoplastic vulcanizates (TPVs) 

with vibration damping properties. For that, TPE blends of HNBR with PA6 have been 

developed and the relationship between their microstructure and their properties analysed. 

HNBR and PA6 are two polymeric materials with excellent chemical, wear and heat 

resistant properties. Therefore, blending HNBR and PA6 would be encouraging in the 

field of high-performance TPVs that are increasingly replacing traditional vulcanized 

elastomers. Besides, HNBR rubbers possess remarkable vibration damping properties. 

Hence, PA6/HNBR blends represent an interesting choice for the development of high-

performance TPVs with vibration damping properties.  

The main objectives and hypotheses that are covered in the papers published in the 

thesis are summarized below.  

• The objective of the first paper of the thesis entitled “Toward superior applications 

of thermoplastic elastomer blends: double Tg increase and improved ductility” was 

to investigate the potential of reactive compatibilization of PA6/HNBR blends by 

means of carboxylated HNBR (XHNBR) addition. Carboxylic HNBR (XHNRB) 

has been considered as a potential compatibilizer since is miscible with HNBR 

and the carboxyl functionalities can react with the amine end groups of PA6, while 

melt blending. As the glass transition temperature (Tg) is one of the most important 

properties that governs the service temperature and viscoelastic damping 

performance range of TPE blends, the main focus was put on the relationship 

between morphology, phase interactions and glass transition behaviour. A 
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fundamental understanding of this relationship would let to an effective control of 

the ultimate performance characteristics of the developed TPE blends.  

 

• The aim of the second paper of the thesis entitled “New ways to improve the 

damping properties in high-performance thermoplastic vulcanizates” was to 

explore novel strategies to improve the vibration damping properties of high-

performance TPVs. Based on the hypothesis that the addition of metal oxides and 

hindered phenolic antioxidants can improve the vibration damping properties of 

carboxylic rubbers, such as XHNBR, via ionic and hydrogen bond generation, the 

potential of these approaches to enhance the vibration damping performance of 

peroxide cured TPVs based on PA6 and XHNBR has been explored. The 

investigated strategy represents a completely new method to develop high-

performance vibration damping TPV materials. 

 

• Finally, the main objective of the third paper of the thesis entitled “Experimental 

investigation of the nonlinear quasi-static and dynamic mechanical behaviour of 

novel thermoplastic vulcanizates based on PA6 and carboxylated HNBR: linking 

mechanical nonlinearities to microstructural features” was to obtain a more 

fundamental understanding of the relationship between the microstructure and the 

nonlinear quasi-static and dynamic mechanical behaviour of TPV materials. In 

particular, the impact of different microstructural features of the PA6 matrix and 

the rubber network on the mechanical behaviour has been investigated with the 

aim of identifying the underlying microstructural features involved in their 

micromechanical deformation processes. A detailed knowledge about the 

correlation between the nonlinear behaviour and the microstructural features is 

needed to ensure a competitive and confident application of designed TPV 

materials.  
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1.4. Results and discussion 

A summary of the key experimental results achieved in the thesis, and their discussion, 

is presented below. 

Reactive compatibilization of PA6/HNBR TPE blends 

In the first part of the thesis, the reactive blending approach has been explored as an 

effective technique for improving the compatibility of PA6/HNBR TPE blends. 

Carboxylic HNBR (XHNRB) has been considered as potential compatibilizer since it is 

miscible with HNBR and the carboxyl functionalities can react with the amine end groups 

of PA6, while melt blending. As the final properties of polymer blends are mainly 

dependent of the morphology and the adhesion between the components, the effect of 

XHNBR on the phase morphology and interfacial interactions has been investigated.   

Four TPEs have been prepared by melt blending of hydrogenated acrylonitrile 

butadiene rubber (HNBR) with polyamide 6 (PA6) in a co-rotating twin screw extruder, 

adding different amounts of carboxylated HNBR (XHNBR) as compatibilizer: 40/60/0, 

40/42/18, 40/30/30 and 40/18/42 (PA6/HNBR/XHNBR). The resulting blends were 

investigated using melt rheological measurements, morphological observations (scanning 

electron microscopy and polarized optical microscopy), dynamic mechanical analysis 

(DMA), differential scanning calorimetry (DSC) analysis and mechanical tests. 

Regarding the phase morphology, dispersed spherical particles of rubber in PA6 matrix 

were generated in the uncompatibilized sample, i.e. the sample without XHNBR. With 

the addition of 18% of XHNBR a decrease in the rubber particle size was observed. This 

has been attributed to the generation of interfacial interactions, via chemical reactions 

between the carboxyl groups in XHNBR and amide end groups in PA6, that lower the 

interfacial tension between the rubber and thermoplastic phases. Interestingly, reactively 

compatibilized TPE blend with co-continuous morphology has been obtained with the 

addition of 42% of XHNBR.  

The investigation of the variation of the complex viscosity and storage modulus of the 

blends components as a function of the angular frequency at the temperature and shear 

rate of melt-blending condition, indicated that the addition of XHNBR increases both the 
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viscosity and elasticity of the rubber phase. Based on this result, models that attempt to 

predict the phase inversion phenomena in melt-mixed immiscible polymer blends by 

determining the viscosity and elasticity ratios have been considered and tested. It was 

observed that by increasing the XHNBR content, the elasticity effects become more 

important than the viscous ones. Therefore, melt-linear rheological measurements 

demonstrated that the generation of a co-continuous morphology was mainly caused by 

the increase of the elasticity of the rubber phase with the addition of XHNBR.  

Melt-linear rheology permitted to determine the enhancement of the interfacial 

interactions. The characterization of the critical stress, estimated as the stress values when 

the storage modulus is equal to 95% of the plateau, enabled to determine the effect of 

XHNBR content on the adhesion between the blend components. An increase of the 

critical stress value with the increase of XHNBR content was observed, which is 

indicative of the effectiveness of the reactive blending approach.  

Mechanical characterization also enabled to establish the enhancement of interfacial 

interactions and the change of morphology from droplet-matrix to co-continuous revealed 

by scanning electron microscopy (SEM) and melt-linear rheology measurements. When 

the reactively compatibilized blend with co-continuous morphology was considered, the 

obtained elongation at break was 16 times higher than that of the uncompatibilized blend. 

Thus, a significant brittle to ductile transition was obtained due to the generation of 

interfacial interactions. The co-continuous morphology was evidenced by the reduction 

of the hardness with the addition of 42% XHNBR.  

The enhancement of the interfacial interactions with the XHNBR addition was also 

evidenced by the remarkable decrease in crystallinity of PA6 demonstrated by the 

reactively compatibilized blend with co-continuous morphology. Furthermore, DMA 

allowed to evaluate the effect of XHNBR content in the glass transition temperature (Tg), 

which not only determines the service temperature range but also the range of viscoelastic 

damping performance. A curious double Tg increase phenomenon was noted with the 

introduction of 42% XHNBR, which has been attributed to a decrease in the mobility of 

the amorphous domains, of both the PA6 and the rubber phase, caused by the interfacial 

interactions between the phases. 
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Novel strategy to design TPVs with improved vibration damping properties 

Carboxytated rubbers, such as XHNBR, are interesting materials for vibration 

damping applications because the addition of different crosslink types allows to 

customize their vibration damping properties within a wide range of temperature and 

frequencies. For these reasons, and because hardy any work that analyses the use of 

carboxylated rubbers to develop viscoelastic damping TPV materials is present in 

literature, in the second part of the thesis, the dynamic vulcanization of TPEs based on 

PA6 and HNBR by means of mixed-crosslink systems has been explored.  

Several TPVs have been prepared by dynamically vulcanizing the reactively 

compatibilized TPE blend with co-continuous morphology, i.e. the one with 42% of 

XHNBR, using mixed crosslink systems of peroxide with metal oxides and hindered 

phenolic antioxidants. Peroxides provide good properties at high temperatures due to the 

high bond energy of covalent bonds, whereas metal oxides and hindered phenolic 

antioxidants improve the damping performance via ionic and hydrogen bonds, 

respectively. The selected metal oxides were zinc oxide (ZnO) and magnesium oxide 

(MgO), whereas the selected hindered phenolic antioxidants were Irganox 1010 and 

Irganox 1098. The developed TPVs were studied by means of SEM, DMA, Fourier 

Transform Infrared (FTIR) spectroscopy, DSC and tensile test analysis.  

The characterization of the phase morphology through SEM analysis showed a 

droplet-matrix morphology with crosslinked rubber particles in the micron level for all 

developed TPV compounds. Phase separation was induced by the selectively crosslinking 

of the rubber phase that results in an abrupt increase of its viscosity.  

The vibration damping performance of the designed high-performance TPVs has been 

investigated through DMA characterization and measuring the loss tangent (tan δ). It was 

observed that the TPV compounds with MgO and ZnO showed an additional relaxation 

transition peak near room temperature associated with the relaxation transition of ionic 

bonds. This ionic transition was particularly evident for the TPV system containing the 

higher amount of MgO. In the case of the TPVs containing Irganox 1010 and Irganox 

1098, it was shown that the addition of Irganox 1010 increases the tan δ peak height of 

both rubber and thermoplastic phases, whereas the addition of Irganox 1098 decreases 

the tan δ peak height of the rubber phase dramatically. Interestingly, the peroxide cured 
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PA6/XHNBR TPV systems containing 5 phr of both Irganox 1010 and MgO showed 

enhanced vibration damping properties.  

FTIR spectroscopy measurements allowed to identify the multiple-network structure 

based on C-C, ionic and hydrogen bonds that was developed by the dynamic 

vulcanization via mixed crosslink systems. The investigation of the rubber network 

structure by means of FTIR analysis revealed the creation of carbon-carbon (C-C) 

crosslinks in all the TPV samples. Moreover, FTIR studies showed also that Irganox 1098 

acts mainly as an inorganic filler, not being coupled with the carboxyl functionalities 

present in the rubber phase, whereas Irganox 1010 forms hydrogen bonds with XHNBR. 

Moreover, FTIR measurements confirmed the generation of ionic crosslinks in the 

PA6/XHNBR TPVs comprising 5 phr of MgO.  

In regard to DSC and tensile test results, the TPV systems containing 5 phr of both 

Irganox 1010 and MgO showed the lowest crystallinity degrees together with greater 

elastomeric properties, which is further evidence of the strong hydrogen bonding and 

ionic interactions formed with the carboxylic rubber phase.  

Physical mechanisms involved in the mechanical behaviour of TPVs 

One of the scientific issues on TPVs that remains open is the understanding of the 

deformation and recovery mechanisms, and the roles of the plastic and rubber phases in 

the mechanical behaviour. With the aim of contributing to the further understanding of 

these questions, the third part of the thesis was focused on the study of the relationship 

between microstructural features of TPVs and their non-linear quasi-static and dynamic 

mechanical behaviour.  

To carry out this research work, the two peroxide cured TPV compounds that showed 

the best vibration damping properties, i.e. the ones containing 5 phr of Irganox 1010 and 

MgO, have been considered. Therefore, one of the analysed TPVs contains a rubber 

network structure based on C-C and hydrogen bonds, while the other possess a rubber 

network structure formed by C-C and ionic bonds. The microstructural and mechanical 

performance properties of the mentioned TPV samples were explored through SEM, 

DSC, monotonic tensile, cyclic tensile and DMA measurements.  
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The investigation of the crosslinking densities of the rubber network through DSC 

measurements revealed a lower peroxide crosslinking degree for the TPV sample 

containing 5 phr of Irganox 1010. For the TPV sample containing 5 phr of Irganox 1010 

only an 85% of the peroxide curing agent was activated, whereas in the TPV containing 

5 phr of MgO a 94% of peroxide crosslinking density was obtained. DSC measurements 

also enabled to determine the crystallinity degree and the thickness of the crystalline 

lamellae, two key microstructural features of the thermoplastic phase that have impact on 

the mechanical behaviour of TPVs. It was shown that both TPV samples possess similar 

crystallinity degree and crystalline lamellae thickness. 

Regarding the monotonic tensile behaviour, TPV samples displayed a stress-strain 

curve that lay in between the curve of pure PA6 and the curve of pure rubber. The stress-

strain behaviour of the TPV samples was a combination of the deformation behaviour of 

the thermoplastic phase at low strain levels and that of the rubber phase at high strain 

levels. It was found that the stiffness of TPVs was similar due to their similar crystallinity 

degree. Concerning to the high strain behaviour, it was proved that the formation of a 

rubber network structure compromising high amount of C-C linkages and ionic crosslinks 

leads to a TPV with enhanced tensile strength and elongation at break. 

Cyclic tensile stress-strain measurements revealed a similar cyclic stress softening 

(also known as Mullins effect), hysteresis loss and permanent set for both TPV samples 

below 30% strain level. This has been attributed to the similar PA6 phase crystallinity 

degree and crystalline lamellae thickness that both TPVs possess, which was 

demonstrated by means of DSC measurements. Above 30% of strain level the TPV 

sample containing C-C and ionic bonds exhibited a less significant stress softening.  

It was proposed that in order to explain the different cyclic stress softening effects that 

both TPV compounds show above the 30% strain level, the rubber phase needs to be 

modelled as a two-network structure formed by covalent and non-covalent bonds. 

Although both TPV samples contain rubber network structures formed by covalent and 

non-covalent bonds, their structure differs in the amount of covalent bonds and the 

strength of the non-covalent bonds (ionic bonds are stronger than hydrogen bonds). 

Therefore, based on the proposed physical interpretation, the less significant stress 

softening effect displayed by the peroxide cured TPV sample containing 5phr MgO was 
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attributed to the better elastic recovery capacity of the rubber network structure formed 

by a higher amount of covalent C-C linkages and stronger non-covalent bonds. 

The differences in the mechanical deformation behaviour, observed by quasi-static 

mechanical test, were confirmed by SEM analysis. SEM micrographs proved that in the 

TPV containing C-C and ionic bonds the development of plastic voids and rubber 

cavitation was suppressed.  

Based on the experimental findings, a micromechanical deformation model was 

proposed. The observed micromechanical processes have been interpreted in terms of the 

yielding, buckling and bending of thin PA6 ligaments at low strain levels and the rupture 

of covalent and non-covalent bonds presented in the rubber network at high strain levels. 

The proposed micromechanical deformation model was able to reflect the full complexity 

of the nonlinear dynamic mechanical behaviour of both TPV samples.  
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General conclusions 

The major aim of this thesis is to advance on the design of high-performance 

thermoplastic vulcanizates for vibration damping applications. For that, TPE blends of 

HNBR with PA6 have been developed and the relationship between their microstructure 

and properties investigated. The main conclusions of this research work are summarized 

below. 

Reactive compatibilization of PA6/HNBR TPE blends 

In the first part of the thesis, the reactive blending approach has been explored as an 

effective technique for improving the compatibility of PA6/HNBR TPE blends. For that, 

four TPEs have been prepared by melt-blending PA6 with HNBR, adding different 

amounts of XHNBR as compatibilizer: 40/60/0, 40/42/18, 40/30/30 and 40/18/42 

(PA6/HNBR/XHNBR).  

With the addition of XHNBR, the adhesion between the rubber and thermoplastic 

phases was enhanced and thus a decrease of the rubber particle size was noted in the TPE 

sample containing 18% XHNBR. Curiously, a reactively compatibilized TPE blend with 

co-continuous morphology has been obtained with the addition of 42% of XHNBR. Melt-

linear rheological measurements demonstrated that the generation of a co-continuous 

morphology was mainly caused by the increase of the elasticity of the rubber phase with 

the addition of XHNBR. The reactively compatibilized blend with co-continuous 

morphology demonstrated lower PA6 crystallinity degree and improved elastomeric 

properties, which correspond to enhanced interfacial interactions. The elongation at break 

of the TPE with 42% of XHNBR was 16 times higher than the uncompatibilized 
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PA6/HNBR blend. Moreover, a curious double Tg increase phenomenon was noted with 

the introduction of 42% XHNBR, which has been attributed to a decrease in the mobility 

of the amorphous domains, of both the PA6 and the rubber phase, caused by the interfacial 

interactions between the phases. 

Summarizing, a novel approach based on the reactive compatibilization of PA6/HNBR 

blends by adding XHNBR has been presented. This approach was shown to be very 

promising for the development of TPE blends with superior properties. The obtained 

results showed that the control of the interfacial interactions and the morphology 

represents a key strategy to develop TPE blends with tailored properties. Moreover, melt-

linear rheology has been identified as a strong tool to provide information about the 

morphological changes and the enhanced interfacial interactions. Two new 

methodologies have been proposed: 

1) Methodology to control the phase morphology of TPE blends 

The proposed methodology to control the morphology of TPE blends is based on the 

use of viscous and elastic models to predict the change of the morphology during melt-

blending. This methodology has been shown to be very effective to determine the 

effects of viscous and elastic effects that caused the change of morphology from 

droplet-matrix to co-continuous when adding 42% of XHNBR. Melt-linear rheology 

tests revealed that the elastic effects (characterized by the storage modulus G´) become 

more important than the viscous ones (characterized by the complex viscosity η*) 

when increasing the XHNBR content, which favoured the formation of a reactive 

blend with co-continuous morphology. Therefore, the strategy we propose in order to 

control the phase morphology is to test the rubber and thermoplastic components of 

the blends by melt-linear rheology and evaluate the viscosity (η*) and elasticity (G´) 

ratios at the melt-blending temperature and shear rate condition. 

2) Methodology to control the interfacial interactions in TPE blends 

The methodology proposed to control the interfacial interactions in TPE blends is 

based on the measurement of the critical stress, which is a parameter that is sensible to 

the adhesion between blend components. The critical stress is defined as the value of 

stress when the modulus is equal to the 95% of the plateau modulus. Melt-linear 

rheology tests have showed that, when measuring the variation of the storage modulus 
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of the blends as a function of the stress at the melt-blending temperature, critical stress 

increases with XHNRB content, which is indicative of the enhanced interfacial 

interactions between the phases. Consequently, the strategy we propose to control the 

interfacial interactions is to tests the TPE blends by melt-linear rheology and evaluate 

the critical stress value at the melt-blending temperature. 

Novel strategy to design TPVs with improved vibration damping properties 

In the second part of the thesis, the reactively compatibilized PA6/HNBR blend with 

co-continuous morphology, i.e. the one with 42% of XHNBR, was subjected to dynamic 

vulcanization by using mixed crosslink systems of peroxide with metal oxides and 

hindered phenolic antioxidants. The selected metal oxides were zinc oxide (ZnO) and 

magnesium oxide (MgO), whereas the selected hindered phenolic antioxidants were 

Irganox 1010 and Irganox 1098.  

Scanning electron microscopy (SEM) studies showed a droplet-matrix morphology 

with crosslinked rubber particles in the micron level for all developed TPV compounds. 

Besides, Fourier Transform Infrared (FTIR) spectroscopy measurements revealed the 

creation of carbon-carbon (C-C) crosslinks in all of them. FTIR measurements showed 

also that Irganox 1098 acts mainly as an inorganic filler, not being coupled with the 

carboxyl functionalities present in the rubber phase, whereas Irganox 1010 forms 

hydrogen bonds with XHNBR. The TPV compounds with MgO and ZnO showed an 

additional relaxation transition corresponding to the relaxation transition of ionic bonds. 

This ionic transition was particularly evident for the TPV system containing the higher 

amount of MgO. The TPV systems containing 5 phr of both Irganox 1010 and MgO 

showed the lowest crystallinity degrees together with greater elastomeric properties, 

which is further evidence of the strong hydrogen bonding and ionic interactions formed 

with the carboxylic rubber phase. These two TPV compounds exhibited the highest loss 

tangent (tan δ) values and so the most promising vibration damping properties. 

In summary, the investigation of the effect of the rubber network structure on the 

damping performance of the PA6/XHNR TPV systems by DMA showed that high-

performance TPVs with good damping properties can be developed by controlling the 

type and magnitude of the different crosslinking interactions. The achieved results 
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highlighted that the generation of ionic crosslinks, via the addition of metal oxides, 

represents a very promising way to develop high-performance TPVs with enhanced 

vibration damping properties within a wide range of temperature and frequencies, which 

is very interesting for electric vehicle applications, where challenges in broad range of 

temperatures and frequencies exist. 

Physical mechanisms involved in the mechanical behaviour of TPVs 

The third part of the thesis was focused on the study of the relationship between 

microstructural features of TPVs and their non-linear quasi-static and dynamic 

mechanical behaviour. This study has been carried out in the two peroxide cured TPV 

compounds that showed the best vibration damping properties, i.e. the ones containing 5 

phr of Irganox 1010 and MgO. Thus, one of the analysed TPVs contains a rubber network 

structure based on C-C and hydrogen bonds, while the other possess a rubber network 

structure formed by C-C and ionic bonds.  

Correlation between mechanical and microstructural analysis indicated that the 

nonlinear quasi-static and dynamic mechanical behaviour of both TPV samples is mainly 

influenced by the rubber network structure. Cyclic tensile stress-strain measurements 

revealed a similar cyclic stress softening (also known as Mullins effect), hysteresis loss 

and permanent set for both TPV samples below 30% strain level. This has been attributed 

to the similar PA6 phase crystallinity degree and crystalline lamellae thickness that both 

TPVs possess, which was demonstrated by means of differential scanning (DSC) 

calorimetry measurements. Above 30% of strain level the TPV sample containing C-C 

and ionic bonds exhibited a less significant stress softening, which has been ascribed to 

the better elastic recovery capacity of the rubber network structure formed by a higher 

amount of covalent C-C linkages and stronger non-covalent bonds. The differences in the 

mechanical deformation behaviour, observed by quasi-static mechanical test, were 

confirmed by SEM analysis. SEM micrographs proved that in the TPV containing C-C 

and ionic bonds the development of plastic voids and rubber cavitation was suppressed.  

On the basis of the observed phenomena, a physical interpretation for the deformation 

mechanism has been introduced. The observed micromechanical processes have been 

interpreted in terms of the yielding, buckling and bending of thin PA6 ligaments at low 
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strain levels and the rupture of covalent and non-covalent bonds presented in the rubber 

network at high strain levels. This research work opens new prospects for the 

micromechanical modelling of TPV materials.  

2.1. Future works 

This research work represents a first approximation for the development of new 

methods to design and fabricate TPV systems with high-performance properties and 

improved vibration damping performance. Hence, there is a great deal of room for 

improvements and new investigations. For future work, the investigation could be 

continued in the following research fields: 

Optimize the formulation 

Experimental results reveal the possibility of obtaining high-performance TPVs with 

customized viscoelastic vibration damping properties by melt blending PA6 with 

XHNBR and using mixed crosslink systems. Further research work will deal with the 

application of the melt-linear rheology characterization approach studied in the thesis as 

a method to optimize the formulations based carboxylic TPVs with rubber network 

structures with C-C and ionic bonds. 

Processability by injection moulding 

The obtained results indicated that the shear applied during melt-blending strongly 

influences the microstructure of TPE blends due to viscous and elastic effects. Therefore, 

in near future the TPV systems revealing the most promising damping characteristics will 

be further injection moulded to study their processability and the effect of subsequent 

shear on their microstructure.  

Another interesting research field to cover would be the industrial scalability of the 

TPV systems developed in the thesis. For that, a comparison of the long-term heat 

resistance and mechanical properties of the injection moulded TPVs and commercial 

high-performance PA6/AMC TPVs (Zeotherm) could be performed.  



48    CHAPTER 2: General conclusions 

 

Passive solutions to suppress the vibrations of lightweight polymeric composites 

The experimental finding demonstrated the potential of the designed TPV systems as 

passive solutions to suppress the structural vibrations. Further investigations will address 

the ability of the designed TPV materials to suppress vibrations of fibre reinforced 

polymeric composite materials by evaluating their applicability as free vibration damping 

treatments. The free-layer damping treatment is widely employed in automotive 

applications due to the simplicity of its structure and is based on the attachment of a 

damping material on the base panel whose vibration needs to be suppressed.  

Process-microstructure relationship: anisotropy 

The results obtained in the thesis pointed out the importance of understanding how the 

microstructural features influences the properties of TPV materials. When processing 

immiscible polymer blends by injection moulding, the blend components experience high 

shear forces and temperature gradients that typically lead to different orientation and 

dispersion phenomena along the flow direction and across the thickness of the part, which 

could result in anisotropic materials properties. Even though the process induced 

anisotropic behaviour of TPVs has been proven experimentally, no unanimous 

agreements for the cause and influencing factors exists to date.  

In composite materials based on thermoplastics with fibres, the microstructural 

evolutions that take place during injection moulding are well correlated using commercial 

process simulation software’s such as Moldflow or Moldex3D. Nevertheless, these 

commercial software’s do not have the ability to provide the viscoelastic effects that occur 

when processing TPV materials, i.e. physical mixtures of thermoplastic with rubber.  

Due to the lack of commercial technical resources that are able to consider the 

anisotropic character of TPVs, the process effect is not considered properly during the 

material design strategy. Therefore, the modelling of the microstructural evolution during 

processing represents a research field to be explored. Future research work will be 

focused in the development of methodologies to characterize and model the flow induced 

anisotropic behaviour of TPVs.
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Abstract 

With the aim to curb air pollution and address climate change, the use of low density 

thermoplastic elastomers (TPEs) in transportation could be a useful way to lighten the 

vehicle weight. For that, melt blending of high performance rubber and thermoplastics is an 

attractive way of preparing high performance TPEs. In this work, several TPEs have been 

prepared by melt blending of hydrogenated acrylonitrile butadiene rubber (HNBR) with 

polyamide 6 (PA6), adding different amounts of carboxylated HNBR (XHNBR) as 

compatibilizer: 40/60/0, 40/42/18, 40/30/30 and 40/18/42 (PA6/HNBR/XHNBR). The 

resulting blends were investigated using melt rheological measurements, morphological 

observations (scanning electron microscopy and polarized optical microscopy), dynamic 

mechanical analysis, differential scanning calorimetry analysis and mechanical tests. A 

biphasic morphology was noted for all TPEs. The increase of XHNBR amount changes the 

morphology from dispersed to co-continuous. This evolution was explained by the change of 

the melt rheological properties of the HNBR/XHNBR rubber phase. Moreover, the 

introduction of 42 % of XHNBR resulted in an increase of the glass transition temperature 

of both rubber and PA6 phases. This double Tg increase phenomena was attributed to the 

interfacial interactions between the carboxyl groups in XHNBR and amine end groups in 
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PA6. Additionally, thermal analysis revealed a reduced crystallinity of PA6 in the blend, 

which corresponds to the enhanced interfacial interactions. The interfacial adhesion and the 

co-continuous morphology resulted in an improved ductility. This study reveals the 

possibility of obtaining TPE blends with tunable thermal and mechanical properties by 

controlling both interfacial interactions and morphology. 

Keywords: Thermoplastic elastomer blend, TPE, glass transition temperature, improved 

ductility, interfacial interactions, morphology 

 

Introduction 

Thermoplastic elastomers (TPEs) are rubbery materials that possess elastomeric behaviour 

with the advantage that can be melt processed like thermoplastics 1. Therefore, they are 

recyclable and offer an alternative to natural or synthetic rubbers 2,3. The unique feature of 

TPEs is their biphasic morphology, in which one phase is soft and rubbery in nature and the 

other phase is generally continuous, hard, and semicrystalline. Both phases are 

thermodynamically immiscible and consequently act as individual phases 4.  

Greening of transportation is one of the major actual challenges worldwide. The objective 

set-up by the EU to reduce transport greenhouse gas emissions to 60% below 1990 levels by 

2050 (European Commission (https://ec.europa.eu/clima/policies/strategies/2050_en)) has 

led to a growing trend to vehicle lightweighting. The automotive industry employs a large 

number of rubber components. The lower density of TPEs, as compared to rubbers, 

contributes to reduced part weight. Therefore, the substitution of some rubber parts by TPEs 

would help in the transformation of the classical transport systems into greener transport 

systems. However, most of the TPEs available in the market do not possess the high 

temperature resistance and tensile set properties required for automotive parts 5,6. 

Blending of different rubbers and thermoplastics is a particularly attractive way of preparing 

TPEs 7–9. The commercial availability of so many polymers with the desired properties for 

blending allows the development of TPE blends with upgraded performance properties 10–13. 

The final properties of TPE blends strongly depend on the properties of the individual 
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phases, the adhesion between them and the phase morphology of the system 14. Particularly, 

the glass transition temperature (Tg) is one of the most important properties that govern the 

performance characteristics of polymer blends, being directly related with fields of potential 

application 15–17. The design temperature range of a TPE blend is bounded by the glass 

transition temperature of the rubbery phase and the glass transition or melt temperature of 

the thermoplastic phase. 

Several studies reveal the possibility of shifting the glass transition temperature of polymers 

by blending. Bates et al. 18 reported a depression of rubber Tg in systems consisting of 

microspherical inclusions of polybutadiene in polystyrene matrix. Qui et al. 19 found that 

both PLLA and POM showed an apparent Tg depression in the blends, as compared with the 

neat PLLA and POM. This double Tg depression phenomena was attributed to the 

differential contraction due to the thermal shrinkage mismatch.  Richard et al. 20 studied 

PMMA films on native oxide of silicon and on evaporated gold. They observed an increase 

of PMMA Tg when deposited on native oxide of silicon. This was attributed to the 

restriction of mobility due to the formation of hydrogen bonding at the interface. These 

works demonstrate the possibility of shifting the glass transition temperature in polymer 

blends by tailoring the phase morphology and the interaction between components. Thus, a 

thorough understanding of the relationship between morphology as well as phase interaction 

and glass transition behaviour is of particular interest and can greatly aid the tailoring of 

novel TPE blends with tunable properties. 

Therefore, the main objective of this work is to analyse the effect of phase morphology and 

phase interaction in the glass transition behaviour of TPE blends. A TPE system based on 

nylon 6 (PA6) and hydrogenated acrylonitrile butadiene rubber (HNBR) has been selected 

for this study. Both HNBR and PA6 are well known for their excellent chemical, wear and 

heat resistant properties 21,22. Therefore, blending HNBR and PA6 would be encouraging in 

the field of high performance TPEs. However, PA6 and HNBR are not compatible and so it 

is necessary to use a compatibilizer to enhance the interfacial properties between these 

polymers. In this work, a carboxylated hydrogenated acrylonitrile butadiene rubber 

(XHNBR) has been considered as potential compatibilizer for PA6/HNBR blends. XHNBR 
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is miscible with HNBR and its inherent carboxylic functionalities can react with the amine 

end groups on PA6 during melt-mixing, improving the compatibility between the two phases 
23. Moreover, the presence of carboxylic functionalities in XHNBR enhances the abrasion 

and heat resistance. The effect of XHNBR concentration with regard to morphology and 

interfacial interaction has been investigated. We have observed the novel phenomena that 

both the rubber phase and the thermoplastic phase show an apparent increase of their glass 

transition temperatures, as compared with the neat rubber and thermoplastic. Furthermore, 

we found that the addition of XHNBR leads to a superior ductility. 

 

Experimental 

Materials 

PA6, Durethan® B 30 S 000000, (density 1.14 g cm-3, melting point 222 °C) was supplied 

by Lanxess. HNBR, Therban® AT 3904 VP,  (specific gravity 0.96, acrylonitrile content 39 

wt%, mooney viscosity ML (1+4) at 100 °C 40, residual double bonds 0.5%) and XHNBR, 

Therban® XT VP KA 8889, (specific gravity 0.97, acrylonitrile content 33 wt%, mooney 

viscosity ML (1+4) at 100 °C 74, residual double bonds 3.5%, carboxylic acid 5%) were 

supplied by Arlanxeo. Their chemical structures are shown in Fig. 1. 
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Fig. 1. Chemical structure of (a) PA6; (b) HNBR; (c) XHNBR. 

TPE blends preparation 

For the rubber phase HNRB and XHNBR were blended at three different blend ratios 

(70/30, 50/50 and 30/70 wt/wt). The HNBR/XHNBR blends were prepared in a two-roll 

mill. The rubber sheet obtained was extruded into strands for subsequent pelletization. 

Extrusion was carried out at 90 °C with a rotor speed of 15 rpm in a Gumix extruder with 

L/D ratio of 10. The ratio of both rubber and thermoplastic components in the systems is 

crucial for the main final properties of TPE blends. Banerjee et al 24,25 have shown that 40 

PA6/60 FKM (wt/wt) blend composition exhibited best thermoplastic elastomeric 

properties. For that reason, the amount of rubber and PA6 in the blends was fixed to that 

particular ratio. PA6 was dried overnight at 80 °C before blending so as to minimize the 

effects of moisture. Four TPE blends were prepared by melt blending the rubber blends with 

PA6 in a Brabender DSE 20/40 corrotating twin screw extruder. The blending conditions 

were the same for all the blends. The temperature fixed during mixing was 240 °C and the 

rotor speed was 100 rpm. After extrusion, the blends were pelletized and compression 

molded in a hydraulic press at 240 °C increasing the pressure from 50 to 200 bar during 360 

seconds in order to ensure the homogeneous filling of the mold, avoid air trapping and to 

obtain 1 mm thick plates. The composition of the prepared samples and their designation are 

presented in table 1. All samples were dried for 8 hours at 80 °C prior to any measurement. 

Composition (PA6/HNBR/XHNBR) Sample name 
0/70/30 70H30X 
0/50/50 50H50X 
0/30/70 30H70X 
40/60/0 P100H 
40/42/18 P70H30X 
40/30/30 P50H50X 
40/18/42 P30H70X 

Table 1. Composition of prepared samples and desigACK 

. 

 

Morphological characterization 
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The morphology of the blends was analysed using a field-emission scanning electron 

microscope with a Schottky type field-emission gun (JEOL JSM-7000F). SEM analysis was 

carried out by inspecting the cryofractured surface of the samples. The TPE blend containing 

42 wt% of XHNBR, i.e. P30H70X, was selectively etched with acetone for 24 hours to 

remove the rubber phase. The surface of the samples was sputter coated with gold prior to 

the SEM observation. 

ImageJ image analysis software was used to calculate the size of dispersed phase domains. 

The number average, dn, and volume average, dv, diameter of the dispersed phase domains 

that are reported in this study were calculated via the following relations: 

  
̅̅ ̅  

∑    

∑  
                                                                                                                                              

  
̅̅ ̅  

∑  
   

∑  
   

                                                                                                                                              

where Ni is the number of dispersed domains. In SEM micrographs 400 particles were 

measured for each sample.  

The phase structure of the TPE blends was observed by means of Polarized Optical 

Microscopy (POM) using a Nikon ECLIPSE 80i microscope equipped with a LINKAM 

LTS420 hot stage. The samples were placed between two cover glasses and heated from 

room temperature to 240 °C; the temperature was then lowered to 160 °C allowing the 

material to crystallize with a cooling rate of 10 °C min-1. 

 

Melt rheological characterization 

Melt rheological characterization was carried out using a Thermo Haake Mars III oscillatory 

rheometer. Characterization of the samples was carried out at 240 °C with a 20 mm parallel 

plate. Test were carried out in both frequency and stress sweeps. Frequency sweeps were 

performed from 0.1 to 100 rad s-1 at a constant strain of 0.1%. Stress sweeps were performed 

from 1 to 105 Pa at a constant frequency of 1 Hz. 
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Dynamic mechanical analysis (DMA) 

Dynamic mechanical measurement were carried out on a Rheometrics Solids Analyzer 

(RSA II) in tensile mode. The temperature was swept from -50 to 140 °C at a heating rate of 

3 °C min-1 with an oscillating frequency of 1 Hz. All the measurements were performed at 

the strain of 0.03%.  

 

Differential scanning calorimetry (DSC) 

The crystallization behaviour of samples was studied by differential scanning calorimetry 

(DSC). DSC measurements were performed in a DSC Q100 (TA Instruments) in a dry 

nitrogen atmosphere. Samples were heated and cooled from -50 to 250 °C with a rate of 

10°C min-1. 

 

Mechanical testing  

Tensile testing of the blends were performed according to ISO 37 test method by using 

dumbbell-shaped specimens. The test were carried out in a MTS Insight Universal Testing 

Machine at room temperature and with a crosshead speed of 5 mm min-1. The hardness was 

tested according to ISO 868. The tensile and hardness results reported in this work are the 

average of at least five samples.  

 

Results and discussion 

Morphological investigation  

Polarized optical microscopy (POM) has been used in order to distinguish the PA6 (light) 

and rubber (dark) phases. The biphasic morphology of P100H TPE blend is demonstrated in 

Fig. 2. As we expected, dispersed spherical droplets of HNBR in PA6 matrix are observed in 

the P100H blend. Moreover, the two-phase interface is clear and there is space between the 
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droplets and the matrix, demonstrating the weak compatibility between HNBR and PA6. As 

it can be seen in Fig. 3b the addition of 18 % XHNBR resulted in a smaller droplet size and 

narrower size distribution compared with that of P100H blend.  

The final morphology of a polymer blend is a result of the competition between droplet 

deformation and break-up on the one side and shape recovery and coalescence on the other 

side 26. In this case, the presence of XHNBR leads to smaller droplet size because lowers the 

interfacial tension which makes the droplet deformation and break-up easier, i.e., 

coalescence is reduced 27,28.The number average and volume average diameter were 

calculated as 1.33 and 1.99 µm for P100H and 0.79 and 1.14 for P70H30X (Fig. 4). 

Moreover, as the XHNBR content is increased to 30% the rubber droplets start to coarse and 

the two-phase interface becomes uneven (Fig. 3c). Finally, the micrograph shown in Fig. 3d 

suggests that the addition of 42% of XHNBR induces a change in the morphology type from 

a dispersed to a co-continuous morphology (the rougher area belongs to PA6). Note that the 

droplets have completely disappeared for this composition. This is further revealed from the 

SEM micrograph of the cryofractured surface with rubber phase extracted (Fig. 5), where a 

continuous morphology can be observed.  

  

(a) (b) 

Fig. 2. (a) POM and (b) SEM micrographs of P100H.  
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(a) (b) 

  

(c) (d) 

Fig. 3. SEM micrographs of (a) P100H; (b) P70H30X; (c) P50H50X; (d) P30H70X.  
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(a) (b) 

Fig. 4. Particle size distributions of (a) P100H and (b) P70H30X.  
 

 

Fig. 5. SEM micrograph of P30H70X after etching the rubber phase by acetone.  

 

Melt linear rheological behaviour  

The melt linear rheological properties of polymer blends strongly depend on the interaction 

between the components and their morphology 29. Fig. 6a shows the variation of the 

complex viscosity (η*) as a function of the angular frequency (ω) at 240 °C for the blends. 

All blends show a non-newtonian behaviour. Furthermore, by increasing the XHNBR 

content the yield phenomena becomes more apparent. Fig. 6b shows the curves of the 

storage modulus (G´) as a function of the angular frequency for the blends. Fig. 6b reveals 

that there is a well-developed dependence of the cross-over point of storage and loss 
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modulus on the XHNBR content: both the frequency and the storage modulus at which this 

cross-over appears increase with the XHNBR content. For the P30H70X blend, the values of 

storage modulus are higher than loss modulus in the entire range of frequencies examined, 

which is indicative of the morphological change from droplet-matrix to co-continuous 

morphology 30,31. 

  

(a) (b) 

Fig. 6. Variation of (a) complex viscosity and (b) storage modulus of the blends as a function of the angular 
frequency at 240 °C. Cross-over points of the storage and loss modulus are framed. 

 

So as to obtain a further insight on the effect of XHNBR content on the blend 

microstructure, the complex viscosity and storage modulus of the blend components are 

compared in Fig. 7a and b. PA6 shows a Newtonian behaviour whereas rubber blends show 

a linear increase in viscosity with decreasing the frequency. It is clearly seen that the 

addition of XHNBR increases both the viscosity and elasticity of the HNBR/XHNBR 

blends. Moreover, the viscosity and elasticity of the rubber blends are much higher than 

those of PA6 in the low angular region. Most of the models developed to predict the point at 

which the dispersed phase becomes continuous in a melt-mixed immiscible polymer blend 

have only considered the viscosity ratio of the blend components 32. The most common 

empirical equation used to predict the phase inversion point is the one proposed by Paul and 

Barlow 33: 
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where    and    are the volume fractions of phases A and B, and    and    their 

respective viscosities. If the ratio in equation (3) is lower than 1, phase A should form the 

dispersed phase in a continuous matrix of B, whereas B should be dispersed in A for values 

higher than 1. However, many authors have pointed out that the elasticity of the blend 

components plays also an important role in the co-continuity of binary blends 34–36. Bourry 

and Favis 37 formulated an expression for the prediction of co-continuity as a function of the 

elasticity, represented by the storage modulus ratio of the two blend component: 

     
     

                                                                                                                                                    

So the model considering the viscosity ratio predicts that the less viscous phases will have 

the tendency to form the matrix and on the other hand the model based on elastic effects 

predicts that the more elastic phase will tend to form the matrix.  

The variation of the viscosity and elasticity ratios of the TPE blends as a function of 

XHNBR content are shown in Fig. 8. The viscosity and elasticity ratios have been calculated 

using the values of complex viscosity and storage modulus of the blend components at 100 

rad s-1 by applying Cox-Merz rule 38. The twin-screw mixing speed of 100 rpm has been 

approximated to a shear rate of 100 s-1 39 The results shown in Fig. 8 suggest that by 

increasing the XHNBR content the elastic effects become more important than the viscous 

ones. The increased elasticity of the rubber phase hinders the break-up and retraction 

phenomena of the elongated domains formed during melt-mixing, favouring the formation 

of the co-continuous morphology 40. Therefore, the co-continuous morphology of the 

P30H70X blend is mainly caused by the increase of the elasticity of the rubber phase. The 

nonspherical shape of rubber domains of P50H50X blend is also a consequence of the 

increased droplet elasticity.  

In order to further study the effect of XHNBR content in the adhesion between the phases, 

the variation of storage modulus of the blends as a function of stress has been studied at 240 

°C and is shown in Fig. 9. It is observed that the onset of non-linearity shifts to higher stress 

values upon increasing the XHNBR content. This is shown in Fig. 10, which summarizes the 

critical stress, estimated as the value of the stress when the modulus is equal to 95% of the 
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plateau modulus 41 as a function of the XHNBR content. The critical stress can be related to 

the cohesive energy density, i.e., the energy needed to break the structure 42. The critical 

stress increases with the XHNBR content, which is indicative of stronger adhesion between 

the rubber and PA6 phases.  

  

(a) (b) 

Fig. 7. Variation of (a) complex viscosity and (b) storage modulus of the blend components as a function of the 
angular frequency at 240 °C. 

 

 

Fig. 8. Viscosity and storage modulus ratios as a function of XHNBR content, at 240 °C for an angular 
frequency of 100 rad s-1. 
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Fig. 9. Variation of storage modulus of the blends as a function of the stress at 240 °C. 

 
  

 

Fig. 10. Critical stress vs. XHNBR content. 

 

Dynamic mechanical analysis   

Fig. 11 shows the storage and loss modulus (E´ and E´´) of the blends and neat components 

as a function of temperature, obtained from the DMA measurements, in tensile mode. PA6 

presents the maximum values of E´ at -50 °C whereas HNBR shows the minimum values. 

The blends show values of E´ that are in between those limits. Regarding the shape of the 

curves, it can be seen that the curves of the blends have two well defined drops related with 

the glass transition regions of the rubber phase and the PA6 phase. This observation can be 

explained on the basis of the two-phase morphological structure of the blends, typical of 
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immiscible systems. Furthermore, E´ values of P100H and P70H30X are near E´ values of 

PA6 at temperatures below the glass transition of the rubber phase. On the other hand, the E´ 

values corresponding to P50H50X and P30H70X get closer to those of the rubber blend 

components. This behaviour is related to the observed change from dispersed to co-

continuous morphology. In blends with dispersed type morphology the E´ value is 

dominated by the matrix component, in our case by PA6, whereas in blends with co-

continuous morphology the contribution of both components becomes greater 30. Therefore, 

DMA results are in accordance with the change of morphology, from dispersed to co-

continuous, observed in SEM images (Figs. 3 and 5).  

The temperature dependence of loss modulus and loss tangent (tan δ) of the neat 

components and TPE blends are presented in Figs. 11b and 12, respectively. Two distinct 

relaxation peaks were observed for all the TPE blend samples that confirms the existence of 

a two phase-separated structure. It is therefore considered that the two peaks correspond to 

the Tgs of rubber and PA6 phases. DMA has been shown to be more sensitive than DSC to 

blend morphology 43,44. For that reason, the glass transition temperatures have been 

evaluated by DMA. Fig. 13 illustrates the variation of the two Tgs with the XHNBR content 

in the blends. The glass transition temperatures have been considered as the peak values of 

the tan δ curve 45.   

  

(a) (b) 
Fig. 11. Temperature dependence of storage modulus (a) and loss modulus (b) for pure components and TPE 
blends. 
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For the rubber phase an evident Tg depression has been observed in the P100H and 

P70H30X blends, where rubber is present in discrete domains. Many research works have 

reported the depression of rubber Tg in systems consisting of microspherical inclusions of a 

rubber in a rigid plastic matrix 46,47. In such systems, the difference of the thermal 

contraction between the two phases would generate a negative pressure in the rubber phase, 

which results in an increase of the free volume and correspondingly a decrease of the Tg of 

the rubber phase.  

Otherwise, a sharp increase in rubber Tg is observed at P50H50X blend approaching to the 

neat rubber Tg. Furthermore, it is interesting to note that the rubber Tg becomes slightly 

higher than the neat rubber Tg as the XHNBR content in the rubber blends phase is increased 

up to a 70% (Fig. 13a). The co-continuous morphology is characterized by frequent changes 

in the sign of curvature of the domain boundaries 48. Besides, the pressure dependence of Tg 
49 becomes more complicated. The co-continuous morphology is expected to show two 

rubber Tgs since some of the rubber is under compression and some is not. However, only 

one Tg is observed.  

The rubber Tg increase in the P30H70X TPE blend is attributed to the interaction between 

phases which disturbs the molecular relaxation and cooperative mobility between structural 

units that is required during the glass transition process 50,51. As the XHNBR content 

increases, more carboxyl groups exist in the rubber phase and this could result in a stronger 

interaction with PA6, thus generating a reduction of the molecular mobility of the 

amorphous domains located in the close vicinity of the crystals. Mucha 52 observed that the 

Tgs of both aPS and iPP changed due to phase interactions in aPS/iPP blends. 

Another interesting point is that the addition of XHNRB leads to an increase of the glass 

transition temperature of PA6 (Fig. 13b). The measured Tg of neat PA6 was approximately 

70 °C, whereas the Tg of PA6 in blends increases to 83 °C as the concentration of XHNBR 

in the TPE blend increases to 42%. Imre et al 53 observed an increase of the PLA Tg in 

PLA/PU blends prepared by reactive processing and they related this effect to the interfacial 

interactions. Recently, Fourati et al 39 reported an upward shift in the Tg of PBAT and TPS 

in PBAT/TPS blends in presence of PBATg-MA. They attributed the double Tg increase to 
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the strong adhesion between the two phases. Therefore, the measured PA6 Tg increase can 

be attributed to the enhanced interaction between PA6 and rubber as XHNBR content 

increases. It can be concluded that the interfacial interaction appears to explain the observed 

double Tg increase behavior in the P30H70X blend. 

  

(a) (b) 
Fig. 12. Temperature dependence of loss tangent (tan δ) of pure components and TPE blends: (a) near loss 
peak of rubber phase and (b) near loss peak of PA6 phase.  

 

  

(a) (b) 
Fig.  13. (a) Rubber Tg as a function of XHNBR wt% content in the rubber blend phase; (b) PA6 Tg as a 
function of XHNBR wt% in the TPE blend. 

 

Differential scanning calorimetry analysis   
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The first heating and cooling DSC thermograms of PA6 and TPE blends are shown in Fig. 

14, and the melting enthalpy (ΔHm) and crystallinity degree (Xc) of PA6 are listed in Table 

2. The degree of crystallinity was calculated from the heat of fusion during heating, 

considering a heat of fusion of 190 J/g for a 100% crystalline PA6 54. It is clearly seen that 

the content of XHNBR in the blend produces a big effect on the degree of crystallinity of 

PA6. The crystallinity of PA6 in the TPE blends decreased with the XHNBR content. As the 

content of XHNBR is increased, the crystallization peak became broader, as shown in Fig. 

14b, which is attributed to reduced crystallinity of PA6 in the TPE blends 55. Moreover, it 

can be observed that the crystallization peak of PA6 in the TPE blends shifted to lower 

temperatures as the XHNBR content increased, which clearly suggests enhanced interfacial 

interactions 56,57.    

The crystallinity degree of the PA6 is strongly dependent on the capacity of the chains to 

package in an ordered way. Therefore, the remarkable decrease in crystallinity of PA6 is 

attributed to the interaction of the two phases that disturbs the mobility between structural 

units that is required during the crystallization of the PA6 58,59. Recently, Chen et al. 60 

reported that the crystallinity of both PA6 and PVDF decreased in PA6/PVDF blends and 

they explained this effect considering the interaction between the two components.  

  

(a) (b) 
Fig. 14. DSC thermograms of PA6 and TPE blends:  (a) first heating and (b) cooling. 

 

Samples ΔHm (J/g) Xc (%) 
PA6 62.98 33.15 
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P100H 27.20 35.79 
P70H30X 24.72 32.53 
P50H50X 23.32 30.68 
P30H70X 21.44 28.21 

Table 2. Melting and crystallization results for PA6 and TPE blends, from DSC analysis. 

Mechanical properties 

The stress-strain curves at room temperature of TPE blends are presented in Fig. 15. It is 

found that while increasing the content of XHNBR and so decreasing the crystallinity (Table 

2), the values of the stress at any strain decrease, indicating that the material deforms more 

easily. Fig. 16 illustrates the effect of XHNBR content on the tensile properties and the 

hardness of TPE blends. A remarkable brittle to ductile transition occurs with the addition of 

42% of XHNBR. The P100H blend shows a limited elongation at break due to the poor 

interfacial adhesion between PA6 and HNBR 61. The elongation at break of P30H70X blend 

reaches 180%, which is about 16 times higher than that of P100H. It has been proven by 

many authors that the elongation at break is sensitive to the morphological changes, and may 

exhibit a maximum in the co-continuous region 32. Thus, the significant increment of the 

elongation at break with the addition of XHNBR is in line with the morphological results 

and suggests a better stress transmission capacity produced by the higher interfacial 

interaction between the rubber and PA6. Furthermore, unlike the elongation at break, the 

young modulus (Fig. 16b) of the blends decreases significantly with the addition of 

XHNBR. The decrease of the modulus by increasing XHNRB content may be caused by the 

change of morphology from dispersed to co-continuous together with the decrease of the 

crystallinity degree of the PA6. Regarding the hardness of the blends (Fig. 16c), there are no 

considerable differences among P100H, P70H30X and P50H50X blends. However, with the 

addition of 42% of XHNBR a reduction of the hardness is observed, which may be 

attributed to the existence of the co-continuous structure.  
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Fig. 15 Stress-strain curves at room temperature of the TPE blends.  

  
(a) (b) 

 
(c) 

Fig. 16 Mechanical properties TPE blends: (a) Elongation at break; (b) Young Modulus and (c) hardness. 

 
Conclusions 

The four investigated PA6/HNBR/XHNBR TPE blend systems showed a biphasic 

morphology, indicating that the rubber and thermoplastic phases are immiscible. It was 
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found that the amount of XHNBR in the TPE blend influences the adhesion between the 

phases together with the viscosity and elasticity of the rubber phase. By the addition of 

XHNBR, the morphology of the TPE blends evolves from a droplet-matrix morphology with 

rubber particles in PA6 matrix to smaller-size rubber particles in PA6 matrix, then to string 

shape rubber particles in PA6 matrix, and finally to a co-continuous morphology when a 

42% of XHNBR is introduced. The effects of the XHNBR content on the linear rheological 

properties of TPE blends were also investigated and correlated with the morphology and 

interfacial interaction. A decrease of PA6 crystallinity degree with the increase of XHNBR 

content was also observed. Moreover, when 42% of XHNBR was added the rubber as well 

as the PA6 phase showed a significant Tg increase, as compared with that of the neat 

components. It has been concluded that both the decrease in crystallinity and the double Tg 

increase phenomena may be due to the interfacial interactions between the phases, 

producing a decrease on the mobility of the amorphous domains of both the PA6 and the 

rubber phases. A fragile to ductile transition is also achieved by the addition of XHNBR. 

The TPE blend with 42% of XHNBR demonstrated 16 times the elongation at break of the 

blend without XHNBR. The enhanced interaction among the two phases, together with the 

change of morphology from matrix-dispersed to co-continuous, plays an important role in 

the improvement of ductile properties. Thus, the obtained changes in mechanical properties 

of the TPE blends are well corresponding to those obtained for morphology, viscoelastic and 

thermal properties.  

This work opens new opportunities to develop TPE blends with superior ductility and 

increased glass transition temperatures of both rubber and thermoplastic phases by 

controlling the morphology and the interfacial interactions between the phases. Linear 

rheology has been identified as a strong tool to provide information about the morphological 

changes and the enhanced interfacial interactions.  
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Abstract 

The incorporation of viscoelastic materials represents an effective strategy to reduce the 

vibratory level of structural components. Thermoplastic vulcanizates (TPVs) are a special 

type of viscoelastic materials that combine the elastomeric properties of rubbers with the 

ease processing of thermoplastics. In the present work, we propose innovative ways to 

improve the damping properties of high-performance TPVs by using rubbers with 

carboxylic functionalities. For that, TPVs from physical blends of carboxylated 

hydrogenated acrylonitrile butadiene rubber (XHNBR) and polyamide 6 (PA6) are prepared. 

The chain dynamics of different mixed crosslink systems containing peroxide, metal oxides 

and hindered phenolic antioxidants are investigated in order to find the most suitable 

strategy to design high-performance TPV system with upgraded damping properties. Results 

indicate that the damping performance of the TPV systems can be tailored by controlling the 

type and magnitude of the bonding interactions between the mixed crosslink systems and the 

XHNBR rubber phase. Therefore, this study demonstrates the potential of TPV systems 

containing carboxylic rubbers as high-performance damping materials. 

Keywords: damping; high-performance; thermoplastic vulcanizate; carboxylic rubber; 

metal oxide; hindered phenol 
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Introduction 

The reduction of vibration phenomena is one of the major criteria for achieving customer 

satisfaction in several industries, such as automotive, aeronautic and aerospace1,2. A fairly 

simple way to increase the vibration performance of lightly damped structures is based on 

the incorporation of viscoelastic materials3. The use of viscoelastic materials decreases the 

vibratory level transmitted and so the noise field generated4. Thermoplastic elastomers 

(TPEs) are a special class of viscoelastic materials that combine properties of thermoplastic 

and elastomers5. These viscoelastic materials possess elastomeric behavior with the 

advantage that can be melt-processed like thermoplastics6.  

Melt-mixing of different rubbers and thermoplastics is a particularly interesting way of 

making TPEs7–9. The TPE blends can be either simple blends with non-crosslinked rubber 

phase or blends with dynamically vulcanized rubber phase, i.e, thermoplastic vulcanizates 

(TPVs)10. The dynamic vulcanization refers to the crosslinking of the rubber phase during 

melt blending with the thermoplastic and promotes the achievement of superior properties11–

13. Over the last few years, numerous researchers have reported different TPEs from various 

rubbers and thermoplastics14. In our recent publication, we have reported an effective 

strategy for the preparation of high-performance thermoplastic elastomer blends from 

polyamide 6 (PA6) and carboxylated hydrogenated acrylonitrile butadiene rubber 

(XHNBR)15.  

The exceptional damping properties of carboxylic rubbers, such as XHNBR, have generated 

an extensive interest in the design and preparation of such elastomers16–18. The addition of 

different crosslink types can improve the damping properties of carboxylic rubbers within a 

wide range of temperature and frequency ranges19. One of the most conventional ways to 

improve the damping properties of carboxylic rubbers is based on the use of metallic oxides 

in order to create ionic crosslinks20. The ionic crosslinking reaction occurs through the 

formation of the corresponding salt of the metal ion21,22. These ionic bonds tend to associate 

and form an independent microphase, which is immersed in the elastomeric matrix23.  
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Zinc oxide (ZnO) is one of the most commonly used metallic oxides for carboxylic 

rubbers24. However, the use of ZnO presents some problems. The most important ones are 

related to its precocity and toxic effects25. To find an alternative to ZnO Ibarra et al. 

explored the ionic crosslinking of XNBR with MgO26. They reported that ionic associations 

are formed between XNBR and MgO, which lead to the formation of a segregated structure 

that generates an additional relaxation at high temperatures apart from the glass transition of 

XNBR.  

Mixing different crosslink systems represents an effective approach to obtain damping 

elastomers with upgraded properties27. Carboxylic rubbers crosslinked only with metal 

oxides show poor properties at high temperatures due to the low bond energy of ionic 

crosslinks. In order to overcome this disadvantage, Ibarra et al.28 studied the vulcanization of 

XNBR by a mixed crosslink system of zinc oxide and zinc peroxide. The combination of 

metal oxides and peroxides produces not only ionic bonds but also covalent ones. These 

combination improves the properties of XNBR at high temperatures without altering the 

thermo-reversible nature of the ionic structure29. 

Addition of hindered phenolic compounds is also a quite new and useful method to improve 

the damping performance of carboxylic rubbers. This method is based on the design concept 

of organic hybrid damping materials30,31. Liu et al.32 found that the addition of hindered 

phenolic antioxidants improves remarkably the damping properties of XNBR. They 

associated this effect to the formation of hydrogen bonds. Moreover, the damping capacity 

of XNBR is improved when the number of generated hydrogen bonds is increased.  

Therefore, carboxylic rubbers are potential elastomeric segments to be used in order to 

obtain TPVs with superior damping performance properties. However, hardly any paper has 

been found in the literature that analyzes the use of carboxylated rubbers to develop 

damping TPV materials. Thus, in the present work peroxide-cured thermoplastic 

vulcanizates based on polyamide 6 (PA6) and carboxylated hydrogenated acrylonitrile 

butadiene rubber (XHNBR) containing different amounts of ZnO, MgO and hindered 

phenolic antioxidants were prepared. The chain dynamical properties of ZnO, MgO and 
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hindered phenolic antioxidants were investigated in order to find the most suitable high-

performance system for damping applications.  

Experimental 

Materials 

The hydrogenated acrylonitrile butadiene rubber HNBR and carboxylated hydrogenated 

acrylonitrile butadiene rubber XHNBR used in this study were respectively, Therban® AT 

3904 VP (acrylonitrile content 39 wt%, residual double bonds 0.5%, specific gravity 0.96, 

mooney viscosity ML (1+4) at 100 °C 40) and Therban® XT VP KA 8889 (acrylonitrile 

content 33 wt%, residual double bonds 3.5%, carboxylic acid 5%, specific gravity 0.97, 

mooney viscosity ML (1+4) at 100 °C 74), supplied by Arlanxeo, Deutschland GmbH. The 

polyamide 6 PA6 Durethan® B 30 S 000000 (melting point 222 °C, density 1.14 g cm-3) 

was obtained from Lanxess, Deutschland GmbH. The peroxide used was Trigonox 145, 

which was supplied by Akzo Nobel Polymer Chemicals, The Netherlands. 

Trimethylolpropane trimethacrylate (TMPTMA, Rhenofit TRIM/S) used as co-agent was 

provided by Rhein Chemie Additives, Lanxess Deutchland GmbH. The metallic oxides used 

were ZnO and MgO, which were obtained from Panreac Applichem, Spain. The hindered 

phenolic antioxidants used were Irganox 1098 and Irganox 1010 from BASF, Switzerland 

(their chemical structures are given in table 1). All chemicals were used as were received.  

 

 

 

 

Commercial 

name 

Chemical name Chemical structure 
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Irganox 1098 N,N’-hexane-1,6-diylbis(3-(3,5-di-

tert.-butyl-4-

hydroxyphenylpropionamide)) 

 

Irganox 1010 Pentaerythritol tetrakis(3-(3,5-di-tert-

butyl-4-hydroxyphenyl)propionate) 

 

Table 1: Chemical structure of the hindered phenolic antioxidants used. 

Preparation of TPVs 

In our recent studies the effect of XHNBR content on the thermal and mechanical properties 

of TPE systems based on PA6 and HNBR have been analyzed. 40 PA6/18 HNBR/42 

XHNBR blend composition showed a co-continuous morphology and the best elastomeric 

properties among the analyzed compositions15. For those reasons, this particular 

composition was subjected to dynamic vulcanization.  

The TPV preparation process was done in three steps. In the first step HNRB and XHNBR 

gums were blended at 30/70 wt/wt blend ratio in a two-roll mill and different amounts of 

additives were added and mixed continuously. The compositions of the rubber compounds 

are shown in table 2. The compound additives are given as parts per hundred by weight of 

the rubber polymer, i.e., phr. In the second step the uncured rubber compound sheets 

This article is protected by copyright. All rights reserved.



 

 

 

 

 

obtained in the two-roll mill were extruded into strands for subsequent pelletization. 

Extrusion was carried out at a rotor speed of 15 rpm at 90 °C in a Gumix extruder (L/D=10). 

Finally, in the third step, the TPVs were prepared by melt-blending the rubber compounds 

with PA6 in a Brabender DSE 20/40 corrotating twin screw extruder. PA6 granules were 

dried at 80 °C for 8 hours prior to blending. Blending was carried out at a rotor speed of 200 

rpm at 240 °C. Immediately after blending, the TPV pellets where compression moulded at 

240 °C at a constant pressure of 200 bar for 2 minutes to form 1 mm thick sheets. All 

samples were dried at 80 °C for 8 hours prior to any characterization. 

Sample 

name 

Composition 

Peroxide 
Co-

agent 

Hindered phenolic 

antioxidants 

Metallic 

Oxides 

Trigonox 

145 
TRIM/S Irganox 1098 Irganox 1010 ZnO MgO 

HXA0 3 2 0 0 2 3 

HXA98 3 2 5 0 2 3 

HXA10 3 2 0 5 2 3 

HXZM 3 2 0 0 1 1 

HXM 3 2 0 0 1 5 

HXZ 3 2 0 0 5 1 

Table 2: Formulation of the rubber compounds.  

Scanning Electron Microscopy (SEM) 

Morphological study of the samples was carried out using a field-emission scanning electron 

microscope with a Schottky type field-emission gun (JEOL JSM-7000F). The samples 

where brittle fractured in liquid nitrogen prior to SEM observation. The rubber phase in the 
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surface of the non-vulcanized TPE blend, i.e. the TPE blend with co-continuous 

morphology, was extracted by immersing the blend into acetone at room temperature for 24 

hours. The cryofractured surfaces were sputter coated with a gold layer prior to microscopy.  

Dynamic Mechanical Analysis (DMA) 

Dynamic mechanical analysis (DMA) was performed by means of a Rheometrics Solids 

Analyzer (RSA II) in tension mode. Loss tangent (tan δ) as a function of temperature was 

measured at 1 Hz oscillating frequency while heating from -40 to 200 °C at a heating rate of 

3 °C min-1. All the measurements were performed at a strain of 0.03%. 

Fourier Transform Infrared (FTIR) Spectroscopy 

Fourier Transform Infrared (FTIR) measurements were performed by a Nicolet IS10 

spectrometer. FTIR-ATR spectra were collected from 400 to 4000 cm-1 by performing 32 

scans with a resolution of 4 cm-1. All FTIR spectra were normalized by the intensity of the 

antisymmetric –CH2– stretching band located at 2937 cm-1. 

Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) measurements were performed on the DSC Q100 

(TA Instruments) calorimeter under nitrogen atmosphere. Samples were heated from room 

temperature to 250 °C, followed by cooling from 250 °C to -50 °C and heating again from -

50 to 250 °C with a rate of 10°C min-1. The first heating was conducted to remove the 

thermal history.  

Mechanical testing  

Tensile tests of the TPVs were carried out according to ISO 37 test method on dumbbell-

shaped specimens using a MTS Insight Universal Testing Machine at a constant crosshead 

speed of 5 mm min-1 at room temperature. 

Results and discussion 
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Morphological investigation  

SEM micrographs of the TPVs are shown in Fig. 1. As we expected, dispersion of 

crosslinked rubber particles in a continuous PA6 matrix is observed in all TPVs. The 

dynamic vulcanization in presence of curing agents leads to selective crosslinking in the 

rubber phase that results in an increase of the rubber viscosity. The abrupt increase of the 

viscosity of the rubber phase promotes the phase inversion, i.e, the rubber phase tends to be 

encapsulated by the less viscous thermoplastic phase. Meanwhile, the applied high shear rate 

does not allow the crosslinked rubber phase to be coalesced into a continuous phase. At the 

end of the melt mixing process of the rubber compound with the molten thermoplastic, the 

rubber phase will be finely dispersed in the thermoplastic matrix33. From the SEM 

micrographs in Fig. 1 it can be concluded that the domain sizes of the crosslinked rubber 

particles are in the micron (µm) or submicron level for all TPV samples. The development 

of the dispersed phase morphology from the co-continuous phase is depicted in Fig. 2. The 

rubber phase on the surface of the non-vulcanized TPE blend was etched with acetone in 

order to reveal the co-continuous phase34. 
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Figure 1. SEM micrographs of (a) PA6/HXA0; (b) PA6/HXA98; (c) PA6/HXA10; (d) PA6/HXZM; 

(e) PA6/HXM; (f) PA6/HXZ. 
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Dynamic vulcanization 

Figure 2. Morphological transition from co-continuous to droplet-matrix morphology of the 

PA6/HNBR/XHNBR (40/18/42 wt/wt/wt) blend after dynamic vulcanization: (a) SEM 

images of the non-vulcanized TPE blend after etching the rubber phase with acetone and (b) 

SEM images of PA6/HXA0 TPV. Upper and lower images represent SEM images with 

different magnifications. 
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Dynamic mechanical analysis   

The damping properties of TPVs are investigated by means of DMA analysis and loss 

tangent (tan δ) is used as a measure of damping. Fig. 3 shows the effects of hindered 

phenolic antioxidants on the damping properties of TPV samples. The effects of metallic 

oxides on damping properties of TPVs are shown in Fig. 4. The lower temperature peak can 

be assigned to the Tg of the rubber phase, whereas the damping peak at about 80 ºC is 

assigned to the PA6 amorphous phase Tg. Therefore, DMA results confirm the existence of a 

two phase-separated structure observed in SEM images.  

Regarding the effect of hindered phenolic antioxidants, as shown in Fig. 3, the presence of 

Irganox 1010 increases the tan δ peak height of both rubber and PA6 phases. By contrast, 

the presence of Irganox 1098 decreases sharply the tan δ peak of the rubber phase. 

Moreover, the damping peak temperature (Tg) of the rubber phase in PA6/HXA10 increases 

slightly from -10 ºC to -7 ºC, while no shift was observed in PA6/HXA98. The peak shift 

and the growth of the tan δ peak demonstrate the existence of strong hydrogen bonding 

interaction between the Irganox 1010 and the rubber phase35,36.  

With respect to the TPVs containing different amounts of metallic oxides, the results shown 

in Fig. 4 clearly reveal an additional relaxation transition at about 40 ºC for PA6/HXM and 

PA6/HXZ, i.e, the TPV samples containing 5 phr of MgO and 5 phr ZnO, respectively. This 

relaxation transition can be associated with the formation of ionic clusters or associates 

between Zn or Mg ions and the carboxyl groups present in the rubbery phase, which behave 

as independent microphases inside the rubbery phase37. This phenomena is schematically 

represented in Fig. 5.  

Interestingly, the PA6/HXM sample shows the highest tan δ values, whereas PA6/HXZ 

shows the lowest ones. The other TPV samples show values that are in between. Moreover, 

the PA6/HXM sample possess a much higher tan δ value in the ionic transition, and the 

ionic transition range is also broader. These results reflect that, for this particular TPV 

compounds, MgO is more effective than ZnO in neutralizing the carboxyl groups present in 
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the rubbery phase. The effect of different oxides and hydroxides of divalent metals in the 

mechanical properties of a carboxylic styrene butadiene rubber (XSBR) containing 1.5 wt% 

of carboxylic groups have been studied by Dolgoplost et al.38. They found that MgO gives 

better physical properties than ZnO. The mechanics of crosslinking in the carboxylic rubber 

phase of the TPV compounds as a function of the different crosslinking agents is shown in 

Fig. 6. 

 

Figure 3. Temperature dependence of tan δ for TPV samples containing different amount of 

phenolic antioxidants.  
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Figure 4. Temperature dependence of tan δ for TPV samples containing different amount of 

metallic oxides.  

 

Figure 5. Schematic model showing the formation of ionic associations and ionic 

microphases comprising ZnO or MgO and carboxylate ions.  
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(a) 

 

(b) 

 

Figure 6. Mechanism of crosslinks in the carboxylic rubber phase of TPV compounds when 

(a) peroxide and MgO metal oxide and (b) peroxide and Irganox 1010 hindered phenolic 

antioxidant were used as crosslinking agents.  
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FTIR studies 

Fig. 7 shows the FTIR spectra of the TPE blend (P30H70X), i.e, the sample without 

crosslinking, and the TPV samples in the out-of-plane deformation γ (=C-H) cis region, a 

region associated to peroxide crosslinking reaction39. The peroxide crosslinking reaction 

involves three consecutive steps. The first step involves the formation of free radicals. Next, 

these radicals remove hydrogen atoms from the polymer forming a polymer radical; and 

finally, two polymer radicals are combined to form carbon-carbon crosslinks. All TPV 

samples show a decrease in the γ (=C-H) cis band located at 728 cm-1, demonstrating the 

creation of covalent structures40. 

 

 
Figure 7: Infrared spectra of uncured TPE blend (P30H70X) and TPV samples in the out-

of-plane deformation γ (=C-H) cis region. 

In order to find further evidences to support the compatibility of Irganox 1010 with the 

rubber phase, the effectiveness of both Irganox 1010 and Irganox 1098 to form hydrogen 

bonding interactions were investigated by FTIR measurement. Fig. 8 shows the FTIR 

spectra of PA6/HXA0, PA6/HXA98 and PA6/HXA10 TPV samples in the hydroxyl group 
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(OH) stretching region (3500 cm-1). A band at 3643 cm-1 exists in the infrared spectrum of 

the PA6/HXA98 TPV sample, which can be assigned to the free (non-hydrogen bonded) OH 

groups of Irganox 1098. This result suggests that the Irganox 1098 antioxidant acts more as 

a filler, not being coupled with other functional groups, and this leads to a decrease of the 

tan δ peak of the rubber phase (as shown in Fig 3).  

 
Figure 8: Infrared spectra in the OH stretching region for PA6/HXA0, PA6/HXA98 and 

PA6/HXA10 TPV samples. 

Fig. 9 shows the FTIR-ATR spectra in the range 1000 to 3500 cm-1 for TPV compounds 

containing different amounts of metallic oxides and for the cured HXM rubber compound. 

The TPV compounds have two strong absorption bands at about 1645 cm-1 and 1545 cm-1, 

corresponding to the amide I group (C=O stretch) and amide II group (in-plane N-H bend 

coupled with C-N stretch) of PA641,42. The most important region of the FTIR spectrum 

related to the formation of ionic crosslinks is the one in between 1700 and 1500 cm-1, where 

the peak related to the salt formation can be observed43. Therefore, the presence of the two 

peaks related to the amide groups of the PA6 phase in the TPV compounds complicates the 

analysis of ionic crosslink formation by FTIR measurements. For that reason, the ATR 
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spectra of the cured HXM rubber compound is added to the analysis. As it can be observed, 

XHM presents a peak at 1610 cm-1. This peak is assigned to the carbonyl stretching of 

magnesium hydroxycarboxylate salt (-COOMgOH)44. This result confirms the creation of 

ionic crosslinks observed in the DMA analysis (see Fig. 4). Malmierca et al.45 investigated 

the network structure and chain dynamics of ionic elastomers based on XNBR and MgO. 

They also found that the addition of MgO promoted the conversion of carboxylic groups 

presented in XNBR to the corresponding carboxylate salts. 

 
Figure 9: Infrared spectra of compounds containing different amounts of ZnO and MgO in 

the range 1000 to 3500 cm-1. 

Differential scanning calorimetry analysis 

The heating and cooling DSC thermograms of PA6 and the TPV samples are shown in Fig. 

10. The melting temperature (Tm), crystallization temperature (Tc), melting enthalpy (ΔHm) 

and degree of crystallinity (Xc) of neat PA6 and TPV samples are listed in table 3. The 

degree of crystallinity was calculated as the ratio of the melting enthalpy to the weight 

fraction of PA6 (𝑤𝑤𝑃𝑃𝑃𝑃6) in the blend from the following equation: 
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𝑋𝑋𝑐𝑐(𝑃𝑃𝑃𝑃6) =
∆𝐻𝐻𝑚𝑚

∆𝐻𝐻𝑚𝑚0 𝑤𝑤𝑃𝑃𝑃𝑃6
× 100 

where ∆𝐻𝐻𝑚𝑚 is the measured enthalpy of melting and ∆𝐻𝐻𝑚𝑚0 =190 J/g is the melting enthalpy of 

100 % crystalline PA646. 

The heating thermograms (Fig. 10(a)) reveal that the neat PA6 as well as the TPVs display 

two melting peaks. The low intensity melting peak at about 215 °C corresponds to the 

melting of γ-form crystalline structure whereas the high intensity melting peak at about 220 

°C corresponds to the α-form crystalline structure of PA647. The γ-form crystalline structure 

is considered an imperfect crystal formation while the α-form is considered a more stable 

crystal formation48,49. All TPV compounds present the same high intensity melting peak 

position, i.e., the same melting temperature. Moreover, it should also be noted from the 

cooling thermograms presented in Fig. 10(b) that all TPV samples show approximately the 

same crystallization temperature.  

In regard to the crystallinity degree, we find that PA6/HXA10 and PA6/HXM TPV systems 

show the lowest crystallinity degree values. On the other hand, the PA6/HXA98 and 

PA6/HXZ TPV systems show an increase of the crystallinity degree. Therefore, from the 

DSC analysis we can confirm that the Irganox 1098 hindered phenolic antioxidant and the 

ZnO metallic oxide act as nucleating agents. Recently, Ling et al. have demonstrated that, 

the weaker are the hydrogen bond interactions between hindered phenols and XNBR, the 

easier is for the hindered phenol to crystallize50. Therefore, DSC results indicate that the 

interaction between Irganox 1098 and ZnO with the rubber phase is weak, resulting in a 

decrease of the damping performance properties, as observed in the DMA analysis (see Fig. 

3 and Fig. 4).  
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Figure 10: DSC thermograms of PA6 and TPV samples: (a) heating and (b) cooling. 
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Sample Tm (°C) Tc (°C) ΔHm (J/g) Xc (%) 

PA6 220 189 56 30 

PA6/HXA0 222 185 35 46 

PA6/HXA98  222 185 42 55 

PA6/HXA10  222 184 23 30 

PA6/HXZM  222 185 39 51 

PA6/HXM  222 185 25 33 

PA6/HXZ 222 186 32 42 

Table 3. Melting and crystallization results for neat PA6 and TPV samples, from DSC 

analysis. 

Mechanical properties 
The stress–strain curves at room temperature of the TPV samples are presented in Fig. 11. 

The mechanical properties (i.e, young modulus, tensile strength and elongation at break) are 

summarized in table 4.  It is found that, the addition of 5 phr of both Irganox 1098 and ZnO 

(PA6/HXA98 and PA6/HXZ, respectively) led to an increase of the young modulus and a 

drastic decrease of the elongation at break. Usually, the tensile strength and young modulus 

of TPV systems are increased with increasing the content of rigid fillers, whereas the 

elongation at break is decreased33. However, the use of the same amount of filler, i.e 5 phr, 

but in this case of Irganox 1010 and MgO (PA6/HXA10 and PA6/HXM, respectively) 

enhances the elongation at break, which is a further evidence of the strong interactions 

between Irganox 1010 and MgO with the rubber phase, as seen from the FTIR 

measurements (Fig. 8 and 9). Furthermore, PA6/HXA10 and PA6/HXM systems give the 

lowest young modulus values. This may be attributed to the low crystallinity degree that the 

PA6 phase possess in these two particular systems.  
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Figure 11: Stress–strain curves at room temperature of TPV samples. 

Sample Young modulus 
(MPa) 

Tensile strength 
(MPa) 

Elongation at break 
(%) 

PA6/HXA0  223 27 166 

PA6/HXA98  411 21 58 

PA6/HXA10  163 19 103 

PA6/HXZM  277 23 125 

PA6/HXM  181 25 141 

PA6/HXZ  630 28 64 

Table 4. Mechanical properties of TPV samples. 
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Conclusions 

In this study, the effect of adding metal oxides and hindered phenolic antioxidants on the 

damping properties of high-performance peroxide-cured TPVs based on PA6 and 

carboxylated HNBR were investigated, as novel strategies to improve the damping 

properties of carboxylic TPV systems. The selected metal oxides were ZnO and MgO, 

whereas the selected hindered phenolic antioxidants were Irganox 1010 and Irganox 1098. 

SEM studies revealed a droplet-matrix biphasic structure with the crosslinked rubber 

particles in the micron level for all the TPV systems investigated. Regarding the effect of 

hindered phenolic antioxidants, DMA results showed that the presence of Irganox 1010 

increases the damping peak maximum value of both rubber and PA6 phases. In contrast, the 

addition of Irganox 1098 decreases remarkably the height of the damping peaks. FTIR 

investigations indicated that Irganox 1098 acts mainly as an inorganic filler, not being 

coupled with the carboxyl functionalities presented in the rubber phase, whereas Irganox 

1010 forms hydrogen bonds with XHNBR. In the case of the metallic oxides, the dynamic 

mechanical properties revealed an additional relaxation transition corresponding to the 

temperature transition of the ionic microphases inside the rubber phase. The ionic transition 

was particularly evident for the TPV system containing 5phr of MgO. Therefore, MgO 

offers a higher effectiveness in interacting with the carboxyl functionalities presented in the 

TPVs rubber phase. This was also manifested in the FTIR analysis by the presence of an 

additional peak at 1610 cm-1, attributed to the carbonyl stretching of magnesium 

hydroxycarboxylate salt. The TPV systems containing 5phr of both Irganox 1010 and MgO 

showed the lowest crystallinity degree values together with enhanced elastomeric properties, 

which is a further evidence of the strong hydrogen bonding and ionic interactions formed 

with the carboxylic rubber phase. This work revels new ways to improve the damping 

properties of high-performance TPV systems by using carboxylic rubbers and controlling 

the type and magnitude of different crosslinking interactions.  
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Abstract 

Driven by the need to design environmentally friendly and sustainable polymeric materials 

that achieve superior mechanical properties, this work is centred on the relationship between 

the microstructure and the nonlinear quasi-static and dynamic mechanical behaviour of 

novel polyamide 6 (PA6)/carboxylated hydrogenated acrylonitrile butadiene rubber 

(XHNBR) thermoplastic vulcanizates (TPVs). In particular, with the aim to contribute to the 

further understanding of the physical mechanisms involved in the complex nonlinear 

mechanical behaviour of TPV compounds, the impact of different microstructural features of 

the PA6 matrix and the rubber network on the mechanical behaviour has been investigated. 

Interestingly, stronger rubber network interactions and so better elastic recovery capacity of 

the rubber network can hinder the growth of voids more efficiently. The observed 

micromechanical deformation processes are interpreted in terms of the role of the yielding, 

buckling and bending of thin PA6 ligaments at low strain levels and the rupture of covalent 

and non-covalent bonds presented in the rubber network at high strain levels. Jo
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Introduction 

In the field of “green” elastomeric materials, thermoplastic elastomers (TPEs) are considered 

one of the most promising candidates for thermoset elastomers replacement due to their 

physico-mecanical properties, design flexibility, ease of processability, light weight and cost 

effective productivity [1–3]. The physical mixing of thermoplastic and rubber materials is a 

feasible approach of formulating TPEs with tailored properties [4,5]. TPE blends can be 

arranged in two main groups [6]. The first group is composed of simple blends of 

thermoplastics with non-crosslinked rubbers. The second group consist of blends of a 

thermoplastic with a rubber phase that has been dynamically vulcanized, i.e., thermoplastic 

vulcanizates (TPVs) [7]. The dynamic vulcanization describes the process of crosslinking 

the rubber phase during the melt-mixing with the thermoplastic. Dynamically vulcanized 

blends have superior properties than simple blends [8–10]. Due to their upgraded properties, 

TPVs are attracting a growing interest in many demanding engineering applications such as 

automotive and aeronautic components. 

The microstructure of TPVs is characterized by crosslinked rubber particles dispersed in a 

continuous thermoplastic matrix [11,12]. In addition to the crosslinking agents, other kind of 

fillers can be added into the rubbery phase in order to enhance the engineering properties of 

TPV compounds [13–17]. The addition of fillers may alter the microstructure of the TPV 

compound generating a multiple-network structure [18–21]. This complex heterogeneous 

microstructure generates a highly nonlinear mechanical behaviour that depends on stress, 

strain history, time, temperature and frequency [22–24], characterized by remarkable 

inelastic effects and viscoplastic behaviour [25–28]. In order to ensure a competitive 

application of TPV materials, the complexity of their mechanical properties must be taken 

into account. Moreover, the mechanical nonlinearities intervene not only in the static level 

but also in the dynamic one. 
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In the quasi-static state, one of the most important mechanical nonlinearities that needs to be 

taken into account in TPV materials is the stress softening phenomena. When an elastomer 

is subjected to cyclic loading-unloading conditions, the stress to a given strain decreases 

over the cycles. The stress softening phenomena has been reported in filled and non-filled 

rubber-like materials and has been intensively investigated by Mullins and his co-workers 

[29–34], hence it is widely known as the “Mullins effect”. Other important phenomena that 

appear when a TPV material is subjected to cyclic loading-unloading conditions are the 

hysteresis loss and the permanent deformation [35–37].The hysteresis loss represents the 

dissipated energy and is shown by the loop of strain-stress path due to the different stresses 

that a given strain presents at the loading and unloading curves [38]. The permanent 

deformation is a consequence of the viscoplastic nature, and represents the unrecoverable 

deformations when a strain threshold is reached [39]. 

In the dynamic state, TPV materials exhibit a highly nonlinear behaviour. One of these 

nonlinearities is the dependence of the storage modulus on the amplitude of the dynamic 

strain, which is known as the “Payne effect” [40]. The Payne effect refers to the phenomena 

that, above a threshold dynamic strain amplitude, the storage modulus decreases rapidly with 

increasing the amplitude. The Payne effect characterization is essential for the modelling of 

elastomeric components. Moreover, a static predeformation superimposed by a small 

harmonic oscillation can be found in many elastomeric applications where the elastomeric 

segment is used to attenuate the vibrations of industrial structures. Therefore, another 

interesting nonlinearities to consider are the dependence of TPV systems on the static 

predeformation and frequency.  

Even though the deformation behaviour of TPV compounds has been the focus of several 

experimental and theoretical studies, there are no unanimous explanations of the physical 

origin of the complex nonlinear behaviour and so, a complete physical picture remains 

elusive. Therefore, in order to ensure a competitive and confident application of TPV 

compounds, detailed knowledge about the correlation between the nonlinear behaviour and 

the microstructural features need to be well stablished. Furthermore, linking the mechanical Jo
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performance to the microstructure would encourage the micromechanical modelling of TPV 

materials, an evolving field where different researchers continue developing new models 

every year.  

In this scenario, the present work focuses on the analysis of nonlinear effects in the quasi-

statical and dynamical states, trying to offer explanations for the deformation behaviour 

based on microstructural features. To this aim, two novel TPV compounds containing 

different microstructural features have been developed by melt-blending polyamide 6 (PA6) 

and carboxylated hydrogenated acrylonitrile butadiene rubber (XHNBR) and using mixed 

crosslink systems of peroxide, ZnO, MgO and hindered phenolic antioxidants. 

Experimental 

Materials 

PA6, Durethan® B 30 S 000000, was provided by Lanxess. HNBR, Therban® AT 3904 VP, 

and carboxylated HNBR (XHNBR), Therban® XT VP KA 8889, rubbers were purchased 

from Arlanxeo. Trigoxox 145 from Akzo Nobel Polymer Chemicals was used as the 

vulcanization agent for the rubber phase in the TPVs. The co-agent trimethylolpropane 

trimethacrylate (TMPTMA, Rhenofit TRIM/S) was purchased from Rhein Chemie 

Additives. ZnO and MgO metallic oxides were provided by Panreac Applichem, Spain. 

Irganox 1010 hindered phenolic antioxidant was supplied by BASF, Switzerland. All 

chemicals were used as were received.  

Preparation of thermoplastic elastomer blends  

For the rubber phase, a premix of the XHNBR/HNBR (70/30 wt/wt) rubber phase with 

different additives was prepared in a two-roll mill. The obtained uncured rubber compound 

sheets were extruded into strands and subsequently pelletilized. Extrusion was performed at 

90 °C and 15 rpm in a Gumix Extruder with a length to diameter ratio of 10.  
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The premixed rubber compounds and PA6 were melt-blended at a fixed weight ratio, 60/40 

wt/wt, in a Brabender DSE 20/40 co-rotating twin screw extruder at a temperature of 240 °C 

and a rotor speed of 200 rpm. The PA6 pellets were dried at 80 °C for 8 hours before melt-

blending. Table 1 presents the composition and designation of the prepared samples. 

PA6/HXM and PA6/HXA10 are the two particular peroxide-cured TPV compounds, 

analysed in our previous article, that showed the best thermoplastic elastomeric and damping 

properties [41]. In the case of the PA6/HXA10 TPV compound, the addition of 5 phr 

Irganox 1010 hindered phenolic antioxidant resulted in upgraded damping properties due to 

the formation of hydrogen bond interactions with the carboxyl functionalities presented in 

the rubber. Furthermore, PA6/HXM TPV compound showed improved damping behaviour 

as a result of the ionic interactions formed between ZnO and the carboxylic rubber.  

Table 1. Composition and designation of the prepared samples. 

Sample 

Composition 

Thermoplastic 

phase 
Rubber phase Peroxide Co-agent 

Hindered 

phenolic 

antioxidant 

Metallic oxides 

PA6 XHNBR HNBR 
Trigonox 

145 
TRIM/S Irganox 1010 ZnO MgO 

PA6/HXM 40 42 18 3 2 0 1 5 

PA6/HXA10 40 42 18 3 2 5 2 3 

Compression moulding of the samples 

The thermoplastic elastomer samples taken from the Brabender DSE 20/40 corrotating twin 

screw extruder were compression moulded at 240 °C to prepare sheets of 1 mm thick for the 

following quasi-static and dynamic mechanical testing. Drying of samples was performed 

before any testing. Morphology of the thermoplastic elastomer samples was measured from the 

compression moulded sheets in order to obtain the correct structure-property relationship.  
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Scanning Electron Microscopy (SEM) 

Morphology of TPV samples was studied employing a JEOL JSM-7000F field-emission 

scanning electron microscope. Samples were immersed in liquid nitrogen and brittle 

fractured. The brittle fractured surface was sputter coated with gold prior to SEM 

measurements.   

Differential Scanning Calorimetry (DSC) 

Thermal transitions of the samples were investigated by performing DSC measurements on 

a DSC Q100 (TA Instruments) in a dry nitrogen atmosphere. Samples were heated up from 

−50 to 250 °C at a constant heating rate of 10 °C min−1. 

Quasi-static mechanical behaviour 

The monotonic tensile properties of the blends were measured in accordance with the ISO 

37 test method at 5 mm min-1 crosshead speed and room temperature. Measurements were 

performed in a MTS Insight Universal Testing Machine. The monotonic tensile results 

reported in this work are the average of three samples. Cyclic tensile stress-strain curves of 

the samples were also obtained by using the MTS Insight Universal Testing Machine at a 

constant strain rate of 100% min-1. Six strain levels were applied (10, 20, 30, 50, 70 and 

100%) and five cycles of loading-unloading were applied for each level of strain. A new 

loading stroke was started once a zero stress state was obtained in the tensile sample. The 

permanent set of the samples was considered as the residual strain when the tensile stress 

gets to zero [42]. The hysteresis loss of the samples was measured by estimating the ratio 

between the areas of loading-unloading cycles and the areas below the loading curves [43]. 

The values reported are of the engineering stress and strain.  

Dynamic mechanical behaviour 

The dynamic mechanical behaviour of the blends was analysed in a Mettler-Toledo 

DMA/SDTA 861e in shear and tension mode. Disc samples of 8 mm diameter were cut from 

the 1 mm thick compression moulded sheets for the dynamic mechanical measurements in Jo
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shear mode. Rectangular samples of length 30 mm and section 4 mm ×1 mm were used for 

the measurements in tension mode.  

To identify the frequency-dependent behaviour of the materials, dynamic frequency sweep 

tests from 1 to 200 Hz at -10, 25 and 80 °C were conducted in shear mode. The dynamic 

strain amplitude was set at 0.1%, in order to avoid the Payne effect. To investigate the Payne 

effect, dynamic strain sweep tests from 0.01 to 10 % at a constant frequency of 10 Hz were 

applied to the samples. The variation of the dynamic mechanical properties with temperature 

were also analysed by performing temperature sweeps from -40 to 120 °C at a heating rate 

of 3 °C min-1 with an oscillating frequency of 1 Hz in tension mode. In order to prevent 

sample buckling, a low static prestrain of 0.1% was applied in both dynamic strain sweep 

and temperature sweep tests conducted in tensile mode. 

To consider the static prestrain effect on the dynamic properties, the experimental procedure 

consisted on superimposing a static tensile prestrain to the small sinusoidal dynamic strain 

applied to the sample. The experimental procedure can be expressed as follows:  

𝜀(𝑡) = 𝜀𝑠 + 𝜀𝑑 sin(𝑤𝑡)                                                               (1) 

where 𝜀𝑠 denotes the static prestrain and 𝜀𝑑 the dynamic strain. The tests were performed 

with a frequency of 10 Hz and a small dynamic strain of 0.01% so that the Payne effect was 

avoided. Different levels of static prestrain from 0.1% to about 4% were reached. After each 

static prestrain has been applied the samples were allowed to relax for two minutes to reduce 

the effects of stress relaxation on the tests.  

Results and discussion 

Microstructural investigation  

SEM images of the TPV samples are presented in Figure 1. The SEM images reveal a 

droplet-matrix morphology for both samples. The final morphology of a melt-mixed blends 

is derived from the competition of the deformation and break-up of droplets with the shape Jo
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recovery and coalescence [44]. For TPV compounds, the selectively crosslinked rubber gets 

encapsulated by the thermoplastic due to the increase of the rubber phase viscosity. This 

effect is known as phase inversion phenomena. At the same time, the employed high shear 

rate hinders the coalescence of the crosslinked rubber phase and facilitates the fine 

dispersion of the crosslinked rubber phase in the thermoplastic matrix [45]. The morphology 

developed during the TPV preparation process is schematically shown in Figure 1c. From 

the Figures 1a and 1b, it can be concluded that finely dispersed rubber particles are obtained 

for both TPV compounds, obtaining rubber particles sizes in the micron (μm) level.  

(a) (b) 

  

(c) 

 

Figure 1. SEM images of (a) PA6/HXA10 and (b) PA6/HXM, and (c) schematic 

representation of the morphology developed during TPV preparation. Jo
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Microstructural features of TPVs where also investigated by DMA. Figure 2 displays the 

temperature dependence of storage modulus (E´) and loss tangent (tan δ), of both PA6/HXM 

and PA6/HXA10, measured in tension mode. tan δ is the ratio of the loss (E´´) to storage 

modulus and indicates the ability of materials to absorb energy. Therefore, provides 

information about the different relaxation transitions that happen in the TPV compounds. 

Two glass transitions (Tgs) are observed in both samples (Figure 2b), confirming the 

biphasic microstructure observed in the SEM images (Figure 1). The Tg of the rubber phase 

is observed at around -8 ºC, while the Tg related to the PA6 amorphous phase is observed at 

about 80 ºC. Furthermore, it is interesting to note that, PA6/HXM presents an additional tan 

δ peak near room temperature, which appears as a small shoulder in Figure 2b. This 

additional peak corresponds to the microdomains formed by ionic linking of MgO with the 

carboxylic rubber phase [46,47]. The formation of ionic interactions is also supported by the 

lower storage modulus of PA6/HXM near room temperature (Figure 2a). 

(a) (b) 

  

Figure 2. Temperature dependence of (a) storage modulus and (b) tan δ measured in tension 

mode. 

As discussed in our earlier publication [41], PA6/HXM and PA6/HXA10 TPV samples 

possess different rubber network structures. The rubber network structure of PA6/HXM is 

based on peroxide cured C-C linkages and ionic bonds, while the PA6/HXA10 compound Jo
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exhibits C-C linkages and hydrogen bonds. The multiple-network morphology of the TPV 

compounds is schematically represented in Figure 3.  

(a) 

 

(b) 

 

Figure 3. Schematic representation of the multiple-network morphology of (a) PA6/HXM 

and (b) PA6/HXA10 TPV compounds. Jo
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DSC data was used to evaluate the crosslinking densities of the rubber networks. Figure 4 

shows the DSC thermograms of the TPV samples and the uncured rubber samples. Both 

TPVs present an exothermic reaction peak at about 120 ºC. This peak is related to the 

reaction heat generated in the peroxide crosslinking reaction that takes place in the rubber 

phase of the TPVs. The crosslinking degree (CD) can be determined by comparing the 

crosslinking reaction enthalpy of the TPV samples with the crosslinking reaction enthalpy of 

the uncured rubber samples according to the following equation [48]: 

𝐶𝐷 (%) =
∆𝐻(𝑆0)−∆𝐻(𝑆𝑋)

∆𝐻(𝑆0)
                                                       (2) 

where ∆𝐻(𝑆0) 𝑖𝑠 the crosslinking reaction enthalpy of the uncured rubber sample and 

∆𝐻(𝑆𝑋) is the crosskinking reaction enthalpy of the TPV sample. The reaction enthalpies 

obtained by DSC measurements and the CD values calculated by equation 2 are depicted in 

Table 2. PA6/HXM sample presents a remarkable higher CD that PA6/HXA10. For the 

PA6/HXA10 TPV sample only a 85% of the peroxide curing agent is activated.  

 

Figure 4. DSC thermograms of PA6/HXM and PA6/HXA10 TPV samples together with 

uncured HXM and HXA10 rubber samples. 
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Table 2. Crosslinking reaction enthalpies and related CD values of the TPV samples. 

Sample ∆𝑯(𝑺𝟎) (J/g) ∆𝑯(𝑺𝑿) (J/g) CD (%) 

PA6/HXM 22.15 1.27 94 

PA6/HXA10 18.11 2.71 85 

Additionally, the microstructural properties of the PA6 thermoplastic phase that have an 

impact on the mechanical behaviour as the thickness of the crystalline lamellae and the 

crystallinity degree, have been monitored by DSC [49]. The melting temperature recorded 

by DSC (endothermic peak in Figure 4) can be transformed into lamellar crystals thickness 

by applying the Gibbs-Thomson equation [50]: 

𝐿 = (
𝑇𝑚

0

𝑇𝑚
0 − 𝑇𝑚

)
2𝜎𝑒

∆𝐻𝑚
0 𝜌

                                                        (3) 

where L is the lamellar crystals thickness, 𝑇𝑚
0  is the equilibrium melting temperature of an 

infinite crystal, 𝑇𝑚 is the experimental melting temperature, 𝜎𝑒 is the surface energy of the 

basal surface crystalline lamellae, 𝜌 is the density and ∆𝐻𝑚
0  is the melting enthalpy of the 

crystalline phase. The following PA6 constant values were utilized: 𝜎𝑒= 80.10 × 10−7 J cm-2, 

∆𝐻𝑚
0 = 190 J g-1, 𝑇𝑚

0 = 259.85 °C,  𝜌 = 1.23 g cm-3 [51].  

The crystallinity degree of the PA6 phase in the TPV samples can also be deduced from 

DSC measurements by applying the following equation:  

𝑋𝐶(𝑃𝐴6) =
∆𝐻𝑚

∆𝐻𝑚
0 𝑤𝑃𝐴6

                                                       (4) 

where ∆𝐻𝑚 is the measured enthalpy of melting, ∆𝐻𝑚
0  is the melting enthalpy of 100 % 

crystalline PA6 and 𝑤𝑃𝐴6is the weight fraction of PA6 in the blend. The values of crystalline 

lamellae thickness and crystallinity degree, calculated from equations 3 and 4, are presented 

in Table 3. Both TPV samples possess similar crystallinity degree and crystalline lamellae 

thickness.  
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Table 3. Melting temperature (Tm), enthalpy of melting (ΔHm), thickness of lamellae and 

crystallinity degree (Xc) determined by DSC. 

Sample Tm (°C) ΔHm (J/g) Crystalline lamellae thickness (nm) Xc (%) 

PA6/HXM 222.9 28.1 48.2 36.9 

PA6/HXA10 223.1 26.0 48.5 34.2 

Quasi-static mechanical characterization 

The tensile curves of the TPVs, the pure PA6 thermoplastic and the pure rubber (vulcanized 

using 3 phr Trigonox 145 and 2 phr TRIM) are depicted in Figure 5. The tensile strength and 

elongation at break are listed in Table 4. The stress-strain curve of TPV compounds lies 

between the curve of pure PA6 and the curve of pure rubber. Additionally, the deformation 

behaviour of the TPV compounds can be divided in two main regions. At low strains, the 

stress increases considerably with the strain whereas at high strains there is a more gradual 

increase. Therefore, at low strain TPVs exhibit the deformation behaviour of the 

thermoplastic phase and that of the rubber phase at high strains.  

In relation to the low strain behaviour, the stiffness shown by both samples is practically 

equal, which may be attributed to the fact that the PA6 phase of both TPVs possess similar 

crystallinity degree. Besides, PA6/HXM presents a much higher tensile strength and 

elongation at break values than PA6/HXA10. This result can be ascribed to the higher 

crosslink density of the rubber phase in the PA6/HXM sample [52]. Moreover, the formation 

of a rubber network structure consisting of C-C and ionic linkages contributes to a higher 

straining capacity of the rubber particles of the PA6/HXM TPV compound [53,54].  
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Figure 5. Monotonic stress-strain curves of the pure PA6 thermoplastic, pure rubber and 

TPE samples. 

Table 4: Tensile strength and elongation at break of TPV samples. 

Sample Tensile strength 

(MPa) 
Elongation at break (%) 

PA6/HXM 24.86 ± 0.76 140.83 ± 9.94 

PA6/HXA10 18.87 ± 0.45 102.72 ± 2.06 

The cyclic stress-strain behaviour of the TPV samples which maximum strain level is 

increased sequentially from 10, 20, 30, 50, 70 and 100% is shown in Figure 6a. A stabilized 

state, characterized by a constant stress amplitude and constant hysteresis loop, was 

achieved after four cycles. As a result, the fifth cycle was considered as the stationary state. 

As shown in Figure 6a, both TPV samples exhibited a large hysteresis loss at the first 

loading-unloading cycles. Additionally, they also demonstrate a pronounced loss of 

hysteresis and stress during the cyclic deformation, suggesting a significant Mullins 

softening effect in both TPVs. The Mullins softening phenomena is schematically shown in 

Figure 6b [55]. Figure 7a presents the influence of the strain level on the stress softening 

during cyclic deformation, which has been characterized as follows: Jo
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𝐶𝑦𝑐𝑙𝑖𝑐 𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑜𝑓𝑡𝑒𝑛𝑖𝑛𝑔 (%) = (1 −
𝜎𝑚𝑎𝑥

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒𝑑 𝑐𝑦𝑐𝑙𝑒

𝜎𝑚𝑎𝑥
𝑓𝑖𝑟𝑠𝑡 𝑐𝑦𝑐𝑙𝑒

) × 100                                  (5) 

where 𝜎𝑚𝑎𝑥
𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒𝑑 𝑐𝑦𝑐𝑙𝑒

 and 𝜎𝑚𝑎𝑥
𝑓𝑖𝑟𝑠𝑡 𝑐𝑦𝑐𝑙𝑒

 are the stress values for the maximum strain level at 

the stabilized cycle and first cycle, respectively [56]. The evolution of the hysteresis loss and 

the permanent set are depicted in Figures 7b and 7c. The evolution of these parameters gives 

evidences about the microstructural changes that the cyclic deformation under different 

strain levels causes in the TPV samples.  

Quite a few models that describe the cyclic deformation and microstructural changes of 

PP/EPDM TPVs, which are one of the most commonly used general purpose TPVs, can be 

found in the literature [57–60]. Soliman et al. reported the deformation behaviour of a 

PP/EPDM TPV compound cured with a phenolic resin [61]. They performed combined 

infrared spectroscopy and tensile stress-strain tests in order to measure the orientation of the 

rubber and thermoplastic phases during the stretching of the sample. They found that the 

whole rubber phase was stretched, while only in a small portion of the thermoplastic phase 

was stretched. According to them, the plastic deformation of the thermoplastic phase is 

concentrated at the boundary between the rubber droplets. During the unloading process the 

previously deformed thermoplastic portion is pulled back to some extent owing to the elastic 

recovery capacity of the rubber. A schematic representation of the Soliman model is 

depicted in Figure 8. Based on the Soliman model, the cyclic deformation behaviour of TPV 

samples may be mainly driven by the yielding, buckling and bending of the thin PA6 matrix 

ligaments and the elastic recovery ability of the rubber droplets. Similar deformation 

mechanism have been also reported for PA6/EPDM-g-MA TPV compounds [62,63]. 

At low strains both the PA6 matrix phase and the rubber droplets may deform elastically and 

so the cyclic stress softening, hysteresis loss and permanent set are quite minimal at the 

initial strain levels. With increasing the strain level, the semicrystalline PA6 matrix will start 

to yield in the regions where matrix ligaments are thinnest. Upon unloading, the elastic 

forces of the stretched interconnected rubber network are able to pull back the plastically 

deformed thin ligaments by either bending or buckling. The loss of stiffness during the Jo
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reloading step may be attributed to the damage generated by the bending or buckling of the 

thin plastic ligaments during the unloading. The thicker thermoplastic ligaments of the 

matrix will interconnect the rubber droplets, forming an elastic interconnected network 

structure of rubber droplets and slightly deformed thicker zones of the PA6 matrix. When 

the strain level is increased the thin matrix ligaments will continue to yield in order to 

continue to the elastic deformation of the rubber droplets.  

Below 30% strain level both TPV compounds present similar cyclic stress softening, 

hysteresis loss and permanent set, which may be attributed to the similar PA6 phase 

crystallinity degree and crystalline lamellae thickness that both TPVs possess. Furthermore, 

as shown in Figure 7a, both TPV samples present a decrease of the cyclic stress softening at 

30% strain level. In the cases of the hysteresis loss and the permanent set, a linear evolution 

is perceived up to this value (Figures 7b and 7c). From that point on, the increase of the 

strain level generates a more pronounced increment in the hysteresis loss and permanent set 

at the first cycles. Furthermore, the difference between the hysteresis loss and permanent set 

in the first and fifth cycle becomes higher. Therefore, these phenomena may indicate that 

above the 30% strain level the thin matrix ligaments are highly plastically deformed and so 

from that point on the deformation induced softening behaviour may be driven by elastic 

recovery capacity of the rubber network.  

An abrupt increment of the hysteresis loss and permanent set at the first cycle is observed for 

both TPV samples when the applied strain level is increased up to 50%. Moreover, as seen 

in Figure 7b, the values of hysteresis loss at the first cycle are higher for PA6/HXM sample 

and displays a higher variation of hysteresis loss from the first to the fifth cycle. These 

results are consistent with the fact that rubber network interactions are stronger in the 

PA6/HXM TPV compound, which means that they are able to dissipate more strain energy 

in terms of viscous losses [64,65]. Furthermore, PA6/HXM demonstrates a less significant 

stress softening effect (see Figure 7a).  

Several physical interpretations exist for the Mullins softening behaviour of rubber 

materials, however a general agreement for the cause of this effect at the microscopic level Jo
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is still absent. In this work, authors propose that, in order to interpret the different cyclic 

stress softening effects that both TPV compounds show above the 30% strain level, the 

rubber droplets must to be treated as a two-network structures formed by covalent and non-

covalent bonds [66]. Both TPV compounds possess a rubber network structure formed by 

chains connected by covalent and non-covalent links, however their structure differs in the 

strength of the non-covalent links and in the amount of covalent the links. In the case of non-

covalent links, ionic bonds are stronger than hydrogen bonds. Therefore, the less significant 

stress softening effect displayed by PA6/HXM sample may be attributed to the better elastic 

recovery capacity of the rubber network structure formed by a higher amount of covalent C-

C linkages and stronger non-covalent bonds. 

(a) (b) 

 

 

Figure 6. (a) Cyclic stretching stress-strain response of the TPV samples in uniaxial tension 

(first and 5th stabilized cycles for each strain level) and (b) schematic representation of the 

Mullins softening phenomena. 
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(a) 

 
(b) (c) 

  

Figure 7. (a) Influence of strain level on cyclic stress loss response of the TPV samples, and 

evolution of the (b) hysteresis loss and (c) permanent set as a function of the strain level at 

the first and stabilized 5th cycle. 
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Figure 8. Schematic representation of the deformation mechanism of TPV materials 

suggested by Soliman et at. [61]. 

Micromechanical deformation analysis  

To better understand the micromechanical processes that take place during the cyclic 

deformation of the TPV samples, SEM images of the tensile specimens of PA6/HXM and 

PA6/HXA10 after cyclic tensile tests up to 20 and 50% strain level were obtained. The 

results are shown in Figure 9. In Figure 9a it can be seen that both PA6/HXA10 and 

PA6/HXM present micro-voids in the PA6 matrix at 20% strain level. Thus, SEM images 

clearly point to the bending and buckling of PA6 thin plastic ligaments as the main 

deformation mechanism of the TPV compounds when applying strain levels below 30%. 

Interestingly, Figure 9b reveals that plastic voids in the PA6/HXA10 are much larger than in 

PA6/HXM at 50% strain level. Moreover, the cryofractured surface of PA6/HXA10 sample 

showed highly cavitated and plastically deformed PA6 phase containing debonded rubber 

dispersed domains. According to SEM images, the better elastic recovery capacity of 

PA6/HXM rubber network slows down the growth of voids and a large number of stable 

micro-voids are generated, which facilitates further deformation of the PA6 ligaments 

between the rubber droplets. On the other hand, the elastic forces of PA6/HXA10 rubber 

network are not sufficiently high to pull back the stretched thick PA6 ligaments and so void-

fibrillar matrix structures are generated in the PA6/HXA10 compound. 
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When the TPV compounds are uniaxially stretched up to a stress threshold, the rubber 

droplets dispersed in the PA6 plastic matrix behave as stress concentration points. This 

phenomena is a consequence of  the different Poisson´s ratio and modulus of PA6 and 

rubber [67,68]. Additionally, the concentration of the stress in rubber droplets causes a local 

stress state transition from uniaxial to a hydrostatic [63]. As the better elastic recovery 

capacity of PA6/HXM rubber network facilitates the deformation of PA6 ligaments, the 

critical hydrostatic stress in the rubber droplets is not achieved and so development of plastic 

voids and rubber cavitation is suppressed. Thus, the observed micromechanical processes by 

SEM analysis are consistent with the different nonlinear mechanical behaviours observed by 

cyclic tensile tests. 

Figure 10 illustrates schematically the physical interpretation that authors propose for the 

deformation mechanisms of the TPV compounds under cyclic deformation at different strain 

levels. Below 30% strain level, the Mullins softening effect, and so the damage generated in 

the TPVs, is mainly driven by the buckling and bending of the thin plastic ligaments. Above 

the 30% strain level, once the thin plastic ligaments are highly plastically deformed, damage 

is mainly generated due to the bond rupture in the rubber network structure formed by 

covalent and non-covalent linkages.  
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(a) 20% strain level (b) 50% strain level 
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Figure 9. SEM micrographs of PA6/HXA10 and PA6/HXM TPV compounds as a function 

of strain level: (a) 20% strain level and (b) 50% strain level. 
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Figure 10. Proposed deformation mechanism of the PA6/XHNBR TPV compounds. 

Dynamic mechanical behaviour 

Dynamic strain sweeps were performed in order to investigate the dynamic strain softening 

phenomena, also known as Payne effect, in the TPV compounds. Figure 11a presents the 

dependence of the tensile storage modulus on the strain amplitude measured at ambient 

temperature and constant frequency of 10 Hz for both TPV compounds. The linear 

viscoelastic region is similar for both samples. Moreover, a large drop of E´ with increasing 

dynamic strain amplitude was observed for both samples. As a measure for the Payne effect, 

the differences between the E’ values at 0.01% and 10% has been calculated. The value of 

E´ in the viscoelastic region drops 82% for PA6/HXM and 85% for PA6/HXA10, so the 

dynamic strain generates a similar softening phenomena in both samples.  

A well-known approach to obtain a physical interpretation of the Payne effect in rubber-like 

materials is based on the micromechanical model of Kraus [69]. The micromechanical 

model proposed by Kraus states that the Payne effect is a consequence of the breakage and Jo
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recovery of weak physical bonds under a periodic strain. Here, in accordance with the 

observed quasi-static mechanical behaviour, authors propose that the initiation of dynamic 

strain softening phenomena may be ascribed to the damage generated during the bending 

and buckling of PA6 matrix ligaments when the TPV samples are subjected to increasing 

oscillatory strain amplitudes.  

The frequency dependence of shear storage modulus (G´) at ambient temperature is 

illustrated in Figure 11b. The G´ of PA6/HXA10 is higher than that of PA6/HXM in the 

whole frequency range studied, which is in line with the observed phenomena in the 

temperature sweep tests (Figure 2a), were PA6/HXM reveals a lower E´ modulus than 

PA6/HXA10 near room temperature. This is attributed to the ionic relaxation transition that 

the PA6/HXM sample possess near room temperature (Figure 2b). The storage modulus 

increases with the increase in frequency for both TPV samples. The increase of storage 

modulus with increasing frequency takes place due to the kinetic nature of the glass 

transition. As the frequency applied to the samples is increased the glass transition takes 

place at higher temperatures, i.e., molecular relaxations occur at higher temperatures [70]. 

Comparing the behaviour of both TPV compounds to the frequency, Figure 11b shows that 

the increase in storage modulus is larger for PA6/HXM. Precisely, the increase in storage 

modulus is of 23% for PA6/HXM and 18% for PA6/HXA10. That means that more energy 

is required to initiate the molecular movements in PA6/HXM, which confirms the stronger 

interaction forces presented in PA6/HXM compound [71].  
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(a) (b) 

  

Figure 11. (a) Dynamic strain dependence of tensile storage modulus and (b) frequency 

dependence of shear storage modulus. 

Figure 12 compares the effect of the static prestrain on the tensile storage (E´) and loss 

modulus (E´´) for PA6/HXM and PA6/HXA10. Both TPV samples exhibit a nonlinear 

behaviour exhibiting an increase of both storage and loss moduli that is started at low static 

prestrains. This phenomena has been observed and discussed previously on filled elastomers 

by several authors and has been ascribed to the finite extensibility of the network [72–74]. In 

the case of TPV compounds, authors suggest that the observed mechanical behaviour is 

associated to some deformation of the thin plastic ligaments in the direction of the applied 

strain. The alignment of the thin plastic ligaments between rubber droplets may modify the 

stress that is generated locally, which leads to the observed increase of storage and loss 

moduli with the static prestrain. Therefore, this phenomena could be well understood in 

terms of the previously presented physical interpretation for the deformation mechanism of 

TPV compounds (Figure 10).  
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Figure 12. Static prestrain-dependence of (a) tensile storage and (b) loss modulus. 

Conclusions 

In this article, nonlinear quasi-static and dynamic mechanical effects of novel TPV 

compounds based on PA6 and XHNBR containing different rubber network structures based 

on covalent, ionic and hydrogen crosslinks have been experimentally investigated through 

monotonic tensile analysis, cyclic tensile tests and dynamic mechanical (DMA) 

measurements. The mechanical behaviour has been correlated with the microstructural 

evolution under cyclic deformations at different strain levels. Mechanical characterization 

showed a dependence on the rubber network structure. Additionally, the micrographs 

obtained from SEM study revealed that a stronger rubber network interaction and so a better 

elastic recovery capacity suppresses the development of plastic voids and rubber cavitation. 

Based on the observed phenomena a physical interpretation based on the yielding, buckling 

and bending of PA6 ligaments at low strain levels and the rupture of covalent and non-

covalent bonds presented in the rubber network at high strain levels has been introduced.  
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