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Abstract In this paper we study the relationship between the number of
replications and the accuracy of the estimated quantiles of a distribution
obtained by simulation. A method for testing hypotheses on the quantiles
of a theoretical distribution using the simulated distribution is proposed, as
well as a method to check the hypothesis of consistency of a test.

1 Introduction

The appearance and development of computers over the last 30 years has
proved to be a great advance for statistical and economic science. The calcu-
lation capabilities of computers has allowed solutions to be found to some
problems that seemed impossible to solve analytically. Also the speed of
processors has increased more than 50-fold in the last 10 years, so that cal-
culations that were previously unthinkable because of their duration, can
now be performed quickly, and it is also possible to manage bigger sets of
data.

One of the tasks in applied statistics or econometrics which is now usu-
ally done by computer is the estimation or approximation of probability
distributions by means of Monte Carlo simulations. This is a very frequent
activity; so frequent, in fact, that it is hard to find articles that do not make
use of it.

However, in recent years a great number of papers are being published
in which the author or authors are content to carry out a Monte Carlo
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study with only a small number of replications —usually one thousand and
sometimes less—. This is somewhat surprising. It is obvious that the quality
of these approaches depends directly on the number of replications used.
Then, in a world where technology is advancing so fast, is it not worthwhile
taking advantage of that technology to obtain higher quality estimations?

The main goal of this work is to answer this question. In section 2 we
study the relationship between the number of replications and the accuracy
level in the estimation by means of simulation of the quantiles of a proba-
bility distribution; in section 3 we suggest tests on the size and power of a
test; in section 4 a test for the hypothesis of consistency is proposed, section
5 shows an example of its application and section 6 gives the conclusions.

2 Accuracy of Empirical Approximation.

Let y be a (P × 1) vector and let y1, . . . , yN be the available sample of that
vector. Let us assume that the probability distribution of y –whatever it
may be— is known. Let Y = (y1, y2, . . . , yN )′ be the (N × P ) matrix that
contains in each column the N observations of each component of y and f
a function such that for each value of Y there is a real value X, such that,

X = f(Y ) ∈ <

The probability distribution of X is, in general, unknown. The usual way
of estimating it through the Monte Carlo method is as follows:

1. Generate by computer T different samples —replications— of N obser-
vations of the vector y. That is to say, T realizations of the matrix Y ,
coming from its theoretical probability distribution, which is known.

2. Calculate the value of the statisticXt = f(Yt) for each replication, where
Yt is the simulated value of the matrix Y at the t-th replication and Xt is
the value obtained for the statistic in this replication, with t = 1, . . . , T .

3. Order the calculated values of X1, . . . , XT and take their distribution of
relative frequencies as an approximation of the density function, which is
unknown. Starting from the distribution of relative frequencies, calculate
confidence intervals and run hypotheses tests as if this was the theoretical
distribution.

(Finster, 1987) defines the following concept of an accurate estimate.

Definition 1 p̂ is an “ accurate estimate” of p with accuracy A and confi-
dence 1− α (with 0 < α < 1), if

Pr [|p̂− p| ≤ A] ≥ 1− α (1)

[−A,A] is the set of acceptable simulation errors.
(Kleijnen, 1987, p. 38) and (Dı́az-Emparanza, 1995) have studied the

relationship between the number of replications used in a Monte Carlo study
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and the accuracy of the approximation obtained. In the following, we will
present this result.

Let H be any interval defined on <. Assume that XH is an indicator
variable defined as:

XHt =

1 if Xt ∈ H

0 if Xt 6∈ H
(2)

So that each observation of Xt has an associated observation (with value
0 or 1) of the variable XHt. The (unknown) theoretical density function of
Xt assigns a probability pH to the H interval. This means that

Pr [Xt ∈ H] = Pr [XHt = 1] = pH (3)

Producing T replications of the matrix Y means having a sample of T
“observations” of the real variable X. This sample also has an associated
sample of size T of the variable XH . This variable follows a binary distri-
bution with parameter pH , so the sum of the T observations of XH , ZH =
XH1 + · · · + XHT , follows a binomial distribution b(pH , T ). The Moivre-
Laplace theorem proves that the sequence b(pH , 1), b(pH , 2), . . . , b(pH , T ), . . .
is asymptotically normal N(T pH , T pH [1− pH ]). Different authors propose
different conditions for considering the approximation as reasonably accu-
rate: for example (Kleijnen, 1987, p. 38) affirms that the approximation is
sufficiently precise if T > 20, (Fernández de Trocóniz, 1993) says that the
approximation can be considered as valid if T ·pH > 18, but the most general
agreement is that the normal approximation to the binomial distribution is
reasonably accurate if both

T · pH ≥ 5 and T · (1− pH) ≥ 5 (4)

are satisfied [see for example (Hogg & Tanis, 1988) or (Cryer & Miller,
1991)]. Under these conditions,

ZH ≈ N (T pH , T pH(1− pH)) (5)

then, for the binomial frequency, ZH/T , we have

ZH

T
≈ N

(
pH ,

pH(1− pH)

T

)
(6)

If λα
2
is the 1− α

2 quantile on the right tail of the distribution N(0,1),

Pr

[∣∣∣∣ZH

T
− pH

∣∣∣∣ ≤ λα
2

√
pH(1− pH)

T

]
' 1− α (7)

Comparing expressions (7) and (1) we can see that λα
2

√
pH(1− pH)/T

plays here the role of accuracy A in the estimation of pH by means of
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p̂H = ZH/T . This provides a way of relating the number of replications
with the accuracy1:

A = λα
2

√
pH(1− pH)

T
(8)

3 Tests on Size and Power

The above expression allows us to observe that for a fixed number of repli-
cations, T , the accuracy, A, is different for the different H intervals that we
want to estimate, in other words, for different values of pH . (Usually H is
a quantile of the distribution and pH its corresponding probability).

The accuracy level is maximum for the maximum of the function pH(1−
pH), that is to say, for pH = 0.5 and it is minimum (A = 0) for pH = 0 and
pH = 1. So, for example, for T = 1000, α = 0.05 and pH = 0.5 a value of
A = 0.03099 is obtained. This is the maximum accuracy level.

It is also easy to observe that function (8) is symmetrical with respect
to 0.5 so that for pH and for p∗H = (1−pH) the same value of A is obtained.
For example, for pH = 0.05 or p∗H = 0.95 and the above values of T and α,
we have A = 0.01351.

As indicated above, one of the most frequent objectives in a Monte Carlo
analysis is to estimate the distribution of probabilities of some statistic to
test a certain null hypothesis. There are other occasions in which one knows
—or has simulated— the asymptotical distribution, and the Monte Carlo
analysis is used to check whether the application of the critical values of
this distribution when the number of observations is moderate will produce
satisfactory results. In these applications it is vital to know one character-
istic of the test under the null hypothesis: size, and another characteristic
of the test under the alternative hypothesis: power. Usually a test with a
small size —i.e. a small probability of type I error— and a big power —i.e.
a small probability of type II error too— is considered desirable.

However accuracy A is measured in terms of nominal probability, so
its effect when estimating a probability p has varying importance, and it
should be valued in a different way if p is a big value than if p is small. Let
us suppose, for example, that we want to analyze the size of a test that
is carried out with a moderate number of observations, having chosen the
critical value corresponding to a significance level or nominal size α∗ = 0.05
in the asymptotical distribution (α∗ and α must not be mistaken. α∗ is the
significance level of the proposed test, which is a probability obtained from
the distribution function —unknown— ofX, and α is a probability obtained
from the distribution function of the binomial frequency ZH/T that, as we

1 If conditions (4) are not satisfied, or if we wish for more precision in the
determination of A, we can work directly with the quantiles of the binomial
b(pH , T ) distribution. Then if zε is the 1 − ε quantile of such distribution, we

obtain A = Max
{(

zα
2
T

− pH

)
,−

(
z1−α

2
T

− pH

)}
.
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have seen in (6), is approximately Gaussian.). The accuracy that will be
obtained in the estimation of that size if the simulation is carried out with
T = 1000 replications and α = 0.05, in accordance with expression (8), will
be approximately 0.01351. This means that the variation that we can hope
for in nominal size may be as much as 27% (A/0.05 = 0.01351/0.05 = 0.27).
On the other hand, let us suppose that we want to analyze the power of the
test against some alternative hypothesis, and it is known (for example by an
exploratory simulation) that the nominal power is 95 %. For the same values
of Tand α equation (8) gives the same value of A = 0.01351. But, as this
is measured in terms of nominal probability, the variation that we can now
hope for in nominal power is only 1.42 % (A/0.95=0.01351/0.95=0.0142).
So, as we said, the same accuracy level does not have the same relative
importance when it is obtained as an estimation of a probability p = 0.05
as it does when it is obtained as an estimation of p = 0.95.

Expression (6) also provides a method for checking hypotheses on the
size and power of a test. Under the hypothesis pH = p0H

ZH

T
≈ N

(
p0H ,

p0H(1− p0H)

T

)
(9)

Thus, if we want to test the null hypothesis that the size of the test is less
than a pre-set value p0H , we can propose the test:

H0 : pH ≤ p0H
Ha : pH > p0H .

(10)

In such a case, under the null hypothesis, at significance level α,

τs =
ZH

T − p0H√
p0
H
(1−p0

H
)

T

< λα. (11)

If we find that τs > λα it can be considered that there is enough evidence
against H0 to reject it. For example, if we want to test the hypothesis that
the size of a test is lower than 5 % when α∗ = 0.05, considering α = 0.05
and T = 1000, solving (11) for ZH/T we obtain that this hypothesis should
be rejected if ZH/T is greater than 0.06130.

On the other hand, if we want to test the null hypothesis that the power
of a testing procedure for a given α∗ is higher than a pre-set value p0H , it
would be necessary to perform the check:

H0 : pH ≥ p0H
Ha : pH < p0H .

(12)

In this case, under the null hypothesis, at significance level α,

τp =
ZH

T − p0H√
p0
H
(1−p0

H
)

T

> −λα. (13)
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If it is found that τp < −λα, there is also enough evidence to reject H0. For
example, if we want to check the hypothesis that the power of a test is higher
than 0.95 also considering α = 0.05 and T = 1000, solving 13 for ZH/T the
result is that the hypothesis should be rejected if ZH/T < 0.93870.

4 A Test for the Hypothesis of Consistency

Expression (6) also provides a way of checking whether a testing method is
consistent. Remember that a test is consistent if when the sample size, N ,
is increased, the probability of rejecting false hypotheses also increases. A
form of checking this statistically is as follows. Generating two independent
groups of replications of the statistic under the alternative hypothesis, the
first one with sample size N1 and T1 replications, the second with sample
size N2 > N1 and T2 replications, where T2 can be bigger than, smaller than
or equal to T1, from expression (6) we have that

Z1

T1
≈ N

(
p1,

p1(1− p1)

T1

)
(14)

Z2

T2
≈ N

(
p2,

p2(1− p2)

T2

)
(15)

Z1 is the number of times that the statistic falls in the critical region in
the first group of replications and Z2 in the second. p1 is the power of the
test when the statistic is calculated with N1 observations and p2 when it
is calculated with N2 observations. The consistency hypothesis of the test
implies that p2 must be bigger than p1, so p2 − p1 > 0 and, as these two
groups of replications are independent,

Z2

T2
− Z1

T1
≈ N

(
p2 − p1,

p1(1− p1)

T1
+

p2(1− p2)

T2

)
(16)

Then, for the consistency hypothesis we could set up the test:

H0 : p2 − p1 ≥ 0
Ha : p2 − p1 < 0.

(17)

Under this null hypothesis, it must be verified that

τc =
Z2

T2
− Z1

T1√
p1(1−p1)

T1
+ p2(1−p2)

T2

> −λα (18)

As in this case p1 and p2 are unknown, in the denominator of the statistic τc
we can replace them by their approximate values, Z1/T1 and Z2/T2. Finding
that τc < −λα is sufficient evidence to reject the consistency hypothesis at
a significance level α.

A different, and maybe more detailed, way of testing the consistency
hypothesis could be based on a third group of replications of the statistic,
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now with sample size N3 > N2 and T3 replications. Under this hypothesis,
p3 > p2 and p2 > p1, therefore, it should happen simultaneously that p2 −
p1 > 0 and p3 − p2 > 0. If the three groups of replications have been
generated in an independent way, the vector (Z1

T1

Z2

T2

Z3

T3
)′ will have the

multinomial distribution:Z1/T1

Z2/T2

Z3/T3

 ≈ N


p1

p2
p3

 ,


p1(1−p1)

T1
0 0

0 p2(1−p2)
T2

0

0 0 p3(1−p3)
T3


 (19)

To test the hypothesis of consistency the joint hypothesis:

H0 :

[
p2 − p1 ≥ 0
p3 − p2 ≥ 0

]
(20)

could be posited. However when outlining a type-F statistic for the over-
all test of these two restrictions we find the problem that, with this type
of statistics, situations in which the alternative hypothesis is verified (for
example p1 >> p2) and extreme situations in which the null hypothesis is
verified (p2 >> p1) are overlapped in the rejection region. Therefore, in this
situation it is more appropiate to outline the two restrictions sequentially:
first testing

H01 : p2 − p1 ≥ 0
Ha1 : p2 − p1 < 0

by means of the τc statistic, then, if H01 is not rejected, checking

H02 : p3 − p2 ≥ 0
Ha2 : p3 − p2 < 0.

(21)

Here, it is necessary to keep in mind that the distribution of Z3

T3
− Z2

T2
is not

independent of that of Z2

T2
− Z1

T1
. For that reason, to build a t-Student type

statistic it is necessary to take as the basis the conditional distribution(
Z3

T3
− Z2

T2
/
Z2

T2
− Z1

T1

)
≈

N

(
p3 − p2 +

σ12

σ2
2

(
Z2

T2
− Z1

T1
− (p2 − p1)

)
, σ2

1 −
(σ12)

2

σ2
2

)
(22)

where

σ2
1 =

p1(1− p1)

T1
+

p2(1− p2)

T2

σ12 = −p2(1− p2)

T2

σ2
2 =

p2(1− p2)

T2
+

p3(1− p3)

T3
(23)
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then, under the null hypothesis of consistency

τ (2)c =

Z3

T3
− Z2

T2
−

[
−σ12

σ2
2

(
Z2

T2
− Z1

T1

)]
√

σ2
1 −

(σ2
12)

σ2
2

> −λα (24)

So if a value τ
(2)
c < −λα is found, the hypothesis of consistency will be

rejected.

We must keep in mind that if the significance level α is used in each
individual test, the significance level of the entire procedure is ε = 2α−α2,
so that if we want to use, for example, a significance level of ε = 0.05 in the
overall procedure, it would be necessary to use approximately α = 0.025 in
each individual test.

In (22), the expression for the mean of the conditional distribution shows
us the need for the sequential procedure. It is not enough to carry out the
second individual test as, in it, very negative values of p2 − p1 can be com-
pensated by very positive ones of p3 − p2 and hence the statistic does not
appear in the rejection region when the test is, however, inconsistent. There-
fore, more power will be obtained in the sequential test of the consistency
hypothesis.

5 An example

In the literature on nonstationary (integrated) time series there are many
articles in which, as analytical probability distributions of certain test statis-
tics cannot be calculated, Monte Carlo simulations are used to approximate
it. There are countless examples. Some of the main ones are: (Dickey &
Fuller, 1981), (Hasza & Fuller, 1982), (Stock & Watson, 1988), (Johansen,
1988), (Hylleberg, Engle, Granger & Yoo, 1990), (Kwiatkowski, Phillips,
Schmidt & Shin, 1992), . . . In many of these articles, the author/s get con-
clusions about the respective tests based only on the sample powers and sizes
of the tests, without taking into account that these are only approximations
of the powers and sizes that are obtained from the nominal distributions.
In the following example we will show how the results of the above sections
for testing hypotheses about the size and power of a test can be applied.
We will base this on the simulation results taken from the aforesaid article
by Stock and Watson.

In that article, the authors showed that cointegrated multiple time series
share at least one common trend. Two tests were developed for the num-
ber of stochastic trends (i.e., for the order of cointegration) in a multiple
time series with and without drift. Both tests involved the roots of the ordi-
nary least squares coefficient matrix obtained by regressing the series onto
its first lag. qf (k,m) was an statistic for testing k versus m common trends
and qc(k, k−1) was an statistic for testing k versus k−1 common trends. The
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Table 1 Monte Carlo Experiment Results: Rejection Probabilities. [Stock
& Watson (1988)].

Data-generating process
(25), with φ = .4 (26), with θ = .4
A, B, C, D,

ρ Level qµf (2, 1) qµc (2, 1) qµf (2, 1) qµc (2, 1)

1.00 5% .03 .03 .03 .07
10% .07 .06 .06 .13

.95 5% .11 .10 .08 .22
10% .21 .18 .19 .35

.90 5% .40 .34 .30 .60
10% .59 .50 .51 .74

.80 5% .92 .82 .86 .99
10% .97 .90 .95 .99

The results were computed using 2000 Monte Carlo draws with
a sample size of N = 200

counterparts of qf (k,m) and qc(k, k− 1) when there might be a nonzero in-
tercept or a noncero intercept and drift were respectively qµf (k,m), qτf (k,m),
qµc (k, k − 1) and qτc (k, k − 1). The quantiles of their asymptotical distribu-
tions were obtained using 30,000 Monte Carlo replications with sample size
N = 1000.

In section 7 of the afore-mentioned article, they report the results of
a “small Monte Carlo experiment” to investigate the size and power of
their tests. They study the statistics qµf (2, 1) and qµc (2, 1) in particular. The
experiments were performed using T = 2000 replications with a sample size
of N = 200. The results are in table 1.

Two different models are considered. In the first, Yt is generated by a
VAR(2):

(1− φL)(1− ΦL)Yt = εt (25)

and in the second by a VARMA(1,1):

(1− ΦL)Yt = (1 + θL)εt (26)

Where in both cases Eεtε
′
t = G and

Φ =

 1 0 0
0 ρ 0
0 0 0.5

 , G =

 1 0.5 −0.25
0.5 1 0.5

−0.25 0.5 1

 .

Both φ and θ are scalars that are less than 1 in absolute value. Under the
null hypothesis ρ = 1, so there are two common trends; under the alternative
|ρ| < 1, and there is only one common trend.
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Under these conditions, using the statistic τs defined in (11) the null
hypothesis that the size of the test, p0H , is smaller than 5 % should be

rejected if the estimation ZH/T is bigger than p0H +λα

√
p0
H
(1−p0

H
)

T = 0.058.

When the data generating process is (25) with φ = 0.4 and ρ = 1, at
significance level α∗ = 0.05, using the statistic qµf (2, 1), table 1 shows an
estimated rejection probability of 0.03, so the hypothesis that the size is
inferior to 5 % cannot be rejected. But when the data generating process
is (26) with θ = 0.4 and ρ = 1, at significance level α∗ = 0.05, using the
statistic qµc (2, 1), the table shows an estimated rejection probability of 0.07,
so the null hypothesis would be rejected in this case.

As for power, using the statistic τp defined in (13) the null hypothesis
that the power of the test (p0H) is bigger than —for example— 95 % should

be rejected if the estimate ZH/T is smaller than p0H−λα

√
p0
H
(1−p0

H
)

T = 0.942.

When the data generating process is (25) with φ = 0.4 and ρ = 0.8, at
significance level α∗ = 0.05, using the statistic qµf (2, 1), table 1 shows an
estimated rejection probability of 0.92, so at significance level α = 0.05
the hypothesis that the power is bigger than 95 % is rejected. When the
data generating process is (26) with θ = 0.4 and ρ = 0.8, at significance
level α∗ = 0.05, using the statistic qµc (2, 1), the table reports an estimated
rejection probability of 0.99, so in this case this hypothesis would not be
rejected.

Stock & Watson do not perform any check in their article on the consis-
tency of their tests. Let us suppose that a new group of 2000 replications of
the qµf (2, 1) statistic is generated, now with sample size N = 300, using data
generating process (25) with φ = 0.4 and ρ = 0.8, obtaining an estimated
rejection probability of 0.91. The test appears to be inconsistent given that
when the sample size is increased, the rejection probability of a false hypoth-
esis decreases. However, both rejection probabilities have been calculated on
the basis of simulations and are therefore only aproximations of the theo-
retical rejection probabilities. The theory developed in section 4 allows us
to statistically test the hypothesis of consistency. According to expression
(18) if the test is consistent, in this new simulation we should find that

Z2/T > Z1/T − λα

√
p1(1−p1)

T + p2(1−p2)
T ; replacing p1 by Z1

T = 0.92 and p2

by Z2

T = 0.91 we obtain that under the consistency hypothesis Z2

T > 0.9056,

therefore the value Z2

T = 0.91 does not imply the rejection of this hypothesis
at the 5% significance level.

6 Conclusions

When a probability distribution is approximated by means of simulation
it is obvious that the bigger the number of replications is, the better the
approach will be. The selection of the number of replications implies the
determination of an accuracy level in the estimation of the different quantiles
that is given by expression (8).
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When many replications are used, we obtain very reliable, highly ac-
curate estimates. In these cases the characteristics of the estimated dis-
tribution will be very similar to those of the theoretical distribution and,
consequently, the conclusions we get starting from the empirical distribu-
tion will be almost identical to those that would be obtained starting from
the theoretical distribution.

However, when using a small number of replications the empirical dis-
tribution will be further away from the theoretical one and more care will
be needed when inferring results on the latter starting from the character-
istics of the former. A small number of replications produces a low level of
precision, and this must be taken into acount when we want to reach con-
clusions about the characteristics of the unknown distribution. Expression
(8) allows us to perform tests on the different quantiles of the distribution.
In particular, tests on the size, power and the hypothesis of consistency of
a test have been presented here.
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