
UNIVERSITY OF THE BASQUE COUNTRY
(UPV/EHU)

DOCTORAL THESIS

Pseudospectral Methods for the
Fractional Laplacian on R

Author:
Jorge Enrique Cayama
Mendoza

Advisors:
Prof. Carlota María Cuesta Romero

Prof. Francisco de la Hoz Méndez

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Mathematics

May 25, 2020

(c)2020 JORGE ENRIQUE CAYAMA MENDOZA

http://www.ehu.eus
http://www.ehu.eus
https://www.ehu.eus/es/web/matematicas/home

iii

Declaration
I hereby declare that except where specific reference is made to the work of others,
the contents of this thesis are original and have not been submitted in whole or
in part for consideration for any other degree or qualification in this, or any other
university.

Jorge Enrique Cayama Mendoza

May, 2020

v

UNIVERSITY OF THE BASQUE COUNTRY (UPV/EHU)

Abstract
Faculty of Science and Technology

Department of Mathematics

Doctor of Philosophy

Pseudospectral Methods for the Fractional Laplacian on R

by Jorge Enrique Cayama Mendoza

In this thesis, first, we propose a novel pseudospectral method to approximate accu-
rately and efficiently the fractional Laplacian without using truncation. More pre-
cisely, given a bounded regular function defined over R, we map the unbounded
domain into a finite one, and represent the resulting function as a trigonometric se-
ries. Therefore, a key ingredient is the computation of the fractional Laplacian of
an elementary trigonometric function. As an application of the method, we do the
simulation of Fisher’s equation with the fractional Laplacian in the monostable case.

In addition, using complex variable techniques, we compute explicitly, in terms of
the 2F1 Gaussian hypergeometric function, the one-dimensional fractional Laplacian
of the Higgins functions, the Christov functions, and their sine-like and cosine-like
versions. After discussing the numerical difficulties in the implementation of the
proposed formulas, we develop another method that gives exact results, by using
variable precision arithmetic.

Finally, we discuss some other numerical approximations of the fractional Laplacian
using a fast convolution technique. While the resulting techniques are less accu-
rate, they are extremely fast; furthermore, the results can be improved by the use of
Richardson’s extrapolation.

HTTP://WWW.EHU.EUS
https://www.ehu.eus/es/web/ztf-fct
https://www.ehu.eus/es/web/matematicas/home

vii

Acknowledgements
Undertaking this Ph.D. program has been a truly life-changing experience for me
and the work presented in this thesis would not have been possible without my close
associations with many individuals. I take this opportunity to extend my gratitude
and appreciation to all those who made this work become a reality.

Above all, I would like to thank God for giving me good health and the strength to
finish this study.

I wish to express my sincere appreciation to my advisors, Prof. Carlota María Cuesta
and Prof. Francisco de la Hoz. They convincingly guided and encouraged me to be
professional and do the right thing even when the road got tough. Without their
persistent help, patience, encouragement, and immense knowledge, the goal of this
project would not have been realized.

I would also like to thank Prof. Carlos García Cervera for his valuable and con-
structive suggestions as director of my three-month stay at the UCSB, and also as
reviewer of this manuscript. His willingness to give his time so generously has
been very much appreciated. My grateful thanks are also extended to Prof. Héctor
Ceniceros and Prof. Gustavo Ponce for their assistance and guidance while I was
working at the UCSB.

My sincere thanks also goes to Prof. Luis Vega, who provided me an opportunity
to join the Linear and Non-linear Waves research line as a Ph.D. Student at BCAM.
Without his precious support, it would not have been possible to conduct the last
stage of this research.

I am grateful to Prof. Benito Chen-Charpentier and Prof. David Lannes, who also
appear as reviewers of this work.

This dissertation would not have materialized without the financial support of the
Spanish Government through the grant BES-2015-071231.

My thanks and appreciations also go to my colleagues and people at the UPV/EHU
who have willingly helped me out with their companionship.

Last but not least, I would like to express my deepest gratitude to my family and
friends for their warm love, continued patience, and endless support.

ix

Contents

Declaration iii

Abstract v

Acknowledgements vii

1 Introduction 1

2 Computation of the fractional Laplacian for regular functions 9
2.1 Computation of the fractional Laplacian for regular functions 10

2.1.1 Equivalent form of the fractional Laplacian for regular functions 10
2.1.2 Mapping R to a finite interval 12
2.1.3 Discretizing the mapped bounded domain 13
2.1.4 An explicit calculation of (−∆)α/2eiks 15
2.1.5 Constructing an operational matrix 19
2.1.6 Some remarks on the convergence of the method 23

2.2 Numerical tests . 25
2.3 The fractional Fisher’s equation with very slowly varying initial con-

ditions . 30
2.4 Future lines or research . 36

2.4.1 Generalization of Lemma 2.1.1 to higher dimensions 38

3 Fractional Laplacian on R Using Orthogonal Families 43
3.1 Fractional Laplacian of the complex Higgins functions 45
3.2 Fractional Laplacian of other families of functions 50

3.2.1 Cases with α ∈ {0, 1, 2} . 58
3.3 Numerical implementation of (3.4) . 61

3.3.1 Numerical experiments . 65

4 Other approaches for the fractional Laplacian on R 73
4.1 Numerical convolution and the approximation of singular integrals . 73
4.2 Fast convolution and midpoint rule 77

4.2.1 Numerical experiments . 79
4.3 Fast convolution and a regular function in the integrand 80

4.3.1 Numerical experiments . 83
4.4 Fast convolution and extrapolation . 83

4.4.1 Refining the mesh . 87
4.4.2 General refinements of the mesh 89
4.4.3 Numerical tests using the fast convolution and extrapolation 90
4.4.4 Expressing (4.36) as a single summation 93

x

4.5 Fast convolution and the Gauss-Chebyshev quadrature 94
4.5.1 Numerical tests using the fast convolution and the Chebyshev-

Gauss quadrature . 97
4.5.2 Some conclusions and future work 100

A Chebyshev Polynomials and Rational Chebyshev Functions 103
A.1 The Jacobi polynomials . 103

A.1.1 Definition . 103
A.1.2 Orthogonality property of Tn(x) and Un(x) 104
A.1.3 Recurrence formulas for Tn(x) and Un(x) 104
A.1.4 The Chebyshev differential equations 105
A.1.5 Rodrigues’ Formula . 105
A.1.6 Chebyshev coefficients . 106
A.1.7 Chebyshev coefficients for differentiation processes 106
A.1.8 Differentiation through Chebyshev Matrices 108

A.2 Rational Chebyshev Functions . 109
A.2.1 Rational Chebyshev Functions on R 109

Orthogonality property . 110
Conversion formulas of derivatives for the mapping x = L cot(ψ)110

xi

List of Figures

2.1 Maximum global error . 27
2.2 Maximum global error . 29
2.3 Least-square fitting lines . 32
2.4 Slopes of the least-square fitting lines 33
2.5 Least-square fitting line . 34
2.6 Least-square fitting for the asymptotic behavior 34
2.7 Norm of the residual when x � 1 and x � 1 35
2.8 Slopes values when applying logarithmic scale 36

3.1 An example of integration contour, for x > 0. 48
3.2 Number of digits necessary to approximate Mα ∈ M1×N(C) 66
3.3 Number of digits necessary to approximate Mvpa

α ∈ MM×M(C) and
comparison with the results in Chapter 2.1 68

3.4 Comparison with the results in Chapter 2, using (3.36), for N = 500
and different values of α. 68

3.5 Number of digits necessary to approximate Mmp
α ∈ MM×M(C) . . . 70

4.1 Errors and convergence rate of the fast convolution scheme applied
to (−∆)α/2ei2s using the midpoint rule 80

4.2 Errors and convergence rate of the fast convolution scheme applied
to (−∆)α/2e−x2

using the midpoint rule 81
4.3 Errors and convergence rate of the fast convolution scheme applied

to (−∆)α/2ei2s using a regular function as the integrand 83
4.4 Errors and convergence rate of the fast convolution scheme applied

to (−∆)α/2e−x2
using a regular function as the integrand 84

4.5 Errors and convergence rate of (4.36) applied to ei2s using fast convo-
lution . 90

4.6 Errors and convergence rate of (4.36) applied to ei2s using fast convo-
lution and extrapolating once . 91

4.7 Errors and convergence rate of (4.36) applied to ei2s using fast convo-
lution and extrapolating twice . 91

4.8 Errors and convergence rate of (4.36) applied to e−x2
using fast con-

volution . 92
4.9 Errors and convergence rate of (4.36) applied to e−x2

using fast con-
volution and extrapolating once . 92

4.10 Errors and convergence rate of (4.36) applied to e−x2
using fast con-

volution and extrapolating twice . 93
4.11 Errors and convergence rate of (4.46) applied to ei2s using fast convo-

lution . 97

xii

4.12 Errors and convergence rate of (4.46) applied to ei2s using fast convo-
lution and extrapolating once . 98

4.13 Errors and convergence rate of (4.46) applied to ei2s using fast convo-
lution and extrapolating twice . 98

4.14 Errors and convergence rate of (4.46) applied to e−x2
using fast con-

volution . 99
4.15 Errors and convergence rate of (4.46) applied to e−x2

using fast con-
volution and extrapolating once . 99

4.16 Errors and convergence rate of (4.46) applied to e−x2
using fast con-

volution and extrapolating twice . 100

xiii

List of Tables

2.1 Maximum global error . 26
2.2 Maximum global error . 28
2.3 Errors and convergence rate . 37

3.1 Elapsed time for the generation of Mα ∈ MN×N(C) 70

4.1 Errors and convergence rate of a numerical convolution example . . 76
4.2 Errors and convergence rate of a numerical convolution example . . 78

xv

Dedicated to my dad. . .

1

Chapter 1

Introduction

In this thesis, we are mainly concerned with the numerical approximation of the
fractional Laplacian. This is a singular integral operator that can be defined in sev-
eral equivalent ways, see e.g [1], but that we take for now to be:

(−∆)α/2u(x) = cn,α

ˆ
Rn

u(x)− u(y)
|x− y|n+α

dy, (1.1)

where α ∈ (0, 2), and

cn,α =
2αΓ(n+α

2)

πn/2|Γ(− α
2)|

. (1.2)

The fractional Laplacian operator is a generalization of the integer-order Laplacian
∆ ≡ ∂2/∂x2

1 + . . . + ∂2/∂x2
n, with n being the dimension. It appears in a number of

applications (see, for instance, [2, Table 1] and its references).

Before we describe the main contents of the thesis, let us start this introduction by
putting the operator (1.1) into a wider context. We recall that the Fourier transform
of u is

û(ξ) =
ˆ ∞

−∞
u(x)e−ixξdx, (1.3)

and that the inverse Fourier transform is

u(x) =
1

2π

ˆ ∞

−∞
û(ξ)eixξdξ. (1.4)

Therefore, another definition of the fractional Laplacian consistent with (1.1) is given
by associating the operator with the Fourier symbol:

̂(−∆)α/2u(ξ) = |ξ|αû(ξ), (1.5)

and, hence, when α = 2, we recover (−∆)2/2u = −∆u, whereas, when α = 0,
(−∆)0u = u. We remark that, in [1], the author indeed considers −(−∆)α/2u in the
definition of the fractional Laplacian, to make it agree with the integer-order Lapla-
cian, when α = 2. The same sign convention is chosen in [3], where an excellent and
up-to-date introduction to the topic can be found.

2 Chapter 1. Introduction

We recall that in one dimension, the Hilbert transform [4] is given by

H(u)(x) =
1
π

ˆ ∞

−∞

u(y)
x− y

dy,

and that, if u ∈ L2(R), then Ĥ(u)(ξ) = −i sgn(ξ)û(ξ) (see e.g. [5], [6]). It then
follows that, when α = 1,

̂(−∆)1/2u(ξ) = |ξ|û(ξ) = −i sgn(ξ)(iξ)û(ξ) = Ĥ(ux)(ξ),

or, formally,
(−∆)1/2u(x) = H(ux)(x). (1.6)

On the other hand, the Riesz transform is a generalization of the Hilbert transform
to higher dimensions, but an interpretation similar to (1.6) is a little different. If
u ∈ Lp(Rn), for 1 ≤ p < ∞, then the Riesz transform Rju is defined (see e.g. [7]) for
each 1 ≤ j ≤ n by

Rju(x) = cn PV
ˆ

Rn

xj − yj

|x− y|n+1 u(y) dy, 1 ≤ j ≤ n,

where PV denotes the principal value of the integral and

cn =
n+1

2

π
n+1

2
.

Formally, by working in the Fourier side, it can be seen that Rj(−∆)1/2u(x) = ∂ju
for every j. This and the relation (1.6) serve as a motivation to define the frac-
tional Laplacian as the inverse of an integral transform. This idea is related to the
Riemann-Liouville integral that allows defining fractional derivatives by its inver-
sion.

Indeed, the so-called Riesz potential was introduced by Marcel Riesz [8] while look-
ing for generalizations of the Riemann–Liouville operator. On Rn, it is defined by
the convolution with the kernel cn,−α|x− y|−(n−α), with 0 < α < n:

Iα(u)(x) = u ∗ Kα(x) = cn,−α

ˆ
Rn

u(y)
|x− y|n−α

dy. (1.7)

We observe that
1̂

|x|n−α
(ξ) = cn,−α

−1(2π)−α|ξ|−α. (1.8)

Then, from (1.7) and (1.8), we have formally:

Îαu(ξ) = (2π|ξ|)−αû(ξ),

Chapter 1. Introduction 3

On the other hand,
(̂−∆)ϕ(ξ) = |ξ|2û(ξ),

which suggests that

Îαu(ξ) = (2π|ξ|)−α ̂(−∆)−α/2ϕ(ξ).

In the search for an integral equation that inverts this relationship, one looks at an
operator that satisfies:

̂(−∆)α/2u(ξ) = |ξ|αû(ξ),

with 0 < α ≤ 2 and

|ξ|α =

[
n

∑
j=1

ξ2
j

]α/2

.

One such operator is precisely the operator (1.1) (see [9–11] for details), where the
fractional power is taken over (−∆), in order to obtain a positive operator. This
formulation of (−∆)α/2 is also the negative generator of the standard isotropic α-
stable Lévy process, and reduces to −∆ when α = 2 (see [2]).

In this thesis, we work mainly in the one-dimensional case, i.e., on R. Hence, (1.1)
becomes

(−∆)α/2u(x) = cα

ˆ ∞

−∞

u(x)− u(y)
|x− y|1+α

dy, (1.9)

where α ∈ (0, 2), and

cα ≡ c1,α =
2αΓ(1+α

2)√
π|Γ(− α

2)|
.

Moreover, we work with the equivalent definition of (1.9):

(−∆)α/2u(x) = cα

ˆ ∞

−∞

u(x)− u(x + y)
|y|1+α

dy. (1.10)

In recent years, there has been an increasing interest in evolution equations that in-
corporate nonlocal operators and, in particular, nonlocal operators that resemble a
fractional power of the Laplacian or derivatives of fractional order. There are many
models where such operators appear, and there is also an intrinsic mathematical
interest in analyzing and simulating such equations. For instance, a discussion on
applications where sub- and superdiffusion models might be better suited than clas-
sical diffusion ones can be found in the review manuscripts [12–16]. Among others,
these include applications in acoustics [10, 17], and quantum mechanics [18]. Lévy
flights are a particular example of random motion of particles that leads to superdif-
fusion and that can be characterized in the macroscopic scale as a diffusion equation
by a fractional Laplacian (see, e.g., [19, 20] and the references therein). For a math-
ematical interpretation of the fractional Laplacian, we refer the reader to, e.g., the
monographs [2, 3]. On the other hand, models with fractional diffusion where front
propagating solutions ensue have been subject to mathematical analysis (see, e.g.,
[21–33], to mention a few recent works in this direction).

4 Chapter 1. Introduction

In this thesis, we concentrate in the example model where the fractional Laplacian
appears instead of the usual term of Brownian diffusion. We will simulate as a
test a nonlinear reaction-diffusion equation, namely, the following nonlocal Fisher’s
equation:

∂tu + (−∆)α/2u = f (u), x ∈ R, t ≥ 0, (1.11)

where, generically, f (u) = u(1− u) is the so-called monostable nonlinearity; and
f (u) = u(1− u)(u− a), with a ∈ (0, 1), is the bistable nonlinearity. With classical
diffusion, this is a paradigm equation for pattern forming systems and reaction-
diffusion systems in general (see the classical references for the monostable case
[34–37], etc., and for the biestable case, [38–42], etc.). The non-local version (1.11) has
been proposed as a reaction-diffusion system with anomalous diffusion [22, 43, 44].
Some fundamental analytical results appear in [45, 46], for more general nonlinear
equations and in several dimensions. Our main interest here is to simulate (1.11) as
an illustration of a problem that requires a very large spatial domain or the whole
domain, when traveling wave solutions ensue, since these travel in one direction
and they do so with a wave speed exponentially increasing in time in the monostable
case (see [47–49]). In this regard, we will contrast the numerical results with the
analytical ones, which include, apart from the already mentioned ones, [25–27] for
the bistable case (see also [28, 29] for a nonsymmetric non-local operator of Riesz-
Feller type).

Let us now describe some numerical aspects relevant to this thesis. To the best of
our knowledge, the use of spectral and pseudospectral methods for approximating
the fractional Laplacian is limited to a few instances in the literature: we remark the
works [50–52], where, although a truncation of the domain is not explicitly given,
the method relays on the approximation of the fractional Laplacian by an operator
on a truncated domain.

Most of the fractional models deal with infinite or semi-infinite domains. Our aim
is thus to present numerical methods that deal accurately and efficiently with prob-
lems posed on R, taking particular care of the numerical treatment of (−∆)α/2.

One of the main difficulties of approximating numerically (2.5) is the unbounded-
ness of the spatial domain; nevertheless, there is a variety of tools for dealing with
problems in infinite or semi-infinite domains. For problems posed on x ∈ R, we
have options like:

i. Sinc functions.

ii. Hermite functions.

iii. Algebraically mapped Chebyshev polynomials.

iv. Exponentially mapped Chebyshev polynomials.

v. Solving the problem on a large but finite interval (domain truncation).

For problems posed on the semi-infinite interval x ∈ [0, ∞) it is possible to use:

i. Laguerre functions.

ii. Chebyshev polynomials with various mappings.

Chapter 1. Introduction 5

iii. Domain truncation.

In fact, in the study of unboundedness of the spatial domain, according to Boyd [53],
the many possible options for unbounded domains fall into three broad categories:

1. Domain truncation (approximation of x ∈ R by [−L, L], with L� 1.

2. Using basis functions intrinsic to an infinite interval (for example, Hermite
functions, sinc functions).

3. Mapping the unbounded interval to a finite interval, followed by application
of Chebyshev polynomials or a Fourier series.

Observe that these strategies can be combined; for example, mapping and domain
truncation, etc. In this work, we will adopt the third one. It is worth mentioning
that mapping is equivalent to creating new basis functions, which are the images
of Chebyshev polynomials or Fourier series, and whose natural home is the infinite
or semi-infinite interval. An infinite variety of maps is possible; but three relevant
classes of mappings are the following ones:

1. Logarithmic maps: x = arctanh(ψ), ψ ∈ [−1, 1].

2. Algebraic maps: x = Lψ/
√

1− ψ2, ψ ∈ [−1, 1].

3. Exponential maps: x = sinh(Lψ), ψ ∈ [−π, π].

Here x ∈ R. The names for theses classes of mappings come from the behavior
of x, i.e, from how x increases when ϑ tends to ±1. In general, an advantage of
not truncating the domain is that the boundary conditions can be ignored when
the domain of integration is infinite [54], while truncating the domain needs setting
artificial boundary conditions [55]. We will concentrate our study on the algebraic
map, and specifically on the algebraically mapped Chebyshev polynomials TBn(x),
known as the rational Chebyshev functions.

Chebyshev polynomials are a well known set of orthogonal polynomials and have
proved useful for numerical analysis. They are a desired choice, because they can
be thought of as a Fourier cosine series in disguise [53, 56] and, as such, allow the
use of existing fast Fourier transform (FFT) software [57]. On the other hand, the ra-
tional Chebyshev functions are a rescaling of the standard Chebyshev polynomials,
so that their domain is the entire real line [54, 56]. In [58], it was shown that rational
Chebyshev functions are the most versatile option, because they are a good choice
for approximating exponentially decaying functions, and they excel when applied
to polynomial decaying solutions. In fact, in some of the numerical test that we
present in this work, we consider exponentially decaying initial data for the frac-
tional Laplacian. Remark that the rational Chebyshev functions are closely related
to the Christov functions and the Higgins functions [59], also considered in this the-
sis, and which are very adequate for computing numerically the Hilbert transform
of functions in L2(R) (see for instance [60] and [61]), although they are not sufficient
for representing functions that are not in L2(R).

There is a wide range of publications related to the effectiveness of different meth-
ods to solve numerically nonlocal fractional operators. In the particular case of the
fractional Laplacian, several numerical methods have been proposed recently for

6 Chapter 1. Introduction

equations associated with this operator in its different equivalent definitions [1]. For
instance, either the spectral definition in the Fourier space, or the singular integral
representation, which we use in this thesis. Note that most of the numerical eval-
uations have been developed on bounded domains; for instance, one of the main
contributions is the work by Huang and Oberman [62, 63]; where, considering one-
dimensional problems, they derived a scheme based on singularity subtraction and
finite-difference approximation with a quadrature rule in a bounded domain. Re-
mark that, for smooth enough functions, the accuracy of their method is very close
to O(h3−α), where h is the linear spacing between nodes, being up to 10−3. They
also established that the majority of the numerical methods for solving equations
involving the fractional Laplacian operator are related to fractional derivatives (ei-
ther of the Riemann-Liouville type or of the Caputo type) on bounded domains,
called fractional diffusion.

In [62], the authors take as reference [64], which summarizes the existing algorithms
to solve the fractional derivatives operator, among which we can find the prod-
uct integration technique based on the trapezoidal quadrature rule, and methods
of the type Predict-Evaluate-Correct-Evaluate to solve Caputo-type fractional dif-
fusion equations (FDEs). When used in the discretization of FDEs, the resulting
schemes can usually be interpreted as a random walk with long range jumps [65,
66]. Another popular class of schemes use spectral decomposition in the Fourier
space or other basis [52], usually valid only for finite spatial domains; note that, in
[52], the errors are close to 10−7. Similar schemes using a finite difference approxi-
mation are [67–69].

Taking into account [62, 63], Minden and Ying [70] presented a simple solver for
the fractional Laplacian in multiple dimensions based on the hypersingular integral
representation. Through singularity subtraction, they obtained a regularized inte-
grand to which they apply the trapezoidal rule. When the function u is sufficiently
smooth, standard results on convergence of the trapezoidal rule and finite-difference
operators imply that the computation errors tend to zero as O(h2). The work [70]
offers a vast number of references on numerical solutions of one-dimensional frac-
tional Laplacian systems using fast preconditioned iterative methods; for instance,
[71–74].

In the same line of work, but separately, Duo and Zhang [75] proposed a method
that provide a fractional analogue of the central difference schemes for the fractional
Laplacian. However, as in [70], they considered bounded domains for the two- and
three- dimensional cases with extended homogeneous boundary conditions. They
also achieved errors tending to zero as O(h2), for any α ∈ (0, 2), and their results
hold for dimensions two and three. In [75], we can find various references on the
finite element method (FEM) to solve problems involving the fractional Laplacian
operator, and numerical results are presented for one-, two-, and three-dimensional
cases (see [76–79]). Some works using finite-element-based approaches are [80–82],
and some general references for the approximation of the fractional Laplacian on
bounded domains include [83–85].

There are notable algorithms for discretizing the fractional Laplacian based on the

Chapter 1. Introduction 7

Caffarelli-Silvestre extension [11, 86, 87], followed by the application of spectral ap-
proaches [81, 82, 88]. A more recent publication is, for instance, [89], where a fast
spectral Galerkin method using the generalized Laguerre functions for the extension
problem is applied. The convergence rate with respect to h is essentially of second
order, which is the expected rate for the L2-norm of the error when using piecewise
linear finite elements, until the dominating errors are those in the extended domain.
Moreover, Chen et al. [90] presented a solver via multilevel techniques to deal with
extension problems (see [91–93], for some other related works).

All these publications have in common the use of truncation in the integration do-
main, or that they solve problems on a bounded domain, where different definitions
of the fractional Laplacian are not equivalent. Therefore, in general, truncation of
the domain leads to a natural deterioration of the rate of convergence. On the other
hand, the accuracy of these methods is well below spectral accuracy, which we have
virtually achieved in this thesis in dimension one; more precisely, we have obtained
errors close to the epsilon of the machine for smooth enough functions.

The structure of this thesis is as follows. In Chapter 2 (cf. [94]), we present a new
pseudospectral method to compute efficiently and accurately the fractional Lapla-
cian (1.10) without using truncation of the domain. We start by giving a new expres-
sion of the Laplacian in a more suitable way, which requires at least C2 regularity.
Then, we map the unbounded interval R into a finite one [0, π] by using an alge-
braic map given by the change of variable x = L cot(s), with L > 0 being a scaling
factor, and s ∈ [0, π]. We expand u(s) ≡ u(L cot(s)) into a Fourier series, and, at
its turn, obtain the Fourier series expansion of (−∆)α/2(eiks), which constitutes the
central part of this chapter. We also show the construction of an operational ma-
trix Mα that multiply the column vector formed by the Fourier coefficients of u(s)
to approximate (−∆)α/2(u(s)) at the non-final nodes sj = π(2j + 1)/(2N), with
0 ≤ j ≤ N − 1. In addition, we develop an error analysis to justify the convergence
of the method; and, in order to measure the accuracy of our scheme, we test it with
a couple of functions for which an explicit expression of the fractional Laplacian is
known. Later on, as an application ot the method, we simulate numerically the evo-
lution of (1.11). Finally, we point out futures lines or research; in particular, we offer
an alternative formula to (1.1) for the fractional Laplacian in Rn, which could serve
as a starting point.

In Chapter 3 (cf. [95]), using complex variable techniques, we obtain explicit expres-
sions, in terms of the 2F1 Gaussian hypergeometric function, for the one-dimensional
fractional Laplacian of the Higgins and Christov functions, and of their sine-like
and cosine-like versions. Then, we also explain how to implement these expres-
sions efficiently in MATLAB [96], and give numerical examples as an application.
Furthermore, we test their adequacy from a numerical point of view, comparing the
numerical results with those in Chapter 2 (and thus confirming the correctness of
the method presented in Chapter 2). On the one hand, after discussing the numeri-
cal difficulties in the implementation of the proposed formulas, for moderately large
values of n, we develop a method using variable precision arithmetic that gives ac-
curate results; on the other hand, our implementation of 2F1 largely outperforms
that of MATLAB. After that, even if the method in Chapter 2 is faster, the method

8 Chapter 1. Introduction

in this chapter is much easier to implement and still competitive for not too large
values of n.

In Chapter 4, using some ideas from [97], we discuss other approaches to approxi-
mate numerically the fractional Laplacian on R, using fast convolution. More pre-
cisely, we apply again the mapping x = L cot(s), to obtain a singular integral on
s ∈ [0, π], and try different quadrature formulas, expressing them as discrete con-
volutions. At this point, we apply the discrete convolution theorem, that states that
the discrete Fourier transform of a discrete convolution equals the product of the
discrete Fourier transforms, namely, (û ∗ v)p = ûpv̂p, where u = {ur} and v = {vr}
are two sequences of numbers. Since we use the fast Fourier Transform (FFT) [57]
to compute the discrete Fourier transforms, this technique can be referred to as fast
convolution, because it requires O(N log N) operations when the two sequences u
and v are N-periodic; this is an important reduction in the number of operations of
a direct summation procedure, which requires O(N2) operations (and, hence, be-
comes expensive for relative small values of N). Following the previous arguments,
we develop a method that appears to be of second-order for all α ∈ (0, 1) ∪ (1, 2),
and that, even if less accurate than those exposed in Chapters 2 and 3, is exceedingly
fast. We test it for the functions considered in Chapter 2 and show how Richardson’s
extrapolation can be used to improve the results. To finish this chapter, we adapt the
numerical method in [98] to the computation of the fractional Laplacian, rewriting it
so the fast convolution can also be applied to it, and implement again Richardson’s
extrapolation to improve the results, too.

To close this thesis, we have added Appendix A, where we list some important
properties of the Chebyshev polynomials, and of the rational Chebyshev functions
defined on R.

9

Chapter 2

Computation of the fractional
Laplacian for regular functions

The structure of this chapter is as follows. In Section 2.1, we propose a novel method
to compute accurately the fractional Laplacian (1.10) without using truncation. More
precisely, we rewrite the fractional Laplacian in a more suitable way, which re-
quires at least C2 regularity; then, after mapping the original domain R to [0, π]
by using the change of variable x = L cot(s), with L > 0, s ∈ [0, π], we expand
u(s) ≡ u(L cot(s)) in Fourier series, and, at its turn, obtain the Fourier series ex-
pansion of (−∆)α/2(eiks), which constitutes the central part of this chapter. We also
show how to generate efficiently an operational matrix Mα that can be applied to
the coefficients of the Fourier expansion of u(s), to approximate (−∆)α/2(u(s)) at
the equally-spaced nodes

sj =
π(2j + 1)

2N
, 0 ≤ j ≤ N − 1. (2.1)

Furthermore, we justify theoretically the convergence of the method. Later on, in
Section 2.2, we test the proposed method for a couple of functions; and, in Section
2.3, we apply it to the numerical simulation of (1.11) in the monostable case.

To the best of our knowledge, the numerical computation of the fractional Laplacian
without truncating the domain has not being done so far. However, the change of
variable x = L cos(s) was applied successfully in [98] to compute numerically a
related nonlocal operator defined on the whole real line. More precisely, in [98], from
which we get several useful ideas, ∂xDα was considered on R, where the operator
Dα can be regarded as a left-sided fractional derivative in the Caputo sense (see, e.g.,
[99]), with integration taken from −∞:

Dαu(x) =
1

Γ(1− α)

ˆ x

−∞

ux(y)
(x− y)α

dy, α ∈ (0, 1). (2.2)

After defining u(s) ≡ u(L cot(s)), ∂xDα(u(s)) was approximated at the nodes sj in
(2.1) by the composite midpoint rule taken over the families of nodes

s(m)
l =

π(2l + 1)
2m+1N

, 0 ≤ l ≤ 2mN − 1, m = 1, 2, . . . , (2.3)

10 Chapter 2. Computation of the fractional Laplacian for regular functions

although, in practice, only the indices l satisfying 2m−1(2j + 1) ≤ l ≤ 2mN − 1 were
used, denoting as [∂xDα](m)(u(s)) the resulting approximation. Then, studying the
errors of several functions with different types of decay and applying Richardson
extrapolation [100] to [∂xDα]m(u(s)), it was conjectured that

‖[∂xDα](m)u(x)− ∂xDαu(x)‖∞

=
c1(α)

m2−α
+

c2(α)

m3−α
+

c3(α)

m4−α
+

c4(α)

m5−α
+

c5(α)

m6−α
+ . . . ,

(2.4)

and, indeed, this formula yielded very accurate results, at least for the functions
considered. Remark that, in practice, u(s) was expanded in Fourier series, so the
extrapolation was really applied over [∂xDα](m)(eiks), which enabled to create an
operational matrix acting on the coefficients of the Fourier expansion of u(s).

As we can see, the main difference between the method developed in this chap-
ter and [98] is the numerical computation of the corresponding nonlocal operator
acting on a single Fourier mode eiks. In this chapter, we have not considered the
extrapolation technique, because it appears to be more involved than in [98] (we
will comment on this in Section 4.5), and, on the other hand, the method that we are
proposing here is, in our opinion, very accurate.

To the best of our knowledge, the use of spectral and pseudospectral methods for
approximating the fractional Laplacian is limited to a few instances in the literature:
we remark the works [50–52], where, although a truncation of the domain is not
explicitly given, the method relays on the approximation of the fractional Laplacian
by an operator on a truncated domain.

In the following pages, we will use the representation of (1.10), together with Lemma
2.1.1, which requires boundedness and C2-regularity.

2.1 Computation of the fractional Laplacian for regular
functions

In the following pages, we will develop a new method to approximate numerically
(1.10). However, instead of working directly with (1.10), we will use the representa-
tion given by the following lemma, which requires boundedness and C2-regularity.

2.1.1 Equivalent form of the fractional Laplacian for regular func-
tions

Lemma 2.1.1. Consider the twice continuous bounded function u ∈ C2
b (R). If α ∈ [1, 2),

or α ∈ (0, 1) and limx→±∞ ux(x) = 0, then

(−∆)α/2u(x) =


1
π

ˆ ∞

−∞

ux(y)
x− y

dy, α = 1,

cα

α(1− α)

ˆ ∞

−∞

uxx(y)
|x− y|α−1 dy, α 6= 1.

(2.5)

2.1. Computation of the fractional Laplacian for regular functions 11

Proof. Let us express first (1.10) as an integral over [0, ∞):

(−∆)α/2u(x) = cα

ˆ ∞

0

u(x)− u(x− y) + u(x)− u(x + y)
y1+α

dy

= cα

ˆ ∞

0

ˆ y

0

ux(x− z)− ux(x + z)
y1+α

dz dy

= cα

ˆ ∞

0

[
(ux(x− z)− ux(x + z))

ˆ ∞

z

1
y1+α

dy
]

dz

=
cα

α

ˆ ∞

0

ux(x− z)− ux(x + z)
zα

dz, (2.6)

where we have changed the order of integration; observe that this is equivalent to

(−∆)α/2u(x) =
cα

α

ˆ ∞

−∞

y ux(x− y)
|y|1+α

dy

= − cα

α

ˆ ∞

−∞

y ux(x + y)
|y|1+α

dy. (2.7)

We distinguish three cases. When α = 1, c1 = 1/π, so

(−∆)1/2u(x) =
1
π

ˆ ∞

0

ux(x− y)− ux(x + y)
y

dy

=
1
π

ˆ ∞

−∞

ux(y)
x− y

dy,

i.e., (−∆)1/2u(x) is precisely the Hilbert transform [4] of ux(x), as mentioned in the
introduction. On the other hand, when α ∈ (1, 2),

(−∆)α/2u(x) =
cα

α

ˆ ∞

0

ux(x− z)− ux(x) + ux(x)− ux(x + z)
zα

dz

= − cα

α

ˆ ∞

0

ˆ z

0

uxx(x− y) + uxx(x + y)
zα

dy dz

= − cα

α

ˆ ∞

0

[
(uxx(x− y) + uxx(x + y))

ˆ ∞

y

1
zα

dz

]
dy

= − cα

α(α− 1)

ˆ ∞

0

uxx(x− y) + uxx(x + y)
yα−1 dy

=
cα

α(1− α)

ˆ ∞

−∞

uxx(x + y)
|y|α−1 dy

=
cα

α(1− α)

ˆ ∞

−∞

uxx(y)
|x− y|α−1 dy.

12 Chapter 2. Computation of the fractional Laplacian for regular functions

Finally, when α ∈ (0, 1), this last formula also holds, although the deduction is
slightly different, and limx→±∞ ux(x) = 0 is required. Indeed, from (2.6),

(−∆)α/2u(x) =
cα

α

ˆ ∞

0

ˆ ∞

z

uxx(x− y) + uxx(x + y)
zα

dy dz

=
cα

α

ˆ ∞

0

[
(uxx(x− y) + uxx(x + y))

ˆ y

0

1
zα

dz
]

dy

=
cα

α(1− α)

ˆ ∞

0

uxx(x− y) + uxx(x + y)
yα−1 dy

=
cα

α(1− α)

ˆ ∞

−∞

uxx(y)
|x− y|α−1 dy,

which completes the proof of the lemma.

2.1.2 Mapping R to a finite interval

Among the different possible mappings which we have mentioned in the introduc-
tion, we use the algebraic one. More precisely, if we consider x ∈ R, ψ ∈ [−1, 1],
and s ∈ [0, π], then the different domains are mapped onto one another through the
following relationships [53]:

ψ =
x√

L2 + x2
⇐⇒ x =

Lψ√
1− ψ2

,

and
x = L cot(s)⇐⇒ s = arccot

(x
L

)
,

for a certain constant L > 0. Small values of L cause the majority of the discretized
points in the abscissa to be clumped near the origin, whereas increasing L pulls out
the points from the origin toward the rest of the domain. The nth rational Chebyshev
is

TBn(x) ≡ Tn(ψ) ≡ cos(nt), ∀n ∈N∪ {0}.
i.e.,

TBn(x) = Tn

(
x√

L2 + x2

)
= cos

(
n arccot

(x
L

))
, ∀n ∈N∪ {0}, (2.8)

where Tn(ψ) is the standard Chebyshev polynomials and TBn(x) are the rational
Chebyshev functions, which form an orthogonal basis in R with respect to the
weight (1 + x2)−1:

ˆ ∞

−∞

TBm(x)TBn(x)
1 + x2 dx =


π

2
, m = n > 0,

π, m = n = 0,
0, m 6= n.

2.1. Computation of the fractional Laplacian for regular functions 13

We present more details about the properties of Chebyshev polynomials and ra-
tional Chebyshev functions in Appendix A. Although we can work with (2.8), we
prefer to use a trigonometric representation on them, which allows us an easier han-
dling of them. Thus, we are going to consider the following change of variable:

ψ = cos(s)⇐⇒ x = L cot(s), s ∈ [0, π]. (2.9)

Then, (2.8) becomes
Tn(ψ) = TBn(x) = cos(ns).

Therefore, a series expansion in terms of Chebyshev polynomials or rational Cheby-
shev functions is equivalent to a cosine expansion.

In this thesis, we work with (2.7) rather than with (2.5), because the calculations in
the next sections appear to be simpler. In order to express (2.5) in terms of s ∈ [0, π],
we need the following identities [54]:

ux(x) = −sin2(s)
L

us(s),

uxx(x) =
sin4(s)

L2 uss(s) +
2 sin3(s) cos(s)

L2 us(s),
(2.10)

where, with some abuse of notation, u(s) ≡ u(x(s)). Then, bearing in mind that
dx = −L sin−2(s)ds, (2.5) becomes

(−∆)α/2u(s) =



− 1
Lπ

ˆ π

0

us(η)

cot(s)− cot(η)
dη, α = 1,

cα

Lαα(1− α)

·
ˆ π

0

sin2(η)uss(η) + 2 sin(η) cos(η)us(η)

| cot(s)− cot(η)|α−1 dη, α 6= 1,

(2.11)

or, equivalently,

(−∆)α/2u(s) =



sin(s)
Lπ

ˆ π

0

sin(η)us(η)

sin(s− η)
dη, α = 1,

cα| sin(s)|α−1

Lαα(1− α)

·
ˆ π

0

sinα(η)(sin(η)uss(η) + 2 cos(η)us(η))

| sin(s− η)|α−1 dη, α 6= 1.

(2.12)

2.1.3 Discretizing the mapped bounded domain

We discretize the interval s ∈ [0, π] in the nodes defined in (2.1):

sj =
π(2j + 1)

2N
⇐⇒ xj = L cot

(
π(2j + 1)

2N

)
⇐⇒ ψj = cos

(
π(2j + 1)

2N

)
,

14 Chapter 2. Computation of the fractional Laplacian for regular functions

such that s0 = π/(2N), sN−1 = π − π/(2N), sj+1 − sj = π/N, where 0 ≤ j ≤
N − 1, which divide the interval [0, π] in N equally-spaced parts. Therefore, we
avoid evaluating (2.11) directly at s = 0 and s = π. Note that it is also possible to
introduce a spacial shift in x, i.e.,

x = xc + L cot(s); (2.13)

so

xj = xc + L cot(sj) = xc + L cot
(

π(2j + 1)
2N

)
.

In general, along this thesis, whenever we write u(xj), we refer to u(x) evaluated at
x = xj, whereas, we write u(sj) to refer to u(x(s)) evaluated at sj. Therefore, with
some abuse of notation, u(sj) ≡ u(xj). Observe that the definition of sj in (2.1) does
not depend on xc, whereas the definition of xj does, which makes it preferable to
work with u(sj). On the other hand, as mentioned above, since s ∈ [0, π], a cosine
series expansion is enough to represent u(s). However, we rather consider a more
general series expansion formed by eiks, with k ∈ Z, which is somehow easier to
implement numerically:

u(s) =
∞

∑
k=−∞

û(k)eiks, s ∈ [0, π].

Hence, in order to determine the coefficients û(k), we have to extend the definition
of u(s) to s ∈ [0, 2π]. Therefore, we discretize [0, π] in 2N nodes, sj = π(2j +
1)/(2N), 0 ≤ j ≤ 2N − 1. Note that an even expansion of u(s) at s = π will yield
precisely a cosine series, while an odd extension will yield a sine series.

Since it is impossible to work with infinitely many frequencies, we approximate u(s)
as

u(s) ≈
N−1

∑
k=−N

û(k)eiks, s ∈ [0, 2π], (2.14)

which is a 2N-term approximation of a 2π-periodic function u.

Then, taking 0 ≤ j ≤ 2N − 1 in (2.1), we adopt a pseudospectral approach to de-
termine uniquely the 2N coefficients û(k) in (2.14), i.e., we impose (2.14) to be an
equality at sj:

u(sj) ≡
N−1

∑
k=−N

û(k)eiksj =
N−1

∑
k=−N

û(k)eikπ(2j+1)/(2N)

=
N−1

∑
k=0

[
û(k)eikπ/(2N)

]
e2ijkπ/(2N)

+
2N−1

∑
k=N

[
û(k− 2N)ei(k−2N)π/(2N)

]
e2ijkπ/(2N). (2.15)

2.1. Computation of the fractional Laplacian for regular functions 15

Equivalently, the coefficients û(k) are given by

û(k) ≡ e−ikπ/(2N)

2N

2N−1

∑
j=0

u(sj)e−2ijkπ/(2N). (2.16)

Note that the discrete Fourier transforms (2.15) and (2.16) can be computed very ef-
ficiently by means of the fast Fourier Transform (FFT) [57]. On the other hand, we
apply systematically a Krasny filter [101], i.e., we set to zero all the Fourier coeffi-
cients û(k) with modulus smaller than a fixed threshold, which in this thesis is the
epsilon of the machine.

2.1.4 An explicit calculation of (−∆)α/2eiks

Since we are approximating u(s) by (2.14), the problem is reduced to computing
(−∆)α/2eiks. In this section, we will prove the following theorem:

Theorem 2.1.2. Let α ∈ (0, 1) ∪ (1, 2), then

(−∆)α/2(eiks) =



cα| sin(s)|α−1

8Lα tan(πα
2)

∞

∑
l=−∞

ei2ls((1− α)k2 − 4kl)

·
Γ
(
−1+α

2 + |l|
)

Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

Γ
(3−α

2 + |l|
)

Γ
(

3+α
2 +

∣∣∣ k
2 − l

∣∣∣) , k even,

i
cα| sin(s)|α−1

8Lα

∞

∑
l=−∞

ei2ls((1− α)k2 − 4kl)

· sgn(k
2 − l)

Γ
(
−1+α

2 + |l|
)

Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

Γ
(3−α

2 + |l|
)

Γ
(

3+α
2 +

∣∣∣ k
2 − l

∣∣∣) , k odd.

(2.17)

Moreover, when α = 1,

(−∆)1/2(eiks) =


|k| sin2(s)

L
eiks, k even,

ik
Lπ

(
−2

k2 − 4
−

∞

∑
l=−∞

4 sgn(l)ei2ls

(k− 2l)((k− 2l)2 − 4)

)
, k odd.

(2.18)

Proof. We prove first the case α = 1. Introducing u(s) = eiks in (2.12), we get

(−∆)1/2(eiks) =
ik sin(s)

Lπ

ˆ π

0

sin(η)eikη

sin(s− η)
dη. (2.19)

16 Chapter 2. Computation of the fractional Laplacian for regular functions

When k ≡ 0 mod 2,
ˆ π

0

sin(η)eikη

sin(s− η)
dη = −eiks cos(s)

ˆ π

0
eikηdη − eiks sin(s)

ˆ π

0

cos(η)eikη

sin(η)
dη.

The first integral is trivial, and the second can be calculated explicitly, too:

ˆ π

0

cos(η)eikη

sin(η)
dη =

i sgn(k)
2

ˆ 2π

0

cos(η) sin(|k|η)
sin(η)

dη

=

{
0, k = 0,
iπ sgn(k), k ∈ 2Z\{0};

which is easily proved by induction on 2N, bearing into account that sin(2η) =
2 sin(η) cos(η), and that sin((|k|+ 2)η)− sin(|k|η) = 2 sin(η) cos((|k|+ 1)η). There-
fore, ˆ π

0

sin(η)eikη

sin(s− η)
dη =

{
−π cos(s), k = 0,
−iπ sgn(k) sin(s)eiks, k ∈ 2Z\{0}; (2.20)

from which follows the first part of (2.18). On the other hand, when k ≡ 1 mod 2,
eikη is not periodic in η ∈ [0, π], and there seems to be no compact formula for
(−∆)1/2(eiks), as in k ≡ 0 mod 2. Hence, we have to consider a series expansion for
(−∆)1/2(eiks); more precisely, we write

sin(s)
ˆ π

0

sin(η)eikη

sin(s− η)
dη =

∞

∑
l=−∞

cklei2ls, (2.21)

with ckl given by

ckl =
1
π

ˆ π

0

[
sin(s)

ˆ π

0

sin(η)eikη

sin(s− η)
dη

]
e−i2lsds

=
1
π

ˆ π

0
sin(η)eikη

[ˆ π

0

sin(s)e−i2ls

sin(s− η)
ds

]
dη,

where we have changed the order of integration. The inner integral is given by
(2.20): ˆ π

0

sin(s)e−i2ls

sin(s− η)
ds =

{
π cos(η), l = 0,
−iπ sgn(l) sin(η)e−i2lη, l ∈ Z\{0}.

Hence,

ckl =


ˆ π

0
sin(η) cos(η)eikηdη =

−2
k2 − 4

, l = 0,

−i sgn(l)
ˆ π

0
sin2(η)ei(k−2l)ηdη =

−4 sgn(l)
(k− 2l)((k− 2l)2 − 4)

, l 6= 0,
(2.22)

2.1. Computation of the fractional Laplacian for regular functions 17

from which we conclude the second part of (2.18).

We consider now α 6= 1. Introducing u(s) = eiks in (2.12), we get

(−∆)α/2(eiks) =
cα| sin(s)|α−1

Lαα(1− α)

ˆ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))eikη

| sin(s− η)|α−1 dη. (2.23)

Then, as in (2.21), we consider a series expansion:

ˆ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))eikη

| sin(s− η)|α−1 dη =
∞

∑
l=−∞

dklei2ls, (2.24)

with dkl given by

dkl =
1
π

ˆ π

0

[ˆ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))eikη

| sin(s− η)|α−1 dη

]
e−i2lsds

=
1
π

ˆ π

0
sinα(η)(−k2 sin(η) + 2ik cos(η))eikη

[ˆ π

0

e−i2ls

| sin(s− η)|α−1 ds

]
dη

=
1
π

[ˆ π

0

e−i2ls

sinα−1(s)
ds

] [ˆ π

0
sinα(η)(−k2 sin(η) + 2ik cos(η))ei(k−2l)ηdη

]
=

1
π

I1 · I2, (2.25)

where we have changed again the order of integration. Integrals of the type of I1 and
I2 can be explicitly calculated by means of standard complex-variable techniques
(see, e.g., [102, p. 158], for a classic reference). On the other hand, we have used
MATHEMATICA [103], which computes them immediately (after, occasionally, very
minor rewriting). The expression for I1 is

I1 =
e−i2πl((2i)α + (−2i)αei2πl)π csc(πα)Γ

(
−1+α−2l

2

)
4Γ(−1 + α)Γ

(
3−α−2l

2

)
= −

2α−1 cos(πα
2)Γ(2− α)Γ

(
−1+α

2 − l
)

Γ
(3−α

2 − l
) , (2.26)

where we have used the well-known Euler’s reflection formula:

Γ(z)Γ(1− z) =
π

sin(πz)
.

18 Chapter 2. Computation of the fractional Laplacian for regular functions

Moreover, applying twice Euler’s reflection formula,

Γ(z)
Γ(w)

=
Γ(z)Γ(1− z)Γ(1− w)

Γ(w)Γ(1− w)Γ(1− z)

=
sin(πw)

sin(πz)
Γ(1− w)

Γ(1− z)
. (2.27)

Therefore, for l ∈ Z,

Γ
(
−1+α

2 − l
)

Γ
(3−α

2 − l
) =

sin
(
π
(3−α

2 − l
))

sin
(

π
(
−1+α

2 − l
)) Γ

(
1−

(3−α
2 − l

))
Γ
(

1−
(
−1+α

2 − l
))

=
Γ
(
−1+α

2 + l
)

Γ
(3−α

2 + l
) , (2.28)

so the value of I1 does not depend on the sign of l, and we can replace the appear-
ances of l in (2.26) by −l, |l| or −|l|. In this thesis, we consider the last option,
getting

I1 = −
2α−1 cos(πα

2)Γ(2− α)Γ
(
−1+α

2 + |l|
)

Γ
(3−α

2 + |l|
) , (2.29)

which is more convenient from an implementation point of view, as we will explain
in Section 2.1.5. Likewise, the expression for I2 is

I2 = −2−2−αe−iπ(α+4l)/2((−1)k + eiπ(α+2l))

·
k((−1 + α)k + 4l)π csc(πα)Γ

(
−1−α+k−2l

2

)
Γ(−α)Γ

(
3+α+k−2l

2

)

=



πα(1− α)((−1 + α)k2 + 4kl)Γ
(
−1−α

2 + k
2 − l

)
22+α sin(πα

2)Γ(2− α)Γ
(

3+α
2 + k

2 − l
) , k even,

i
πα(1− α)((−1 + α)k2 + 4kl)Γ

(
−1−α

2 + k
2 − l

)
22+α cos(πα

2)Γ(2− α)Γ
(

3+α
2 + k

2 − l
) , k odd.

Then, applying again (2.27), we get expressions similar to (2.28):

Γ
(
−1−α

2 + k
2 − l

)
Γ
(

3+α
2 + k

2 − l
) =



Γ
(
−1−α

2 −
(

k
2 − l

))
Γ
(

3+α
2 −

(
k
2 − l

)) , k even,

−
Γ
(
−1−α

2 −
(

k
2 − l

))
Γ
(

3+α
2 −

(
k
2 − l

)) , k odd.

2.1. Computation of the fractional Laplacian for regular functions 19

Hence, we obtain an equivalent but more convenient expression of I2, containing
absolute values as in (2.29):

I2 =



πα(1− α)((−1 + α)k2 + 4kl)Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

22+α sin(πα
2)Γ(2− α)Γ

(
3+α

2 +
∣∣∣ k

2 − l
∣∣∣) , k even,

i sgn(k
2 − l)

πα(1− α)((−1 + α)k2 + 4kl)Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

22+α cos(πα
2)Γ(2− α)Γ

(
3+α

2 +
∣∣∣ k

2 − l
∣∣∣) , k odd.

(2.30)

Putting (2.29) and (2.30) together,

dkl =



cot(πα
2)α(1− α)((1− α)k2 − 4kl)

·
Γ
(
−1+α

2 + |l|
)

Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

8Γ
(3−α

2 + |l|
)

Γ
(

3+α
2 +

∣∣∣ k
2 − l

∣∣∣) , k even,

i sgn(k
2 − l)α(1− α)((1− α)k2 − 4kl)

·
Γ
(
−1+α

2 + |l|
)

Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

8Γ
(3−α

2 + |l|
)

Γ
(

3+α
2 +

∣∣∣ k
2 − l

∣∣∣) , k odd.

(2.31)

Therefore, bearing in mind (2.23) and (2.24), we get (2.17), which concludes the proof
of the theorem.

Remark: under the change of variable x = cot(s), the cosine-like and sine-like Hig-
gins functions [59] are precisely cos(2ks) and sin((2k + 2)s), which are eigenfunc-
tions of the Hilbert transform [60]. Therefore, the first part of (2.18) follows also from
the results in [60]. Note that we will study the fractional Laplacian of the Higgins
functions in detail in Chapter 3.

2.1.5 Constructing an operational matrix

As explained above, in order to compute (−∆)α/2u(x) for a given function u(x),
we first represent it as (2.14), then we apply Theorem 2.1.2 to each basic function
eiks. In this work, we have opted for a matrix approach, i.e., we have constructed a

20 Chapter 2. Computation of the fractional Laplacian for regular functions

differencing matrix Mα ∈ M(2N)×(2N)(C) based on Theorem 2.1.2, such that

 (−∆)α/2u(s0)
...

(−∆)α/2u(s2N−1)

 ≈ Mα ·



û(0)
...

û(N − 1)
û(−N)

...
û(−1)


, (2.32)

where the nodes sj are defined in (2.1). It is vital to underline that, by choosing the
appropriate strategy, the speed in the construction of Mα, and therefore, in the nu-
merical computation of (−∆)α/2u(x), can be increased by several orders of magni-
tude. Furthermore, that matrix needs to be computed just once, and then be reused
whenever needed.

In order to generate Mα, we compute (−∆)α/2(eiks) according to Theorem 2.1.2, for
k ∈ {−N, . . . , N − 1}. However, from (2.12), (−∆)α/2(ei0s) = (−∆)α/2(1) = 0, and

(−∆)α/2(eiks) = (−∆)α/2(e−iks),

so we only need to calculate the cases with k > 0. Remark that the N + 1th column
could be assigned either (−∆)α/2(e−iNs) or (−∆)α/2(eiNs); in order to avoid choos-
ing between one or the other, we fill it with zeros. Therefore, in order to create Mα,
we only need to consider k ∈ {1, . . . , N − 1}
Note that the implementation of Theorem 2.1.2 offers two difficulties: the need to
evaluate the gamma function a very large number of times when α 6= 0, and the fact
that l is taken all over Z.

With respect to the gamma function, a fast and accurate implementation is usually
available in every major scientific environment, such as MATLAB [96], which we use
in this thesis. More precisely, in MATLAB, it is computed by the command gamma,
which is based on algorithms outlined in [104]. However, using solely gamma to
evaluate (2.17) is not numerically stable, because of the quick growth of gamma (for
instance, gamma(172) yields infinity); therefore, even for rather small values of l, we
get spurious NaN results, because we are dividing infinity by infinity. One possible
solution would be to use the command MATLAB gammaln, which computes the nat-
ural logarithm of the gamma function, ln Γ, i.e., the so-called log-gamma function:

Γ
(
−1+α

2 + |l|
)

Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

Γ
(3−α

2 + |l|
)

Γ
(

3+α
2 +

∣∣∣ k
2 − l

∣∣∣) ≡ exp
[
ln Γ

(
−1+α

2 + |l|
)

+ ln Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)− ln Γ

(3−α
2 + |l|

)
− ln Γ

(
3+α

2 +
∣∣∣ k

2 − l
∣∣∣)] ;

bear in mind that gammaln is not defined for negative values, so minor rewriting
would be necessary in a few cases. However, in general, a much more convenient

2.1. Computation of the fractional Laplacian for regular functions 21

solution is to use the basic property Γ(z + 1) = zΓ(z):

Γ
(
−1+α

2 + |l|
)

Γ
(3−α

2 + |l|
) ≡ −3+α

2 + |l|
1−α

2 + |l| ·
Γ
(−3+α

2 + |l|
)

Γ
(

1−α
2 + |l|

) ,

Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

Γ
(

3+α
2 +

∣∣∣ k
2 − l

∣∣∣) ≡
−3−α

2 +
∣∣∣ k

2 − l
∣∣∣

1+α
2 +

∣∣∣ k
2 − l

∣∣∣ ·
Γ
(
−3−α

2 +
∣∣∣ k

2 − l
∣∣∣)

Γ
(

1+α
2 +

∣∣∣ k
2 − l

∣∣∣) ,

(2.33)

where we consider separately the expressions containing |l|, and those containing
|k/2− l|, because, for |l| � 1,

−3+α
2 + |l|

1−α
2 + |l| ≈ 1,

−3−α
2 +

∣∣∣ k
2 − l

∣∣∣
1+α

2 +
∣∣∣ k

2 − l
∣∣∣ ≈ 1,

so the factorizations in (2.33) are extremely stable from a numerical point of view.
We apply recursively (2.33), until |l| = 0, and |k/2− l| = 0 (if k even) or |k/2− l| =
1/2 (if k odd). Therefore, for any l and k, the evaluations of Γ needed to compute the
left-hand sides of (2.33) are just those in the quotients Γ((−1 + α)/2)/Γ((3− α)/2),
Γ((−1− α)/2)/Γ((3+ α)/2) (if k even), and Γ(−α/2)/Γ(2+ α/2) (if k odd). Hence,
taking into account that Γ appears also in the definition of cα, it follows that the
global number of evaluations of Γ needed to compute (2.17) is very small, although,
unfortunately, it does not seem possible to remove completely all the evaluations of
Γ.

Bearing in mind the previous arguments, in order to approximate (2.17), we precom-
pute recursively the right-hand sides of (2.33) for a large enough number of values,
then store them in their respective vectors:

Γ
(
−1+α

2 + |l|
)

Γ
(3−α

2 + |l|
) ≡ Γ

(
−1+α

2

)
Γ
(3−α

2

) |l|−1

∏
m=0

−1+α
2 + m

3−α
2 + m

, ∀|l| ∈N,

Γ
(
−1−α

2 + |l̃|
)

Γ
(3+α

2 + |l̃|
) ≡ Γ

(
−1−α

2

)
Γ
(3+α

2

) |l̃|−1

∏
m=0

−1−α
2 + m

3+α
2 + m

, ∀|l̃| ∈N,

Γ
(−α

2 + |l̃|
)

Γ
(
2 + α

2 + |l̃|
) ≡ Γ

(−α
2

)
Γ
(
2 + α

2

) |l̃|−1

∏
m=0

−α
2 + m

2 + α
2 + m

, ∀|l̃| ∈N,

(2.34)

where the second expression is used in the cases with k even, and the third one,
in the cases with k odd. Remark that the usage of absolute values makes trivial the
computational evaluation of the vectors thus generated, because |l|+ 1, |k/2− l|+ 1
(if k even), and |k/2− l|+ 1/2 (if k odd) are precisely their respective indices.

With respect to l spanning Z, we decompose it as l = l1N + l2, with l1 ∈ Z, and
l2 ∈ {−N/2, . . . , N/2− 1} (if N even), or l2 ∈ {−(N − 1)/2, . . . , (N − 1)/2} (if N

22 Chapter 2. Computation of the fractional Laplacian for regular functions

odd), i.e., l2 ∈ {−bN/2c, . . . , dN/2e − 1}, considering both cases together. Note
that we take l2 between −bN/2c and dN/2e − 1, rather than between 0 and N − 1,
because the numerical results appear to be slightly more accurate in that way. Then,
we observe that

ei2lsj = ei2(l1N+l2)π(2j+1)/(2N) = (−1)l1ei2l2sj ,

i.e., aliasing occurs when evaluating ei2ls in the actual nodes. Therefore, we truncate
l1, i.e., take l1 ∈ {−llim, . . . , llim}, for llim a large nonnegative integer. Then, (2.17)
becomes

(−∆)α/2(eiksj) ≈



cα| sin(sj)|α−1

8Lα tan(πα
2)

dN/2e−1

∑
l2=−bN/2c

[
llim

∑
l1=−llim

ak,l1,l2

]
ei2l2sj , k even,

i
cα| sin(sj)|α−1

8Lα

dN/2e−1

∑
l2=−bN/2c

[
llim

∑
l1=−llim

ak,l1,l2

]
ei2l2sj , k odd,

(2.35)

where

ak,l1,l2 =



(−1)l1((1− α)k2 − 4k(l1N + l2))

·
Γ
(
−1+α

2 + |l1N + l2|
)

Γ
(
−1−α

2 +
∣∣∣ k

2 − l1N − l2
∣∣∣)

Γ
(3−α

2 + |l1N + l2|
)

Γ
(

3+α
2 +

∣∣∣ k
2 − l1N − l2

∣∣∣) , k even,

(−1)l1((1− α)k2 − 4k(l1N + l2)) sgn(k
2 − l1N − l2)

·
Γ
(
−1+α

2 + |l1N + l2|
)

Γ
(
−1−α

2 +
∣∣∣ k

2 − l1N − l2
∣∣∣)

Γ
(3−α

2 + |l1N + l2|
)

Γ
(

3+α
2 +

∣∣∣ k
2 − l1N − l2

∣∣∣) , k odd.

In this way, since we have used (2.34) to precompute the appearances of Γ and have
stored them in three vectors, the computation of

llim

∑
l1=−llim

ak,l1,l2

is reduced to sums and products and can be done in a very efficient way. Remark
that, from the decomposition l = l1N + l2, it follows that, in order to generate the
whole matrix Mα, the minimum length of the vectors generated from (2.34) is re-
spectively llimN + dN/2e+ 1, llimN + 2dN/2e and llimN + N.

Finally, we perform the sum over l2 in (2.35). Since

ei2l2sN−1−j = e−i2l2sj , ei2l2sj+N = ei2l2sj ,

it is enough to compute (2.35), for with j ∈ {0, . . . , dN/2e − 1}, and extend the
results until j = 2N − 1, by means of those symmetries. Alternatively, it is possible

2.1. Computation of the fractional Laplacian for regular functions 23

to use the FFT, too.

Let us finish this section by mentioning that the case α = 1 in (2.18) presents no
difficulty. When k is even, it is trivial to implement, and when k is odd, we factorize
and truncate l, as when α 6= 1, obtaining

(−∆)1/2(eiksj) ≈


|k| sin2(sj)

L
eiksj , k even,

ik
Lπ

 −2
k2 − 4

−
dN/2e−1

∑
l2=−bN/2c

[
llim

∑
l1=−llim

bk,l1,l2

]
ei2l2sj

 , k odd,

(2.36)

with

bk,l1,l2 =
4(−1)l1 sgn(l1N + l2)

(k− 2(l1N + l2))((k− 2(l1N + l2))2 − 4)
.

2.1.6 Some remarks on the convergence of the method

Assuming that the errors due to the floating point representation, evaluation of the
involved functions, etc., are negligible, there are only two sources of error in the
proposed method. On the one hand, we have the error in the numerical approxima-
tion of (−∆)α/2(eiks) as defined in (2.19), when α = 1, and (2.23), when α 6= 1; and,
on the other hand, the error due to the expansion of u(s) as a Fourier series. With
respect to the former, the error comes exclusively from truncating l in (2.21), when
α = 1 and k is odd (recall that the case with α = 1 and k even has a simple, exact
form) or (2.24), when α 6= 1.

The convergence of the case with α = 1, k odd, is simple to establish. Indeed, for a
fixed value of k, from (2.21) and (2.22), taking la, lb ∈N,∣∣∣∣∣sin(s)

ˆ π

0

sin(η)eikη

sin(s− η)
dη −

lb

∑
l=−la

cklei2ls

∣∣∣∣∣ =
∣∣∣∣∣−la−1

∑
l=−∞

cklei2ls +
∞

∑
l=lb+1

cklei2ls

∣∣∣∣∣
≤
−la−1

∑
l=−∞

|ckl|+
∞

∑
l=lb+1

|ckl|

=
−la−1

∑
l=−∞

4
|k− 2l| |(k− 2l)2 − 4| +

∞

∑
l=lb+1

4
|k− 2l| |(k− 2l)2 − 4| . (2.37)

Note that these bounds are not intended to be sharp, but they are enough to justify
convergence (this is also valid for the case α 6= 0 below). Now, remark that, when
β > 1, for N = 2, 3, . . .,

1
(β− 1)Nβ−1 =

ˆ ∞

N

dx
xβ
≤

∞

∑
n=N

1
nβ
≤
ˆ ∞

N−1

dx
xβ

=
1

(β− 1)(N − 1)β−1 ,

24 Chapter 2. Computation of the fractional Laplacian for regular functions

where the sum is precisely the upper Riemann sum at the points x = N, N + 1, . . .
of the integral on the left-hand side, and the lower Riemann sum at the points x =
N − 1, N, . . . of the integral on the right-hand side. Therefore,

ˆ ∞

N

dx
xβ

= O
(

1
Nβ−1

)
, (2.38)

and, from (2.37), we conclude that∣∣∣∣∣sin(s)
ˆ π

0

sin(η)eikη

sin(s− η)
dη −

lb

∑
l=−la

cklei2ls

∣∣∣∣∣ = O
(

1
l2
a

)
+O

(
1
l2
b

)
,

which guarantees the convergence of (2.36), as llim tends to infinity.

Regarding the case with α 6= 1, for a fixed value of k, from (2.24) and (2.31), reason-
ing as in the case with α = 1, we have∣∣∣∣∣

ˆ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))eikη

| sin(s− η)|α−1 dη −
lb

∑
l=−la

dklei2ls

∣∣∣∣∣
≤
−la−1

∑
l=−∞

|dkl|+
∞

∑
l=lb+1

|dkl|. (2.39)

In order to obtain how dkl decays with l, we use Stirling’s formula for the gamma
function [105]:

Γ(x) ∼ xx−1e−x
√

2πx, x � 1,

to substitute the occurrences of the gamma function in (2.31) with their asymptotic
equivalents:

l
Γ
(
−1+α

2 + |l|
)

Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

Γ
(3−α

2 + |l|
)

Γ
(

3+α
2 +

∣∣∣ k
2 − l

∣∣∣)
∼ l

(−1+α
2 + |l|)−3+α

2 +|l|e
1−α

2 −|l|
√

2π(−1+α
2 + |l|)

(3−α
2 + |l|) 1−α

2 +|l|e
−3+α

2 −|l|
√

2π(3−α
2 + |l|)

·
(−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)−3−α

2 +| k2−l|e 1+α
2 −| k2−l|

√
2π(−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

(3+α
2 +

∣∣∣ k
2 − l

∣∣∣) 1+α
2 +| k2−l|e−3−α

2 −| k2−l|
√

2π(3+α
2 +

∣∣∣ k
2 − l

∣∣∣) .

2.2. Numerical tests 25

Therefore, when |l| � 1,

l
Γ
(
−1+α

2 + |l|
)

Γ
(
−1−α

2 +
∣∣∣ k

2 − l
∣∣∣)

Γ
(3−α

2 + |l|
)

Γ
(

3+α
2 +

∣∣∣ k
2 − l

∣∣∣) = O
(

1
l3

)
,

and (2.39) becomes∣∣∣∣∣
ˆ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))eikη

| sin(s− η)|α−1 dη −
lb

∑
l=−la

dklei2ls

∣∣∣∣∣ = O
(

1
l2
a

)
+O

(
1
l2
b

)
,

which guarantees the convergence of (2.35), as llim tends to infinity.

In what respects the expansion of a given function u(s) as a Fourier series, recall that,
under the change of variable x = L cot(s), u(x) becomes u(s), with s ∈ [0, π], and
we have to extend it to s ∈ [0, 2π]. Even if there are infinitely many ways to extend
a function defined over half a period to the whole period, we comment here only
on the most common option, which is an even extension at s = π. Such extension
gives rise to a series of cosines, which is equivalent to expanding u(x) as a series
of rational Chebyshev functions TBk(x) defined in (2.8). As mentioned above, this
family of functions is very adequate to represent regular functions having different
types of decay at infinity [58], or, in other words, we may write

u(x) ≡
∞

∑
k=0

akTBk(x), ∀x ∈ R, (2.40)

with the coefficients ak decaying fast enough for a variety of functions; we refer the
reader to [53], and the references therein (especially, [53, Table 17.4]), for a detailed
account on the applicability of {TBk(x)}. Furthermore, the fact that the right-hand
side of (2.40) converges to u(x) implies automatically that the method proposed in
this chapter converges to (−∆)α/2u(x), too.

In the following section, we consider a few examples that clarify several aspects
related to convergence.

2.2 Numerical tests

In this section, we take xc = 0 in (2.13), because the test functions are symmetrical
with respect to the origin. We have first considered two functions with polynomial
decay:

u1(x) =
x2 − 1
x2 + 1

, u2(x) =
2x

x2 + 1
,

where the first one tends to 1 as O(1/x2), whereas the second one tends to 0 as
O(1/x). The choice of these two functions has also been motivated by the fact that,
under the change of variable x = cot(s), with L = 1, they become respectively

26 Chapter 2. Computation of the fractional Laplacian for regular functions

u1(s) = cos(2s) and u2(s) = sin(2s), i.e., the real and imaginary parts of ei2s, so we
have computed the fractional Laplacian of u1(x) + iu2(x). Using MATHEMATICA
applied to (2.6), and further simplifying the result by hand, we get

(−∆)α/2(u1(x) + iu2(x)) = − 2Γ(1 + α)

(1 + ix)1+α
,

or, in the s variable,

(−∆)α/2(ei2s) = − 2Γ(1 + α)

(1 + i cot(s))1+α
= −2Γ(1 + α)(−i sin(s)eis)1+α; (2.41)

note that, when α = 1, we recover (2.18). In general, as we will see in Chapter 3, it
is possible to compute explicitly (−∆)α/2(eiks) when k is even (and, indeed, we will
compute (−∆)α/2(ei2s) also using analytic techniques), although the complexity of
the resulting expressions quickly grows with k. On the other hand, we have been
unable to obtain a compact formula for (−∆)α/2(eiks), when k is odd, either by hand
or using symbolic computation.

N llim ltotal Error llim ltotal Error
4 300 4244 4.8893 · 10−12 530 4244 5.0268 · 10−13

8 240 6888 4.9423 · 10−12 430 6888 4.8097 · 10−13

16 200 11536 4.8413 · 10−12 360 11536 4.9461 · 10−13

32 170 19232 4.5606 · 10−12 300 19232 5.0138 · 10−13

64 140 32064 4.9236 · 10−12 250 32064 5.0184 · 10−13

128 120 53888 4.5427 · 10−12 210 53888 5.0219 · 10−13

256 100 92416 4.6956 · 10−12 180 92416 5.0570 · 10−13

512 80 154112 5.7013 · 10−12 150 154112 5.0823 · 10−13

1024 70 287744 4.8721 · 10−12 140 287744 5.2887 · 10−13

TABLE 2.1: Maximum global error, given by (2.42), between the numer-
ical approximation of (−∆)α/2(ei2s), given by (2.35), and its exact value,
given by (2.41). We have considered different values of N and, for each
N, a couple of values of llim. For comparison purposes, we also offer
the total number of values of l considered, ltotal ≡ (2llim + 1)N.

Taking different values of N and llim, we have approximated (−∆)α/2(ei2s) numeri-
cally, which we denote as [(−∆)α/2]num(ei2s), by means of (2.35), without generating
the whole matrix Mα, for α ∈ {0.01, 0.02, . . . , 1.99}, except for the case α = 1, which
is trivial (altogether, 1998 different values of α). Then, we have compared the results
with their exact value of [(−∆)α/2]exact(ei2s) given by (2.41), and computed the dis-
crete L∞-norm of the error as a function of α. In Table 2.1, we show the maximum
global value of the norm considering all α, i.e.,

max
α
‖[(−∆)α/2]num(ei2s)− [(−∆)α/2]exact(ei2s)‖

= max
α

max
j

∣∣∣[(−∆)α/2]num(ei2sj)− [(−∆)α/2]exact(ei2sj)
∣∣∣ , (2.42)

2.2. Numerical tests 27

for different values of N and llim. For comparison, we also offer ltotal ≡ (2llim + 1)N,
which is the exact number of values of l taken, i.e., l ∈ {−ltotal/2, . . . , ltotal/2− 1}.
The results reveal that the value of llim necessary to achieve an error of the order of
5 · 10−13 slowly decreases as N is doubled, but, more importantly, the accuracy of
the method does not deteriorate, as N increases.

In order to better understand the choice of llim on the accuracy of the results, we
have approximated (−∆)α/2(ei2s), for llim ∈ {0, 1, . . . , 1000}, and have plotted in
Figure 2.1 the corresponding maximum global error given by (2.42). As we can see,
the errors quickly decay from llim = 0, with an error of 3.1960 · 10−3, to llim = 210,
with an error of 5.0219 · 10−13, from which it remains constant up to infinitesimal
variations. This is important, because it shows that (2.35) is numerically stable, even
for larger values of llim. A practical consequence of this is that, in case of doubt, it is
safe to take a rather large value of llim.

0 100 200 300 400 500 600 700 800 900 1000
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

FIGURE 2.1: Maximum global error for N = 128, as a function of llim.

Let us consider now a function with Gaussian decay,

u3 = exp(−x2),

such that (see, for instance, [3, pp. 29-30])

(−∆)α/2u3(x) =
2αΓ(1/2 + α/2)√

π
1F1(1/2 + α/2, 1/2, −x2), (2.43)

where 1F1 is the Kummer confluent hypergeometric function (see for instance [106,
Ch. 13]), which can be evaluated, among others, by MATLAB (with the command
hypergeom) and MATHEMATICA (with the command Hypergeometric1F1), even if
its evaluation is extremely time-consuming.

In this example, we have generated the whole matrix Mα applied to the Fourier ex-
pansion (2.14) of u3(s), as in (2.32). Remember that, since s ∈ [0, π], we have to
extend it to s ∈ [0, 2π]. In general, the most common option is an even extension
at s = π, which yields a function that is at least continuous in s ∈ [0, 2π], and

28 Chapter 2. Computation of the fractional Laplacian for regular functions

can be represented as a cosine series in s. However, in some cases, there are ex-
tensions that are smoother than the even one (see v.g. [107] and [108]), causing the
Fourier coefficients in (2.14) to decay faster. This is not a minor point, because, even
if (−∆)α/2(eiks) can be computed accurately, as we have proved in Section 2.1.6 and
confirmed in the previous example, the overall quality of the results depends also
on the adequacy of the representation (2.14).

N Error (even) Error (odd)
4 3.8426 · 10−1 4.8492 · 10−1

8 1.1222 · 10−1 1.3210 · 10−1

16 1.4269 · 10−2 1.7825 · 10−2

32 4.0393 · 10−4 4.7926 · 10−4

64 1.4351 · 10−6 1.6891 · 10−6

128 1.5947 · 10−10 1.8755 · 10−10

256 8.3982 · 10−12 2.5453 · 10−11

TABLE 2.2: Maximum global error, between the numerical approxima-
tion of (−∆)α/2(e−x2

), and its exact value, given by (2.43), for differ-
ent values of N, considering an even extension and an odd extension.
llim = 500.

In this example, since u3(x) tends to zero as x → ±∞ (or s → 0+ and s → π−),
we have considered both an even and an odd extension at s = π, i.e., such that
u3(π

+) = u3(π
−) and u3(π

+) = −u3(π
−), respectively. For this function, in the

even case, we also have that u3(s + π) = u3(s), which implies that only even fre-
quencies appear in (2.14); whereas in the odd case, u3(s + π) = −u3(s), so only
odd frequencies appear in (2.14). As a consequence, besides comparing two types
of extensions, we are also testing the even and odd cases in (2.35) and (2.36).

We have approximated (−∆)α/2u3(x) for α ∈ {0.01, 0.02, . . . , 1.99} (including the
case α = 1), for L = 1, llim = 500, and different values of N. In Table 2.2, we give the
maximum global errors computed as in (2.42). As we can see, the even extension
provides only slightly better results, and the errors quickly decays, as N increase.

Even if we have taken so far L = 1, this is usually by no means the best option,
as we can see in Figure 2.2, where we have plotted the maximum global error for
N = 64, and L ∈ {0.1, 0.2, . . . , 10}. The results for the even extension and the odd
extension are again similar, and the best errors are achieved in both cases at L = 4.6,
and are respectively 3.8400 · 10−13 and 3.9466 · 10−13. Therefore, a good choice of L
can improve drastically the accuracy of the results.

Although there are some theoretical results [109], the optimal value of L depends on
more than one factor: number of points, class of functions, type of problem, etc (see
also [58, 98]). For instance, in the case of (−∆)α/2, the best choice of L might depend
on α, too. However, a good working rule of thumb seems to be that the absolute
value of a given function at the extreme grid points is smaller than a threshold.
On the other hand, the Fourier representation (2.14), together with (2.13), makes
straightforward to change L (and xc or N), which can be convenient in evolution
problems. Let us recall that, given a function u(x), we are considering a spectral

2.2. Numerical tests 29

0 1 2 3 4 5 6 7 8 9 10
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 1 2 3 4 5 6 7 8 9 10
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

FIGURE 2.2: Maximum global error for N = 64, and different values
of L: L ∈ {0.1, 0.2, . . . , 10}, considering an even extension and an odd
extension.

interpolant such that

u(x) ≈
N−1

∑
k=−N

û(k)eik arccot((x−xc)/L), (2.44)

and, to determine {û(k)} we ask (2.44) to be an equality at the nodes xj = xc +
L cot(sj), which yields (2.16). Therefore, if we choose new values of L and xc, say
Lnew and xc,new, and want to approximate u(x) at the corresponding nodes xnew,j =
xc,new + Lnew cot(sj) by using spectral interpolation, it is enough to evaluate the right-
hand side of (2.44) at those nodes:

u(xnew,j) ≈
N−1

∑
k=−N

û(k)eik arccot((xc,new−xc+Lnew cot(sj))/L),

where, when 0 ≤ j ≤ N − 1, we consider the arccot function to be defined in [0, π),
and, when N ≤ j ≤ 2N− 1, to be defined in [π, 2π). Moreover, from {u(xnew,j)}, we
obtain the corresponding {ûnew(k)} by using again a pseudospectral approach, i.e.,
by imposing that (2.44) with the updated Lnew and xc,new is an equality at x = xj,new,
for all j:

u(xnew,j) =
N−1

∑
k=−N

ûnew(k)eik arccot((xnew,j−xc,new)/Lnew),

so the coefficients ûnew(k) are given by (2.16), introducing u(xnew,j) in the place of
u(sj), and taking Lnew and xc,new. Then,

u(x) ≈
N−1

∑
k=−N

ûnew(k)eik arccot((x−xc,new)/Lnew).

30 Chapter 2. Computation of the fractional Laplacian for regular functions

Finally, (2.44) allows also changing N; e.g., if N is increased, we just add some extra
û(k) equal to zero; if it is decreased, we remove some û(k). In all the cases consid-
ered, it is important to choose the new values of L, xc and N, in such a way that
there is no loss of accuracy.

2.3 A numerical test for the fractional Fisher’s equation
(1.11) with very slowly varying initial conditions

As an illustration of the method presented in Section 2.1, we will simulate numer-
ically the one-dimensional nonlinear evolution equation (1.11) in the monostable
case, i.e., with the following nonlinear source term:

f (u) = u(1− u). (2.45)

The interest on this simulation lies on the fact that (1.11) exhibits accelerating fronts,
and our method allows to capture this rapid propagation. Moreover, the accelera-
tion can be computed and contrasted with theoretical results. Let us first recall some
aspects of front propagation for this model with α = 2.

The front propagation properties of the homogeneous local Fisher equation,

∂u
∂t

=
∂2u
∂x2 + f (u), x ∈ R, (2.46)

have been widely studied. We recall that the steady state u ≡ 0 is linearly unstable,
whereas u ≡ 1 is stable. An initial perturbation of u ≡ 0 evolves to a front that
characterizes the transition from the unstable state u = 0 to the stable one u = 1;
and the front-like solution invades the unstable state at a constant speed, as t→ +∞
(see, e.g., [110]). For initial data that decay in x as an exponential or faster, the front
speed for the specific nonlinearity f (u) = u(1− u) studied in [35] can be determined
by linear arguments (see, e.g., [111, 112]). The two main formal approaches are
reviewed in, e.g., [113].

One approach assumes that the solution behaves as a traveling wave solution as
t → ∞; hence, setting u ∼ U(z), z = x − s(t), s(t) ∼ c t, as t → +∞, gives the
following traveling-wave ordinary differential equation:

d2U
dz2 + c

dU
dz

+ f (U) = 0, (2.47)

with far-field conditions

U → 1, as z→ −∞, and U → 0, as z→ +∞. (2.48)

2.3. The fractional Fisher’s equation with very slowly varying initial conditions 31

The linearization analysis leads to the behaviors

U ∼ A±e−
1
2(c±

√
c2−4)z, c > 2, (2.49)

U ∼ (A + Bz)e−z, c = 2, (2.50)

as z → +∞, where A±, A and B are constants. Here, c ≥ 2 is necessary for non-
negative wave fronts, and the wave speed selected for faster than exponentially
decaying initial data is the minimal one. Rigorous arguments that show this heuris-
tics are proved in, e.g., [114] (see also [112] for a generalization of the result to two
dimensions).

For slower decaying initial conditions, speeds faster than c = 2 are realized. Specif-
ically, for initial data of the form

u0(x) ∼ e−λx, as x → +∞, (2.51)

where 0 < λ < λc = 1 (i.e., the initial condition decays more slowly than the far-
field behavior (2.50)), the solution behaves like

v ∼ e−λ(ζ−c)t, as x → +∞, (2.52)

with c = λ + 1/λ (hence, λ = (c−
√

c2 − 4)/2, which corresponds to slow far-field
decay in (2.49)).

Sufficient conditions on the initial data for the convergence to traveling-wave solu-
tions with different waves speeds, as t → +∞, were established in [115, 116] (see
also [117], for a slightly more general nonlinearity, and a different approach). The
dynamic stability of traveling wave solutions has been studied by a number of au-
thors, and we refer the reader to the seminal paper [34] (see also [118–120], and the
references therein for details).

There has also been an effort in obtaining numerical schemes, in particular pseu-
dospectral methods, that capture these fast traveling waves (associated to exponen-
tially decaying initial conditions). Such solutions appear to be very steep, when a
large reaction coefficient is considered (see, e.g., [121], for Fisher’s equation, and
[122], for Nagumo’s equation).

Another important feature of (2.46) regarding solutions invading the unstable state
(but which is a less studied phenomenon) is the existence of accelerating fronts (see,
e.g., [117, 123, 124]). In particular, accelerating fronts ensue for initial conditions
that decay to zero slower than exponentially. In this case, the long time behavior is
given by the balance equation ut = u; hence, as t → ∞, u(x, t) ∼ etu(x, 0) gives the
dominant behavior (see [117, 123]). Then, for initial conditions of the form u(x, 0) ∼
1/xσ, as x → ∞, this implies that the invasion into u = 0, happens with x = O(et/σ),
as t→ ∞. These results are proved rigorously in [124].

32 Chapter 2. Computation of the fractional Laplacian for regular functions

We restrict ourselves to the example of slow decaying (according to [49]) initial con-
ditions; more precisely, we consider

u(x, 0) =
(

1
2
− x

2
√

1 + x2

)α

.

In order to check that, for α ∈ (0, 2), the propagation has indeed speed that increases
exponentially with time, we track the evolution of x0.5(t), which denotes the value of
x such that u(x, t) = 0.5, and gives an approximation of the position of the front. To
obtain x0.5, we apply a bisection method: we find the value of j for which u(xj+1) <
0.5 < u(xj); then, we approximate u((xj + uj+1)/2) by spectral interpolation, etc.,
until convergence is achieved.

0 5 10 15 20 25

0

0.5

1

1.5

2

10
4

0 5 10 15 20 25

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

FIGURE 2.3: α = 0.5, 0.55, . . . , 1.95, L = 103/α3, ∆t = 0.01 and
N = 1024. Left: x0.5(t) against t. Right: ln(x0.5(t)) against t, and the
corresponding least-square fitting lines. In both subfigures, the curves
are ordered according to α: the left-most ones correspond to α = 0.5,
and the right-most ones, to α = 1.95.

In all the numerical experiments, we have considered an even extension at s = π,
which is enough for our purposes, taken llim = 500 in (2.35), and used the classical
fourth-order Runge-Kutta scheme (see, e.g., [125, p. 226]) to advance in time. We
have done the numerical simulation for α = 0.5, 0.55, . . . , 1.95, taking ∆t = 0.01
and N = 1024. Since the exponential behavior of x0.5(t) appears earlier for smaller
α, larger values of L appear to be convenient in that case. In this example, after
a couple of trials, we have found that taking L = 1000/α3 produces satisfactory
results. On the left-hand side of Figure 2.3, we have plotted x0.5(t) against t. On
the right-hand side of Figure 2.3, we have plotted ln(x0.5(t)) against t, omitting the
initial times, so the exponential regime is clearly observable; in all cases, the points
are separated by time increments of 0.1, and, for each value of α, the accompanying
line is precisely the least-square fitting line, which shows that the linear alignment
is almost perfect.

In Figure 2.4, we have plotted with respect to α the slopes of the least-square fitting
lines corresponding to the right-hand side of Figure 2.3, which we denote as σ0.5;

2.3. The fractional Fisher’s equation with very slowly varying initial conditions 33

observe that the colors of the stars are in agreement with their corresponding curves
in Figure 2.3. We have also plotted the curve 1/α, using a dashed-dotted black line.
The results show that the agreement of σ0.5 with respect to 1/α improves, as α→ 2−:
on the one hand, when α = 0.5, σ0.5 = 1.9346, and 1/0.5 = 2; on the other hand,
when α = 1.95, σ0.5 = 0.51277, and 1/1.95 = 0.51282. Therefore, the numerical
experiments seem to suggest that

x0.5(t) ∼ eσ0.5t ∼ et/α =⇒ c(t) ≈ x′0.5(t) ∼ et/α,

which is in good agreement with [49], because, from (2.45), f ′(0) = 1.

0.5 1 1.5 2

0.5

1

1.5

2

FIGURE 2.4: Slopes of the least-square fitting lines, as obtained in the
right-hand side of Figure 2.3; the colors of the stars are in agreement
with their corresponding curves in Figure 2.3. The dashed-dotted black
curve is the plot of 1/α.

In order to see whether the results for α = 0.5 can be improved, we have repeated
the simulations for that case, taking L = 10000, ∆t = 0.01, N = 8192. Even if, at first
sight, these values could be deemed excessive, they are not, because we are able to
reach t = 9, instant at which x0.5(9) is greater than 107. Indeed, in order to capture
accurately the exponential behavior, it is convenient to advance until times as large
as possible. On the left-hand side of Figure 2.5, we have plotted x0.5(t), for t ∈ [0, 9];
on the right-hand side, ln(x0.5(t)), for t ∈ [5, 9], obtaining again an almost perfect
linear fitting. Furthermore, in this case, σ0.5 = 1.9865, which is remarkably closer to
the predicted value 1/0.5 = 2 than in Figure 2.4. Therefore, in order to approximate
accurately σ0.5 for values of α smaller than 0.5, it will be convenient to take even
larger values of N and L.

If we intend to know the type of decay that the wave front has, one option could be
to choose those nodes in the abscissa whose images capture the asymptotic behavior
toward the values 1 and 0, i.e., u(xi) → 1, as xi → −∞, and u(xj) → 0, as xj → ∞.
Here, the integers i and j refer, respectively, to the first m and the last n nodes taken
into account to study such asymptotic behavior of u. With some abuse of notation,
ui ≡ u(xi) and uj ≡ u(xj). If we consider t > 1, xi � 1 and xj � 1, it is possible
to assume that the wave front ui behaves as ζ1xi

−β1 , as xi → −∞, and uj behaves as

34 Chapter 2. Computation of the fractional Laplacian for regular functions

0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12
10

6

5 5.5 6 6.5 7 7.5 8 8.5 9

8

9

10

11

12

13

14

15

16

17

FIGURE 2.5: α = 0.5, L = 104, ∆t = 5 · 10−3, and N = 8192. Left:
x0.5(t) against t ∈ [0, 9]. Right: ln(x0.5(t)) against t ∈ [5, 9], and the
corresponding least-square fitting line.

ζ0xj
−β0 , as xj → ∞. Therefore, for (1.11) with the source term (2.45), a least-square

fitting can be carried out for both cases. On the left-hand side of Figure 2.6, we plot
the fitting curve when xi � 1, taking m = 65 nodes. On the right-hand side of
Figure 2.6, we plot the fitting curve when xj � 1, taking n = 65 nodes as well.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

-3

0 1 2 3 4 5 6

10
5

0

0.05

0.1

0.15

FIGURE 2.6: α = 0.5, 0.55, . . . , 1.95, L = 103/α3, ∆t = 0.01 and N =
1024. Left: least-square fitting for ui → 1 against xi � 1. Right: least-
square fitting for uj → 0 against xj � 1.

Each fitting (for each value of α) yields a residual, which we measure through the
Euclidean norm given by

‖rα
i ‖2 =

1
m

√
m

∑
i=1
|rα

i |2, when xi � 1,

2.3. The fractional Fisher’s equation with very slowly varying initial conditions 35

and

‖rα
j ‖2 =

1
n

√√√√ n

∑
j=1
|rα

j |2, when xj � 1,

where
rα

i = ui − ζ1xi
−β1

and
rα

j = uj − ζ0xj
−β0 ,

respectively. On the left-hand side of Figure 2.7, we have plotted the norm of the
residuals ‖rα

i ‖2 with respect to α, achieving a maximum value of 2.4 · 10−7; and, on
the right-hand side of the same figure, the norm of the residuals ‖rα

j ‖2 with respect to
α, achieving a maximum value of 7.3 · 10−5. Hence, these results suggest a potential
decay for this slowly varying initial condition of the non-linear Fisher-KPP equation
(2.6).

0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3
10

-7

0.5 1 1.5 2

0

1

2

3

4

5

6
10

-5

FIGURE 2.7: Left: norm of the residuals ‖rα
i ‖2 that comes from the fit-

ting ui ∼ ζ1xi
−β1 . Right: norm of the residuals ‖rα

j ‖2 that comes from
the fitting uj ∼ ζ0xj

−β0 .

If we consider a logarithmic scale in each asymptotic behavior:

ln(ui) ∼ ln(ζ1/xi
β1)

and

ln(uj) ∼ ln(ζ0/xj
β0),

we obtain, equivalently,
ln(ui) ∼ ln(ζ1)− β1 ln(xi)

and
ln(uj) ∼ ln(ζ0)− β0 ln(xj).

36 Chapter 2. Computation of the fractional Laplacian for regular functions

Then, the coefficients β1 and β0 can be obtained and plotted against α as shown in
Figure 2.8. On the left-hand side of Figure 2.8, we have plotted β1 versus α when
xi � 1. On the right-hand side of Figure 2.8, we have plotted β0 against α when
xj � 1. Both graphics show that β is proportional to α. In Figure 2.8, we have
applied a linear fitting to every set of data and determine the slopes β1 and β0,
which are 1.0115 and 1.0215, respectively.

0.5 1 1.5 2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 2.8: Left: β1 values (against α) corresponding to the fitting
ln(ui) ∼ ln(ζ1) − β1 ln(xi), for those nodes xi � 1. Right: β0 values
(against α) corresponding to the fitting ln(uj) ∼ ln(ζ0)− β0 ln(xj), for
those nodes xj � 1.

For this reaction-diffusion model, we have done simulations with different time
steps ∆t, until t = 20. Hence, for a given ∆t, unum(x, t, ∆t) denotes the numeri-
cal approximation of u(x, t). Since there is no explicit exact solution of u(x, t), we
will take as the “exact” solution unum(x, t, ∆ts), for a very small value of ∆ts, say,
∆ts = 0.0001. Thus, we are able to compute the convergence rate given by the for-
mula

µ(α) = lim
m→∞

log2

(
E(∆t)(α)

E(∆t/2)(α)

)
,

where, for a given ∆t, E(∆t) is the global maximum error obtained through the
discrete L∞-norm, i.e., we approximate the error as

E(∆t) ≡ ‖unum(x, t, ∆t)− unum(x, t, ∆ts)‖∞ .

We have taken α = 1.80 and N = 256; table 2.3 shows the evolution of E(∆t) for
different values of ∆t. On the one hand, the errors are very small; on the other
hand, the columns with log2(E(∆t)/E(∆t/2)) confirms clearly the fourth order of
the Runge-Kutta scheme used to solve (1.11).

2.4 Future lines or research

A natural, important question is whether the method can be generalized to approx-
imate numerically the fractional Laplacian in multiple dimensions. In what follows,

2.4. Future lines or research 37

∆t E(∆t) log2

(
E(∆t)

E(∆t/2)

)
1/2 1.3701 · 10−3 3.7068
1/4 1.0493 · 10−4 3.8531
1/8 7.2609 · 10−6 3.9264
1/16 4.7755 · 10−7 3.9631
1/32 3.0619 · 10−8 3.9815
1/64 1.9382 · 10−9 3.9911

1/128 1.2189 · 10−10

TABLE 2.3: Error in discrete L∞-norm of unum at t = 20, for different
values of ∆t. Since the exact solution is not available, we use instead
unum(x, 20, ∆ts) as reference.

we discuss a few lines of work.

We consider an equivalent expression of (1.1), which is the equivalent of (1.10) in n
dimensions (see [1]):

(−∆)α/2u(~x) = cn,α

ˆ
Rn

u(~x)− u(~x +~y)
‖~y‖n+α

d~y, (2.53)

where ~x ≡ (x1, . . . , xn), ~y ≡ (y1, . . . , yn), ‖ · ‖ denotes the Euclidean norm, and cn,α
is given by (1.2).

In order to extend the ideas in this thesis to Rn, we need to express (2.53) in such
a way that there is no subtraction in the numerator, as in Lemma 2.1.1. Since this
is quite straightforward, we will show it below in the next subsection. The next
step would be mapping the unbounded domain into a finite one, and the rank of
possibilities is now richer than in the one-dimensional case. For instance, we could
consider again x1 = L1 cot(s1), . . . , xn = Ln cot(sn), which would map ~x ∈ Rn into
~s = (s1, . . . , sn) ∈ [0, π]n. Then, after extending u(~s), to [0, 2π]n, we would approxi-
mate u(~s) using a pseudospectral approach, as in (2.14):

u(s) ≈ ∑
~k∈[−N,...,N−1]n

û(~k)ei(~k·~s), ~s ∈ [0, 2π]n;

so the problem would be reduced to computing the fractional Laplacian of ei(~k·~s), for
which the lemmas bellow would be helpful. Another option would be to consider n-
dimensional spherical coordinates [126]. For instance, in the two-dimensional case,
this would mean working with polar coordinates, i.e., ρ ∈ [0, ∞), θ ∈ [0, 2π]. While
working with θ would pose no problem, we could apply an algebraic map to to
transform [0, ∞) into a finite domain, etc. This approach might be especially useful
if u has radial symmetry. In any case, a detailed study of the multiple-dimensional
case lies beyond the scope of this thesis, and we postpone it for the future.

38 Chapter 2. Computation of the fractional Laplacian for regular functions

2.4.1 Generalization of Lemma 2.1.1 to higher dimensions

We consider first the generalization to two dimensions.

Lemma 2.4.1. Consider the twice continuous bounded function u ∈ C2
b (R

2), and such that
lim‖(x,y)‖→∞ ‖∇u(x, y)‖ = 0; then

(−∆)α/2u(x, y) = − c2,α

α2

¨
R2

∆u(p, q)
‖(x− p, y− q)‖α

dp dq. (2.54)

Proof. Let us take n = 2 in (2.53):

(−∆)α/2u(x, y) = c2,α

¨
R2

u(x, y)− u(x + p, y + q)
‖(p, q)‖2+α

dp dq. (2.55)

We make a change of variable to polar coordinates in (2.55), i.e., p = r cos(θ) and
q = r sin(θ); to simplify the notation, we write cθ ≡ cos(θ), sθ ≡ sin(θ). Then,

(−∆)α/2u(x, y) = −c2,α

ˆ 2π

0

ˆ ∞

0

u(x + cθr, y + sθr)− u(x, y)
r1+α

dr dθ.

Moreover, bearing in mind that

∂

∂z
u(x + cθz, y + sθz) = cθux(x + cθz, y + sθz) + sθuy(x + cθz, y + sθz),

we get

(−∆)α/2u(x, y)

= −c2,α

ˆ 2π

0

ˆ ∞

0

1
r1+α

ˆ r

0
[cθux(x + cθz, y + sθz) + sθuy(x + cθz, y + sθz)]dz dr dθ.

Changing the order of integration,

(−∆)α/2u(x, y) = −c2,α

ˆ 2π

0

ˆ ∞

0

[
(cθux(x + cθz, y + sθz)

+ sθuy(x + cθz, y + sθz))
ˆ ∞

z

1
r1+α

dr
]

dz dθ

= − c2,α

α

ˆ 2π

0

ˆ ∞

0

1
zα

[cθux(x + cθz, y + sθz)

+ sθuy(x + cθz, y + sθz)
]

dz dθ.

2.4. Future lines or research 39

Hence,

(−∆)α/2u(x, y) = − c2,α

α

ˆ 2π

0

ˆ ∞

0

r
r2+α

[cθrux(x + cθr, y + sθr)

+ sθruy(x + cθr, y + sθr)
]

dr dθ

= − c2,α

α

¨
R2

p ux(x + p, y + q) + q uy(x + p, y + q)
‖(p, q)‖2+α

dp dq. (2.56)

Observe that this is precisely

(−∆)α/2u(x, y) = − c2,α

α

¨
R2

(p, q) · ∇u((x, y) + (p, q))
‖(p, q)‖2+α

dp dq, (2.57)

which is the two-dimensional equivalent of (2.7).

On the other hand,
ˆ

R

p ux(x + p, y + q)
(p2 + q2)1+α/2 dp =

1
α

ˆ
R

uxx(x + p, y + q)
(p2 + q2)α/2 dp,

ˆ
R

q uy(x + p, y + q)
(p2 + q2)1+α/2 dq =

1
α

ˆ
R

uyy(x + p, y + q)
(p2 + q2)α/2 dq,

(2.58)

where we have integrated by parts, and used respectively

lim
p→±∞

ux(x + p, y + q)‖(p, q)‖−α = 0,

and
lim

q→±∞
uy(x + p, y + q)‖(p, q)‖−α = 0,

for all q and p, respectively. Therefore, applying Fubini’s theorem to (2.56), using
(2.58), and making the change of variable p̃ = p− x, q̃ = q− y, we get (2.54), which
concludes the proof.

Remark. The requirement that lim‖(x,y)‖→∞ ‖∇u(x, y)‖ = 0 is sufficient for all α ∈
(0, 2), but not sharp. A determination of the minimum requirements of u is future
work.

Lemma 2.4.1 can be immediately generalized to n dimensions.

Lemma 2.4.2. Consider the twice continuous bounded function u ∈ Cn
b (R

n), and such that
lim‖~x‖→∞ ‖∇u(~x)‖ = o(‖~x‖n−2); then

(−∆)α/2u(~x) = − cn,α

α(n− 2 + α)

ˆ
Rn

∆u(~x +~y)
‖~y‖n−2+α

d~y. (2.59)

40 Chapter 2. Computation of the fractional Laplacian for regular functions

Proof. The proof is identical to that of Lemma 2.4.1. In this case, we use n-dimension-
al spherical coordinates [126]:

y1 = r cos(φ1),

yj = r cos(φj)
j−1

∏
k=1

sin(φk), j ∈ {2, . . . , n− 2},

yn−1 = r sin(θ) cos(φj)
n−2

∏
k=1

sin(φk),

yn = r cos(θ) cos(φj)
n−2

∏
k=1

sin(φk),

with r ∈ [0, ∞), θ ∈ [0, 2π], and φj ∈ [0, π], for all j. Moreover, the Jacobian of the
transformation is

J = rn−1
n−2

∏
k=1

sink(φn−1−k).

Therefore, bearing in mind that

d~y
‖~y‖n+α

=
1

r1+α

(
n−2

∏
k=1

sink(φn−1−k)

)
dr dφ1 . . . dφn−2 dθ,

and following exactly the same steps as in Lemma 2.4.1, we get

(−∆)α/2u(~x) = − cn,α

α

ˆ
Rn

~y · ∇u(~x +~y)
‖~y‖n+α

d~y, (2.60)

which is the n-dimensional equivalent of (2.7) and (2.57).

Finally, we apply Fubini’s theorem to (2.60) and integrate by parts each of the ad-
dends of the numerator. For instance,
ˆ

R

y1ux1(~x +~y)
‖~y‖n+α

dy1

=
1
2

ˆ
R

ux1(x1 + y1, . . . , xn + yn)2y1(y2
1 + . . . + y2

n)
−n/2−α/2dy1

= − 1
−n + 2− α

ˆ
R

ux1x1(x1 + y1, . . . , xn + yn)(y2
1 + . . . + y2

n)
−n/2+1−α/2dy1

=
1

n− 2 + α

ˆ
R

ux1x1(~x +~y)
‖~y‖n−2+α

dy1,

where we have used
lim

y1→±∞
ux1(~x +~y)‖~y‖−n+2−α = 0,

for all y2, . . . , yn.

2.4. Future lines or research 41

Putting everything together and writing the resulting expression as a convolution,
we get (2.59), which concludes the proof.

Remark. The requirement

lim
‖~x‖→∞

‖∇u(~x)‖ = o(‖~x‖n−2)

is sufficient for all α ∈ (0, 2), but not sharp. As already mentioned in the remark
after the proof of Lemma 2.4.1, the determination of the minimum requirements of
u is future work.

43

Chapter 3

Numerical Approximation of the
Fractional Laplacian on R Using
Orthogonal Families

In this chapter, we obtain explicit expressions for the one-dimensional fractional
Laplacian of the Higgins and Christov functions. We also explain how to imple-
ment these results efficiently in MATLAB [96], and give numerical examples as an
application.

As in Chapter 2, we work with the definition (1.10) of the fractional Laplacian. Let
us recall however (1.5), which is another definition of the fractional Laplacian con-
sistent with (1.10) that associates the operator with the Fourier symbol:

̂(−∆)α/2u(ξ) = |ξ|αû(ξ).

We observe that, when α = 0, according to the Fourier symbol,

(−∆)0u(x) = u(x).

We also observe, however, that, when the Fourier transform of u(x) does not exist in
the classical sense, the limit α → 0+ is singular. For instance, take u(x) = 1, whose
Fourier transform is the Dirac delta distribution, i.e., û(ξ) = 2πδ(ξ), then

(−∆)α1 =

{
1, α = 0,
0, α > 0.

(3.1)

In Chapter 2, we have proposed a pseudospectral method to compute the frac-
tional Laplacian of a bounded function u(x) on R without truncation; and the main
idea is to map R into the finite interval [0, π] by means of the change of variable
x = L cot(s), and then obtain the trigonometric Fourier series expansion of u(x(s)).
Therefore, the central point of Chapter 2 is the efficient and accurate numerical com-
putation of the fractional Laplacian of eins, for n ∈ Z. Observe that the resulting
expressions for (−∆)1/2eins are quite different, depending on whether n is even or
odd. At this point, a crucial observation is that the equivalent on R of the functions

44 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

ei2ns (i.e., the even case) are precisely the complex Higgins functions defined in [59]
(see also [127, 128]):

λn(x) =
(

ix− 1
ix + 1

)n
, n ∈ Z, (3.2)

because λn(cot(s)) = ei2ns. Indeed, in this chapter, thanks to the structure of λn(x),
and using the definition (2.6):

(−∆)α/2u(x) =
cα

α

ˆ ∞

0

ux(x− y)− ux(x + y)
yα

dy, (3.3)

we obtain an explicit expression of their fractional Laplacian by means of contour
integration:

(−∆)α/2λn(x) =


0, n = 0,

− 2|n|Γ(1 + α)

(i sgn(n)x + 1)1+α

2F1

(
1− |n|, 1 + α; 2;

2
i sgn(n)x + 1

)
, n ∈ Z\{0},

(3.4)

where 2F1 is the Gaussian hypergeometric function (see for instance [106, Ch. 15]).
From this result, we also derive several other related ones outlined below.

The structure of this chapter is as follows. In Section 3.1, we prove (3.4), which con-
stitutes the main result. We observe that {λn(x)} is a complete orthogonal system in
L2(R) with weight w(x) = 1/(π(1 + x2)), because {ei2ns} is a complete orthonor-
mal system in L2([0, π]), normalized by w = 1/π. Therefore, the related family of
functions

µn(x) =
(ix− 1)n

(ix + 1)n+1 , n ∈ Z, (3.5)

known as the complex Christov functions [59, 128–130], form a complete orthogonal
system in L2(R) (normalized by the factor 1/π).

Throughout this chapter, we use the definition and notation from [59] for the fol-
lowing families of functions:

• Cosine-like Higgins functions:

CH2n(x) =
λn(x) + λ−n(x)

2
, n = 0, 1, 2, . . . (3.6)

• Sine-like Higgins functions:

SH2n+1(x) =
λn+1(x)− λ−n−1(x)

2i
, n = 0, 1, 2, . . . (3.7)

3.1. Fractional Laplacian of the complex Higgins functions 45

• Cosine-like Christov functions:

CC2n(x) =
µn(x)− µ−n−1(x)

2
, n = 0, 1, 2, . . . (3.8)

• Sine-like Christov functions:

SC2n+1(x) = −µn(x) + µ−n−1(x)
2i

, n = 0, 1, 2, . . . (3.9)

In Section 3.2, starting from (3.4), we calculate the fractional Laplacian of (3.5)-(3.9).

Even if the fractional Laplacian of all the families considered here can be computed
accurately with the technique explained in Chapter 2, expressions like (3.4) have
the advantage of being very compact and, hence, it is effortless to use them in nu-
merical applications, provided that fast accurate implementations of the Gaussian
hypergeometric function 2F1 are available. Therefore, in Section 3.3, using MATLAB,
we test their adequacy from a numerical point of view, comparing the numerical
results with those in Chapter 2. On the one hand, for moderately large values of
n, the use of variable precision arithmetic seems unavoidable; on the other hand,
our implementation of 2F1 largely outperforms that of MATLAB. Finally, even if the
method in Chapter 2 is faster, the method developed in this chapter is much easier
to implement and still competitive for not too large values of n.

3.1 Fractional Laplacian of the complex Higgins func-
tions

Before we proceed, let us recall some well-known definitions. Given z ∈ C, the
generalized binomial coefficient is defined by

(
z
n

)
=


z(z− 1) . . . (z− n + 1)

n!
, n ∈N,

1, n = 0.

where N = {1, 2, 3, . . .}. Therefore, if z is a nonnegative integer, and n > z, then
(z

n) = 0. Furthermore, it is immediate to check that, for all z and n,(
z
n

)
= (−1)n

(
n− 1− z

n

)
.

We will also need the Pochhammer symbol, which represents the rising factorial,
and is defined by

(z)n =

{
z(z + 1) . . . (z + n− 1), n ∈N,
1, n = 0.

46 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

Observe that, when z is not zero or a negative integer, an equivalent definition is

(z)n =
Γ(z + n)

Γ(z)
;

in particular, when z ∈N,

(z)n =
(z + n− 1)!
(z− 1)!

.

Remark that, if z is a negative integer or zero, and n > |z|, then (z)n = 0. Moreover,
the following identities will be useful, too:

(−z)n = (−1)n(z− n + 1)n,(
z
n

)
=

(z− n + 1)n

n!
=

(−1)n(−z)n

n!
.

The Pochhammer symbol also appears in the definition of the Gaussian hyperge-
ometric function 2F1 (see for instance [106, Ch. 15]). Let a, b, c, z ∈ C; then, 2F1 is
defined by

2F1(a, b; c; z) =
∞

∑
k=0

(a)k(b)k
(c)k

zk

k!
. (3.10)

In general, the infinite series converges for |z| < 1. However, in our case, we
take a to be a negative integer, so the sum is finite, because of the properties of
the Pochhammer symbol. More precisely, in this chapter, we are interested in the
following two particular cases:

2F1(−m, 1 + α; 1; z) =
m

∑
k=0

(
m
k

)(−1− α

k

)
zk, (3.11)

2F1(−m, 1 + α; 2; z) = −1
α

m

∑
k=0

(
m
k

)(−α

k + 1

)
zk

=
1

m + 1

m

∑
k=0

(
m + 1
k + 1

)(−1− α

k

)
zk, (3.12)

for m ∈ N. Observe that the identities also hold after replacing k by m − k in the
sums, a fact that we will also use below. On the other hand, if m = 0,

2F1(0, 1 + α; 1; z) = 2F1(0, 1 + α; 2; z) = 1.

Bearing in mind the previous arguments, let us prove (3.4), which is the main result
of this chapter. Note that we work with the binomial coefficient rather than with the
Pochhammer symbol, because we think that the former is more intuitive.

Theorem 3.1.1. Let λn(x) be defined as in (3.2). Then, (−∆)α/2λn(x) is given by (3.4).

3.1. Fractional Laplacian of the complex Higgins functions 47

Proof. The case with n = 0 is trivial, because λ0(x) = 1. Assume n ∈ N. The
derivative of (3.2) is

λ′n(x) = − 2ni
(x− i)2

(
x + i
x− i

)n−1

.

Introducing this expression in (3.3), we get

(−∆)α/2λn(x) = 2ni
2α−1Γ(1/2 + α/2)√

πΓ(1− α/2)

ˆ ∞

0
gn(y; x)dy, (3.13)

with integrand

gn(z; x) =
(z + x + i)n−1(z− x + i)n+1 − (z− x− i)n−1(z + x− i)n+1

zα(z + x− i)n+1(z− x + i)n+1 ,

where, in this notation, we regard x as a parameter, rather than as an independent
variable.

We next compute (3.13) for every x, by integrating gn(z; x) along certain integration
contours C in C, and using Cauchy’s integral theorem. Since

zα = eα ln(z) = eα(ln(z)+i arg(z)),

zα has a branch cut. In what follows, we consider the principal branch of the loga-
rithm, which corresponds to −π < arg(z) ≤ π; in particular, (−1)α = eiπα, unless
the branch cut is crossed. The branch choice determines also how we choose the
contours.

In Figure 3.1, we have depicted one such contour C for x > 0, which consists of
four parts, avoids the branch cut, but encloses the poles z = i− x and z = x− i, for
every x. Then, by the residue theorem, the integral along it is equal to the sum of the
residues. The pieces of the contour that run parallel to the branch cut will give the
approximation of the integral from 0 to ∞; the other pieces will give integrals that
tend to zero, when C tends to one contour that encloses C, except for the brach cut.
More precisely, for every x ∈ R, we take R > 0, such that R � (1 + |x|2)1/2, and
r > 0, such that r � (1 + |x|2)1/2, for instance, r = 1/R. We also take δ > 0, such
that, with θ1 ∈ (−π,−π/2) and θ2 ∈ (π/2, π) fixed, δ = r sin θ2. Then, we define

C = C1 ∪ CR ∪ C2 ∪ Cr,

with

C1 = {−y− iδ : y ∈ (−r cos θ1,−R cos θ1)},
CR = {Reθi : θ ∈ (θ1, θ2)},
C2 = {y + iδ : y ∈ (R cos θ2, r cos θ2)},
Cr = {re−θi : θ ∈ (−θ2,−θ1)}.

48 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

Here, we have omitted the dependecy on x for simplicity of notation. Now, by
Cauchy’s residue theorem, we have:

ˆ
C

gn(z; x)dz =

ˆ
C1

gn(z; x)dz +
ˆ

Cr

gn(z; x)dz

+

ˆ
C2

gn(z; x)dz +
ˆ

CR

gn(z; x)dz

= 2πi[Res(gn(z; x), i− x) + Res(gn(z; x), x− i)]. (3.14)

x > 0

x− i

i− x

CR

C1

C2 Cr

FIGURE 3.1: An example of integration contour, for x > 0.

In order to compute the residues of gn(z; x) at z = i − x and z = x − i, we use the
general Leibniz rule:

dn

dzn (p(z)q(z)) =
n

∑
k=0

(
n
k

)
p(k)(z)q(n−k)(z).

In this way, we obtain

Res(gn(z; x), i− x)

=
1
n!

dn

dzn

(
(z + x + i)n−1(z− x + i)n+1 − (z− x− i)n−1(z + x− i)n+1

zα(z− x + i)n+1

)∣∣∣∣
z=i−x

=
1
n!

dn

dzn z−α(z + x + i)n−1
∣∣∣∣
z=i−x

=
1
n!

n

∑
k=1

(
n
k

) [
k!
(−α

k

)
z−α−k

] [
(n− 1)!

(n− 1− (n− k))!
(z + x + i)n−1−(n−k)

]∣∣∣∣∣
z=i−x

=
n

∑
k=1

(
n− 1
k− 1

)(−α

k

)
(i− x)−α−k(2i)k−1. (3.15)

3.1. Fractional Laplacian of the complex Higgins functions 49

Likewise, we have

Res(gn(z; x), x− i) = −
n

∑
k=1

(
n− 1
k− 1

)(−α

k

)
(x− i)−α−k(−2i)k−1. (3.16)

In order to compute (3.14), we observe that the first and third integrals tend to zero,
as R tends to infinity (this can be easily seen by changing to polar coordinates and
recalling that r = 1/R). In what regards the first and third integrals, we have that C1
tends to (−∞, 0), parameterized by−y, with y ∈ (0, ∞), and C2 tends to (−∞, 0), pa-
rameterized by y, with y ∈ (−∞, 0). We observe that gn(−y; x) = (−1)1−αgn(y; x),
where the argument of −1 is determined by the curve Ci before taking the limit
R→ ∞. Thus, it is −π on C1, and π on C2. Then,

lim
R→∞

ˆ
C1

gn(z; x)dz = −
ˆ ∞

0
gn(−y; x)dy = eiπα

ˆ ∞

0
gn(y; x)dy,

and

lim
R→∞

ˆ
C2

gn(z; x)dz =

ˆ 0

−∞
gn(y; x)dy =

ˆ ∞

0
gn(−y; x)dy

= −e−iπα

ˆ ∞

0
gn(y; x)dy.

Therefore,
ˆ

C
gn(z; x)dz = (eiπα − e−iπα)

ˆ ∞

0
gn(y; x)dy

= 2πi[Res(gn(z; x), i− x) + Res(gn(z; x), x− i)].

Finally, after some manipulations, we have
ˆ ∞

0
gn(y; x)dy =

2πi
2i sin(πα)

[Res(gn(z; x), i− x) + Res(gn(z; x), x− i)]

=
π

sin(πα)

n

∑
k=1

(
n− 1
k− 1

)(−α

k

)
[(i− x)−α−k(2i)k−1

− (x− i)−α−k(−2i)k−1]

= − π((−1)−α + 1)
sin(πα)

n

∑
k=1

(
n− 1
k− 1

)(−α

k

)
(x− i)−α−k(−2i)k−1

= − π(e−iπα + 1)
sin(πα)(x− i)1+α

n−1

∑
k=0

(
n− 1

k

)(−α

k + 1

)(−2i
x− i

)k

=
παe−iπα/2(i)1+α

sin(πα/2)(ix + 1)1+α 2F1

(
1− n, 1 + α, 2,

2
ix + 1

)
,

50 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

where we have used (3.12). Substituting this last expression into (3.13), and using
Euler’s reflection formula,

Γ(w)Γ(1− w) =
π

sin(πw)
,

at w = α/2, we obtain

(−∆)α/2λn(x) = 2ni
2α−1Γ(1/2 + α/2)√

πΓ(1− α/2)
iαΓ(α/2)Γ(1− α/2)

(ix + 1)1+α

2F1

(
1− n, 1 + α, 2,

2
ix + 1

)
. (3.17)

Then, (3.4) for n ∈N follows from (3.17), using Legendre’s duplication formula

Γ(w)Γ
(

w +
1
2

)
= 21−2w√πΓ(2w),

at w = α/2. In order to finish the proof, we notice that the case where n is a negative
integer follows from the symmetry

λn(x) = λ−n(x), n ∈N. (3.18)

3.2 Fractional Laplacian of other families of functions

In this section, we compute the fractional Laplacian of the families of functions de-
fined by (3.5)-(3.9). Let us obtain first the fractional Laplacian of the complex Chris-
tov Functions:

Proposition 3.2.1. Let µn(x) be defined as in (3.5). Then,

(−∆)α/2µn(x)

=


Γ(1 + α)

(ix + 1)1+α 2F1

(
−n, 1 + α; 1;

2
ix + 1

)
, n = 0, 1, 2, . . . ,

− Γ(1 + α)

(−ix + 1)1+α 2F1

(
1 + n, 1 + α; 1;

2
−ix + 1

)
, n = −1,−2,−3, . . .

(3.19)

Moreover, the expression for n = 0 reduces to

(−∆)α/2µ0(x) =
Γ(1 + α)

(ix + 1)1+α
.

3.2. Fractional Laplacian of other families of functions 51

Proof. First, we note that µn(x) can be expressed in terms of λn(x) as follows:

µn(x) = λn(x)
1

(ix + 1)
=

1
2

λn(x)
(ix + 1)− (ix− 1)

(ix + 1)
=

λn(x)− λn+1(x)
2

;

therefore,

(−∆)α/2µn(x) =
(−∆)α/2λn(x)− (−∆)α/2λn+1(x)

2
, (3.20)

so we just have to use (3.4) and simplify the resulting expression. First we assume
that n ∈N. Substituting (3.4) into this last equation, and using(

n + 1
k + 1

)
=

(
n

k + 1

)
+

(
n
k

)
,

we get

(−∆)α/2µn(x) =
Γ(1 + α)

(ix + 1)1+α

[
n

∑
k=0

(
n + 1
k + 1

)(−1− α

k

)(
2

ix + 1

)k

−
n−1

∑
k=0

(
n

k + 1

)(−1− α

k

)(
2

ix + 1

)k
]

=
Γ(1 + α)

(ix + 1)1+α

n

∑
k=0

(
n
k

)(−1− α

k

)(
2

ix + 1

)k
,

which is (3.19), for n ∈N.

On the other hand, when n = 0, again from (3.4),

(−∆)α/2µ0(x) = − (−∆)α/2λ1(x)
2

=
Γ(1 + α)

(ix + 1)1+α 2F1

(
0, 1 + α; 2;

2
ix + 1

)
=

Γ(1 + α)

(ix + 1)1+α
,

and (3.19) also holds.

Finally, when n is a negative integer, we observe that

µn(x) = −µ−1−n(x), (3.21)

so, in that case, we use

(−∆)α/2µn(x) = −(−∆)α/2µ−1−n(x),

52 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

which concludes the proof.

Before we compute the fractional Laplacian of the cosine-like and sine-like Higgins
functions (3.6) and (3.7), we first express (3.4) as a polynomial on x times a negative
power of (i sgn(n)x + 1).

Lemma 3.2.1. Let λn(x) be defined as in (3.2), and n ∈ Z\{0}. Then, (3.4) can be ex-
panded as

(−∆)α/2λn(x) = − 2|n|Γ(1 + α)

(i sgn(n)x + 1)|n|+α

|n|−1

∑
l=0

(|n| − 1
l

)
(i sgn(n)x)|n|−1−l

2F1(−l, 1 + α; 2; 2). (3.22)

Proof. Assume first that n ∈ N. We express 2F1 in (3.17) as a sum; then, replacing
the index k by n− 1− k in the sum, and expanding (ix + 1)l by Newton’s binomial
formula, we get

(−∆)α/2λn(x) = − 2Γ(1 + α)

(ix + 1)1+α

n−1

∑
k=0

(
n

k + 1

)(−1− α

k

)(
2

ix + 1

)k

= − 2nΓ(1 + α)

(ix + 1)n+α

n−1

∑
k=0

k

∑
l=0

1
2k

(
n
k

)(
k
l

)(−1− α

n− 1− k

)
(ix)l. (3.23)

We now interchange the order of the sums and replace the indices l by n− 1− l and
k by n− 1− k; then, after some rewriting, we get,

(−∆)α/2λn(x)

= − 2nΓ(1 + α)

(ix + 1)n+α

n−1

∑
l=0

(ix)l
n−1

∑
k=l

1
2k

(
n
k

)(
k
l

)(−1− α

n− 1− k

)

= − 2nΓ(1 + α)

(ix + 1)n+α

n−1

∑
l=0

(ix)n−1−l
l

∑
k=0

1
2n−1−k

(
n

n− 1− k

)(
n− 1− k
n− 1− l

)(−1− α

k

)

= − 2nΓ(1 + α)

(ix + 1)n+α

n−1

∑
l=0

(
n− 1

l

)
(ix)n−1−l 1

l + 1

l

∑
k=0

(
l + 1
k + 1

)(−1− α

k

)
2k, (3.24)

which yields (3.22). The case with n a negative integer follows from (3.18).

Remark. If we only consider l = 0 in (3.22), we get the asymptotic behavior of
(−∆)α/2λn(x):

(−∆)α/2λn(x) ∼ −2|n|Γ(1 + α)(i sgn(n)x)|n|−1

(i sgn(n)x + 1)|n|+α
∼ − 2|n|Γ(1 + α)

(i sgn(n)x)1+α
, x → ±∞,

3.2. Fractional Laplacian of other families of functions 53

i.e., |(−∆)α/2λn(x)| decays at infinity as |x|−1−α for all n, whereas

λn(x)− 1 =

(
1− 2

ix + 1

)n
− 1 ∼ − 2n

ix + 1
∼ −2n

ix
, x → ±∞,

i.e., |λn(x)− 1| decays at infinity as |x|−1, for all n. Therefore, the operator (−∆)α/2

introduces an extra decay of |x|−α.

As a consequence of Lemma 3.2.1, we also have the following result.

Proposition 3.2.2. The fractional Laplacian of (3.6) and (3.7) is given respectively by

(−∆)α/2 CH2n(x)

=



0, n = 0,

− 2Γ(1 + α)

(1 + x2)(1+α)/2
sin
(
(1 + α) arccot(x)− πα

2

)
, n = 1,

− 2nΓ(1 + α)

(1 + x2)(n+α)/2
sin
(
(n + α) arccot(x)− πα

2

)
·
b n−1

2 c
∑
l=0

(−1)l
(

n− 1
2l

)
xn−1−2l

2F1(−2l, 1 + α; 2; 2)

+
2nΓ(1 + α)

(1 + x2)(n+α)/2
cos

(
(n + α) arccot(x)− πα

2

)
·
b n−2

2 c
∑
l=0

(−1)l
(

n− 1
2l + 1

)
xn−2−2l

2F1(−2l − 1, 1 + α; 2; 2), n = 2, 3, 4, . . . ,

(3.25)

and

(−∆)α/2 SH2n+1(x)

=



2Γ(1 + α)

(1 + x2)(1+α)/2
cos

(
(1 + α) arccot(x)− πα

2

)
, n = 0,

2(n + 1)Γ(1 + α)

(1 + x2)(n+1+α)/2
cos

(
(n + 1 + α) arccot(x)− πα

2

)
·
b n

2 c
∑
l=0

(−1)l
(

n
2l

)
xn−2l

2F1(−2l, 1 + α; 2; 2)

+
2nΓ(1 + α)

(1 + x2)(n+1+α)/2
sin
(
(n + 1 + α) arccot(x)− πα

2

)
·
b n−1

2 c
∑
l=0

(−1)l
(

n
2l + 1

)
xn−1−2l

2F1(−2l − 1, 1 + α; 2; 2), n = 1, 2, 3,

(3.26)

54 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

Proof. From the definition of (3.6) and (3.7), together with (3.18) and Euler’s formula

eis = cos(s) + i sin(s),

we have immediately, for n = 0, 1, 2, . . .,

CH2n(x) = <(λn(x)), SH2n(x) = =(λn+1(x)),

and this implies (see also [59]) that

CH2n(cot(s)) = cos(2ns),
SH2n+1(cot(s)) = sin(2(n + 1)s).

Since CH2n(x) and SH2n(x) are real, their fractional Laplacian is also real. We thus
want to obtain expressions of (−∆)α/2 CH2n(x) and (−∆)α/2 SH2n(x) that avoid the
use of complex numbers. To do this, we express all the complex numbers in (3.24)
in their polar form: e.g., iα = eiπα/2,

1
(x− i)n+α

=
(x + i)n+α

(1 + x2)n+α
=

ei(n+α) arccot(x)

(1 + x2)(n+α)/2
,

etc. Note that, since x = cot(s), with s ∈ [0, π], we have chosen the definitions of
the arctangent and the arccotangent such that arctan(1/x) = arccot(x) ∈ [0, π] in
the last expression. Then, (3.24) becomes

(−∆)α/2λn(x) = − 2nΓ(1 + α)

(1 + x2)(n+α)/2

n−1

∑
l=0

(
n− 1

l

)
xn−1−l

ei((n+α) arccot(x)−π(l+1+α)/2)
2F1(−l, 1 + α; 2; 2). (3.27)

With respect to (3.25), the case n = 0 is trivial, because CH0(1) = 1; otherwise,
taking the real part of (3.27),

(−∆)α/2 CH2n(x) = − 2nΓ(1 + α)

(1 + x2)(n+α)/2

n−1

∑
l=0

(
n− 1

l

)
xn−1−l

sin
(
(n + α) arccot(x)− πα

2
− πl

2

)
2F1(−l, 1 + α; 2; 2)

= − 2nΓ(1 + α)

(1 + x2)(n+α)/2
sin
(
(n + α) arccot(x)− πα

2

)
n−1

∑
l=0

cos
(

πl
2

)(
n− 1

l

)
xn−1−l

2F1(−l, 1 + α; 2; 2)

+
2nΓ(1 + α)

(1 + x2)(n+α)/2
cos

(
(n + α) arccot(x)− πα

2

)
n−1

∑
l=0

sin
(

πl
2

)(
n− 1

l

)
xn−1−l

2F1(−l, 1 + α; 2; 2).

3.2. Fractional Laplacian of other families of functions 55

When n = 1, the first sum is equal to one, and the second one is equal to zero. For
the other values of n, observe that cos(πl/2) is zero if and only if l is odd, whereas
sin(πl/2) is zero, if and only if l is even. Therefore, substituting l by 2l in the first
term, and by 2l + 1 in the second term, the proof of (3.25) is concluded.

Likewise, taking the imaginary part of (3.27), and replacing n by n + 1:

(−∆)α/2 SH2n+1(x) =
2(n + 1)Γ(1 + α)

(1 + x2)(n+1+α)/2

n

∑
l=0

(
n
l

)
xn−l

cos
(
(n + 1 + α) arccot(x)− πα

2
− πl

2

)
2F1(−l, 1 + α; 2; 2)

=
2(n + 1)Γ(1 + α)

(1 + x2)(n+1+α)/2
cos

(
(n + 1 + α) arccot(x)− πα

2

)
n

∑
l=0

cos
(

πl
2

)(
n
l

)
xn−l

2F1(−l, 1 + α; 2; 2)

+
2(n + 1)Γ(1 + α)

(1 + x2)(n+1+α)/2
sin
(
(n + 1 + α) arccot(x)− πα

2

)
n

∑
l=0

sin
(

πl
2

)(
n
l

)
xn−l

2F1(−l, 1 + α; 2; 2).

When n = 0, the first sum is equal to one, and the second one is equal to zero. For
the other values of n, we substitute again l by 2l in the first term, and by 2l + 1 in
the second term, to concluded the proof of (3.26).

As before, in order to compute the fractional Laplacian of the cosine-like and sine-
like Christov functions, we first express (3.19) as a polynomial on x multiplied by a
rational function as follows:

Lemma 3.2.2. Let µn(x) be defined as in (3.5). Then, (3.19) can be expanded as

(−∆)α/2µn(x)

=



Γ(1 + α)

(ix + 1)n+1+α

n

∑
l=0

(
n
l

)
(ix)n−l

2F1(−l, 1 + α; 1; 2), n = 0, 1, 2, . . . ,

− Γ(1 + α)

(−ix + 1)−n+α

·
−1−n

∑
l=0

(−1− n
l

)
(−ix)−1−n−l

2F1(−l, 1 + α; 1; 2), n = −1,−2,−3,

(3.28)

Proof. Assume n is a nonnegative number. The proof is almost identical to that of
Proposition 3.2.1. Indeed, starting from the second last line in (3.19) and following

56 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

the same steps as in (3.23) and (3.24),

(−∆)α/2µn(x) =
2nΓ(1 + α)

(ix + 1)n+1+α

n

∑
k=0

k

∑
l=0

1
2k

(
n
k

)(
k
l

)(−1− α

n− k

)
(ix)l

=
Γ(1 + α)

(ix + 1)n+1+α

n

∑
l=0

(
n
l

)
(ix)n−l

l

∑
k=0

(
l
k

)(−1− α

k

)
2k,

which is (3.28). The case with n a negative integer follows from (3.21).

Remark. As we did for (−∆)α/2λn(x), if we only consider l = 0 in (3.28), we get the
asymptotic behavior of (−∆)α/2µn(x), as x → ±∞:

(−∆)α/2µn(x) ∼


Γ(1 + α)(ix)n

(ix + 1)n+1+α
∼ Γ(1 + α)

(ix)1+α
, n = 0, 1, 2, . . . ,

−Γ(1 + α)(−ix)−1−n

(−ix + 1)−n+α
∼ − Γ(1 + α)

(−ix)1+α
, n = −1,−2,−3, . . . ;

whereas

µn(x) =
1
2

[(
1− 2

ix + 1

)n
−
(

1− 2
ix + 1

)n+1
]
∼ 1

ix + 1
∼ 1

ix
, x → ±∞.

Therefore, as expected, the operator (−∆)α/2 applied on µn(x) introduces an extra
decay of |x|−α.

As a consequence of Lemma 3.2.2, we have the following result.

Proposition 3.2.3. The fractional Laplacian of (3.8) and (3.9) is given respectively by

(−∆)α/2 CC2n(x) =
2nΓ(1 + α)

(1 + x2)(n+1+α)/2
sin
(
(n + 1 + α) arccot(x)− πα

2

)
b n

2 c
∑
l=0

(−1)l
(

n
2l

)
xn−2l

2F1(−2l, 1 + α; 2; 1)

− 2nΓ(1 + α)

(1 + x2)(n+1+α)/2
cos

(
(n + 1 + α) arccot(x)− πα

2

)
b n−1

2 c
∑
l=0

(−1)l
(

n
2l + 1

)
xn−2l−1

2F1(−2l − 1, 1 + α; 2; 1), (3.29)

3.2. Fractional Laplacian of other families of functions 57

and

(−∆)α/2 SC2n+1(x) =
2nΓ(1 + α)

(1 + x2)(n+1+α)/2
cos

(
(n + 1 + α) arccot(x)− πα

2

)
b n

2 c
∑
l=0

(−1)l
(

n
2l

)
xn−2l

2F1(−2l, 1 + α; 2; 1)

+
2nΓ(1 + α)

(1 + x2)(n+1+α)/2
sin
(
(n + 1 + α) arccot(x)− πα

2

)
b n−1

2 c
∑
l=0

(−1)l
(

n
2l + 1

)
xn−2l−1

2F1(−2l − 1, 1 + α; 2; 1). (3.30)

Proof. The proof is very similar to that of Proposition 3.2.2, so we omit some details.
We first observe that, from (3.8), (3.9) and (3.21) (see also [59]), for n = 0, 1, 2, . . .,

CC2n(x) = <(µn(x)), SC2n+1(x) = −=(µn+1(x)),

hence,

CC2n(cot(s)) =
cos(2ns)− cos(2(n + 1)s)

2
,

SC2n+1(cot(s)) =
sin(2(n + 1)s)− sin(2ns)

2
.

We treat first the case where n is a nonnegative integer. Then, we express all the
complex numbers appearing in (3.28) in their polar form, to obtain:

(−∆)α/2µn(x) =
Γ(1 + α)

(1 + x2)(n+1+α)/2

n

∑
l=0

(
n
l

)
xn−l

ei((n+1+α) arccot(x)−π(l+1+α)/2)
2F1(−l, 1 + α; 1; 2). (3.31)

Now, taking the real part of (3.31) gives

(−∆)α/2 CC2n(x) =
Γ(1 + α)

(1 + x2)(n+1+α)/2

n

∑
l=0

(
n
l

)
xn−l

sin
(
(n + 1 + α) cot(x)− πα

2
− πl

2

)
2F1(−l, 1 + α; 2; 1)

=
2nΓ(1 + α)

(1 + x2)(n+1+α)/2
sin
(
(n + 1 + α) arccot(x)− πα

2

)
n

∑
l=0

cos
(

πl
2

)(
n
l

)
xn−l

2F1(−l, 1 + α; 2; 1)

− 2nΓ(1 + α)

(1 + x2)(n+1+α)/2
cos

(
(n + 1 + α) arccot(x)− πα

2

)
n

∑
l=0

sin
(

πl
2

)(
n
l

)
xn−l

2F1(−l, 1 + α; 2; 1).

58 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

Substituting l by 2l in the first term, and by 2l + 1 in the second term of the last
expression, we get (3.29).

Likewise, taking the imaginary part of (3.27) and changing the sign, we have

(−∆)α/2 SC2n+1(x) =
Γ(1 + α)

(1 + x2)(n+1+α)/2

n

∑
l=0

(
n
l

)
xn−l

cos
(
(n + 1 + α) cot(x)− πα

2
− πl

2

)
2F1(−l, 1 + α; 2; 1)

=
2nΓ(1 + α)

(1 + x2)(n+1+α)/2
cos

(
(n + 1 + α) arccot(x)− πα

2

)
n

∑
l=0

cos
(

πl
2

)(
n
l

)
xn−l

2F1(−l, 1 + α; 2; 1)

+
2nΓ(1 + α)

(1 + x2)(n+1+α)/2
sin
(
(n + 1 + α) arccot(x)− πα

2

)
n

∑
l=0

sin
(

πl
2

)(
n
l

)
xn−l

2F1(−l, 1 + α; 2; 1).

Finally, substituting l by 2l in the first term, and by 2l + 1 in the second term of the
last expression, we get (3.30).

3.2.1 Cases with α ∈ {0, 1, 2}
Since we are working with α ∈ (0, 2), it is interesting to see what happens if we
evaluate (3.4), (3.19) and their cosine-like and sine-like expressions at the ends and
at the middle point of the interval. For that purpose, we first express λn(x) in (3.2)
as

λn(x) =
(

i sgn(n)x− 1
i sgn(n)x + 1

)|n|
;

hence,

λ′n(x) =
2in

(i sgn(n)x + 1)2

(
i sgn(n)x− 1
i sgn(n)x + 1

)|n|−1

,

λ′′n(x) =
4inx− 4n2

(i sgn(n)x + 1)4

(
i sgn(n)x− 1
i sgn(n)x + 1

)|n|−2

.

We also need Newton’s binomial formula and its derivative:

(1 + z)n−1 =
n−1

∑
k=0

(
n− 1

k

)
zk =⇒ (n− 1)(1 + z)n−2 =

n−1

∑
k=1

k
(

n− 1
k

)
zk−1.

3.2. Fractional Laplacian of other families of functions 59

Let us consider first the case with α = 0, n ∈ Z\{0}:

lim
α→0+

(−∆)α/2λn(x) = − 2|n|Γ(1)
i sgn(n)x + 12F1

(
1− |n|, 1; 2;

2
i sgn(n)x + 1

)
=
|n|−1

∑
k=0

(|n|
k + 1

)(−2
i sgn(n)x + 1

)k+1

=
|n|
∑
k=1

(|n|
k

)(−2
i sgn(n)x + 1

)k

=

(
1− 2

i sgn(n)x + 1

)|n|
− 1

= λn(x)− 1.

Therefore, for n = 0, 1, 2, . . .,

lim
α→0+

(−∆)α/2 CH2n(x) = CH2n(x)− 1,

lim
α→0+

(−∆)α/2 SH2n+1(x) = SH2n+1(x).

Observe that, as with λ0(x) = 1 in (3.1), this limit is singular for λn(x) and CH2n,
since their respective Fourier transforms are not classical functions. On the other
hand, the limit for SH2n+1(x) is continuous, because the function belongs to L2(R),
and, hence, its Fourier transform is well defined. Therefore, if we consider instead
of λn(x) and CH2n(x), λn(x) − 1 and CH2n−1, respectively, the functions belong
now to L2(R), and

lim
α→0+

(−∆)α(λn(x)− 1) = λn(x)− 1

= (−∆)0(λn(x)− 1),
lim

α→0+
(−∆)α(CH2n(x)− 1) = CH2n(x)− 1

= (−∆)0(CH2n(x)− 1),

i.e., the limit is now continuous. Likewise, the limit is also continuous for µn(x)
(and, hence, for CC2n(x) and SC2n+1(x)), because they are in L2(R). Indeed, from
(3.20),

lim
α→0+

(−∆)α/2µn(x) = lim
α→0+

(−∆)α/2λn(x)− (−∆)α/2λn+1(x)
2

=
λn(x)− λn+1(x)

2
= (−∆)0µn(x).

60 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

Unlike the previous case, the case with α = 2 poses no problems:

lim
α→2

(−∆)α/2λn(x) = − 2|n|Γ(3)
(i sgn(n)x + 1)3 2F1

(
1− |n|, 3; 2;

2
i sgn(n)x + 1

)
= − 2|n|

(i sgn(n)x + 1)3

|n|−1

∑
k=0

(|n| − 1
k

)
(k + 2)

(
− 2

i sgn(n)x + 1

)k

=
4|n|(|n| − 1)

(i sgn(n)x + 1)4

(
1− 2

i sgn(n)x + 1

)|n|−2

− 4|n|
(i sgn(n)x + 1)3

(
1− 2

i sgn(n)x + 1

)|n|−1

= −λ′′n(x),

i.e., we recover (−∆)1λn(x). This is also true for all µn(x), CH2n(x), SH2n+1(x),
CC2n(x) and SC2n+1(x). Finally, when α = 1,

lim
α→1

(−∆)α/2λn(x) = − 2|n|Γ(2)
(i sgn(n)x + 1)2 2F1

(
1− |n|, 2; 2;

2
i sgn(n)x + 1

)
= − 2|n|

(i sgn(n)x + 1)2

|n|−1

∑
k=0

(|n| − 1
k

)(
− 2

i sgn(n)x + 1

)k

= − 2|n|
(i sgn(n)x + 1)2

(
1− 2

i sgn(n)x + 1

)|n|−1

= i sgn(n)λ′n(x).

Note that, if we express the last equality in terms of s, we obtain 2|n| sin2(s)ei2ns,
which is precisely the expression for (−∆)1/2λn(cot(s)) obtained in Chapter 2 using
a completely different approach. Consequently, for n = 0, 1, 2, . . ., from (3.6) and
(3.7), respectively,

(−∆)1/2 CH2n(x) =
i sgn(n)λ′n(x) + i sgn(−n)λ′−n(x)

2

=

{
0, n = 0,
− SH′2n−1(x), n ∈N,

(−∆)1/2 SH2n+1(x) =
i sgn(n + 1)λ′n+1(x)− i sgn(−n− 1)λ′−n−1(x)

2i
= CH′2n+2(x).

Similarly, in the case of µn(x),

(−∆)1/2µn(x) =
i sgn(n)λ′n(x)− i sgn(n + 1)λ′n+1(x)

2

=

{
iµ′n(x), n = 0, 1, 2, . . . ,
−iµ′n(x), n = −1,−2,−3, . . . ,

3.3. Numerical implementation of (3.4) 61

or, equivalently, (−∆)1/2µn(x) = i sgn(n + 1/2)µ′n(x). Therefore, for n = 0, 1, 2, . . .,
from (3.8) and (3.9), respectively,

(−∆)1/2 CC2n(x) =
i sgn(n + 1/2)µ′n(x)− i sgn(−n− 1/2)µ′−n−1(x)

2
= SC′2n+1(x),

(−∆)1/2 SC2n+1(x) = − i sgn(n + 1/2)µ′n(x) + i sgn(−n− 1/2)µ′−n−1(x)
2i

= −CC′2n(x).

Observe that all the equalities for α = 1 can be derived from the fact that λn(x) and
µn(x) are eigenfunctions of the Hilbert transform (see for instance [60, 61]).

3.3 Numerical implementation of (3.4)

In this Section, we will focus on the numerical implementation of (3.4), because
the other functions considered in this chapter can be expressed in terms of λn(x).
Moreover, we will reduced ourselves to the case with n ∈ N, because the case with
nonpositive n is trivially reduced to the former. All the experiments that follow
have been carried out in an HP ZBook 15 G3 with processor Intel(R) Core(TM) i7-
6700HQ CPU @ 2.60GHz, graphic card NVIDIA Quadro M1000M, and 16384MB of
RAM, under Windows 7 Enterprise with Service Pack 1. We have mainly worked
with MATLAB R2019b [96], but have also used MATHEMATICA 11.3 [103] in a few
examples.

Let us start by discussing the drawbacks of attempting to implement (3.4) by using
implementations of 2F1 in commercial mathematical software. Even if commands
that approximate numerically 2F1 functions are available in, among others, MATLAB
and MATHEMATICA, it seems that there is still no satisfactory implementation of 2F1
for all its possible values. For example, in our case, there seem to be cancellation
errors, due to the fact that we are adding and subtracting alternatively very large
numbers. Recall that the infinite series in (3.10) converges in general for |z| < 1,
which in our case means |z| = |2/(ix+ 1)| < 1 or |x| >

√
3, even if we are interested

in evaluating it at any x ∈ R. On the other hand, since the first parameter of 2F1 in
(3.4), 1− n, is negative or zero, it implies that the numerical approximation of (3.4)
is reduced to computing a finite sum, which is always convergent, so, in principle,
we should expect no serious accuracy issues from a commercial implementation.
However, if we consider for instance x = 0, for which |2/(ix + 1)| is largest (and,
hence, the worst case), it is easy to check that both MATLAB and MATHEMATICA
return wrong results for not too large values of n. Take for example n = 400 and
α = 1.5; then, the MATHEMATICA command

Hypergeometric2F1[-399, 2.5, 2, 2]

gives 6.2771 · 1057, whereas the MATLAB command

hypergeom([-399, 2.5], 2, 2)

62 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

yields 4.9217 · 1018. This is due to the fact that the signs of (1− n)k alternate, whereas
(1 + α)k is always positive; hence, we are summing large quantities with alternat-
ing signs, for which a 64-bit floating point representation is clearly insufficient to
store all the required digits, giving rise to severe rounding errors. Nevertheless, it is
possible to obtain the correct results with both programs by just introducing minor
modifications. More precisely, both

N[Hypergeometric2F1[-399, 5/2, 2, 2]]

and
double(hypergeom([-399, str2sym(’5/2’)], 2, 2))

return the correct result, 2F1(−399, 2.5; 2; 2) = −21.2769 In fact, if we omit re-
spectively the commands N and double, we get a fraction with very large nominator
and denominator. Observe that, in MATHEMATICA, 5/2 is treated natively in a dif-
ferent way as 2.5, which is stored using a floating point representation; whereas, in
MATLAB, to obtain a similar effect, the Symbolic Math Toolbox needs to be installed.
Then,

str2sym(’5/2’)

transforms the string ’5/2’ into a symbolic object that stores the fraction 5/2.

In the rest of the section, for the sake of simplicity, we will work exclusively with
MATLAB. The previous arguments suggest working with fractions whenever possi-
ble. However, if some of the parameters of 2F1 are irrational, approximating them
adequately by fractions might involve large numerators and denominators, which
does not seem ideal, either. Instead, we have found more advisable to work with a
larger number of digits, which can be done by means of the function vpa included
in the Symbolic Math Toolbox. The name of this command comes from the initials
of “variable-precision arithmetic”, i.e., arbitrary-precision arithmetic, and evaluates
by default its argument to at least 32 digits, even if another number of digits can be
specified as a second argument of vpa; e.g.,

vpa(str2sym(’pi’), 500)

returns 500 exact digits of π. Furthermore, it is possible to change globally the de-
fault number of digits to d by means of digits(d). Take for instance n = 400,
α =
√

3, then
hypergeom([-399, 1 + sqrt(3)], 2, 2)

returns −1.4831 · 1018; whereas digits(24); followed by

hypergeom([-399, vpa(str2sym(’1 + sqrt(3)’))], 2, 2)

returns the exact value of the first 24 digits of 2F1(−399, 1 +
√

3; 2; 2), namely

−84.1742043148953740804326

Therefore, in our opinion, the use of arbitrary precision is the easiest and safest
way to guarantee that the results returned by 2F1 are correct, and, indeed, research
is currently been conducted on this area (see for instance [131] and its references,

3.3. Numerical implementation of (3.4) 63

where 2F1 and other hypergeometric functions are computed in arbitrary-precision
interval arithmetic).

Coming back to the implementation of (3.4), note that z in

hypergeom([a,b],c,z)

can be a vector, but a, b and c must be scalars. Therefore, if we have a function u(x)
represented as say

u(x) =
N

∑
n=−N

anλn(x),

and want to approximate its fractional Laplacian by using hypergeom, we have to
invoke this command N times using arbitrary precision, i.e. for n = 1, . . . , N, which
can be extremely expensive from a computational point of view. For example, exe-
cuting

hypergeom([1-n, vpa(str2sym(’1 + sqrt(3)’))], 2, 2)

for n = 1, 2, . . . , 40, using 24 digits, requires 24.31 seconds, even if we are consider-
ing just one single value of z. To avoid this, we compute (3.4) by using directly a
series representation, but in such a way that the evaluations for different n are done
simultaneously (and as much independently from α as possible), which is much
more efficient. More precisely, we express (3.4) in the following form and evaluate
it at M different spatial nodes x0, . . . , xM−1:

(−∆)α/2λn(xj) = −Γ(1 + α)(ix + 1)−α

·
n

∑
k=1

(
n
k

)(−1− α

k− 1

)(
2

ixj + 1

)k

, n ∈ {1, . . . , N}. (3.32)

After converting α and π to arbitrary precision, we generate the spatial nodes and
store them in one column vector x = (x0, . . . , xM−1)

T. Then, we create a matrix
A ∈ MM×N(C), such that its columns are precisely the powers {1, . . . , N} of the
entries of (

2
ix0 + 1

, . . . ,
2

ixM−1 + 1

)T
,

i.e.,

A =



(
2

ix0 + 1

)1

. . .
(

2
ix0 + 1

)N

...(
2

ixM−1 + 1

)1

. . .
(

2
ixM−1 + 1

)N

 .

This can be done in parallel by just typing

A = (2 ./ (1i * x + 1)) .ˆ (1:N);

64 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

Afterward, we create a matrix B ∈ MN×N(C) that stores the binomial coefficients
computed using arbitrary precision:

B =



(1
1) (2

1) (3
1) . . . (N

1)

0 (2
2) (3

2) . . . (N
2)

0 0 (3
3) . . . (N

3)
...

...
...

0 0 0 . . . (N
N)


,

which can be done column-wise by using(
n + 1
k + 1

)
=

(
n

k + 1

)
+

(
n
k

)
.

However, if we apply recursively this property, we get(
n + 1
k + 1

)
=

(
n
k

)
+

(
n

k + 1

)
=

(
n
k

)
+

(
n− 1

k

)
+

(
n− 1
k + 1

)
= . . . =

n

∑
j=0

(
j
k

)
,

which allows to generate B row-wise as well.

This alternative implementation appears to be faster and is the one we have adopted.
More precisely, after initializing B with

B = vpa(zeros(N, N));

we store the first row, which is explicitly known, i.e.,

B(1, :) = 1:N;

Then, each remaining row is generated recursively by computing the cumulative
sum of the entries of the previous row, i.e.,

for n = 2:N, B(n, n:N) = cumsum(B(n-1, n-1:N-1)); end

At this point, it is important to underline that both A and B are completely inde-
pendent from α, so they can be generated once and then be reused to evaluate (3.32)
at different values of α. Furthermore, the parts of (3.32) that depend actually on α
(which we store in an arbitrary-precision variable a) can be stored in just two vec-
tors c ∈ MM×1(C) and d ∈ M1×N(C); the former is a column vector containing
the entries of ix + 1 raised to the power −α, i.e.,

c = (1i * x + 1) .ˆ (-a);

whereas the latter is a row vector formed by the values

−Γ(1 + α)

(−1− α

k− 1

)
, k = 1, . . . , N.

3.3. Numerical implementation of (3.4) 65

Moreover, we observe that the entries of d can be generated by obtaining the cumu-
lative product of the following quantities:{

−Γ(1 + α),
−1− α

1
,
−2− α

2
, . . . ,

−(N + 1)− α

N − 1

}
,

i.e.,
d = cumprod([-gamma(1 + a), -1 - a ./ (1:N-1)]);

At this point, combining all the previously defined variables elements, we generate
a matrix Mα ∈ MM×N(C), such that its columns correspond to (3.32) evaluated at
n = 1, . . . , N, respectively:

Mα = diag(c)A diag(d)B,

where diag(c) ∈ MM×M(C) and diag(d) ∈ MN×N(C) are the diagonal matrices
whose diagonal entries are c and d respectively; in MATLAB,

Ma = diag(c) * A * diag(d) * B;

In this regard, let us mention that we have found that this equivalent expression
executes a bit faster:

Mα = (A ◦ (c · d))B,

where ◦ denotes the Hadamard product, i.e., the entrywise product between matri-
ces or equal size. In that case,

Ma = (A .* (c * d)) * B;

Finally, the resulting matrix can be cast to the 64-bit floating point format by means
of

Ma = double(Ma);

Observe that, if Mα is very large, it might happen that double cannot be applied
to a whole arbitrary-precision matrix, because the capacity of MATLAB is exceeded;
in that case, the conversion has to be done row-wise or column-wise, although the
global impact is small.

In the following subsection, we will perform the numerical experiments; special
attention will be given to the number of digits necessary to compute Mα with satis-
factory accuracy.

3.3.1 Numerical experiments

The procedure to generate Mα ∈ MM×N(C) that we have just explained is by defini-
tion exact, provided that a large enough number of digits is chosen. In our numerical
experiments, we have observed that the number of necessary digits is virtually inde-
pendent from the choice of α ∈ (0, 2); in what follows, we have used systematically
the irrational value α =

√
3. We have first considered only the worst case x = 0,

66 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

and have thus approximated (−∆)
√

3/2λN(0), i.e., have computed the last element
of the row vector M√3 ∈ M1×N(C) using arbitrary precision with an increasing
number of digits, until satisfactory convergence is achieved. Let mN

(k) denote the
k-digit approximation of (−∆)

√
3/2λN(0); then, we take as stopping criterion that∣∣∣∣∣m

(k)
N −m(k+1)

N

m(k+1)
N

∣∣∣∣∣ < ε, (3.33)

where ε = 2−52, eps in MATLAB, is the so-called machine epsilon in 64-bit floating
point arithmetic. Note that the use of the relative discrepancy between mN

(k) and
mN

(k+1) is justified because |(−∆)
√

3/2λN(0)| quickly grows with N (we have found
experimentally that |(−∆)

√
3/2λN(0)| ≈ 3.322N

√
3), and we are interested in choos-

ing the adequate number of global digits (before and after the decimal point), not of
correct decimals. Remark that, in the numerical experiments, we have found that,
in general, the number of digits required does not diminish with N, even if, very
occasionally, that quantity can be slightly smaller for N + 1 than for N. Hence, in or-
der to determine the number of digits for a given N + 1, it is completely safe to start
generating mN+1

(k) with the same number of digits k necessary to generate mN
(k)

satisfying (3.33), and then increase k by one unity, until the convergence condition
(3.33) is fulfilled. In Figure 3.2, we have plotted the number of digits with respect to
N; note that the graph is roughly a straight line with slope slightly less than 1/2; in
fact, the least squares regression line is ŷ = 0.47598x + 6.6938. On the other hand,

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

FIGURE 3.2: Number of digits as a function of N necessary to approxi-
mate Mα ∈ M1×N(C) with accuracy (3.33)

for a given number of columns N, we have also considered N nodes {x0, . . . , xN−1}
and approximated the whole matrix M√3 ∈ MN×N(C). In order to compare the
results with those in Chapter 2, we have taken equally-spaced non-end nodes sj,
which determine the choice of xj:

sj =
π(2j + 1)

2N
=⇒ xj = cot

(
π(2j + 1)

2N

)
, 0 ≤ j ≤ N − 1. (3.34)

3.3. Numerical implementation of (3.4) 67

Let M(k)√
3
∈ MN×N(C) denote the approximation of (−∆)(

√
3/2)λn(xj), for n ∈

{1, . . . , N}, j ∈ {0, . . . , N − 1}, using arbitrary precision arithmetic with k digits.
Bearing in mind that xN−1−j = −xj, we have

(−∆)(
√

3/2)λn(xN−1−j) = (−∆)(
√

3/2)λn(−xj) = (−∆)(
√

3/2)λn(xj),

so the last bN/2c rows of M(k)√
3

can be generated from its first bN/2c rows, which
reduces the global computational cost. Observe that, from (3.22), it follows that
limx→±∞(−∆)

√
3/2|λn(x)| = 0 in (3.4), for all n, so, in general, we can expect very

large differences in the orders of magnitude of the different entries of Mα. There-
fore, denoting Mα

(k) = [mij
(k)] and Mα

(k+1) = [mij
(k+1)], we take now as stopping

criterion that

max
ij

min

∣∣∣m(k)
ij −m(k+1)

ij

∣∣∣ ,

∣∣∣∣∣∣
m(k)

ij −m(k+1)
ij

m(k+1)
ij

∣∣∣∣∣∣

 < ε, (3.35)

where, again, ε = 2−52. We have found this criterion to be very adequate, because,
when mij

(k) and mij
(k+1) are infinitesimal, the absolute discrepancy is enough to

establish convergence, whereas, for larger values, it is preferable to consider the
relative discrepancy.

Similarly as in the previous example, in order to obtain the number of digits for a
given N + 1, we start generating the matrix M√3

(k) ∈ M(N+1)×(N+1)(C) with the
number of digits k necessary to generate M√3

(k) ∈ MN×N(C) satisfying (3.35), and
then increase k by one unity, until (3.35) is fulfilled. On the left-hand side of Figure
3.3, we have plotted the number of digits with respect to N; the graph is very similar
(but not identical) to that in Figure 3.2, the least squares regression line being now
ŷ = 0.47777x + 7.3617; and we have found very similar results for other values of
α. Obviously, if we consider another nodal distribution such that every node xj
satisfies 2/|ixj + 1| � 1, the number of digits will be smaller.

We have also compared the approximation of the N2 values (−∆)(
√

3/2)λn(xj) via
the matrices just generated, which we denote Mvpa

α ∈ MN×N(C), with those given
by the method explained in Chapter 2, which we denote Mold

α ∈ MN×N(C); re-
mark that we have adopted the method in Chapter 2 with only minor modification
to make it produce matrices of the required size, using llim = 1000, for all the val-
ues of N. On the right-hand side of Figure 3.3, we have plotted the discrepancy
d(Mvpa

α , Mold
α) between both (largely unrelated) techniques, using a formula similar

to (3.35):

d(M1
α, M2

α) ≡ max
ij

(
min

{∣∣∣m1
ij −m2

ij

∣∣∣ ,

∣∣∣∣∣m
1
ij −m2

ij

m1
ij

∣∣∣∣∣
})

; (3.36)

such discrepancy is of the order of 10−11 for the first 500 values of N. Note that,
although (3.36) is not symmetric, the results provided by d(Mvpa

α , Mold
α) and those

68 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500

0

0.2

0.4

0.6

0.8

1

1.2

1.4
10

-11

FIGURE 3.3: Left: Number of digits necessary to approximate Mvpa
α ∈

MM×M(C), as a function of M, for α =
√

3. Right: Comparison with
the results in Chapter 2, using (3.36).

by d(Mold
α , Mvpa

α) show only infinitesimal variations in our case. We have also gen-
erated Mvpa

α and Mold
α , for α ∈ {0.01, 0.02, . . . , 1.99}, working with 250 digits in the

case of Mvpa
α ; in Figure 3.4, we have plotted d(Mold

α , Mvpa
α) as a function of α, which

is again of the order of 10−11. These results confirm the validity of both approaches
when approximating the fractional Laplacian.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

-11

FIGURE 3.4: Comparison with the results in Chapter 2, using (3.36), for
N = 500 and different values of α.

The method that we are describing in this chapter is, in comparison with the method
described in Chapter 2, much simpler to implement and exact by definition, but, in
principle, much more expensive computationally, even if it still largely outperforms
the Matlab function hypergeom. Recall that hypergeom uses transformation formulas
like those in [106, Ch. 15.3], which allow it to evaluate 2F1 in (3.4), using 64-bit float-
ing point arithmetic, for a much larger range of values of n than it would be possible
by simply using the representation (3.12), although it has to be invoked individually
for each value of n. To give an idea of the time needed for each technique, we have

3.3. Numerical implementation of (3.4) 69

considered Mα ∈ MN×N(C), for N = 330, i.e., a size for which hypergeom produces
accurate results without using arbitrary precision. We have generated column-wise
Mα with hypergeom using directly (3.4), which we denote Mdp

α , where the super-
script dp stands for double (i.e., 64-bit) precision, needing 1265.04 sec, whereas Mold

α

(based on Chapter 2) and Mvpa
α (using vpa) required only 3.44 sec and 54.64 sec,

respectively.

To have a more complete picture of the possibilities and limitations of variable-
precision arithmetic, we have also tested ADVANPIX [132], the Multiprecision Com-
puting Toolbox for MATLAB. Its main command is mp, which stands for multiple
precision, and works pretty much in the same way as vpa, but, unlike vpa, it can-
not receive symbolic objects as parameters; e.g., to obtain the multiply precision
approximation of

√
3, we just type

mp(’sqrt(3)’)

By default, the number of significant digits of mp is 34 (quadruple precision); and it
can changed globally to d digits by means of

mp.Digits(d)

or, individually, as a second argument of mp. It is important to remark, however, that
vpa and mp do not have exactly the same behavior; e.g, both

vpa(str2sym(’sqrt(3)’), 2)

and
mp(’sqrt(3)’, 2)

show 1.7 at the screen, but

double(vpa(str2sym(’sqrt(3)’), 2)) - sqrt(3)

gives 1.1206 · 10−10, whereas

double(mp(’sqrt(3)’, 2)) - sqrt(3)

gives 0.0023. This phenomenon can explained because

vpa(str2sym(’sqrt(3)’), 2)

guarantees at least two digits, even if more digits can be used internally, whereas

mp(’sqrt(3)’, 2)

really yields two digits.

Using ADVANPIX, we have generated again Mα ∈ MN×N(C) for α =
√

3, which
we denote Mnp

α ; note that the code is identical to that of Mvpa
α , except that we have

replaced the three appearances of vpa with mp, namely mp(’pi’), mp(’sqrt(3)’)
and mp(zeros(N, N)). In Figure 3.5, we have plotted the number of digits used to

70 Chapter 3. Fractional Laplacian on R Using Orthogonal Families

generate Mmp
α , and the least squares regression line is now ŷ = 0.47686x + 14.708.

Therefore, for a given N, Mmp
α requires some seven or eight more digits than Mvpa

α .
On the other hand, the plot of d(Mmp

α , Mold
α) is virtually identical to that on the right-

hand side of Figure 3.3, except for infinitesimal variations of the order of 10−16 for a
few values of N.

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

FIGURE 3.5: Number of digits necessary to approximate Mmp
α ∈

MM×M(C), as a function of M

In Table 3.1, we show the times required to generate Mα ∈ MM×M(C) using dif-
ferent techniques and sizes. These times are provided on a purely indicative basis,
because they change slightly from execution to execution, and, probably, all of them
can be improved by compiling the codes, etc.

N Mold
α Mmp

α digits Mvpa
α digits Mdp

α

330 3.38 6.18 172 54.64 165 1265.04
500 7.84 21.41 253 205.12 246
1000 33.05 237.10 500 2272.98 500
1500 80.56 1010.76 750 9922.05 750
2000 158.01 3422.38 1000

TABLE 3.1: Elapsed time in seconds used for the generation of Mα ∈
MN×N(C), for different values of N and different techniques. Mold

α

corresponds to the method described in Chapter 2; Mmp
α uses the AD-

VANPIX function mp; Mvpa
α uses vpa; and Mvpa

α uses hypergeom without
arbitrary precision. In the case of Mmp

α and Mvpa
α , the number of digits

to generate the matrices is also offered.

In our opinion, the results are quite revealing, allowing us to make some conclu-
sions; indeed, for N moderately large (e.g., N = 500), the method described in this
chapter, together with ADVANPIX, is absolutely competitive; and reasonably fast,
when combined with vpa. Furthermore, ADVANPIX, can be still recommended to
generate larger matrices (e.g., N = 1000). On the other hand, even if, in principle, it
is possible to generate very large matrices (e.g., N = 1500, N = 2000 or even larger
sizes), it may be advisable to use in those case the method described in Chapter 2,

3.3. Numerical implementation of (3.4) 71

except when time is not an issue and the matrix needs to be generated only once or
a few times. Finally, let us mention that the values of the discrepancy (3.36) between
Mold

α and Mnp
α for N = 1000, N = 1500 and N = 2000 are respectively 2.1238 · 10−11,

5.1753 · 10−11, and 8.2190 · 10−11, i.e., of the order of 10−11.

73

Chapter 4

Other approaches for the fractional
Laplacian on R

In this chapter, we discuss other approaches to approximate numerically the frac-
tional Laplacian on R, using fast convolution. The methods thus developed, even if
less accurate than those exposed in Chapters 2 and 3, are exceedingly fast. Further-
more, in some of them, it is possible to apply Richardson’s extrapolation to improve
the results.

4.1 Numerical convolution and the approximation of
singular integrals

Let us consider two N-periodic sequences of complex numbers u = {ur} and v =
{vr}, with r ∈ Z. Then, the convolution of u and v, denoted by u ∗ v, is a new
sequence defined as

(u ∗ v)m ≡
N−1

∑
n=0

unvm−n. (4.1)

It is straightforward to check that u ∗ v is also N-periodic, and that u ∗ v = v ∗ u. A
very important property of u ∗ v is that

(û ∗ v)p = ûpv̂p, p = 0, . . . , N − 1, (4.2)

This is a well-known theorem called the discrete convolution theorem, and it says in
other words that the discrete Fourier transform of the convolution is just the product
of the discrete Fourier transforms. Recall that, given an N-periodic sequence u, its
discrete Fourier transform û is also N-periodic, and is given by

ûp =
N−1

∑
m=0

ume−
2πimp

N ⇐⇒ um =
1
N

N−1

∑
p=0

ûpe
2πimp

N .

74 Chapter 4. Other approaches for the fractional Laplacian on R

Then, the proof of (4.2) is straightforward (see for instance [97]):

(û ∗ v)p =
N−1

∑
m=0

[
N−1

∑
n=0

unvm−n

]
e−

2πimp
N =

N−1

∑
n=0

une−
2πinp

N

N−1

∑
m=0

vm−ne−
2πi(m−n)p

N

=
N−1

∑
n=0

une−
2πinp

N

N−n−1

∑
q=−n

vqe−
2πiqp

N =
N−1

∑
n=0

une−
2πinp

N

N−1

∑
q=0

vqe−
2πiqp

N

= ûpv̂p,

where we have used that vq and e−2πiqp/N are N-periodic.

Observe that we need O(N2) operations to compute directly (4.1). On the other
hand, the computation of a discrete Fourier transform by means of the fast Fourier
transform [57] algorithm requires O(N log N) operations. Since we need two fast
Fourier transforms (FFT) and one inverse fast Fourier transform (IFFT) to compute
(4.1) using (4.2), the total cost is also O(N log N) operations, which is much lower
than O(N2). Therefore, this technique can be referred to as fast convolution.

In the case that the sequences u and v are not N-periodic, it is still possible tu com-
pute (4.1) by means of fast convolution. Observe that, in (4.1), if m = 0, . . . , N − 1,
we need to know {u0, . . . , uN−1} and {v−N+1, . . . , vN−1}. Therefore, we can regard
them as 2N-periodic by extending them respectively as follows [97]:

ũr =

{
ur, r = 0, . . . , N − 1,
0, r = N, . . . , 2N − 1,

(4.3)

and

ṽr =


vr, r = 0, . . . , N − 1,
0, n = N,
vr−2N, r = N + 1, . . . , 2N − 1,

(4.4)

and, for other values of n, imposing that ũr+2N = ũr and ṽr+2N = ṽr. Then,

(u ∗ v)m ≡
N−1

∑
n=0

unvm−n =
2N−1

∑
n=0

ũnṽm−n = (ũ ∗ ṽ)m, m = 0, . . . , N − 1, (4.5)

so, in order to obtain u ∗ v, we extend u and v by means of (4.3) and (4.4), then
compute ũ ∗ ṽ via the fast convolution, and finally keep the first N elements of ũ ∗ ṽ,
and discard the last N. The global computation cost is again O(N log N).

As we will see in this section, the application of the fast convolution enables to
develop extremely fast methods to approximate the fractional Laplacian, although
the price to pay is that they are less accurate than those offered in Chapters 2 and 3.

In order to introduce the approach that we will be using (and which takes ideas
from [97]), let us start by presenting a simple example involving the computation of

4.1. Numerical convolution and the approximation of singular integrals 75

a discrete convolution. More precisely, we consider the following integral:

G(s) =
ˆ π

0

g(η)
|s− η|a dη, (4.6)

where g(η) = f (η)/ηb and a + b > −1.

Let us consider first the simpler case b = 0, i.e., g(η) ≡ f (η), which allows us to
work with only one singularity in (4.6). In that case, we start by decomposing the
domain into subintervals In = [sn, sn+1], where h = (sN − s0)/N = π/N, sn =
h n, etc., and the function g can be evaluated in analogously defined subintervals
Im = [sm, sm+1] of the same length. For simplicity, G is evaluated in the midpoint
sm+1/2 of every subinterval Im, and so is f in the midpoint of In, evaluation which
we denote fn+1/2. Observe that we are not using the definition of sn in (2.1); indeed,
in Chapters 2 and 3, sn corresponds to what we call sn+1/2 in this section; whereas
we keep now sn to specify the ends of the subintervals. We think that this change
of notation is justified, in order to clearly differentiate the ends of the intervals from
their midpoints.

Bearing in mind the previous remarks, the following sum of integrals is constructed:

G
(

sm+ 1
2

)
=

N−1

∑
n=0

ˆ
In

f (η)∣∣∣sm+ 1
2
− η

∣∣∣a dη ≈
N−1

∑
n=0

fn+ 1
2

ˆ
In

dη∣∣∣sm+ 1
2
− η

∣∣∣a .

Treating apart the previous integral with domain In, and applying the change of
variable η = sn + (λ + 1/2)h, with sn = hn, we get:

Mm−n =

ˆ sn+1

sn

dη∣∣∣sm+ 1
2
− η

∣∣∣a = h1−a
ˆ 1/2

−1/2

dλ

|m− n− λ|a . (4.7)

Therefore, we have the following discrete convolution

G
(

sm+ 1
2

)
≈

N−1

∑
n=0

Mm−n fn+ 1
2
= (M ∗ f)m. (4.8)

In order to apply the fast convolution to (4.8), we define, on the one hand, f̃r accord-
ing to (4.3):

f̃r =

{
fr+ 1

2
, r = 0, . . . , N − 1,

0, r = N, . . . , 2N − 1.
(4.9)

76 Chapter 4. Other approaches for the fractional Laplacian on R

On the other hand, setting r = m− n, we compute explicitly Mr = Mm−n:

Mr = h1−a
ˆ 1/2

−1/2

dλ

|r− λ|a

=


h1−a 2a

1− a
, r = 0,

h1−a sgn(r + 1/2)|r + 1/2|1−a − sgn(r− 1/2)|r− 1/2|1−a

1− a
, r 6= 0.

(4.10)

Note that, since r is an integer, when r 6= 0, we can simply write

Mr = h1−a (|r|+ 1/2)1−a − (|r| − 1/2)1−a

1− a
;

then, we define M̃r according to (4.4):

M̃r =


Mr, r = 0, . . . , N − 1,
0, r = N,
Mr−2N, r = N + 1, . . . , 2N − 1.

(4.11)

Finally, we apply (4.5), i.e., (M ∗ f)m = (M̃ ∗ f̃)m, for m = 0, . . . , N − 1. From an
implementational point of view, we compute f̂ = FFT(f̃) and M̂ = FFT(M̃), then
multiply in the Fourier space, and calculate the IFFT of the result, keeping only the
first N elements of M̃ ∗ f̃ .

j N Error log2

(
E

2j (α)

E
2j+1 (α)

)
4 16 7.183569 · 10−3 1.98390
5 32 1.816047 · 10−3 1.99421
6 64 4.558379 · 10−4 1.98776
7 128 1.149302 · 10−4 1.80143
8 256 3.297231 · 10−5 2.20903
9 512 7.131227 · 10−6

TABLE 4.1: Errors obtained in discrete L∞-norm and convergence rate
of (4.8) to (4.6), with f (η) = esin(η), a = −0.5 and b = 0.

We test the numerical convolution by taking f (η) = esin(η), η ∈ [0, π], and a = −0.5,
b = 0. An adaptive Gauss-Legendre quadrature with N = 28 nodes (see e.g. [133],
and [134], for an explicit routine) approximates the singular integrals corresponding
to G (sm), and gives us the approximations that will be compared with those coming
from the convolution scheme. In Table 4.1, we show the errors E2j corresponding
to N = 2j, i.e., the differences between both approaches in discrete L∞-norm, and
log2(E2j(α)/E2j+1(α)), for j = 4, . . . , 8, which gives us a convergence rate of order
two.

4.2. Fast convolution and midpoint rule 77

We have also attempted the case b 6= 0, i.e., have considered

G
(

sm+ 1
2

)
=

N−1

∑
n=0

ˆ
In

f (η)

|η|b
∣∣∣sm+ 1

2
− η

∣∣∣a dη. (4.12)

In this case, in order to extract the term f (η)/|η|b, we approximate it by its mean
over each subinterval In; then, since it is still possible to evaluate f at the midpoint
of In, we further approximate the resulting integral by extracting fn+1/2. More pre-
cisely, for η ∈ In,

f (η)
|η|b ≈

1
h

ˆ
In

f (η)
|η|b dη ≈

fn+ 1
2

h

ˆ
In

1
|η|b dη = fn+ 1

2
h−b
ˆ 1

0

dλ

(n + λ)b ,

where we have applied the change of variable η = sn + λh. Therefore, we write

fn+ 1
2
h−b
ˆ 1

0

dλ

(n + λ)b = fn+ 1
2

h−b((1 + n)1−b − n1−b)

1− b
= fn+ 1

2
cn,

where

cn =
h−b((1 + n)1−b − n1−b)

1− b
.

Finally, bearing in mind (4.7) from the case β = 0, (4.12) is approximated as

G
(

sm+ 1
2

)
≈

N−1

∑
n=0

ˆ
In

(
1
h

ˆ
In

f (η)
|η|b dη

)
dη∣∣∣sm+ 1
2
− η

∣∣∣a
≈

N−1

∑
n=0

cn fn+ 1
2

ˆ
In

dη∣∣∣sm+ 1
2
− η

∣∣∣a
=

N−1

∑
n=0

cn fn+ 1
2
Mm−n

= (M ∗ c f)m.

We have considered again f (η) = esin(η) as the testing function. Similarly as in Table
4.1, we show in Table 4.2 the errors E2j and the convergence rate for a = −0.75 and
b = −0.15.

4.2 Approximation of the fractional Laplacian using the
fast convolution and midpoint rule

As said above, we want to develop a fast convolution formula applied to the frac-
tional Laplacian. In order to do this, let us consider the integral definition given
by (2.12). From this equation, it is possible to identify the corresponding kernel; in

78 Chapter 4. Other approaches for the fractional Laplacian on R

j N Error log2

(
E

2j (α)

E
2j+1 (α)

)
4 16 8.723048 · 10−3 2.00963
5 32 2.166259 · 10−3 2.01458
6 64 5.361205 · 10−4 2.01421
7 128 1.327166 · 10−4 1.90892
8 256 3.534145 · 10−5 2.11609
9 512 8.152231 · 10−6

TABLE 4.2: Errors obtained in discrete L∞-norm and convergence rate
of (4.8) to (4.6) with f (η) = esin(η), a = −0.75 and b = −0.15.

what follows we will show how to deal with it. We take α ∈ (0, 1) ∪ (1, 2), since
the case α = 1 is explicitly known: (−∆)1/2u = H(ux), i.e., we have the Hilbert
transform of the derivative. Let us represent (2.12), α 6= 1 as

(−∆)α/2u(s) =
cα| sin(s)|α−1

Lαα(1− α)

ˆ π

0
w(η)| sin(s− η)|1−α sinα(η)dη, (4.13)

where w(η) = sin(η)uss(η) + 2 cos(η)us(η). To obtain a convolution sum, we de-
compose the integral over [s0, sN] = [0, π] into a sum of integrals over subintervals
In = [sn, sn+1] of length h = (sN − s0)/N = π/N, as in the previous examples in
Section 4.1. The evaluation of the function u, and consequently, the fractional Lapla-
cian, will be carried out in the midpoint sm+1/2 of each subinterval Im = [sm, sm+1]:

(−∆)α/2u
(

sm+ 1
2

)
=

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)
N−1

∑
n=0

ˆ sn+1

sn

w(η)
∣∣∣sin

(
sm+ 1

2
− η

)∣∣∣1−α
sinα(η)dη. (4.14)

The numerical approximation of the integral will be done as follows. First, we ap-
proximate the term sinα(η) by its mean on In, which is at its turn approximated by
the midpoint rule:

sinα(η) ≈ ζn =
1
|In|

ˆ sn+1

sn

sinα (η) dη

≈ 1
h

sinα
(

sn+ 1
2

)
(sn+1 − sn)

= sinα

(
h
(

n +
1
2

))
; (4.15)

and, second, we approximate the integral of the kernel | sin(sm+1/2 − η)|1−α,

Km−n =

ˆ sn+1

sn

∣∣∣sin
(

sm+ 1
2
− η

)∣∣∣1−α
dη,

4.2. Fast convolution and midpoint rule 79

by distinguishing two cases, r = m− n = 0, and r = m− n 6= 0. If r = m− n = 0,
we integrate the singularity directly, by performing the change of variable η ≡ sn +
h(λ + 1/2), with sn = hn, and using that sin(x) ∼ x, as x → 0:

K0 ≈ h2−α

ˆ 1/2

−1/2
|m− n− λ|1−αdλ = h2−α

ˆ 1/2

−1/2
| − λ|1−αdλ = h2−α 2α−1

2− α
;

and if r = m− n 6= 0, we aproximate Kr = Km−n by the midpoint rule:

Kr ≈
∣∣∣sin

(
sm+ 1

2
− sn+ 1

2

)∣∣∣1−α
(sn+1 − sn)

= | sin(h(m− n))|1−αh

= | sin(hr)|1−αh.

Putting all together, (4.14) becomes

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

N−1

∑
n=0

Km−nζnwn+ 1
2

=
cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)
(K ∗ ζw)m, (4.16)

where wn+1/2 denotes the evaluation of w at the midpoint of the subinterval In. In
order to apply the fast convolution to (4.16), we define, according to (4.3) and (4.4):

ζ̃rw̃r =

{
ζrwr+ 1

2
, r = 0, . . . , N − 1,

0, r = N, . . . , 2N − 1,

K̃r =


Kr, r = 0, . . . , N − 1,
0, r = N,
Kr−2N, r = N + 1, . . . , 2N − 1.

Then, we compute K̃ ∗ ζ̃w̃ with the fast convolution, and set (K ∗ ζw)m = (K̃ ∗ ζ̃w̃)m,
for m = 0, . . . , N − 1.

4.2.1 Numerical experiments

In order to test this technique, we consider the functions u1(x) and u2(x) defined in
Section 2.2:

u1(x) =
x2 − 1
x2 + 1

, and u2(x) =
2x

x2 + 1
. (4.17)

In this section, we use systematically L = 1 in the numerical experiments. Recall
that u1(x) + iu2(x), under the change of variable x = cot(s), with L = 1, becomes
ei2s, and its fractional Laplacian is given by (2.41). Thus, the exact and approximated
solutions can be compared by computing the error in discrete L∞-norm, which we

80 Chapter 4. Other approaches for the fractional Laplacian on R

denote E2j , for N = 2j. On the left-hand of Figure 4.1 we plot the errors E2j (from
now on, using semi-logarithmic scale), and on the right-hand side, the convergence
rate log2 (E2j(α)/E2j+1(α)) in terms of α, for α = {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}
(i.e., excluding the case α = 1), taking N = 2j nodes, with j = 7, 8, . . . , 12.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 4.1: Left: Error for (−∆)α/2ei2s. Right: Convergence rate.
We have applied the fast convolution and midpoint rule, taking
α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, and N = 2j nodes, with j =
7, 8, . . . , 12.

As a second example, we consider the Gaussian function

u3(x) = exp(−x2) (4.18)

from Section 2.2, whose fractional Laplacian is given by (2.43).

On the left-hand of Figure 4.2, we plot the errors and on the right-hand side, the
convergence rate, taking N = 2j nodes, with j = 7, 8, . . . , 12. Both Figure 4.1 and
Figure 4.2 suggest that the convergence order is 2− α, i.e., we do not get the second
order of Tables 4.1 and 4.2. In the following pages, we will show how to improve
the convergence order.

4.3 Approximation of the fractional Laplacian using the
fast convolution and a regular function

In order to improve the results of the previous section, we rewrite the integrand of
(2.12), for α 6= 1. More precisely, we construct a regular function of the form:

f (s, η) = (sin(η)uss(η) + 2 cos(η)us(η))

∣∣∣∣sin(s− η)

s− η

∣∣∣∣1−α (sin(η)
η

)α

. (4.19)

4.3. Fast convolution and a regular function in the integrand 81

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 4.2: Left: Errors for (−∆)α/2e−x2
. Right: Convergence

rate. We have applied the fast convolution and midpoint rule, tak-
ing α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, and N = 2j nodes, with
j = 7, 8, . . . , 12.

Hence, when α 6= 1, (2.12) evaluated at the midpoints sm+1/2 of Im is expressed as

(−∆)α/2u
(

sm+ 1
2

)
=

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)
N−1

∑
n=0

ˆ sn+1

sn

f
(

sm+ 1
2
, η
) ∣∣∣sm+ 1

2
− η

∣∣∣1−α
ηαdη.

We proceed in a similar way as we did for (4.14). We first approximate f (sm+1/2, η)
in In = [sn, sn+1] by its value at the midpoint of In, i.e.,

f
(

sm+ 1
2
, sn+ 1

2

)
≈ f

(
sm+ 1

2
, η
)

;

hence,

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

f
(

sm+ 1
2
, sn+ 1

2

) N−1

∑
n=0

ˆ sn+1

sn

∣∣∣sm+ 1
2
− η

∣∣∣1−α
ηαdη. (4.20)

To further proceed, we approximate the term ηα by its mean on In:

ηα ≈ ζn =
1
h

ˆ sn+1

sn

ηαdη =
s1+α

n+1 − s1+α
n

(1 + α)h
= hα

[
(n + 1)1+α − n1+α

1 + α

]
, η ∈ In;

82 Chapter 4. Other approaches for the fractional Laplacian on R

and compute the integral of the kernel |sm+1/2 − η|1−α,

Km−n =

ˆ sn+1

sn

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη = h2−α

ˆ 1/2

−1/2
|m− n− λ|1−αdλ;

writing r = m− n, we obtain an expression identical to (4.10), after replacing a by
α− 1:

Kr =


h2−α 2α−1

2− α
, r = 0,

h2−α sgn(r + 1/2)|r + 1/2|2−α − sgn(r− 1/2)|r− 1/2|2−α

2− α
, r 6= 0.

Therefore, since r is an integer, when r 6= 0, we can write

Kr = h2−α (|r|+ 1/2)2−α − (|r| − 1/2)2−α

2− α
.

Putting all together, (4.20) becomes

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

N−1

∑
n=0

f
(

sm+ 1
2
, sn+ 1

2

)
Km−nζn. (4.21)

However, in this form, we cannot apply the fast convolution, so we have to expand
f (sm+1/2, sn+1/2) according to its definition in (4.19) and gather together the terms
bearing n and those bearing m− n to get the following expression:

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

N−1

∑
n=0

∣∣∣∣sin(h(m− n))
h(m− n)

∣∣∣∣1−α

Km−n

(sin(sn+ 1
2
)uss(sn+ 1

2
) + 2 cos(sn+ 1

2
)us(sn+ 1

2
))

(
sin(sn+ 1

2
)

sn+ 1
2

)α

ζn,

where we have used that sm+1/2 − sn+1/2 = h(m− n). Finally, defining,

gr ≡
(

sin
(

sr+ 1
2

)
uss

(
sr+ 1

2

)
+ 2 cos

(
sr+ 1

2

)
us

(
sr+ 1

2

))sin
(

sr+ 1
2

)
sr+ 1

2

α

ζr,

Lr ≡


Kr, r = 0,∣∣∣∣sin(hr)

hr

∣∣∣∣1−α

Kr, r 6= 0,

(4.22)

4.4. Fast convolution and extrapolation 83

where sr+1/2 = h(r + 1/2), and constructing L̃r and g̃r as in (4.3) and (4.4), we
conclude that

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)
(L̃ ? g̃)m. (4.23)

4.3.1 Numerical experiments

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

FIGURE 4.3: Left: Errors for (−∆)α/2ei2s. Right: Convergence rate. We
have applied the fast convolution scheme, using a regular function as
the integrand, taking α ∈ {0.01, . . . , 0.99}∪ {1.01, . . . , 1.99}, and N = 2j

nodes, with j = 7, 8, . . . , 12.

In order to test (4.23) numerically, we consider again the functions u1(x) + iu2(x) =
ei2s and u3(x) = exp(−x2) defined in (4.17) and (4.18), and also used in Section
2.2. We have computed the errors in the discrete L∞-norm, for N = 2j, with j =
7, 8, . . . , 12, and the convergence rate. On the left-hand side of Figure 4.3, the errors
E2j are plotted against α. On the right-hand side of Figure 2.1, the convergence rate
is plotted against α, resembling to be 1 + α when α ∈ (0, 1) and 2, when α ∈ (1, 2).

In the case of u3(x), on the left-hand side of Figure 4.4, the errors E2j are plotted
against α. On the right-hand side of Figure 4.4, the convergence rate is plotted
against α. In this case, N = 2j, with j = 7, 18, . . . , 12. Figures 4.3 and 4.4 suggest that
the convergence rate for this technique is approximately 1 + α when α ∈ (0, 1) and
2, when α ∈ (1, 2). Although these results are better than those in Figures 4.1 and
4.2, they can still be improved, as we will see in the following section.

4.4 Approximation of the fractional Laplacian using the
fast convolution and extrapolation

Let us consider the partition of [0, π] given by the nodes s(j)
n in (2.3) (see also [98]):

s(j)
n =

π(2n + 1)
2j+1N

, 0 ≤ n ≤ 2jN − 1; (4.24)

84 Chapter 4. Other approaches for the fractional Laplacian on R

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

2.2

FIGURE 4.4: Left: Errors for (−∆)α/2e−x2
. Right: Convergence rate. We

have applied the fast convolution scheme, using a regular function as
the integrand, taking α ∈ {0.01, . . . , 0.99}∪ {1.01, . . . , 1.99}, and N = 2j

nodes, with j = 7, 8, . . . , 12.

observe that there are no two nodes s(j)
n identical. Moreover, when j = 0, the nodes

sn
(0) are precisely the middle points of the intervals In = [sn, sn+1], h = π/N, used

in the previous sections, i.e., sn
(0) = sn+1/2. On the other hand, when j ∈N,

s(1)2n = sn+1/4, s(1)2n+1 = sn+3/4,

s(2)4n = sn+1/8, s(2)4n+1 = sn+3/8, s(2)4n+2 = sn+5/8, s(2)4n+3 = sn+7/8,

etc., i.e., each In contains one node s(0)n , two nodes s(1)n , four nodes s(2)n , etc. Therefore,
the nodes sn

(j+1) can be regarded as a refinement of sn
(j), and in general of sn+1/2.

Let us construct the following function, which resembles (4.19), except that there is
no appearance of ηα:

f (s, η) = (sin(η)uss(η) + 2 cos(η)us(η))

∣∣∣∣sin(s− η)

s− η

∣∣∣∣1−α

sinα(η). (4.25)

Thus, we obtain the following expression for the fractional Laplacian, when α 6= 1:

(−∆)α/2u(s) =
cα| sin(s)|α−1

Lαα(1− α)

ˆ π

0
f (s, η)|s− η|1−αdη. (4.26)

In what follows, we will obtain an approximation of (4.26) that can be computed by
means of the fast convolution. More precisely, the fact that each node of the form
s2n

(1) is the middle point of [sn, sn+1/2], and each node of the form s2n+1
(1) is the

4.4. Fast convolution and extrapolation 85

middle point of [sn+1/2, sn+1], suggests expressing (4.26) as

(−∆)α/2u
(

sm+ 1
2

)
=

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

N−1

∑
n=0

[ˆ s
n+ 1

2

sn

f
(

sm+ 1
2
, η
) ∣∣∣sm+ 1

2
− η

∣∣∣1−α
dη

+

ˆ sn+1

s
n+ 1

2

f
(

sm+ 1
2
, η
) ∣∣∣sm+ 1

2
− η

∣∣∣1−α
dη

]
,

(4.27)

i.e., we have split [0, π] in intervals In; and each interval In, in two subintervals
[sn, sn+1/2] and [sn+1/2, sn+1]. Then, we approximate f (sm+1/2, η) in those intervals
precisely by its values at the middle points:

f
(

sm+1/2, s(1)2n

)
≈ f (sm+1/2, η), η ∈ [sn, sn+1/2],

f
(

sm+1/2, s(1)2n+1

)
≈ f (sm+1/2, η), η ∈ [sn+1/2, sn+1],

to get

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

[
N−1

∑
n=0

f
(

sm+ 1
2
, s(1)2n

) ˆ s
n+ 1

2

sn

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

+
N−1

∑
n=0

f
(

sm+ 1
2
, s(1)2n+1

) ˆ sn+1

s
n+ 1

2

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

]
.

(4.28)

The integrals in (4.28) can be computed exactly:

K(1)
0,m−n =

ˆ s
n+ 1

2

sn

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

= h2−α sgn(m− n + 1/2)|m− n + 1/2|2−α − sgn(m− n)|m− n|2−α

2− α
,

K(1)
1,m−n =

ˆ sn+1

s
n+ 1

2

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

= h2−α sgn(m− n)|m− n|2−α − sgn(m− n− 1/2)|m− n− 1/2|2−α

2− α
;

86 Chapter 4. Other approaches for the fractional Laplacian on R

observe that K(1)
0,n−m = K(1)

1,m−n. Then, (4.28) becomes

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

[
N−1

∑
n=0

f
(

sm+ 1
2
, s(1)2n

)
K(1)

0,m−n

+
N−1

∑
n=0

f
(

sm+ 1
2
, s(1)2n+1

)
K(1)

1,m−n

]
. (4.29)

In order to be able to apply the fast convolution in the sums, we operate as in (4.21),
i.e., expand f (sm+1/2, s2n

(1)) and f (sm+1/2, s2n+1
(1)) according to their definition in

(4.25) and gather together the terms bearing n and those bearing m− n, which, sim-
ilarly as in (4.22), leads us to define

g(1)0,r ≡ sin1+α
(

s(1)2r

)
uss

(
s(1)2r

)
+ 2 sinα

(
s(1)2r

)
cos

(
s(1)2r

)
us

(
s(1)2r

)
, (4.30)

L(1)
0,r ≡

∣∣∣∣sin(h(r + 1/4))
h(r + 1/4)

∣∣∣∣1−α

K(1)
1,r

= h
∣∣∣∣sin(h(r + 1/4))

r + 1/4

∣∣∣∣1−α sgn(r + 1/2)|r + 1/2|2−α − sgn(r)|r|2−α

2− α
,

g(1)1,r ≡ sin1+α
(

s(1)2r+1

)
uss

(
s(1)2r+1

)
+ 2 sinα

(
s(1)2r+1

)
cos

(
s(1)2r+1

)
us

(
s(1)2r+1

)
, (4.31)

L(1)
1,r ≡

∣∣∣∣sin(h(r− 1/4))
h(r− 1/4)

∣∣∣∣1−α

K(1)
2,r

= h
∣∣∣∣sin(h(r− 1/4))

r− 1/4

∣∣∣∣1−α sgn(r)|r|2−α − sgn(r− 1/2)|r− 1/2|2−α

2− α
,

where, s2r
(1) = sr+1/4 = h(r + 1/4), s2r+1

(1) = sr+3/4 = h(r + 3/4), and in the
definitions of K0,m−n

(1) and K1,m−n
(1), we have replaced m − n by r. In order to

generate efficiently g0,r
(1) and g1,r

(1), for 0 ≤ r ≤ N − 1, we evaluate

g(s) = sin1+α(s)uss(s) + 2 sinα(s) cos(s)us(s) (4.32)

in all the nodes sr
(1), for 0 ≤ r ≤ 2N − 1; the values in odd and even positions form

g0
(1), and g1

(1), respectively. Note also that L1,r = L0,−r. Therefore, (4.29) can be
expressed as the sum of two actual convolutions:

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

[
N−1

∑
n=0

L(1)
0,m−ng(1)0,n +

N−1

∑
n=0

L(1)
1,m−ng(1)1,n

]
. (4.33)

Finally, constructing g̃0
(1), L̃0

(1), g̃1
(1) and L̃1

(1), as in (4.3) and (4.4):

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

[(
L̃(1)

0 ? g̃(1)0

)
m
+
(

L̃(1)
1 ? g̃(1)1

)
m

]
.

4.4. Fast convolution and extrapolation 87

Observe that, in principle, we need to compute the FFT of L̃0
(1), g̃0

(1), L̃1
(1) and g̃1

(1),
but only one single IFFT:

L̃(1)
0 ? g̃(1)0 + L̃(1)

1 ? g̃(1)1 = IFFT(FFT(L̃(1)
0) FFT(g̃(1)0) + FFT(L̃(1)

1) FFT(g̃(1)1)).

Moreover, in some programming languages like MATLAB it is possible to compute
the four FFTs in parallel, after, for instance, creating a matrix whose respective
columns are precisely L̃0

(1), g̃0
(1), L̃1

(1) and g̃1
(1). Furthermore,

FFT(L̃(1)
1) = FFT(L̃(1)

0);

so, the actual number of FFTs is reduced to three, and, depending on the structure
of u, it might be possible to obtain FFT(g̃1

(1)) from FFT(g̃0
(1)) and vice versa.

4.4.1 Refining the mesh

The advantage of the procedure just explained is that we can refine the mesh, while
approximating the fractional Laplacian in the very same nodes sm+1/2. For instance,
if we divide [0, π] in four equally-lengthed subintervals,

(−∆)α/2u
(

sm+ 1
2

)
=

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

N−1

∑
n=0

[ˆ s
n+ 1

4

sn

f
(

sm+ 1
2
, η
) ∣∣∣sm+ 1

2
− η

∣∣∣1−α
dη

+

ˆ s
n+ 1

2

s
n+ 1

4

f
(

sm+ 1
2
, η
) ∣∣∣sm+ 1

2
− η

∣∣∣1−α
dη

+

ˆ s
n+ 3

4

s
n+ 1

2

f
(

sm+ 1
2
, η
) ∣∣∣sm+ 1

2
− η

∣∣∣1−α
dη

+

ˆ sn+1

s
n+ 3

4

f
(

sm+ 1
2
, η
) ∣∣∣sm+ 1

2
− η

∣∣∣1−α
dη

]
.

Therefore, the equivalent of (4.28) is

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

[
N−1

∑
n=0

f
(

sm+ 1
2
, s(2)4n

) ˆ s
n+ 1

4

sn

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

+
N−1

∑
n=0

f
(

sm+ 1
2
, s(2)4n+1

) ˆ s
n+ 1

2

s
n+ 1

4

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

+
N−1

∑
n=0

f
(

sm+ 1
2
, s(2)4n+2

) ˆ s
n+ 3

4

s
n+ 1

2

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

+
N−1

∑
n=0

f
(

sm+ 1
2
, s(2)4n+3

) ˆ sn+1

s
n+ 3

4

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

]
,

88 Chapter 4. Other approaches for the fractional Laplacian on R

where s4n
(2), s4n+1

(2), s4n+2
(2) and s4n+3

(2) are respectively the middle points of
[sn, sn+1/4], [sn+1/4, sn+1/2], [sn+1/2, sn+3/4], and [sn+3/4, sn+1]. Using a more com-
pact notation:

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)
N−1

∑
n=0

3

∑
p=0

f
(

sm+ 1
2
, s(2)4n+p

) ˆ s
n+ p+1

4

s
n+ p

4

∣∣∣sp+ 1
2
− η

∣∣∣1−α
dη, (4.34)

where the integrals can be explicitly computed:

K(2)
p,m−n =

ˆ s
n+ p+1

4

s
n+ p

4

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

= h2−α sgn(m− n + 1/2− p/4)|m− n + 1/2− p/4|2−α

2− α

− h2−α sgn(m− n + 1/2− (p + 1)/4)|m− n + 1/2− (p + 1)/4|2−α

2− α
.

Introducing them into (4.34) and expanding f (sm+1/2, s4n+p
(2)) according to its def-

inition in (4.19), (4.34) is reduced to the sum of four convolutions:

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

N−1

∑
n=0

3

∑
p=0

f
(

sm+ 1
2
, s(2)4n+p

)
K(2)

p,m−n

=
cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

3

∑
p=0

[
N−1

∑
n=0

L(2)
p,m−ng(2)p,n

]
, (4.35)

where

g(2)p,r ≡ sin1+α
(

s(2)4r+p

)
uss

(
s(2)4r+p

)
+ 2 sinα

(
s(2)4r+p

)
cos

(
s(2)4r+p

)
us

(
s(2)4r+p

)
,

L(2)
p,r ≡

∣∣∣∣sin(h(r + 1/2− (2p + 1)/8))
h(r + 1/2− (2p + 1)/8)

∣∣∣∣1−α

K(2)
p,r

= h
∣∣∣∣sin(h(r + 1/2− (2p + 1)/8))

r + 1/2− (2p + 1)/8

∣∣∣∣1−α [sgn(r + 1/2− p/4)|r + 1/2− p/4|2−α

2− α

− sgn(r + 1/2− (p + 1)/4)|r + 1/2− (p + 1)/4|2−α

2− α

]
.

with s4r+p
(2) = sr+(2p+1)/8. In order to generate efficiently gp

(2), one possibility is
to evaluate g(s) in (4.32) in all the nodes sr

(2), for 0 ≤ r ≤ 4N − 1; the first, fifth...
values form g0

(2), the second, sixth... values form g1
(2), etc. On the other hand, it is

immediate to check that L3,r
(2) = L0,−r

(2) and L2,r
(2) = L1,−r

(2). Then, we construct

4.4. Fast convolution and extrapolation 89

g̃0
(2), L̃0

(2), g̃1
(2), L̃1

(2), g̃2
(2), L̃2

(2), g̃3
(2) and L̃3

(2), as in (4.3) and (4.4), to get

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

[(
L̃(2)

0 ? g̃(2)0

)
m
+
(

L̃(2)
1 ? g̃(2)1

)
m

+
(

L̃(2)
2 ? g̃(2)2

)
m
+
(

L̃(2)
3 ? g̃(2)3

)
m

]
.

Moreover, bearing in mind that

FFT(L̃(2)
3) = FFT(L̃(2)

0), FFT(L̃(2)
2) = FFT(L̃(1)

1);

we need sixth FFTs in the worst case, but only one single IFFT.

4.4.2 General refinements of the mesh

The expressions (4.33) and (4.35) can be generalized to a formula involving the
nodes sn

(j) in (4.24), for j ∈ N. Denoting as [(−∆)α/2](j) the corresponding ap-
proximation of the fractional Laplacian, we have:

(−∆)α/2u
(

sm+ 1
2

)
≈ [(−∆)α/2](j)u

(
sm+ 1

2

)
=

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

2j−1

∑
p=0

[
N−1

∑
n=0

L(j)
p,m−ng(j)

p,n

]
, (4.36)

where

g(j)
p,r ≡ sin1+α

(
s(j)

2jr+p

)
uss

(
s(j)

2jr+p

)
+ 2 sinα

(
s(j)

2jr+p

)
cos

(
s(j)

2jr+p

)
us

(
s(j)

2jr+p

)
, (4.37)

L(j)
p,r ≡

∣∣∣∣sin(h(r + 1/2− (2p + 1)/2j+1))

h(r + 1/2− (2p + 1)/2j+1)

∣∣∣∣1−α

K(j)
p,r

= h
∣∣∣∣sin(h(r + 1/2− (2p + 1)/2j+1))

r + 1/2− (2p + 1)/2j+1

∣∣∣∣1−α

[
sgn(r + 1/2− p/2j)|r + 1/2− p/2j|2−α

2− α

− sgn(r + 1/2− (p + 1)/2j)|r + 1/2− (p + 1)/2j|2−α

2− α

]
,

with s2jr+p
(j) = sr+(2p+1)/2j+1 . Note that L2j+1−1−p,r

(j) = Lp,−r
(j). We use again the

fast convolution technique to compute the 2j convolutions in (4.36). The procedure
is identical to that of the previous examples, so we omit the details.

90 Chapter 4. Other approaches for the fractional Laplacian on R

4.4.3 Numerical tests using the fast convolution and extrapolation

In order to test (4.36), we consider again u1(x) + iu2(x) and u3(x) from Section 2.2.
As we said after the definition of the nodes sn

(j) in (4.24), the nodes sn
(j+1) can be

regarded as a refinement of sn
(j), and in general of sn+1/2. Therefore, it is important

to remark that, for different refinements, even if the number of sn
(j) changes with j,

we will always use the same number of nodes sn+1/2 in our numerical experiments.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-6

10
-5

10
-4

10
-3

10
-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.92

1.94

1.96

1.98

2

2.02

2.04

2.06

2.08

2.1

FIGURE 4.5: Left: Errors for [−∆α/2](j)ei2s. Right: Convergence rate.
We have used (4.36) and fast convolution, taking α ∈ {0.01, . . . , 0.99} ∪
{1.01, . . . , 1.99}, N = 128, j = 1, . . . , 5.

We have computed the approximation [(−∆)α/2](j) given by (4.36) of the fractional
Laplacian corresponding to the jth refinement, for different values of j, compared it
with the exact solution, and obtained the discrete L2-norm of the corresponding er-
ror, which we denote E(j). In all the experiments, we have taken N = 128 nodes, and
considered α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}. Observe that, unlike in the pre-
vious examples, we work now with discrete L2-norm, rather than with the discrete
L∞-infinity norm, because the behavior of the error for different j is better appreci-
ated, which is very important in order to adopt the correct extrapolation strategy. In
this regard, recall that, given a vector of n elements, ‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞.

On the left-hand side of Figure 4.5, we plot against α the values of E(j) correspond-
ing to u1(x) + iu2(x) = ei2s, for j = 1, . . . , 5. On the right-hand side of the same
figure, we plot log2(E(j)/E(j+1)); and the results strongly suggest that the conver-
gence rate is equal to 2 when α ∈ (0, 1)∪ (1, 2). We use this fact to apply Richardson
extrapolation [100] to [(−∆)α/2](j). More precisely, we define

[(−∆)α/2](j,j+1) =
22[(−∆)α/2](j+1) − [(−∆)α/2](j)

22 − 1
, (4.38)

and denote as E(j,j+1) the discrete L2-norm of the error of the approximation given
by [(−∆)α/2](j,j+1). On the left-hand side of Figure 4.6, we plot against α the values
of E(j,j+1) corresponding to u1(x) + iu2(x) = ei2s, for j = 1, . . . , 4. On the right-hand
side of the same figure, we plot log2(E(j,j+1)/E(j+1,j+2)). The results are not that

4.4. Fast convolution and extrapolation 91

sharp, but they would suggest that the convergence rate behaves like 3− |α − 1|.
Therefore, we apply Richardson extrapolation a second time, by defining

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.8

2

2.2

2.4

2.6

2.8

3

3.2

FIGURE 4.6: Left: Errors for [−∆α/2](j,j+1)ei2s. Right: Convergence rate.
We have used (4.36) and fast convolution applying Richardson extrap-
olation once, taking α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N = 128,
j = 1, . . . , 4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-11

10
-10

10
-9

10
-8

10
-7

10
-6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3

3.2

3.4

3.6

3.8

4

4.2

FIGURE 4.7: Left: Errors for [−∆α/2](j,j+1,j+2)ei2s. Right: Convergence
rate. We have used (4.36) and fast convolution applying Richardson
extrapolation twice, taking α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N =
128, j = 1, . . . , 3.

[(−∆)α/2](j,j+1,j+2) =
23−|α−1|[(−∆)α/2](j+1,j+2) − [(−∆)α/2](j,j+1)

23−|α−1| − 1
, (4.39)

where [(−∆)α/2](j,j+1) and [(−∆)α/2](j+1,j+2) are given by (4.38). On the left-hand
side of Figure 4.7, we plot against α the values of E(j,j+1,j+2) corresponding to u1(x)+
iu2(x) = ei2s, for j = 1, . . . , 3. On the right-hand side of the same figure, we plot
log2(E(j,j+1,j+2)/E(j+1,j+2,j+3)). The convergence rate vaguely resembles 3 + |1− α|,
but this is not concluding, so we do not apply extrapolation again.

92 Chapter 4. Other approaches for the fractional Laplacian on R

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
-6

10
-5

10
-4

10
-3

10
-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

2.02

2.04

2.06

2.08

2.1

2.12

FIGURE 4.8: Left: Errors for [−∆α/2](j)e−x2
. Right: Convergence rate.

We have used (4.36) and fast convolution, taking α ∈ {0.01, . . . , 0.99} ∪
{1.01, . . . , 1.99}, N = 128, j = 1, . . . , 5.

In what respects the fractional Laplacian of u3(x) = exp(−x2), on the left-hand side
of Figure 4.8, we plot against α the values of E(j), for j = 1, . . . , 5, and, on the right-
hand side of the same figure, we plot log2(E(j)/E(j+1)). As in Figure 4.5, the results
strongly suggest that the convergence rate is equal to 2 when α ∈ (0, 1) ∪ (1, 2). We
use this fact to apply Richardson extrapolation to [(−∆)α/2](j), using (4.38) again.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.5

2

2.5

3

3.5

4

FIGURE 4.9: Left: Errors for [−∆α/2](j,j+1)e−x2
. Right: Convergence

rate. We have used (4.36) and fast convolution applying Richardson
extrapolation once, taking α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N =
128, j = 1, . . . , 4.

On the left-hand side of Figure 4.9, we plot against α the values of E(j,j+1) corre-
sponding to u3(x) = exp(−x2), for j = 1, . . . , 4. On the right-hand side of the same
figure, we plot log2(E(j,j+1)/E(j+1,j+2)), and the results strongly suggest that the
convergence rate is equal to 4− α. At this point, two relevant remarks can be done:
that E(j) seems to have a second-order convergence rate (as in Tables 4.1 and 4.2) for
regular functions and, hence, (4.38) can be safely applied; and that the convergence
rate of E(j,j+1) depends on the chosen function. For instance, in this case, (4.39) is no

4.4. Fast convolution and extrapolation 93

longer valid, and, instead, we have to use

[(−∆)α/2](j,j+1,j+2) =
24−α[(−∆)α/2](j+1,j+2) − [(−∆)α/2](j,j+1)

24−α − 1
,

where [(−∆)α/2](j,j+1) and [(−∆)α/2](j+1,j+2) are again given by (4.38). We have
applied Richardson extrapolation a second time, using this last formula. On the left-
hand side of Figure 4.10, we plot against α the values of E(j,j+1,j+2) corresponding
to u3(x) = exp(−x2), for j = 1, . . . , 3. On the right-hand side of the same figure,
we plot log2(E(j,j+1,j+2)/E(j+1,j+2,j+3)). The convergence rate is not that sharp, but
seems to be of order 4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3

3.5

4

4.5

5

5.5

FIGURE 4.10: Left: Errors for [−∆α/2](j,j+1,j+2)e−x2
. Right: Convergence

rate. We have used (4.36) and fast convolution applying Richardson
extrapolation twice, taking α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N =
128, j = 1, . . . , 3.

With respect to the errors, let us underline that, even without extrapolation, they can
be made arbitrarily small for all α, as we can see on the left-hand sides of Figures
(4.5) and (4.8). On the other hand, unlike the methods in Sections 4.3 and 4.4, we
are not changing the nodes at which we approximate the fractional Laplacian. Fi-
nally, let us mention that further research is needed, in order to prove formally that
second-order convergence is always achieved, and to give an estimate of the error.

4.4.4 Expressing (4.36) as a single summation

In general, it is possible to give a formula equivalent to (4.36) but using only one
summation symbol instead of two. In what follows, we illustrate this for the case
j = 1, but the procedure is identical for larger j. Starting from (4.26), instead of
dividing [0, π] in N intervals In = [sn, sn+1], 0 ≤ n ≤ N− 1, and each of those in two
subintervals [sn, sn+1/2] and [sn+1/2, sn+1], we divide directly [0, π] in 2N intervals

94 Chapter 4. Other approaches for the fractional Laplacian on R

I(1)n = [nh/2, (n + 1)h/2], 0 ≤ n ≤ 2N − 1:

(−∆)α/2u
(

sm+ 1
2

)
=

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

2N−1

∑
n=0

ˆ (n+1)h
2

nh
2

f
(

sm+ 1
2
, η
) ∣∣∣sm+ 1

2
− η

∣∣∣1−α
dη (4.40)

Hence, if we approximate f (sm+1/2, η) in In
(1) by its value at the middle point, i.e.,

f
(

sm+ 1
2
, s(1)n

)
≈ f

(
sm+ 1

2
, η
)

, η ∈ [nh/2, (n + 1)h/2], (4.41)

we get the following approximation numerically equivalent to (4.29)

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

2N−1

∑
n=0

f
(

sm+ 1
2
, s(1)n

) ˆ (n+1)h
2

nh
2

∣∣∣sm+ 1
2
− η

∣∣∣1−α
dη

= h2−α
cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

2N−1

∑
n=0

f
(

sm+ 1
2
, s(1)n

)
[

sgn(m− n/2 + 1/2)|m− n/2 + 1/2|2−α

2− α

− sgn(m− n/2)|m− n/2|2−α

2− α

]
.

Observe however that, unlike in (4.29), it is not completely straightforward to apply
fast convolution to this last expression, so we have discarded it. Moreover, in (4.29),
it is possible to use symmetries to reduce the actual number of FFTs.

4.5 Approximation of the fractional Laplacian using the
fast convolution and the Gauss-Chebyshev quadra-
ture

It is interesting to see what happens if we approximate the integrals in (4.40) by
the midpoint rule, instead of only approximating (4.41) by a constant (and comput-
ing the integral exactly, after extracting the term containing the function f). This is

4.5. Fast convolution and the Gauss-Chebyshev quadrature 95

equivalent to applying a composite midpoint rule directly to (2.12), for α 6= 1:

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

h
2

2N−1

∑
n=0

f
(

sm+ 1
2
, s(1)n

) ∣∣∣sm+ 1
2
− s(1)n

∣∣∣1−α

=
cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

h
2

2N−1

∑
n=0

∣∣∣sin
(

sm+ 1
2
− s(1)n

)∣∣∣1−α

(
sin1+α

(
s(1)n

)
uss

(
s(1)n

)
+ 2 sinα

(
s(1)n

)
cos

(
s(1)n

)
us

(
s(1)n

))
,

(4.42)

where we have expanded f (sm+1/2, sn
(1)) according to its definition in (4.25).

Observe that the composite midpoint rule is nothing other than the Chebyshev-
Gauss quadrature in disguise [106]:

ˆ 1

−1

f (ψ)√
1− ψ2

dψ =
N−1

∑
j=0

ωj f (ψj) + RN, (4.43)

where the nodes are ψj = cos(π(2j + 1)/(2N)), 0 ≤ j ≤ N − 1; the weights are
constant, ωj = π/N; and the remainder is

RN =
π

(2N)!22N−1 f (2N)(τ), τ ∈ (−1, 1). (4.44)

Indeed, under the change of variable ψ = cos(s), (4.43) becomes

ˆ π

0
f (cos(s))ds =

π

N

N−1

∑
j=0

f
(

π(2j + 1)
2N

)
+ RN.

As mentioned at the beginning of Chapter 2, this quadrature formula was used in
[98] to approximate ∂xDα, with Dα given by (2.2), so it is natural to test it for the
fractional Laplacian, too. On the other, in our case, instead of implementing (4.42),
we have applied the midpoint rule to the integrals in (4.27), etc., getting:

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

h
2

[
N−1

∑
n=0

f
(

sm+ 1
2
, s(1)2n

) ∣∣∣sm+ 1
2
− s(1)2n

∣∣∣1−α

+
N−1

∑
n=0

f
(

sm+ 1
2
, s(1)2n+1

) ∣∣∣sm+ 1
2
− s(1)2n+1

∣∣∣1−α
]

.

96 Chapter 4. Other approaches for the fractional Laplacian on R

Then, expanding f (sm+1/2, sn
(1)) and f (sm+1/2, sn+1

(1)) according to (4.25), we get
the following approximation:

(−∆)α/2u
(

sm+ 1
2

)
≈

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

h
2

[
N−1

∑
n=0

∣∣∣sin
(

sm+ 1
2
− s(1)2n

)∣∣∣1−α

(
sin1+α

(
s(1)2n

)
uss

(
s(1)2n

)
+ 2 sinα

(
s(1)2n

)
cos

(
s(1)2n

)
us

(
s(1)2n

))
+

N−1

∑
n=0

∣∣∣sin
(

sm+ 1
2
− s(1)2n+1

)∣∣∣1−α
(

sin1+α
(

s(1)2n+1

)
uss

(
s(1)2n+1

)
+ 2 sinα

(
s(1)2n+1

)
cos

(
s(1)2n+1

)
us

(
s(1)2n+1

))]

≈
cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

[
N−1

∑
n=0

P(1)
0,m−ng(1)0,n +

N−1

∑
n=0

P(1)
1,m−ng(1)1,n

]
, (4.45)

i.e, we obtain a formula resembling (4.33), were g0
(1) and g1

(1), defined respectively
in (4.30) and (4.31), and P0

(0) and P1
(0) are given by

P(1)
0,m−n ≡

h
2

∣∣∣sin
(

sm+ 1
2
− s(1)2n

)∣∣∣1−α
=

h
2
|sin (h(m− n + 1/4)))|1−α

=⇒ P(1)
0,r ≡

h
2
|sin(h(r + 1/4))|1−α ,

P(1)
1,m−n ≡

h
2

∣∣∣sin
(

sm+ 1
2
− s(1)2n+1

)∣∣∣1−α
=

h
2
|sin (h(m− n− 1/4)))|1−α

=⇒ P(1)
1,r ≡

h
2
|sin(h(r− 1/4))|1−α ,

where we have used that sm+1/2 = h(m + 1/2), s2n
(1) = sn+1/4 = h(n + 1/4),

s2n+1
(1) = sn+3/4 = h(n + 3/4). Note that it is straightforward to apply the fast con-

volution to (4.45); since the details are identical to those of the previous examples,
we omit them.

Likewise, it is possible to obtain a formula resembling (4.36); keeping the notation
[(−∆)α/2](j) to denote the approximation corresponding to the jth refinement:

(−∆)α/2u
(

sm+ 1
2

)
≈ [(−∆)α/2](j)u

(
sm+ 1

2

)
=

cα

∣∣∣sin
(

sm+ 1
2

)∣∣∣α−1

Lαα(1− α)

2j−1

∑
p=0

[
N−1

∑
n=0

P(j)
p,m−ng(j)

p,n

]
, (4.46)

4.5. Fast convolution and the Gauss-Chebyshev quadrature 97

where gp
(j) is again defined by (4.37), and, using that s2jn+p

(j) = sn+(2p+1)/2j+1 ,

P(j)
p,m−n ≡

h
2j

∣∣∣sin
(

sm+ 1
2
− s(1)

2jn+p

)∣∣∣1−α

=
h
2j

∣∣∣sin
(

h
(

m− n + 1/2− (2p + 1)/2j+1
))∣∣∣1−α

=⇒ P(j)
p,r ≡

h
2j

N−1

∑
n=0

∣∣∣sin
(

h
(

r + 1/2− (2p + 1)/2j+1
))∣∣∣1−α

.

Again, it is straightforward to apply the fast convolution to (4.46); the details can be
consulted in the previous examples.

4.5.1 Numerical tests using the fast convolution and the Chebyshev-
Gauss quadrature

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-6

10
-4

10
-2

10
0

10
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 4.11: Left: Errors for [−∆α/2](j)ei2s. Right: Convergence rate.
We have used (4.46) and fast convolution applying Richardson, taking
α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N = 128, j = 1, . . . , 5.

As in the previous examples, we have used in the numerical tests u1(x)+ iu2(x) and
u3(x) from Section 2.2. We have computed the approximation [(−∆)α/2](j) given by
(4.46) of the fractional Laplacian corresponding to the jth refinement, for different
values of j, compared it with the exact solution, and obtained, as in Section 4.4, the
discrete L2-norm of the corresponding error, which we denote again E(j). In all the
experiments, we have taken N = 128 nodes, and considered α ∈ {0.01, . . . , 0.99} ∪
{1.01, . . . , 1.99}
On the left-hand side of Figure 4.11, we plot against α the values of E(j) correspond-
ing to u1(x) + iu2(x) = ei2s, for j = 1, . . . , 5. On the right-hand side of the same
figure, we plot log2(E(j)/E(j+1)); and the results strongly suggest that the conver-
gence rate is equal to 2− α when α ∈ (0, 1) ∪ (1, 2). We use this fact to apply again
Richardson extrapolation to [(−∆)α/2](j), defining in this case

[(−∆)α/2](j,j+1) =
22−α[(−∆)α/2](j+1) − [(−∆)α/2](j)

22−α − 1
, (4.47)

98 Chapter 4. Other approaches for the fractional Laplacian on R

and denoting again as E(j,j+1) the discrete L2-norm of the error of the approximation
given by [(−∆)α/2](j,j+1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.8

2

2.2

2.4

2.6

2.8

3

3.2

FIGURE 4.12: Left: Errors for [−∆α/2](j,j+1)ei2s. Right: Convergence
rate. We have used (4.46) and fast convolution applying Richardson
extrapolation once, taking α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N =
128, j = 1, . . . , 4.

On the left-hand side of Figure 4.12, we plot against α the values of E(j,j+1) corre-
sponding to u1(x) + iu2(x) = ei2s, for j = 1, . . . , 4. On the right-hand side of the
same figure, we plot log2(E(j,j+1)/E(j+1,j+2)), which suggest a convergence rate of
3− |α− 1|. Therefore, we apply Richardson extrapolation a second time, by defining

[(−∆)α/2](j,j+1,j+2) =
23−|α−1|[(−∆)α/2](j+1,j+2) − [(−∆)α/2](j,j+1)

23−|α−1| − 1
.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

FIGURE 4.13: Left: Errors for [−∆α/2](j,j+1,j+2)ei2s. Right: Convergence
rate. We have used (4.46) and fast convolution applying Richardson
extrapolation twice, taking α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N =
128, j = 1, . . . , 3.

4.5. Fast convolution and the Gauss-Chebyshev quadrature 99

On the left-hand side of Figure 4.13, we plot against α the values of E(j,j+1,j+2) cor-
responding to u1(x) + iu2(x) = ei2s, for j = 1, . . . , 3. On the right-hand side of the
same figure, we plot log2(E(j,j+1,j+2)/E(j+1,j+2,j+3)), which suggest a convergence
rate of 3 + |1 − α|, but this is not concluding, so we do not apply extrapolation
again.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-6

10
-4

10
-2

10
0

10
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 4.14: Left: Errors for [−∆α/2](j,j+1,j+2)e−x2
. Right: Conver-

gence rate. We have used (4.46) and fast convolution, taking α ∈
{0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N = 128, j = 1, . . . , 3.

In what regards the fractional Laplacian of u3(x) = exp(−x2), on the left-hand side
of Figure 4.14, we plot against α the values of E(j), for j = 1, . . . , 5, and, on the right-
hand side of the same figure, we plot log2(E(j)/E(j+1)). As in Figure 4.11, the results
strongly suggest that the convergence rate is equal to 2− α when α ∈ (0, 1) ∪ (1, 2),
but the results are now even sharper; therefore, we apply Richardson extrapolation
to [(−∆)α/2](j), using (4.47) again.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

FIGURE 4.15: Left: Errors for [−∆α/2](j,j+1)e−x2
. Right: Convergence

rate. We have used (4.46) and fast convolution applying Richardson
extrapolating once, taking α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N =
128, j = 1, . . . , 3.

100 Chapter 4. Other approaches for the fractional Laplacian on R

On the left-hand side of Figure 4.15, we plot against α the values of E(j,j+1) corre-
sponding to u3(x) = exp(−x2), for j = 1, . . . , 4. On the right-hand side of the same
figure, we plot log2(E(j,j+1)/E(j+1,j+2)); the results are extremely sharp and suggest
that the convergence rate is equal to 4− α. Hence, we extrapolate a second time:

[(−∆)α/2](j,j+1,j+2) =
24−α[(−∆)α/2](j+1,j+2) − [(−∆)α/2](j,j+1)

24−α − 1
,

On the left-hand side of Figure 4.10, we plot against α the values of E(j,j+1,j+2) corre-
sponding to u3(x) = exp(−x2), for j = 1, . . . , 3. On the right-hand side of the same
figure, we plot log2(E(j,j+1,j+2)/E(j+1,j+2,j+3)). The convergence rate seems to be of
order 6− α, but it is not completely clear, especially for small values of α, for which,
on the other hand, the errores are smaller than 10−13.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
-14

10
-12

10
-10

10
-8

10
-6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

2.5

3

3.5

4

4.5

5

5.5

6

FIGURE 4.16: Left: Errors for [−∆α/2](j,j+1,j+2)e−x2
. Right: Convergence

rate. We have used (4.46) and fast convolution applying Richardson
extrapolation twice, taking α ∈ {0.01, . . . , 0.99} ∪ {1.01, . . . , 1.99}, N =
128, j = 1, . . . , 3.

In view of the results, we can say that, without extrapolation, it is preferable to use
the method in Section 4.4, because the convergence rate appears to be 2, instead of
2− α. This is valid also when extrapolating only once, because the results of Section
4.4 are acceptable for all α, whereas the results in this section are rather poor for
certain values of α. On the other hand, in both this section and Section 4.4, and
unlike in [98], it is not clear how to extrapolate multiple times. This requires further
research.

4.5.2 Some conclusions and future work

In this chapter, we have considered several different techniques to approximate the
fractional Laplacian, and the common denominator of all of them is the use of the
fast convolution; thanks to it, for a given α, the numerical computations usually
take a fraction of a second. On the other hand, we can divide the techniques in two
types: those for which the points sm+1/2 at which we approximate the fractional

4.5. Fast convolution and the Gauss-Chebyshev quadrature 101

Laplacian (−∆)α/2u (sm+1/2) change when refining the mesh, and those for which
the points do not change (i.e., we are approximating the fractional Laplacian at the
same points in all the refinements). While the former techniques only use the val-
ues of u and its derivatives at sm+1/2, the latter techniques are well suited to apply
Richardson’s extrapolation, at least once. In this regard, we have studied two strate-
gies to approximate (−∆)α/2u (sm+1/2), which yield respectively (4.36) and (4.46).
The most striking fact is that, even if the convergence rate seems to be respectively
2 and 2 − α for regular functions, the convergence order of the extrapolated for-
mulas [(−∆)α/2](j,j+1) and [(−∆)α/2](j,j+1,j+2) does depend on the function used.
Here, more research is needed and we postpone it for the future. However, in view
of the results, it seems safe to use (4.36) even without extrapolation, because the
second-order convergence enables to obtain arbitrarily small errors with a reduced
computational cost.

To finish this chapter, let us enunciate a result that can serve at least as a starting
point to determine the behavior of the error of (4.46) and its equivalent formula
(4.42).

Lemma 4.5.1. Let w(η) ∈ C2m+2([0, π]), such that w(0) 6= 0 and w(π) 6= 0. Given
a, b > −1, we consider the following integral:

I(s) =
ˆ s

0
w(η) sina(s− η) sinb(η)dη, s ∈ (0, π).

Let us approximate it numerically by the midpoint rule, i.e., given a uniform partition of
(0, s) of N equally spaced intevals of size h = s/N,

I(s) = h
N−1

∑
j=0

w̃
(
s, ηj

)
(s− ηj)

aηb
j + E(h), (4.48)

where

w̃(s, η) = w(η)

(
sin(s− η)

s− η

)a (sin(η)
η

)b

,

and ηj = jh + h/2, for j = 0, . . . , N − 1. Then, there exists coefficient Ca,m
j and Cb,m

j , such
that the error E(h) is

E(h) =
2m

∑
j=1

(
Ca,m

j ha+j + Cb,m
j hb+j

)
+ O(hmin{a,b,1}+2m+1), as h→ 0.

The proof is analogous to the one in [135] with a single power in the kernel, instead
of two.

103

Appendix A

Chebyshev Polynomials and Rational
Chebyshev Functions

A.1 The Jacobi polynomials

The Jacobi polynomials Pα,β
n (x) of degree n, n = 0, 1, 2, . . ., depend on the parame-

ters α and β (both > −1). The most immediate way to define them is through their
orthogonality relation:

ˆ 1

−1
Pα,β

n (x)Pα,β
m (x)(1− x)α(1 + x)βdx = 0, m 6= n.

Theses polynomials, also known as hypergeometric polynomials, are also solutions
of the Jacobi differential equation [106]:

(1− x2)
d2y
dx2 + (β− α− (α + β + 2)x)

dy
dx

+ n(n + α + β + 1)y = 0, (A.1)

and have some important particular cases, like the Legendre and Chebyshev poly-
nomials [106], obtained by setting α = β = 0 and α = β = −1

2 , respectively. In the
following pages, we will see some properties of the Chebyshev polynomials, which
constitute the basis of the rational Chebyshev functions. Remark that the proper-
ties that we mention either appear directly in [106], or can be easily derived from
properties contained in [106].

A.1.1 Definition

The Chebyshev Polynomial of the first kind Tn(x) of degree n has the following
explicit trigonometric representation [106]:

Tn(x) = cos(nθ), (A.2)

where x = cos(θ), and x ∈ [−1, 1], or equivalently, θ ∈ [0, π]. The differentiation of
(A.2) with respect to x implies:

T′n(x) =
(

d
dθ

cos(nθ)

)
dθ

dx
=
−n sin(nθ)

− sin(θ)
= n

sin(nθ)

sin(θ)
, (x = cos(θ)), (A.3)

104 Appendix A. Chebyshev Polynomials and Rational Chebyshev Functions

Substituting n by n + 1, this suggests defining the following polynomial of degree
n:

Un(x) =
1

n + 1
T′n+1(x) =

sin((n + 1)θ)
sin(θ)

, (x = cos(θ)), (A.4)

which is called the Chebyshev polynomial of the second kind of degree n [136]. The
first Chebyshev polynomials of the first and second kind are respectively [106]:

T0(x) = 1, U0(x) = 1,
T1(x) = x, U1(x) = 2x,

T2(x) = 2x2 − 1, U2(x) = 4x2 − 1,

T3(x) = 4x3 − 3x, U3(x) = 8x3 − 4x,

T4(x) = 8x4 − 8x2 + 1, U4(x) = 16x4 − 12x2 + 1,

T5(x) = 16x5 − 20x3 + 5x U5(x) = 32x5 − 32x3 + 6x.

Let us mention some special values:

Tn(−x) = (−1)nTn(x), Un(−x) = (−1)nUn(x),
Tn(1) = 1, Un(1) = n + 1,

T2n(0) = (−1)n, U2n(0) = (−1)n,
T2n+1(0) = 0, U2n+1(0) = 0.

A.1.2 Orthogonality property of Tn(x) and Un(x)

The Chebyshev polynomials of the first and second kind are orthogonal on x ∈
[−1, 1], with respective weights (1− x2)−1/2 and (1− x2)1/2 [106]:

ˆ 1

−1

Tm(x)Tn(x)√
1− x2

dx =


0, m 6= n,
π

2
, m = n 6= 0,

π, m = n = 0,

(A.5)

ˆ 1

−1
Um(x)Un(x)

√
1− x2dx =

0, m 6= n,
π

2
, m = n.

A.1.3 Recurrence formulas for Tn(x) and Un(x)

The Chebyshev polynomials of the first and second kind have the following funda-
mental recurrence relation [106], for n = 2, 3, 4, . . .:

Tn+1(x) = 2xTn(x)− Tn−1(x),
Un+1(x) = 2xUn(x)−Un−1(x),

with the initial conditions T0(x) = U0(x) = 1, T1(x) = x and U1(x) = 2x.

A.1. The Jacobi polynomials 105

On the other hand, the recurrence formulas for T′n(x) and U′n(x) are [106]:(
1− x2

) d
dx

(Tn(x)) = −nxTn(x) + nTn−1(x),(
1− x2

) d
dx

(Un(x)) = −nxUn(x) + (n + 1)Un−1(x).

Moreover, there are some other recurrence relations involving both Tn and Un [106]:

Tn(x) = Un(x)− xUn−1(x),
Tn(x) = xUn−1(x)−Un−2(x),

Un−1(x) =
1

1− x2 [xTn(x)− Tn+1(x)] .

A.1.4 The Chebyshev differential equations

From the definitions (A.2) and (A.4), with x = cos(θ), we get immediately [136]:

T′n(x) = n
sin(nθ)

sin(θ)
,

U′n(x) =
sin((n + 1)θ) cos(θ)

sin3(θ)
− (n + 1) cos((n + 1)θ) sin(θ)

sin3(θ)
;

in fact, we have mentioned the former in (A.3), as a way to motivate the definition
of Un(x). Then, the second derivative on each polynomial is expressed as follows:

T′′n (x) = n
sin(nθ) cos(θ)− n cos(nθ) sin(θ)

sin3(θ)
,

U′′n (x) =
[

3 cos2(θ) sin((n + 1)θ)− n(n + 2) sin((n + 1)θ) sin2(θ)

− 3(n + 1) sin(θ) cos(θ) cos((n + 1)θ)
] (

1
sin5(θ)

)
.

Therefore, Tn(x) and Un(x) satisfy respectively the following second-order ODEs:

(1− x2)T′′n (x)− xT′n(x) + n2Tn(x) = 0,

(1− x2)U′′n (x)− 3xU′n(x) + n(n + 2)Un(x) = 0.

A.1.5 Rodrigues’ Formula

Tn(x) and Un(x) can also be defined by means of Rodrigues’ formula [106]:

Tn(x) = (−1)n 2nn!
(2n)!

(1− x2)1/2 dn

dxn

(
1− x2

)n−1/2
,

Un(x) = (−1)n 2n(n + 1)!
(2n + 1)!

(1− x2)−1/2 dn

dxn

(
1− x2

)n+1/2
.

106 Appendix A. Chebyshev Polynomials and Rational Chebyshev Functions

A.1.6 Chebyshev coefficients

Given a continuous function f (x) defined on [−1, 1], there exists a family of coeffi-
cients {an}∞

n=0, such that

f (x) =
∞

∑
n=0

anPn(x), (A.6)

where Pn(x) is either Tn(x) or Un(x), and the coefficients an are the so-called Cheby-
shev coefficients. In the important case, when Pn(x) = Tn(x) and the series (A.6) is
truncated, i.e.,

f (x) =
N−1

∑
n=0

anTn(x),

we can determine a0, . . . , aN−1 by imposing

f (xj) =
N−1

∑
n=0

anTn(xj),

where

xj = cos
(

π(2j + 1)
2N

)
, j = 0, . . . , N − 1,

are the roots of TN. Therefore, we can construct an interpolating polynomial

p(x) =
N−1

∑
n=0

anTn(x),

such that p(xj) ≡ f (xj), and, in general, p(x) ≈ f (x), when x ∈ [−1, 1]. Remark
that the usage of the roots xj of TN in polynomial interpolation minimizes Runge’s
phenomenon [137]. Moreover, if f (x) is sampled at xj, we obtain the corresponding
coefficients an by means of a discrete cosine transform of the values f (xj).

A.1.7 Chebyshev coefficients for differentiation processes

Let us consider an N-degree polynomial p(x) defined as a linear combination of the
Chebyshev polynomials:

p(x) =
N

∑
n=0

anTn(x).

Then, its derivative is an N − 1-degree polynomial that can also be expressed as a
linear combination of those [138]:

p′(x) =
d

dx

(
N

∑
n=0

anTn(x)

)
=

N−1

∑
n=0

a(1)n Tn(x). (A.7)

More precisely, bearing in mind

2Tn(x) =
T′n+1(x)

n + 1
− T′n−1(x)

n− 1
, n = 2, 3, . . . ,

A.1. The Jacobi polynomials 107

we get the following relationship between an and an
(1):

M(1) ·
(

a(1)0 , . . . , a(1)N−1

)T
= (a1, . . . , aN)

T, (A.8)

where

M(1) =



1 0 −1
2

1
4 0 −1

4
1
6 0 −1

6
.

1
2N−4 0 − 1

2N−4
1

2N−2 0
1

2N


.

Furthermore, it is possible to express higher-order derivatives of p(x) as a linear
combination of the Chebyshev polynomials, by applying recursively (A.8). More
precisely, if we denote the Chebyshev coefficients of the kth derivative by an

(k):

p(k)(x) =
dk

dxk

(
N

∑
n=0

anTn(x)

)
=

N−k

∑
n=0

a(k)n Tn(x),

then,

M(k) ·
(

a(1)0 , . . . , a(1)N−k

)T
= (ak, . . . , aN)

T.

We offer M(2), M(3) and M(4):

M(2) =



1
4 0 − 1

6 0 1
24

1
24 0 − 1

16 0 1
48

1
48 0 − 1

30 0 1
80

. . .
. . .

. . .
. . .

. . .
1

4(N−4)(N−5) 0 −1
2(N−3)(N−5) 0 1

4(N−3)(N−4)
1

4(N−3)(N−4) 0 −1
2(N−2)(N−4) 0

1
4(N−2)(N−3) 0 1

2(N−1)(N−3)
1

4(N−1)(N−2) 0
1

4N(N−1)


,

M(3) =



1
24 0 −1

32 0 1
80 0 1

480
1

192 0 −1
320 0 1

196 0 −1
960

1
480 0 −1

240 0 3
1120 0 −1

1680
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1
8(N−6)(N−7)(N−8) 0 −3

8(N−5)(N−6)(N−8) 0 3
8(N−4)(N−6)(N−7) 0 −1

8(N−4)(N−5)(N−6)
1

8(N−5)(N−6)(N−7) 0 −3
8(N−4)(N−5)(N−7) 0 3

8(N−3)(N−5)(N−6) 0
1

8(N−4)(N−5)(N−6) 0 −3
8(N−3)(N−4)(N−6) 0 3

8(N−2)(N−4)(N−5)
1

8(N−3)(N−4)(N−5) 0 −3
8(N−2)(N−3)(N−5) 0

1
8(N−2)(N−3)(N−4) 0 −3

8(N−1)(N−2)(N−4)
1

8(N−1)(N−2)(N−3) 0
1

8N(N−1)(N−2)


,

and

108 Appendix A. Chebyshev Polynomials and Rational Chebyshev Functions

M(4) =



1
192 0 −1

240 0 3
1440 0 −1

1680 0 1
13440

1
1920 0 −1

960 0 3
4032 0 −1

3840 0 1
26880

1
5760 0 −1

2520 0 3
8960 0 −1

7560 0 1
48384

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1

16(N−8)(N−9)(N−10)(N−11) 0 −1
4(N−7)(N−8)(N−9)(N−11) 0 3

8(N−6)(N−7)(N−9)(N−10) 0 −1
4(N−5)(N−7)(N−8)(N−9) 0 1

16(N−5)(N−6)(N−7)(N−8)
1

16(N−7)(N−8)(N−9)(N−10) 0 −1
4(N−6)(N−7)(N−8)(N−10) 0 3

8(N−5)(N−6)(N−8)(N−9) 0 −1
4(N−4)(N−6)(N−7)(N−8) 0

1
16(N−6)(N−7)(N−8)(N−9) 0 −1

4(N−5)(N−6)(N−7)(N−9) 0 3
8(N−4)(N−5)(N−7)(N−8) 0 −1

4(N−3)(N−5)(N−6)(N−7)
1

16(N−5)(N−6)(N−7)(N−8) 0 −1
4(N−4)(N−5)(N−6)(N−8) 0 3

8(N−3)(N−4)(N−6)(N−7) 0
1

16(N−4)(N−5)(N−6)(N−7) 0 −1
4(N−3)(N−4)(N−5)(N−7) 0 3

8(N−2)(N−3)(N−5)(N−6)
1

16(N−3)(N−4)(N−5)(N−6) 0 −1
4(N−2)(N−3)(N−4)(N−6) 0

1
16(N−2)(N−3)(N−4)(N−5) 0 −1

4(N−1)(N−2)(N−3)(N−5)
1

16(N−1)(N−2)(N−3)(N−4) 0
1

16N(N−1)(N−2)(N−3)


.

A.1.8 Differentiation through Chebyshev Matrices

For each N ≥ 1, let the rows and columns of the Chebyshev spectral differentiation
matrix DN of size (N + 1)× (N + 1) be indexed from 0 to N. Then, the entries of
this matrix are [139]

(DN)00 =
2N2 + 1

6
,

(DN)NN = −2N2 + 1
6

,

(DN)jj =
−xj

2(1− x2
j)

, j = 1, . . . , N − 1,

(DN)ij =
ci

cj

(−1)i+j

(xi − xj)
, i 6= j, i, j = 0, . . . , N,

where

ci =

{
2, i = 0 or N,
1, otherwise.

and xj = cos(jπ/N), j = 0, . . . , N are now the points at which the extrema of TN(x)
are located. The following scheme shows this pattern:

−xj

2(1−x2
j)

(−1)i+j

xi−xj

(−1)i+j

xi−xj

2 (−1)j

1−xj

−2 (−1)N+j

1+xj

1
2(−1)N

−1
2(−1)N

DN = −1
2
(−1)i

1−xi
1
2
(−1)N+i

1+xi

2N2+1
6

−2N2+1
6

A.2. Rational Chebyshev Functions 109

Then, if p(x) is a polynomial of degree N,
p′(x0)
p′(x1)

...
p′(xN−1)

p′(xN)

 = DN


p(x0)
p(x1)

...
p(xN−1)

p(xN)

 .

A.2 Rational Chebyshev Functions

The Chebyshev polynomials are usually employed in problems involving finite in-
tervals, but they can still be extremely useful in problems defined on e.g. R or [0, ∞),
by applying a transformation mapping [−1, 1] into an infinite or semi-infinite do-
main (see for instance [54, 140–143]).

A.2.1 Rational Chebyshev Functions on R

On the real line, the rational Chebyshev functions TBn(x), x ∈ R, are defined by [53,
56]

TBn(x) ≡ Tn(ψ) ≡ cos(ns),

where the different domains are related through the following relationships:

x =
Lψ√

1− ψ2
= L cot(s), (A.9)

ψ =
x√

L2 + x2
∈ [−1, 1],

s = arccot(x/L) ∈ [0, π],

with L > 0 a constant chosen arbitrarily; in [53, 54, 109], some suggestions are of-
fered to find a good choice of L; moreover, according to [144], it is convenient to
choose L to be roughly equal to the length scale of the desired solution. By apply-
ing (A.9), it is possible to simplify the programming and also understand special
problems expressed by differential equations on an infinite interval [54]. The first
rational Chebyshev functions are (taking L = 1) [144]:

TB0(x) ≡ 1, TB1(x) =
x

(x2 + 1)1/2 ,

TB2(x) =
x2 − 1
x2 + 1

, TB3(x) =
x(x2 − 3)
(x2 + 1)3/2 ,

TB4(x) =
x4 − 6x2 + 1
(x2 + 1)

, TB5(x) =
x(x4 − 10y2 + 5)

(x2 + 1)5/2 ,

etc. As mentioned in [144], the Chebyshev functions with odd degree are not strictly
speaking rational functions, because of the square root in the denominator; however,

110 Appendix A. Chebyshev Polynomials and Rational Chebyshev Functions

with some abuse of terminology, we will refer to all of them as the rational Cheby-
shev functions on R. Let us also mention that, in [145], a Matlab function is offered
to compute them.

Orthogonality property

The rational Chebyshev functions are orthogonal on R, with weight L/(L2 + x2)
[53] . Therefore,

ˆ ∞

−∞
TBm(x)TBn(x)

(
L

L2 + x2

)
dx =


π, m = n = 0,
0, m 6= n,
π

2
, m = n > 1

Conversion formulas of derivatives for the mapping x = L cot(ψ)

In order to program the rational Chebyshev functions, it is recommended to use the
trigonometric representation, for which some conversion formulas for the deriva-
tives are necessary [53]. More precisely, the first transformations of derivatives for
the mapping x = L cot(s), which converts a rational Chebyshev series in TBn(x)
into a Fourier cosine series in cos(ns), with x ∈ R and s ∈ [0, π], are given by

ux = −sin2(s)
L

us,

uxx =
sin3(s)

L2 [sin(s)uss + 2 cos(s)us] ,

uxxx = −sin4(s)
L3

[
sin2(s)usss + 6 cos(s) sin(s)uss + (6− 8 sin2(s))us

]
,

uxxxx =
sin5(s)

L4

[
sin3(s)ussss + 12 cos(s) sin2(s)usss + (36 sin(s)− 44 sin3(s))uss

+ (24 cos(s)− 48 cos(s) sin2(s))us

]
.

etc. On the other hand, the first transformations of derivatives for the mapping
x = Lψ/

√
1− ψ2, which converts a series of TBn(x) into a Chebyshev series in ψ,

i.e., TBn(x) = Tn(ψ), with x ∈ R and ψ ∈ [−1, 1], are given by

ux =
1− ψ2

L

√
1− ψ2uψ,

uxx =
(1− ψ2)2

L2

[
(1− ψ2)uψψ − 3ψuψ

]
,

uxxx =
(1− ψ2)5/2

L3

[
(1− ψ2)2uψψψ − 9ψ(1− ψ2)uψψ + (12− 15(1− ψ2))uψ

]
,

uxxxx =
(1− ψ2)3

L4

[
(1− ψ2)3uψψψψ − 18ψ(1− ψ2)2uψψψ

+ (75(1− ψ2)− 87(1− ψ2)2)uψψ + (105ψ(1− ψ2)− 60ψ)uψ

]
.

111

Bibliography

1. Kwaśnicki, M. Ten equivalent definitions of the Fractional Laplace Operator.
Fract. Calc. Appl. Anal. 20, 7–51 (2017).

2. Lischke, A. et al. What is the fractional Laplacian? A comparative review with
new results. J. Comput. Phys. 404, 109009 (2020).

3. Pozrikidis, C. The Fractional Laplacian (CRC Press, Boca Raton, FL, 2016).
4. Hilbert, D. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen

In German (Druck und Verlag von B. G. Teubner, Leipzig und Berlin, 1912).
5. Calderón, A. P. & Zygmund, A. On the existence of certain singular integrals.

Acta Math. 88, 85–139 (1952).
6. Calderón, A. P. & Zygmund, A. On Singular Integrals. American Journal of

Mathematics 78, 289–309 (1956).
7. Lu, S., Ding, Y. & Yan, D. Singular Integrals and Related Topics (World Scientific

Publishing Co. Pte. Ltd., 2007).
8. Riesz, M. L’intégral de Riemann-Liouville et le probl`eme de Cauchy. Acta

Math. 81, 1–222 (1949).
9. Samko, S., Kilbas, A. & Marichev, O. Fractional Integrals and Derivatives: Theory

and Applications (Switzerland: Gordon and Breach Science Publishers, 1993).
10. Chen, W. & Holm, S. Fractional Laplacian time-space models for linear and

nonlinear lossy media exhibiting arbitrary frequency dependency. The Journal
of the Acoustical Society of America 115, 1424–1430 (2004).

11. Caffarelli, L. & Silvestre, L. An extension problem related to the fractional
Laplacian. Commun. Part. Differ. Equ. 32, 1245–1260 (2007).

12. Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media: sta-
tistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293
(1990).

13. Metzler, R. & Klafter, J. The random walk’s guide to anomalous diffusion: a
fractional dynamics approach. Phys. Rep. 399, 1–77 (2000).

14. Hilfer, R. in Applications of fractional calculus in physics 87–130 (World Sci. Publ.,
River Edge, NJ, 2000).

15. Sokolov, I. M., Klafter, J. & Blumen, A. Fractional kinetics. Phys. Today 55, 48–
56 (2002).

16. Metzler, R. & Klafter, J. The restaurant at the end of the random walk: recent
developments in the description of anomalous transport by fractional dynam-
ics. J. Phys. A 37, R161–R208 (2004).

17. Treeby, B. E. & Cox, B. T. Modeling power law absorption and dispersion for
acoustic propagation using the fractional Laplacian. The Journal of the Acousti-
cal Society of America 127, 2741–2748 (2010).

18. Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett.
A 268, 298–305 (2000).

112 Bibliography

19. Brockmann, D. & Sokolov, I. Lévy flights in external force fields: from models
to equations. Chem. Phys. 248, 409–421 (2002).

20. Jespersen, S., Metzler, R. & Fogedby, H. C. Lévy flights in external force fields:
Langevin and fractional Fokker-Planck equations and their solutions. Physical
Review E 59, 2736–2745 (1999).

21. Del Castillo-Negrete, D., Carreras, B. A. & V. E. Lynch, V. E. Front dynamics in
reaction-diffusion systems with Levy flights: a fractional diffusion approach.
Physical Review Letters 91, 018302 (2003).

22. Baeumer, B., Kovács, M. & Meerschaert, M. M. Numerical solutions for frac-
tional reaction-diffusion equations. Computers & Mathematics with Applications
55, 2212–2226 (2008).

23. Volpert, V., Nec, Y. & Nepomnyashchy, A. A. Exact solutions in front propaga-
tion problems with superdiffusion. Physica D: Nonlinear Phenomena 239, 134–
144 (2010).

24. Yamamoto, M. Asymptotic expansion of solutions to the dissipative equations
with fractional Laplacian. SIAM J. Math. Anal. 44, 3786–3805 (2012).

25. Chmaj, A. Existence of traveling waves in the fractional bistable equation.
Archiv der Mathematik 100, 473–480 (2013).

26. Gui, C. & Zhao, M. Traveling wave solutions of Allen-Cahn equation with a
fractional Laplacian. Annales de l’Institut Henri Poincaré - Analyse non linéaire
32, 785–812 (2015).

27. Palatucci, G., Savin, O. & Valdinoci, E. Local and global minimizers for a vari-
ational energy involving a fractional norm. Annali di Matematica Pura ed Ap-
plicata 192, 673–718 (2013).

28. Achleitner, F. & Kuehn, C. Analysis and numerics of traveling waves for asym-
metric fractional reaction-diffusion equations. CAIM 6. 25 pages (2015).

29. Achleitner, F. & Kuehn, C. Traveling waves for a bistable equation with non-
local diffusion. Adv. Differential Equ. 20, 887–936 (2015).

30. Akagi, G., Schimperna, G. & Segatti, A. Fractional Cahn-Hilliard, Allen-Cahn
and porous medium equations. J. Differ. Equations 261, 2935–2985 (2016).

31. Ainsworth, M. & Mao, Z. Analysis and approximation of a fractional Cahn-
Hilliard equation. SIAM J. Math. Anal. 55, 1689–1718 (2017).

32. Khader, M. M. & Saad, K. M. A numerical approach for solving the fractional
Fisher equation using Chebyshev spectral collocation method. Chaos Solitons
Fractals 110, 169–177 (2018).

33. Saad, K. M., Khader, M. M., Gómez-Aguilar, J. F. & Baleanu, D. Numerical
solutions of the fractional Fisher’s type equations with Atangana-Baleanu
fractional derivative by using spectral collocation methods. Chaos 29. 023116
(2019).

34. Kolmogorov, A., Petrovsky, I. & Piscounov, N. Study of the Diffusion Equa-
tion with Growth of the Quantity of Matter and its Application to a Biology
Problem. Dynamics of Curved Fronts, 105–130 (1988).

35. Fisher, R. A. The wave of advance of advantageous genes. Annals of Eugenics
7, 355–369 (1937).

36. Danilov, V. G., Maslov, V. P. & Vosolov, K. A. Mathematical modelling of Heat and
Mass Transfer Processes (Kluwer, Dordrecht, 1995).

Bibliography 113

37. Polyanin, A. D. & Zaitsev, V. F. Handbook of Nonlinear Partial Differential equa-
tion (1st Edition) (Chapman & Hall/CRC press, 2003).

38. Starmer, C. et al. Vulnerability in excitable medium: Analytical and numerical
studies of initiating unidirectional propagation. Biophysical Journal 65, 1775–
1787 (1993).

39. Keener, J. & Sneyd, J. Mathematical physiology (Springer, New York, 1998).
40. FitzHugh., R. Impulses and Physiological States in Theoretical Models of

Nerve Membrane. Biophysical Journal 1, 445–466 (1961).
41. Nagumo, J., Arimoto, S. & Yoshizawa, S. An Active Pulse Transmission Line

Simulating Nerve Axon. Proceedings of the IRE 50, 2061–2070 (1962).
42. Schlögl, F., Escher, C. & Berry, R. S. Fluctuations in the interface between two

phases. Physical Review A. 27, 2698–2704 (1983).
43. Mancinelli, R., Vergni, D. & Vulpiani, A. Superfast front propagation in re-

active systems with non-Gaussian diffusion. Europhysics Letters 60, 532–538
(2002).

44. Mancinelli, R., Vergni, D. & Vulpiani, A. Front propagation in reactive systems
with anomalous diffusion. Physica D: Nonlinear Phenomena 185, 175–195 (2003).

45. Cabré, X. & Sire, Y. Nonlinear equations for fractional Laplacians, I: Regular-
ity, maximum principles, and Hamiltonian estimates. Ann. I. H. Poincaré-AN
31, 23–53 (2014).

46. Cabré, X. & Sire, Y. Nonlinear equations for fractional Laplacians II: Existence,
uniqueness, and qualitative properties of solutions. Transactions of the Ameri-
can Mathematical Society 367, 911–941 (2015).

47. Engler, H. On the speed of spread for fractional reaction-diffusion equations.
International Journal of Differential Equations. 16 pages (2010).

48. Cabré, X. & Roquejoffre, J.-M. Propagation de fronts dans les équations de
Fisher-KPP avec diffusion fractionnaire. Comptes Rendus Mathématique. Acadé-
mie des Sciences. Paris 347, 1361–1366 (2009).

49. Cabré, X. & Roquejoffre, J.-M. The influence of fractional diffusion in Fisher-
KPP equations. Commun. Math. Phys. 320, 679–722 (2013).

50. Ilic, M., Liu, F., Turner, I. W. & Anh, V. Numerical Approximation of a Fractional-
In-Space Diffusion Equation. Fractional Calculus and Applied Analysis, An Inter-
national Journal for Theory and Applicatios 6 (2005).

51. Yang, Q., Liu, F. & Turner, I. Numerical methods for fractional partial differ-
ential equations with Riesz space fractional derivatives. Applied Mathematical
Modelling 34, 200–218 (2010).

52. Bueno-Orovio, A., Kay, D. & Burrage, K. Fourier spectral methods for fraction-
al-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014).

53. Boyd, J. P. Chebyshev and Fourier Spectral Methods (2nd Revised Edition) (Dover
Publications, 2001).

54. Boyd, J. P. Spectral Methods Using Rational Basic Functions on an Infinite
Interval. J. Comput. Phys. 69, 112–142 (1987).

55. Tsynkov, S. V. Numerical solution of problems on unbounded domains. A
review. Applied Numerical Mathematics 27, 465–532 (1998).

56. Jovanoski, Z. & Towers, I. Application of rational Chebyshev polynomials to
optical problem. Austral. Mathematical Soc. (2008).

114 Bibliography

57. Frigo, M. & Johnson, S. G. The Design and Implementation of FFTW3. Pro-
ceedings of the IEEE 93, 216–231 (2005).

58. De la Hoz, F. & Vadillo, F. A Sylvester-Based IMEX Method via Differentiation
Matrices for Solving Nonlinear Parabolic Equations. Commun. Comput. Phys.
14, 1001–1026 (2013).

59. Boyd, J. P. The Orthogonal Rational Functions of Higgins and Christov and
Algebraically Mapped Chebyshev Polynomials. Journal of Approximation The-
ory 61, 98–10 (1990).

60. Weideman, J. A. C. Computing the Hilbert transform on the real line. Mathe-
matics of Computation 64, 745–762 (1995).

61. Boyd, J. P. & Xu, Z. Comparison of three spectral methods for the Benjamin-
Ono equation: Fourier pseudospectral, rational Christov functions and Gaus-
sian radial basis functions. Wave Motion 48, 702–706 (2011).

62. Huang, Y. & Oberman, A. Numerical methods for the fractional Laplacian:
A finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084
(2014).

63. Huang, Y. & Oberman, A. Finite difference methods for fractional Laplacians.
arXiv:1611.00164 (2016).

64. Diethelm, K., Ford, N., Freed, A. & Luchko, Y. Algorithms for the fractional
calculus: a selection of numerical methods. Comput. Methods Appl. Mech. En-
grg. 194, 743–773 (2005).

65. Gorenflo, R. & Mainardi, F. Random walk models for space-fractional diffu-
sion processes. Fract. Calc. Appl. Anal. 1, 167–191 (1998).

66. Gorenflo, R., Fabritiis, G. & Mainardi, F. Discrete random walk models for
symmetric lévy–feller diffusion processes. Physica A: Statistical Mechanics and
its Applications 269, 79–89 (1999).

67. Tian, X. & Du, Q. Analysis and comparison of different approximations to
nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal.
51, 3458–3482 (2013).

68. Gao, T., Duan, J., Li, X. & Song, R. Mean exit time and escape probability for
dynamical systems driven by Lévy noises. SIAM J. Sci. Comput. 36, A887–A906
(2014).

69. Duo, S., van Wyk, H. & Zhang, Y. A novel and accurate finite difference meth-
od for the fractional Laplacian and the fractional poisson problem. J. Comput.
Phys. 355, 233–252 (2018).

70. Minden, V. & Ying, L. A simple solver for the fractional Laplacian in multiple
dimensions. arXiv:1802.03770v3 (2018).

71. Fu, H., Ng, M. K. & Wang, H. A divide-and-conquer fast finite difference
method for space time fractional partial differential equation. Computers &
Mathematics with Applications 73, 1233–1242 (2017).

72. Fu, H. & Wang, H. A preconditioned fast finite difference method for space-
time fractional partial differential equations. Fractional Calculus and Applied
Analysis 20 (2017).

73. Pang, H. & Sun, H. Multigrid method for fractional diffusion equations. J.
Comput. Phys. 231, 693–703 (2012).

74. Pang, H. & Sun, H. A superfast-preconditioned iterative method for steady-
state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013).

Bibliography 115

75. Duo, S. & Zhang, Y. Accurate numerical methods for two and three dimen-
sional integral fractional Laplacian with applications. Comput. Methods Appl.
Mech. Engrg. 355, 639–662 (2019).

76. Acosta, G. & Borthagaray, J. A fractional Laplace equation: Regularity of so-
lutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495
(2017).

77. Acosta, G., Bersetche, F. & Borthagaray, J. A short FE implementation for a
2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math.
Appl. 74, 784–816 (2017).

78. Bonito, A., Lei, W. & Pasciak, J. Numerical approximation of the integral frac-
tional Laplacian. Numer. Math. 142, 235–278 (2019).

79. Bonito, A., Borthagaray, J., Nochetto, R., Otárola, E. & Salgado, A. Numerical
methods for fractional diffusion. Comput. Vis. Sci. 19, 19–46 (2018).

80. Zeng, F., Li, C., Liu, F. & Turner, I. The use of finite difference/element ap-
proaches for solving the time-fractional subdiffusion equation. SIAM J. Sci.
Comput. 35, A2976–A3000 (2013).

81. Mao, Z. & Karniadakis, G. A spectral method (of exponential convergence) for
singular solutions of the diffusion equation with general two-sided fractional
derivative. SIAM J. Numer. Anal. 56, 24–29 (2018).

82. Zayernouri, M. & Karniadakis, G. Fractional spectral collocation method.
SIAM J. Sci. Comput. 36, A40–A62 (2014).

83. D’Elia, M. & Gunzburger, M. The fractional Laplacian operator on bounded
domains as a special case of the nonlocal diffusion operator. Comput. Math.
Appl. 66, 1245–1260 (2013).

84. Felsinger, M., Kassmann, M. & Voigt, P. The Dirichlet problem for nonlocal
operators. Mathematische Zeitschrift 279, 779–809 (2015).

85. Ros-Oton, X. Nonlocal equations in bounded domains: A survey. Publ. Mat.
60, 3–26 (2016).

86. Hu, Y., Li, C. & Li, H. The finite difference method for Caputo-type parabolic
equation with fractional Laplacian: One-dimension case. Chaos, Solitons & Frac-
tals 102, 319–326 (2017).

87. Nochetto, R., Otárola, E. & Salgado, A. A PDE approach to fractional diffusion
in general domains: a priori error analysis. Found. Comput. Math. 15, 733–791
(2015).

88. Acosta, G., Borthagaray, J. P., Bruno, O. & Maas, M. Regularity theory and
high order numerical methods for the (1D)-fractional Laplacian. Math. Comp.
87, 1821–1857 (2018).

89. Chen, S. & Shen, J. An Efficient and Accurate Numerical Method for the Spec-
tral Fractional Laplacian Equation. J. Sci. Comput. (2020).

90. Chen, L., Nochetto, R., Otárola, E. & Salgado, A. Multilevel methods for non-
uniformly elliptic operators and fractional diffusion. Math. Comput. 85 (2016).

91. Gao, T., Duan, J., Li, X. & Song, R. Mean exit time and escape probability for
dynamical systems driven by Lévy noises. SIAM J. Sci. Comput. 36, A887–A906
(2014).

92. Kemppainen, M., Sjögren, P. & Torrea, J. Wave extension problem for the frac-
tional Laplacian. SIAM J. Sci. Comput. 35, 4905–4929 (2015).

116 Bibliography

93. Chen, Y., Lei, Z. & Wei, C. Extension Problems Related to the Higher Order
Fractional Laplacian. Acta Mathematica Sinica, English Series 34, 655–661 (2018).

94. Cayama, J., Cuesta, C. M. & de la Hoz, F. A Pseudospectral Method for the
One-Dimensional Fractional Laplacian on R. arXiv:1908.09143 (2019).

95. Cayama, J., Cuesta, C. M. & de la Hoz, F. Numerical Approximation of the
Fractional Laplacian on R Using Orthogonal Families. arXiv:2001.08825 (2020).

96. The MathWorks Inc. MATLAB, Version R2017b 2017. https://www.mathworks.
com.

97. García-Cervera, C. J. An Efficient Real Space Method for Orbital-Free Density-
Functional Theory. Commun. Comput. Phys. 2, 334–357 (2007).

98. De la Hoz, F. & Cuesta, C. M. A pseudo-spectral method for a non-local KdV-
Burgers equation posed on R. J. Comput. Phys. 311, 45–61 (2016).

99. Kilbas, A. A, Srivastava, H. M. & Trujillo, J. J. Theory and Applications of Frac-
tional Differential Equations (Elsevier, 2006).

100. Richardson, L. F. The Approximate Arithmetical Solution by Finite Differ-
ences of Physical Problems Involving Differential Equations, with an Appli-
cation to the Stresses in a Masonry Dam. Philosophical Transactions of the Royal
Society A 210, 307–357 (1911).

101. Krasny, R. A study of singularity formation in a vortex sheet by the point-
vortex approximation. J. Fluid. Mech. 167, 65–93 (1986).

102. Nielsen, N. Handbuch der Theorie der Gammafunction In German (Druck und
Verlag von B. G. Teubner, Leipzig, 1906).

103. Wolfram Research, Inc. Mathematica, Version 11.1 2017. https://www.wolfram.
com.

104. Cody, J. An Overview of Software Development for Special Functions (Springer
Verlag, Berlin, 1976).

105. Jameson, G. A simple proof of Stirling’s formula for the gamma function. The
Mathematical Gazette 99, 68–74 (2015).

106. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions 10th print-
ing with corrections (Dover Publications, 1972).

107. Morton, J. & Silverberg, L. Fourier series of half-range functions by smooth
extension. Applied Mathematical Modelling 33, 812–821 (2009).

108. Huybrechs, D. On the Fourier Extension of Nonperiodic Functions. SIAM J.
Numer. Anal. 47, 4326–4355 (2010).

109. Boyd, J. P. The Optimization of Convergence for Chebyshev Polynomial Meth-
ods in an Unbounded Domain. J. Comput. Phys. 45, 43–79 (1982).

110. Kendall, D. G. A form of wave propagation associated with the equation of
heat conduction. Proc. Cambridge Philos. Soc. 44, 591–594 (1948).

111. Needham, D. J. A formal theory concerning the generation and propagation
of travelling wave-fronts in reaction-diffusion equations. Quart. J. Mech. Appl.
Math. 45, 469–498 (1992).

112. Aronson, D. G. & Weinberger, H. F. Multidimensional nonlinear diffusion aris-
ing in population genetics. Adv. Math. 30, 33–76 (1978).

113. Cuesta, C. M. & King, J. R. Front propagation in a heterogeneous Fisher equa-
tion: the homogeneous case is non-generic. Quart. J. Mech. Appl. Math. 63, 521–
571 (2010).

https://www.mathworks.com
https://www.mathworks.com
https://www.wolfram.com
https://www.wolfram.com

Bibliography 117

114. Aronson, D. G. & Weinberger, H. F. in Partial differential equations and related
topics (Program, Tulane Univ., New Orleans, La., 1974) 5–49. Lecture Notes in
Math., Vol. 446 (Springer, Berlin, 1975).

115. McKean, H. P. Application of Brownian Motion to the Equation of Kolmogorov-
Petrovskii-Piskunov. Comm. Pure Appl. Math. 28, 323–331 (1975).

116. McKean, H. P. A correction to: “Application of Brownian motion to the equa-
tion of Kolmogorov-Petrovskii-Piskunov”. Comm. Pure Appl. Math. 29, 553–
554 (1976).

117. Larson, D. A. Transient bounds and time-asymptotic behavior of solutions to
nonlinear equations of Fisher type. SIAM J. Appl. Math. 34, 93–103 (1978).

118. Henry, D. Geometric theory of semilinear parabolic equations (Springer-Verlag,
Berlin, 1981).

119. Sattinger, D. H. in VII. Internationale Konferenz über Nichtlineare Schwingungen
(Berlin, 1975), Band I, Teil 2 209–213. Abh. Akad. Wissensch. DDR, Abt. Math.–
Naturwissensch.–Techn., No. 4N (Akademie-Verlag, Berlin, 1977).

120. Gallay, T. Local stability of critical fronts in nonlinear parabolic partial differ-
ential equations. Nonlinearity 7, 741–764 (1994).

121. Olmos, D. & Shizgal, B. D. A pseudospectral method of solution of Fisher’s
equation. SIAM J. Numer. Anal. Appl. Math. 193, 219–242 (2006).

122. Olmos, D. & Shizgal, B. D. Pseudospectral method of solution of the Fitzhugh-
Nagumo equation. Math. Comput. Simulation 79, 2258–2278 (2009).

123. Needham, D. J. & Barnes, A. N. Reaction-diffusion and phase waves occurring
in a class of scalar reaction-diffusion equations. Nonlinearity 12, 41–58 (1999).

124. Hamel, F. & Roques, L. Fast propagation for KPP equations with slowly de-
caying initial conditions. J. Differential Equations 249, 1726–1745 (2010).

125. Shampine, L. F., R. C. Allen, J. & Pruess, S. Fundamentals of Numerical Comput-
ing (John Willey & Sons, Inc., 1997).

126. Blumenson, L. A Derivation of n-Dimensional Spherical Coordinates. Am.
Math. Mon. 67, 63–66 (1960).

127. Higgins, J. R. Completeness and Basis Properties of Sets of Special Functions (Cam-
bridge University Press, 1977).

128. Narayan, A. C. & Hesthaven, J. S. A generalization of the Wiener rational basis
functions on infinite intervals: Part I–derivation and properties. Mathematics
and Computation 80, 1557–1583 (2010).

129. Christov, C. I. A Complete Orthonormal System of Functions in L2(−∞, ∞)
Space. SIAM J. Appl. Math. 42, 1337–1344 (1982).

130. Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series
(M.I.T. Press Paperback Series (Book 9), 1964).

131. Johansson, F. Computing Hypergeometric Functions Rigorously. ACM Trans-
actions on Mathematical Software (TOMS) 45, 30 (2019).

132. Advanpix LLC. Multiprecision Computing Toolbox for MATLAB 4.7.0.13560 2019.
http://www.advanpix.com.

133. Ram-Mohan, L. R. Finite Element and Boundary Element Applications in Quantum
Mechanics (Oxford University Press, 2002).

134. Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. Numerical Recipes in For-
tran 77: the Art of Scientific Computing (2nd Edition) (Cambridge University
Press, New York, 1996).

http://www.advanpix.com

118 Bibliography

135. Sidi, A. & Israeli, M. Quadrature methods for periodic singular and weakly
singular Fredholm integral equations. J. Sci. Comput. 3, 201–231 (1988).

136. Rivlin, T. The Chebyshev Polynomials (John Wiley and Sons, New York, 1974).
137. Mathews, J. H. & Fink, K. K. Numerical Methods Using Matlab (4rd Edition)

(Pearson, 2004).
138. Fornberg, B. A Practical Guide to Pseudospectral Methods (Cambridge University

Press, 1998).
139. Trefethen, L. N. Spectral Methods in MATLAB (SIAM, 2000).
140. Parand, K. & Razzaghi, M. Rational Chebyshev tau method for solving higher-

order ordinary differential equations. Int. J. Comput. Math. 81, 73–80 (2004).
141. Parand, K. & Razzaghi, M. Rational Chebyshev tau method for solving

Volterra’s population model. Appl. Math. Comput. 149, 893–900 (2004).
142. Sezer, M., Gulsu, M. & Tanay, B. Rational Chebyshev collocation method for solving

higher-order linear ordinary differential equations (Wiley Online Library, 2010).
143. Yalcinbas, S., Özsoy, N. & Sezer, M. Approximate Solution of Higher Order

Linear Differential Equations by Means of a New Rational Chebyshev Collo-
cation Method. Mathematical and Computational Applications 15, 45–56 (2010).

144. Boyd, J. P. Rational Chebyshev Spectral Methods for unbounded solutions on
an infinite interval using Polynomial-Growth Special Basis Functions. Comput.
Math. Appl. 41, 1293–1315 (2001).

145. Boyd, J. P. Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymp-
totics: Generalized Solitons and Hyperasymptotic Perturbation Theory. Math-
ematics and Its Applications 442 (1998).

	Declaration
	Abstract
	Acknowledgements
	Introduction
	Computation of the fractional Laplacian for regular functions
	Computation of the fractional Laplacian for regular functions
	Equivalent form of the fractional Laplacian for regular functions
	Mapping R to a finite interval
	Discretizing the mapped bounded domain
	An explicit calculation of (-)/2eiks
	Constructing an operational matrix
	Some remarks on the convergence of the method

	Numerical tests
	The fractional Fisher's equation with very slowly varying initial conditions
	Future lines or research
	Generalization of Lemma 2.1.1 to higher dimensions

	Fractional Laplacian on R Using Orthogonal Families
	Fractional Laplacian of the complex Higgins functions
	Fractional Laplacian of other families of functions
	Cases with {0, 1, 2}

	Numerical implementation of (3.4)
	Numerical experiments

	Other approaches for the fractional Laplacian on R
	Numerical convolution and the approximation of singular integrals
	Fast convolution and midpoint rule
	Numerical experiments

	Fast convolution and a regular function in the integrand
	Numerical experiments

	Fast convolution and extrapolation
	Refining the mesh
	General refinements of the mesh
	Numerical tests using the fast convolution and extrapolation
	Expressing (4.36) as a single summation

	Fast convolution and the Gauss-Chebyshev quadrature
	Numerical tests using the fast convolution and the Chebyshev-Gauss quadrature
	Some conclusions and future work

	Chebyshev Polynomials and Rational Chebyshev Functions
	The Jacobi polynomials
	Definition
	Orthogonality property of Tn(x) and Un(x)
	Recurrence formulas for Tn(x) and Un(x)
	The Chebyshev differential equations
	Rodrigues' Formula
	Chebyshev coefficients
	Chebyshev coefficients for differentiation processes
	Differentiation through Chebyshev Matrices

	Rational Chebyshev Functions
	Rational Chebyshev Functions on R
	Orthogonality property
	Conversion formulas of derivatives for the mapping x=Lcot()

