iriried applied
L sciences

Article

Balancing Workload and Workforce Capacity in Lean
Management: Application to Multi-Model
Assembly Lines

Jordi Fortuny-Santos 1*(, Patxi Ruiz-de-Arbulo-Lépez 2(), Lluis Cuatrecasas-Arbés 3 and
Jordi Fortuny-Profités 4

1 Department of Business Management, EPSEM School of Engineering, Universitat Politecnica de Catalunya,

08242 Manresa, Spain

Department of Business Management, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain;
patxi.ruizdearbulo@ehu.eus

Instituto Lean Management, 08172 Sant Cugat del Vallés, Spain; lluiscuat@gmail.com

Arcvi Big Data Agency, 25600 Balaguer, Spain; jordi@arcvi.io

* Correspondence: jordi.fortuny@upc.edu

check for
Received: 4 November 2020; Accepted: 9 December 2020; Published: 10 December 2020 updates

Featured Application: Multi-model assembly line balancing.

Abstract: While multi-model assembly lines are used by advanced lean companies because of their
flexibility (different models of a product are produced in small lots and reach the customers in a short
lead time), most of the extant literature on how to staff assembly lines focuses either on single-model
lines or on mixed-model lines. The literature on multi-model lines is scarce and results given by current
methods may be of limited applicability. In consequence, we develop a procedure to staff multi-model
assembly lines while taking into account the principles of lean manufacturing. As a first approach,
we replace the concepts of operation time and desired cycle time by their reciprocal magnitudes
workload and capacity, and we define the dimensionless term of unit workload (load/capacity ratio)
in order to avoid magnitudes related to time such as cycle time because, in practice, they might not
be known. Next, we develop the necessary equations to apply this framework to a multi-model
line. Finally, a piece of software in Python is developed, taking advantage of Google’s OR-Tools
solver, to achieve an optimal multi-model line with a constant workforce and with each workstation
performing the same tasks across all models. Several instances are tested to ensure the performance
of this method.

Keywords: lean manufacturing; workforce; assembly line; OR-Tools; Python

1. Introduction

Designing efficient assembly processes requires computing the number of people necessary
to accomplish the task and then assigning work elements to operators in an even manner. This is
especially important in a lean management (LM) context, which requires products to be completed
in a just-in-time fashion, without muda (Japanese for wasted resources in non-value-adding work),
muri (people overburden) or mura (workload variation) [1]. Thus, this paper develops a procedure that
balances the scheduled workload with the capacity of a process in order to compute the minimum
number of operators to finish the job in the allowed time (e.g., a workday) and then it determines the
time necessary to complete each model when more than one model is made during the same workday.

“Lean” was the word used by researchers at the Massachusetts Institute of Technology (MIT),
in the 1980s, to describe the efficient plants of Japanese car manufacturers [2]. A fruit of their research

Appl. Sci. 2020, 10, 8829; doi:10.3390/app10248829 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8106-3385
https://orcid.org/0000-0003-4881-0304
http://www.mdpi.com/2076-3417/10/24/8829?type=check_update&version=1
http://dx.doi.org/10.3390/app10248829
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 8829 20f21

was the book “The machine that changed the world” [3], which greatly contributed to the diffusion
of LM among practitioners. LM has its roots in the Toyota Production System (TPS) [3], which was
developed on the basis of two principles: respect for people (or employee engagement) and just-in-time
(JIT) production [4]. For this reason, TPS, JIT and LM are frequently used as synonyms in the literature.
For the purpose of this paper, LM can be defined as a management approach that tries to identify and
remove all types of muda, muri and mura from the business processes in order to increase efficiency,
cut costs and reduce order lead time. LM includes a variety of industrial practices such as single-piece
flow (o1, at least, small lot size), leveling of production (every day a stable mix of different models is
made in order to meet customer demand) and setup time reduction techniques, which allow operators
to quickly move from assembling one model to another [4-7].

An assembly line is a manufacturing process in which parts are added (or operations are performed)
to a succession of products as these products visit workstations successively according to a previously
defined sequence. Usually, workstations are aligned and placed close to one another. Products may
be moved by a conveyor belt or another transportation system between stations. In an assembly
line, workers (or even robots) are assigned specific operations, which they repeat before the product
moves to the next station in the line. The assembly line devised by Henry Ford in the early days of the
twentieth century was intended for one standardized product—the Ford Model T— but, currently,
several models may be assembled on the same line. Consequently, assembly lines are classified either
as “single-model”, “multi-model” or “mixed-model” lines [8]. The single-model line is dedicated to the
production of one single model of an end product (e.g., one type of car engine). In multi-model lines,
different models of an end product are produced separately in batches. For example, in a day; first,
20 units of model A are assembled, one by one; later, as a batch, 30 units of model B are assembled on
the same line, and after that, 15 units of model C are assembled, one after the other, on the same line too.
The operation of a multi-model line frequently includes intermediate setup operations (e.g., time to
change fixtures) between different models. For this reason, it is convenient to make the different models
in batches in order to have small setup times compared to the lot processing time. In mixed-model
lines, different models can be produced in any order [9] and the batch size can be as small as one.
For example, one unit of A; after, one unit of B; and then two units of C. The sequence may be adjusted
to market demand and/or it may try to smooth the demand for upstream components. Obviously,
this manufacturing strategy can only be applied if setup times in between are not significant; otherwise,
more time would be spent in unproductive setup than in assembly work.

We can find multi-model lines somewhere in the evolution from single-model assembly lines to
mixed-model lines. A line that spends all year assembling the same model may evolve and spend
several weeks on model X and then several more weeks on model Y. From the point of view of
LM, large batches of X and Y are sources of muda such as overproduction and inventory, besides
conveying a lot of unevenness. Since the evolution of assembly lines is based on the reduction in lot
size, the reduction in time devoted to each model and the introduction of more models, the following
step is to produce, each day, smaller batches of X and Y, and this is the situation that we analyze in the
greatest part of this paper. The last step, so far, is the mixed-model line, where the batch size is one and
the assembly line tries to meet the mixed-model demand that companies encounter every day.

Currently, in the dawn of Industry 4.0 [8,10], assembly lines continue to be widely used. They have
many advantages but drawbacks too. Based on the principles of specialization and work division [11],
the main benefit of assembly lines comes from the specialization of workers and machines. They perform
repeatedly specific tasks that do not require the ability of a craftsman. Although little training is generally
required—which offers greater employment opportunities—this system allows mass production of
complicated goods such as cars or airplanes, while keeping labor costs low. Although the total assembly
time may be long, the cycle time is usually short. For example, manufacturing a vehicle may take 10 h
but we can see that every hour a vehicle leaves the assembly line [12]. These features are the basis of a
highly efficient system with low costs per unit. In consequence, assembly lines have been adopted
by lean companies because they have proved to be very efficient in the production of standardized

Appl. Sci. 2020, 10, 8829 30f21

products and even in low volume production of customized products [13]. In addition, one-piece

flow avoids different types of muda such as dispensable transport, waiting, unnecessary movements,

excessive work-in-process inventory and lack of quality, while saving floor space and allowing visual

control [5,6,14]. Furthermore, since LM emphasizes the exigency to manufacture a variety of products

in small batches to satisfy customer demand, in times of fierce competition, both mixed-model and

multi-model assembly line problems become highly relevant for academia and industry [13].
Bukchin et al. [15] specified the main drawbacks of assembly lines:

(i) Low flexibility with respect to changes in demand. In addition, when models change, it is
necessary to re-balance the line. Traditional lines were completely inflexible because they were
designed for a single product but, currently, we may have multi-model and mixed-model lines as
described in this paper. They allow production to meet demand.

(ii) Balance loss due to an imperfect balance of the line and stochastic task times, resulting in blockage
(parts have to wait before a workstation) and starvation (workers have to wait) [11].

(iii) Poorly skilled people, poor work environment and poor quality. Luckily, LM gives a lot
of importance to people engagement, which results in cross-training, teamwork and people
committed to quality (or jidoka in Japanese) [4,5].

(iv) High costs of material handling (although this depends on the characteristics of the product)
and high work-in-process, if lines are long. However, work-in-process is always smaller than in
traditional batch-and-queue systems [12].

Additionally, repetitive motions, workers’ postures (especially upper limbs), lifting efforts and the
pace of work may become important threads for the safety and health of assembly workers [10,16],
not to mention that such repetitive and monotonous work is not motivating, does not favor creativity
and may result in alienation. Furthermore, especially in lean factories, continuous work and lack of
buffers result in time pressure and stress [17]. On the other hand, empirical results show that lean
practices create positive environments that offer improved job content, better quality of work and
opportunities for participation and learning [17].

Most of the extant literature on assembly line balancing focuses either on single-model lines or
on mixed-model lines. While the single-model assembly line balancing problem (SMALBP) was the
subject of the earliest studies, currently, research focuses on mixed-model lines. Although multi-model
assembly lines are also used in real companies [18], problems such as staffing and balancing multi-model
lines have not been well studied. Having detected this gap between extant research and industry needs
as an opportunity for research, this paper presents a procedure to staff multi-model assembly lines,
based on the comparison between workload and capacity. The aim of our problem is to determine
the number of workstations or operators so that, given N models, the work elements can be assigned
to workstations (the number of stations being the same for all models), when batches of 7 units
(the desired daily production is known) of each model k = {1. N} are assembled.

The extant literature offers methods such as solving a single “combined” model, which may result
in inapplicable solutions. Furthermore, contrary to the common approach, which postulates that the
cycle time (how often the process generates a piece) is the same for all models and, in consequence, it is
already known, we assume that the cycle time for each model is unknown, as we have encountered in a
real situation. To be coherent with previous assumptions, we consider that the amount of time the line
will spend assembling each model is not known either. In addition, solving each model as a separate
problem may result in different numbers of workstations, whereas companies may prefer a constant
number of operators because it is not convenient to vary the number of operators every time that the
line has to assemble a different model [19], especially if these changes take place during the same shift.

Additionally, we take into account that, despite the huge amount of research on assembly lines,
the number of companies that use mathematical methods to balance their lines is very low. Practitioners
seem to be reluctant to methods that require computational complexity [9] and thus many companies use
only trial and error methods [13,20] such as playing with the sequence using an electronic spreadsheet

Appl. Sci. 2020, 10, 8829 40f21

until the result is satisfactory [21]. Namely, LM relies on visual aids such as stacked bar charts called
yamazumi charts [22]. In this paper, we present a method that was conceived as a simple tool for a
real company and thus it can be implemented on an electronic spreadsheet for the sake of simplicity.
After these steps, tasks are not allocated to workstations yet. The line may be then balanced, for each
model, using exact, heuristic or graphic single-model assembly line balancing procedures. Finally,
although LM relies on multi-skilled operators, we have developed a small computer program using
Google’s OR-Tools solver in order to find a solution where each workstation performs the same tasks
for all models, at the expense of a number of operators above the minimum workforce. We hope our
method helps to bridge the gap between theory and practice and provide better options, results and
performance measures that lead to better decisions.

2. Relevant Literature on Multi-Model Assembly Lines

It was not until the 1950s that researchers became interested in assembly lines [23]. Since then,
a large number of procedures have been developed to solve the assembly line balancing problem
(ALBP) and its different extensions. As it is difficult to use exact methods with large problems because
computers take too long to find the optimal solution [23], research has focused on finding efficient
heuristic and metaheuristic algorithms [24,25].

Even though much work has been conducted on the single-model and mixed-model line balancing
problems, little has been reported in the literature in respect to multi-model lines. The extant literature
on balancing multi-model lines is scarce and the majority of the papers are not recent, as shown in
different reviews [9,13,18,25].

The multi-model assembly line balancing problem was formulated as a linear integer programming
problem [26] but, despite its theoretical interest, this formulation was not practical due to its
computational requirements [20]. Alternatively, others suggest solving a single-model problem
with the help of a combined precedence diagram, which transforms different models into a single
combined model [27]. However, much inefficiency may arise when the solution of the combined model
is applied to the real line [27]. Thomopoulos [28,29] used a combined precedence diagram to model a
mixed-model line and he showed that his method can be applied to “batched” (multi-model) lines [29].
To solve the problem, the station cycle time is set to the shift time and task times are replaced by the
total time required to complete this task in a given model mix that takes into account the amount of
units of each model that have to be assembled [29]. The resulting problem is then solved as a SMALBP.
In addition, Thomopoulos [29] mentioned, as advantages of multi-model lines, that companies can
make batches of products with different cycle times for each model “without major shifts, if any,
in station assignments” when the line changes from one model to another. Furthermore, he affirmed
that it is a bad practice to change the assignment of tasks from one station to another when the line
moves from one model to another model [29]. We are going to take into account these key ideas in this
paper in order to staff and balance multi-model lines with a constant number of operators, without
switching tasks from model to model.

Other papers suggest that multi-model lines, especially for large lots, can be balanced separately
for each model [13,30-32]. Another option is to study each model in an independent way. Then,
common configurations are selected as feasible configurations for all models [33]. This method is
limited to few models and cases with long setup times. Roser [34], besides suggesting balancing the
line separately for each model, also proposed either balancing the line for only the most frequent model
or computing, for each task, a weighted average performance time taking into account the quantities
to be produced. As a drawback, when models are studied separately, each resulting line may need a
different number of operators [13].

Although metaheuristic techniques are mainly applied to mixed-model lines, a few works
use them in multi-model lines [35,36]. Finally, unlike our paper, which focuses on computing the
number of workstations of a generic, single-piece flow, manual, multi-model assembly line, some
researchers optimized specific scenarios. Among them, we can mention the study of a line with

Appl. Sci. 2020, 10, 8829 50f 21

common tasks (for several models) with the same performance time [37] or the study of a multi-model
(or multi-product) line as if it was a single-product line, without focusing on the number of stations [38].

3. Materials and Methods: Workforce Capacity and Workload

3.1. A Few Definitions

In LM, the first step to balance a single-model assembly line is to compute customer fakt time
(IT) as in Equation (1). Takt time is the ratio of the effective working time (or net available time AT) to
the number of units () to be produced during that time [5,39]. This conveys the lean principle that
tasks on the shop floor are synchronized with a beat set by the customer: the takt time is the maximum
amount of time that can elapse between two consecutive units in order to meet demand.

_AT
q

TT 1)

In this paper, the term “cycle time of a process” (such as an assembly line) refers to the time elapsed
between two consecutive unit completions (at the end of the line) and “cycle time of a workstation” is
the amount of time elapsed between two consecutive units exiting the station. Since the cycle time
of a serial line process equals the longest cycle time of the workstations [12], the longest station time
(sum of the task times assigned to the station) of the assembly line cannot be above the takt time [39] or
desired cycle time. In practice, in order to compensate unexpected stoppages, the desired cycle time
may be set below the takt time.

When the fakt time (or desired cycle time) is known, the theoretical minimum number of
workstations (w) is simply computed according to Equation (2) [5], where OT is the total operation
time per workpiece (the sum of task times ¢;).

w = or = & (2
T IT

Finally, tasks are assigned to workstations so that the resulting station times are never above the
takt time. As an elemental task cannot be split between two workstations, the resulting number of
workstations may be greater than w.

Since we assume that, in a multi-model line, the desired number of units of each model is known,
because it is related to customer demand, but the time the line will be devoted to each model is
unknown, in the following sections, we report a new framework to staff production systems that
relies on the concepts of workload and capacity. When an operator, a workstation or an assembly
line are assigned a job to do, we can say that they are given a certain workload. We can define the
workload (e.g., of a workstation) as the amount of work assigned to such workstation per time unit
(e.g., production in parts per day or man-hours per day). The capacity of a workstation is defined as
the amount of work that a workstation can process per time unit [34]. In this paper, without loss of
generality, we assume that a workstation is operated by one person at a time. Equation (3) describes
the capacity that a given workstation requires to perform operation i on model k (CPj) in terms of how
many times an operation that requires ¢; time units can be repeated in the available time (AT).

CPy = = ®)
ik

While extant line balancing methods are aimed at achieving similar station times for all
workstations with values close to, but always below, the desired cycle time, in our approach, since the
cycle time is not known, we balance capacity against workload in search of similar load/capacity ratios
for each workstation, with station workload being less than or equal to station capacity. For this
reason, the load/capacity ratio is defined as a dimensionless magnitude that we name unit workload of
operation i on model k (Wuj) or, in consequence, the unit workload that bears a certain workstation

Appl. Sci. 2020, 10, 8829 6 0f 21

that has to perform task i on model k. This is the ratio of the desired production of model k (gx) to the
capacity CPj of the workstation, both gx and CPj being measured in parts per day (Equation (4)).

In the TPS, since its conception in the 1950s, the term heijunka (translated as production leveling)
refers to distributing the production of different models evenly over a time period (e.g., a day) and
entails, beyond the traditional line balancing approach, the concept of leveling or equating the work
load to be performed to the capacity of operators or machines to complete that work [40]. Hence,
the concepts that we operationalize in this paper stem from the very heart of LM. In Equation (4),
workload becomes related to capacity and time units are avoided. If we examine Equations (1) and (3)
together, we realize that load (q) and takt time (or desired cycle time) are reciprocal concepts as well as
capacity and operation time (or station time). For this reason, an analysis based on load and capacity is
equivalent to the traditional study based on operation time and cycle time [41].

Wuj = —— 4)

In Equation (5), the time that a given workstation spends (e.g., during the day or available time AT)
performing task i in the production of model k (TP;)—simply computed as gi times the operation time
tik—becomes related to capacity (CPj), by means of Equation (3), and especially to the unit workload
of the workstation (Wuy), thanks to Equation (4). This way, temporal magnitudes may be regained
when necessary. In Equation (5), Wuj can be isolated and then described as a fraction of the available
time (Equation (6)).

AT
TPy = ti gy = Cpy M= AT W ®)
1
TP;
Wy = A—,}k (6)

According to its definition, when Wu; <1, an operator is enough to complete a given job within
the time allotted. If Wuj;, < 1, there is some idle time, and more operations could be assigned to the
operator. Alternatively, if Wu; > 1, more people are necessary to complete the task. This approach is
not only valid for assembly lines. Regardless of the type of layout or manufacturing strategy, the value
of Wuj, (rounded up to the next integer, if part-time work is not considered) gives the theoretical
minimum number of operators (w) to complete the scheduled work.

3.2. From Single-Model to Multi-Model Production

As stated above, Equations (1) and (2) show the first steps to compute the necessary workforce for
a single-model assembly line. If k models are considered (in different single-model lines), Equations (1)
and (2) can be combined to create Equation (7), which determines the theoretical minimum number of
workstations (wy) for each model or line.

OT,
wy = fik'A—Tk ()

Since the aim of this paper is to apply our framework to determine the minimum number of
operators in situations that involve assembling multiple models with a constant workforce, wy becomes
w, a common value for all models (Equation (8)). In consequence, AT has to be replaced by the time
the system will theoretically spend assembling the gi units of a specific model (TPy) (Equation (8)).
TPy becomes isolated in Equation (9) but it will be better described in Equation (14) because the second
factor in Equation (9) represents that work elements can be split between operators, which is not the
common case.

W= QTs ®)

©)

Appl. Sci. 2020, 10, 8829 7 0f 21

3.3. Computing the Required Workforce

Now the necessary concepts have been defined, this section describes the following steps to
find w and TPy. The process is illuminated with a numerical example. Let us consider an assembly
process—although the example could be extended to other types of operations—where only two
operations, X and Y, exist (and X precedes Y). Several units of two different models (A and B) are
assembled each day. In Table 1, the amount of work (or workload) corresponding to the daily
production (g;) is measured in man-hours per day for each operation and model. Notice that if the
load gy is measured in parts, its value is common across the assembly process, while if it is measured in
man-hours, it may be different for each operation and g; must be used instead of gx. Let us assume that
the available time is one eight-hour shift and that each operator’s labor capacity is eight man-hours
per shift. Equation (4) is used to compute unit workload per operation and model (Wuj).

Table 1. Unit workload per operation (Wu;;) and per model (TWuy) and total load (TWu).

Operation X Operation Y Total Unit

Load Unit Load Unit Workload

ni nr
- - Model
Model (k) }(I“;IS;‘S) Workload }(11\;131) Workload Wi = % Wi
- 1
. Wi = qix/CPi i Wi = qix/CPi
1 1
Model A (1) 48 48/8 =6 16 16/8 =2 6+2=38
Model B (2) 8 8/8=1 24 24/8 =3 1+3=4
Total multi-model unit workload TWu = ZTWuy = 12

Each worker’s capacity (CPj) is 8 man-hours per day.

Next, the total unit workload per model (TWuy) and the total multi-model unit workload of the
system (TWu) are computed according to Equations (10) and (11). This way, the unit workloads of
different processes are added to compute the unit workload of a multi-model system. Since the total
multi-model unit workload (TWu) in Table 1 is twelve (twelve times what a person can perform in a
day), the minimum number of employees to complete the task in the allowed time is twelve (Equation
(12)). The ceiling function - is used to return the smallest integer greater than or equal to TWu if TWu is
not a whole number.

TWuy, = Z Wiy, (10)
i

TWu =) TWuy (11)
k

w=TWu = Z Z Wiy, (12)
k i

Now, our procedure redistributes the workforce capacity in order to complete the jobs in eight
hours assuming a constant team of 12 cross-trained workers. Asterisks represent new values after
w has been found. We assume that the system is in steady state so all operators can start working
immediately with no wait.

The plant just needs a fraction of the day to complete model A since its new labor capacity
(CP* = 12) is greater than any model’s workload (TWuy). This way, capacity is adjusted to the desired
workload. Equation (13) is derived taking into account that the time devoted to a model (TPy) is
inversely proportional to the available capacity (CP*) and Equation (13) admits that the time devoted
to each model has to be proportional to its relative workload. Since the job to perform has not changed,
the real workload is not CP*; but it remains constant (TWu*, = TWuy) within the scheduled time TP.
In our numerical example, according to Equation (14), a crew of twelve operators will be producing
model A during 8/12 (TWua/TWu) of the available time or TP, = 5 h and 20 min. Throughout the rest
of the day, the plant will be producing model B.

TWu;-AT = CP;-TP; (13)

Appl. Sci. 2020, 10, 8829 8 of 21

TWuk

TPe= T

Next, we want to assign some of the 12 operators to operation X (wxa) and the rest to Y (wya).

The values of the unit workload (Wu*;4) have to be computed again (Equation (15)) because the time
devoted to model A is TP, instead of AT.

AT (14)

N TWu Wuik
Wi = Wuik = TWuk'Wuik = TWu'TWuk

(15)

Since the unit workload (Wu*;4) is 9 for product A (according to Equation (15)), operation X
requires nine operators (wxa = 9) during TP, and three operators will be assigned to operation Y.
If Wu*j is not a whole number, one of the operators in charge of one operation might help with the
other operation for a while, as described by Monden [5]. Otherwise, the company should consider
several alternatives: (i) that task would be assigned to the fastest workers; (ii) overtime; (iii) as lean
manufacturing is based on continuous improvement and problem solving [33], this would be an
opportunity for re-designing that task; and (iv) another operator might be added. If Equation (15) is
now applied to model B, three people are assigned to operation X and nine to operation Y. As the
number of operators performing X or Y depends on the model, at least six cross-trained people would
be necessary to complete the task with a constant workforce of 12 people.

Before attempting the design of a multi-model assembly line in Section 4, let us rewrite Equation (15)
in terms of capacities and total unit workload of the system (Equations (4) and (10)), as shown in
Equation (16). Then, the capacity provided by the operators is adjusted to the workload (Equation (17)),
with the same number of operators (w) for all models, as desired [41].

T 1
. TWu CPy CPy TWu 1
Wuik = Wuik'm = TWM—qk = TWu- 1 = 1 CP (16)
k Li CPy Li CPy Li CPy ik
—pr . _ Wy | YiWuy
w=CP, = 21- W, = Zi:(TWu TWuk) = TWu St = TWa ik (17)

Taking into account the changes in Wu*j, Equation (4) may be rewritten as Equation (18).
This allows computing the amount of units of model k that can go through operation i per time unit
(9%). We can rename g% as Py (for daily production rate) and then isolate it in Equation (18) and
combine it with Equations (4) and (15) in order to relate the daily production capacity of that model
(Pix) with its scheduled production (gx) (Equation (19)). Equation (19) is the expression of a correctly
balanced system, with a common rate for all operations, because it does not depend on i.

Te
Wil = —— 1
Uit CPy, (18)
" ka Jk TWu .
P,’k = Wuik-CPik = TWM'TW;k-Wuik = TWuy Jk Vi (19)

4. Staffing a Multi-Model Assembly Line

4.1. Problem Statement

In this section, we show how our method based in workforce capacity and workload, described in
Section 3, is applied to staffing a multi-model assembly line. Without loss of generality, the procedure
is illustrated with a small example in order to avoid large amounts of numbers. However, the method
was designed to compute the necessary workforce for the multi-model assembly lines of a production
plant that assembled cell phones—one million units per year—computer monitors and DVD players.

Appl. Sci. 2020, 10, 8829 90f 21

With a turnover of EUR 800 million, the plant provided employment to around 900 employees and it
implemented LM to improve its operational performance.

Let us assume that the company wants to assemble three different models (Alpha, Beta and
Gamma) of a certain device, such as a cell phone, in a multi-model assembly line. To approach LM,
the company wants to maintain a daily production schedule [42]. Although production is arranged
into model-specific lots, this approach reduces inventories, adds flexibility and focuses on process flow.
The estimated monthly demand (Table 2) is divided by the number of working days in the month (22)
so that production of each model is repeated once a day in the amounts shown in Table 2.

Table 2. Daily schedule.

Model Demand per Month Daily Production (gy) I;zdg::ilgrr:
(k) (Units/Month) (Units/Day) I _Pq T30
k= k
1 Alpha 30,800 1400 4/7
2 Beta 15,400 700 2/7
3 Gamma 7700 350 1/7
Total 53,900 2450 1

Single tasks or work elements to assemble each model are identified by a number in Table 3.
Task times are known constants, but they may have different values for different models (and some
models may skip some tasks). Usually, time studies with a stopwatch are used to obtain these
values [43]. Stopwatches used in work studies enable timing in different formats such as decimal
minutes or decimal hours, but we consider that seconds are precise enough for our study. Anyway,
this does not affect either the generalization or the performance of the methods described in this paper.
This paper assumes that resources are homogeneous and thus the duration of tasks does not depend
on the stations to which they are assigned and any task can be carried out at any station [24].

Table 3. Task times for each model ¢j; (s/unit).

Task Alpha Beta Gamma

1 6.0 5.0 8.0
2 7.0 11.0 13.0
3 4.0 6.0 -
4 5.0 5.0 5.0
5 5.0 3.0 2.0
6 2.0 1.0 4.0
7 4.0 1.0 3.0
8 7.0 4.0 13.0
9 3.0 4.0 1.0
10 1.0 1.0 1.0
11 10.0 11.0 8.0
12 1.0 - 3.0
Sum 55.0 52.0 61.0

4.2. Solution for a Combined Equivalent Model

In order to find a solution that could be later compared to our method, we created a combined
precedence diagram with all the precedence relationships for Alpha, Beta and Gamma (Figure 1) [27].
This procedure transforms the different models into a combined model that we named “Omega”.
Taking into account the values of wy in Table 2, a weighted average task time (Equation (20)) was
computed, for each work element (t;), for the product Omega [11,34]. Resulting values are in Figure 1.

Yo (trewy)

ti = (20)
Zizl Wi

Appl. Sci. 2020, 10, 8829 10 of 21

4.0 2.0 7.0
3 6 |— 8
6.0
1
5.0 3.0 3.0 10.0 1.0
4 7 9 11 12
9.0 4.0 1.0
2 5 10

Figure 1. Precedence relationships between tasks for “combined” model Omega. Values above the
squares are task times (in seconds).

According to Section 3.1, a common takt time (11.76 s) and the theoretical minimum number of
workstations (4.7, rounded up to 5) for model Omega were computed with Equations (1) and (2).
Integer linear programming (ILP) was used to find the optimal solution of the SMALBP for model
Omega [44]. Table 4 shows that the optimal solution requires six workstations and involves eleven
seconds of idle time per part, but this result might not be feasible in practice because, for model Gamma,
some work elements would exceed the takt time.

Table 4. Tasks assigned to workstations.

Workstation Tasks Station Time (*)
() @) (s)

1 14 11.0
2 2 9.0
3 3-5-6 10.0
4 7-8 10.0
5 9-10 4.0
6 11-12 11.0

* For model Omega.

4.3. Computing Manpower through Workload and Capacity

In this section, the problem presented in Section 4.1 is going to be solved with our method.
The necessary equations have been implemented in Tables 3 and 5, Tables 6-8 on an electronic
spreadsheet. In Table 5, we compute (with Equation (3)) how many times each work element i for
each model k could be repeated in a day (i.e., CPj). We assume that the daily available time (AT) is
8 h (or 28,800 s). Changeover time is omitted because, in lean companies, setup times are usually
small [45]. Otherwise, all sorts of non-productive time should be deducted from the available time.

Appl. Sci. 2020, 10, 8829 110f 21

Table 5. Capacity and unit workload for each task and each model.

Model (k): Alpha (1) Beta (2) Gamma (3)
Daily Volume g; 1400 Units 700 Units 350 Units
Task Capacity Unit Capacity Unit Capacity Unit
@) (Units/Day) Load (Units/Day) Load (Units/Day) Load
Cpik Wuik Cpik Wu,-k Wpik Wuik
1 4800.0 0.292 5760.0 0.122 3600.0 0.097
2 4114.3 0.340 2618.2 0.267 22154 0.158
3 7200.0 0.194 4800.0 0.146 - 0.000
4 5760.0 0.243 5760.0 0.122 5760.0 0.061
5 5760.0 0.243 9600.0 0.073 14,400.0 0.024
6 14,400.0 0.097 28,800.0 0.024 7200.0 0.049
7 7200.0 0.194 28,800.0 0.024 9600.0 0.036
8 4114.3 0.340 7200.0 0.097 2215.4 0.158
9 9600.0 0.146 7200.0 0.097 28,800.0 0.012
10 28,800.0 0.049 28,800.0 0.024 28,800.0 0.012
11 2880.0 0.486 2618.2 0.267 3600.0 0.097
12 28,800.0 0.049 - 0.000 9600.0 0.036
TWuk = ZWuy 2.674 1.264 0.741

Total multi-model unit load (TWu) = XTWuy = 4.679

Table 6. Reciprocal values of the required capacity per task and model 1/CPj.

Task (i) Alpha Beta Gamma
1 0.00021 0.00017 0.00028
2 0.00024 0.00038 0.00045
3 0.00014 0.00021 0
4 0.00017 0.00017 0.00017
5 0.00017 0.00010 0.00007
6 0.00007 0.00003 0.00014
7 0.00014 0.00003 0.00010
8 0.00024 0.00014 0.00045
9 0.00010 0.00014 0.00003
10 0.00003 0.00003 0.00003
11 0.00035 0.00038 0.00028
12 0.00003 0 0.00010
X (1/CPy) 0.00191 0.00181 0.00212
TWu/.Z(l/ CPi) 2450.00 2591.35 2209.02
(units/day)

Values of 1/CPj in days/unit.

In Table 5, each task’s unit workload (Wu) is computed according to Equation (4). Unit loads for
the operations of a product are summed (Equation (10)) in order to know the theoretical unit workload
(TWuy) of each model. These values, according to Equation (12), would be the minimum number
of workstations in separated single-model lines. Finally, we add these quantities to obtain the unit
workload of the line (TWu) (Equation (11)). Since TWu is 4.679, the multi-model line requires, at least,
five workstations (Equation (12)) and this value has been computed without resorting to the concept of
cycle time.

In previous lines, each task’s unit workload (W) was computed as if each model was made in a
different line during an eight-hour shift, but now it is necessary to compute their new values (Wu*j)
for the multi-model line. They are calculated with Equation (16), for each task and model. On the
spreadsheet, this has been conducted in accordance with the following steps: first, the reciprocal values
of the capacity (1/CPj) are computed (Table 6); next, the unit workload of the line (TWu) is divided
by the sum of the reciprocal values of the capacity for each model. As it will be proven in Equation

Appl. Sci. 2020, 10, 8829 12 0f 21

(21), these values represent the daily capacity of the line for each model (e.g., the five-station line can
assemble up to 2209 units of model Gamma in a day). Finally, the daily capacity is multiplied by the
reciprocal values of the capacity in order to compute the new unit workloads (Wu*j) (which can be
found in Table 7). For each model, the sum of its operations’ loads provides the total workload (TWuy)
(see Table 7, bottom row), which remains unchanged.

Table 7. New unit workload (Wu*) per task and model.

Task (i) Alpha Beta Gamma
1 0.51042 0.44989 0.61362
2 0.59549 0.98975 0.99713
3 0.34028 0.53986 0
4 0.42535 0.44989 0.38351
5 0.42535 0.26993 0.15340
6 0.17014 0.08998 0.30681
7 0.34028 0.08998 0.23011
8 0.59549 0.35991 0.99713
9 0.25521 0.35991 0.07670
10 0.08507 0.08998 0.07670
11 0.85069 0.98975 0.61362
12 0.08507 0 0.23011

TWuy = Wik, 4.679 4.679 4.679

Table 8. Expected performance of the multi-model line.

Production Production

Model Unit Load Time Rate Dal(ll}}r?i:lst)lmt
(k) TWuy, (min/Day) (Units/Day) p
TP; P; k
Alpha 2.674 274.0 2450.00 1400
Beta 1.264 130.0 2591.35 700
Gamma 0.741 76.0 2209.02 350
Total 4.679 480.0 - 2450

Equation (14) is used to estimate (in Table 8) the lapse of time the multi-model line has to be
devoted to each model (TP) based on data from Table 5. Again, these values have been found without
reference to any cycle time. The daily production rate (Pj) or daily capacity is also calculated for each
model with Equation (19). The resulting quantities (see Table 8) equal the values in the bottom row in
Table 6, as Equation (21) confirms. Equation (21) is Equation (19) but Wu*j; has been replaced by its
expression in Equation (16).

TWu 1 TWu

Py = Wil CPy = — 1o .CPpy = —

(21)

For each model, the daily output of the line (Px) has to be proportional to the assembly rate
(Pjxr—which is common for all 7)) and to the production time (TPy). These relationships are modeled
with Equation (22). Resulting values of P can be found in Table 8. They match each model’s scheduled

production (gx) in Table 2.
TPy

Pe= Py o=

(22)

4.4. Balancing the Multi-Model Line

The last step to design a line is the assignment of tasks to workstations [46]. Each model (k) can
be considered as a separate SMALBP because the time devoted to each product (TPy) is now known

Appl. Sci. 2020, 10, 8829 13 of 21

(as well as the minimum number of workstations). Therefore, each model can be solved using yamazumi
charts, heuristics or exact methods. In our example, in order not to miss the optimal solution, ILP was
used, model by model. Expression (23) is the multi-model objective function and Equations (24)—(27)
show linear constraints. Each variable x;; (or xy,;) is 1 if task 7 is assigned to workstation j. Otherwise,
x;j is zero. Twelve tasks (|I| = 12) and up to six (|J| = 6) possible workstations are considered in the
model because the required number of workstations might not be the theoretical minimum value. If we
compare Equation (25) with Baybars” model [44], workload values (Wu*j) found in previous sections
are used instead of task times and the capacity of each workstation (E;) replaces the cycle time of the
line. E; may be either zero or one (one operator), depending on whether the station is necessary or not
in that line. Table 9 displays the optimal solution for each model. The result shows that, for every
model, all work elements are assigned to five workstations or operators.

Objective function : Min Z E; (23)
j
Subject to
Z xl-]- =1Vi (24)
j
Y Wiex; < EjVj (25)
i
Z joxij < Z joxnj Vi Vi < h (26)
j j
Ej+1 < E]' Vj (27)

To measure the efficiency of a multi-model line, we develop Equation (28) in terms of load and
capacity [34]. In our example, since the total multi-model unit workload of the system (TWu) is 4.68
and the capacity (w) is 5, the efficiency is 0.936 or 93.6 percent.

Wu
w

Ef ficiency = z -100 (28)

Table 9. Assignment of tasks to workstations.

Model (k): Alpha Beta Gamma
Workstation Tasks Unit Load Tasks Unit Load Tasks Unit Load
(]) @) ZWu*ik (O] XWu *ik @) XWu *ik
1 14 0.94 14 0.90 14 1.00
2 2-3 0.94 2 0.99 2 1.00
3 5-6-7 0.94 3-5-6-7 0.99 5-6-7 0.69
4 8-9-10 0.94 8-9-10 0.81 8 1.00
5 11-12 0.94 11 0.99 9-10-11-12 1.00

4.5. Optimizing the Assignation

The results in Section 4.4 are very satisfactory and our procedure outperforms the method
described in Section 4.2. However, balancing each model in an independent way might lead to slightly
different number of operators per model or to workstations performing different tasks depending on
the model (as is the case for tasks 3, 9 and 10), while in multi-model lines, tasks common to more than
one model should be performed by the same operator [30], according to the principles of specialization,
learning and avoiding the cost of duplicating equipment [11]. In addition, this makes it easier to move

Appl. Sci. 2020, 10, 8829 14 of 21

from assembling a model to assembling another model. Luckily, in LM, when workers are cross-trained,
it is permissible to assign the same work elements to different workers for different models [11].

In order to find an optimal solution with the minimum common number of workstations where
the same tasks are assigned to the same workstations across the different models, as much as possible,
while avoiding additional trial and error work, we developed a piece of software coded in Python
3.7 using the CP-SAT solver included in Google’s OR-Tools library [47,48] since our problem can be
written as a constraint programming model.

In order to analyze the |K| = 3 models at the same time, Equation (24) becomes Equation (29),
where Xij are integer-Boolean variables that represent, when their value is 1, that task i is assigned
to workstation j for model k. Otherwise, their value is zero. Equation (25) becomes Equation (30),
where integer variables Ej specify whether station j is necessary for model k (these variables can only
take the value 0 or 1 since the capacity of a workstation is 1). Equation (26) becomes Equation (31) and
Equation (27) becomes Equation (32).

Z xij = 1 Vi Vk (29)
7
Z Wid x; < Ej VjVk (30)
i
N i< Y o Vi Vi < vk (31)
7 j
Eji1x < Ej VjVk (32)

In the computer program, the constraints described in these equations, as well as the objective
function, have been coded following the solver’s requirements. The objective function (Expression (33))
rewards performing the same task in the same station across the different models and penalizes the
number of stations used in each model.

Objective function : Min 8, Z Z Eix B2 Z B; (33)
ik i

B1 is the weight assigned to the number of stations in the line. B, is the weight associated
with the number of “triplets”—a task is performed in the same workstation for the three models.
Binary variables (B;) indicate whether task 7 is assigned to the same station for all models. In order to
define B; using linear constraints, we introduce integer-Boolean variables b;; that take the value of 1
only if task 7 is assigned to workstation j for all models (Equations (34) and (35)).

Z xij = |K|'bj Vj Vi (34)
k

Y bij=B; Vi (35)
j

Together, $; and f, appraise how valuable it is to achieve one more “triplet” at the expense of
operating an additional station. Managerial policies should decide the relative values of these coefficients.

To increase computational speed, the solver works over the integers. This means that the ILP
must be defined using integers only. For this reason, the values of Wu*; have been multiplied by a
large integer (100,000) and rounded to the upper nearest whole number. The computer took 0.11 s to
find the optimal solution (for f; = f = 1), as shown in Table 10. If the changeover time is negligible,
the assembly line could be operated as a mixed-model line and, according to the weights in Table 2,
the line would assemble a basic sequence (four Alphas, two Betas, one Gamma) repeatedly in order to
follow the principles of heijunka [40].

Appl. Sci. 2020, 10, 8829 15 of 21

Table 10. Optimal assignment of tasks to workstations.

Model (k): Alpha Beta Gamma
Workstation Tasks Unit Load Tasks Unit Load Tasks Unit Load
(]) @) XWu *ik (O] XWu *ik (1] X Wu *ik
1 2 0.60 2 0.99 2 1.00
2 14 0.94 14 0.90 14 0.65
3 3-5-6 0.94 3-5-6 0.90 5-6 0.46
4 8 0.60 8 0.36 8 1.00
5 7-9-10 0.68 7-9-10 0.54 7-9-10 0.38
6 11-12 0.94 11 0.99 11-12 0.85

5. Results of Computational Experiences

In order to evaluate its performance, our methodology and our computer program were
used to solve different instances of multi-model/mixed-model assembly lines that we found in
the literature. Valid examples for our purposes are those that include task times, precedencies,
scheduled production and available time, especially if the authors were interested in assigning tasks to
constant workstations—although, in most cases, their objective functions are different from ours. First,
original task times are transformed into unit workloads following the algorithm described in Section 4
on an electronic spreadsheet. Then, our computer program captures input data from the spreadsheet
and finds the optimal solution according to our objective function.

The first instance [11] includes 15 tasks and 3 models. Four specific tasks (2, 6, 8, 13) should
be assigned to the same workstation for each model. The problem was solved on a PC with an
Intel®@Core™ i7-8700 processor at 3.2 GHz with 8 GB of RAM for 1 = 8, = 1 and the computer needed
0.06 s to find the optimal solution (Table 11). This instance was solved again for f; =1 and 8, = 4
(Table 11) with the same computer processor (CPU) time.

Table 11. Optimal assignment of tasks to workstations to the instance from [11]. Figures represent

tasks (7).
Workstation (7) Model 1 Model 2 Model 3 Models 1,2 and 3
J B2=1 B2=1) B2=1 B2=9
1 1-2 1-2-5 1-2-3 1-2
2 3-4-9 3-4-9 4-5-9 3-4
3 5-6-7 6-7 6-7 67
4 8-10-12 8-10-12 8-10-12 5-10
5 11-13-14-15 11-13-14-15 11-13-14-15 8-9-12-14
6 - - - 11-13-15

In the second instance, Thomopoulos presents a line with 19 tasks where three models are to be
assembled for a production schedule of 120, 60 and 40 units of each model, respectively, during each
shift [29]. The available time is not mentioned in the paper but Thomopoulos assumes that the line has
three workstations. For a theoretical minimum number of workstations equal to three and taking into
account the amount of assembly work to be performed, the available time must be at least 414 min
(this value is also mentioned in [29]). For this reason, we have repeated the same problem for values of
assembly time between 414 and 480 min (one shift) for f; = f» = 1, as shown in Table 12.

Appl. Sci. 2020, 10, 8829 16 of 21

Table 12. Results of the computational experience with an instance from [29].

3 *

Available Thfzo.r etical Number of Ta.sks Average ()
. Minimum . . Assigned . CPU

Time Workstations in Efficiency .
(min) Number Multi-Model Line to Constant Time
of Workstations Workstations (s)
480 2.59 3 19 0.86 0.09
458 2.71 3 19 0.90 0.09
18

436 2.85 3 (Except task 18) 0.95 0.12
414 3.00 4 19 0.75 0.14

* After 10 replications of each case. CPU time stands for computer microprocessor time.

The third instance involves 35 tasks and 6 models [49]. The problem was solved twenty times for
p1 =1and B, =7 and the solver found different solutions (one example is Table 13) but all solutions
were of the same quality because all required 14 workstations and in all cases, 34 of the 35 tasks
could be assigned to the same workstations for the six models. Task 3240 has incompatible different
precedencies for different models, and, in consequence, it behaves as two different tasks. Thus, we can
consider that task 3240 was correctly assigned too.

Table 13. A solution to problem from [49]. Figures represent tasks.

Workstation Model 1,2,5and 6 Model 3 and 4
1 3230-3255-3265-3285 3230-3240-3255-3265-3285
2 3245-3290-3335 3245-3290-3335
3 3235-3305-3360 3235-3305-3360
4 3275-3295-3300 3275-3295-3300
5 3310-3315-3340 3310-3315-3340
6 3250-3280-3365 3250-3280-3365
7 3330-3370 3330-3370
8 3345 3345
9 3320-3375-3380 3320-3375-3380
10 3385-3405 3385-3405
11 3325-3390-3395 3325-3390-3395
12 3350 3350
13 3240-3270-3355 3270-3355
14 3400 3400

6. Discussion

In our experiment in Section 4, we compare the solution of a multi-model assembly line balancing
problem that we can achieve through our method with the solution reached with the creation of a
combined model analyzed as a single-model line. We find that the classical approach of a combined
model results in an inapplicable multi-model line. Furthermore, the results in Table 9 are better than
those achieved with a combined model in Table 4 because fewer workstations are necessary and there
is less idle time. The method computes the theoretical minimum number of workstations and the
fraction of the production time that the line should be devoted to each model in order to achieve the
desired output. As a drawback, this procedure computes the required capacity, but it does not assign
tasks to workstations. This can be performed, for each model, using well-known heuristics or linear
programming but by always replacing task times with workload and replacing cycle time with station
capacity (typically, one operator). To go one step further, we have coded a piece of software in Python,
which takes advantage of Google’s solver, in order to assign tasks to workstations, with the same
number of workstations for each model and even the same tasks performed at each station for each
model, which gives stability to the line. The approach based on workload allows studying the three
lines together, as shown in Section 4.5, leading to the solution in Table 10. This solution presents a
line operated by a constant number of operators where tasks are consistently assigned to the same

Appl. Sci. 2020, 10, 8829 17 of 21

workstations across the different models. The resulting line can produce what was expected; it is
flexible (different models, different quantities) and the resulting task distribution is directly applicable,
with balanced workstations. All these characteristics agree with the principles of LM: JIT production,
respect for people and reduced waste of resources.

In our first additional instance, the original paper [11] was able to find, through a heuristic
method (based on a procedure to balance robotic lines), a line operated by five people. For p; =, =1,
our software found an optimal solution with five stations, where thirteen (out of fifteen) tasks—except
tasks 3 and 5—were assigned to constant workstations for all the models. The solutions found in the
original paper [11], although its objective function had a different purpose, correctly allocated tasks
2,6, 8 and 13 to five workstations. Execution time cannot be compared since the paper searched for
another objective. With 1 = 1 and 8, = 4, we found an optimal solution where all tasks were assigned
to constant workstations at the expense of adding a sixth workstation. In consequence, we correctly
solved this instance with five or six operators.

In our second additional instance, we played with an instance taken from Thomopoulos’ paper [29].
We were able to determine the optimal lines for each value of the available time in the shift (see Table 12)
and we repeated each experiment ten times. We were surprised by the speed of the solver (values below
1 s) and noticed that the time increased when the available time in the shift decreased (it was more
difficult to allocate tasks to workstations and reach an optimal solution). Although Thomopoulos
assumes that “an operator who is assigned an element on one model may not be assigned that same
element on other models” [29], our solutions were able to assign all nineteen tasks to the same workers
except one task on one occasion (when the available time was 436 min). This would be possible with a
fourth operator (thus allowing a greater value for f5;) at the expense of losing efficiency. That fourth
operator is always necessary when the available time drops to 414 min and then all 19 tasks can be
correctly assigned again. Since Thomopoulos’ objective function was to minimize the balance delay
among stations, no further comparison is possible between solutions.

With respect to our third additional instance, since 13 of the 35 tasks must be assigned to the same
workstation for all the models due to their common equipment [49], it is a good candidate for our
computer program (the code is available at Supplementary Materials: https://github.com/jordifortuny/
assembly_line). Since the original paper does not mention the available time during the workday, we
solved the problem for an eight-hour shift (28,800 s). The CPU time was two minutes and the solution
involved 10 workstations for each model (since the theoretical minimum number of workstations or
total multi-model unit workload TWu is 8.755, the efficiency of the resulting line is 0.97). We did not
incentivize the program ($; = f, = 1) to assign more tasks to the same workstations for each model
and, as a result, our program found an optimal solution with 31 tasks (out of 35) assigned to the same
stations for all six models. Cevikcan et al. used 12 workers to complete the task (in fact, they designed
a u-shaped cell instead of a straight line) while correctly assigning the required 13 operations [49].
To assess the validity of our algorithm, we tested our program under more stringent conditions and
reduced the available time. We found out that there were no feasible solutions with twelve operators
under 25,000 s, and, finally, we set the available time to 21,500 s (because the theoretical minimum
number of workstations was still twelve) and 5, = 7 (greater than the number of models in order
to reward tasks assigned to the same workstations for all the models). In a series of 20 repetitions,
the computer needed between 7 min 39 s and 48 min 26 s to reach the optimal solutions. Since this
instance is based on a real assembly line, we consider that these values may be acceptable for real
applications of the same size. We used 14 workers (Table 13) but we were able to assign all 35 tasks in a
consistent manner, as explained in Section 5.

7. Conclusions

In this paper, a novel approach to compute the necessary workforce in manual assembly systems
was developed and then it was applied to a multi-model assembly line following the principles of LM.

https://github.com/jordifortuny/assembly_line
https://github.com/jordifortuny/assembly_line

Appl. Sci. 2020, 10, 8829 18 of 21

Multi-model lines have not been researched much and there is not a general procedure for multi-model
lines as those developed for the SMALBP.

Our method is based on the fact that verifying the balance between workload and resource
capacity is necessary to assure that a production process is feasible in the considered time lapse. For this
reason, we define the concepts of unit workload and capacity in order to avoid using time magnitudes
(such as cycle time) since we assume that they are unknown. In Section 3, we derived the necessary
equations to compute the required workforce without resorting to temporal magnitudes and used
them to solve a small example. The same framework can be applied to other manufacturing strategies
and thus, in Section 4, the method was applied to a multi-model assembly line.

While many approaches in the assembly line balancing literature consider either a cycle time for
each model [50] or a common cycle time as given, we state that there are practical cases in which a
company will only have a daily schedule based on market demand. Therefore, computing an average
cycle time may lead to inapplicable solutions. In our method, the need for operators is modeled in
terms of workload and capacity, not on assembly times. The practical consequence is that it is not
necessary to know any cycle time to solve the problem. Thus, this study furnishes practitioners with
a better understanding of the relations between several variables to design, implement and control
processes. In addition, it can be easily implemented (e.g., Tables 4-8 on an electronic spreadsheet)
and quickly modified when the production mix changes. Then, the line can be balanced for each
model using either well-known heuristics for single-model lines to find a feasible solution or linear
programming as we did in this paper to be sure that we found the optimal solution. In all cases,
the unknown cycle time is not necessary.

Finally, our procedure was completed by means of a computer program coded in Python with the
help of the OR-Tools library (which results in few lines of code, mainly devoted to manage data input
and output). This allowed us to study all assembly lines together, based on linear constraints, in order
to find an optimal solution—not just a feasible one—which minimized the number of workstations
while aiming at a common number of workstations and even with a constant assignation of tasks to
workstations, according to our interest. Besides not needing a previously defined cycle time, the result
can be directly applied because real tasks are used instead of “combined” tasks.

Using our algorithms will allow operations managers to quickly staff and balance (or re-balance)
their multi-model assembly in order to guarantee a smooth operation (with few changes, if any, in the
number of operators or in the tasks assigned to each operator during the workday). This will also
ensure the production, in small batches, of the scheduled quantities and models to satisfy market
demand. Results show that our approach is a suitable option for balancing multi-model lines, without
great needs of assets (where light objects such as cell phones are assembled), and with labor (the number
of workstations) being the only resource considered, and for considering the setup cost as a fixed cost
because lot sizes are based on demand, not on cost minimization. These premises also constitute the
limitations of our work and could be the basis of further research. Since we have been able to use our
transformed data (W) in methods originally intended for assembly times and cycle times (such as
solving the SMALBP with linear programming), it would be interesting to study whether our approach
can be used in combination with other extant techniques.

Although our practical experience is related to manual assembly lines, a new trend in
manufacturing, as part of the so-called Fourth Industrial Revolution or Industry 4.0 [51], is the
development of hybrid assembly systems where robots (called cobots—meaning collaborative robots)
work alongside people, in contrast with traditional arrangements where robots work in isolation
for safety reasons. In the ALBP recent literature, there is an upward trend on robotic lines [52].
However, the research on multi-model assembly lines with robots is scarce [53]. In further research,
our methodology could be extended to robotic lines. Currently, we assume that any worker can
perform any task—which is based on human flexibility and on the cross-training practice in LM—while
research on robotic lines requires selecting what tasks can be assigned to people and what tasks can be
assigned to robots. In addition, when several types of robots are available, it is necessary to assign the

Appl. Sci. 2020, 10, 8829 19 of 21

most efficient type for each task to the corresponding workstation [54], while we might say that the
number of “robot” types allocated to the line that we solved in this paper is one because all operators
are equal [24].

Supplementary Materials: The computer code is available online at https://github.com/jordifortuny/assembly_
line.

Author Contributions: Conceptualization, PR.-d.-A.-L.,].E-S. and L.C.-A.; methodology, P.R.-d.-A.-L.,].E.-S,,
L.C.-A. and].E-P; software, J.E-P.; validation, J.F.-P; writing—original draft preparation, PR.-d.-A.-L.,].E-S,
L.C.-A. and J.E-P,; writing—review and editing,].E-S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mor, R.; Bhardwaj, A.; Singh, S.; Sachdeva, A. Productivity gains through standardization-of-work in a
manufacturing company. J. Manuf. Technol. Manag. 2019, 30, 899-919. [CrossRef]

2. Krafcik, J.F. Triumph of the lean production system. Sloan Manag. Rev. 1988, 30, 41-52.

3. Womack,].P; Jones, D.T.; Roos, D. The Machine That Changed the World; Rawson Associates—Simon & Schuster:
New York, NY, USA, 1990.

4. Sugimori, Y.; Kusunoki, K.; Cho, F; Uchikawa, S. Toyota production system and Kanban system:
Materialization of just-in-time and respect-for-human system. Int.]. Prod. Res. 1977, 15, 553-564.
[CrossRef]

5. Monden, Y. Toyota Production System: Practical Approach to Production Management; Industrial Engineering
and Management Press, Institute of Industrial Engineers: Norcross, GA, USA, 1983.

6. Shah, R.; Ward, P.T. Defining and developing measures of lean production. J. Oper. Manag. 2007, 25, 785-805.
[CrossRef]

7. Cuatrecasas, L.; Fortuny-Santos, J.; Vintro, C. The operations-time chart: A graphical tool to evaluate the
performance of production systems—From batch-and-queue to lean manufacturing. Comput. Ind. Eng. 2011,
61, 663-675. [CrossRef]

8. Gjeldum, N,; Salah, B.; Aljinovic, A.; Khan, S. Utilization of Industry 4.0 related equipment in assembly line
balancing procedure. Processes 2020, 8, 864. [CrossRef]

9. Ghosh, S.; Gagnon, R.J. A comprehensive literature review and analysis of the design, balancing and
scheduling of assembly systems. Int. J. Prod. Res. 1989, 27, 637-670. [CrossRef]

10. Colim, A.; Faria, C.; Braga, A.C.; Sousa, N.; Rocha, L.; Carneiro, P.; Costa, N.; Arezes, P. Towards an ergonomic
assessment framework for industrial assembly workstations—A case study. Appl. Sci. 2020, 10, 3048.
[CrossRef]

11. Bukchin, J.; Dar-El, E.M.; Rubinovitz, J. Mixed model assembly line design in a make-to-order environment.
Comput. Ind. Eng. 2002, 41, 405-421. [CrossRef]

12. Cuatrecasas-Arbds, L.; Fortuny-Santos, J.; Ruiz-de-Arbulo-Lépez, P.; Vintr6-Sanchez, C. Monitoring processes
through inventory and manufacturing lead time. Ind. Manag. Data Syst. 2015, 115, 951-970. [CrossRef]

13. Boysen, N.; Fliedner, M.; Scholl, A. Assembly line balancing: Which model to use when? Int. J. Prod. Econ.
2008, 111, 509-528. [CrossRef]

14. Ohno, T. Toyota Production System: Beyond Large-Scale Production; Productivity Press: New York, NY, USA,
1988.

15. Bukchin, J.; Darel, E.; Rubinovitz, J. Team-oriented assembly systems design: A new approach. Int. |.
Prod. Econ. 1997, 51, 47-57. [CrossRef]

16. Ben-Gal, I.; Bukchin, J. The ergonomic design of workstations using virtual manufacturing and response
surface methodology. IIE Trans. 2002, 34, 375-391. [CrossRef]

17. Seppaild, P; Klemola, S. How do employees perceive their organization and job when companies adopt
principles of lean production? Hum. Factors Ergon. Manuf. 2004, 14, 157-180. [CrossRef]

18. Cevikcan, E. An optimization methodology for multi model walking-worker assembly systems:
An application from busbar energy distribution systems. Assem. Autom. 2016, 36, 439-459. [CrossRef]

https://github.com/jordifortuny/assembly_line
https://github.com/jordifortuny/assembly_line
http://dx.doi.org/10.1108/JMTM-07-2017-0151
http://dx.doi.org/10.1080/00207547708943149
http://dx.doi.org/10.1016/j.jom.2007.01.019
http://dx.doi.org/10.1016/j.cie.2011.04.022
http://dx.doi.org/10.3390/pr8070864
http://dx.doi.org/10.1080/00207548908942574
http://dx.doi.org/10.3390/app10093048
http://dx.doi.org/10.1016/S0360-8352(01)00065-1
http://dx.doi.org/10.1108/IMDS-12-2014-0375
http://dx.doi.org/10.1016/j.ijpe.2007.02.026
http://dx.doi.org/10.1016/S0925-5273(97)00060-1
http://dx.doi.org/10.1080/07408170208928877
http://dx.doi.org/10.1002/hfm.10059
http://dx.doi.org/10.1108/AA-09-2015-072

Appl. Sci. 2020, 10, 8829 20 of 21

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Chutima, P; Suphapruksapongse, H. Practical assembly-line balancing in a monitor manufacturing company.
Thammasat Int. . Sci. Technol. 2004, 9, 62-70.

Erel, E.; Sarin, S.C. A survey on the assembly line procedures. Prod. Plan. Control 1998, 9, 414-434. [CrossRef]
Roser, C.H. Line Balancing Part 6—Tips and Tricks for Balancing. Available online: https://www.allaboutlean.
com/line-balancing-6/ (accessed on 24 September 2020).

Nagi, M.; Chen, EF.,; Wan, H.-D. Throughput rate improvement in a multiproduct assembly line using lean
and simulation modeling and analysis. Procedia Manuf. 2017, 11, 593-601. [CrossRef]

Agpak, K.; Gokgen, H. Assembly line balancing: Two resource constrained cases. Int. J. Prod. Econ. 2005,
96, 129-140. [CrossRef]

Corominas, A.; Pastor, R.; Plans, J. Balancing assembly line with skilled and unskilled workers. Omega 2008,
36,1126-1132. [CrossRef]

Sivasankaran, P.; Shahabudeen, P. Literature review of assembly line balancing problems. Int. J. Adv. Manuf.
Technol. 2014, 73, 1665-1694. [CrossRef]

Roberts, S.D.; Villa, C.D. On a multiproduct assembly line balancing problem. AIIE Trans. 1970, 2, 361-364.
[CrossRef]

Becker, C.; Scholl, A. A survey on problems and methods in generalized assembly line balancing. Eur. J.
Oper. Res. 2006, 168, 694-715. [CrossRef]

Thomopoulos, N.T. Line balancing-sequencing for mixed-model assembly. Manag. Sci. 1967, 14, B59-B75.
[CrossRef]

Thomopoulos, N.T. Mixed model line balancing with smoothed station assignments. Manag. Sci. 1970,
16, 593-603. [CrossRef]

Buxey, G.M.; Slack, N.D.; Wild, R. Production flow line system design—A review. AIIE Trans. 1973, 5, 37-48.
[CrossRef]

Eryuruk, S.H.; Kaloglu, F.; Baskak, M. Assembly line balancing in a clothing company. Fibres Text. East. Eur.
2008, 16, 93-98.

Al-Zubaidy, S.S.; Alrazaq, EE.A. Multi-model production and assembly line balancing (Caravans production
workshop). J. Univ. Babylon Eng. Sci. 2013, 21, 1301-1312.

Kabir, M.A.; Tabucanon, M.T. Batch-model assembly line balancing: A multi attribute decision making
approach. Int. |. Prod. Econ. 1995, 41, 193-201. [CrossRef]

Roser, C.H. Line Balancing Part 2—Duration of Tasks. Available online: https://www.allaboutlean.com/line-
balancing-2/ (accessed on 24 September 2020).

Pastor, R.; Andres, C.; Duran, A.; Perez, M. Tabu search algorithms for an industrial multi-product and
multi-objective assembly line balancing problem, with reduction of the task dispersion. J. Oper. Res. Soc.
2002, 53, 1317-1323. [CrossRef]

Qu, S;; Jiang, Z. A memetic algorithm approach for batch-model assembly line balancing problem of sub-block
in shipbuilding. Proc. Inst. Mech. Eng. Part B . Eng. Manuf. 2014, 228, 1290-1304. [CrossRef]

Berger, I.; Bourjolly,].M.; Laporte, G. Branch-and-bound algorithms for the multi-product assembly line
balancing problem. Eur.]. Oper. Res. 1992, 58, 215-222. [CrossRef]

Zhao, C.; Li,]. Analysis and improvement of multi-product assembly systems: An application study at a
furniture manufacturing plant. Int. J. Prod. Res. 2014, 52, 6399-6413. [CrossRef]

Aglan, F; Al-Fandi, L. Prioritizing process improvement initiatives in manufacturing environments. Int. J.
Prod. Econ. 2018, 196, 261-268. [CrossRef]

Coleman,]J.B.; Vaghefi, R.A. Heijunka (?): A key to the Toyota Production System. Prod. Invent. Manag. |.
1994, 35, 31-35.

Cuatrecasas, L. Ingenieria de Procesos y de Planta; Profit Editorial: Barcelona, Spain, 2017.

Hirano, H. JIT Implementation Manual; CRC Press: Boca Raton, FL, USA, 2009; Volume 4.

Meyers, EE.; Stewart,].R. Motion and Time Study for Lean Manufacturing; Prentice Hall: Upper Saddle River,
NJ, USA, 2002.

Baybars, I. A survey of exact algorithms for the simple assembly line balancing problem. Manag. Sci. 1986,
32,909-932. [CrossRef]

Matsui, Y. An empirical analysis of just-in-time production in Japanese manufacturing companies. Int. J.
Prod. Econ. 2007, 108, 153-164. [CrossRef]

http://dx.doi.org/10.1080/095372898233902
https://www.allaboutlean.com/line-balancing-6/
https://www.allaboutlean.com/line-balancing-6/
http://dx.doi.org/10.1016/j.promfg.2017.07.153
http://dx.doi.org/10.1016/j.ijpe.2004.03.008
http://dx.doi.org/10.1016/j.omega.2006.03.003
http://dx.doi.org/10.1007/s00170-014-5944-y
http://dx.doi.org/10.1080/05695557008974777
http://dx.doi.org/10.1016/j.ejor.2004.07.023
http://dx.doi.org/10.1287/mnsc.14.2.B59
http://dx.doi.org/10.1287/mnsc.16.9.593
http://dx.doi.org/10.1080/05695557308974880
http://dx.doi.org/10.1016/0925-5273(95)00108-5
https://www.allaboutlean.com/line-balancing-2/
https://www.allaboutlean.com/line-balancing-2/
http://dx.doi.org/10.1057/palgrave.jors.2601457
http://dx.doi.org/10.1177/0954405413518511
http://dx.doi.org/10.1016/0377-2217(92)90208-Q
http://dx.doi.org/10.1080/00207543.2014.948576
http://dx.doi.org/10.1016/j.ijpe.2017.12.004
http://dx.doi.org/10.1287/mnsc.32.8.909
http://dx.doi.org/10.1016/j.ijpe.2006.12.035

Appl. Sci. 2020, 10, 8829 21 of 21

46.

47.

48.

49.

50.

51.

52.

53.

54.

Koo, P-H. A new self-balancing assembly line based on collaborative ant behavior. Appl. Sci. 2020, 10, 6845.
[CrossRef]

Faganello, R.; Amaral, V. Logic-based Benders decomposition for the heterogeneous fixed fleet vehicle
routing problem with time windows. Comput. Ind. Eng. 2020, 148, 106641.

Valdron, M.; Pu, K.Q. Data Driven Relational Constraint Programming. In Proceedings of the IEEE 21st
International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA,
11-13 August 2020; pp. 156-163. Available online: https://doi.ieeecomputersociety.org/10.1109/IR149571.2020.
00030 (accessed on 24 September 2020).

Cevikcan, E.; Durmusoglu, M.B.; Unal, M.E. A team-oriented design methodology for mixed model assembly
systems. Comput. Ind. Eng. 2009, 56, 576-599. [CrossRef]

Erel, E.; Gokcen, H. Shortest-route formulation of mixed-model assembly line balancing problem. Eur. .
Oper. Res. 1999, 116, 194-204. [CrossRef]

Fortuny-Santos, J.; Ruiz-de-Arbulo Lépez, P; Lujan-Blanco, I.; Chen, PK. Assessing the synergies between
lean manufacturing and Industry 4.0. Dir. Organ. 2020, 71, 71-86. [CrossRef]

Chutima, P. Research Trends and Outlooks in Assembly Line Balancing Problems. Eng. J. 2020, 24, 93-134.
[CrossRef]

Christensen, M.K.; Janardhanan, M.N.; Nielsen, P. Heuristics for solving a multi-model robotic assembly line
balancing problem. Prod. Manuf. Res. 2017, 5, 410-424. [CrossRef]

Rubinovitz, J.; Bukchin, J.; Lenz, E. RALB—A Heuristic Algorithm for Design and Balancing of Robotic
Assembly Lines. CIRP Ann. Manuf. Technol. 1993, 4, 497-500. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/app10196845
https://doi.ieeecomputersociety.org/10.1109/IRI49571.2020.00030
https://doi.ieeecomputersociety.org/10.1109/IRI49571.2020.00030
http://dx.doi.org/10.1016/j.cie.2007.11.002
http://dx.doi.org/10.1016/S0377-2217(98)00115-5
http://dx.doi.org/10.37610/dyo.v0i71.579
http://dx.doi.org/10.4186/ej.2020.24.5.93
http://dx.doi.org/10.1080/21693277.2017.1403977
http://dx.doi.org/10.1016/S0007-8506(07)62494-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Relevant Literature on Multi-Model Assembly Lines
	Materials and Methods: Workforce Capacity and Workload
	A Few Definitions
	From Single-Model to Multi-Model Production
	Computing the Required Workforce

	Staffing a Multi-Model Assembly Line
	Problem Statement
	Solution for a Combined Equivalent Model
	Computing Manpower through Workload and Capacity
	Balancing the Multi-Model Line
	Optimizing the Assignation

	Results of Computational Experiences
	Discussion
	Conclusions
	References

