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Abstract 
 

The Mediterranean Basin faces a context of climate change aggravation (Chapter 2), 

enlarged demands of goods and services, and historical mismanagement of the 

landscape for the past millennia (Chapter 3). All these, push for the need of 

understanding how to better assist increasing climate change resilience while 

addressing current landscape degradation issues such as extended droughts, an 

impoverished water cycle, and the abandonment of traditional land-use systems. The 

here presented research is focused on the rural areas, for which sustainable land 

management is chosen as a holistic measure with high synergistic potential to address 

these issues (Chapter 4). To foster and facilitate the adoption of sustainable land 

management practices, links are drawn to climate change perception and currently 

available policy platforms to steer action (Chapter 5). This dissertation is based on 

academic literature, insight from development researchers, professional meetings, and 

agency reports on sustainable land management practices to provide evidence-based 

scientific outputs and policy recommendations. The main aim of this work is to 

contribute to closing the gap between scientific findings, expert stakeholders, and 

policy-makers by looking into the Mediterranean Basin’s climate change challenges 

from a holistic point of view. 
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Resumen de la tesis 
 

Introducción 
El reciente informe presentado por el Panel Intergubernamental del Cambio Climático 
(IPCC, 2018) manifiesta que el cambio climático, y en concreto y a más corto plazo, 
los eventos climáticos abruptos, aumentan el riesgo en la disponibilidad de recursos 
hídricos, la aceleración de la degradación del suelo, la subida del nivel del mar, 
cambios irreversibles en los ecosistemas terrestres y marinos, olas de calor, y 
temperaturas más extremas en la Cuenca del Mediterráneo. 

Esta tesis surge de la urgente necesidad de adaptación y mitigación de dichos 
impactos en el territorio Mediterráneo. Además, representa un nicho de oportunidad 
para dirigir esfuerzos hacia el objetivo común de mejorar su ciclo de agua, el cual se 
encuentra empobrecido. Se plantean así dos hipótesis principales y cinco objetivos: 

 

− Hip.1 El sistema hidrológico de la Cuenca Mediterránea ha sido modificado por 
prácticas de cambio de usos del suelo (LUC); 

− Obj.1 Diferenciar entre la variabilidad climática natural y la 
antropogénica durante el Holoceno; 

− Obj.2 Comprender cómo los patrones de lluvia topográfica se han visto 
modificados debido a la acción antropogénica; 

− Hip.2 La lluvia topográfica puede ser estimulada naturalmente a través de 
prácticas de manejo sostenible de la tierra (SLM) y esto ayudará a restaurar 
un sistema hidrológico más saludable; 

− Obj.3 Identificar qué prácticas de manejo sostenible de la tierra pueden 
asistir en la restauración de la lluvia topográfica; 

− Obj.4 Evaluar la viabilidad de adopción de tales prácticas; 
− Obj.5 Inspeccionar mecanismos que favorezcan la implementación de 

tales prácticas de una forma efectiva y traducir los resultados de esta 
disertación en recomendaciones políticas; 
 

Para abordar estas dos hipótesis, es necesario considerar el marco ecológico, 
social y político de la región Mediterránea. Dichos marcos han sido aquí examinados, 
haciendo de ésta, una disertación interdisciplinar. Por ello la disertación consta de un 
marco teórico que incluye: (a) visiones: paleoclima en el Capítulo 2, interacciones 
humanas con el clima en el Capítulo 3, y SLM en el Capítulo 4; (b) valores: percepción 
del cambio climático (CCP) en el Capítulo 5; (c) voces: barreras y oportunidades para 
la implementación de SLM en los Capítulos 4 y 5. 
 
Capítulo 2 
El Capítulo 2 da respuesta al Objetivo 1 contextualizando el clima de la Cuenca 
durante el Holoceno (últimos ~11,700 años) y resumiendo sus proyecciones futuras. 
En él, se detalla cómo la variabilidad climática del Holoceno tiene un origen orbital con 
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una disminución de la insolación solar hace unos 4,500 años. Desde entonces, el 
Mediterráneo ha presenciado patrones climáticos más inestables, una disminución 
sucesiva de las precipitaciones y un aumento lineal de sus temperaturas, alcanzando 

las condiciones actuales hace ~2,5002,000 años (Fig. 2.3). En consecuencia, el 
sistema hidrológico de la Cuenca se ha visto afectado, con la modificación de sus dos 
tipos principales de precipitación, la lluvia sinóptica producto del movimiento 
atmosférico regional y la lluvia topográfica causada por la convección orográfica local. 
Asimismo, el ya menguado ciclo hidrológico se ve adicionalmente alterado por 
actividades antropogénicas intensas, lo que puede resultar en la modificación actual 
del desarrollo y consolidación de ciclones y en la inhibición de lluvia topográfica.  

Entender qué ocurrió en la Cuenca en el pasado es clave para informar el futuro, 
pues nos permite comprender cómo respondió a la variabilidad climática natural y a 
las perturbaciones humanas, y así mismo, nos ayuda a predecir cómo se comportará 
en función de las proyecciones futuras.  
 
Capítulo 3 
El Capítulo 3 revisa cómo los cambios de uso del suelo (LUC, por sus siglas en inglés) 
interactuaron con el medio ambiente durante el Holoceno. El propósito de este 
capítulo es el de examinar las implicaciones que dichos cambios de uso del suelo 
ejercieron y siguen ejerciendo en el paisaje y en el clima de la Cuenca (Objetivo 2). 
En él se detalla cómo estas prácticas históricas han promovido la desertificación y 
degradación del paisaje y contribuido a la variabilidad climática. De entre todas ellas, 
la práctica con mayores consecuencias es la deforestación dirigida a la apertura de 
claros para la agricultura.  

Se llega a esta conclusión después de inspeccionar el contenido de una revisión 
semiestructurada de literatura científica que se utiliza para desarrollar un mapa de red. 
La literatura revisada (N=23) describe cómo, aunque de forma limitada, la 
deforestación, el agotamiento de los recursos vegetales y el empobrecimiento del 
suelo se encuentran ligados a un régimen regular de incendios ya en el Holoceno 
temprano. En el Holoceno medio, se ejerce la intensificación del uso de la tierra y la 
explotación de recursos, lo que induce a condiciones más áridas en la Cuenca, a la 
pérdida de biodiversidad y al empobrecimiento del suelo. Por último, con el inicio del 
Holoceno tardío, se produce una transición de los paisajes naturales a los dominados 
por humanos, lo que agrava aún más las consecuencias de las prácticas anteriores 
(Tabla 3.1). Las prácticas que se usan para el cambio de uso del suelo quedan 
agrupadas en cuatro: Incendios regulares y deforestación; Actividades agrícolas y de 
cultivo; Pastoreo excesivo; Terrazas hidráulicas y acuíferos. 

Con la información compilada se construye un mapa de red utilizando la técnica 
Fuzzy Cognitive Mapping (FCM) (Fig. 3.3). Esta técnica, aunque generalmente 
aplicada en ciencias sociales, se usa aquí para inspeccionar las relaciones causales 
entre los diferentes componentes encontrados del ciclo del agua en el Mediterráneo, 
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ampliando de esta manera, su aplicabilidad como método de mapeo. La técnica FCM 
permite una integración flexible de componentes muy dispares pero relacionados 
entre sí del sistema hidrológico, que son demasiado complejos para ser cuantificados. 
De esta manera, esta técnica nos permite abarcar estudios que utilizan metodologías 
particulares y que tienen objetivos específicos, conectar de forma teórica todos los 
componentes encontrados, y sacar conclusiones integradas.  

El mapa de red generado relaciona varios conceptos de muchas disciplinas, de 
entre los cuales se destacan las siguientes relaciones (Fig. 3.4). La deforestación 
disminuye la biomasa, lo que reduce la absorción de CO2 atmosférico y, sin embargo, 
promueve la expansión de más biomasa debido a la disponibilidad de CO2. También 
modifica el equilibrio del agua superficial al detener la evapotranspiración, lo que 
reduce el vapor de agua disponible para la lluvia topográfica y limita el flujo de agua 
subterránea al eliminar la infiltración a través de raíces. Al mismo tiempo, la 
disminución de la infiltración implica una mayor escorrentía superficial, lo que provoca 
una mayor aridificación y erosión del suelo. Además, la deforestación afecta la 
biodiversidad y la calidad y cantidad del agua, ya que la salud de los ecosistemas que 
regulan la calidad y la cantidad de agua superficial están determinados, en última 
instancia, por la misma. 

 
Capítulo 4 
El Capítulo 4 aborda los Objetivos 3 y 4, para los cuales se desarrolla un marco (Tabla 
4.3) que evalúa la efectividad en el terreno y la viabilidad de implementación de 
diferentes prácticas de manejo sostenible de la tierra (SLM por sus siglas en inglés). 

Dichas prácticas están recogidas por la base de datos WOCAT1. 

Para construir el marco, primero se definen cinco variables ecológicas: 
Regulación climática; Control de la erosión del suelo; Mejora de la biodiversidad y 
control de plagas / enfermedades; Regulación del agua; Mejora de la calidad del suelo. 
Asimismo, se definen cuatro variables sociales: Economía y producción; Gestión y 
riego; Bienestar social; Instituciones. Estas nueve variables abarcan múltiples 
impactos evaluados por la WOCAT (Tabla 4.4). A continuación, se agrupan aquellas 
prácticas similares pero específicas, haciéndolas así lo suficientemente flexibles como 
para ser aplicables a toda la Cuenca (Tabla 4.2). Finalmente, se examina el área de 
potencial biofísico para la implementación da cada práctica, considerando cinco 
variables de entorno natural: tipo de uso del suelo, precipitación anual, agua 
disponible, altitud, pendiente (Fig. 4.1). Por último, se inspeccionan las posibles 
barreras y los posibles beneficios derivados de su implementación. 

El desarrollo de este marco permite identificar aquellas prácticas cuyos 
beneficios van más allá de la escala local de implementación, permitiendo a los 
políticos dirigir esfuerzos de forma coordinada en toda la Cuenca Mediterránea 

                                                             
1 https://www.wocat.net/en/ 
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mediante la popularización en la implementación de dichas prácticas. Además, el 
marco desarrollado no sólo se basa en los impactos ecológicos, sino también en los 
biofísicos y socioeconómicos, ya que estos pueden resaltar posibles 
sinergias/barreras que pueden comprometer el éxito en la implementación de dichas 
prácticas (Obj. 4). 

De entre todas las prácticas evaluadas (N = 25), los sistemas agroforestales, la 
cubierta verde en plantaciones perennes (como los olivares, viñedos o campos de 
almendro) y la reforestación, resultan ser las que mejor asisten a los servicios 
ecosistémicos. Dichas prácticas, no sólo aumentan la capacidad de mitigación y 
adaptación de la Cuenca mediante el secuestro y almacenamiento de carbono, sino 
que, además, asisten en la restauración de tierras degradadas, en la contención de la 
desertificación, en la mejora de la biodiversidad, en el manejo de los recursos hídricos 
y en la conservación de los humedales y de los paisajes típicos de mosaico. 

El ciclo hidrológico de la región se ve afectado de dos maneras principales por 
estas prácticas: a través de una mayor infiltración de agua de lluvia en el suelo; y a 
través de un aumento de la humedad atmosférica causado por una tasa de 
evapotranspiración más elevada. Esto, disminuye las temperaturas diurnas en verano, 
reduce la intensidad y la duración de olas de calor y estimula la lluvia topográfica 
(causada por convección orográfica local). Además, las tres prácticas integran 
necesidades y valores de las comunidades en dónde se implementan, promueven el 
conocimiento tradicional y aumentan los productos de mercado. De acuerdo con las 
características biofísicas de la Cuenca, éstas ofrecen además, un alto potencial para 
su implementación (Tabla 4.7). 

 
Capítulo 5 

En el Capítulo 5 se aborda el último objetivo, el Objetivo 5. En él se identifican 
estrategias para mejorar la percepción del público sobre el cambio climático (CCP por 
sus siglas en inglés) y los marcos políticos desde dónde dirigir una acción coordinada 
a nivel de cuenca.  

Por un lado, y siguiendo el enfoque metodológico de los capítulos anteriores, 
para identificar cuáles son las influencias en la percepción pública sobre el cambio 
climático, desarrollamos un marco teórico con el cual es posible determinarlas y 
cuantificarlas (Fig. 5.1). Este marco teórico nos permite también determinar y 
cuantificar interacciones entre influencias, exponiendo por primera vez, rutas 
indirectas de influencia sobre la percepción pública del cambio climático. Asimismo, 
es posible combinar información dispersa bajo una única terminología, facilitar su uso 
a través del desarrollo de una definición para cada término, hacerla comparable 
independientemente del contexto del estudio y desentrañar características dentro de 
una comunidad que de otra manera pasarían desapercibidas (Table 5.1). Finalmente, 
se desarrolla un mapa de red que relaciona influencias entre sí. Para construirlo 
usamos la técnica FCM del Capítulo 3. 
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Los resultados muestran que los cambios percibidos en la meteorología (o en el 
tiempo) son el mecanismo que con mayor frecuencia la gente asocia al cambio 
climático. Poseer valores socio altruistas y conocimientos sobre cambio climático son 
los dos mecanismos que seguidamente se asocian a la percepción del cambio 
climático (Fig. 5.2). Las interacciones entre influencias (Fig. 5.3) revelan que 
relacionar el cambio climático con amenazas y percepciones directas de cambio 
climático pueden ser una estrategia efectiva para promover la acción climática en 
zonas rurales, así como la reorientación de valores y comportamientos. 

Por otro lado, se han identificado estructuras disponibles con las que canalizar 
esfuerzos desde un enfoque de arriba hacia abajo (institucional→individual) para 
impulsar la adopción de prácticas de manejo sostenible del suelo que asistan a 
objetivos comunes de la Cuenca (Sección 5.2). Se ha dado prioridad a los organismos 
internacionales/interregionales, capaces tanto de coordinar esfuerzos de arriba hacia 
abajo (de instituciones internacionales a gobiernos nacionales/locales), como de 
abajo hacia arriba (de gobiernos locales/nacionales a instituciones internacionales). 

De entre todas las estructuras identificadas, se ha reconocido como mejor 
opción, la de dirigir esfuerzos bajo el Objetivo 2 de la Estrategia Mediterránea para el 
Desarrollo Sostenible 2016-2025 (MSSD 2016-2025), que dice así "Promover la 
gestión de recursos, la producción de alimentos y la seguridad alimentaria a través de 
formas sostenibles de desarrollo rural". 

Además, al adoptar prácticas de manejo sostenible de la tierra se impulsan 
varios Objetivos de Desarrollo Sostenible (ODS) de la Agenda 2030 de las Naciones 
Unidas, así como múltiples objetivos y estrategias de gobiernos locales, regionales y 
nacionales (Fig. 5.4). 

 
Capítulo 6 

Con la realización de los Objetivos 1 y 2, se prueba que la Hipótesis 1 es correcta. 
Las prácticas de cambio de uso del suelo, en especial la deforestación, comenzaron 
a modificar el paisaje y el ciclo del agua de la Cuenca ya en el Holoceno temprano. 

Con la realización de los Objetivos 3 a 5, se concluye que la Hipótesis 2 también 
es correcta. La lluvia topográfica se puede estimular naturalmente a través de la 
adopción de prácticas de manejo sostenible de la tierra, en particular a través de la 
adopción de cubierta vegetal en cultivos leñosos perennes y en la expansión de 
árboles mediante la reforestación manejada o el aumento de sistemas agroforestales. 
Estas prácticas pueden ser impulsada a través de diversas estructuras que 
promueven la adopción de prácticas de adaptación en la Cuenca Mediterránea. 

 
Conclusiones 

Para abordar los objetivos de esta tesis se requiere de un enfoque interdisciplinar que 
consolide el conocimiento científico sobre el medio ambiente con el de las ciencias 
sociales. 
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Con el trabajo desarrollado aquí, se han identificado acciones para abordar la 
desertificación (es decir, ayudar al ciclo hidrológico), la degradación de la tierra (es 
decir, preservar el paisaje típico de mosaico) y la adaptación y mitigación del cambio 
climático en las regiones rurales del Mediterráneo. Éstas se reflejan aquí como 
recomendaciones políticas: 

− A la luz del estado actual del ciclo hidrológico de la Cuenca Mediterránea, y 
especialmente, de los escenarios climáticos proyectados para el futuro 
cercano, la adopción de medidas de adaptación y mitigación se convierte en 
una prioridad. Más allá de las ciudades, las zonas rurales son clave para la 
provisión de alimentos y de energía, y para el funcionamiento ecosistémico de 
la región. Actuar en estas zonas, no es sólo necesario sino posible mediante 
prácticas de manejo sostenible de la tierra; 
 

− Las prácticas de manejo sostenible de la tierra están diseñadas y adoptadas a 
nivel local. Sin embargo, el desarrollo de políticas ambientales coordinadas, 
coherentes y consistentes para estas prácticas dentro de la Cuenca del 
Mediterráneo es clave para garantizar objetivos regionales que van más allá 
de la escala local de implementación. Promover la adopción de prácticas de 
manejo sostenible de la tierra en un marco que coordine las políticas 
ambientales puede generar oportunidades, lograr resultados más significativos 
y contribuir a múltiples objetivos establecidos regionales a internacionales, 
como los ODS; 
 

− La disponibilidad de agua es el factor limitante para la prestación de servicios 
en la Cuenca del Mediterráneo y la adopción de prácticas de manejo sostenible 
de la tierra, así como la mayor amenaza para la adaptación al cambio climático 
en las regiones rurales. Los esfuerzos deben dirigirse hacia prácticas que 
aborden desafíos específicos locales y ayuden a garantizar una gestión más 
eficaz del presupuesto hidrológico de la Cuenca. Hay varias opciones que 
asisten a esta cuestión, de las cuales destacamos: (i) mejorar la eficiencia del 
riego a través de sistemas de micro-irrigación; (ii) reducir la evaporación directa 
del suelo mediante una aumento en la evapotranspiración a través de la 
reforestación manejada y la cubierta vegetal en cultivos leñosos perennes; (iii) 
impulsar la precipitación topográfica mediante la reforestación; (iv) mejorar la 
eficiencia del uso del agua por parte de la flora a través de la preservación del 
paisaje típico de mosaico; 
 

− El paisaje Mediterráneo típico de mosaico ayuda a restaurar el sistema 
hidrológico de la Cuenca, a combatir la desertificación y a lograr un ecosistema 
más saludable, más productivo y más diverso. Los esfuerzos para reducir la 
pérdida de este paisaje cultural podrían estar dirigidos a limitar la 
intensificación del uso de la tierra y preservar los sistemas extensivos 
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tradicionales de altos valores culturales y de productividad. Las opciones 
destacadas para lograr esto son: (i) promover el cultivo en terrazas; (ii) ampliar 
los sistemas agroforestales; 
 

− Los marcos que tienen como objetivo la gestión de los problemas ambientales 
deberían poner en valor los conocimientos tradicionales sobre las prácticas de 
manejo sostenible de la tierra de los pueblos. Una forma de hacerlo es a través 
del establecimiento de plataformas intersectoriales que permitan la 
colaboración de agricultores con políticos. Con dicha colaboración 
intersectorial, se garantiza un aumento de la equidad en el proceso de toma 
de decisiones, se cierra la brecha existente entre los diferentes actores, y se 
impulsa la conciencia social sobre el cambio climático. 
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1. Introduction 

 

1.1 Background and Motivation 

1.1.1  The Mediterranean Basin 

The Mediterranean Basin is a biogeographical and environmental unit, home to some 

of the oldest human settlements in the world, and one of the 35 top global biodiversity 

hotspots (Pausas and Millán, 2018; Médail and Myers, 2004). With its ~2.6 million km2 

area, it encompasses 21 countries, seven marine eco-regions, and 75 coastal 

hydrological watersheds. Its long and rich natural and cultural heritage is largely due 

to the riverine systems within the Basin, source of nutrients and fresh water to 

ecosystems and societies (Benjamin et al., 2017). Over the centuries, commerce and 

communication within the region have taken place. These activities have not only 

united the different peoples across the Mediterranean, but also subjected the Basin to 

multiple pressures. Nowadays, it is estimated that one third of the population resides 

in the coastal regions, whereas more than the half are located in the coastal 

hydrological watersheds (Plan Bleu, 2016). On-land, the Plan Bleu report highlights 

chemical contamination of sediments and biota, and alterations in hydrographic 

conditions among the greatest impacts of anthropogenic action in the Basin.  

A major driver of Mediterranean environmental degradation and up to a certain 

extent, regional climatic change, has been Land Use Change (LUC) resulting from long 

standing human pressure. Globally, LUC is altering the provision of water resources 

(MA, 2005; Portmann et al., 2010), causing the loss of biodiversity (Newbold et al., 

2015), and increasing the emission of greenhouse gases (Foley et al., 2005) among 

others (i.e. altering the biophysical properties of Earth's surface and the cycles of 

nutrients, threatening soils, etc.) This situation is exacerbated today by economic 

growth, changes in the global diet, and increased demand for land aimed at bioenergy 

production (FAOSTAT, 2018; Weinzettel et al., 2013). Despite having improvements 

in agricultural productivity (Evenson and Gollin, 2003) competition for land use is 

increasing (Lambin and Meyfroidt, 2011). 
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At the same time, mismanagement of land resources endangers the future 

provision of food, water, and energy security (Jia et al. 2019; MA, 2005; World Bank, 

2008;). In this way, the region’s long history of land use and agricultural intensification 

(Chapter 3) together with the low levels of precipitation (Chapter 2), intense storms, 

droughts, high evapotranspiration, and steep slopes, has spread the promotion of 

erosion and water scarcity (García-Ruiz, 2011). The tremendous importance of water 

availability in the Basin underscores the necessity of understanding how to improve 

the water supply and better manage watersheds in an integrated manner (Plan Bleu, 

2016). Within the Basin, 60% percent of the population are “water poor”, i.e. less than 

1,000 m3PC yr-1, as natural water resources are very unequally distributed among the 

northern (72%) and southern sides (23%) of the Sea. Likewise, land desertification 

rates among the top problems within the Basin, a challenge that is only expected to 

worsen with climate change (Mirzabaev et al., 2019). According to these authors, 

drylands cover 33.8% of northern Mediterranean countries with its expansion driven 

by land use, irrigation development, encroachment of cultivation on rangelands, 

population growth and agricultural policies and markets.  

Furthermore, land mismanagement (e.g. overgrazing, slash and burn) increases 

the frequency and intensity of abrupt climatic events (Chapter 3) and threatens 

adaptation and mitigation capacities in the face of climate change (Neely et al., 2009). 

The latest Intergovernmental Panel on Climate Change (IPCC) special report (IPCC, 

2018) states that climate change, and specifically shorter-term, abrupt climate events, 

increase the risk in the availability of water resources, the acceleration of soil 

degradation, sea level rise, the change in terrestrial and marine ecosystems, heat 

waves, and more extreme temperatures. In fact, the Mediterranean inland 

temperatures rise faster than the global mean, i.e. 1.4ºC above pre-industrial levels 

(Cramer et al., 2018), as well as the Sea’s surface temperature, ~0.4ºC/decade for the 

past recent decades (Macias et al., 2013).  

The rural areas of the Mediterranean Basin are more vulnerable to climate 

change because of their lower infrastructural, financial and technological development, 

together with their higher dependence on rain-fed agriculture. Thus, promoting their 

voices and assigning them the responsibility to take joint action to combat climate 

change, is not only key but achievable through Sustainable Land Management1 (SLM). 

                                                             
1 Sustainable Land Management (SLM) was defined in 1992 by the UN Earth Summit as “the use 

of land resources, including soils, water, animals and plants, for the production of goods to meet changing 
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There is increasing evidence of the potential of SLM as a land-based solution to 

simultaneously address climate change mitigation and adaptation, desertification, land 

degradation, and drought (Chapter 4), while often achieving other co-benefits such as 

protecting biodiversity, promoting the traditional knowledge, and securing economic 

opportunities. 

To face this complex and interlinked challenges in the Basin coordinated policy 

and management responses are thus, required to overcome present and future 

impacts of climate change while tiding the degradation of the Mediterranean 

ecosystems (Chapter 5). 

1.1.2  Multilateral policy processes context 

Governments develop regional/local mitigation and adaptation strategies, in 

which a series of measures are defined. These, have been ratified and reinforced after 

the 21st United Nations Conference of the Parties (COP21), through the Intended 

Nationally Determined Contributions (INDCs), proposed by each country. This 

opportunity arises from the strong commitment of governments to mitigate and adapt 

to climate change, as well as their commitments in achieving the UN Sustainable 

Development Goals (SDGs), in particular SDG13 "action for climate: take urgent action 

to combat climate change and its effects", SDG1 “no poverty”, SDG2 "zero hunger", 

SDG3 “good health and well-being”, SDG6 "clean water and sanitation" and SDG15 

"life of terrestrial ecosystems". 

Several frameworks and intergovernmental institutions exist within the 

Mediterranean Basin that aim to translate the 2030 Agenda for Sustainable 

Development at the regional level (i.e. downscaling) while stimulating regional 

cooperation (i.e. upscaling). Among them, there are the Mediterranean Strategy for 

Sustainable Development (MSSD 2016-2025), the Union for the Mediterranean (UfM), 

and the Mediterranean Experts on Environmental and Climate Change (MedECC). 

These transnational instruments, among others, can support national and local efforts, 

identify knowledge gaps and provide unbiased information to policy makers Basin-

wide.  

For the effective adoption of mitigation and adaptation strategies, their 

acceptance and implementation is necessary at all levels of society, as public support 

                                                             
human needs, while simultaneously ensuring the long-term productive potential of these resources and 
the maintenance of their environmental functions”. 
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and commitment to environmental policies are directly related and influenced by public 

perception and social awareness (Howe et al., 2015; Lee et al., 2015). Therefore, an 

approach that includes public training and cooperation, including the civil society, 

governments and the private sector, is required. According to this, the United Nations 

Framework Convention on Climate Change (UNFCCC) governments have committed 

to educate, train and raise awareness of the challenges that climate change presents 

us. This common objective is reflected in Article 6 of the UNFCCC and in Article 10 (e) 

of its Kyoto Protocol. Likewise, its importance has been reflected in Article 12 of the 

Paris Agreement (Annex to decision 1 / CP.21, UNFCCC) recently ratified. In this 

context, the Coordinating Unit of the Mediterranean Action Plan (UNEP/MAP) 

developed the Mediterranean Strategy for Sustainable Development 2016-2025 (Plan 

Bleu, 2016), in where the action “put more emphasis on emerging priorities, such as 

climate change adaptation” was highlighted. 

The here developed thesis arises from the strong commitment of international 

and regional governmental institutions to combat climate change, both in adapting and 

mitigating, while also achieving at the regional level the SDGs. To overcome current 

challenges, it is of vital importance to understand the links between: (a) the 

Mediterranean Basin in the current face of climate change and its consequences; (b) 

the evolution and changes of the land use; (c) the array of effective and appropriate 

sustainable land management practices in a Mediterranean context; (d) and the 

enhance of societal environmental awareness and capacity to steer policy action, in 

order to provide integrated response options. 

1.2 Hypothesis and objectives 

This dissertation stems from the importance of water in both ecosystems and societies 

within the Mediterranean Basin and the challenge that climate change poses to the 

region. It is framed from a Basin-wide approach as a niche opportunity for climate 

change adaptation and mitigation. The thesis aims to: (1) better understand the 

relevant processes that affected and continues affecting the hydrological system of the 

region; (2) identify good practices to address water scarcity while promoting climate 

change mitigation and adaptation in the rural areas. If these two aims are broken down 

into hypothesis and the related objectives, the following are addressed: 
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Hypothesis 1: The hydrological system of the Mediterranean Basin has been modified 

by LUC practices. 
 

Objective 1: Differentiate between natural and anthropogenic climate variability 

throughout the Holocene2  Revision of the literature on the 

climatic, biogeographic and historical context of the Mediterranean 
Basin since the early Holocene until today’s current state and 
future projections of climate change; 

Objective 2: Elaborate on existing knowledge about how topographic rainfall 
might have been changed due to anthropogenic action  Review 
of the existing interactions and the resulting feedbacks between 
land use change and the local climate based on the literature. 
Discussion of its long-term diachronic relationship with the regional 
environment; 

 

Hypothesis 2: Topographic rainfall can be naturally stimulated through SLM and this 

will help restoring a healthier hydrological system. 
 

 Objective 3: Identify which sustainable land management practices can better 
assist in restoring topographic rainfall  Identification of the best 
options for sustainable land use management in relation to 
adaptation and mitigation in the current state of the Mediterranean 
area; 

Objective 4:  Assess the viability of adopting such practices  Exploration of 
the mechanisms that hinder / facilitate the implementation of 
effective strategies; 

Objective 5: Understand the social and political frameworks in where the 
research can be implemented and extend the results into policy 
recommendations of effective implementation  Highlight 
mechanisms that rise public support and commitment to 
environmental policies and reflect on capacity-building institutions 
that facilitate the adoption of sustainable land management 
practices. 

 

1.3 Structure and methodology 

This work is structured following the above five objectives: Chapter 2 provides a review 

of the climatic and biogeographic context of the Mediterranean Basin since the early 

                                                             
2 Geological epoch that comprises the last ~11,700 years 
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Holocene (Obj. 1); Chapter 3 elaborates on the LUC-climate interaction and the 

resulting feedbacks (Obj. 2); Chapter 4 identifies the best options for sustainable land 

use management in relation to adaptation and mitigation (Obj. 3 and 4); Chapter 5 

inspects mechanism to facilitate the implementation of effective climatic strategies 

(Obj. 5); Chapter 6 discusses all encountered results, provides with policy 

recommendations and concludes the work. Figure 1.1 displays all objectives assessed 

in each chapter together with the followed methodology for their completion. 

The rationale behind its structure is the following: the historic-causal perspective 

of Chapter 3 paired with knowledge of climate change current and future impacts of 

Chapter 2 can inform anticipatory learning in the context of climate change mitigation 

and adaptation options (Chapter 5). This knowledge together with the inspection of 

effective and plausible sustainable land management options within the Mediterranean 

Basin (Chapter 4) can assist channelling efforts towards addressing landscape 

degradation and water scarcity in rural regions (Chapter 5). 

 

 

Figure 1.1. Scheme of the thesis’ structure. In black the different chapters (Chp), in 
pink the assessed hypothesis and objectives (Obj.) and in grey/cyan the used 
methodologies and most relevant outputs. 



Climate in the Mediterranean Basin | 7 

2. Geography and climate in the Mediterranean Basin 

 

This chapter contextualizes the Mediterranean Basin’s climate throughout the 

Holocene and summarizes future projections.  

As stated by Rohling et al. (2009): “The Mediterranean is a small-scale coupled 

atmosphere-ocean system with a rather short response time, thus regional long-term 

changes may be the result of changes in the more slowly responding global system”. 

This statement highlights the adequacy of the region to study past and current climate 

variability and interactions, as its large sensitivity results in amplified signals of a more 

immediate response. Evidence of this is found in the Basin’s annual mean 

temperatures, which are rising faster than the global mean, i.e. 1.4ºC above pre-

industrial levels (Cramer et al., 2018) and in the temperature of the Sea’s surface 

water, which have raised ~0.4ºC/decade for the past recent decades (Macias et al., 

2013), among others. 

To contextualize the Mediterranean climate, this chapter starts by briefly 

summarizing the geomorphology of the Basin, as it strongly influences its climate 

through land-atmosphere couplings (Section 2.1). It then overviews the 

Mediterranean’s climatic context since the early Holocene (Section 2.2) and walks us 

to the current hydrological state by outlining the synoptic circulation (i.e. large-scale 

circulation) and the regional-to-local conditions that play an important role in shaping 

rainfall amount, distinguishing between the western and eastern Mediterranean sub-

basins (Section 2.3). It afterward introduces how changes in land use and 

management can lead to regional to local rainfall variabilities and finishes by reflecting 

on the projected future climate change for the basin according to the IPCC (Section 

2.4). 

The rationale behind it is to answer Objective 1, which aims at discerning the 

natural/anthropogenic share of the historical environmental evolution of the 

Basin related to the human occupation and associated agricultural activities (Chapter 

3). 
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2.1 Geophysical context 

The Mediterranean Basin lies between 30–47°N and 10°W–35°E. Its nowadays 

landscape is the product of the long-term tectonic forces as the joining point of three 

continents, river watersheds and marine processes, orbital driven climate change, and 

human action. 

The origin of the Mediterranean Sea and its reduced connectivity to the other 

water masses and oceans result from the collision between the African and European 

tectonic plates in the last ~30 Myr that led to the disappearance of the Tethys Ocean. 

This N-S driven compression isolated the Mediterranean during the Miocene ~5.8 Myr 

ago, which combined with its negative water balance gave way to the Messinian 

salinity crisis (Ryan, 2009). The Messinian salinity crisis consisted on an evaporitic 

drawdown of the Sea with up to a 1 km drop of the base level, causing the fall of 5% 

of world’s ocean salinity and temporarily affecting the global thermohaline circulation 

with consequences to the climate (e.g. spread of sea ice, drop of world temperature). 

The reopening of the Sea to the Atlantic Ocean occurred soon afterwards (i.e. ~5–6 

kyr after) as a response of a subduction rollback3 orthogonal to the main direction of 

compression that opened the Strait of Gibraltar (Woodward, 2009). 

Many of the mountain belts within the Mediterranean are likewise attributable to 

the combination of a N-S compression and its orthogonal subduction trenches, 

generating arcuate shapes around the Basin (Zanchetta et al., 2011). This type of 

orogenesis is mainly present at the northern side of the collision zone, where likewise 

occurs the highest seismic activity of the whole Basin nowadays, mostly condensed at 

the Aegean Sea (Thera/Santorini), central and southern Italy (Holocene volcanism), 

and the Hellenic arc (Greece and eastern Anatolia) (Fig. 2.1). Other mountain ranges 

such as the Beltic Rif of Spain and Morocco to the Apennine-Calabrian-Maghrebide of 

Italy and North Africa are instead, remnants of the extensional destruction of an older 

(Cretaceous-Oligocene) NE-SW Alpine belt (Woodward, 2009). 

Over 160 rivers can be counted within the Mediterranean drainage Basin (Poulos 

and Collins, 2002). These are largely constrained by the uplifted mountains, making 

                                                             
3 Subduction is the geological process that involves a tectonic plate moving under another one 

into the mantle. It occurs due to the collision of two tectonic plates at a convergent boundary and due the 
difference of densities between the two. When the subduction process happens and results in seaward 
motion of the trench, then it is referred as a rollback, making the subduction trench move over time (see 
Fig. 2.1). 
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their valleys and proximal to the Sea. There are three principal basins within the region 

related to the Po (~70 km2), Rhône (~96 km2), and Ebro (~84 km2) rivers, apart from 

the exogenous Nile. All the Basin’s main rivers exhibit km-scale incisions in the 

landscape as the result of the dramatic lowering of the base level during the Messinian 

salinity crisis. The Nile River moreover, has played a key role in altering the 

hydrography, salinity and circulation of the Mediterranean Sea, as due to its large flow, 

it can inhibit the formation of organic-rich layers (i.e. sapropel layers) in the deeps of 

the Sea, which historically occurred during the Messinian salinity crisis and the early-

Holocene. 

The intricate shoreline of the Mediterranean Sea and the lack of strong marine 

waves favour delta formation by river sedimentation aggradation (Lionello et al., 2006), 

overall exhibiting a complex geomorphology of arcuate mountain ranges and 

sedimentary basins, river and marine terraces, and alluvial fan sediments (see more 

in Benito et al., 2015). The Basin thus, has a highly diversified coastal morphology with 

a sediment-supply regime, containing, together with the Alpine river catchments, the 

highest catchment sediment yields in Europe (Vanmaercke et al., 2011). However, 

river discharge is strongly influenced by the seasonal distribution of precipitation 

(Section 2.2) and human activities (Chapter 3), influencing the hydrological budget of 

the whole area. 

 

Figure 2.1. Geodynamical and morphological framework of the Mediterranean Basin. 
The yellow enclosed area corresponds to the Mediterranean biogeostrati-graphical 

zone. Topographic data from NaturalEarth4. 

                                                             
4 https://www.naturalearthdata.com 
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2.2 Climate setting for the past 11.7 kyr BP  

The last ~11.7 kyr BP might appear as a climatically stable period when compared to 

past epochs (Fig. 2.2-top). However, significant climate variability is registered at a 

global scale in response to different parameters of the orbital forcing (Milanković, 

1930). Differently from the traditional theory of Milankovitch that relates high latitudes 

summer insolation with glacial-interglacial cycles, Davis and Brewer (2009) propose 

the latitudinal insolation gradient, dominated by obliquity (41 kyr periodicity) in summer, 

and precession (21 kyr periodicity) in winter, to drive the global temperature gradient 

in the Holocene, and thus, the oceanic and atmospheric circulations. Abrupt climatic 

events occurred within the Holocene are likewise related to global redistributions of 

moisture and heat, that overwrite the orbital forcing and dominate the climate variability 

of this period (Fig. 2.2-bottom), controlling regional humidity and latent heat through 

vapour transport (Mayewski et al., 2004). 

 

Figure 2.2. NGRIP 18O (‰ SMOW) ice record and insolation at 65ºN summer solstice 
(W/m2) for the past 100 kyr (Laskar et al., 2011). Dashed vertical bars indicate the 
Holocene, YD: Younger Dryas, BA: Bølling-Allerød, HS-: Heinrich Stadials, LIA: Little 
Ice Age, MCA: Medevial Climate Anomaly, ka: different well-registered abrupt events. 

Close up 
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2.2.1  The early-Holocene (11.7–8.3 kyr BP) 

During the early-Holocene, the Earth experienced a boreal insolation maximum (10 

kyr BP) that led to a dry/wet eastern/western Mediterranean Basin (Harrison and 

Digerfeldt, 1993). In the Eastern Mediterranean Basin (EMB) the Hadley circulation 

was reinforced. This enhanced the stronger North Atlantic anticyclone, which would 

block the wet Westerlies to blow moisture into the area (Fig. 2.3-10kyr BP). In the 

Western Mediterranean Basin (WMB) instead, the local convection was reinforced. 

This, weakened the Hadley cell in the area, allowing the Westerlies to provide both 

increased effective moisture and water availability (Magny et al., 2012). During the 

boreal insolation maximum, both summer and winter temperature anomalies were high 

in the dry NE Mediterranean region, while they were only slightly negative during 

summer in the wet NW Mediterranean (Davis et al., 2003). However, as the Earth 

remained significantly glaciated, changes in the massive ice sheets still played a 

salient role in climate variability, i.e. the 9.2 ka and 8.2 ka cold and abrupt climatic 

events (Alley and Ágústsdóttir, 2005; Rohling and Pälike, 2005). 

2.2.2  The mid-Holocene (8.3–4.2 kyr BP) 

The mid-Holocene (Fig.2.3-7kyr BP) presented less strongly contrasting seasonality 

and a general increase in the summer and winter precipitations over the Basin (Peyron 

et al., 2017). This increase in moisture availability was related to changes in the orbital 

forcing, with higher insolation at high latitudes compared to low latitudes, amplified by 

the marine and atmospheric circulation of the Basin (Davis and Brewer, 2009) . In this 

context, and although the summer insolation was stronger than in the present, climatic 

proxies indicate that Earth’s high latitudes were warmer than nowadays, while low 

latitudes remained colder (Davis and Brewer, 2009). In particular, the Mediterranean 

reached a mid-Holocene thermal minimum by ~7 kyr BP (Davis et al., 2003), a time 

when the present atmospheric circulation of the North Hemisphere was established 

(Schulz and Paul, 2002). While dry conditions were present in the northern Basin, 

major floods took place in the center and southern areas around 7.67.1 kyr BP in 

response to the development of the mega-Monsoons (see Davis and Brewer, 2009). 

Floods have been reported to occur during this time span in southern Italy, southern 

France, the Levant coast, and in Tunisia (Benito et al., 2015). Likewise, the 6 ka event, 

related to an episode of declined solar output, is marked by a dry/wet spell in the 

WMB/EMB.  
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2.2.3  The late-Holocene (4.2–0 kyr BP)  

With a generalized drying and warming of the conditions, the late-Holocene was 

marked by the reorganization of the general atmospheric circulation due to an orbitally 

induced decrease of solar insolation around 4.5 kyr BP (Davis et al., 2003). Back to a 

regime with a higher latitudinal temperature gradient, the InterTopical Convergence 

Zone (ITCZ) together with the Monsoons system migrated towards the south, leading 

to a general reduction of the Mediterranean’s precipitation (Zhao et al., 2010). For the 

north-western side of the Basin, the transition to drier climate would occur more 

abruptly, related to important winter recharge periods during warm summers (Fig. 2.3-

3kyr BP). Instead, in the south-western and EMB, the transition would take place more 

gradually with relatively stable temperatures throughout the year (Davis et al. 2003; 

Harrison and Digerfeldt, 1993). Ever since the decrease of insolation, the 

Mediterranean has witnessed more unstable weather patterns, a successive decline 

in precipitation (Peyron et al., 2017) and a linear increase of its temperatures, reaching 

present-day conditions around 2.52 kyr BP. Likewise related to orbital forcing, the 

4.2 ka and 2.4 ka abrupt events in the late-Holocene, as well as the climate oscillation 

of the Little Ice Age (LIA) in 13001800 AD that followed the Medieval Climate 

Anomaly (MCA) in 8001300 AD, were coincident with episodes of declined solar 

output (Bond et al., 2001). 

Figure 2.3. Reconstructed winter (DJF) and summer (JJA) temperature anomalies (°C) 

and precipitation anomalies (mm/month) relative to the pre-industrial (100 yr BP) 

period. Data source: Mauri et al. (2015).  
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2.3 Current climate and hydrological perspective 

The climate dynamics of the Basin are strongly determined by the enclosed 

Mediterranean Sea and the mountain belts that surround it. Its climate is characterized 

by temperate wet winters and warm dry summers, with temperature rates of ~10 to 

~25 ºC and rainfall rates of >3500 mm yr-1 to <200 mm yr-1, according to WorldClim 

(Fig. 2.4). The lack of summer rainfall is a defining characteristic of the whole 

Mediterranean with an overall September to May wet season. Over the northern part, 

however, the Basin experiences a bimodal rain pattern with moister spring and fall 

seasons. In the eastern part, the rain season occurs in December-February (Dayan et 

al., 2015). 

Figure 2.4. Mean average winter (DJF) and summer (JJA) temperatures (°C) and 

precipitation (mm/month). Data source: WorldClim5.  

The hydrological system of the basin has two main precipitation types, the synoptic 

rainfall, which is consequence of the large-scale atmospheric motion; and the 

topographic rainfall, which is the rain caused by local orographic convection. Like 

orography, other smaller scale processes such as the sea surface temperature or the 

land-sea interaction, also intervene on the regional rainfall variability. These though, 

have a limited influence in the overall precipitation of the basin (Xoplaki et al., 2004). 

                                                             
5 https://worldclim.org/version2 
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2.3.1  Synoptic rainfall 
 

The synoptic rainfall displays an anti-phase precipitation pattern for the EMB/WMB 

(Benito et al., 2015). Records from the WMB indicate high influence of the Westerly 

winds driven by the North Atlantic Oscillation and the East Atlantic/West Russia, 

favouring cyclogenesis during autumn, and also during spring in the south-western 

regions (i.e. Morocco, Algeria, S-Spain, and S-Italy) (Xoplaki et al., 2004). The EMB 

instead, is influenced by the descending branch of the Hadley cell in summer and the 

Siberian High in winter, with cold Levant fronts. Most of the winter rainfall of this area 

is attributed to the El Niño Southern Oscillation, which displaces the jet above this sub-

basin (Lionello et al., 2006). As previously exposed, precipitation rates are minimum 

in the summer months for the whole Basin. Penetrating frontal lows are the main 

source of summer rainfall, although these, quickly vanish in the eastern and 

southeaster areas where there is the predominance of the Hadley cell (Raveh-Rubin 

and Wernli, 2015). In winter, the Hadley cell moves south, enabling the entrance of 

rainy synoptic systems. 

 

2.3.2  Topographic rainfall 
 

The topographic rainfall is produced by upslope winds and sea-breezes during 

summer when high amounts of sea surface vapour are accumulated throughout the 

day and transported over the coastal mountain ranges, where it precipitates. This 

phenomenon occurs due to the Basin’s physical geography, which comprises several 

mountain belts around the Sea (Fig. 2.1). Although the distribution of arcuate-type 

mountain belts comprises both the EMB and WMB, topographic rainfall is mostly 

characteristic of the WMB. This is the case as the atmospheric regime of the EMB is 

dominated by convection and thus, despite its higher sea surface temperature and the 

presence of coastal mountains, moisture accumulation takes place in smaller amounts 

and does not result in high topographic rainfall (Goldreich, 2003; Millán et al., 1997). 

 

2.3.3  Changes in the land use and rainfall patterns 
 

Both the synoptic and the topographic rainfall can be affected by changes in the land 

use and land management of the Mediterranean Basin. 

On the one hand, as previously exposed, the synoptic system is responsible for 

most of the EMB’s rainfall through cold fronts of Mediterranean mid-latitude cyclones, 



Climate in the Mediterranean Basin | 15 

 

i.e. Cyprus Lows and Syrian Lows. Contributing factors to cyclogenesis development 

are the relatively high sea surface temperature of the Mediterranean Sea compared to 

the colder layer of air above it, and orography orthogonal to the airflow, i.e. mountains. 

However, the main cause of cyclogenesis development in the EMB are heat lows that 

generate from the thermal heating over dry land (Nissen et al., 2010; Xoplaki et al., 

2004). In this way, land mismanagement and land use changes can result in soil 

aridification, causing fluctuations on land surface heat fluxes through the increase of 

albedo or the decrease in evapotranspiration rates, affecting cyclone development 

(Fig. 2.5-a). The occurrence of cyclones has been found to be related to extreme 

precipitation events, as they feed the flow of air towards the area affected by heavy 

rain (Jansa et al., 2001). They are also associated with wind storms and surges, 

extreme events that impact very arid areas. In particular, the literature reports a 

number of small but exceptionally severe storms called Medicanes (from 

Mediterranean hurricanes) characterized by storms of the strongest intensity, an 

extremely small radius and short lifetime, that cause flooding and damages in the 

coastal areas (Cavicchia et al., 2014). Although no homogeneous tendency has been 

reported for extreme rainfall in the Basin (Brunet India et al., 2007), records indicate 

an increase of torrential rainfall together with a decrease of light-moderate 

precipitation, both in the WMB (e.g. Alpert et al., 2002) and in the EMB (e.g. 

Kioutsioukis et al., 2010).  

On the other hand, topographic rainfall is the main source of precipitation in the 

WMB. Similarly to the EMB, topographic rainfall is declining as the cloud condensation 

level required for precipitation is not reached due to lack of inland moisture, i.e. 

aridification (Millán et al., 2005). As these authors explain, the lack of moisture occurs 

due to vapour accumulating over the sea and moving inland, where it decreases while 

temperature increases. This situation, forces vapour to rise by sensible heating, and 

eventually, if the cloud condensation level is not acquired, i.e. due to lack of moisture, 

it ascends above the coastal orography and leaves the Mediterranean Basin pushed 

by a cold air loft or a transitory depression. The consequent inhibition of local storms 

results in the reorganization of the evaporated water into a closed vertical loop above 

the sea that lasts for 45 days before travelling inland passed beyond the 

Mediterranean orography and that accumulates several layers of pollutants (Dong et 

al., 2017) (Fig 2.5-b). 

Consequences of the alteration of the synoptic and topographic rainfall likely 

result in sparser and heavier rainfall events and more severe and extended droughts 
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(Steffen et al., 2015). These at the same time, enhance future aridification, reduce 

vegetation cover, lead to the decline temperate forests within the Basin, enhance soil 

erosion, boost the activation of floodplains or intensify aeolian sediment mobilization, 

among others (Fletcher and Zielhofer, 2013).  Further effects are likewise propagated 

into the adjacent regions of the Mediterranean. In particular, to central Europe and to 

the Sahel through the export of the accumulated moisture (Park et al., 2016; Ulbrich 

et al., 2012). 

 

Figure 2.5. (a) Winter and summer cyclogenetic regions of the Mediterranean Basin 
according to Dayan et al. (2015) and Nissen et al. (2010). Dark-blue regions are 
associated to the positive phase of the North Atlantic Oscillation in winter with 
migrating cyclones into the basin, while light-blue regions are associated to heat lows 
that generate from the inland heating in summer within the basin. (b) Schematic 
representation of enhanced/prevented topographic rainfall. The green colour indicates 
could condensation, while orange indicates the reorganization of evaporated water in 
a vertical loop. 

2.4 Future climate projections 

Projections into the year 2100 presented by the IPCC exhibit an increase on global 

temperatures with more hot- and fewer cold-extreme temperatures; an increase on the 

frequency, length and magnitude of these events; a likewise intensification of individual 

storms and thus, a reduction on the number of weaker storms; a higher contrast 

between seasonal precipitation; an increase on surface evaporation and hence, on soil 

moisture; and a decrease in annual runoff (Collins et al., 2013).  

In particular, climate change is estimated to strongly impact the Mediterranean 

region by increasing heat summer stress and heat waves (CDC, 2018; Lionello et al., 

2017) and modifying precipitation patterns by a weakened Atlantic meridional 

overturning circulation product of the extension of the Hadley Cell (Combourieu-
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Nebout et al., 2013) (Fig. 2.6). The expansion of the Hadley Cell is projected to inhibit 

precipitation on its poleward flanks, and therefore, on the Basin (see 

AR5_WGI_AnnexI for modelled projections of the Mediterranean and Sahara area). In 

this context and along with precipitation decreases (Lionello and Scarascia, 2018), 

storminess enhancement (Romera et al., 2017; Seneviratne et al., 2012), and 

evaporation increases due to temperature rise (Collins et al., 2013), large declines in 

riverine runoff (Sanchez-Gomez et al., 2011) are projected for the Basin. To this, it 

needs to be added up the expand of demands of goods and services due to projected 

population growth (World Bank Group, 2018), among which water resources are 

critical (Cramer et al., 2018). 

 

 
 

Figure 2.6. AR5-WGI time series of temperature change relative to 1986–2005 
averaged over land grid points in the regions of South Europe/Mediterranean (30°N to 
45°N, 10°W to 40°E) and the Sahara (15°N to 30°N, 20°W to 40°E). Thin lines denote 
one ensemble member per model, thick lines the CMIP5 multi-model mean. On the 
right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the 
distribution of 20-year mean changes are given for 2081–2100 in the four RCP 
scenarios. Source: IPCC, 2013: Annex I: Atlas of Global and Regional Climate 
Projections. 
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According to the Objective number four of the UNEP/MAP (Plan bleu, 2016), “the 

consequences of climate change are expected to worsen already critical situations 

present in the region”. Within this context, addressing climate change is a priority issue 

for the Mediterranean region. 

2.5 Conclusions and connection 

Orbitally induced climate variability set the conditions for an overall dryer Basin 

during the late-Holocene (4.2–0 kyr BP), with more unstable weather patterns and 

reduced precipitation.  

The natural alteration of the hydrological system, however, has only been 

exacerbated by human activities, resulting in nowadays’ alteration of the 

cyclogenesis development that takes place in the EMB and inhibition of topographic 

rainfall in the WMB.  

With the gathering of this information, Objective 1 is accomplished, which 

aimed at discerning between the natural and the anthropogenic share of the historical 

environmental evolution of the Basin. 

In light of the current and projected climate scenarios, the adoption of sustainable 

land management measures (Chapter 4) becomes key in contributing to restoring and 

enhancing the water cycle of the Basin with implications not only to the hydrological 

budget of the Mediterranean (Chapter 3) but also, as a basis to perform climate change 

adaptation and mitigation actions. 
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3. LUC−environmental interaction 
 

 

After the introduction to the Mediterranean’s geomorphology and climate history 

throughout the Holocene presented in Chapter 2, this chapter reviews how past Land 

Use Changes6 (LUC) interacted with the regional environment in the Basin. The aim 

to do so is to answer Objective 2, which aims at better understanding the 

implications of LUCs in modifying the landscape and reinforcing climate 

variability, especially, the hydrological system. LUC is not only among the largest 

anthropogenic impacts threatening the environment but also, a major driver of climate 

change. According to the IPCC’s Fifth Assessment Report (AR5), Agriculture Forestry 

and Other Land Use (AFOLU) are responsible for about 10–12 GtCO2eq yr-1 

anthropogenic GHG emissions. 

For this purpose, we start by introducing the archaeological and vegetation 

evolution of the Mediterranean Holocene societies (Section 3.1). Next, we conduct a 

semi-structured review of 23 scientific case-studies carried out around the Basin and 

analyse their content as a basis of summarizing the fundamental LUC practices and 

LUC−environment encountered interactions (Section 3.2). Using these, we develop an 

integrative network map to holistically visualize and understand the different 

interactions and discuss the contribution of past LUCs in exacerbating climate change 

through positive feedbacks (Section 3.3).  

The Mediterranean Basin is a key study area to discern the interaction between 

paleoclimate and anthropogenic activity, as this region is sensitive to the regional and 

global climate change, both due to its diversity in the configurations of land and sub-

seas and due to its connection to the global ocean and atmospheric circulation. 

Further, it is home to ancient civilisations and rich with information on human and 

environment interaction, i.e. archaeological sites, Quaternary deposits product of 

anthropogenic activities, etc. (Holmgren et al. 2016 and references therein). 

                                                             
6 Differently from the Land Use, Land-Use Change, and Forestry (LULUCF) defined by the United 

Nations Framework Convention on Climate Change (UNFCC), by Land Use Change (LUC) we here 

understand the straightforward change from one land use (e.g. forestland) to another form of land use 

(e.g. cropland). 
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The rationale behind this chapter is to follow up on this investigation by promoting 

sustainable land practices aimed at dampening the accumulated effects of LUC over 

the last millennia while combating climate change (Chapter 4). 

3.1 Archaeological and vegetation evolution 

Within the Mediterranean Basin, there are different chronologies on archaeological 

evolution that cannot be ignored. The heterogeneity of these is the result of the rich 

cultural, climatic, and geological diversity that characterizes this extended geographic 

region. To check into these, Roberts et al. (2011) assemble a summary of the different 

chronologies within the Basin by 9 regions, i.e. Iberia, North Africa, Italy, Balkans, 

Aegean, Anatolia, Levant, Egypt and Mesopotamia, for the 9–2.3 kyr BP time span. 

Here, we will shortly introduce the archaeological context of the Basin, treating it as a 

whole, and thus, generalizing its context as a basis of understanding the following sub-

chapters. 

3.1.1  The early-Holocene (11.7–8.3 kyr BP) 

The significant human threshold of the Mesolithic−Neolithic transition consisted of a 

cultural revolution from a subsistence model of hunter-gatherer to herder-farmer, with 

the emergence of agriculture and animal husbandry that took place in the early-

Holocene (Zeder, 2008). Neolithic settlements first developed in the Near East ~12 kyr 

BP, moved to Anatolia ~10–9 kyr BP (Flohr et al., 2016), and from there to south 

Europe ~8 kyr BP both via terrestrial migratory paths crossing Thrace and the Balkans, 

and maritime routes through Dodecanese and Crete (Paschou et al., 2014). This 

spread took place through the adoption of plant and animal domesticates by pre-

existing Mesolithic populations (Roberts et al., 2011). During this time, a diverse range 

of economic activities took place in the Neolithic Mediterranean settlements, from 

pastoralism of sheep, goat, pig and cattle in the arid regions (Fig. 3.1, red 9−5 kry BP), 

to production of domesticated grain such as wheat and barley in the coastlines and in 

the steppes (Goring-Morris and Belfer-Cohen, 2011; Henry et al., 2017) (Fig. 3.1, 

green 9−5 kry BP). Settlements preferably developed close to perennial water sources 

and the coastline, from where they could access a richer variety of ecosystems 

(Benjamin et al., 2017).  
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3.1.2  The mid-Holocene (8.3–4.2 kyr BP) 

Following to the Neolithic, Chalcolithic cultures flourished in the Near East, expanding 

their knowledge, control and cooperation on managing water, animal and soil 

resources (Roberts et al., 2011). These early societies of the mid-Holocene, allowed 

cultivation in low-precipitation areas and developed the production, craft and trade of 

metal goods. They also showed climate resilience to specific and frequently seasonal, 

local climate conditions. However, for abrupt climatic events, both evidence of 

civilization decline and even collapse have been reported (e.g. Clarke et al., 2016; 

Martín-Puertas et al. 2008), together with evidence of local adaptation through storage 

strategies and resource diversification (e.g. Clarke et al., 2016; Flohr et al., 2016; 

Roberts et al., 2018b).  

3.1.3  The late-Holocene (4.2–0 kyr BP)  

Throughout the final Chalcolithic/early-Bronze Age (4.5–3.05 kyr BP), settlements 

reached higher levels of social organization, and following, the first literate societies 

emerged in the eastern Mediterranean (Roberts et al., 2011). These larger societies, 

with their extended cultural networks, had a higher capacity of performing intensive 

land use, exercising more impact on the surrounding biodiversity and exerting more 

pressure in the immediate environment (e.g. Primavera et al., 2017; Sadori et al., 

2016) (Fig. 3.1, 3 kry BP). In central and western Mediterranean, however, complex 

urban societies are linked with the arrival of the Greek and Phoenician trading colonies 

(Roberts et al., 2011). During the late-Holocene, thus, the Basin kept witnessing a 

progressive reduction in primary forest cover and major vegetation changes, creating 

new spaces functional to humans (e.g. Moser et al., 2017). LUC was exacerbated by 

the intensification of the different agricultural practices, aimed at providing resources 

to a more extended Mediterranean population (Fig. 3.1, 1 kry BP to 2016 AD). In this 

way, the climatic instability of the late-Holocene, followed by the increasingly significant 

anthropogenic LUC, pushed for the transition from climate-dominated systems to 

human-dominated  environments (Roberts et al., 2011). 
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Figure 3.1. Historical share of cropland and grazing land in 5′ longitude/ latitude grid 
resolution maps from 7000 years BC (9 kyr BP) to 2016. The coloured area 
corresponds to the Mediterranean biogeostratigraphical zone. Data has been acquired 
from the History Database of the Global Environment (HYDE version 3.2) presented 
by Goldewijk et al. (2017). 

 

3.1.4   Vegetation evolution 

Reconstructing the past vegetation cover of the Basin at a regional scale has proven 

challenging due to the patchy spatial coverage of data available today (e.g. European 

pollen dataset7; Changing the face of the Mediterranean8). To this, it has to be added 

the large uncertainties models need to account for, such as the distribution of 

cumulative CO2 through time (Stocker et al., 2018) and other processes operating at 

smaller scales that are rarely accounted for (Pausas and Millán, 2018). Thereby, up to 

date, a reconstruction of the Holocene vegetation evolution in the whole Mediterranean 

                                                             
7 http://europeanpollendatabase.net 
8 https://www.plymouth.ac.uk/research/centre-for-research-in-environment-society/changing-the-

face-of-the-mediterranean-land-cover-and-population-since-the-advent-of-farming 
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region has not yet been conducted, although there are ongoing projects such as the 

PAGES: LandCover6k working group9 that aim at disentangling this issue. 

The PAGES-LandCover6k working group has developed the REVEALS model 

(Regional Estimates of VEgetation Abundance from Large Sites), which uses 

sedimentary pollen data to estimate plant abundance on a regional geographic scale 

(Sugita, 2007). Using this model, several studies have estimated forest loss and past 

regional land cover in northern and central Europe (e.g. Kaplan et al., 2017; Roberts 

et al., 2018a; Woodbridge et al., 2014). Other several snapshots of time intervals, as 

well as local paleoreconstructions, have been performed within the Basin (e.g. Collins 

et al., 2012; Jalut et al., 2009). These, estimate the dominance of deciduous broad-

leaf forests during the early-Holocene with their later decline and contemporaneous 

spread of drought-tolerant xeric vegetation. Collins et al. (2012) report on mid-

Holocene records with up to 35–50% higher arboreal pollen than during the late-

Holocene and already confirm the widely widespread of xeric vegetation in the 

southern margins of the Basin. Moreover, in agreement with Fyfe et al. (2018), the 

authors conclude that anthropogenic LUC did not only transform the Mediterranean 

landscape from a forest vegetation type to the nowadays open and fragmented 

landscape, but it also transformed much of the other vegetation communities of the 

Basin. 

Nowadays, the Mediterranean Basin has a traditional mosaic-like landscape of 

agro-silvio-pastoral systems and xeric shrubs (~26%), annual-, permanent-, irrigated-

, rain-fed-, extensive-, and intensive- croplands (~35%), temperate forests (~21%), 

settlements, (~3.5%), wetlands (~1.5%) and other lands (13%) (FAO and Plan Bleu, 

2018; Malek et al., 2018-Fig.3). According to Malek and colleagues, typical plant 

associations of the region include deciduous oak forests, conifer formations with pine, 

cypress, and cedar. Livestock mainly consist of bovines, goats, and sheep. Annual 

crops are largely of cereals (i.e. wheat, maize, barley, and rice) and vegetables (fresh 

vegetables, potatoes and tomatoes). Permanent crops include olives, grapes, and 

citrus, which by themselves, amount >20% of the total crop production of the region. 

 

 

                                                             
9 http://pastglobalchanges.org/science/wg/landcover6k/intro 
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3.2 Land Use Change practices 

Far from attempting to construct a comprehensive analysis of the anthropogenic record 

on the Basin, we conduct a semi-structured systematic review of case-specific studies 

that focuses on the LUC−environment interaction in the Holocene epoch. For this, we 

(1) execute a literature search and (2) perform an analysis of the content of the 

selected studies. 

 

3.2.1  Literature search 

We started by conducting a search in the Web of ScienceTM database and the Science 

Direct® collection with the following keywords: paleoclimate, land use, archaeology, 

Mediterranean, Holocene, and the names of all countries with Mediterranean coasts 

or antique Mediterranean cultures. The obtained results (N>500) were filtered following 

these three criteria: i) time restriction to the 2008–2018 time span, as during these past 

years methodological developments have allowed for more transdisciplinarity, 

permitting climate scientists, historians, and archaeologists to interact and provide 

more holistic views of the results presented; ii) selection of studies taking place only 

within the Mediterranean sensu stricto biogeographical zone; iii) selection of studies 

that provide both, archaeological and environmental data (e.g. archaeological sites, 

pollen, charcoal, river geomorphology) related to paleoclimatic records (e.g. lake 

sediments, cave speleothems, deep sea cores). After screening the abstracts and 

conclusions of the resulting filtered studies (N>45), we selected 16 studies that fulfilled 

the criteria of particularly assessing the LUC−environment interaction, i.e. 

LUC−landscape−climate interaction (Fig. 3.2 continuous-yellow circles). Note that no 

study was found on the coast of North Africa or the Ionian, Aegean, and Adriatic Seas. 

That is why we also considered seven additional studies obtained from the review that 

inspected the LUC−landscape interaction but did not reflect on the effects on the local 

climate (Fig. 3.2 dashed-green triangles). We have shortly discussed these as well, in 

order to offer a more complete snapshot of the LUC−environment interaction in the 

Mediterranean Basin. 

For the documentation of the paleoclimate, studies predominantly use 

speleothems, lacustrine and deep-sea sediment cores as proxy records, while 

information on past LUCs is commonly recorded by inland sediment assemblages, 

archaeological sites, and pollen records. Most of the current work relates to the late-

Holocene and reports on anthropogenic LUC intensification. 
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3.2.2  Analysis of the content of the selected studies 

Following the review of case-specific studies, we analyse their content by collecting all 

identified effects on the environment, and in particular, on the hydrological cycle as a 

consequence of a LUC practice. The selected literature provides a collection of 

different case-studies exemplifying many particular LUC−environmental interactions. 

We text-analyse the content of these studies and collect all the identified interactions 

in Table 3.1. 

Overall, we find that in the still climate-dominated environment of the early-

Holocene, evidence of Mediterranean Neolithic impacts on the landscape was limited 

and likely overprinted. Despite the difficulty in distinguishing between human-induced 

versus natural LUC, some studies report unequivocally anthropogenic pressures in 

close relation to the landscape and climate. In particular, and following the propagation 

of the Neolithic front from Africa into Europe, the first recorded LUC practices have 

been found in the NE ancient world at around ~10,000 years, while in the western 

basin it was not until ~7,500 years when communities of farmers were established 

(Zeder, 2008). In contrast to the early- and mid-Holocene, many authors report the 

environmental consequences of the past 4,000 years, i.e. late-Holocene, of 

anthropogenic LUC pressures on the Mediterranean Basin. 

In the climate-dominated system of the early-Holocene (~11,700–8,200 years) 

pressures on the environment were local and limited. Nevertheless, deforestation, 

depletion of plant resources and soil impoverishment have been found in connection 

to a regime of sustained fires aimed at land opening for settlement establishment, 

farming and cropping. During the mid-Holocene (~8,200–4,200 years), several studies 

register LUCs related to an intensification of the land use by the development of runoff 

infrastructures, the onset of mining, and the exploitation of aquifers, among others. 

These practices induced further aridity, biodiversity loss, and soil impoverishment. 

With the onset of the late-Holocene (last ~4,200 years), a transition from climate- to 

human-dominated landscapes occurred. This transition is likely to have been triggered 

by an enlarged LUC capacity aimed at adapting to the contemporary drier and warmer 

climate, further exacerbating aridification. In this way, LUC in the late-Holocene further 

aggravates the consequences of earlier practices by exercising them in a more intense 

manner, while exhibiting evidence of adaptation to aridification by developing storage 

systems, enlarging infrastructures that rise pressures to the natural system and 

extending trading networks. 
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Table 3.1. Highlighted LUC−environment interaction for each of the 23 reviewed 
studies.  
 

ID Reference Highlighted LUC−environment interaction 

a Médali (2017) Landscape fragmentation, soil erosion, disruption and 
extinction of multiple plant species related to a regime of 
sustained and regular fires. 

b Mercuri et al. 
(2011) 

Reinforcement of soil erosion and aridification through 
overgrazing. 

c Berger et al. 
(2016) 

Enhanced hydrosedimentary activity product of increased fire 
regime and upstream pastoralism. 
Soil erosion and lost of vegetation with decreased soil organic 
carbon storage capacity due to river instability. 

d Meister et al. 
(2017) 

Development of sophisticated water storage complex and 
terraces enabling conditions for settlement establishment in 
desertic areas. 

e Zerai (2009) Enhanced wind activity leading to erosion due to clearing and 
grazing. 
Downstream dunes expansion and increased geomorphic 
activity due to clearing and grazing. 

f El Ouahabi et al. 
(2018) 

Processes of aggradation and changes in the chemistry of the 
soils and the watershed product of strong deforestation, large 
upland cultivation, stripping of thin soil covers, pastoralism 
practices, and ore exploitation. 

g Mazzini et al. 
(2016) 

Higher turbidity and impoverished lake’s biodiversity by 
deforestation and cultivation around the lake. 

- Enhanced swamp transformations into lakes due to greater 
amounts of water availability (decrease of precipitation via 
evapotranspiration). 
Reduction of water quality and biodiversity induced by soil 
erosion. 

h Baartman et al. 
(2011) 

Episodes of erosion and sedimentation linked to deforestation, 
pastoral and agricultural activities. 

i Pustovoytov and 
Riehl (2016) 

Changes in the local water regime, salinization of soils and 
increased resilience towards aridification by cause of aquifer 
exploitation. 

j Moser et al. 
(2017) 

Soil erosion, sedimentary aggradation, and enhanced surface 
runoff due to natural cover removal. 

k Cremaschi et al. 
(2016) 

Soil erosion, decrease of woods, and expansion of 
pasturelands induced by deforestation for timber and 
overexploitation of intensive cereal cropping. 

l Thienemann et al. 
(2017) 

Loss of vegetation resilience to climatic events related to a 
previously degraded environment. 
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m Picornell-Gelabert 
and Carrion-Marco 
(2017) 

Landscape fragmentation due to deforestation. 

n Vogel et al. (2010) Enhanced soil erosion, surface runoff and lake turbulence 
product of higher deforestation. 

o Balbo et al. (2018) High sediment discharge in relation to inland erosion. Amplified 
erosion due to LUC−environmental feedbacks. 

p Mensing et al. 
(2015) 

Widespread deforestation and erosion during climatic 
optimums. 

q-
w 

Zeder (2008); Fontana et al. (2017); 
Clarke et al.(2016); Flohr et al.(2016); 
Morellón et al. (2016); Gogou et al. 
(2016); Weiberg et al. (2016) 

Emergence, adaptation, and expansion of 
settlements thanks to farming and cropping 
intensification, watershed exploitation, 
storage strategies development, and 
deforestation. 

 

From the review of studies, we have categorized the different observed LUCs in 

four groups: (a) regular fires and deforestation; (b) farming and cropping activities; (c) 

overgrazing and upstream pastoralism; (d) hydraulic terraces and aquifers. 

(a) Regular fires and deforestation. Vegetation changes and man-induced 

landscapes have been reported by Médail (2017) on the islands of Sicily, Malta, 

Sardinia, and Corsica; Moser et al. (2017) in Calabria, south Italy; and Picornell-

Gelabert and Carrión Marco (2017) in Mallorca, Spain. These authors, outline 

environmental degradation and extinction of multiple plant species related to a regime 

of sustained and regular fires. Vogel et al. (2010), Thienemann et al. (2017) and 

Mensing et al. (2015) moreover, describe how such past changes in the land use likely 

destabilized ecosystems, making them less resilient to climatic changes and especially 

vulnerable to abrupt climatic events. 

(b) Farming and cropping activities. Cremaschi et al. (2016) and Mazzini et al. 

(2016) describe how deforestation, farming and cropping activities induced to soil 

erosion and expansion of pasturelands in the Po Plain, and to the disappearance of 

Characeae algae in Lake Shkodra, respectively. El Ouahabi et al. (2018) document 

erosion phases on the Amik Basin in the Levant coast as a product of large upland 

cultivation, stripping of thin soil covers, deforestation, pastoralism and ore exploitation. 

Baartman et al. (2011) instead, discuss the drivers of river dynamics at the Upper 

Guadalentín Basin, Spain, and correlate some of them to deforestation, pastoral and 

agricultural activities. Balbo et al. (2018) argue the implications of LUC−environment 
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interactions amplifying fluctuations in watershed activity and enhancing sediment 

discharge in the island of Menorca, Spain. 

(c) Overgrazing and upstream pastoralism. The increase in the dominance of 

grassland and open areas is presented in the different study sites of Mercuri (2011) in 

SW Libya, N of Morocco, SW Spain, N Italy, and central Turkey; and Zerai (2009) in 

the Wadi Sbeïtla basin, Tunisisa; who discuss the role of landscape clearing and 

grazing as powerful mechanisms enforcing aridity. Berger et al. (2016) instead, 

document geomorphological riverbed changes of the Citelle River in France, 

synchronous to periods of enhanced fire regime and upstream pastoralism. 

(d) Hydraulic terraces and aquifers. The role of aquifers and hydraulic terrace 

systems as potential measures to increase resilience towards aridification has been 

explored by Meister et al. (2017) and Pustovoytov and Riehl (2016) respectively, in the 

Levantine coast. In the margins of the Ionian and Aegean seas, the increase in clastic 

input, intensification of farming, watershed exploitation, and deforestation processes 

have been discussed by Morellón et al. (2016), Gogou et al. (2016), and Weiberg et 

al. (2016). In the Adriatic Sea, Fontana et al. (2017) document Holocene settlements’ 

activities and locations in relation to the constant sea-level rise during the 4,000–2,000 

year time-span. Zeder (2008) instead, reports on the emergence of agriculture and 

Clarke et al. (2016) and Flohr et al. (2016) describe local efforts of adaptation through 

storage strategies and resource diversification of the early-Holocene societies, 

showing climate resilience. These studies report LUCs but do not connect them to the 

effects of the local or regional climate. However, they are important to contextualize 

societies’ development and level of excreted pressure on their surroundings. 

3.3 Environmental interactions 
 

3.3.1  Development of a network map 

Following the review of case-specific studies, we build a network map that includes 

the collected interactions of Table 3.1. We then use the identified interactions to build 

a network map applying the Fuzzy Cognitive Mapping technique (FCM). 

FCM is a systems mapping method that computes the direct connections 

between elements (e.g. concepts, processes, actions). According to the number of 

connections incident on each element, it depicts its centrality (Kosko 1986). Without 

entering into the rationale of its statistical analysis, it might be said that the more 
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interactions an element has, the more central its placement in the network (degree 

centrality). Thus, the resulting network map not only shows the different elements 

(input data) and how they interact among themselves (output 1), but it also allows us 

to inspect the importance (i.e. centrality) of each element (output 2). 

To build the network map, both elements and connections had to be defined. 

First, we provided the FCM software with a total of 24 elements (keywords) that were 

identified when carrying out the text-analysis of the studies, namely: Regular fires / 

Deforestation; Hydraulic terrace / Aquifer; Farming and cropping; Overgrazing / 

Upstream pastoralism; Biodiversity; Salinization; Turbidity / Organic matter; River 

instability; Surface runoff; Biomass; Aridity & Soil erosion; Atmospheric [CO2]; 

Aggradation / Increased sediment discharge; Temperature; Redistribution of species; 

Flooding; Evapotranspiration; Water availability in wetlands; Topographic rainfall; 

Water quality; Groundwater flow; Soil Organic Carbon; Albedo; Pedogenesis. 

Following this, we assessed the presence of a positive and/or negative interaction for 

each pair of elements. For example, the following interaction “Reinforcement of soil 

erosion and aridification through overgrazing” was introduced into the FCM software 

by (1) identifying the elements related to this statement: ‘Aridity & Soil erosion’ and 

‘Overgrazing/ Upstream pastoralism’; and (2) identifying the interaction between the 

elements: we identified a positive connection from ‘Overgrazing/ Upstream 

pastoralism’ to ‘Aridity & Soil erosion’. 

For the network analysis, which calculates the centrality of each element (degree 

centrality), we normalized centrality measures to [0,1] for direct interactions between 

elements. For its layout, we applied the Yifan Hu algorithm, which is an algorithm for 

visualizing large networks. 

FCM is mainly applied in social sciences, yet it has also been used in 

transdisciplinary studies such as climate change (Olazabal et al. 2018). Here, we apply 

FCM to capture in a synthetized manner the complex structure of the hydrological 

system of the Mediterranean Basin and identify causal connections among the 

encountered components. FCM allows for flexible integration of very interdisciplinary 

but related components of the water system, which are too complex to be overall 

quantified. As the latest IPCC report quotes: “the complexity of the land-climate 

interactions requires multiple study approaches embracing different spatial and 

temporal scales” (Arneth et al., 2019). We thus, benefit from the adaptability that this 

technique from the social sciences offers by allowing the integration of the encountered 

particular relationships (Table 3.1) among the different components of the hydrological 
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cycle. Moreover, FCM enable us to encompass studies each of which, use a particular 

methodology with a specific (different) aim, theoretically connect all components, and 

draw integrated conclusions. 

3.3.2  Results 

The regional LUC−environment interactions, highlighted by the review of the selected 

studies, allow for the construction of a network map (Figure 3.3). This is possible 

because the selected studies take into account both paleoclimatological and 

archaeological data independent of each other, from the same time frame and 

geographic setting.  

Rather than trying to review all possible existing interactions, we focus on the 

effects of local LUC practices that lead to broad regional variability (i.e. Basin-wide 

scale) in the hydrological cycle. Reflecting upon the different time scales and the non-

linear behaviors of the exposed interactions is beyond the scope of this study. Bear in 

mind, however, that responses to these may vary due to sub-regional differences in 

the natural conditions (i.e. vegetation, orography, etc.) or internal thresholds (von 

Suchodoletz and Faust, 2018). 

Considering the reviewed information on fires, it can be said that during the whole 

Holocene, fires have been extensively and recurrently used in the Mediterranean Basin 

during the whole Holocene for LUC purposes. They have cleared the landscape for 

farming, developing settlements, killing pests, etc., substantially enlarging the 

extension of grasslands. In addition to this, natural fires also occurred along the 

Holocene, as they are part of the seasonal dynamics of the Mediterranean vegetation. 

These mainly consist of an alternation of drier season with fuel burning and wetter 

seasons with biomass growth (Mercuri et al. 2019b; Vannière et al. 2016). As shown 

in the network map, besides affecting the vegetation cover through the expansion of 

grassland and the biodiversity once encountered there (Fig. 3.3 interaction between 

‘Regular fires/Deforestation’, ‘Biomass’, and ‘Biodiversity’), fires also have the capacity 

of modifying the atmospheric chemistry, since they are a major source of CO2 and 13C-

enriched CH4 (see Marlon et al., 2008 and references therein). In this way, regular fires 

and deforestation have cleared large extensions of Mediterranean landscape for 

centuries, up to the point that grasslands are the second more extended land use type 

in the Basin, with an estimated ~26% of coverage, after croplands ~35% (FAO and 

Plan Bleu, 2018). 
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Figure 3.3. Network map framing the descriptive LUCenvironment identified 
interactions. The most important elements, i.e. those with more interactions, are more 
centrally placed. Lines between elements represent interactions, with the arrow 
indicating direction and color indicating whether it is positive or negative. 

 

Grasslands, on the other side, have higher surface albedo than forestlands, and 

thus, retain less heat from the sun (Fig. 3.3 ‘Overgrazing/Upstream pastoralism’, 

‘Aridity & Soil erosion’, and ‘Albedo’). Additionally, they have less litter, shallower 

rooting plants, and lower leaf areas capable of capturing sunlight and SOC (Fig. 3.3 

‘Biomass’, ‘Aridity & Soil erosion’, and ‘Soil Organic Carbon’). This also reduces the 

uptake of atmospheric CO2, enhancing the rise of temperatures and yet, promoting the 

expansion of biomass, which will uptake more CO2 and increase SOC levels (Fig. 3.3 

‘Biomass’, ‘Soil Organic Carbon’, ‘Atmospheric [CO2]’, and ‘Temperature’). As a result, 

grasslands have lower control over the surface water system and a decreased ability 

for water recycling than forestlands, with major effects on the land-surface water 

Positive interaction 
Negative interaction 

Land Use Change practice 
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balance and local temperatures (Costa et al. 2003). These interactions shape the 

network map, which also conveys the many effects that they have on the broader 

environment. These can be summarised into three key effects. 

First, promoting deforestation or biomass reduction limits the water vapour 

available for local precipitation coming from evapotranspiration (Fig. 3.3 ‘Biomass’, 

‘Evapotranspiration’, and ‘Topographic rainfall’). Lack of evapotranspiration is also 

connected with the increase in temperatures (Fig. 3.3 ‘Evapotranspiration’ and 

‘Temperature’), since evaporation has a cooling effect (Patz and Olson 2006). An 

increase in the availability of moisture, otherwise used for evapotranspiration, might 

instead promote wetland formation and expansion (Fig. 3.3 ‘Evapotranspiration’ and 

‘Water availability in wetlands’), and induce swamp transformations into lakes (Mazzini 

et al. 2016). 

Second, the network map shows that eliminating biomass and, thus, deep rooting 

infiltration, restricts groundwater flow and enhances surface runoff, causing 

aridification and soil erosion (Fig. 3.3 ‘Biomass’, ‘Aridity & Soil erosion’, ‘Surface 

runoff’, and ‘Groundwater flow’) (Moser et al., 2017). The lack of biomass also 

negatively affects biodiversity by harming inland ecosystems and fostering higher 

contents of organic material and sediment discharge in runoff waters, which increases 

turbidity and diminishes the photic zone of riverine ecosystems (Fig. 3.3 ‘Biomass’, 

‘Biodiversity’, ‘Surface runoff’, and ‘Turbidity/Organic matter’) (Mazzini et al., 2016). 

Similar to deforestation, increased farming and cropping also has a negative impact 

on water quality and biodiversity, as these practices boost nutrient-enriched soils that 

cause water quality degradation, altogether reducing biodiversity (Fig. 3.3 

‘Biodiversity’, ‘Turbidity/Organic matter’, and ‘Water quality’). 

Third, the lack of biomass caused by deforestation also appears to be connected 

to river discharge and seasonal peaks that respond to rainfall patterns. This is due to 

the increase in surface runoff (Fig. 3.3 ‘Aridity & Soil erosion’, ‘Surface runoff', and 

‘River instability’). Both enhanced river discharge and peaks in river discharge also 

affect river stability, by increasing soil erosion, and promoting flooding, sediment 

reallocation, and aggradation (Fig. 3.3 ‘River instability’, ‘Aggradation/Increased 

sediment discharge’, and ‘Flooding’) (von Suchodoletz and Faust 2018). Thus, in times 

of river instability, soil formation and pedological processes are prevented, hampering 

the densification of the vegetation, biodiversity expansion and Soil Organic Carbon 

storage (Fig. 3.3 ‘River instability’, ‘Aggradation/Increased sediment discharge’, 
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‘Pedogenesis’, ‘Soil Organic Carbon’, and ‘Redistribution of species’) (Berger et al. 

2016).  

The three resulting highlighted interactions are in line with empirical findings 

documenting a reduction of the local precipitation, i.e. topographic rainfall, and thus, a 

modification of the hydrological system of the Mediterranean Basin as a product of 

land-use change (Millán et al., 2005) (Fig. 3.3 ‘Biomass’, ‘Evapotranspiration’, and 

‘Topographic rainfall’). 

Besides deforestation, anthropogenic changes in vegetation have been directed 

towards weather-resistant crops (e.g. cereals resistant to dry conditions during the 

late-Holocene) or fruit supplying crops (e.g. grapevines or hazelnut trees), suppressing 

the natural regeneration of regional vegetation (Cremaschi et al. 2016) (Fig. 3.3 

‘Farming and cropping’ and ‘Biomass’). Past changes in the land-use have been 

recorded to destabilize ecosystems, making them less resilient to climatic changes 

and especially vulnerable to abrupt climatic events (e.g. Thienemann et al., 2017), 

although this might differ according to the characteristic of the environment of a 

particular place (Fig. 3.3 ‘Farming and cropping’ and ‘Aridity & Soil erosion’). 

Lastly, the network map shows how in addition to altering the surface water 

balance in several ways and modifying inland water properties, humans have also 

increased water exploitation through artificial measures like cultivation terraces, water 

reservoirs and storage systems, among others. Water infrastructure development has 

been used to enhance agricultural production and settlement expansion, creating both 

environmental benefits and problems (Rosegrant et al. 2002). On the one hand, rainfall 

harvesting and water storage constructions have reduced soil erosion and increased 

water availability, while on the other hand, overexploitation and inappropriate 

management of water sources have caused water pollution, depletion of groundwater, 

soil erosion, waterlogging, and salinization (Fig. 3.3 ‘Hydraulic terrace/Aquifer’, 

‘Salinization’, and ‘Water quality’). 

 

3.3.3  Knowledge transfer 

Adaptation strategies in the rural landscape are often motivated by historical 

arguments. While such knowledge is passed along generations of land-users and 

learned by scientists through the investigation of archaeological records (among 

others), policy-makers and stakeholders might remain oblivious to it. Moreover, they 
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often face time limitations to decision-making that pushes them to rely on their intuitive 

thinking. In this line, and with the focus of transmitting the here obtained science-based 

results to the policy/practice interface, we provide a synthesized analysis of these, 

followed by two key messages. 

Foremost, to assist the need for quick thinking and understanding, we highlight 

the key concepts of the environmental interactions from the network map (Figure 3.3) 

and develop a synthetized causal loop diagram (Figure 3.4). Besides unravelling and 

simplifying the network map, the causal loop diagram upscales the identified 

LUC―environmental interactions and reflects on those interactions, which are 

reinforced through feedback processes and affect the regional climate of the Basin, 

contributing to climate variability, and further aggravating climate change. 

 

 

Figure 3.4. Causal loop diagram summarizing the encountered key feedback 
processes among the key environmental aspects altered by deforestation practices in 
the Mediterranean Basin. R refers to feedback processes. Clockwise feedbacks 
reinforce themselves in a positive manner, while anti-clockwise feedbacks do it on a 
negative one. B refers to feedback processes that balance themselves. 

Positive interaction 

Negative interaction 
Feedback        

LUC practice 
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The causal loop diagram shows that deforestation for farming and cropping (Fig. 

3.4-red) leads to the decrease of biomass, reducing the uptake of atmospheric CO2 

and yet, promoting the expansion of more biomass due to CO2 availability (Fig. 3.4-B). 

It also modifies the surface water balance by halting evapotranspiration, which reduces 

water vapour available for topographic rainfall (Fig. 3.4-R1); and limits groundwater 

flow by eliminating wood cover deep rooting infiltration (Fig. 3.4-R2). At the same time, 

diminished deep rooting infiltration implies enhanced surface runoff, which causes 

higher aridification and further soil erosion (Fig. 3.4-R3). In addition, deforestation 

affects biodiversity and water quality and quantity, as the health of the ecosystems 

regulating the quality and the quantity of surface water, are ultimately determined by 

the quality and the quantity of it (Fig. 3.4-R4 and R5). 

Demonstrating these basic interactions and understanding how small changes in 

land use may simultaneously affect multiple components of the environment, enables 

decision-makers to have a more holistic perspective when making decisions involving 

land use, one which addresses both locally-specific needs, as well as broader, regional 

effects. This is important as only with the implementation of coordinated, consistent 

and coherent policies across regions and watersheds of the Mediterranean, basin-

wide challenges such as its impoverished water cycle, might be addressed. Related to 

this, we argue that before focusing on local scales, it is important to consider the wider 

(i.e. regional) context wherein rural adaptation actions will be implemented. 

In addition to the four types of LUC practices here identified that have 

unfavourable effects on the environment (i.e. Regular fires and deforestation; Farming 

and cropping activities; Overgrazing and upstream pastoralism; Hydraulic terraces and 

aquifers), we also identified sustainable land management practices aimed at rural 

adaptation. For example, the presence of multifunctional landscapes, which are a mix 

of sylvopastoral and crop systems that allow the land for a better distribution of 

nutrients and water use, common since the early-Holocene (Mercuri et al., 2019). 

These findings highlight the importance of learning from historical practices in order to 

inform rural adaptation strategies that intend to limit environmental degradation and 

promote climate change adaptation. From this perspective, learning from past land use 

practices and subsequently knowing what to avoid and/or promote, could serve as an 

important tool for managing the rural landscapes of the Basin in a sustainable way 

(e.g. future policies and programs could learn from past LUC practices aimed at 

decreasing pressures on freshwater resources and conserving the cultural mosaic-like 

landscape of the Basin). 
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3.4 Conclusions and connection 

Historical LUCs and mismanagement practices carried out within the 

Mediterranean Basin have promoted desertification and landscape degradation, 

contributed to climate variability through feedback reinforcement, and further 

aggravated climate change. With this study, thus, it is possible to accomplish 

Objective 2, which aimed at understanding how topographic rainfall might have been 

reduced through LUCs. 

Among all, the most significant LUC practice fostering desertification and 

rainfall inhibition is deforestation aimed at land opening for framing and cropping, 

which can be traced back to the early-Holocene. Deforestation is found to have 

modified the hydrological system of the Basin in several ways: (1) limiting 

groundwater flow by eliminating deep rooting infiltration, causing soil aridification; (2) 

enhancing surface runoff by limiting infiltration, causing soil erosion; (3) halting 

evapotranspiration by slashing canopy, causing a reduction of the available moisture 

necessary to further induce topographic rainfall. 

By understanding these basic relationships, future decisions on land use can 

consider a more holistic perspective, one that takes into account the effects of LUC 

beyond the local scale, tackling both, specific local needs and broader challenges of 

the Basin. In this line, promoting SLM practices aimed at the recovery of precipitation 

via evapotranspiration and the preservation of traditional mosaic systems (Chapter 4) 

are two strategies that assist to naturally restore the Mediterranean’s impoverished 

hydrological system (Chapter 2) while dampening the accumulated LUC effects over 

millennia in the Basin that lead to land degradation and desertification (Chapter 3). 
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4. Sustainable Land Management (SLM) practices 

 

Besides land use change altering the environment of the Mediterranean Basin, poor 

land management practices and traditional agricultural systems have been put forward 

to explain the region’s desertification and land degradation trend (Vanwalleghem et 

al., 2016 and references therein), as the Mediterranean coastline was once fully 

vegetated and rich in marshes and lagoons that contributed to the local water cycle 

(Pausas and Millán, 2019). 

This chapter identifies the potentials of a variety of Sustainable Land 

Management (SLM) practices to increase climate change resilience in rural areas while 

addressing current landscape degradation issues such as extended droughts and the 

abandonment of traditional land-use systems. 

The aim of doing so is to achieve Objective 3, focused to identify SLM 

practices that can better assist in restoring the water cycle, in particular rainfall 

triggered by topographic features. To this objective, and given the results from 

Chapter 2, we will likewise highlight those SLM practices that assist in preserving 

the Mediterranean’s traditional mosaic system. Moreover, and to explore the 

viability of adopting such practices, which is Objective 4, we will assess possible 

co-benefits and trade-offs associated with the implementation of the selected SLM 

choices. 

For this purpose, we use the World Overview of Conservation Approaches and 

Technologies (WOCAT) database to test a novel framework that evaluates SLM 

practices carried out in the Mediterranean Basin in three steps: i) classify all impacts 

assessed by the WOCAT into nine variables and group similar practices, making them 

flexible enough to be applicable Basin-wide (Section 4.1); ii) based on the 

assessments collected by the WOCAT, evaluate their level of on-ground success 

(Section 4.2); iii) explore the potential barriers and opportunities for their 

implementation (Section 4.3).  

The rationale behind choosing SLM practices for combating current hydrological 

treats in the rural Mediterranean Basin is that scientific evidence unveils these as 

successful tools for increasing resilience of societies and ecosystems, by integrating 

both their needs and values. Thus, SLM practices represent a holistic approach to 
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achieving long-term productive ecosystems at low-income efforts (Sanz et al., 2017) 

while dampening the accumulated effects of land use changes over the last millennia. 

Sustainable Land Management was defined in 1992 by the UN Earth Summit as 

“the use of land resources, including soils, water, animals and plants, for the production 

of goods to meet changing human needs, while simultaneously ensuring the long-term 

productive potential of these resources and the maintenance of their environmental 

functions”. SLM practices can be designed as adaptation actions at the local scale that 

address land desertification and degradation, prevent loss of biodiversity, and assist 

overcoming water scarcity in land managed systems. 

4.1 Framework development 
 

4.1.1  Data collection 

With the aim of identifying SLM actions that, beyond the local scale assist to address 

current landscape degradation issues in the broader Mediterranean Basin, we use the 

WOCAT network10 (WOCAT, 1992). The WOCAT network has an openly available 

database of standardized and integrated assessment protocols oriented to holistically 

assess the impacts of land management practices, i.e. identify their ecological, 

socioeconomic, and sociocultural effects at the site. This network gives the opportunity 

to practitioners (i.e. project implementers, decision-makers, researchers, etc.) that they 

call experts, to share their SLM initiatives by providing field-tested data and 

documentation, allowing for SLM mainstreaming. The WOCAT database is accredited 

and internationally standardized by the United Nations Convention to Combat 

Desertification (UNCCD). 

We collect all SLM practices that have been implemented within the Mediterranean 

Basin up to the year 2018, resulting in a total of 104 practices (Table 4.2) spread along 

the Mediterranean coast in Portugal (N=7), Spain (N=29), France (N=1), Italy (N=7), 

Greece (N=13), Turkey (N=5), Syria Arab Republic (N=5), Egypt (N=1), Tunisia (N=7), 

and Morocco (N=29). Each practice includes information of its authorship, date, location, 

technical specifications, etc. and a series of indicators that specify the impacts that it 

exhorts on the environment, called ecological and off-site impacts, and on society, called 

socio-economic and socio-cultural impacts. 

 

                                                             
10 https://www.wocat.net/en/ 
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From the 104 practices, we gather information on all the assessed ecological and 

off-site impacts and all socio-economic and socio-cultural impacts, with a total of 109 

different impacts (Table 4.3 and Box 4.1). The experts implementing each SLM practice 

assigned a number from -3 to 3 (i.e. 7 possibilities) to the impacts related to the practice, 

among all the ones provided by the WOCAT assessment. Based on these, we evaluate 

the level of success of each SLM practice. Additionally, each SLM practice provides 

information on the geo-climatic characteristics of the site of implementation, called 

natural environment variables. We likewise gather these variables and together with 

information from the GAEZ v3.0Global Agro-Ecological Zones portal (GAEZ, 2012), 

use them to display potential areas of SLM implementation within the Mediterranean 

Basin. Figure 4.1 shows a diagram of the developed framework. 

 

 

 

 

 

 

 
 

 
 

Figure 4.1. Diagram of the followed methodology for the construction of the multi-

objective assessment of SLM practices. Oval shapes correspond to starting points, 

parallelograms to input data, rectangles to processes, and hexagons to results. 

 

 

Box 4.1. Description of the used terminology 

 Practices: sustainable land management actions 

 Impacts: consequences of each practice on different evaluated aspects by the WOCAT 

 Natural environmental variable: information on the geographical and climatic 
characteristics where a practice has been implemented by the WOCAT 

 Ecological & Social variables: grouping of impacts 
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4.1.2  Selection criteria for the WOCAT impacts 
 

To evaluate the performance of the different SLM practices, we consider four 

scenarios taking into account the possibility of filtering some redundant, very specific, 

and/or less salient data (Annex-A1):  

− Scenario 1: no filtering of practices and/or impacts. All selected 104 practices and 

all resulting 109 assessed impacts (i.e. N=55+54) are considered. The rationale 

behind this consideration is that although a specific practice might not give 

information about many impacts, the ones being assessed might be very highly 

scored. Therefore, a practice that is very directed to a specific aim, might be 

implemented together with other very specific aimed practices. Likewise, impacts 

with few of observations are considered in this scenario, as these observations 

might be highly scored; 

− Scenario 2: no filtering of practices and filtering of impacts. All the selected 104 

practices are considered, while some impacts are aggregated to avoid 

redundancies (e.g. soil loss/erosion: soil loss; soil erosion; wind erosion). Results 

of the aggregated impacts are averaged throughout the aggregation process. After 

the combination of the impacts, we filter further those that have less than 10 

observations. With this process, we reduce the number of impacts from 109 to 61 

(i.e. N=28+33); 

− Scenario 3: filtering of practices and no filtering of impacts. All original impacts are 

considered. Instead, those SLM practices that do not assist with an averaged >1.25 

(from the -3 to 3 expert evaluation) to each ecological variable, are excluded. 

Through this process, we reduce the amount of practices from 104 to 80; 

− Scenario 4: filtering of practices and of impacts. This scenario takes into account 

both the reduction in number of SLM practices, and the aggregation and filtering of 

impacts. 

To determine which of the above scenarios best captures all information of the 

assessed impacts and allows for a robust comparison of the practices, we conducted a 

descriptive statistics of the four resulting datasets. Results of the statistical analysis 

(Table 4.1) show that mean values and standard deviation values are best for Scenarios 

3 and 4, with Scenario 4 as the best in terms of means in three of the five services (see 

below). Since no information is lost with the filtering and grouping, we base our 

discussion on results from Scenario 4. 
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Because grouping similar but specific data offers more flexibility and allows us to 

extract context-generalized results that are more likely to be applied Basin-wide, we 

group all impacts into five overall ecological variables and four social variables (Table 

4.3), and further cluster similar but concrete practices (e.g. ‘afforestation with Pinus 

halepensis’ and ‘afforestation with Ceratonia siliqua’ to ‘afforestation’, see Table 4.2). 

The grouping of the practices is done following Sanz et al. (2017), which, like the 

WOCAT database, is under the framework of the UNCCD. A definition for each variable 

and each group of practices can be found in Tables 4.2 and 4.3. 

 

Table 4.1. Summary of all extracted descriptive statistic of each scenario. 
 

Scenario 1 
  

  

Climate 
regulation 

Biodiversity 
[…] 

 Soil quality Soil erosion 
control  

Water 
regulation 

N:20   N:48   N:33   N:9   N:20   

Mean: 1.51 Mean: 1.32 Mean: 1.43 Mean: 1.5   Mean: 1.23 

Sd: 0.87 Sd: 1.06 Sd: 0.95 Sd: 1.02 Sd: 0.91 

Scenario 2 
    

Climate 
regulation 

Biodiversity 
[…] 

 Soil quality Soil erosion 
control 

Water 
regulation 

N:24 N:48 N:34   N:9   N:20   

Mean: 1.49 Mean: 1.32 Mean: 1.41 Mean: 1.54  Mean: 1.24   

Sd: 0.88 Sd: 1.06 Sd: 0.93 Sd: 1.05 Sd: 0.91 

Scenario 3 
    

Climate 
regulation 

Biodiversity 
[…] 

 Soil quality Soil erosion 
control 

Water 
regulation 

N:12   N:34   N:20   N:5   N:13   

Mean: 1.76 Mean: 1.59 Mean: 1.63 Mean: 1.79  Mean: 1.45   

Sd: 0.73 Sd: 0.91 Sd: 0.86 Sd: 1.00 Sd: 0.83 

Scenario 4 
    

Climate 
regulation 

Biodiversity 
[…] 

 Soil quality Soil erosion 
control 

Water 
regulation 

N:15   N:34   N:21   N:5   N:13   

Mean: 1.74   Mean: 1.59 Mean: 1.62 Mean: 1.80 Mean: 1.46 

Sd: 0.74 Sd: 0.91 Sd: 0.84 Sd: 1.00 Sd: 0.83 
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Table 4.2. Cluster of the practices together with their definitions. Numbers correspond 
to the 104 SLM practices from the WOCAT database. 

 

Afforestation / 'Land reclamation by introducing native forest species' in the UNCCD report: 

Native trees, shrubs and grasses planted through participatory action 

13 Afforestation with Pinus Halepensis after the fire of 1979 

56 Grazing land afforestation with Ceratonia siliqua (carob trees) in the Mediterranean 

104 Reboisement 

Reforestation / 'Reforestation in former forest lands' in the UNCCD report : Establishment of 

new forest areas in formerly (less than 50 years according to UNFCCC, 2002) deforested 

lands 

28 Natural revegetation 

72 Area closure and reforestation with Acacia 

89 Assisted cork oak regeneration 

Control of wildfires: Forest fire control comprises three activity components: prevent forest 

fire from occurring; extinguish forest fires rapidly while they are still small; use fire only for 

certain purposes and on a limited scale 

17 Prescribed fire 

33 Prescribed fire 

38 Selective cutting 

3 Selective forest clearing to prevent large forest fires 

41 Unvegetated strips to reduce fire expansion 

21 Selective clearing and planting to promote shrubland fire resilience 

32 Post-fire salvage logging; post-fire traditional logging 

Eco-graze: An ecologically sound and practical grazing management system, based on 

rotation, wet season resting and getting the right balance between stock numbers and the 

forage resource 

40 Controlled grazing in deciduous woods as an alternative to grazing on rangeland 

58 Rotational Grazing 

69 Rangelands resting: Stopping grazing for pre-established periods of time 

Application of organic fertilizers and biological agents: Organic fertilizers (compost; straw 

pen manure with litter or household waste) or green manure to enhance productivity by 

improving the structure and fertility of the soil, as well as its capacity for infiltration and water 

retention. It stimulates biological activity in the soil and increases yields and production 

10 Organic amendment located in dripper point in organic citrus production 

23 Annual green manure with Phacelia tanacetifolia in southern Spain 

22 Ecological production of almonds and olives using green manure 

15 Application of 'Preparation 500' in agricultural soils under a biodynamic management 

80 Fumier 

46 Application of biological agents to increase crop resistance to salinity 
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No-till technology: Growing crops (or pastures) without disturbing the soil through tillage, 

direct seeding/planting 

50 Olive groves under no-tillage operations 

55 No tillage operations, plastic nets permanently on the soil surface 

76 No-till technology 

Green covers in perennial woody crops: Growing perennial grasses in the strips between 

the main crop to provide permanent soil cover 

2 Cover crops in organic vineyard 

6 Cover crops on olive orchards 

Vegetated earth-banked terraces: Earth-banked terraces are constructed by carefully 

removing a superficial soil layer from one part of a field, concentrating it on the lower end of 

that field in order to reduce slope gradient and length. Another terrace is created directly 

downslope to form a cascade of terraces 

8 Vegetated earth-banked terraces 

53 Land terracing in olive groves 

97 Terrasse  

Water harvest with micro-catchments: Water harvesting system collecting the runoff from 

hillslopes and the rainfall through micro-depressions within a field 

11 Aserpiado 

71 Jessour 

74 Tabia 

64 Furrow-enhanced runoff harvesting for olives 

Micro-irrigation systems: Drip irrigation - delivering small amounts of water directly to the 

plants through pipes. 

52 Application of water by drip irrigation 

61 Drip irrigation 

83 

Récupération d'eau de pluie dans les plantations arboricoles avec irrigation en goutte 

à goutte par des buttes en terre 

Recharge of groundwater: water collection to enable off-season irrigation: Storage efficiency 

in off-seasons a water management practice in which water is applied in advance of the 

growing season 

47 Integrated water-harvesting and livestock water-point system 

57 Rainwater harvesting for greenhouse irrigation 

49 Transport of freshwater from local streams 

73 Recharge well 

75 Cistern 

81 Citerne 

Water harvesting from concentrated runoff for irrigation purposes: Water harvesting 

systems, collecting the runoff from hillslopes, can be found at regular distances to supply water 

points 
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37 Construction en pierres sèches 

70 Gabion check dam 

62 Woven Wood Fences 

103 Seuils en gabion 

Area closure to grazing: Area closure is a land management practice aiming to address 

severe soil degradation, loss of vegetation cover and low water holding capacity of degraded 

lands by rehabilitating and restoring the natural resource bases (soil, vegetation and soil 

water) and enhancing the productive and environmental functions through community 

consultation and collective actions 

44 Metallic fences to prevent damages to pastures from wild boars 

85 Interdiction provisoire d'accès du cheptel aux peuplements d'arganier 

87 Période de fermeture du pâturage de l'almou collectif servant aux équins 

Establishment of protected forest areas: Establishment of protected forest areas, such as 

natural and national parks. Protecting forest in reserves, and controlling other anthropogenic 

disturbances. 

77 Réhabilitation par mise en défens 

78 Gestion des parcours sans coupe ni ébranchage des arbres 

Agro-forestal systems / 'Plantation crop combinations, multipurpose trees on crop lands' in 

the UNCCD report: Agroforestry is a collective name for land-use systems and technologies 

where woody perennials (trees, shrubs, palms, bamboos, etc.) are deliberately used on the 

same land-management units as agricultural crops and/or animals, in some form of spatial 

arragament or temporal sequence 

82 Parcelle agro-forestière à base de plantation d'arbres fruitiers et forestièrs 

94 Jardins en agroforesterie irrigués par des seguia 

100 Banquettes en terre combinées avec de l’Agroforesterie 

88 Plantation d’arbres fruitiers avec mesures de contrôle de l’érosion 

Soil / stone bunds: Soil / stone bund is an embankment of soil/stone constructed across the 

slope following the contour 

63 Semi-circle bunds 

65 Stone Wall Bench Terraces 

Multi-specific plantation: Plantation of native woody species on degraded ravines and gullies 

to control erosion, mitigate landscape degradation, prevent flooding and restoring the diversity 

and cover of vegetation  

29 Multi-specific plantation of semiarid woody species on slopes 

20 Multi-specific plantation 

Reduced tillage: Reducing tillage intensity to allow the establishment of a native plant cover  

in annual and perennial woody crops under semiarid conditions 

4 Reduced contour tillage of cereals in semi-arid environments 

9 Reduced tillage of almonds and olives 

30 Minimum tillage in Mediterranean vineyards 
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95 Labour minimum couplé à la mise en défens partielle des chaumes 

Application of chemical fertilizers:  Application of chemicals to the soil to increase yields 

and production 

12 Fitoestabilización de suelos contaminados 

7 Adición de enmiendas a suelos contaminados 

68 Calcareous soils management 

Mulching in croplands and forestlands: In croplands, mulching involves spreading waste 

crop after harvesting. Covering the soil with mulch protects it against wind and water erosion 

and provides nutrients which has a positive effect on yields and food security. In forestlands, 

and after forest fires, slash mulch is spread immediately after a wildfire in order to prevent soil 

erosion and reduce overland flow  

34 Post-fire Forest Residue Mulch 

36 Post-fire Natural Mulching 

24 Organic mulch under almond trees 

31 Hydromulching for reducing runoff and soil erosion 

Crop rotation / intercropping: Crop rotation is an agronomic practice that consists in the 

successive cultivation of different crops in a specified order on the same fields, in contrast to 

a one-crop system or to haphazard crop successions.  Intercropping consists on growing two 

or more crops on the same land simultaneously in a given growing season 

54 Crop rotation for green manuring in greenhouse 

90 Crop rotation: cereals / fodder legumes (lupin) 

96 Olive tree plantations with intercropping 

Fodder crop production and maintenance: Production of fodder crops every year both for 

feeding livestock and increasing soil fertility, including pruning forage trees to allow their 

regeneration 

102 Taille de frêne dimorphe (Fraxinus dimorpha) en têtard pour l'utilisation comme 

fourrage 

59 Fodder Crop Production 

Strips and tree farming against soil erosion: Plantation of strips and trees to prevent from 

wind and surface runoff erosion 

60 Strip farming 

84 Gully control by plantation of Atriplex 

No grouped practices 

93 

Silvopastoral plantations: Fodder shrubs are planted on the same land-management 

units as animals, in some form of spatial arrangement or temporal sequence 

66 

Range Pitting and Reseeding: This technique is used to restore degraded rangelands 

(steppe areas) and it is based on the pitting technique that uses the 'Camel Pitter' 

implement 
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Likewise, we group all impacts into five overall ecological variables and four social 

variables. The definition of each variable can be found in Table 4.3. Grouping similar but 

data allows us to extract context-generalized results that are more likely to be applied 

Basin-wise. 

 

Table 4.3. WOCAT ecological impacts (in blue), off-site impacts (in violet), and socio-
economic and socio-cultural impacts (in green) grouped under five ecological variables 
(top) and four social variables (bottom). A definition for each variable is provided. 
 

ECOLOGICAL VARIABLES 
Climate regulation: variable that assists in tackling extreme events, mitigating 
climate change, and regulating the micro-climate 

SOC/below ground carbon Emissions of carbon and greenhouse gases 
Biomass/above ground carbon Fire risk 
 Downstreaming flooding 

Soil erosion control: variable that assists in preventing and/or controlling soil 
loss by land degradation, wind and water erosion 

Soil cover Buffering/filtering capacity 
Soil loss/erosion Wind transported sediments 
Surface runoff Damage on neighbour's fields 
Excess water drainage Damage on pubic/private infrastructures 
Wind velocity  

Biodiversity enhancement and pest/disease control: variable that assists in 
protecting and preserving ecosystems and their primary functions by promoting 
diversity and preventing pests 

Animal diversity Habitat diversity 
Plant diversity Pest/disease control 
Beneficial species  

Water regulation: variable that assists in providing water quality and 
continuous availability by halting overexploitation and contamination while 
enhancing soil moisture 

Water quality Harvesting/collection of water 
Water quantity Water availability 
Groundwater table/aquifer Downstream flow 
Evaporation Groundwater/river pollution 
Soil moisture  

Soil quality enhancement: variable that assists in enhancing soil fertility and 
soil structure by increasing its nutrient content and reducing hard-setting 
characteristics 

Soil crusting/sealing Salinity 
Soil compaction Downstream siltation 
Nutrient cycling/recharge  



Sustainable Land Management (SLM) practices | 49 

SOCIAL VARIABLES 

Economy and production: variable that includes impacts related to income 
and expenses, and production area, amount and quality 

Crop production Fodder production 
Crop and forest quality Animal production 
Wood production Product diversity 
Risk of production failure Expenses on agricultural inputs 
Farm income Energy generation 
Production area Fodder quality 
Diversity of income sources  

Management and irrigation: variable that includes impacts related to water 
demand and availability, land management and workload 

Irrigation water availability Demand for irrigation water 
Drinking water availability Workload 
Land management  

Human well-being: variable that includes impacts related to social services 
such as health care, culture, education, or food that improve living conditions 

Health situation Improved livehoods and human well-being 
Cultural opportunities Food security/Self-sufficiency 
Recreational opportunities SLM/land degradation knowledge 
Conflict mitigation Situation of disadvantaged groups 

Institutions: variable that includes impacts related to both, community and 
national institutions 

Community institutions National institutions 

 

4.1.3  Evaluation of the practices 

On the one hand, we use the assessment of ecological and off-site impacts to evaluate 

the level of on-ground success of each SLM practice and provide an appraisal of their 

effectiveness in a comparable way (Section 4.2). On the other hand, we use the 

assessment of socio-economic and socio-cultural impacts to explore possible economic, 

social, and/or technological barriers for the selected SLM practices (Section 4.3). 

To evaluate the level of on-ground success of each SLM practice (i.e. ecological 

variables) and to explore possible economic, social and/or technological barriers of 

implementation (i.e. social variables), we firstly collect the numbers (from -3 to 3) that 

the experts who implemented each SLM practice assigned to each of the impacts. Then, 

we compute the averaged performance of each practice in each of the five ecological 

variables (Section 4.2) and four social variables (Section 4.3). The average performance 

of each practice is calculated by aggregating all the impacts under each of the variables. 
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Results can be found in Tables 4.5 and 4.6, where the standard deviation and 

percentage of observations are also available. 

We emplaced three criteria for the selection of the best practices. First, we 

considered a score of >1.8 (from -3 to3) as the lowest threshold to label a SLM practice 

as successful. We agreed on 1.8 because it allows a significant number of SLM practices 

to be considered without a strict restriction of the results. Moreover, the value 1.8 

represents a higher score than the average of most variables (i.e. Climate regulation= 

1.73; Biodiversity enhancement and pest/disease control= 1.49; Soil quality= 1.71; Soil 

erosion control=1.88; Water regulation= 1.68). Second, beyond scoring >1.8, the scores 

had to present <1 of standard deviation. Third, to ensure further consistency, the number 

of assessed impacts, here called observations, had to be >40%. That is, we only 

consider as best practices those that beyond scoring >1.8 with a <1 of standard deviation 

were evaluated for at least 40% of the impacts grouped under each variable. Because 

the experts implementing each SLM practice only filled out the impacts that they 

considered appropriate or related to the practice and not all the impacts provided by the 

WOCAT assessment (here N=109), it happens that some SLM practices offer a total of 

<40% of observations for a variable. These SLM practices were, thus, not considered 

due to lack of robustness. We chose a threshold of 40% to ensure that the consideration 

of practices was not too restricted by the number of observations, yet was higher than 

the average (i.e. Climate regulation = 27%; Biodiversity enhancement and pest/disease 

control = 31%; Soil quality = 30%; Soil erosion control = 32%; Water regulation = 40%). 

 

4.1.4  Construction of maps 

The assessed natural environment variables gathered by the WOCAT display 

information on the geographical and climatic characteristics of each practice’s location. 

We cross this information with five map layers (i.e. land-use, average annual rainfall, 

available surface water, altitude, and slope) from the GAEZ v3.0Global Agro-

Ecological Zones portal11 (GAEZ, 2012) with a maintained scale resolution of 30 arc-

seconds, i.e.~1 km2 (Fischer et al., 2008). 

For the land use layer, we cross the information of the six land cover types from 

the WOCAT database and the data from the five land cover types from the GAEZ portal 

                                                             
11 http://www.fao.org/nr/gaez/en/ 
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(Table 4.4). To allocate the different pixels of our maps to a particular land use, we 

consider that any pixel with an area ≥30% intended for a particular land use is allocated 

to that land use. For instance, in a particular pixel, if the forest area is ≥30% then the 

pixel is considered forestland. Following this reasoning, one pixel might, therefore, be 

considered in more than one land uses if these cover an area ≥30%, or to none if all 

land uses occupy an area <30% of the pixel. We have created a layer called mixedland 

and assigned to that layer those pixels with an area of ≥30% of a combination of 

cropland, forestland, and/or grassland. Thus, if, for example, both forestland and 

cropland cover an area ≥30% respectively, the pixel is considered as mixedland. This 

layer has been created because multiple SLM practices can be effectively applied in a 

combination of two or all three types of land.  

For the rainfall layer we use the annual mean precipitation (mm) data, which 

represents the average annual precipitation for the 1961−1990 time span. For the 

available surface water layer, we apply the water scarcity by major hydrologic basin map. 

Note, however, that while SLM practices offer on-site local information about water 

availability, the maps plotted here contain averaged data for a whole major basin, as 

defined by GAEZ. For the altitude and slope layers, we use the median altitude (m a.s.l.) 

and terrain slope (%) from 0 to >30% maps, respectively. Lastly, for the plotting or our 

maps, we generate two super-imposed maps for each practice, one in light brown with 

the three first layers that contain the restrictive characteristics of SLM practices 

implementation (i.e. land-use, rainfall, water availability), and a second in green with the 

two other layers that contain optimum characteristics of the landscape (i.e. altitude and 

slope). 

 

Table 4.4. Crossed information used from the WOCAT database the GAEZ portal to plot 
the natural environment of the 25 SLM practices. 
 

 

GAEZ classification WOCAT classification This study 

Land use    

Total cultivated land 
Woody; herbaceous cropland 

Cropland 
rain-fed/irrigated 

Forestland Forestland Forestland 

Grassland & woodland Grazingland Grazingland 

Barrenland sparsely vegetated land -   

Built-up land Settlement Built-up land 

- Mixedland Mixedland 
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Rainfall (mm/yr)   
no relation has been needed   
Available surface water layer  
Very high Excess Very high 

High Good High 

Moderate Medium Moderate 

Low Poor/none Low 
Altitude (m a.s.l.)   
no relation has been needed   
Slope (%)   
0−2 Flat (0−2) 0−2 

2−5 Gentle (3−5) 3−5 

5−8 Moderate (6−10) 6−10 

8-16 Rolling (11−15) 11−15 

16−30 Hilly (16−30) 16−30 

30−45 Steep (31−60) 
>31 

 >45 Very steep (>60) 

 

 

4.2 Most ground efficient practices 

Among the whole array of SLM practices the two performing overall best (i.e. score 

>1.8 with <1 standard deviation and >40% of observations) correspond to practices 

promoting green cover in perennial woodlands (i.e. vineyards, olive and almond fields) 

and agro-forestal systems. However, for each ecological variable different SLM 

practices appear as best choices. For example, when intending to implement SLM 

actions in line with soil erosion control, reforestation and green cover in perennial 

woodlands stand out as best practices. 

In the remainder of this section, we discuss green cover in perennial woodlands 

and agroforestry as the best overall SLM practices (Table 4.5), which besides 

addressing local and specific needs, assist in tackling Basin-wide challenges, such its 

impoverished hydrological cycle and the loss of the multifunctionality of its landscape. 

Green cover in perennial woodlands is a practice that consists of establishing 

“perennial grasses in orchards and vineyards between rows to provide permanent soil 

cover” (Sanz et al., 2017). Agroforestry “is a collective name for land-use systems and 

technologies where woody perennials (trees, shrubs, palms, bamboos, etc.) are 

deliberately used on the same land-management units as agricultural crops and/or 
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animals, in some form of spatial arrangement or temporal sequence” (Sanz et al., 

2017). 

On the one hand, green cover in perennial woodlands not only prevents soil 

erosion by wind and surface water but enhances soil quality by nutrient and water 

storage (Almagro et al., 2016), helps promote biodiversity (Plaza-Bonilla et al., 2015), 

and strengthens the capacity of vegetation to address climate change mitigation and 

adaptation by enhancing SOC and regulating the micro-climate (Vicente-Vicente et al., 

2016). Caution however, needs to be taken when choosing the species of cover to 

avoid competition for water resources with the perennial woodland (Celette et al., 

2008). Green cover in perennial woodlands, moreover, robustly contributes to all five 

ecological variables, is supported at the local level by practitioners and rural 

development programmes (World Bank, 2006) and has a large application potential 

due to the extensive geographical area of woody croplands within the Mediterranean 

Basin. 

On the other hand, agroforestry practices promote soil quality by permanent 

cover and the natural introduction of organic amendments (Cabrera et al., 2014); 

dampen runoff velocities and sediment transport through terracing, enhances soil 

stabilization and crop production (Mosquera-Losada et al., 2012); fosters animal and 

plant diversity together with natural management of the landscape (Enne et al., 2004; 

Mbow et al., 2014); and they also induce pleasant and better regulated micro-climates 

through tree cover and gravity irrigation systems. Agroforestry hence, also robustly 

contributes to all five assessed services. 

These two practices can be implemented on their own or can be easily combined 

to promote synergies in all five assessed environmental variables. In particular, if we 

are to promote SLM practices that help mitigate climate change and better adapt to it 

by regulating the hydrological system of the Basin and promoting its multifunctional 

landscape, these two choices offer several benefits. 

To help mitigate climate change, both practices contribute to carbon 

sequestration and stock. Between the two, however, agro-forestry soils are more 

efficient in capturing C, with a calculated global mitigation potential of 0.11−5.68 GtCO2 

-eq yr-1 between 2020 and 2050 (Jia et al., 2019 Figure 2.24 and references therein). 

In comparison, cover crops are estimated to have a technical potential of 0.32±0.08 

tCO2 ha-1 yr-1 (Poeplau and Don, 2015), which needs to be jointly accounted for with 

the mitigation potential of croplands themselves, i.e. 0.25−0.78 GtCO2 -eq yr-1 (Jia et  
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al., 2019 Figure 2.24 and references therein). Specifically, the average potential of the 

Mediterranean agro-forestal systems to sequester C ranged between 5−20 tC ha-1 for 

the year 2010 (Zomer et al., 2016), whereas  green  cover  in  Mediterranean  perennial  

woodland  crops is estimated to have a technical potential of increasing 1 tC ha-1 yr-1  

(Vicente-Vicente et al., 2016). Bear in mind that these estimated potentials reflect a 

range of methodologies and, thus, may not be directly comparable yet provide an idea 

of the different magnitudes on their mitigation potential (see Jia et al., 2019 Figure 

2.24). 

To assist in regulating the hydrological system of the Basin (help adapting to 

climate change), by themselves, these two practices have the capacity to naturally 

store water and evapotransporate it, making it available again. With this process the 

hydrological cycle of the region is impacted in two main ways: 

(1) Through increased infiltration. This relates to the concept of blue and green 

water that refers to the reduction of direct soil evaporation (blue water) whereby 

increased plant transpiration (green water) without reducing the amount of blue water. 

Soil water storage, for example, was measured to be higher under tree cover than 

outside the canopy, both in las Dehesas-Spain by Joffre and Rambal (1993) and in the 

Californian oak woodlands, of Mediterranean climate, by Moody and Jones (2000), 

although this situation might reverse during extended droughts (Moreno and Rolo, 

2011). Moreover, if combined, the two SLM practices have the potential to further 

improve the water-use efficiency by distributing trees and plants in a heterogeneous 

way, promoting rooting and associated infiltration, retention, water access at different 

depths, i.e. shallow-lateral rooting plants and shrubs with deep rooting trees, and 

further boosting the Mediterranean mosaic-like landscape (Cubera and Moreno, 

2007). Overall, minimizing water stress while maximizing biomass. 

(2) Through a rise of atmospheric moisture led by evapotranspiration. Increased 

evapotranspiration decreases temperature  (Mueller et al., 2016) and heat wave 

duration (Thiery et al., 2017) with potential to enhance topographic rainfall. Taking into 

account the crop coefficient approach from FAO to calculate crop evapotranspiration 

(ETc), it can be approximated without calculations, that only by comparing the crop 

coefficient (Kc) of different Mediterranean fruit trees (Kc = ~0.4−0.7) with those of 

vegetables (Kc = ~0.7−1.05) and cereals (Kc = ~0.3−1.15), and knowing that the 

reference crop evapotranspiration (ETo) is independent of crop type and management 

practice, ETc is higher for croplands than for fruit-trees alone (Allen et al., 1998 chapter 

6). In agro-forestal systems however, both the evapotranspiration rates of (fruit)-trees 
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and crops might be added up. At the same time, irrigation in croplands further raises 

evapotranspiration (e.g. Alter et al., 2015) and thus, if more efficiently managed (see 

Jägermeyr et al., 2016), irrigated cropland may contribute to adaptation and mitigation 

in this region. Crop coefficients for fruit trees with- and without-ground cover (i.e. green 

cover in perennial woodlands) have also been calculated (Allen et al., 1998 chapter 

6). In this case, evapotranspiration of ground-covered orchards (Kc = ~0.5−0.9) is 

clearly higher than those without one (Kc = ~0.4−0.7). In any case however, both in 

croplands and agro-forestry systems, soil water content is higher than in open pasture 

due to larger infiltration and reduced evaporation, out-weighing water uptake by plants 

and canopy. 

Among all SLM practices however, reforestation offers the highest mitigation 

potential with an estimated global 0.5−10.12 GtCO2 -eq yr-1 between 2020 and 2050 

(Jia et al., 2019 Figure 2.24 and references therein) and the highest capacity of 

groundwater recharge through deep rooting infiltration. The potential of temperate 

forests to increase topographic rainfall though evapotranspiration is nonetheless 

discussed (Bonan, 2008; Layton and Ellison, 2016). Despite the low number of 

observations that ensures the consistency of this practice (i.e. 30% in Table 4.5), the 

literature suggests that, if planned and managed, reforestation should be likewise 

considered as a good and mainstreamable choice to regulate the water cycle of the 

Mediterranean Basin while preserving its multifunctionality. 

 

4.3 Barriers and Opportunities 

Despite the scientific advances in understanding land degradation (e.g. Geist and 

Lambin, 2004; Mortimore et al., 2009; Reynolds et al., 2010) and the increasing 

promotion of SLM practices at the policy and cooperation level (Sanz et al., 2017; 

World Bank, 2006), land degradation further expands within the Mediterranean Basin, 

threatening its adaptation and mitigation capacities. This situation evidences the 

existing gap between the acknowledgment of the need to effectively adopt SLM 

practices and their actual implementation. Thus, in order to complete the evaluation of 

the most ground efficient practices with a more comprehensive and multi-objective 

assessment, we next assess possible barriers and opportunities associated with their 

implementation. Exploring the creation of enabling environments for SLM practices 

implementation is key to overcome potential issues that slow down their adoption. The 
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UNCCD report by Sanz et al. (2017) classifies these in four: ecological; technical; 

institutional; socio-economic and cultural. 

 

4.3.1  Environmental barriers 

Environmental barriers refer to the specific environmental conditions wherein a 

practice might be implemented and to the availability of land and water resources to 

adopt it, recognizing that these need to be balanced in the short and long term. 

We evaluate this possible barrier by taking into account five of the natural 

environment variables that the experts from the WOCAT network provide to 

characterize each SLM practice in its geographic context: i.e. land use, average annual 

rainfall, available surface water, altitude, and slope. With this information, we generate 

a map for each of the 25 practices, highlighting all regions within the Basin that meet 

the baseline conditions wherein each practice has been previously implemented 

according to the WOCAT database (Annex-A2). Only the biophysical characteristics 

of reforestation, agro-forestal systems, and green cover in perennial woodlands are 

discussed, as according to our work, these are the SLM practices with a higher 

potential to mitigate climate change and regulate the hydrological system of the region. 

Maps show that the practice most widely applicable in terms of biophysical 

restrictions is reforestation (Fig. 4.2-a), followed by agro-forestal systems (Fig. 4.2-b) 

and green cover in perennial woodlands (Fig. 4.2-c). Reforestation practices have 

been successfully adopted in arid to sub-humid environments with annual rainfalls 

within <250–750 mm/yr, with none-to-medium availability of surface water, from plains 

to steep slopes (3–60%), and between 100–1000 m altitude. Agro-forestal systems 

and green cover in perennial woodlands have been previously adopted in arid and 

semi-arid environments with annual rainfall between <250–500 mm/yr, with medium to 

limited surface water availability, from plains to steep slopes (3–60 %), and within 100–

2000 m altitude conditions. 

However, beyond these defined geo-climatic conditions, the three SLM practices 

have been historically applied in a wider range of environmental conditions, evidencing 

their further implementation potential. Reforestation, for example, has been 

successfully adopted in many Northern Mediterranean areas as a means to restore 

degraded lands (e.g. Bautista et al., 2010 and references therein; Valdecantos and et 

al., 2019), while green cover in perennial woodlands has been widely implemented 

across the whole Basin (Palese et al., 2014) and beyond, in the Mediterranean climate 
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area of California, USA (Celette et al., 2008). Similarly, agroforestry systems have 

been extensively implemented in Northern Mediterranean areas (e.g. Enne et al., 

2004; Rota and Sperrandini, 2009; Valdecantos and et al., 2019) and in North Africa 

and West Asia areas (e.g. Ben Salem and Nefzaoui, 1999; Enne et al., 2004), as well 

as in a 40,000 km2 area called La Dehesa in central Spain. 

These examples evidence that the representation of the potential area of 

implementation of the SLM practices is limited. Such limitation is due to the five 

considered variables and to the geo-climatic conditions where the different practices 

have been previously implemented under the WOCAT network. Therefore, it should 

be understood that the adoption of each practice is not restricted to these conditions 

but rather that the maps estimate their geographical potential within the Basin. 
 

 
 

4.3.2  Technical, institutional, socio-economic and cultural barriers 

As described by Sanz et al. (2017) technical barriers refer to the potential access to 

appropriate technologies, equipment or knowledge; institutional barriers refer to 

governance structures that aggravate or inhibit decision-making; and socio-economic 

and cultural barriers refer to the potential limits of public capability, acceptance and 

effective adoption of SLM practices. 

We evaluate these possible barriers by inspecting the socio-economic and socio-

cultural impacts provided by WOCAT for each practice, and shortly discuss 

Figure 4.2. Regions within the 
Mediterranean Basin that meet the geo-
climatic characteristics wherein the 
different practices (a–c) have been 
implemented under the WOCAT 
framework. 
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reforestation, agro-forestal systems, and green cover in perennial woodlands. As 

explained in Figure 4.1, we generate Table 4.6, which helps in understanding the social 

framework wherein the different SLM choices might be implemented. 

 

Table 4.6. Evaluation of the socio-economic and socio-cultural impacts. The symbol  
is used to indicate no data. 

 

 
 

Table 4.6 shows that to effectively implement SLM practices, on-ground proved 

efficiency and biophysical availability for adoption are necessary but incomplete 

conditions. Together with these, coordinated environmental policies (i.e. institutions), 

the recognition of socio-cultural characteristics (i.e. human well-being), and 

appropriate market access and management tools (i.e. economy and production, 

management and irrigation) need to be taken into account. 

In this regard, reforestation and agroforestry can provide high benefits to the 

economy and human well-being, as these practices provide market products (e.g. 

Social variables

Sustainable Land Management (SLM) 

practices

Economy 

and 

production

Management 

and irrigation

Human well-

being Institutions

Overall

Afforestation 1.43 -0.33 1.33 0.00 0.61

Reforestation 1.63 -1.00 2.00 2.00 1.16

Control of wildfires 1.07 -0.25 1.11 2.00 0.98

Eco-graze 1.83 -2.00 1.58 1.50 0.73

Application of organic fertilizers [...] 1.31 0.92 1.68 3.00 1.73

No-till technology 2.25 0.67 1.33 2.00 1.56

Green cover in perennial woody crops 0.58 1.00 1.65 – 1.08

Vegetated earth-banked terraces 0.72 1.33 1.56 – 1.20

Water harvest with microcatchments 1.60 0.00 1.50 – 1.03

Micro-irrigation systems 1.17 1.11 0.94 – 1.07

Recharge of groundwater  [...] 1.15 1.08 1.29 2.00 1.38

Water harvesting  [...] 1.50 -0.67 0.81 0.00 0.41

Area closure to grazing 1.17 1.75 2.06 – 1.66

Establishment of protected forest areas 1.30 1.00 0.75 – 1.02

Agro-forestal systems 2.23 0.02 1.48 2.33 1.52

Soil / stone bunds 1.00 -0.50 2.17 0.00 0.67

Multi-specific plantation – – 1.00 – 1.00

Reduced tillage 0.44 1.33 1.33 – 1.04

Application of chemical fertilizers 0.56 0.00 0.58 2.50 0.91

Mulching in croplands and forestlands -0.33 1.25 1.33 – 0.75

Crop rotation  / intercropping 1.22 -0.25 1.33 – 0.77

Fodder crop production and mantainance 1.20 -2.00 0.50 – -0.10

Strips and tree farming against soil erosion 1.90 2.00 2.00 1.00 1.73

Silviopastoral plantations 1.13 0.00 0.25 1.00 0.59

Range pitting and reseeding 2.00 – 2.00 – 2.00
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timber, mushrooms, honey, and cork) and have the potential to increase profitability 

through diversification of output (i.e. agroforestry), while also improving health and 

food security (Mosquera-Losada et al., 2012). Mediterranean forests, therefore, 

support agriculture and human well-being. However, in the first stage of their 

implementation, these practices may need of economic investment due to the delay 

between tree plantation and economic return, and they may challenge management 

and irrigation due to substantial water requirements and workload (Mbow et al., 2014). 

Afterward, both economic and water needs reverse due to the availability of market 

products and the canopy’s capacity of increasing ecosystem services and naturally 

managing the landscape, respectively. Implementing these two practices more 

effectively may, thus, require initial investment and improvements of rain-fed systems 

and/or efficiencies of irrigated systems. 

Green cover in perennial woody crops likewise positively impacts all four 

assessed variables, although this practice does not directly increase crop or fodder 

production. Nevertheless, it indirectly contributes to raising production by conserving 

the soil and maintaining its fertility, and by returning its cost of implementation (i.e. 

positive cost-benefit analysis). Moreover, like agro-forestal systems, these two 

practices establish key nodes across multiple sectors (i.e. climate change, food 

production, biodiversity, land degradation, etc.), facilitating the development of a 

coordinated framework for their implementation (Sanz et al., 2017).  

All three practices benefit from land-user’s traditional knowledge (Marques et al., 

2016) and are supported by local-level capacities, especially agro-forestal systems 

and green cover in perennial woody crops (Plan Bleu, 2016). They prevent 

perpetuating vulnerabilities encountered in the different regions of the Mediterranean 

Basin as they are inexpensive and the spatial scale at which their success is 

demonstrated is broad. The three practices, moreover, integrate biodiversity and 

autochthonous species conservation, are flexible to accommodate new weather 

regimes, and thus, can adapt to climate change. 

4.3.3  Opportunities 

On the one hand, opportunities may stem from the fact that the different practices can 

be implemented in a set of very wide environmental conditions, with multiple benefits 

to the landscape, climate, and society. For this reason, SLM practices assist in 

restoring degraded lands, combating climate change, and alleviating poverty, 
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contributing simultaneously to several Sustainable Development Goals. The adoption 

of such practices within the Mediterranean Basin can, hence, promote the recognition 

of the synergies these provide, boosting their acceptance while raising awareness 

about the different environmental issues among the public. 

On the other hand, many opportunities can arise from the fact that implementing 

SLM needs from cross-sectoral collaboration. First, for the correct implementation and 

monitoring of SLM practices, both policy-makers and non-state actors need to work 

together. Through the establishment of cross-sectoral platforms that enable 

collaboration, the views of both groups can be gathered from the first involvement 

stage of SLM design and implementation, enhancing the capacity building of the 

different actors and bridging the existing gap between the two. Moreover, with this 

approach, the valuable yet often overlooked traditional knowledge and experience of 

the land-users is highlighted. Second, with the involvement of different actors, attention 

is paid to the social system where the practice will be implemented. This will provide 

information and tools on how to overcome technical, socio-economic, and cultural 

barriers by exposing different capacity-building measures and resources. Third, 

because SLM impacts multiple adaptation and mitigation sectors (i.e. water, land 

planning, energy, etc.), new funding sources for their promotion and implementation 

might arise. 

 

4.4 Conclusions and connection 

SLM practices cannot only strengthen the Basin’s potential to mitigate and adapt to 

climate change but also to assist restoring degraded lands, stopping desertification, 

enhancing biodiversity, and improving the state of water resources, wetlands, and 

traditional landscapes. However, to develop coordinated and successful strategies 

across the Mediterranean region that steer efforts in the same direction, basin-scale 

assessments as the one developed here, are necessary. 

Within this chapter, Objective 3 has been completed by compiling science-based 

cases that exhibit how SLM practices assist in restoring several elements of the 

Mediterranean landscape, overall improving its hydrological system. Furthermore, the 

viability of adopting different practices, which is Objective 4, has been inspected. 

Although SLM practices can be easily combined to promote synergies, agro-

forestal systems represent on their own, a holistic approach to strengthen climate 
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change mitigation and adaptation capacities, combat desertification and achieve 

healthier, more productive and more diverse ecosystems (Chapters 2 and 3). If 

combined, the practices with a higher proven capacity (i.e. with consistent results) to 

assist the impoverished hydrological systems and to promote traditional mosaic 

systems are agro-forestal systems together with green cover in perennial 

woodlands. Another remarkable SLM practice to enhance and preserve the 

Mediterranean landscape and watershed while combating climate change is 

reforestation, yet this practice shows no consistent results in our evaluation. Overall, 

multifunctional land use is a promising strategy to reduce pressures on the 

environment, preserve the traditional agriculture, and develop the rural economy. 

SLM choices should not only be based on integrated ecological methods of 

evaluation (Section 4.2) but also on biophysical and socio-economic ones (Section 

4.3), as these, might either reveal potential synergies overlooked otherwise or 

compromise their success of implementation. Understanding these, are key to 

encourage land users to preserve agro-forestal systems and implement SLM 

measures that conserve soil and water (Chapter 5).  
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5. Facilitating effective strategies 

 

The Mediterranean Basin represents a niche of opportunity to steer SLM efforts 

towards the common goal of managing its hydrological budget. However, the effective 

adoption of SLM practices crucially depends on the Climate Change Perception (CCP) 

of its society, that is, on the take of values and views into consideration. Despite the 

growing impetus of governments worldwide to implement local and regional measures 

(IPCC, 2018), the current understanding of CCP remains modest. Moreover, the 

spread of successful SLM practices adopted at the local scale is limited, even though 

SLM multidimensional benefits can reach larger scales (Marques et al., 2016). 

Section 4.3 evidenced the gap between the acknowledgment of the need to 

effectively adopt SLM practices and SLM actual implementation. Here, this issue is the 

point of departure for this chapter, building on the opportunities that SLM 

implementation entails in facilitating the adoption of effective strategies. The aim to do 

so, it to answer Objective 5, which seeks to understand the social and political 

framework in where the research can be implemented in order to extend the 

obtained results into policy recommendations of effective implementation. 

The rationale behind this chapter is twofold. First, to search for different leverage 

points with which to enhance SLM adoption as a vehicle to achieve climate change 

action against Mediterranean desertification, led by the rural communities. Second, to 

replicate successful SLM practices within the Basin by promoting coordinated action 

among policy-makers across the region. 

To achieve them, we inspect on bottom-up and top-down strategies. For the 

bottom-up approach aimed at determining CCP effective drivers, we investigate 

mechanisms that rise social perception and awareness about climate change and 

associated environmental policies (Section 5.1). For the top-down approach aimed at 

steer policy efforts basin-wide, we explore capacity-building institutions that facilitate 

the adoption of SLM practices (Section 5.2). 
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5.1 Rising social climate change perception in rural areas 

Public perception of climate change can either facilitate or hinder the implementation 

of SLM, climate action, and policies and thus, a better knowledge of the ways different 

socio-cultural groups perceive climate change is crucial for their effective adoption 

(Tesfahunegn, 2018). In this way, identifying a comprehensive array of CCP drivers 

and their pathways of action, should prove useful for decision-makers, to take better-

informed decisions and formulate policies that are more in line with the stakeholder’s 

perceptions, needs, and capabilities. 

In this context, it is the objective of this sub-chapter, to reveal CCP drivers (direct 

leverage points) and their connections (indirect drivers or leverage points). For that: 

(1) we first identify and expose a comprehensive array of CCP driving mechanisms 

obtained from a systematic literature review that covers a wide array of research 

methods, scales, locations and communities. (2) Following this, we carry out a semi-

structured analysis of the selected literature, with which to (3) quantify the strength of 

the identify drivers of CCP. (4) More importantly, and in the same way, we also identify 

and count interactions among drivers themselves using the FCM technique. Figure 5.1 

schematically summarizes the followed methodology. 
 

 
 

Figure 5.1. Schematic representation of the followed methodology for the identification 
and quantification of CCP drivers. 
 
5.1.1  Systematic literature review 

The starting point of this work is a literature search on the educational, cultural, and 

political variables that determine climate change opinion at the community level. 

Although some of the collected studies were originally performed at the level of 

individuals, we have treated their outcomes on the community level, with the aim of 

providing results relevant to policy makers and to the understanding of community 
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needs. For this compilation, we executed a search in the Web of Science database 

using the search term: “climate change opinion”. The review revealed the term 

"opinion" with a variety of meanings, most often as a synonym to perception or 

awareness. For consistency purposes, we decided to adopt the term "perception" as 

a metonym for opinion, awareness and related terms. Therefore, we here define 

Climate Change Perception as a state of opinion and awareness of anthropogenic 

climate change, with anthropogenic climate change being defined as a persistent direct 

and indirect change added to the natural climate variability, largely attributed to carbon 

dioxide emissions. 

We imposed no temporal, geographic, or methodological restrictions. Therefore, 

national and international data, peer-reviewed and grey literature, quantitative and 

qualitative studies were all considered. We selected studies in three stages. We 

conducted a first selection of 300 articles out of 2,214 titles with the condition that the 

terms “climate change” or “global warming” appeared in the title. In the second stage, 

we screened the abstracts of the 300 articles and shortlisted 184 that clearly related 

“climate change” with behaviour, opinion, perception or awareness. After examining if 

these works either identified many CCP drivers or analysed few CCP drivers in depth, 

35 articles remained (see Annex-B1). In contrast to other recent multi-variable studies 

(van der Linden et al., 2017; Hornsey et al., 2016; Shi et al., 2016; Capstick et al., 

2015; Lee et al., 2015), these 64 studies consider a wide spectrum of disciplinary 

perspectives by including meta-analyses, secondary analyses, social disclosures, and 

survey-based studies.  

However, the literature search, which is not without limitations, is more inclined 

towards quantitative longitudinal surveys rather than in-depth community 

contextualized studies, due to data availability; and towards more developed countries 

than developing countries.  

 

5.1.2  Semi-structured analysis 

To perform the semi-structured analysis of the 64 studies, we started by collecting 

meta-information for each study, which included the date of publication, location of 

study, data provenance and type of study (Annex-B2). Controlling for the geographic 

area was important to test the effectiveness of the developed terminology on multiple 

scales (from small groups to large populations).  
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Across the studies we identified 132 key words that describe potential drivers. 

Subsequently, we reduced those 132 key words (potential drivers). To do so, we used 

three criteria: i) number of occurrences across studies, as larger numbers of 

occurrence indicate higher scientific consideration; ii) transferability across scales and 

sites, for the correct integration of studies of different nature; and iii) quantifiability. In 

order to ensure transferability between disciplines we developed a common 

terminology, that is, we proposed a definition for each of the final 33 drivers and 

grouped them into seven classes (Table 5.1).   

In a first step we then examined each study for the presence of a positive, 

negative, and/or neutral influence of each of the 33 drivers onto CCP (Annex-B3). For 

example, the following sentence by Shi et al. (2016) was interpreted as a positive 

influence of Socio-altruistic values (ID:86) on CCP: “…have been found to be important 

in the formation of perceptions regarding environmental risks: egoistic values, socio-

altruistic values and biospheric values”, whereas this influence of Self-perceived 

knowledge (ID:71) on CC and CCP has been interpreted as neutral: “In this work, 

general scientific knowledge appeared not to be a robust predictor of perceived climate 

change…”. Neutral here means that the study did analyse the connection but found no 

effect (observed no-effect). This is different to drivers not having been considered at 

all. 

In a second step, and following the same methodology of positive, negative and 

neutral relations, we study the connections between drivers themselves (Annex-B4). 

An example of a positive connection between the driver Self-perceived knowledge on 

CC (ID:71) and Emotional concern about CC (ID:81) by Shi et al. (2016) is: “knowledge 

about the causes of climate change was correlated with higher levels of concern about 

climate change in all countries”. With this information, we developed a network 

diagram and determined the centrality (strength of connectedness) of the drivers by 

use of Fuzzy Cognitive Mapping (FCM). We used the number of connections incident 

on one driver to compute its connectedness (so called degree centrality) (Kosko 1986). 

The centrality measures were normalized on [0,1]. For the visualization we applied the 

Yifan Hu algorithm and filtered out variables without connections.  
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Table 5.1. Drivers of climate change perception. List of drivers (N=33) with their 
grouping into driver classes (N=7) in bold, and corresponding definitions. 
Abbreviations: CC: climate change, ID: identification number of each driver. 

 

 Driver class 
Driver 

ID Definition 

In
st

ru
m

en
ta

l d
riv

er
s 

Education and 
awareness of 
scientific work 

 
Processes related to receiving formal instruction on the 
scientific basis of CC and to interacting with CC experts 

Consumption of 
scientific articles 

1 Reading of scientific articles on climate change 

Direct dealing with 
experts 

2 
Amount of interaction and exchange of information with 
climate experts 

Awareness of 
scientific climate 
consensus 

3 
Knowledge of the fact that > 90% climate experts currently 
agree that climate change is happening and that it is, at 
least, partly anthropogenic 

Self-perceived 
knowledge of CC 

4 Self-assessed level of knowledge about climate change 

CC science literacy 5 
Ability of understanding, communicating and gaining 
useful knowledge about climate change 

Media exposure  
Exposure to mass media such as television, newspapers 
and radio 

Media access 6 
The opportunity to use mass communication means to be 
informed about CC 

Volume of CC 
coverage 

7 Level of climate change coverage in the media 

Popular media reports 8 
Exposure to largely available and understandable spoken 
or written accounts about climate change in the media 

Transdisciplinary 
communication 

9 
Exposure to climate change information in a way that it is 
related to more than one branch of knowledge 

Online platforms 10 
Use of Internet to obtain and exchange information on 
climate change 

Influence of 
corporations 

 Level of influence of powerful groups   

Conservative public 
relations firms 

11 
Influence of establishments engaged in promoting 
interests related to climate change denial 

Conservative elite 
cues 

12 
Influence of prominent individuals and small groups 
promoting climate change counter-movements 

Conservative think 
tanks 

13 
Influence of conservative bodies of experts providing 
advice and ideas on the non-existence of climate change 

Energy and oil 
sectors 

14 
Influence of individuals or groups from the energy and oil 
sectors promoting their own interests related to climate 
change denial 
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S
oc

io
-p

ol
iti

ca
l d

riv
er

s 

Ethnography  
The characteristic features of societies and cultures with 
their customs, values, habits, and mutual differences 

Emotional concern 
about CC 

15 Self-assessed emotional concern about climate change 

Trust 16 
Belief in the reliability of peers, civil institutions and climate 
experts 

Collectivistic culture 17 
Level of influence of community norms, which emphasizes 
the needs and goals of the group as a whole over the 
needs and desires of the individual 

Socio-altruistic values 18 
Possession of a set of altruistic, egalitarian and 
communitarian values 

Belief in 
anthropogenic CC 

19 The acceptance that anthropogenic climate change is true 

Religiosity 20 Possession of religious feeling or belief in a community 

Liberalism supporter 21 
Position with respect to the political activity supporting 
liberalism 

Wealth  Material prosperity 

Prosperity 22 
Income and assets; total value of goods produced and 
services provided in a community during one year 
(GDP/capita) 

Willingness to pay for 
CC polices 

23 
Willingness to support taxes and energy price rises to 
reduce greenhouse emissions 

Free-market support 24 
Position that prices for goods and services are determined 
by free market 

Personal experience 
and perception 

 
Events or occurrences that leave an impression and/or 
perception of changes 

Extreme weather 
events 

25 
Experience of an extreme weather event (e.g. drought, 
hurricane) 

Changed weather 26 
Perception of changed local/regional weather (e.g. 
reduced precipitation, increase on head wave frequency) 

Loss of agricultural 
activity 

27 
Experience and/or perception of agricultural activity 
decrease due to climate change (e.g. soil acidification, 
plagues) 

Threatened cultures 
and ecosystems 

28 
Perception of climate change threatening cultures and/or 
ecosystems 

Health impact 29 
Experience/perception of human health risks related to 
climate change 

Demographics  
Statistical data related to the population structure of a 
community  

Non-white fraction 30 Fraction of non-white people in a community 

 fraction 31 Fraction of people below 30 years old in a community 
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Female fraction 32 Fraction of women in a community 

Urban community/ 
developed nation 

33 
Presence of high technological infrastructure in a 
community 

 
(a) Instrumental drivers define the level of information about climate change within a 

community. 

Education and awareness of scientific work. Educational attainment has been 

found by many authors to be the strongest predictor of climate change opinion 

worldwide. However, knowledge about climate change is relatively limited in 

developing countries in comparison to developed ones (Lee et al., 2015; Leiserowitz, 

2007). On the other hand, in developed countries, political commitments and 

promotion of particular views can threaten education and lead to the adoption of 

opposing positions (Plutzer et al., 2016). Furthermore, higher literacy is not necessarily 

related to a broad acceptance of anthropogenic climate change, but instead, it seems 

to be associated with stronger polarization (Drummond and Fischhoff, 2017; Kahan et 

al., 2012). Even when the public at large recognizes that scientists play a valuable role 

in society, public disengagement still can ensue when only a minority of citizens are 

exposed to scientific works directly(Castell et al., 2014). As a consequence, it is argued 

that most people in developed countries perceive climate change as a complex and 

distant topic (Leiserowitz et al., 2015; Smith et al., 2014) and are either unaware of or 

apathetic towards the scientific consensus that climate change is occurring and is at 

least partially anthropogenic (Cook et al., 2013). Communicating the scientific 

consensus, although vital to raise CCPs (van der Linden et al., 2019) has been proven 

to be not always necessarily effective (Capstick et al., 2015).  

Media exposure. Traditional media play a decisive role in the communication of 

climate science. Adults obtain most of their news from radio, television and printed 

press and rely on the interpretations of scientific results to understand climate change 

research, governance, and decision-making (Shi et al., 2016; Kahan et al., 2012). In 

contrast to the predominant top-down strategies of traditional media, online platforms 

are proving to be powerful pathways for engaging individuals more effectively and 

broadening climate change literacy (Leas et al., 2016). Open access reports and 

popular science magazines also directly impact public concern and 

understanding(O’Neill et al., 2015; Brulle et al., 2012). Likewise, media coverage of 

major scientific advances and assessment reports are found to have a positive effect 

on public knowledge and understanding of climate change (Boykoff, 2012; Brulle et 



70 | Facilitating effective strategies 

 

al., 2012). The media influence thus, extends far beyond the pure delivery of 

information, by having the capacity to polarize, shape, enhance or inhibit people’s 

engagement (O’Neill et al., 2015). 

Influence of corporations. Corporations have been found to enhance public 

exposure to polarized information according to their own interests, i.e. powerful 

organizations and/or NGOs asking for climate action vs. powerful organizations and/or 

private companies casting doubts about climate change. While the effect of the first 

has been inspected through the drivers "Popular media reports" and "Trans-

disciplinary communication", the second has been inspected through this driver class, 

which assesses the confusion these corporations provoke in the population and the 

resulting reduction of risk perception (Stern, 2016; Farrell, 2015). Thus, corporations 

do not only have the capacity to influence the media but also to influence a wide range 

of variables related to personal experiences and beliefs, which can ultimately 

undermine established knowledge (van der Linden et al., 2017).  

 

(b) Socio-political drivers account for the convictions of climate change based on social 

norms, as well as cultural, religious, and moral values.  

Ethnography. Ethnography turns out to be one of the strongest drivers, as the 

natural, cultural and political environment shared by a community powerfully shapes 

perceptions on climate change (Kahan et al., 2012). This induces similar strategic 

reasoning (Howe et al., 2015; Lee et al., 2015) and leads individuals to form opinions 

compatible with the values of the groups they identify with (Clayton et al., 2015; 

Leiserowitz et al., 2015). Communitarian people tend to attribute a stronger role to the 

anthropogenic cause of climate change than those holding hierarchical values (Cook 

and Lewandowsky, 2016; Hornsey et al., 2016; Shi et al., 2016; Kahan et al., 2012). 

Although differences in climate change perception exceed what political orientation 

alone can explain, it is consistently found that these orientations influence a wide range 

of beliefs (Bliuc et al., 2015; Hamilton et al., 2015; Huxster et al., 2015; Givens, 2014; 

Brulle et al., 2012). Further, studies show that whenever climate change polarization 

is high in the media, citizens rely on their political affiliation as a source of credibility to 

form an opinion (Hornsey et al., 2016; Stern, 2016; Leiserowitz et al., 2015). Similarly, 

trust in climate scientists, civil institutions, government or religion, has proven to shape 

individual perceptions ( McCright et al., 2016; Hope and Jones, 2014; Tjernström and 

Tietenberg, 2008). 
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Wealth. Wealth is largely responsible for shaping the specific mitigation and 

adaptation capacities of a community. In this manner, while developed countries are 

as likely to experience high exposure to hazards as developing countries, they exhibit 

lower vulnerability, which may lead to a further disengagement from action (Cook and 

Lewandowsky, 2016; Hamilton et al., 2015; Leiserowitz et al., 2013). Beyond this, 

several authors report on the gap found between the early application of climate 

policies for mitigation and a later response to an obvious need for action ( Leiserowitz 

et al., 2013; Brulle et al., 2012; Leiserowitz, 2007). Citizens generally transfer most of 

the climate responsibilities to corporations and governments, and although they might 

be willing to support pro-environmental policies, they often put their own economic 

interests first (Hanemann et al., 2011; Meira et al., 2009). Similarly, it has been pointed 

out that in times of economic recession, belief in climate change fades as a result of a 

rearrangement of priorities (Scruggs and Benegal, 2012). Also, driven by economic 

interests, free-market supporters are more likely to share corporative ideologies and 

beliefs related to climate change, consequently manifesting higher levels of skepticism 

(Cook and Lewandowsky, 2016; Hornsey et al., 2016).  

Personal experience and perception. The cognitive association between 

experiences of extreme weather events and climate change (Howe et al., 2019; 

Brügger et al., 2015; Capstick et al., 2015) is still under debate, although there is a 

broad consensus that such experiences raise awareness (Clayton et al., 2015; 

Hornsey et al., 2016; Lee et al., 2015; van der Linden, 2015). People in developed 

countries judge negative health, agricultural and cultural impacts as more likely to 

occur to others than to themselves, viewing climate change as a threat distant in space 

and time (Maibach et al., 2015; Smith et al., 2014; Akerlof et al., 2010; Moyano et al., 

2009; Patz and Olson, 2006; Patz et al., 2005). Moreover, besides extreme weather 

events, perceived recent local weather changes influence the broad climate change 

perception, as people become aware of the multiple climate change-related 

environmental threats to their communities (Howe et al., 2019, 2012; Hornsey et al., 

2016; Zaval et al., 2014; Doherty and Clayton, 2011).  

Demographics. Race, age, and gender have been found to have a weak 

influence on climate change perception (Shi et al., 2016; Hesed and Paolisso, 2015; 

Howe et al., 2015; Leiserowitz et al., 2011). However, climate change perceptions vary 

geographically, both between and within nations (i.e. rural vs. urban areas) as the 

result of cultural and ideological factors (Howe et al., 2015; Lee et al., 2015). 
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5.1.3  Quantification of direct drivers of CCP 

For each study and identified driver (N=33), the presence of a positive, negative, 

and/or neutral influence on CCP was assessed (Figure 5.2). 

Results show that perception of 'Changed weather' is the mechanism most 

frequently associated to CCP (ID: 26). Other drivers with high influencing capacity are 

'Collectivistic culture' and 'Socio-altruistic values' (ID: 17, 18), followed by the 'Self-

perceived knowledge of CC' (ID: 4). Among these drivers, the one with more positive 

correlations to CCP is 'Socio-altruistic values' (ID: 18) closely followed by 'Changed 

weather' (ID: 26). In contrast, the ones with the highest share of negative influences 

are the 'Influence of corporations' (ID: 11, 12, 13, 14). 

This counting exercise provides clues of which are the most studied drivers of 

CCP in different settings, as well as whether their influence was found to be positive, 

negative, or neutral (observed no-effect). It also exhibits how drivers included under 

'Demographics', 'Wealth', and 'Media exposure' play a limited role in determining CCP.  
 

 

Figure 5.2. Quantification of the number of times a driver has been found to influence 
climate change perception for. The sub-drivers are grouped into the seven drivers 
(black rectangles). See description of IDs in Table 5.1.  
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5.1.4  Quantification of indirect drivers of CCP 

Due to potential interactions among drivers, crucial information about what drives 

CCPs may be overseen when only assessing direct influences. Thus, in a second step 

and following the same methodology of positive, negative and neutral encountered 

connections, we collected the occurrences of links between drivers. With this 

information, we have developed a network diagram and determined the centrality 

(degree of connectedness) of the drivers (Figure 5.3). For its construction we used the 

methodology (network analysis with normalized centrality measures) and visualization 

technique (Yifan Hu algorithm and filtration of unconnected drivers) explained in 

Chapter 3.4. 

As a result of the FCM, 'Socio-altruistic values' (ID: 18) is found to strongly and 

positively impact 'Emotional concern about CC' (ID: 15and 'Belief in anthropogenic CC' 

(ID: 19). 'Urban community/developed nation' (ID: 33) instead, display negative 

connections to 'Personal experience and perception' (ID: 25, 26, 27, 28, 29). 

'Awareness of scientific climate consensus' (ID: 3) is negatively impacted by 'Influence 

of corporations' (ID: 11, 12, 13, 14), 'Free-market supporter' (ID: 24), 'Volume of CC 

coverage' (ID: 7), and 'Popular media reports' (ID: 8).  

The network diagram hence, reveals how people’s CCPs are not only shaped by 

direct drivers (Fig. 5.2), but also by the interactions among the drivers themselves (Fig. 

5.3). Two of these interactions that are closely related to rural communities are 

highlighted here: 

(1) The driver 'Urban community / Developed nation' exhibits little influence on CCP 

directly, while in the network diagram this driver is quite central with several 

negative connections to the drivers grouped under 'Personal experience and 

perception'. This finding suggests that the more developed a community is, the 

less connected to the physical experiences of climate change it becomes. 

Literature indicates that the rationale behind this observation is that developed 

communities with high levels of resilience towards climatic adverse effects 

perceive climatic threats as distant in space and time, while the opposite occurs 

for less developed communities (Cook and Lewandowsky, 2016; Hamilton et al., 

2015; Leiserowitz, et al., 2013). A consequence of this, combined with the fact 

that the drivers under 'Personal experience and perception' positively influence 

'Emotional concern about CC' and 'Belief in anthropogenic CC', is that a possible 

strategy for promoting climate action could be prioritizing the knowledge of the 
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science behind climate change (i.e. promoting education and awareness of 

scientific work) in developed communities, while relating climate change to direct 

threats and perceptions in less developed communities. 

 
 

 
 

 
Figure 5.3. Interactions among drivers. Each line represents a connection, with the 
arrow indicating its direction, its width indicating its influencing capacity (number of 
occurrences), and its color indicating its nature (positive, negative). Size-color of the 
nodes indicates centrality, calculated as the number of links incident upon each driver 
(i.e. degree centrality). The most relevant connections have been highlighted. 
Abbreviations: CC: climate change, PR: public relations. 
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 (2) People’s CCPs are strongly affected by ethnographic factors directly. The 

network diagram reveals that many of the drivers within this class reinforce each 

other, leading to a stronger influence. In this way, powerful positive connections 

exist between 'Socio-altruistic values', 'Emotional concern about CC', and 'Belief 

in anthropogenic CC'. Past studies have hypothesised that this might be the case 

as principles and ideals shared within a community are powerfully transmitted 

and induce similar strategic reasoning (Howe et al., 2015; Kahan et al., 2012; 

Lee et al., 2015). Hence, in order to achieve climate action, different strategies 

might be need to be followed in collectivistic (rural) vs. more individualistic (urban) 

communities. 

 

5.2 Platforms that steer SLM adoption 

“Cross-scale, cross-sectoral and inclusive governance can enable coordinated policy 

that supports 8 effective adaptation and mitigation (high confidence)” (Arneth et al., 

2019).  

Taking action to combat climate change is an emerging priority in the 

Mediterranean Basin (Chapter 2), especially within the rural regions, where exposure 

is higher. Acting in these areas will be vital for achieving basin-wide adaptation and 

mitigation goals, as well as for tackling future climate projections.  

SLM represents an effective and holistic approach to combat climate change 

while managing healthy ecosystems, combatting land degradation and desertification, 

and assisting overcoming water scarcity (Chapter 4). This is the case, as strong links 

among land management, the water cycle, and the re-circulatory atmospheric 

processes in the Mediterranean region exist (Chapter 3; Millán et al 2005). Moreover, 

well design actions for land use and forestry are key to achieve basin-wide adaptation 

and mitigation to climate change, and these can be effectively achievable through SLM 

(Sanz et al., 2017). 

SLM practices that are documented in the literature, are in most of the cases 

designed and adopted at the local scale, as these, are tightened to the site-specific 

characteristics in where they are implemented. However, the wide region of the Basin 

(30–47°N, 10°W–35°) represents a niche of opportunity to steer SLM efforts towards 

the common goal of managing the hydrological budget and restoring its impoverished 

water cycle. The greatest challenge that this entails is that while the hydrological 
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system of the Basin is driven by global climate change and regional anthropogenic 

action, adaptation actions are locally addressed, mixing different time and regional 

scales that encompass non-linear behaviours and distinct internal thresholds. That is 

to say, that while SLM actions consider that vulnerabilities and risks are local or 

proximal, there are wider non-straightforward challenges (and solutions) that affect the 

whole region, as for example, the state of the water cycle. 

In light of this, the development of coordinated, coherent and consistent 

environmental policies for SLM actions within the Mediterranean Basin is key to ensure 

regional objectives that go beyond the local scale of SLM implementation. For that, 

mainstreaming of SLM could be a solution (Akhtar-Schuster et al., 2011). 

Mainstreaming of SLM is understood as systematically integrating “decision-

making processes, policies and laws, institutions, technologies, standards, planning 

frameworks, educational curricula and public awareness-raising activities”, ensuring 

their continuity in the political and institutional agenda (UNDP, 2008). It is therefore 

aimed at integrating cross-sectoral and multi-stakeholder knowledge, translating it 

from national to wider regional (i.e. Mediterranean Basin) policies and frameworks. 

Mainstreaming thus, does not mean implementing successful SLM elsewhere, but 

seeking ways to replicate success stories by making local SLM relevant to polices 

wider than the scale of their implementation. 

5.2.1  Barriers/opportunities and institutional infrastructures for the adoption of SLM 

There is an extended body of literature inspecting barriers and opportunities of SLM 

implementation (e.g. Akhtar-Schuster et al. 2017; ELD Initiative, 2013; Kirui and 

Mirzabaev 2015; UNCCD, 2017). As a summary, these can be condensed into four 

broad areas: economic, educational, institutional and monitoring. Together with an 

overview of these, we will reflect on different available capacity-building 

infrastructures/systems that help to overcome these challenges and channel 

opportunities. 

(1) Economic: facilitate access to appropriate technologies, practises or 

equipment; fairly distribute subsidies and loans among Mediterranean 

countries; incentive schemes for SLM implementation through sustainable 

business models and/or payments for ecosystem services; carry out cost-

benefit analyses of planned actions; develop compensation schemes for land 

owners for the maintenance costs of SLM. 
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There is a rising number of institutional structures that allocate funds to SLM 

adaptation actions. Among them are the World Bank’s Climate Funds 

(https://climatefundsupdate.org/), the UNDP National Adaptation Programmes of 

Action, NAPAs (https://www.adaptation-undp.org/), the UNCCD’s LDN fund action 

(https://www.unccd.int/actions/impact-investment-fund-land-degradation-neutrality), 

and the FAO’s Forest and Farm Facility (http://www.fao.org/forest-farm-facility/en/). 

There is likewise a rise in business across sectors initiated by Small and Medium 

Enterprises that aim for SLM implementation such as the Commonland Foundation 

(https://www.commonland.com/en).  

(2) Educational: increase opportunities for local training; promote well-trained 

stakeholders that facilitate and guide SLM implementation; support the direct 

implication of scientific bodies that align outputs to national frameworks; 

support transdisciplinary research programs; seek for arenas of communication 

that facilitate knowledge exchange, through the translation of scientific findings 

into a policy-relevant language and the transmission of local skills, experience 

and knowledge to stakeholders and scientists (i.e. downscaling and upscaling 

lessons that inform policy frameworks). 

There are increasing interdisciplinary research teams and centres focused on 

climate change such as the BC3 (https://www.bc3research.org/) that engages in 

climate policy recommendation, or the multiple international research programmes 

built through the Future Earth global network (https://futureearth.org/), which raises 

social awareness and scientific knowledge on climate change and SLM options. At the 

same time, the Mediterranean region is included under the Mediterranean Experts on 

Environmental and Climate Change, MedECC (http://www.medecc.org/), which is an 

international network of more than 400 scientists that identify knowledge gaps and 

provide unbiased information to policymakers. Similarly, the Climate-Smart Agriculture 

program from FAO (http://www.fao.org/climate-smart-agriculture/en/) provides 

guidance for stakeholders to identify the best SLM strategies 

(3) Institutional: provide infrastructures to co-create objectives and means of 

adaptation among scientists, policy-makers and landusers; decentralize action, 

that is, promote existing regional and local bodies to design, coordinate, 

evaluate and monitor the implementation and impacts of SLM; develop 

frameworks with short-, medium- and long-term priorities; improve land tenure 

security and rights; adequate / develop policies and regulations that facilitate 

https://climatefundsupdate.org/
https://www.adaptation-undp.org/
https://www.unccd.int/actions/impact-investment-fund-land-degradation-neutrality
http://www.fao.org/forest-farm-facility/en/
https://www.commonland.com/en
https://www.bc3research.org/
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the implementation and maintenance of SLM; assure long-term government 

commitment. 

The Mediterranean Strategy for Sustainable Development, MSSD 2016-2025 

(https://web.unep.org/unepmap/mediterranean-strategy-sustainable-development-

mssd-2016-2025) is an integrative policy framework under the coordination unit of the 

United Nations Environment Programme / Mediterranean Action Plan (UNEP/MAP) 

that aims to translate the 2030 Agenda for Sustainable Development at the regional 

level (i.e. downscaling) and stimulate regional cooperation (i.e. upscaling). Similarly, 

the Union for the Mediterranean, UfM (https://ufmsecretariat.org) is and 

intergovernmental institution that brings together 43 countries to likewise, promote 

dialogue and cooperation within the Mediterranean region. 

(4) Monitoring: develop qualitative and quantitative indicators at different spatial 

and temporal scales; make results of monitoring available in a cross-sectoral 

format; understand the base-line condition of the landscape and calculate the 

share between human- and climate-induced degradation; recognize that SLM 

assessment needs to take place within the context of broader monitoring; scale 

up results through meta-analyses and modelling studies; identify barriers to 

implementation and opportunities for creating an enabling environment. 

Monitoring activities might be carried out through the UNCCD monitoring and 

evaluation framework (Decision 22/COP 11), as well as through the guidelines of the 

MSSD 2016-2025 framework. 

5.2.2  SLM implementation as a means to achieve SDG and further goals  

The opportunity of adopting SLM as a means to contribute to SDG’s arises from the 

strong commitment of governments to combat climate change. That is why SLM in the 

Mediterranean Basin has the potential to create a common framework within which 

efforts promote the goals of several international bodies such as the FAO, UNFCC, 

UNCCD, and CBD; as well as regional, national and local strategies and action plans 

(Fig. 5.4). 

Moreover, beyond assisting the restoration of the Mediterranean’s impoverished 

water cycle (i.e. SDG6 "clean water and sanitation") and helping to adapt to and 

mitigate climate change (i.e. SDG13 “climate action”), the setting of shared goals 

across sectors also contributes to the alleviation of the multiple other impacts of climate  

https://web.unep.org/unepmap/mediterranean-strategy-sustainable-development-mssd-2016-2025
https://web.unep.org/unepmap/mediterranean-strategy-sustainable-development-mssd-2016-2025
https://ufmsecretariat.org/
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Figure 5.4. Contribution of Sustainable Land Management (SLM) to the multiple SDGs 
and goals of the FAO, UNFCC, UNCCD, and CBD organizations (bottom); to the 
objectives set by the MSSD 2016-2025 (left); and the multiple regional, national and 
local strategies and action plans (top). The yellow arrows indicate the best option 
recognized to steer SLM efforts. 

 

change and human action such as SDG1 “no poverty”, SDG2 "zero hunger", SDG3 

“good health and well-being”, and SDG15 "life of terrestrial ecosystems". 

Among the different capacity-building bodies and institutions previously identified, 

we especially recognize the option of steering SLM actions under Objective 2 of the 
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MSSD 2016-2025, which states “Promoting resource management, food production 

and food security through sustainable forms of rural development”. The MSSD 2016-

2025 addresses crucial systems disturbed by human actions from urban to rural areas 

(and the marine realm) with one of the focuses on climate change. This framework 

defines strategic directions and actions to ensure implementation and monitoring of 

SLM, offering offers the opportunity to overcome the above exposed barriers for SLM 

implementation, as it is an already existing body that coordinates the implementation 

of intergovernmental (top-down), national and regional (bottom-up) actions, it provides 

support and technical guidance to all interested parties, facilitates platforms for the civil 

society to participate with stakeholders, offers monitoring processes, allocates 

financial resources, cooperates with the scientific community for the development of 

analytical tools that allow forecasting and assessment of measures, and engages in 

civil awareness and sensitization. 

 

5.3 Conclusions and connection 

For the successful implementation of SLM actions, attention needs to be paid to the 

social system. With the study of CCPs, two strategies that increase climate change 

awareness in rural areas, and thus, facilitate the implementation of effective SLM, 

have been identified: (1) relate climate change to direct threats rather than 

prioritizing the knowledge of the science behind it, as less developed communities 

such as the rural ones, perceive climatic threats closer in space and time in the form 

of weather changes and weather events; (2) reorient values and behaviours 

towards climate action through SLM implementation as these (i.e. values and 

behaviours) will be understood and highly shared within the community due to its 

integrands’ similar strategic reasoning.  

These shared values and behaviours need, however, to be supported by useful, 

relevant and oriented information, together with high stakeholder’s perception of the 

benefits of SLM practices and more deliberative and participatory approaches focusing 

on incorporating cultural identities, fairness, and equity. The MSSD 2016-2025 

framework provides the means to encompass many of these aspects, emerging as 

an outstanding option for steering SLM actions under its objectives. 
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6. General discussion, conclusions and further 
research 

 

6.1 General discussion 

The region of the Mediterranean Basin represents a niche of opportunity to steer efforts 

towards the common sustainable goal of meliorating its impoverished water cycle while 

boosting climate change adaptation and mitigation capacities, steering land 

degradation, and further preventing the loss of the mosaic-like landscape. For this, the 

consideration of the ecological, social, and political framework within the region is 

needed and has been tackled by carrying out this interdisciplinary dissertation. It has 

been developed a theoretical framework that includes: (1) visions: paleoclima in 

Chapter 2, humanclimate interactions in Chapter 3, and SLM practices in Chapter 4; 

(2) values: CCP in Chapter 5; (3) and voices: barriers and opportunities for SLM 

implementation in Chapters 4 and 5. This thesis thus, enables a sciencepolicy 

platform, for policy to steer science-based key actions at the basin scale and scientists 

to better understand how to mainstream results in a policy-relevant language (Fig. 6.1). 

 
Figure 6.1. Scheme of the science-policy platform of this thesis. In magenta the 
different chapters, in black the insights from each discipline to the other one, and in 
cyan the “three v” (i.e. visions, voices, values) tackled in the different chapters. 
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In the following lines, there is a reflection on the different methodologies used in this 

interdisciplinary dissertation. The provided contributions have been likewise here 

discussed, and while doing so, the findings are contextualized to other studies and 

reports to check for reliability and robustness (Figure 6.2). 
 

 

By working in Objective 1 it has been discerned that while orbitally induced climate 

variability set the conditions for an overall dryer Basin for the past millennia, human 

activities further exacerbated its impoverished hydrological system (see Section 2.6).  

 

To complete this conceptual objective, the revision of the literature on natural sciences 

(Chapter 2) and archaeology (Chapter 3) was conducted. The provided information is, 

therefore, in concordance with the latest investigations on this field (e.g. Cramer et al. 

2018; IPCC, 2018; Lionello et al. 2018; Lionello et al. 2017). 

This is summarized as follows. Around 4.5 kyr BP a decrease of solar insolation 

onsetted a generalized drying and warming of the environmental conditions in the 

Basin. Ever since the Mediterranean has witnessed more unstable weather patterns, 

a successive decline in precipitation, and a linear increase of its temperatures, 

reaching present-day conditions around 2.52 kyr BP (Fig. 2.3). The hydrological 

system of the Basin with its two main precipitation types (i.e. the synoptic rainfall, 

product of the large-scale atmospheric motion, and the topographic rainfall, caused by 

the local orographic convection) have consequently, been affected. In addition, human 

activities carried out over the centuries, further added variability to the rainfall regime 

of the Basin (Obj. 2). On the one hand, land use changes have resulted in soil 

aridification, causing fluctuations on land surface heat fluxes through the increase of 

albedo or the decrease in evapotranspiration rates, affecting cyclone development. On 

the other hand, topographic rainfall has declined as the cloud condensation level 

required for precipitation is not reached due to lack of inland moisture, i.e. aridification 

Hypothesis 1 “The hydrological system of the Mediterranean Basin has been 

modified by LUC practices” has been tested to be right through the completion of 

Objectives 1 and 2, aimed at (1) “differentiate between natural and anthropogenic 

climate variability throughout the Holocene” and (2) “elaborate on existing 

knowledge about how topographic rainfall might have been changed due to 

anthropogenic action”. 
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(Fig. 2.5). In sum thus, both main precipitation types have been affected by 

anthropogenic actions with a consequent impoverishment of the hydrological cycle of 

the region.  

This investigation allowed the contextualization and understanding of the base-

line condition of the Basin’s landscape (i.e. no mosaic-like landscape and wetter 

conditions), its evolution and current state (i.e. mosaic-like landscape and overall dry 

environment), and the near-future projected climate change (i.e. intensification of 

agricultural activities and risk of mosaic-like landscape together with drier climate). 

Gaining an insight into the past of the Mediterranean’s history is key to inform the 

future, as it enables both, to understand how it responded to natural climate variability 

and human disturbance, and to predict how it will behave given future projections. 

 

Next, the anthropogenic share of the Basin’s environmental change has been 

deepened by addressing Objective 2. It has been shown that among all agricultural 

activities, the one exerting a stronger impact on the Mediterranean environment, and 

in particular on the hydrological cycle of the Basin, is deforestation (see Section 3.5). 

Conclusions on this objective were drawn after inspecting the content of a semi-

structured review of scientific literature (N=23) that was used to develop a network 

map. First, the main descriptive LUC-environment relations were compiled and with 

them, the network map was constructed using the Fuzzy Cognitive Mapping (FCM) 

technique (Fig. 3.3). FCM, while typically applied in social sciences, here it was used 

to inspect on the causal relationships among the different encountered components of 

the Mediterranean water cycle, expanding in this way its applicability as a system 

mapping method. FCM allowed for a flexible integration of very disperse but related 

components of the water system, which were too complex to be quantified. In this 

manner, this technique enabled to encompass studies that used particular 

methodologies with different specific aims, theoretically connect all components, and 

draw integrated conclusions. Overall, the use of the FCM technique enabled to bridge 

the gap between scientific findings, expert stakeholders, and policy-makers by 

translating complex interactions occurring between land use changes and the 

environment in a synthesized and integrated way. 

The revised literature described how, although limited, deforestation, depletion of 

plant resources and soil impoverishment were connected to a regime of sustained fires 

aimed at land opening already during the early-Holocene. During the mid-Holocene 

LUCs were related to an intensification of the land use and the exploitation of goods, 
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further inducing aridity, biodiversity loss, and soil impoverishment. Lastly, with the 

onset of the late-Holocene, a transition from climate- to human-dominated landscapes 

occurred further aggravating the consequences of earlier practices (Table 3.1). All 

gathered LUC practices were classified into four categories, namely: regular fires and 

deforestation; farming and cropping activities; overgrazing and upstream pastoralism; 

hydraulic terraces and aquifers. 

Next, the network map related several concepts of many disciplines, from which 

the following interactions were highlighted (Fig. 3.4). Deforestation decreases 

biomass, reducing the uptake of atmospheric CO2 and yet, promoting the expansion 

of more biomass due to CO2 availability. It also modifies the surface water balance by 

halting evapotranspiration, which reduces water vapour available for topographic 

rainfall and limits groundwater flow by eliminating wood cover deep rooting infiltration. 

At the same time, diminished deep rooting infiltration implies enhanced surface runoff, 

which causes higher aridification and further soil erosion. Besides, deforestation 

affects biodiversity and water quality and quantity, as the health of the ecosystems 

regulating the quality and the quantity of surface water, are ultimately determined by 

the quality and the quantity of it. 

Beyond the 23 case-studies used in the semi-structured review of scientific 

literature, findings are in line with further case-studies evaluating the LUC−landscape 

relationship (Roberts et al. 2018b; Primavera et al. 2017; Clarke et al., 2016; Flohr et 

al. 2016; Sadori et al. 2011), meta-studies addressing the impacts of land use changes 

(Roberts et al. 2019; Gibson et al. 2011; Poeplau et al. 2011; Seppelt et al. 2011), 

empirical observations documenting a reduction of the topographic rainfall as a product 

of land use change (Millán et al. 2005a, 2005b), and reports and land management 

guidelines from the United Nations (FAO and Plan Bleu, 2018; Sanz et al., 2017). 

 

With the completion of Objectives 1 and 2, Hypothesis 1 has been tested to be 

right. LUC practices, in especial deforestation, started modifying the landscape 

and the water cycle of the Basin already in the early-Holocene. 
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To test this hypothesis, Objectives 3 and 4 were tackled together. Furthermore, and 

taking into consideration results from Chapter 2, in which it was highlighted the 

importance of the Mediterranean’s mosaic-like landscape to ensure the Basin’s 

prosperity and food security, those SLM practices that assist preserving it, were 

likewise identified. Agro-forestal systems, green cover in perennial woodlands, and 

reforestation were the obtained SLM practices that best improved the state of water 

resources and the mosaic-like landscape of the Mediterranean Basin. These practices 

moreover, offered high opportunities for their adoption (see Section 4.4). 

To complete Objectives 3 and 4, a framework that evaluated the on-ground 

effectiveness and implementation viability of different SLM options was developed 

(Fig. 4.1). All SLM practices had been previously implemented within the region and 

are registered by the WOCAT network. To build it, five ecological variables were 

defined (i.e. climate regulation; soil erosion control; biodiversity enhancement and 

pest/disease control; water regulation; soil quality enhancement) together with four 

social variables (i.e. economy and production; management and irrigation; human 

well-being; institutions) that encompassed multiple impacts assessed by the WOCAT 

(Table 4.3). Then, all similar but very specific practices were grouped, making them 

flexible enough to be basin-wide applicable (Table 4.2). Following this, the biophysical 

potential area of their implementation was examined by considering five of natural 

environment variables (Fig. 4.2). Lastly, the potential co-benefits and trade-offs for 

their implementation was inspected. 

In this way, the current framework is novel in two ways. First, it allows to 

mainstream across the Mediterranean Basin, those successful SLM practices whose 

benefits go beyond the local scale of implementation, allowing policy-makers to steer 

coordinated efforts basin-wise. Second, it is not only based on ecological impacts, but 

also on geo-climatic and socio-economic ones, as these, might either highlight 

Hypothesis 2 “Topographic rainfall can be naturally stimulated through SLM and 

this will help restoring a healthier hydrological system” has also been disclosed to 

be correct through the completion of Objectives 3, 4 and 5 aimed at (3) “identify 

which SLM practices can better assist in restoring topographic rainfall”, (4) “assess 

the viability of adopting such practices” and (5) “understand the social and political 

framework in where the research can be implemented and extend the results into 

policy recommendations of effective implementation”. 
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potential synergies overlooked otherwise or compromise the success in the 

implementation of SLM practices (Obj. 4).  

Results showed that SLM not only has the capacity of strengthening the Basin’s 

capacity to mitigate and adapt to climate change but also assists restoring degraded 

lands, stopping desertification, enhancing biodiversity and improving the state of water 

resources, wetlands and traditional landscapes. Among the whole array of practices 

(N=25) agroforestry systems, green cover in perennial woody crops, and reforestation 

were found to best assist in all assessed five ecological services. A different array of 

practices emerged when each service was evaluated separately (Table 4.5). 

In particular, the mix of these three practices helps mitigating climate change by 

sequestering and stocking carbon, while assists in adapting to climate change by 

regulating the hydrological system of the Basin and promoting the multifunctionality of 

its landscape, among others. The hydrological cycle of the region was found to be 

impacted in two main ways by these practices: through increased infiltration; and 

through a rise of atmospheric moisture led by evapotranspiration, which decreases 

temperature and heat wave duration, and has the potential to enhance topographic 

rainfall. These practices moreover, were found to assist in promoting cultural values 

and traditional knowledge, increase market products, address water demand, and 

balance workload. Besides, according to the geo-climatic characteristics of the Basin, 

they offered a high potential for implementation (Table 4.6). 

Because no previous work has inspected the implementation of SLM across the 

entire Mediterranean Basin, our results can only be compared to reports that 

collectively assess SLM options around the globe. The here presented findings, 

however, are in line with the latest UNCCD’s report on SLM practices (Sanz et al. 

2017), where they are classified according to the type land use in where they are 

implemented. That report highlights the need for practices that: control soil erosion in 

croplands (parity with our results: green cover in perennial woodlands); reduce 

deforestation in forestlands (establishment of protected forest areas; reforestation); 

and manage soil fertility in mixed lands (agro-forestal systems). The Voluntary 

Guidelines for Sustainable Soil Management, VGSSM (FAO 2017) also aligns with this 

dissertation’s results. The VGSSM states that to minimize soil erosion deforestation or 

improper grassland-to-cropland conversion need to be avoided, the growing and 

maintenance of covering plants should be enhanced, and runoff rates and water 

velocity need to be reduced. To improve soil water management, the VGSSM 

recognizes the importance of higher efficiency in the use of irrigation water by plants, 
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as well as reduced evaporation and percolation losses (green cover in perennial 

woodlands; establishment of protected forest areas; reforestation). 

 

Lastly, Objective 5 was addressed, from which strategies to enhance the public’s 

perception towards climate action (bottom-up approach) and political frameworks from 

where to steer action (top-down approach) were identified. To the first, it has been 

found that relating climate change to direct threats and reorient values/behaviours are 

effective strategies for rural populations; whereas, for the second, it has been 

recognised that the Mediterranean Strategy for Sustainable Development emerges as 

a competent framework from where to channel SLM efforts in a basin-wide scale (see 

Section 5.4).  

Following the methodological approach of the previous chapters, a novel 

framework was developed to identify the drivers of CCP (Fig. 5.1). To develop it, the 

FCM technique of Chapter 3 was used as follows. First, drivers of CCP were mapped 

by reviewing climate change influences in the literature. Then, the found terminology 

was homogenised and a select a set of terms, that later on were call drivers, were 

grouped under seven driver classes. Following this, the importance of each influence 

was quantified by counting the number of occurrences in the selected literature. 

Finally, a network map that depicted the importance of each concept was constructed. 

The development of this novel framework offered several advantages. First, by 

merging similar variables and removing restricted cases, the key drivers were 

exposed. Second, it combined disperse information under a single terminology, 

making it comparable regardless of the context of the study. Third, it offered an 

interdisciplinary view that is most valuable for decision- and policy-making, as this 

framework structured the key drivers of CCP found across disciplines in a comparable 

way. 

Results showed that 'Changed weather' is the mechanism most frequently 

associated with CCP, followed by 'Collectivistic culture', 'Socio-altruistic values', and 

'Self-perceived knowledge of CC' (Fig. 5.2). Importantly, the interactions between 

drivers of CCP were also identified and quantified, looking for the first time, the indirect 

paths of influence to CCP. With such an approach it was possible to unravel 

characteristics within a community unnoticed otherwise (Fig.5.3). The network map 

revealed two closely related to rural communities (bottom-up approach). On the one 

hand side, 'Urban community/developed nation' was negatively related to 'Personal 

experience and perception'. This suggests that relating climate change to direct threats 
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and perceptions might be an effective strategy for promoting climate action in rural 

areas. On the other hand, people’s CCPs were strongly affected by ethnographic 

factors, implying that reorienting values and behaviours are powerful tools to achieve 

climate action, more than for example, inoculating the public with information on 

climate change.  

Because the study of CCP is generally underpinned by different methodologies, 

uses different criteria and terminologies, and focuses on distinct time frames and 

geographical locations, it is a difficult endeavour to compare our results to the literature 

on this topic. Nevertheless, it might be highlighted that results go in the direction of 

recent multi-variable studies in which authors state that the most powerful drivers of 

climate change perception are education, the media, shared characteristics of 

societies and cultures (ethnography) and personal experiences and perceptions 

(Capstick et al., 2015; Goldberg et al., 2019; Hornsey et al., 2016; Lee et al., 2015; Shi 

et al., 2016; van der Linden et al., 2019; van der Linden et al., 2017). 

 

Subsequently, to identify available capacity-building infrastructures to steer SLM 

efforts and climate action towards addressing Basin-wide challenges (top-down 

approach), several institutional structures were revised together with barriers and 

opportunities of SLM implementation (Section 5.2).  

Four barriers/opportunities of SLM adoption were identified: economic; 

educational; institutional; monitoring, along with different available capacity-building 

infrastructures/systems that helped to overcome these challenges and channel 

opportunities. Identifying such structures was found key to ensure regional objectives 

that go beyond the local scale of SLM implementation and that had the potential to 

contribute to multiple international objectives such as the SDGs and provide practical 

guidance for creating an enabling environment for the selection and implementation of 

those (Fig. 5.4).  

Marques et al. (2016) highlight FAO-LADA, EU-DESIRE, EU-PRACTICE and 

WOCAT as international projects/institutions to mainstream SLM. However here, the 

aim was to recognize institutions specific for the whole Mediterranean Basin. Priority 

was given to international/inter-regional structures capable of both, downscaling and 

upscaling efforts. The option of steering SLM actions under Objective 2 of the 

Mediterranean Strategy for Sustainable Development 2016-2025, which states 

“Promoting resource management, food production and food security through 
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sustainable forms of rural development” was recognized as the best one to steer action 

in the Mediterranean Basin. 

 

With the completion of Objectives 3 to 5, it has been concluded that Hypothesis 

2 is also right. Topographic rainfall can be naturally stimulated in the rural areas 

through increased cover crop and extended areas of canopy (i.e. agro-forestal 

systems and reforestation). 

 

The latest report of the IPCC however, states that “In temperate regions with 

water deficits, the simulated change in evapotranspiration following forestation will be 

insignificant while the decreased surface albedo will favour surface warming” (Jia et 

al., 2019). Pausas and Millán (2018) argue that beyond rural land mismanagement, 

coastal degradation, i.e. increased soil heating due to urbanization, vegetation loss, 

and disappearance of marshals and coastal lagoons, the water cycle of the Basin has 

been disrupted. Acting in coastal areas should be thus, parallel to acting in the rural 

lands since each one alone is a necessary effort, yet not sufficient to stimulate the 

recovery of topographic rainfall. 
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6.2 Conclusions 

Addressing the objectives of this dissertation required an integrated interdisciplinary 

approach that consolidated scientific knowledge on the environment with that from the 

social sciences, as landscapes are ecological−social systems. Due to its 

interdisciplinary, it has been possible to reach beyond deterministic 

climate−environment−society relationships. Similarly, the chosen approach has 

enabled to answer to some of the most pressing challenges of the Mediterranean 

region in a context-sense scenario. This highlights the need for additional 

transdisciplinary studies on this topic as the first conclusion of this dissertation. 

It can be likewise concluded that local adaptation and mitigation actions firmly 

contribute to reducing climate change impacts while assisting in restoring the water 

cycle of the Basin. Practical steps to do so, that is, to address desertification (i.e. assist 

the hydrological cycle), land degradation (i.e. preserve the mosaic-like landscape) and 

climate change adaptation and mitigation in rural Mediterranean regions, have been 

achieved. These are reflected as policy recommendations (Table 6.1) of different 

levels, i.e. from the land use level to policy-makers. 

Policy recommendations 

In light of the current state of the hydrological cycle of the Mediterranean Basin, 

and especially, of the projected climate scenarios for the near future, the adoption of 

adaptation and mitigation measures to combat climate change becomes a priority. The 

greater efforts are placed in cities, where approximately 70% of the Mediterranean 

population currently lives (Plan Bleu, 2016). However, beyond cities, efforts should be 

recognized and incentivized in rural regions, as these, have a large capacity to 

effectively combat Basin-wide current and future challenges, and are key to the overall 

provision of food, energy and the functioning of the ecosystems. Acting in the rural 

areas is moreover pivotal to accomplish the overall biophysical sustainability of the 

Basin, it is necessary given their higher exposure to climate change, and it is effectively 

achievable through SLM.  

SLM practices are designed and adopted at the local scale. However, the 

development of coordinated, coherent and consistent environmental policies for SLM 

actions within the Mediterranean Basin is key to ensure regional objectives that go 

beyond the local scale of SLM implementation. Jointly addressing local and broader 

regional challenges can lead to emerging synergies from which all actors and the 



92 | General discussion, conclusions and further research 

 

environment can benefit. Promoting the adoption of SLM under a framework that 

coordinates environmental policies can steer up opportunities, achieve more 

significant results, and contribute to multiple regional-to-international set goals such 

as the SDGs. 

Water availability is the limiting factor for the provision of services in the 

Mediterranean Basin and SLM adoption, as well as the biggest threat to climate 

change adaptation in the rural regions. Efforts should be directed towards win-win SLM 

practices that tackle locally specific challenges and help to ensure a more effective 

management of the Basin’s hydrological budget. Attempts to decrease pressure on 

freshwater resources might be stewarded towards improving its management while 

enhancing its input. Several SLM options assist on this, from which we highlight: (i) 

improve irrigation efficiency through micro-irrigation systems; (ii) reduce direct soil 

evaporation with increased plant transpiration through reforestation and green cover 

in perennial woodlands; (iii) boost topographic rainfall by reforestation and stopping 

deforestation; (iv) enhance water use efficiency by the flora through the preservation 

of the mosaic-like landscape. 

The cultural mosaic-like landscape of the Mediterranean Basin assists in 

restoring the impoverished hydrological system, combating desertification, and 

achieving a healthier, more productive and more diverse ecosystem. Efforts to reduce 

the loss of this cultural landscape might be directed towards limiting land use 

intensification and preserving traditional extensive systems of high cultural and 

productive values. The highlighted SLM options to achieve this are: (i) assist and 

promote cropping through vegetated earth-banked terraces practices; (ii) expand 

agroforestry systems. 

Integrated landscape approaches (i.e. frameworks that aim at managing 

environmental issues) should put into value the traditional knowledge on SLM of the 

peoples. A way of doing that is through the establishment of cross-sectoral platforms 

that enable collaboration. With the joint design and implementation of SLM practices 

between non-state actors and policy-makers (cross-sectoral collaboration), a raise in 

fairness in the decision-making process is ensured, the gap existing between the 

different actors is bridged, social awareness on climate change is boosted, and non-

state actors are empowered with knowledge and evidence-based arguments. 
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Table 6.1. Summary of this dissertation’s integrative-regional policy recommendations, 
main aims, synergies and challenges. 

 

Policy recomm Main aim – Synergies – Challenges 
Stop deforestation 
(Chapter 3) 

Increase available moisture necessary to induce topographic 
rainfall, protect and preserve biodiversity 
synergies 
− limit surface runoff, enhance groundwater flow, prevent soil 

erosion, and improve soil quality by deep rooting infiltration 
− decrease the impacts of weather events 
− help regulate the micro-climate 
− increase C capture and storage 
− integrate biodiversity and autochthonous species conservation 
− offer natural barriers to pest spreading 
challenges 
− higher competition for arable/urban land 
− reduced market products, i.e. timber 

Promote green cover 
in perennial 
woodlands 
(Chapter 4) 

Protect cropland soils from erosion 
synergies 
− limit surface runoff and improve soil quality 
− decrease the impacts of weather events 
− increase C capture and storage 
− increased health of productive plants 
− supported by local-level capacities and land user’s traditional 

knowledge 
challenges 
− potential water competition among vegetation 

Promote agro-forestal 
systems 
(Chapter 4)  

Foster traditional Mediterranean mosaic systems 
(multifunctional landscapes) 
synergies 
− limit surface runoff and improve soil quality 
− decrease the impacts of weather events 
− help regulate the micro-climate 
− increase C capture and storage 
− integrate biodiversity and autochthonous species conservation 
− fodder and shade to livestock 
− offer natural barriers to pest spreading 
− increase profitability through diversification of output 
− prevent perpetuating vulnerabilities within the Basin 
− improve human and environmental health 
− supported by local-level capacities and land user’s traditional 

knowledge  
challenges 
− initial substantial workload 
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− access to economic incentives 
− access to appropriate technologies/equipment 
− technical knowledge 

Promote reforestation 
(Chapter 4) 

Increase available moisture necessary to induce topographic 
rainfall 
synergies 
− limit surface runoff, enhance groundwater flow, prevent soil 

erosion, and improve soil quality by deep rooting infiltration 
− decrease of the impacts of weather events 
− help regulate the micro-climate 
− increase C capture and storage 
− integrate biodiversity and autochthonous species conservation 
− offer natural barriers to pest spreading 
− provide market products 
− strengthen benefits for human health 
challenges 
− potential decrease on streamflow 
− initial substantial workload 
− access to economic incentives 
− access to appropriate technologies/equipment 
− potential misconception of compensating for emitting 

Relate climate change 
to weather changes 
and 
Reorient values and 
behaviours towards 
climate action 
(Chapter 5) 

Promote climate action through SLM implementation 
synergies 
− boost social awareness on climate change 
− empower non-state actors with knowledge and evidence-based 

arguments 
challenges 
− jeopardize land users’ activities aimed at meeting immediate 

needs but endangering the environment 

Make use of existing 
cross-sectoral 
platforms that enable 
collaboration 
(Chapter 5) 

Bridge the gap existing between the different actors, i.e. land 
users and policy makers 
synergies 
− put into value the traditional knowledge on SLM of the peoples 
− raise in fairness in the decision-making process 
− access to transdisciplinary arenas for knowledge exchange 
− prevent perpetuating vulnerabilities within the Basin 
challenges 
− possible conflict of local interests 

Steer SLM efforts 
towards common 
Mediterranean goals 
(Chapter 5) 

Achieve more significant results in atmospheric available 
moisture, land quality and preservation of mosaic systems 
synergies 
− help regulate the meso- and micro-climate 
− decrease the frequency of weather events 
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− increase C capture and storage 
− integrate biodiversity and autochthonous species conservation 
− prevent perpetuating vulnerabilities within the Basin 
− contribute to multiple regional-to-international set goals 
− ensure regional objectives that go beyond the local scale of SLM 

implementation  
− steer up SLM associated opportunities 
challenges 
− jeopardize land users’ activities aimed at meeting immediate 

needs but endangering the environment  
− centralized action, top-down approach 

Main aim 
Synergies/Challenges related to adaptation to climate change 
Synergies/ Challenges related to mitigation to climate change 
Synergies/ Challenges related to biodiversity enhancement 
Synergies/ Challenges related to market products 
Synergies/ Challenges related to human health and knowledge 
Synergies/ Challenges related to institutions 

 

 

6.3 Further research 

The work enclosed in this dissertation can be extended into practical implementation 

through the launch of (a) study-case(s) in a watershed of the Mediterranean Basin. 

This potential study case would aim at increasing rural development while assisting 

the hydrological cycle and preserving the mosaic-like landscape. For this, possible 

portfolios of actions would be developed together with the participation of watershed 

stakeholders, from land-users to policy-makers. It should advocate for measures that 

go in the direction of implementing more participatory actions from the first involvement 

stage by combining information from local people, participatory assessments, field 

observation, and scientific findings. Completing such pilot could serve as a basis to 

scale up results basin-wide.  

From a theoretical point of view, this dissertation can be extended in several 

ways. Here, we detail three possible directions. 

First, the investigation on Land Use Change (LUC)−climate interaction in the 

Mediterranean Basin could greatly benefit from further site-based studies conducted 

on the coast of North Africa and the Ionian, Aegean, and Adriatic seas, for which little 

data exists nowadays. Moreover, if we are to engage in climate change adaptation and 

mitigation by looking into the past to inform anticipatory learning, it is essential to keep 
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unfolding the quantification of such interactions, for which large uncertainties exist 

nowadays. 

Second, in seeking to determine whether SLM adaptation strategies are effective, 

we need to develop a more quantifiable and yet flexible way of assessing their 

contribution to the different environmental indicators (e.g. CO2, freshwater quality and 

quantity). There are many efforts directed towards the quantification of SLM practices 

in assisting to SOC storage, yet none for quantifying how the canopy and vegetation 

assist to the hydrological cycle by limiting direct evaporation through 

evapotranspiration, i.e. increased infiltration, rise of atmospheric moisture for 

topographic rainfall. 

Third, high social perception of the climate challenges does not guarantee the 

effective implementation of mitigation and adaptation measures (e.g. SLM practices), 

although it critically determines their success. Studying how social perceptions are 

translated into actual action is a further research step. Many case-studies present 

farmer’s and land user’s perceptions of climate change and their adaptive strategies 

at the local level. However, there are no meta-studies on this issue for the 

Mediterranean Basin (such as van Valkengoed and Steg, 2019; Morren and Grinstein, 

2016), and there are neither studies that address the perception of institutional actors 

and decision-makers in the process of implementing SLM practices and other 

adaptation measures. 
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Annex 

Annex-A1. Results on the performance of each SLM practice for each of the four considered scenarios (i.e. from -3 to +3) 
 

(1) No filtering of practices and/or impacts  
All selected 104 practices and all resulting 55 ecological and off-site 
impacts are considered 

SLM 
practice 

Climate 
regul. 

Biodiversity 
[…] 

Soil 
quality 

Soil 
erosion 
[…] 

Water 
regul. 

1 0.33 N/A 0.20 0.83 0.50 
2 3.00 N/A 2.50 2.71 0.00 
3 1.20 1.50 1.00 1.00 1.50 
4 1.00 N/A 1.00 1.83 1.00 
5 N/A N/A 1.00 1.00 1.00 
6 0.75 1.80 2.00 2.50 1.50 
7 2.00 2.50 0.50 1.80 1.67 
8 1.33 1.00 3.00 2.00 0.67 
9 2.00 1.00 1.00 2.50 1.00 
10 1.80 3.00 3.00 3.00 1.00 
11 N/A N/A N/A 3.00 1.67 
12 2.00 1.25 2.00 0.75 0.50 
13 0.75 0.00 1.50 1.67 1.50 
14 1.00 N/A N/A 1.00 1.00 
15 2.50 2.33 2.00 2.00 0.67 
16 0.00 N/A N/A 1.00 N/A 
17 1.50 1.00 N/A -1.00 N/A 
18 1.00 N/A N/A 0.00 N/A 
19 1.00 0.00 0.00 0.00 0.13 
20 1.67 2.00 2.00 2.00 1.00 
21 1.60 1.67 1.00 0.67 1.50 

22 2.00 2.25 1.00 2.25 3.00 
23 2.00 2.00 2.00 2.50 2.00 
24 1.33 1.00 2.00 1.71 1.00 
25 0.75 N/A 1.00 0.00 0.00 
26 0.00 N/A 0.00 1.00 1.00 
27 0.00 N/A 0.67 1.00 0.25 
28 N/A -1.00 N/A 1.33 N/A 
29 1.67 1.50 2.00 2.00 1.67 
30 1.00 1.00 1.00 1.33 1.00 
31 2.00 N/A 2.00 2.40 0.50 
32 -0.33 2.00 -2.00 -1.40 -1.20 
33 3.00 1.50 0.67 0.57 0.00 
34 1.00 0.50 2.00 2.43 1.50 
35 1.20 0.00 0.00 0.50 0.00 
36 0.50 N/A 2.00 2.20 1.00 
37 N/A N/A N/A 3.00 1.00 
38 2.33 N/A N/A 2.00 N/A 
39 0.33 0.33 0.00 0.25 1.00 
40 2.00 N/A 2.00 1.00 N/A 
41 3.00 N/A N/A 2.00 N/A 
42 1.00 0.75 0.67 0.33 1.00 
43 N/A 1.00 N/A 1.00 N/A 
44 1.00 1.50 2.00 1.25 N/A 
45 0.00 -1.00 N/A 0.00 N/A 
46 N/A 2.50 1.00 N/A 0.00 
47 N/A N/A N/A N/A 2.33 
48 N/A N/A N/A 1.00 1.00 
49 1.00 N/A 3.00 0.00 0.80 
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50 3.00 N/A 2.50 2.50 2.00 
51 N/A N/A N/A N/A 0.00 
52 3.00 N/A 0.50 N/A 3.00 
53 N/A N/A N/A 2.50 2.00 
54 2.00 1.00 1.50 N/A 1.00 
55 3.00 N/A 2.50 2.00 2.00 
56 2.00 2.60 2.00 1.25 1.00 
57 2.00 N/A 3.00 0.00 2.25 
58 2.00 0.50 N/A 2.00 N/A 
59 1.33 1.33 1.00 1.67 0.40 
60 N/A 2.00 N/A 0.50 1.33 
61 0.00 N/A 0.00 2.00 1.83 
62 N/A N/A 2.00 3.00 2.00 
63 0.67 N/A 1.00 2.33 1.00 
64 1.00 1.50 1.00 3.00 2.00 
65 2.00 1.00 1.50 0.75 1.00 
66 N/A 2.00 2.50 2.25 2.00 
67 0.00 -1.00 -0.50 0.00 0.33 
68 2.00 N/A N/A 3.00 3.00 
69 2.00 1.50 N/A 1.75 N/A 
70 3.00 N/A 1.00 1.50 2.75 
71 2.00 N/A 2.00 1.67 0.40 
72 2.67 3.00 2.50 2.33 2.00 
73 2.00 N/A 2.00 1.00 1.40 
74 1.00 N/A 1.00 1.67 1.00 
75 N/A N/A N/A -2.00 2.50 
76 2.33 N/A 3.00 2.50 2.50 
77 2.00 N/A N/A 2.00 N/A 
78 2.00 2.33 2.00 1.75 N/A 
79 -1.00 -1.00 N/A 1.00 -1.00 

80 2.00 N/A 2.00 2.00 2.00 
81 2.00 N/A N/A N/A 1.67 
82 2.50 3.00 2.33 2.67 1.00 
83 N/A N/A N/A 3.00 1.75 
84 2.00 3.00 1.50 2.00 3.00 
85 2.00 N/A N/A 2.00 N/A 
86 N/A N/A N/A 1.00 1.00 
87 2.00 N/A N/A 3.00 N/A 
88 1.00 1.50 1.00 1.00 1.00 
89 2.00 3.00 2.00 3.00 2.50 
90 3.00 3.00 1.00 3.00 2.00 
91 N/A N/A N/A N/A N/A 
92 N/A 1.00 N/A 1.00 -1.00 
93 1.00 1.00 1.67 1.00 1.00 
94 2.00 2.25 3.00 2.75 2.33 
95 N/A N/A 0.50 2.00 1.00 
96 2.00 0.00 1.67 3.00 2.00 
97 1.50 1.00 N/A 2.00 2.00 
98 0.86 1.00 0.33 1.20 0.00 
99 1.00 N/A N/A N/A N/A 

100 1.80 2.00 1.25 2.40 1.40 
101 N/A N/A N/A N/A N/A 
102 1.00 N/A N/A 1.50 N/A 
103 0.75 0.25 1.33 1.00 0.00 
104 1.80 0.75 1.40 1.67 2.38 
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(2) No filtering of practices and filtering of impacts 
All the selected 104 practices are considered, while some 
ecological and off-site impacts are aggregated to avoid 
redundancies 

SLM 
practice 

Climate 
regul. 

Biodiversity 
[…] 

Soil 
quality 

Soil 
erosion 
[…] 

Water 
regul. 

1 0.33 N/A 0.20 0.83 0.50 
2 3.00 N/A 2.50 2.71 0.00 
3 1.20 1.50 1.00 1.00 1.50 
4 1.00 N/A 1.00 1.83 1.00 
5 N/A N/A 1.00 1.00 1.00 
6 0.75 1.80 2.00 2.50 1.50 
7 2.00 2.50 0.50 1.80 1.67 
8 1.33 1.00 3.00 2.00 0.67 
9 2.00 1.00 1.00 2.50 1.00 
10 2.00 3.00 3.00 3.00 1.00 
11 N/A N/A N/A 3.00 1.67 
12 2.00 1.25 2.00 0.75 0.50 
13 0.75 0.00 1.50 1.67 1.50 
14 1.00 N/A N/A 1.00 1.00 
15 2.50 2.33 2.00 2.00 0.67 
16 0.00 N/A N/A 1.00 N/A 
17 1.50 1.00 N/A -1.00 N/A 
18 1.00 N/A N/A 0.00 N/A 
19 1.00 0.00 0.00 0.00 0.13 
20 1.67 2.00 2.00 2.00 1.00 
21 1.50 1.67 1.00 0.67 1.50 
22 2.00 2.25 1.00 2.25 3.00 

23 N/A 2.00 2.00 2.50 2.00 
24 1.33 1.00 2.00 1.71 1.00 
25 0.75 N/A 1.00 0.00 0.00 
26 0.00 N/A 0.00 1.00 1.00 
27 0.00 N/A 0.67 1.00 0.25 
28 N/A -1.00 N/A 1.33 N/A 
29 1.67 1.50 2.00 2.00 1.67 
30 1.00 1.00 1.00 1.33 1.00 
31 2.00 N/A 2.00 2.40 0.50 
32 -0.33 2.00 -2.00 -1.40 -1.20 
33 3.00 1.50 0.67 0.57 0.00 
34 1.00 0.50 2.00 2.43 1.50 
35 0.75 0.00 0.00 0.56 0.00 
36 0.50 N/A 2.00 2.20 1.00 
37 N/A N/A N/A 3.00 1.00 
38 2.00 N/A N/A 2.00 N/A 
39 0.33 0.33 0.00 0.25 1.00 
40 2.00 N/A 2.00 2.00 N/A 
41 3.00 N/A N/A 2.00 N/A 
42 1.00 0.75 0.67 0.33 1.00 
43 N/A 1.00 N/A 1.00 N/A 
44 1.00 1.50 2.00 1.25 N/A 
45 0.00 -1.00 N/A 0.00 N/A 
46 N/A 2.50 1.00 N/A 0.00 
47 N/A N/A N/A N/A 2.33 
48 N/A N/A N/A 1.00 1.00 
49 1.00 N/A 3.00 0.00 0.80 
50 3.00 N/A 2.50 2.50 2.00 
51 N/A N/A N/A N/A 0.00 
52 3.00 N/A 2.00 N/A 3.00 
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53 N/A N/A N/A 2.50 2.00 
54 2.00 1.00 1.50 N/A 1.00 
55 3.00 N/A 2.50 2.00 2.00 
56 2.00 2.60 2.00 1.25 1.00 
57 2.00 N/A 3.00 0.00 2.25 
58 2.00 0.50 N/A 2.00 N/A 
59 1.33 1.33 1.00 1.67 0.40 
60 N/A 2.00 N/A 0.50 1.33 
61 0.00 N/A 0.00 2.00 1.83 
62 N/A N/A 2.00 3.00 2.00 
63 0.67 N/A 1.00 2.33 1.00 
64 1.00 1.50 1.00 3.00 2.00 
65 2.00 1.00 1.50 0.75 1.00 
66 N/A 2.00 2.00 2.25 2.00 
67 0.00 -1.00 -0.50 0.00 0.33 
68 2.00 N/A N/A 3.00 3.00 
69 2.00 1.50 N/A 1.75 N/A 
70 3.00 N/A 1.00 1.50 2.75 
71 2.00 N/A 2.00 1.67 1.00 
72 2.67 3.00 2.50 2.33 2.00 
73 2.00 N/A 2.00 1.00 1.40 
74 1.00 N/A 1.00 1.67 1.00 
75 N/A N/A N/A -2.00 2.50 
76 2.33 N/A N/A 2.50 2.67 
77 2.00 N/A N/A 2.00 N/A 
78 2.00 2.33 2.00 1.67 N/A 
79 -1.00 -1.00 N/A -1.00 -1.00 
80 2.00 N/A 2.00 2.00 2.00 
81 N/A N/A N/A N/A 1.67 
82 2.00 3.00 2.33 2.50 1.00 

83 N/A N/A N/A 3.00 1.75 
84 2.00 3.00 1.50 2.00 3.00 
85 2.00 N/A N/A 2.00 N/A 
86 N/A N/A N/A 1.00 1.00 
87 2.00 N/A N/A 3.00 N/A 
88 1.00 1.50 1.00 1.00 1.00 
89 2.00 3.00 2.00 3.00 2.50 
90 3.00 3.00 1.00 3.00 2.00 
91 N/A N/A N/A N/A N/A 
92 N/A 1.00 N/A 1.00 -1.00 
93 1.00 1.00 1.67 1.00 1.00 
94 2.00 2.25 3.00 2.75 2.33 
95 N/A N/A 0.50 2.00 1.00 
96 2.00 0.00 1.00 3.00 2.00 
97 1.00 1.00 N/A 2.00 2.00 
98 0.75 1.00 0.33 1.03 0.00 
99 N/A N/A N/A N/A N/A 

100 1.67 2.00 1.25 2.34 1.40 
101 N/A N/A N/A N/A N/A 
102 N/A N/A N/A 1.50 N/A 
103 0.75 0.25 1.33 1.00 0.00 
104 1.80 0.75 1.40 1.67 2.38 

 
List of aggregated impacts. In bold the renewed assessed 
impacts, in black the ecological impacts, and in grey the off-site 
impacts. N refers to the number of practices that have assessed 
each impact. Note that we have not combined on-site with off-
site impacts. 
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Impact of extreme weather event (total n=12)   
Hazards towards adverse events (n=4)    
Flood impact  (n=5)     
Drought impact (n=6)     
Impacts of cyclons/rain storms (n=2)     
Soil loss/erosion (total n=70)     
Soil loss (n=69)      
Soil erosion (n=1)      
Wind erosion  (n=1)     
Downstream flow (total n=17)     
Reliable and stable stream flow in the dry season (n=16) 
Runoff (n=1)      
Surface water to reach downstream (n=1)   
Soil cover (total n=54)     
Soil cover (n=52)      
Vegentation cover (n=8)     
Animal diversity 
(total n=27)         
Animal diversity (n=26)     
Soil livings (n=1)         
Peast/disease control (total n=27)    
Peast/disease control (n=25)     
Invasive alien species(n=2)       

The obtained filtered impacts are: Landslides/debris flows; Acidity; 
Soil surface temperature; Risk of overgrazing in the woodland; 
Waste; Risk of contamination of aquifers; Soil fertility; Soil 

accumulation; Micro-climate; Impact of extreme weather event; 
Impact of GHG; Natural seed multiply and supply. 
 

(3) Filtering of practices and no filtering of impacts 
All original ecological and off-site- impacts are considered. 
Instead, those practices that do not assist with a >1,25 to any of 
the five ecological variables are filtered. 

SLM 
practice 

Climate 
regul. 

Biodiversity 
[…] 

Soil 
quality 

Soil 
erosion 
[…] 

Water 
regul. 

2 3.00 N/A 2.50 2.71 0.00 
3 1.20 1.50 1.00 1.00 1.50 
4 1.00 N/A 1.00 1.83 1.00 
6 0.75 1.80 2.00 2.50 1.50 
7 2.00 2.50 0.50 1.80 1.67 
8 1.33 1.00 3.00 2.00 0.67 
9 2.00 1.00 1.00 2.50 1.00 
10 1.80 3.00 3.00 3.00 1.00 
11 N/A N/A N/A 3.00 1.67 
12 2.00 1.25 2.00 0.75 0.50 
13 0.75 0.00 1.50 1.67 1.50 
15 2.50 2.33 2.00 2.00 0.67 
17 1.50 1.00 N/A -1.00 N/A 
20 1.67 2.00 2.00 2.00 1.00 
21 1.60 1.67 1.00 0.67 1.50 
22 2.00 2.25 1.00 2.25 3.00 
23 2.00 2.00 2.00 2.50 2.00 
24 1.33 1.00 2.00 1.71 1.00 
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28 N/A -1.00 N/A 1.33 N/A 
29 1.67 1.50 2.00 2.00 1.67 
30 1.00 1.00 1.00 1.33 1.00 
31 2.00 N/A 2.00 2.40 0.50 
32 -0.33 2.00 -2.00 -1.40 -1.20 
33 3.00 1.50 0.67 0.57 0.00 
34 1.00 0.50 2.00 2.43 1.50 
36 0.50 N/A 2.00 2.20 1.00 
37 N/A N/A N/A 3.00 1.00 
38 2.33 N/A N/A 2.00 N/A 
40 2.00 N/A 2.00 1.00 N/A 
41 3.00 N/A N/A 2.00 N/A 
44 1.00 1.50 2.00 1.25 N/A 
46 N/A 2.50 1.00 N/A 0.00 
47 N/A N/A N/A N/A 2.33 
49 1.00 N/A 3.00 0.00 0.80 
50 3.00 N/A 2.50 2.50 2.00 
52 3.00 N/A 0.50 N/A 3.00 
53 N/A N/A N/A 2.50 2.00 
54 2.00 1.00 1.50 N/A 1.00 
55 3.00 N/A 2.50 2.00 2.00 
56 2.00 2.60 2.00 1.25 1.00 
57 2.00 N/A 3.00 0.00 2.25 
58 2.00 0.50 N/A 2.00 N/A 
59 1.33 1.33 1.00 1.67 0.40 
60 N/A 2.00 N/A 0.50 1.33 
61 0.00 N/A 0.00 2.00 1.83 
62 N/A N/A 2.00 3.00 2.00 
63 0.67 N/A 1.00 2.33 1.00 
64 1.00 1.50 1.00 3.00 2.00 

65 2.00 1.00 1.50 0.75 1.00 
66 N/A 2.00 2.50 2.25 2.00 
68 2.00 N/A N/A 3.00 3.00 
69 2.00 1.50 N/A 1.75 N/A 
70 3.00 N/A 1.00 1.50 2.75 
71 2.00 N/A 2.00 1.67 0.40 
72 2.67 3.00 2.50 2.33 2.00 
73 2.00 N/A 2.00 1.00 1.40 
74 1.00 N/A 1.00 1.67 1.00 
75 N/A N/A N/A -2.00 2.50 
76 2.33 N/A 3.00 2.50 2.50 
77 2.00 N/A N/A 2.00 N/A 
78 2.00 2.33 2.00 1.75 N/A 
80 2.00 N/A 2.00 2.00 2.00 
81 2.00 N/A N/A N/A 1.67 
82 2.50 3.00 2.33 2.67 1.00 
83 N/A N/A N/A 3.00 1.75 
84 2.00 3.00 1.50 2.00 3.00 
85 2.00 N/A N/A 2.00 N/A 
87 2.00 N/A N/A 3.00 N/A 
88 1.00 1.50 1.00 1.00 1.00 
89 2.00 3.00 2.00 3.00 2.50 
90 3.00 3.00 1.00 3.00 2.00 
93 1.00 1.00 1.67 1.00 1.00 
94 2.00 2.25 3.00 2.75 2.33 
95 N/A N/A 0.50 2.00 1.00 
96 2.00 0.00 1.67 3.00 2.00 
97 1.50 1.00 N/A 2.00 2.00 

100 1.80 2.00 1.25 2.40 1.40 
102 1.00 N/A N/A 1.50 N/A 
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103 0.75 0.25 1.33 1.00 0.00 
104 1.80 0.75 1.40 1.67 2.38 

       

The obtained filtered practices are: 1, 5, 14, 16, 18, 19, 25, 26, 
27, 35, 39, 42, 43, 45, 48, 51, 67, 79, 86, 91, 92, 98, 99, 101 

(4) Filtering of practices and of impacts 

This scenario takes into account both the reduction in number of practices and the 
aggregation and filtering of the ecological and off-site- impacts. N refers to the number 
of observations in relation with the total possible for each variable 
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2 3.00 2 N/A 0 2.50 2 2.71 7 0.00 3 2.05 14 
3 1.20 5 1.50 2 1.00 3 1.00 2 1.50 2 1.24 14 
4 1.00 2 N/A 0 1.00 3 1.83 6 1.00 2 1.21 13 
6 0.75 4 1.80 5 2.00 3 2.50 4 1.50 4 1.71 20 
7 2.00 4 2.50 4 0.50 4 1.80 5 1.67 3 1.69 20 
8 1.33 3 1.00 4 3.00 1 2.00 6 0.67 3 1.60 17 
9 2.00 2 1.00 1 1.00 2 2.50 4 1.00 1 1.50 10 

10 2.00 2 3.00 2 3.00 2 3.00 2 1.00 1 2.40 9 
11 N/A 0 N/A 0 N/A 0 3.00 2 1.67 3 2.33 5 
12 2.00 2 1.25 4 2.00 1 0.75 4 0.50 2 1.30 13 
13 0.75 4 0.00 3 1.50 2 1.67 6 1.50 4 1.08 19 
15 2.50 2 2.33 3 2.00 3 2.00 1 0.67 3 1.90 12 
17 1.50 2 1.00 1 N/A 0 -1.00 1 N/A 0 0.50 4 
20 1.67 3 2.00 3 2.00 1 2.00 3 1.00 3 1.73 13 
21 1.50 4 1.67 3 1.00 2 0.67 3 1.50 2 1.27 14 
22 2.00 2 2.25 4 1.00 3 2.25 4 3.00 1 2.10 14 
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23 N/A 0 2.00 2 2.00 2 2.50 2 2.00 1 2.13 7 
24 1.33 3 1.00 2 2.00 2 1.71 7 1.00 4 1.41 18 
28 N/A 0 -1.00 1 N/A 0 1.33 3 N/A 0 0.17 4 
29 1.67 3 1.50 4 2.00 1 2.00 3 1.67 3 1.77 14 
30 1.00 2 1.00 1 1.00 2 1.33 3 1.00 4 1.07 12 
31 2.00 1 N/A 0 2.00 1 2.40 5 0.50 4 1.73 11 
32 -0.33 3 2.00 1 -2.00 3 -1.40 6 -1.20 5 -0.59 18 
33 3.00 1 1.50 4 0.67 3 0.57 7 0.00 3 1.15 18 
34 1.00 2 0.50 2 2.00 1 2.43 7 1.50 6 1.49 18 
36 0.50 2 N/A 0 2.00 2 2.20 5 1.00 2 1.43 11 
37 N/A 0 N/A 0 N/A 0 3.00 2 1.00 1 2.00 3 
38 2.00 2 N/A 0 N/A 0 2.00 2 N/A 0 2.00 4 
40 2.00 2 N/A 0 2.00 1 2.00 3 N/A 0 2.00 6 
41 3.00 1 N/A 0 N/A 0 2.00 2 N/A 0 2.50 3 
44 1.00 1 1.50 2 2.00 1 1.25 4 N/A 0 1.44 8 
46 N/A 0 2.50 2 1.00 1 N/A 0 0.00 1 1.17 4 
47 N/A 0 N/A 0 N/A 0 N/A 0 2.33 3 2.33 3 
49 1.00 1 N/A 0 3.00 2 0.00 1 0.80 5 1.20 9 
50 3.00 1 N/A 0 2.50 2 2.50 2 2.00 3 2.50 8 
52 3.00 1 N/A 0 2.00 1 N/A 0 3.00 2 2.67 4 
53 N/A 0 N/A 0 N/A 0 2.50 2 2.00 2 2.25 4 
54 2.00 2 1.00 1 1.50 2 N/A 0 1.00 1 1.38 6 
55 3.00 1 N/A 0 2.50 2 2.00 2 2.00 3 2.38 8 
56 2.00 2 2.60 5 2.00 1 1.25 4 1.00 1 1.77 13 
57 2.00 1 N/A 0 3.00 1 0.00 2 2.25 4 1.81 8 
58 2.00 3 0.50 2 N/A 0 2.00 5 N/A 0 1.50 10 
59 1.33 3 1.33 3 1.00 4 1.67 6 0.40 5 1.15 21 
60 N/A 0 2.00 1 N/A 0 0.50 4 1.33 3 1.28 8 
61 0.00 1 N/A 0 0.00 2 2.00 1 1.83 6 0.96 10 
62 N/A 0 N/A 0 2.00 1 3.00 1 2.00 1 2.33 3 
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63 0.67 3 N/A 0 1.00 1 2.33 3 1.00 4 1.25 11 
64 1.00 1 1.50 4 1.00 2 3.00 2 2.00 1 1.70 10 
65 2.00 1 1.00 3 1.50 2 0.75 4 1.00 2 1.25 12 
66 N/A 0 2.00 3 2.00 1 2.25 4 2.00 1 2.06 9 
68 2.00 1 N/A 0 N/A 0 3.00 1 3.00 1 2.67 3 
69 2.00 3 1.50 2 N/A 0 1.75 4 N/A 0 1.75 9 
70 3.00 1 N/A 0 1.00 1 1.50 2 2.75 4 2.06 8 
71 2.00 1 N/A 0 2.00 1 1.67 3 1.00 4 1.67 9 
72 2.67 3 3.00 1 2.50 2 2.33 6 2.00 4 2.50 16 
73 2.00 1 N/A 0 2.00 1 1.00 1 1.40 5 1.60 8 
74 1.00 1 N/A 0 1.00 1 1.67 3 1.00 5 1.17 10 
75 N/A 0 N/A 0 N/A 0 -2.00 3 2.50 2 0.25 5 
76 2.33 3 N/A 0 N/A 0 2.50 2 2.67 3 2.50 8 
77 2.00 2 N/A 0 N/A 0 2.00 3 N/A 0 2.00 5 
78 2.00 2 2.33 3 2.00 2 1.67 3 N/A 0 2.00 10 
80 2.00 1 N/A 0 2.00 2 2.00 1 2.00 1 2.00 5 
81 N/A 0 N/A 0 N/A 0 N/A 0 1.67 3 1.67 3 
82 2.00 2 3.00 3 2.33 3 2.50 4 1.00 6 2.17 18 
83 N/A 0 N/A 0 N/A 0 3.00 1 1.75 4 2.38 5 
84 2.00 1 3.00 1 1.50 2 2.00 2 3.00 1 2.30 7 
85 2.00 2 N/A 0 N/A 0 2.00 2 N/A 0 2.00 4 
87 2.00 1 N/A 0 N/A 0 3.00 1 N/A 0 2.50 2 
88 1.00 3 1.50 4 1.00 1 1.00 5 1.00 3 1.10 16 
89 2.00 2 3.00 1 2.00 2 3.00 5 2.50 2 2.50 12 
90 3.00 1 3.00 1 1.00 2 3.00 1 2.00 1 2.40 6 
93 1.00 3 1.00 5 1.67 3 1.00 5 1.00 5 1.13 21 
94 2.00 2 2.25 4 3.00 1 2.75 4 2.33 5 2.47 16 
95 N/A 0 N/A 0 0.50 2 2.00 2 1.00 2 1.17 6 
96 2.00 2 0.00 1 1.00 2 3.00 3 2.00 1 1.60 9 
97 1.00 3 1.00 3 N/A 0 2.00 3 2.00 2 1.50 11 
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100 1.67 3 2.00 2 1.25 4 2.34 9 1.40 5 1.73 23 
102 N/A 0 N/A 0 N/A 0 1.50 2 N/A 0 1.50 2 
103 0.75 4 0.25 4 1.33 3 1.00 7 0.00 7 0.67 25 
104 1.80 5 0.75 4 1.40 5 1.67 9 2.38 8 1.60 31 

 

Annex-A2. Map for each of the 25 practices, in where it is highlighted all regions within the basin that meet the baseline conditions in where 

each practice has been previously implemented 
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85,93,1 

42,86,3 

43,86,11 

102,51,1 

102,87,2 

102,86,2 

102,81,1 

102,33,2 

103,51,1 

103,87,1 

103,86,1 

103,81,1 

103,33,2 

101,86,1 

101,87,1 

42,81,1 

111,86,1 

112,86,1 

114,86,1 

115,86,1 

111,33,2 

112,33,2 

114,33,2 

115,33,2 

111,51,1 

112,51,1 

114,51,1 

115,51,1 

94,33,2 

94,84,1 

94,87,1 

94,71,1 

71,101,1 

85,84,1 

85,86,1 

85,81,1 
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86,85,1 

102,31,1 

123,72,1 

123,102,1 

125,93,1 

94,93,1 

125,41,3 

125,42,3 

125,43,3 

125,44,3 

125,45,3 

125,85,1 

91,43,1 

91,44,1 

91,45,1 

33,81,1 

87,81,1 

Neutral 

71,51,1 

71,93,1 

72,51,1 

72,93,1 

125,87,1 

125,93,1 

71,41,1 

71,42,1 

71,43,1 

71,44,1 

71,45,1 

72,41,1 

72,42,1 

72,43,1 

72,44,1 

72,45,1 

125,86,1 

125,42,1 

125,41,1 

125,87,1 

125,81,1 

125,84,1 

41,93,1 

42,93,2 

7193,1 

81,93,1 

86,93,1 

87,93,2 
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ID rename 

Driver Class 
Driver raw id paper id 

Education and awareness of scientific 
work 
Consumption of scientific articles 31 1 
Direct dealing with scientists 32 2 
Awareness of scientific climate consensus 33 3 
Self-perceived knowledge on CC 71 4 
CC science literacy 72 5 

Media exposure 
Media access 101 6 
Volume of CC coverage 102 7 
Popular media reports 103 8 
Transdisciplinary communication 104 9 
Online platforms 21 10 

Influence of corporations 
Conservative public relations firms 111 11 
Conservative elite cues 112 12 
Conservative think tanks 114 13 
Energy and oil sectors 115 14 

Ethnography 
Emotional concern about CC 81 15 

Trust 84 16 
Collectivistic culture 85 17 
Socio-altruistic values 86 18 
Belief in anthropogenic CC 87 19 
Religiosity 61 20 
Liberalism supporter 51 21 

Wealth 
Prosperity 91 22 
Willingness to pay for CC polices 93 23 
Free-market support 94 24 

Personal experience and perception 
Extreme weather events 41 25 
Changed weather 42 26 
Loss of agricultural activity 43 27 
Threatened cultures and ecosystems 44 28 
Health impact 45 29 

Demographics 
Non-white fraction 121 30 
Young fraction 122 31 
Female fraction 123 32 
Urban community/developed nation 125 33 




