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Abstract

In this work we study the electronic structure of Ag,AuSe, and Ag,AuTe,, two chiral insulators whose
gap can be tuned through small changes in the lattice parameter by applying hydrostatic pressure or
choosing different growth protocols. Based on first principles calculations we compute their band
structure for different values of the lattice parameters and show that while Ag,AuSe; retains its direct
narrow gap at the I" point, Ag,AuTe, can turn into a metal. Focusing on Ag,AuSe, we derive alow
energy model around I using group theory, which we use to calculate the optical conductivity for
different values of the lattice constant. We discuss our results in the context of detection of light dark
matter particles, which have masses of the order of a keV, and conclude that Ag,AuSe, satisfies three
important requirements for a suitable detector: small Fermi velocities, meV band gap, and low photon
screening. Our work motivates the growth of high-quality and large samples of Ag;AuSe, to be used as
target materials in dark matter detectors.

1. Introduction

Narrow gap semiconductors belong to a particular branch of the semiconductor family, those with a narrow
forbidden energy window, the gap, between valence and conduction bands. They were first applied as infrared
detectors, with Hg, _ Cd, Te[1] as arepresentative example, due to its largely tunable band gap around infrared
frequencies.

A particularly recent and promising application of narrow gap semiconductors is the direct detection of light
dark matter particles [2—4], an approach that complements those based on superconductors [5-7] and phonons
in polar materials [8]. GaAs and sapphire are two extensively studied examples of the above [9]. These proposals
are tailored to detect dark matter particles with keV masses, which requires materials with gaps in the meV range
[3] to match the expected energy deposition. To increase their sensitivity, narrow gap semiconductors must
satisfy additional requirements, such as small Fermi velocities compared to the maximum dark matter velocities,
or practical viability in terms of cost and purity [2, 4]. They should also have a clean band structure around the
Fermi level, ideally having a localized narrow gap with a much bigger gap along the rest of the Brillouin zone.

In this context, it is possible to achieve a highly tunable gap by changing the lattice parameter, either by
applying hydrostatic pressure or by changing the method used to grow the crystal. This has the effect of bringing
theions closer (or farther) from each other, translating into small changes in the band structure. With ab initio
techniques, it is possible to predict the effect of small changes of the lattice parameter in the bands, in particular
the magnitude of the gap.

©2019 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Crystalline structure (a) and Brillouin zone [23, 24] (b) of Ag,AuSe;. (b) reproduced from [24] with permission of the
International Union of Crystallography.

Fischesserite (Ag;AuSe;) and petzite (Ag;AuTe;) are both naturally occurring (and easily grown) minerals
[10—12] that have been studied, both theoretically and experimentally [13—16]. They both have a narrow, direct
gap, centered at I', which makes them optically active. They have been previously found to have important
mechanical applications, as well as interesting thermoelectric properties (large room-temperature Seebeck
coefficient), and are also known to possess large magnetoresistance [14, 17]. In this work we study the effect that
small changes in the lattice parameter have on the properties of Ag,AuSe; and Ag,AuTe,, to find that their gap is
highly tunable through hydrostatic pressure.

We perform a theoretical analysis of the band structure for both compounds, which share spectral
properties, and we focus on Ag;AuSe; to calculate its optical conductivity using an effective model for the bands
near the Fermi level. We conclude by discussing the suitability of this material to detect light dark matter
particles.

2. Analysis based on density functional theory

Ag,AuSe; and Ag,AuTe, crystallize in the Sohncke space group I4,32 (space group 214, see figure 1), and are
predicted to hold high order topologically protected nodal points in their band structure [18]. In the absence of
external pressure, both have been diagnosed as trivial insulators in recent works [19-21]. Space group I4,32(214)
is a chiral non-symmorphic space group; it is not centro-symmetric or mirror-symmetric and some of the
symmetry operations contain non-integer translations [22].

We have used density functional theory [25, 26] as implemented in the Vienna Ab initio simulation package
[27, 28] to perform band structure calculations. To account for the interaction between ion cores and valence
electrons we used the projector augmented-wave method [29]. We use the generalized gradient approximation for
the exchange-correlation potential with the Perdew—Burke—Ernkzerhof functional for solids parameterization [30]
and consider the spin—orbit coupling (SOC) interaction as implemented within the second variation method [31].
Although ithas a small effect in the width of the gap, SOC is important to extract the effective values of the Fermi
velocities. We have used a Monkhorst—Packk-point grid of (7 x 7 x 7) for reciprocal space integration and a
500 eV energy cutoff of the plane-wave expansion.

We have computed the band structures for both compounds, Ag;AuSe; and Ag,AuTe,, for different values
of the lattice parameters along high-symmetry points of the Brillouin zone. Figure 2 shows that the gap of
Ag.AuSe; increases from 13.8 to 60 meV for a compression of 2%, and reaches 200 meV for a compression of
4% at I', keeping it as a global direct gap. This implies that the interband optical conductivity and the suitability
as a dark matter detector, both relaying on the interband transitions across the gap [2], will be determined by the
bands in the neighborhood of the I point for a wide range of frequencies. The Te-based compound on the other
hand is a semiconductor with small indirect gap originally, and the change in the lattice parameter transforms it
into a metal. Therefore, among these two, Ag,AuSe; is the most promising for detector applications, due to its
small tunable direct band gap at I'. In the next section we construct an effective model around this high-
symmetry point to further analyze its optical conductivity and potential as a dark matter detector.

3. Effective model

In this section we use group theory to construct the most general low energy Hamiltonian allowed by symmetry
for the four last valence and first two conduction bands. We also allow terms that couple the valence and
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Figure 2. Band structures of Ag;AuSe, and Ag;AuTe; for different choices of the parameters. By reducing the lattice parameter the
gap widens for the Se compound while not changing the overall band dispersion. The Te compound, however, becomes metallic.

conduction band sub-spaces, resulting in a six-band model. To determine the free parameters of the effective
Hamiltonian we fit its spectrum to the ab initio bands found in the previous section for different values of the
lattice constant.

3.1. How to build effective models
In general, an effective Hamiltonian, which will describe the crossing of n bands, can be written as

H®=wm@m:iww%®=z@MWw 6)

i,] a

where W; are the Bloch states of the Hamiltonian and (I*U)? are the bilinears, that can be written as
(W) = AL, @

where a € {0, 1, 2,...,n*}labels the bilinear and \“ are complex Hermitian matrices that form a basis under
which the Hamiltonian can be expanded.

In the following we will develop the low energy Hamiltonian for Ag,AuSe,. Different values of the model
parameters correspond to different values of the lattice constant by which we take into account different values
of the hydrostatic pressure. To compute the optical conductivity and assess the absorption of the material due to
transitions across the gap we aim to construct the lowest order model that describes optical transitions across the
minimal gap, which occurs at the I" point. We focus on the first four valence bands below the Fermi level,
forming a four-dimensional energy crossing topologically protected by symmetry (fourfold fermion), and the
first two conduction bands above the Fermi level, described by a two-dimensional crossing also topologically
protected by symmetry (twofold fermion) [13], as shown in the inset of figure 3.

To construct Hamiltonians invariant under the point group operations, we need to find combinations of
bilinears and powers of momentum that transform under the trivial representation of the little group at I', which
is isomorphic to the Point Group O (432). Powers of crystal momentum will transform under symmetry
operations as a representation p. In particular, for this group the representation under which momentum
transforms reads
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Figure 3. Band structure of Ag,AuSe, with lattice parameter 2% smaller than the original. Inset: the narrow gap at I" lies between a
twofold fermion (Weyl fermion) and a fourfold-fermion. The interband transition across the gap is the relevant to our optical
conductivity, and is shown schematically with a vertical arrow. Each horizontal tick corresponds to 10 meV.

p(k) = Tiky, kyy k) © Ai(KP) © Ta(kykz, koky keky) + O, 3

where T}, A| and T, are irreducible representations of the Point Group O. Given the representation expansion of
the momentum in equation (3), we can form invariants from the combination of bilinears that transform under
those same representations. The twofold band crossing is composed of two quadratic bands, and thus we
consider second order terms in the momentum. For the fourfold band crossing and the coupling terms between
the fourfold and twofold sub-spaces linear order in k will suffice. This will give us the lowest possible order
Hamiltonian that contributes to the optical conductivity.

3.2. Effective Hamiltonian for conduction bands
In this case we need to find bilinears that transform under T}, A, and T,. In the basis of Pauli matrices, the
bilinears transform as

p(o,) = Ai(oo) © Ti(0). (€]

The absence of T, in the expansion implies that there is no symmetry-allowed term that can go with T,(k,k, kk,,
kyk,). Thus, the effective Hamiltonian reads

alkP + vek, vp(ke — ik))

Hypana = Oé|’_<'|20'o + VFF - g . N s
ve(ky + iky))  alk]* — vek,

)

where v and vgare the coefficients that will be fitted to our ab initio results.

3.3. Effective hamiltonian for valence bands

For the fourfold band crossing a basis of 4 x 4 Hermitian matrices is required. Since there are only two sets of
matrices that transform under the T representation ():; and )\, ), there are only two linear terms in momentum
allowed in the Hamiltonian

e -
Hupana = vk - M + vk - X

k,vi (ky — ik,)vp (e "1k, + e 12k, ) v} e Tk, vE

_ (ke + iky)v}‘; —k,vp e%kzvf ek, + e%ky)vﬁ ©
(e, + eik,)vE e Tk v} —k v (ky — iko)vp .
ek, v} (e Bk, + e*%ky)vﬁ (iky + k),)vll; k,vi

3.4. Coupling Hamiltonian

So far we have computed the effective Hamiltonians for the twofold band and fourfold band crossings. Since
these two Hilbert subspaces are orthogonal to each other, the matrix elements of the interband current operator,
relevant to compute the optical conductivity, will vanish. To describe transitions accross the gap that connect the
fourfold and twofold bands we have to add symmetry-allowed terms that mix these two subspaces. There is only
one allowed term at first order in momentum, which reads
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Table 1. Fitted values for different choices
of lattice parameter compression. The
units are expressed in terms of

/i=c¢ = 1withk inunits of27/a,
wherea = p ay, a, is the unperturbed
lattice constant and p = 0.99,0.98,0.97
for 1%, 2%, 3% hydrostatic pressure,

respectively.
1% 2% 3%
vh 0.164 0.141 0.105
vE 0.228 0.211 0.178
Vg 0.390 0.398 0.371
a 55.637 50.891 44.694
o 0.370 0.587 0.690
A 0.009 0.030 0.056
—ks ik, + e ok, —eitk, — eiik, ek,
HCP =0 i Sir . in . Sit . 7im, | ™)
esk, —e ok, ky —iedk, ienk, — ek,
3.5. Low energy Hamiltonian and parameters
Combining the above results the full effective Hamiltonian reads
- Hypana + Al2><2 Hcp
Hg, Hypand — Alyxy

where we have added the parameter A that sets the gap between the twofold and fourfold crossings to be 2A. We
obtained the values of the parameters in the Hamiltonian equation (8) by fitting ab initio bands for three different
choices of lattice parameters. Labelling the unperturbed lattice parameter as a, [32], we define the lattice
parameter under pressure asa = pa, for p = 0.99, 0,98, 0.97, which amounts to compressions by 1%, 2%, and
3%, respectively. We display the fitted values in table 1, and the corresponding bands are plotted in figure 4 (a)
and (b) for 1% compression, and figures 5(a) and (b) for 2% and 3% compression, respectively.

4. Optical conductivity

In this section we compute and discuss the interband optical conductivity of the six-band k - p Hamiltonian
describing the band structure of AgsAuSe;, near the I point for three different hydrostatic pressures: 1%, 2%,
and 3% compression of the lattice parameter. In all three cases, the band structure exhibits a fourfold node below
the Fermilevel and a Weyl node above it, separated by a gap whose size will depend on the pressure.
The interband contribution to the conductivity tensor o/, where i, v = x, y, z, can be calculated using
standard linear response theory as the real part of [33]
i (nlj,|m) (mlj,In)

o (W) = —
() wV € — €m + S + 16

m=n

(n(€n) — np(€m))s ©

where j, = %ak“H is the current operator defined by the Hamiltonian, eis the charge of the electron, V'is the
volume, |n) and E,, are an eigenstate and the corresponding eigenvalue of the Hamiltonian, respectively, ¢ is an
infinitesimal broadening; ¢, = E,, — u, where y is the chemical potential and nis the Fermi function, which
depends on €, 1, and the inverse temperature § = 1/kgT in units of the Boltzmann constant k.

4.1. Optical conductivity and relevant transitions for a given lattice parameter

As discussed in the previous section, for the three values of compression 1%, 2%, and 3%, the bands are
separated into a set of four bands, which we refer to as valence bands, that define the fourfold fermion below the
chemical potential, and a set of two bands, which we refer to as the conduction bands, that define the Weyl
fermion above the chemical potential. Note that while in in the full ab initio bands there exists a full gap between
the two sets of bands (see e.g. figure 3), in the low energy model the gap is not fully open.

To understand the relevant optical transitions and their contribution to the optical conductivity we first fix
the lattice constant to a compression of 1% by choosing the corresponding set of parameters (see table 1). The
band structure of the resulting k - p Hamiltonian is shown in figures 4(a) and (b) with two different scales for
better readability, together with the relevant activation frequencies. The energies involved in the transitions
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Figure 4. Optical conductivity of the low energy k - p model of AgsAuSe, under 1% hydrostatic pressure. (a) and (b) show the same
band structure within two different energy windows, together with the relevant frequencies for optical transitions (colored vertical
arrows) and the chemical potential (blue horizontal line). The bands are labelled with numbers from 1 to 6 from bottom (orange band)
to top (pink band). Figures (c) and (d) show the optical conductivity corresponding to valence to conduction band transitions (c) and
interband transitions between the valence bands (d), with 3 = 1/kgT = 2 x 10°.

between the fourfold fermion and the Weyl fermion are smaller than in the other two cases, which allows us to
study the behavior of the optical conductivity with all possible activation frequencies in a smaller energy range.

The transitions between the six bands can be divided in two groups: the ones that only concern transitions
between the valence bands, with activation frequencies w; with i € [3, 8], and those corresponding to transitions
connecting the valence and the conduction bands, with activation frequencies w; with i = 1,2 andi € [9, 12].
Since in the real material the transitions between the fourfold valence bands will be Pauli blocked, we separate
them from those connecting the valence and conduction bands, which are the only ones allowed in the real
material. This justifies our choice of chemical potential: it is close to the Weyl node, shifting the activation
frequencies between bands of the fourfold to higher frequencies.

In figures 4(c) and (d) we show the optical conductivity associated to both types of transitions, with the
characteristic frequencies represented by vertical lines matching the colors in figures 4(a) and (b). The valence to
conduction transitions are shown in figure 4(c) which shows a characteristic maximum that falls off as the
frequency is increased. On the other hand, figure 4(d) shows the transitions between valence bands, which
display alinear behavior o o< w characteristic of an asymmetric fourfold fermion [34]. In both cases, the changes
in the optical conductivity match well the activation frequencies expected from the band structure in figures 4(a)
and (b).

The optical conductivity of the six-band k - p Hamiltonian applies strictly to a narrow region in
momentum-energy space yet figure 4 is enlightening to understand what to expect from the optical conductivity
of the real Ag;AuSe, and, in the next section, its usefulness to detect light dark matter.

4.2. Optical conductivity for different lattice parameters

Asweincrease the pressure to 2% (figure 5(a)) and 3% (figure 5(b)) the gap becomes larger, and the parameters
describing both the fourfold and the Weyl fermion are modified (see table 1). The Fermi velocity of the bands for
each case, an important parameter for light dark matter detection [2], as well as the off-diagonal matrix elements
connecting the fourfold and the Weyl fermions, change. Upon doing so, they modify the energy scales involved
in the optical transitions, thus shifting the activation frequencies from valence to conduction interband
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Figure 5. Optical conductivity of the low energy k - p model of AgsAuSe, under different hydrostatic pressures (1%-3%). (a) and (b)
show the band structures for 2% and 3%, respectively, with the same color coding as the bands for the 1% case in figure 4. (¢) and (d)
show the contribution to the optical conductivity arising from interband transitions between valence and conduction bands (c) and
between valence bands (d), with 3 = 1/kzT = 2 x 10°.

transitions to higher energies with higher separation between them. This results in a slower change of slope in
the optical conductivity and, as the pressure increases, the optical conductivity arising from valence to
conduction interband transitions is closer to alinear behavior o o w, as shown in figure 5(c).

Since we have placed the chemical potential close to the Weyl node, the activation frequencies of the
interband transitions between the valence bands are shifted as the pressure increases proportionally to the
chemical potential. This translates into larger regions where the optical conductivity behaves linearly due to the
increased separation between activation frequencies (see figure 5(d)).

5. Feasibility for light dark matter detection

For a material with a linear dispersion to be a realistic candidate to detect light dark matter (meV deposition
energies) it is necessary to fulfill the following main criteria: (i) small gap (meV); (ii) small Fermi velocity;

(iii) small photon screening at energies close to the energy deposition range; and (iv) scalable material growth. As
we now explain, our results indicate that Ag;AuSe, meets the first three criteria. The extent to which they are met
varies with the lattice constant, suggesting that realizing a tunable detector is possible.

Regarding point (i), if one is to detect dark matter with keV mass, it is necessary that the band gap is of the
order of the deposition energy Ep, ~ meV. Additionally the detector should be kept at a temperature lower than
this energy scale to reduce undesired thermal noise. As we have discussed, Ag;AuSe, with different lattice
constants, achieved by different growth rates or hydrostatic pressures, can reach the meV range, satisfying
point (i).

The scattering between dark matter and the target material is kinematically constrained if the target velocity,
the Fermi velocity, is faster than the largest possible dark matter velocity [2], Vimayx ~ 2.6 x 10 °c. From figure 3
itis already apparent that the valence bands close to the I point are relatively flat. More precisely, from table 2 we
see that all Fermi velocities are ve ~ 107%c < ¥y, hence satisfying point (ii).

The real part of the optical conductivity determines the absorption of the material. As described in [2, 9] for
the scattering amplitude between the incident dark matter and the target to be large, it is beneficial that the

7
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Table 2. Fermi velocities of table 1 in
units of 10> m s~ for different
hydrostatic pressure percentages.

1% 2% 3%
vh 0.397 0.339 0.250
vE 0.552 0.507 0.423
Ve 0.945 0.956 0.882
B 0.896 1.409 1.640

photon is not strongly screened by the medium where it propagates, compared to a metal. This requirement is
satisfied for a narrow gap Dirac material because the real part of the optical conductivity scales linearly with
frequency [2, 35] and the imaginary part of the dielectric tensor e = 1 + i ¢0/wremains small as a function of
frequency. For Ag;AuSe; at 3% (see figure 5(c)) the optical conductivity grows linear as well, resulting in a
dielectric constant that renders a small in-medium polarization for the photon, a necessary condition for alarge
scattering rate, as listed in point (iii).

Finally, a dark matter detector must be sensitive to a small number of counts per year, for which the target
material must be grown as large and pure as possible. Currently we are not aware of whether it is possible to grow
Ags;AuSe, in large crystals and defect free, yet we expect that our results should encourage experimental efforts in
this direction.

The discussion regarding points (i)—(iii) above indicate that growing Ag;AuSe, with different lattice
constants can screen different, and possibly overlapping regions of parameter space. Although a full analysis of
the detection capabilities is out of the scope of this work, the above discussion suggests that a detector that
combines different samples of AgsAuSe, with different lattice parameters can be useful to screen different ranges
of dark matter masses.

6. Conclusion

In this work we have studied the band structure of chiral two narrow gap semiconductors under pressure,
Ag;AuSe; and Ag;AuTe,, as candidates for dark matter detection for the first time, as well as the optical
conductivity for different values of lattice parameters of the most promising candidate, Ag;AuSe,. We found
that increasing the pressure decreases the Fermi velocity, and results in a larger gap. As the pressure increases
these band structure features translate into a slower change of slope of the optical conductivity as the frequency
increases, into a nearly linear frequency dependence.

We showed that Ag;AuSe, satisfies three important requirements to be a candidate as a target material for
light dark matter detection: a meV gap, shallow Fermi velocities, and small absorption. Our work sets the basis
for an in-depth study of the capabilities of Ag;AuSe; as a light dark matter detector along the lines of [2], that can
consider finite momentum scattering and map the precise phase space accessible to a detector based on this
material.

Experimentally, the dark matter detector we envision follows similar design principles to earlier detector
proposals [2, 5,9, 36]. An important requirement is the growth of large and clean single crystals, placed under
ground to screen against undesired false positives [37]. For sufficiently large cross sections, it may be necessary to
take into account scattering with the Earth that can prevent the dark matter particle from reaching the detector
[38]. For further details on the experimental requirements we refer the reader to the recent review [37].

As a final outlook, we note that the absence of mirror symmetries in these materials allows them to present
other interesting optical responses that are only allowed in chiral space groups. These include the gyrotropic
magnetic effect, which is the rotation of the polarization plane of light as it transverses the material, and a
quantized circular photogalvanic effect, which is a photocurrent that grows linear in time induced by circularly
polarized light set by fundamental constants only [39].

In conclusion, we expect that our results will encourage the growth of pure and large Ag;AuSe; crystals that
can serve to study chiral optical phenomena and may help to design scalable and tunable dark matter detectors in
the future, based on the changes in the band structure caused by different lattice constants.
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