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Introduction

This thesis focuses on the coupling between electrons and phonons. Phonons
are the low-energy elementary excitations corresponding to the quanta of the
collective vibrations of the atomic lattice in crystalline solids. The study of
the electron-phonon interaction is contemporary to the concept of phonons
themselves, dating back almost a century with the beginning of the quantum
theory of solids. Thus, it represents one of the most extensively studied
chapters of solid-state physics, well documented in a large number of books
and reviews [1–4].

Despite being a classic subject, the coupling between electrons and
phonons continues to attract a great interest, since it is present in a large va-
riety of physical phenomena. It strongly influences the temperature depen-
dence of the electronic heat capacity and the electrical mobility, conductivity
and resisitivity of metals and semiconductors, as well as the thermalization
or cooling of hot carriers and the thermoelectric effect. It also influences
the optical properties of semiconductors and insulators, taking part in the
temperature dependence of energy band gaps and phonon-assisted optical
absorption of indirect-gap materials. Besides, it leads to characteristic band-
splittings, so-called kink structures, in photoemission spectra and sharp fre-
quency softenings, so-called Kohn anomalies, in inelastic neutron or light
scattering spectra. Likewise, it plays a fundamental role in conventional,
or phonon-mediated, superconductivity, since it provides the mechanism to
attract electrons and the pairing in conventional superconductors.

The effective velocity, or equivalently the effective mass, the actual en-
ergy and the lifetime of electron states, as well as the frequency and the
lifetime of phonon modes, are determined by many-body interactions [5].
These include the interaction of both electrons and phonons with other
single-particle excitations – excited electrons or holes – as well as electron-
hole pair excitations and other collective excitations – phonons, plasmons,
magnons or excitons – and defects of solids. In order to illustrate the impor-
tance of the electron-phonon interaction, it is worth noting that at realistic
temperatures of the order of a few hundred Kelvin, the phase space for elec-
tronic scattering is actually reduced to a narrow energy window of the order
of ∼ 10 meV close to the Fermi level in metals. This energy range coincides
with the typical phonon frequencies while typical electronic transition ener-
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8 Introduction

gies are of the order of ∼ 1 eV [6]. Thereby, low-energy dynamics of charge
carriers, i.e. excited electrons and holes, is usually dominated by phonon-
mediated electronic scattering, which therefore governs the transport and
thermodynamical properties of solids [7].

Early studies of the electron-phonon interaction between the 1930s and
1950s [8–13] were motivated by the need to establish a quantum theory of
transport in solids, based on semi-empirical – Fröhlich and Holstein – Hamil-
tonians [14, 15] along with the use of the Fermi gas model for electrons [16]
and the Einstein [17] or Debye [18] models for phonons. These initial works
were essential to understand the mathematical structure of the electron-
phonon matrix elements and the role played by the electronic screening in
the potential change induced by lattice displacements. It was during the
late 1950s and the early 1960s that the modern formulation of the electron-
phonon theory using a quantum field-theoretic approach started, as a result
of the advent of Landau-Fermi liquid theory [19] together with the concept
of quasi-particle and the development of many-body Green’s function per-
turbation theory [5] together with the concept of self-energy, that relates
the bare or non-interacting and dressed or interacting propagators via the
Dyson’s equation. The general and still today most complete formulation
of the theory of the electron-phonon interaction was established during the
1960s and 1970s [20, 21].

This thesis is based on ab initio calculations of the electron-phonon in-
teraction, whose first calculations were not performed until the late 1990s
[22–26]. The reason for this delay is that the formulation and the prac-
tical implementation of the density functional theory (DFT) [27–29] took
from the mids 1960s to the 1980s, while the development of the density
functional perturbation theory (DFPT) [30–33] did not come until the lates
1980s and the early 1990s. Indeed, state-of-the-art first principles calcu-
lations of the electron-phonon interaction are based on approximated but
useful expressions of the coupling [2] and have the electronic and lattice vi-
brational properties resulting from DFT and DFPT, respectively, as starting
point [4]. The latter theoretical formalisms are founded on the adiabatic ap-
proximation [34], which assumes that electrons respond instantaneously to
the lattice motion. This approach leads to a simplified physical picture of
electrons moving in a rigid lattice, and phonons only including electrostatic
screening on lattice vibrations. Nevertheless, the electron-phonon interac-
tion is expected to affect both electron states and phonon modes defined
within the adiabatic approximation, leading to a renormalization of their
properties and a decrease of their lifetimes.

One of the main goal of this thesis is to analyze the impact of the electron-
phonon interaction beyond the adiabatic approximation, i.e. non-adiabatic
effects. Indeed, non-adiabatic electron-phonon corrections have been usually
detected by comparing bare electron band structures and adiabatic phonon
dispersion relations with, both theoretically calculated or experimentally
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measured, electron and phonon spectral functions, respectively. The so-
called spectral functions are physical magnitudes of great physical interest,
since their momentum and energy dependent structure describes the proba-
bility density of electron states or phonon modes, and holds valuable infor-
mation about the properties of quasi-particles [2, 5]. It is worth noting that
while the non-adiabatic electron-phonon effects have been extensively stud-
ied on bare electrons, these effects have been mainly limited to the center of
the Brillouin zone (BZ) in the case of adiabatic phonons [4]. On the other
hand, renormalized electron band structures and phonon dispersion relations
have been generally calculated using the standard Brillouin-Wigner and
Rayleigh-Schrödinger pertubation theory approaches [5]. Although these
results have been useful for quantitatively estimating several physical phe-
nomena, they also lead to unphysical divergent results. In this sense, recent
investigations have successfully rationalized photoemission kinks in terms of
multiple and physically different renormalized electron bands arising from
one bare band due to the electron-phonon interaction [35, 36]. These works
combine first principles calculations with the analytic properties of Green’s
functions [37] for self-consistently solving the Dyson’s equation in the whole
complex energy plane, opening the door for a systematic evaluation of quasi-
particles from ab initio techniques. Note that no proper examination of the
electron-phonon renormalization of adiabatic phonons has been performed
in these terms.

On the experimental side, angle-resolved photoemission spectroscopy
(ARPES) [38] and inelastic neutron (INS) and/or x-ray (IXS) scattering,
as well as Raman scattering, [39, 40] are the most common techniques for
probing electron and phonon spectral functions, respectively. Most of these
techniques analyze the surface-parallel component of the momentum, and
hence, are only suitable for studying two-dimensional (2D) or quasi-2D ma-
terials, where the electron-phonon interaction is usually enhanced [41–46].
Therefore, low-dimensional surfaces and monolayers represent privileged tar-
gets for analyzing, both experimentally and theoretically, the non-adiabatic
effects of the electron-phonon interaction on electrons and phonons, and
thereby, testing the adequacy of many-body theories. In this respect, 2D
systems composed of heavy elements have turned out to have an interesting
added value. In these materials, the combination of the surface inherent
inversion asymmetry and the heavy element inherent strong atomic spin-
orbit coupling leads to the generation of strongly spin-split electron surface
states with highly anisotropic spin-polarizations, even for non-magnetic ma-
terials [47–61]. Thus, understanding the low-energy coupled charge and spin
dynamics in 2D systems with strong spin-orbit coupling is today of capital
importance due to its appealing spintronic applications [62–67], and thus,
has become a very active research front at the moment [68–70]. Never-
theless, the coexistence of spin-orbit and electron-phonon interactions has
been only investigated considering instructive theoretical models based on
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Fröhlich and Holstein Hamiltonians [71–74]. It has not been until very re-
cently, and concurrently with this thesis, that the role of the spin-orbit
coupling in the electron-phonon interaction has been treated beyond simple
relativistic corrections [75–78].

This thesis is an attempt to take a step further in the research field of the
electron-phonon interaction. On the one hand, we have centered on study-
ing the role played by the electron spin and the spin-orbit coupling in the
electron-phonon interaction of surfaces with strong relativistic corrections
from first principles calculations. On the other hand, we have focused on
the non-adiabatic electron-phonon renormalization not only of ground-state
electrons but also of adiabatic phonons, beyond the widely used standard
theoretical approximations in materials that represent a challenge for many-
body theories. To this end, this thesis is organized as follows. Chapter 1
is devoted to present the state-of-the-art theoretical DFT and DFPT for-
malisms used for calculating the ground-state electronic properties and the
lattice vibrational properties of solids from first principles. These are essen-
tial in order to undertake calculations of the electron-phonon interaction,
whose Hamiltonian and practical expressions are derived in Chapter 2. Par-
ticular attention is paid to the proper theoretical framework for calculating
electron and phonon quasi-particles and the interpolation techniques based
on maximally localized Wannier functions that allow to perform accurate
and converged calculations. In Chapter 3, we investigate the role played by
the electron spin and the spin-orbit coupling in the electron-phonon interac-
tion at the relativistic Tl/Si(111) surface from first principles calculations.
To this end, we introduce the spin-dependent theoretical framework for both
DFT and DFPT formalisms, as well as for the electron-phonon interaction.
In Chapter 4, we analyze the emergence of a strong electron-phonon interac-
tion and related spin-dependent effects beyond the adiabatic approximation
on both bare electrons and adiabatic phonons in the MoS2 monolayer as a
function of electron-doping.



Chapter 1

Electrons and phonons from
first principles

In this first chapter, we will introduce the theoretical formalism considered
throughout this thesis for calculating the ground-state electronic properties
and the lattice vibrational properties of solids from first principles. Starting
from the intractable many-body problem of many interacting electrons and
ions in Sec. 1.1, we will make use of the adiabatic approximation in Sec. 1.2
in order to split the total many-body problem into two different problems;
one of electronic nature and the other one of ionic nature.

On the one hand, in Sec. 1.3, we will describe the basic theory for ap-
proximately solving the problem of many interacting electrons in solids.
These theoretical methods are based on the Hohenberg-Kohn theorems and
the Kohn-Sham approximation, which form the density functional theory
(DFT). Practical ground-state electronic first principles calculations are im-
plemented using the concept of periodic crystalline solids as well as the plane
wave basis sets and the pseudopotential approximation. On the other hand,
in Sec. 1.4, we will present the basic theory used for solving the problem of
many interacting ions in solids. Starting from the optimally relaxed equi-
librium geometry of the lattice, we will adopt the harmonic approximation
in order to describe the lattice vibrational normal modes, i.e. the phonon
modes. Practical lattice vibrational first principles calculations are imple-
mented by means of the density linear response theory, or more efficiently
by means of the density functional perturbation theory (DFPT).

1.1 The many-body problem

At the atomic level, a piece of matter can be seen as composed of Nel neg-
atively charged electrons and Nion positively charged ions interacting via
the Coulomb interaction. In the framework of non-relativistic quantum me-
chanics and the absence of any time-varying external potential acting on the
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12 1. Electrons and phonons from first principles

interacting system, the corresponding many-body Hamiltonian is given by1:

Ĥ =

Nel∑
i

p̂2
i

2
+

Nion∑
I

P̂2
I

2MI
−

Nel∑
i

Nion∑
I

ZI

|r̂i − R̂I |

+
1

2

Nel∑
i 6=j

1

|r̂i − r̂j |
+

1

2

Nion∑
I 6=J

ZIZJ

|R̂I − R̂J |

Ĥ = T̂el + T̂ion + V̂el-ion + V̂el + V̂ion,

(1.1)

where electrons are denoted by lowercase subscripts (i and j), ions are de-
noted by uppercase subscripts (I and J), and ZI and MI are the charge and
mass of the I-th ion, respectively. r̂i and p̂i = −i∇̂i are the position and
momentum operators of the i-th electron, respectively. R̂I and P̂I = −i∇̂I

are the position and momentum operators of the I-th ion, respectively. The
first two terms on the right-hand side in Eq. 1.1 represent the electronic (T̂el)
and ionic (T̂ion) kinetic energy operators, respectively, and the final three
terms are the electron-ion (V̂el-ion), electron-electron (V̂el) and ion-ion (V̂ion)
Coulomb interaction operators, respectively.

Since Ĥ does not depend on time, the formal way to solve the
many-body problem is via the time-independent Schrödinger equation [79]:
Ĥ |Ψ〉 = E |Ψ〉, where |Ψ〉 are the eigenstates of the many-body system with
energy eigenvalues E. The many-body wave function depends on the posi-
tion of all the particles in the system as, 〈r|Ψ〉 = Ψ({ri}, {RI}), where {ri}
and {RI} represent the set of electronic and ionic coordinates, respectively.

As it can be seen, the many-body problem is already well defined and
fully established in terms of fundamental physics. Nevertheless, analyti-
cal solutions for realistic many-body systems are almost never accessible,
being limited to the two-body hydrogen-like problem. A direct numerical
treatment is not even possible, since obtaining the solutions requires an
unattainable amount of memory storage that scales with the number of spa-
tial degrees of freedom, 3(Nel+Nion) ∼ NA, with NA the Avogrado number2.
Therefore, appropriate approximations are needed in order to simplify the
many-body problem.

1.2 The adiabatic approximation

The first approach adopted for simplifying the many-body problem (Sec. 1.1)
can be intuitively understood by looking to the different dynamics of elec-
trons and ions in solids. The typical electronic velocities (∼ 108cm/s) are of
the order of 103 times larger than the typical ionic velocities (∼ 105cm/s) [6].

1Atomic units (a.u.) are adopted: me = e = ~ = 4πε0 = 1.
2Avogadro number: NA = 6.02214076× 1023 particles/mol



1.2. The adiabatic approximation 13

Thus, electrons can be assumed to respond instantaneously to the ionic mo-
tion, and equivalently, ions can be assumed to be static in space with an
effective infinite mass (MI →∞) with respect to the electronic motion.

This approach is the so-called adiabatic or Born-Oppenheimer approxi-
mation [34] and has a dramatic simplifying effect on the many-body Hamil-
tonian (Eq. 1.1). Within this approach, T̂ion can be neglected and V̂ion can
be replaced by the classical pairwise Coulomb interaction between static ions
Eion({RI}), which does not affect the dynamics of electrons. As a result, an
electronic Hamiltonian depending parametrically on the ionic configuration
{RI} can be written: Ĥel = T̂el + V̂el + V̂el-ion({RI}). The corresponding
electronic Schrödinger equation is defined as:

ĤelΨ
α
el({ri}, {RI}) = Eαel({RI})Ψα

el({ri}, {RI}), (1.2)

where |Ψα
el〉 is the electronic eigenstate with energy eigenvalue Eαel and α is

the quantum number accounting for the electronic degrees of freedom. On
the other hand, the total many-body eigenstates |Ψ〉 are considered as the
product of the electronic and ionic eigenstates:

Ψαβ({ri}, {RI}) = Ψα
el({ri}, {RI})⊗Ψβ

ion({RI}), (1.3)

where |Ψβ
ion〉 is the ionic eigenstate and β is the quantum number accounting

for the ionic degrees of freedom. Operating the total many-body Hamilto-
nian in Eq. 1.1 with the defined total many-body eigenstate in Eq. 1.3 and
then projecting the resulting state into the electronic eigenstate:

〈Ψα
el|Ĥ|Ψα′β〉 = 〈Ψα

el|T̂ion + Eion({RI}) + Ĥel|Ψα′β〉

=
([
T̂ion + Eion({RI}) + Eαel({RI})

]
δαα′ + ∆Ĥαα′

)
Ψβ

ion({RI}),
(1.4)

where δαα′ is the Kronecker delta and ∆Ĥαα′ is the so-called non-adiabatic
interaction term describing the coupling of the electrons with the ionic mo-
tion. The latter is given by [1, 2, 80]:

∆Ĥαα′ =

Nion∑
I

1

MI

∫
{dri}

(
Ψα

el({ri}, {RI})
)∗

P̂IΨ
α′
el ({ri}, {RI})P̂I

+

Nion∑
I

1

2MI

∫
{dri}

(
Ψα

el({ri}, {RI})
)∗

P̂2
IΨ

α′
el ({ri}, {RI}).

(1.5)

Since electrons are assumed to be insensitive to the ionic movement within
the adiabatic approximation, ∆Ĥαα′ = 0. In addition, electrons are always
considered in their ground state with respect to any ionic configuration.
Thereby, the index α in Eq. 1.4 can be dropped (α = 0). Hence, a fully ionic
Schrödinger equation comes out:

ĤionΨβ
ion({RI}) = E0βΨβ

ion({RI}) = EβΨβ
ion({RI}), (1.6)
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where the ionic Hamiltonian Ĥion is defined in terms of the ground-state
electronic energy E0

el({RI}): Ĥion = T̂ion + Eion({RI}) + E0
el({RI}).

Therefore, the adiabatic approximation is a basic but extraordinarily
valuable tool that allows to separate the total many-body problem into an
electronic part, as in Eq. 1.2, and a ionic part, as in Eq. 1.6, and solve it. This
approach has historically been widely used as the starting point for dealing
with the interacting system of many electrons and ions, and has become a
very useful procedure for many purposes as lattice vibrational first principles
calculations [6, 80]. However, in some cases the coupling between electrons
and the ionic motion can not be neglected. This foces to go beyond the adi-
abatic approximation in order to describe several physical properties, as for
instance, the electrical resistivity in metals, or even superconductivity [1, 2].

1.3 Ground-state electronic structure

As soon as the adiabatic approximation is assumed, we focus on solving
the electronic Schrödinger equation in Eq. 1.2, whose ground-state energy
is also mandatory for solving the ionic Schrödinger equation in Eq. 1.6. As
already stated in Sec. 1.2, the electronic problem depends parametrically on
the ionic configuration {RI} through the electron-ion Coulomb interaction.
In this respect, the adiabatically fixed ionic background can be seen as a
static external one-body potential acting equivalently and independently on
each electron. The electron-ion Coulomb interaction operator V̂el-ion can be
rewritten in terms of the external potential operator V̂ext as follows:

V̂el-ion =

Nel∑
i

V̂ext(ri, {RI}) = −
Nel∑
i

Nion∑
I

ZI
|r̂i −RI |

. (1.7)

It is worth noting that if the electronic potential was simply formed by
the electron-ion Coulomb interaction, the system would be formed by Nel

non-interacting electrons moving in the one-body external potential, which
is already a solvable problem [6]. Nevertheless, the many-body electron-
electron Coulomb interaction operator V̂el depends on the position of all the
electrons (Eq. 1.1), avoiding the electronic Hamiltonian to be split into a
set of solvable one-body Hamiltonians. Thereby, the dimensionality of the
electronic system is still large and equal to 3Nel electronic spatial variables,
apart from depending parametrically on the ionic positions3.

3All the electronic properties resulting from the solution of the electronic problem
depend parametrically on the ionic coordinates {RI}. For the sake of clarity, the explicit
notation of this dependence is omitted in the rest of Sec. 1.3.
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1.3.1 Density functional theory

In this context, the density functional theory (DFT) has turned out to be one
of the most widely used and successful methods for simplifying and solving
the electronic problem in Eq. 1.2 [29, 81]. This “exact” quantum many-body
theory is based on two fundamental mathematical theorems firstly proved
in 1964 by Hohenberg and Kohn [27].

Briefly said, following the work of Thomas and Fermi in 1927 [82], Ho-
henberg and Kohn formulated the many-body electronic problem in terms
of the electron density n(r). They demonstrated that all the properties of
the electronic system are completely and uniquely determined given only
the ground-state electron density n0(r). With this perspective, they defined
the energy of the electronic system in its lowest-energy state as a functional
in terms of the electron density:

Eel ≡ Eel[n] = F [n] +

∫
Vext(r)n(r)dr, (1.8)

where F [n] is a purely electronic universal functional of n(r), and thus,
independent of the external potential acting on the electrons. They proved
that the exact ground-state energy of the electronic system is the global
minimum value of the energy functional in Eq. 1.8. In addition, the electron
density that minimizes this functional is that of the exact ground state4.

Undoubtedly, reformulating the electronic problem in terms of the elec-
tron density is a masterful move, since the dimensionality of the problem
is dramatically reduced to only three spatial variables. However, while the
Hohenberg-Kohn theorems provide a general theoretical result, no practical
methodology is given for calculating the ground-state electron density, since
the exact dependence of F [n] with respect to n(r) is unknown.

Connecting to this, Kohn and Sham proposed in 1965 an elegant ap-
proach for overcoming this issue [28]. This consists in mapping the system
of many interacting electrons moving in the external potential onto an auxil-
iary system made of as many non-interacting electrons moving in an effective
potential, i.e. the electronic screened external potential, on the condition
that both systems have the same ground-state electron density. In addition,
the unknown functional F [n] is introduced in the following form:

F [n] = Tel[n] + EH[n] + Exc[n], (1.9)

where Tel[n], EH[n] and Exc[n] represent the electronic kinetic energy, the
Hartree energy and the exchange-correlation energy functionals, respec-
tively. Within the Kohn-Sham representation of non-interacting electrons,

4E0
el ≡ Eel[n0] < Eel[n] ∀ n(r) 6= n0(r). Detailed statements and demonstrations of

the Hohenberg-Kohn theorems and their corollaries are also available in Refs.[29, 81].
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the electronic kinetic energy is equal to the sum of the kinetic energies of
each of the electrons:

Tel[n] = −1

2

Nel∑
i

〈ψi|∇̂2
i |ψi〉 ≡ −

1

2

Nel∑
i

∫
dr
(
ψi(r)

)∗∇̂2
iψi(r), (1.10)

where |ψi〉 is the Kohn-Sham single-particle state of the i-th electron.
The many-body electron-electron interaction is defined by the Hartree and
exchange-correlation energies. The Hartree energy represents the classical
Coulomb self-interaction of the electron density [83], defined as:

EH[n] =
1

2

∫∫
n(r)n(r′)

|r− r′|
drdr′. (1.11)

The exchange-correlation energy accounts for all the quantum many-body
effects missing in the Hartree energy. Namely, the exchange energy [84]
accounts for the anti-symmetric property of the many-body electronic wave
function [85] with respect to particle exchange, since electrons are defined as
indistinguishable fermions. The correlation energy [86] accounts for the in-
teraction effects beyond the independent single-electron picture within the
Hartree-Fock approximation. Unfortunately, the exact expression of the
exchange-correlation energy functional is unknown, and therefore, appropri-
ate approximations must be made. Indeed, the great success of DFT relies
on the ability of accounting for these energy terms, albeit approximately. In
this thesis, the local density approximation (LDA) [87, 88] and the gener-
alized gradient approximation (GGA) [89, 90] have been used for approxi-
mating Exc[n]. The reader is refered to Refs. [29, 81], or to Appendix A, for
a detailed description of these approximations.

Following the Hohenberg-Kohn theorems [27], the electron density min-
imizing the electronic energy functional in Eq. 1.8 is the ground-state one.
Thereby, we minimize this functional using Lagrange multipliers under the
restriction that the Kohn-Sham states are orthonormal, i.e. 〈ψi|ψj〉 = δij :

δ

δψ∗i (r)

[
F [n] +

∫
Vext(r)n(r)dr−

Nel∑
j

εj

(∫ ∣∣ψj(r′)∣∣2dr′− 1

)]
= 0. (1.12)

Derivations of Eq. 1.12 using the definition of F [n] in Eq. 1.9 together with
Eqs. 1.10 and 1.11, as well as the derivation chain rule, lead to the Kohn-
Sham single-electron Schrödinger equation:

ĤKSψi(r) =

(
− ∇̂2

2
+ V̂KS(r)

)
ψi(r) = εiψi(r), (1.13)

whose solution is the Kohn-Sham eigenstate ψi(r) with energy εi for each i-th
electron. The Kohn-Sham Hamiltonian ĤKS holds for the Kohn-Sham sys-
tem of non-interacting electrons subject to the Kohn-Sham potential VKS(r),
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whose form is:

VKS(r) = Vext(r) +
δEH[n]

δn(r)
+
δExc[n]

δn(r)
= Vext(r) + VH(r) + Vxc(r)

VKS(r) = −
Nion∑
I

ZI
|r−RI |

+

∫
dr′

n(r′)

|r− r′|
+
δExc[n]

δn(r)
,

(1.14)

with VH(r) and Vxc(r) the Hartree and exchange-correlation potentials, re-
spectively. Note that the Kohn-Sham potential is the one-body effective
counterpart of the many-body electronic potential. It operates indepen-
dently and equivalently on each non-interacting electron of the Kohn-Sham
system at any spatial position r. Finally, the electron density distribution
is given in terms of the Kohn-Sham wave functions as follows:

n(r) =

Nel∑
i

∣∣ψi(r)
∣∣2. (1.15)

Thus, the DFT formalism allows us to reformulate the difficult many-
body electronic Schrödinger equation in Eq. 1.2 as a set of Nel solvable one-
body Schrödinger equations (Eq. 1.13). Note that we have managed to derive
the latter equation, as well as the Kohn-Sham potential in Eq. 1.14, indepen-
dently of any approximation of the exchange-correlation energy functional.
In fact, if the exact form of Exc[n] was known, the exact ground-state elec-
tron density and energy of the interacting electronic system could be ob-
tained. This is why DFT is considered an “exact” quantum many-body
theory [29, 81].

In practice, once an approximate form of the exchange-correlation en-
ergy functional is chosen, Eqs. 1.13−1.15 compose the set of the so-called
Kohn-Sham equations that has to be solved self-consistently through an ef-
ficient numerical iterative procedure [29, 81, 91]. Indeed, the Kohn-Sham
potential depends on the electron density, which is determined by the Kohn-
Sham states. In turn, the latter are solutions of the Kohn-Sham Schrödinger
equation, that, at the same time, is defined by the Kohn-Sham potential.
Figure 1.1 illustrates schematically the self-consistent loop for solving the
set of Kohn-Sham equations. The strategy is to start any new cycle assum-
ing the electron density of the previous iteration, the old density nold(r), or
an initial guess for the first iteration that can be created by the superpo-
sition of atomic charge densities. The Kohn-Sham potential corresponding
to this old density is then constructed via Eq. 1.14. Next, the Kohn-Sham
Schrödinger equations in Eq. 1.13 are solved in order to obtain the new
Kohn-Sham states and energies. Then, the corresponding new electron den-
sity nnew(r) is calculated by means of Eq. 1.15. Finally, this new density
is used as the starting point for the next cycle iteration, repeated in the
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Figure 1.1. Schematic representation of the self-consistent loop for solving the set
of Kohn-Sham equations in Eqs. 1.13−1.15.

same way5. The self-consistent loop cycles until the change in the electronic
energy ∆Eel is smaller than a chosen convergence threshold ζ, usually less
than 10−4 a.u. ≈ 10−3 eV. Once this condition is fulfilled, the electronic
ground state is achieved and all the related properties of interest can be
calculated.

1.3.2 Periodicity of the crystal

The calculation of the ground-state electronic structure, as well as the lat-
tice vibrational structure in Sec. 1.4, can be additionally simplified by conve-
niently defining the problem within a tractable region of the space exploiting
the periodicity of crystals.

5For stability, the calculated electron density is often mixed with the electron density
of the previous iteration in order to get a new density for the next iteration [29, 81].
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Indeed, an ideal crystalline solid is built by the periodic repetition of
its primitive unit cell (u.c.), which corresponds to the irreducible region
of the solid with respect to the translational symmetry. The unit cell is
spatially delimited by the set of primitive real lattice vectors {a1,a2,a3}
and is defined by the basis that describes the ionic arrangement within it.
Thus, the volume of the unit cell is defined as Vu.c. =

∣∣a1 · (a2 × a3)
∣∣. The

real or direct Bravais lattice is generated by all the possible translations of
the unit cell given by the real primitive lattice vectors [6].

The crystal periodicity imposes the same periodic conditions upon the
Kohn-Sham potential felt by the electrons:

VKS(r) = VKS(r + T), (1.16)

where T =
∑3

i=1 liai is a Bravais lattice vector with li ∈ Z and r is the
vector of the real space defined within the unit cell. Bloch’s theorem [92]
states that the eigenstates of the Kohn-Sham Hamiltonian in Eq. 1.13 can be
chosen to have the form of a plane wave times a crystal periodic function6:

ψkn(r) = eik·(r)ukn(r), (1.17)

where ukn(r) = ukn(r + T) is the lattice-periodic part of the Kohn-Sham
wave functions ψkn(r). These two previous definitions lead also to the addi-
tional relation: ψkn(r + T) = eik·Tψkn(r). Note that, within this definition,
the electronic quantum number i is substituted by a band index n and a
wave vector k. The wave vector k is commonly known as the crystal mo-
mentum. It is defined within the first Brillouin zone (1BZ), which is the
Wigner-Seitz primitive cell of the reciprocal lattice. By imposing Born-
von Karman boundary conditions on the Kohn-Sham wave functions, it is
demonstrated that the momentum k is real and restricted to the following
allowed values [6]:

k =
3∑
i=1

mi

Ni
bi. (1.18)

where {b1,b2,b3} is the set of primitive reciprocal lattice vectors fulfilling
the condition: ai · bj = 2πδij , with mi ∈ N and |mi| < Ni, being Ni the
number of unit cells along the crystal direction i. The number Nk of allowed
k-points is exactly the same as the total number of unit cells in the supercell
crystal: Nk =

∏3
i=1Ni. In what follows, the electron band structure of a

solid will describe the dispersion of the Kohn-Sham energies εkn as a function
of the momentum k for each band n.

1.3.3 Plane wave basis sets

Related to the periodicity of the crystal, plane waves are an interesting
basis set to describe wave functions to take advantage of, since they are

6The reader is referred to Refs.[6, 81] for different proofs of the theorem.
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per se spatially periodic functions. Indeed, plane waves are solutions of the
Schrödinger equation for a free particle, and hence, they physically describe
totally delocalized states. In Dirac’s notation, a plane wave with momentum
k is denoted by the state |k〉 and has a kinetic energy equal to |k2|/2. Its
normalized wave function7 is defined as:

〈r|k〉 =
1√
V
eik·r (1.19)

where V = NkVu.c. is the volume of the supercell crystal. Since the lattice-
periodic parts of the Kohn-Sham states have the same periodicity of the
crystal (Eq. 1.16), it is a good idea to expand them, as well as the Kohn-
Sham states through Eq. 1.17, in terms of an initially complete set of plane
waves:

|ukn〉 =
∑
G

ck+Gn |G〉 ; |ψkn〉 =
∑
G

ck+Gn |k + G〉 , (1.20)

where ck+Gn = 〈G|ψkn〉 are the expansion coefficients of the plane wave
basis. The infinite summation in Eq. 1.20 is over the reciprocal lattice vectors
G =

∑3
i=1 libi with li ∈ Z and fulfilling the relation8: eiG·T = 1.

In crystals, electrons tend to lose their localized atomic character becom-
ing more delocalized. Therefore, a finite number of coefficients in Eq. 1.20
is enough to accurately describe the Kohn-Sham states [81]. Thus, the sum
over G vectors can be truncated to include only plane waves with kinetic
energy values less than a given cutoff energy, Ecut, with typical values in the
range of 20− 100 Ry [93, 94]:

|ψkn〉 =
∑

|k+G|2
2Ecut

61

ck+Gn |k + G〉 . (1.21)

In practice, the Kohn-Sham Schrödinger equation in Eq. 1.13 is solved in
a discrete and unbiased Monkhorst-Pack grid [95] of k-points that samples
the 1BZ. By expanding the Kohn-Sham states on the plane wave basis as
in Eq. 1.21, we can reformulate the Kohn-Sham Schrödinger equation as a
matrix set of eigenvalue equations for the expansion coefficients, defined as:

∑
G′

(
|k + G|2

2
δGG′ + VKS(G−G′)

)
ck+G′n = εknck+Gn, (1.22)

where VKS(G−G′) is the Fourier transform of the Kohn-Sham potential:

VKS(G−G′) =
〈
k + G

∣∣VKS

∣∣k + G′
〉

=
1

V

∫
VKS(r)e−i(G−G

′)·rdr. (1.23)

7Plane waves are also a set of orhonormal functions: 〈k′|k〉 = 1
V

∫
V

dr ei(k−k′)·r = δk′k.
8This is a well-known property of periodic functions. See Refs.[6, 81].



1.3. Ground-state electronic structure 21

The matrix of Eq. 1.22 has NG ×NG dimensions, where NG is the number
of reciprocal lattice vectors G used in the plane wave basis expansion in
Eq. 1.21. This can be typically of the order of ∼ 105 elements, and there-
fore, it must be diagonalized by efficient computational algorithms. In this
thesis, all the self-consistent first principles DFT calculations (Fig. 1.1) have
been performed using the Quantum ESPRESSO ab initio package [93, 94]
implemented with the LAPACK mathematical libraries [96].

The diagonalization of Eq. 1.22 yields the Kohn-Sham energies εkn and
the coefficients ck+Gn. Thereby, the Kohn-Sham states are built by means
of Eq. 1.21 and the electron density in Eq. 1.15 is actually computed as:

n(r) =
1

Nk

1BZ∑
k

∑
n

f(εkn)
∣∣ψkn(r)

∣∣2, (1.24)

where f(εkn) is the Fermi-Dirac occupation factor of the Kohn-Sham state
|ψkn〉 with energy εkn:

f(εkn) =
1

1 + exp[(εkn − εF)/(kBT )]
, (1.25)

with kB the Boltzmann’s constant and T the temperature. εF represents
the Fermi energy, i.e. the energy of the occupied Kohn-Sham state with
highest energy at zero temperature (T = 0 K). In this context, the Fermi
surface (FS) is defined as the surface in the reciprocal space formed by the
k-points within the 1BZ that satisfy εkn = εF. Thus, the Fermi surface is
also defined as the surface of the reciprocal space separating the occupied
and non-occupied Kohn-Sham states.

Another useful magnitude that is worth introducing here is the density
of states (DOS), which gives the number of Kohn-Sham states with energy
ε per unit cell:

N(ε) =
1

Nk

1BZ∑
k

∑
n

δ(ε− εkn). (1.26)

Likewise, for the following, it is also important to particularly introduce the
specific DOS at the Fermi level, which we denostes as NF = N(εF).

1.3.4 The pseudopotential approximation

Despite all the approaches introduced so far, there are still some practical
impediments for solving the electronic problem. On the one hand, the total
number of electrons present in the unit cell of a periodic crystal is usually
large and increases getting larger with heavier atoms. On the other hand,
electrons close to the atomic nuclei exhibit highly localized and rapidly os-
cillating wave functions, which require, albeit finite, a large amount of plane
waves to adequately describe them, increasing thereby the computational
cost.
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In this context, one can take advantage of the different dynamical charac-
ter of atomic core and valence electrons, and treat them separately. Indeed,
the highly localized core electrons are tightly bound to the atomic nuclei at
deep binding energy scales (& 10 eV) and turn out to be rather unaffected by
the valence electrons in most favorable cases. Conversely, the latter exhibit
highly delocalized wave functions and strongly interact with the medium in
which atoms are placed, being the responsible for most of the electronic and
chemical properties of solids. As a result, the core electrons can be con-
sidered as frozen together with the atomic nuclei, whose pseudopotentials
model the interaction between the valence electrons and the ions, i.e. the
external potential in Eq. 1.7. This approach is the so-called pseudopotential
approximation [81, 91]. It has a double computational benefit, since it al-
lows us to deal with few delocalized valence electrons, whose wave functions
are well described within a basis of a few plane waves.

The pseudopotential of any given atom is generated from the pseudo-
wavefunctions of the set of chosen valence electrons. The latter are ar-
bitrarily constructed in such a way that they match the self-consistently
calculated all-electron atomic wave functions9 beyond a chosen core radius.
Inside the core radius, the pseudo-wavefunctions are smoothed out, remov-
ing the nodes of the functions and getting rid of the rapidly oscillatory part
close to the nucleus. In this thesis, all the self-consistent first principles
DFT calculations have been performed with norm-conserving pseudopoten-
tials [97]. The reader is referred to Refs. [81, 91], or to Appendix B, for a
detailed description of the generation of this kind of pseudopotentials.

1.4 Lattice vibrational structure

Within the adiabatic approximation (Sec. 1.2), once the ground-state elec-
tronic energy is self-consistently calculated from first principles (Sec. 1.3),
the ionic Schrödinger equation in Eq. 1.6 is already accessible. In this con-
text, the ground-state electronic energy acts as an effective potential on ions
and, together with the Coulomb interaction between ions, forms the ionic
potential energy [33, 98–100]:

U({RI}) = E0
el({RI}) + Eion({RI}). (1.27)

where the ionic coordinates {RI} are not fixed parameters anymore, but
represent the 3Nion spatial variables of the ionic system. Note that despite
the decoupling of the electronic and ionic problems in the adiabatic pic-
ture, the ionic problem is actually defined by the ground-state electronic
properties for a given ionic configuration {RI}.

9Within the DFT formalism, this is an “exact” quantum many-body problem subject
to the approximation of the exchange-correlation energy functional.
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1.4.1 Lattice equilibrium geometry optimization

Before studying the dynamical properties of solids, it is important to make
sure that the lattice is in its equilibrium geometry. By treating ions as
classical particles, the equilibrium condition is fulfilled when all the forces
acting on each ion vanish:

FI = −∂U({RI})
∂RI

∣∣∣∣
RI=R0

I

= 0, (1.28)

where FI is the force acting on the I-th ion and {R0
I} is the set of ionic

coordinates at equilibrium. Since the ionic potential energy in Eq. 1.27 de-
pends on the ground-state electronic energy, which in turn depends on the
ionic configuration {RI}, calculating the set of ionic forces {FI} at any ionic
configuration by means of a finite difference method would require 3Nion +1
self-consistent first principles DFT calculations. However, for typical studied
materials, this is extremely time demanding.

Fortunately, the Hellmann-Feynman theorem [101, 102] helps us to over-
come this issue. It states that the first derivative of the eigenvalues of a
Hamiltonian Ĥλ depending on a parameter λ is given by the expectation
value of the derivative of the Hamiltonian:

∂Eλ
∂λ

=

〈
Ψλ

∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣Ψλ

〉
, (1.29)

where Ψλ is the eigenstate of Ĥλ with eigenvalue Eλ, Ĥλ |Ψλ〉 = Eλ |Ψλ〉. By
using this relation, the force acting on the I-th ion for the ionic configuration
{RI} can be expressed as follows [33, 98–100]:

FI = −∂U({RI})
∂RI

= −
∂E0

el({RI})
∂RI

− ∂Eion({RI})
∂RI

= −
〈

Ψ0
el

∣∣∣∣∂Ĥel

∂RI

∣∣∣∣Ψ0
el

〉
− ∂Eion({RI})

∂RI

= −
∫

dr n0(r, {RI})
∂Vext(r, {RI})

∂RI
− ∂Eion({RI})

∂RI
,

(1.30)

where n0(r, {RI}), |Ψ0
el〉 and E0

el({RI}) are the ground-state electron den-

sity, eigenstate and eigenvalue of the electronic Hamiltonian Ĥel (Eq. 1.2).
Since the latter depends explicitly on the ionic coordinates only through the
external potential Vext(r, {RI}) (Eq. 1.7), only this term has been retained
in the last step of Eq. 1.30. As a result, the set of ionic forces can be directly
obtained by means of the ground-state electron density, whose knowledge
requires a unique self-consistent first principles DFT calculation rather than
3Nion + 1 cycles.

In practice, for finding the optimal equilibrium geometry of the lattice,
a reasonable initial guess is made for the ionic positions. Then, the electron



24 1. Electrons and phonons from first principles

density and the electronic energy are self-consistently calculated solving the
scheme of Fig. 1.1, from which the ionic forces are then obtained by means
of Eq. 1.30. Afterwards, one gradually relaxes the ionic geometry by means
of different iterative methods [103] performing at each step the pertinent
self-consistent first principles DFT calculation. This is done systematically
until all the ionic force components are smaller than a specified threshold,
usually less than 10−3 a.u. ∼ 10 meV/Å.

1.4.2 The harmonic approximation

Once the crystal is in its equilibrium geometry, i.e. the ions are in their
equilibrium configuration {R0

I}, the instantaneous position RI of the I-th
ion vibrating around its equilibrium lattice site can be written as [33, 98–
100]:

RI = R0
I + uI = Tl + τs + uls, (1.31)

where Tl is the Bravais lattice vector of the l-th unit cell, τs is the equi-
librium position of the s-th atom within the unit cell and uls is the out-of-
equilibrium displacement of the I = {l, s}-th ion.

As the ionic displacements are small compared to the interatomic dis-
tances, we may expand the ionic potential energy on a Taylor series in powers
of the ionic displacements about the equilibrium position coordinates. We
also apply the so-called harmonic approximation, which consists in retaining
the terms of the expansion up to second order:

U({RI}) = U({R0
I})−

∑
lsα

Fαlsu
α
ls +

1

2

∑
lsα
l′s′α′

uαls
∂2U({RI})
∂uαls∂u

α′
l′s′

∣∣∣∣∣
u=0

uα
′
l′s′ , (1.32)

where α = {x, y, z} denotes the cartesian directions. At equilibrium, the
forces acting on ions are zero (Eq. 1.28). Therefore, the ionic potential energy
within the harmonic approximation is given by:

U({RI}) = U0 +
1

2

∑
lsα
l′s′α′

uαlsC
αα′
ss′ (l, l′)uα

′
l′s′ , (1.33)

where the constant U0 = U({R0
I}) and Cαα

′
ss′ (l, l′) represents the matrix of

interatomic force constants [33, 98–100]. The latter is equal to the second
derivative of the ionic potential energy with respect to the ionic displace-
ments, or equivalently, its negative gives the force acting on the I = {l, s}-th
ion in the α direction per unit of displacement of the J = {l′, s′}-th ion along
the α′ direction:

Cαα
′

ss′ (l, l′) =
∂2U({RI})
∂uαls∂u

α′
l′s′

∣∣∣∣
u=0

≡ −
∂Fαls
∂uα

′
l′s′
. (1.34)
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The force acting on the I = {l, s}-th ion should be slightly retarded
with respect to the other ionic displacements due to the electronic screen-
ing, i.e. the response of electrons [104, 105]. Still, since the electronic
response to the ionic motion is assumed instantaneous within the adia-
batic approximation, the interatomic force constants are considered static,
Cαα

′
ss′ (l, l′, t − t′) = Cαα

′
ss′ (l, l′)δ(t − t′). Moreover, due to the translational

invariance of the crystal lattice (Sec. 1.3.2), the interatomic force constant
matrix depends on l and l′ only through the difference Tl −Tl′ , and there-
fore, Cαα

′
ss′ (l, l′) = Cαα

′
ss′ (l − l′).

Classical theory of the harmonic vibrating lattice

In this context, by means of the Newton’s second law and treating the ions
as classical particles, one can derive the equation of motion of the individual
I = {l, s}-th ion:

−
∑
l′s′α′

Cαα
′

ss′ (l − l′)uα′l′s′ = Fαls = Msü
α
ls. (1.35)

Looking for solutions in the form of propagating plane waves [6, 33, 105], the
ionic displacement is defined as: uαls = (εαqs/

√
Ms)e

i(q·Tl−ωt), where ω and
εαqs are the frequency and the mass-scaled displacement amplitude of the
s-th ion in the l-th unit cell along the direction α, respectively, for a lattice
distortion of momentum q. Making the pertinent substitution in Eq. 1.35,
we obtain the secular eigenvalue equation for the vibrating lattice:∑

s′α′

Dαα′
ss′ (q)εs

′α′
qν = ω2

qνε
sα
qν , (1.36)

which is equivalent to diagonalize the so-called dynamical matrix Dαα′
ss′ (q).

The latter is related to the Fourier transform of the interatomic force con-
stant matrix Cαα

′
ss′ (q) as follows:

Dαα′
ss′ (q) =

Cαα
′

ss′ (q)√
MsMs′

=
∑
l′

e−iq·(Tl−Tl′ )
Cαα

′
ss′ (l − l′)√
MsMs′

. (1.37)

In Eq. 1.36, ωqν and εsαqν are the frequency (eigenvalue) and polarization
vector (eigenvector), respectively, of the lattice vibrational normal mode,
i.e. the phonon mode, with branch index ν at momentum q. Since the
dynamical matrix is fully Hermitian, Dαα′

ss′ (q) =
[
Dα′α
s′s (q)

]∗
, the phonon

eigenvalues are real numbers and the phonon eigenvectors are orthonormal
for each wave vector q:∑

ν

(
εsαqν
)∗
εs
′α′
qν = δss′δαα′ ;

∑
sα

(
εsαqν
)∗
εsαqν′ = δνν′ . (1.38)
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In this thesis, we focus on non-magnetic materials with time-reversal sym-
metry, and hence, the following relations are also fulfilled:

ω2
qν = ω2

−qν ; εsαqν = εsα−qν . (1.39)

Physically, phonons as above are the vibrational normal modes of the lat-
tice within the adiabatic and harmonic approximations. They represent
well-defined and infinitely long-lived collective oscillations of coupled ions
vibrating with the same frequency and with a fixed relative amplitude and
phase. For each momentum q, we have 3Nu.c.

ion phonon modes, where Nu.c.
ion is

the number of ions per unit cell of the crystal. In crystals, there are always
three low frequency branches of acoustic character, i.e. phonon branches
describing vibrations with frequencies that vanish linearly with q in the
long-wavelength limit (q→ 0). The other 3(Nu.c.

ion − 1) phonon modes are of
optical character, i.e. phonon branches with finite frequencies at q = 0. This
makes a total of 3Nion = 3NqN

u.c.
ion phonon modes in the supercell crystal,

which is equal to the number of ionic degrees of freedom. In what follows,
the phonon dispersion relation of a solid will describe the dispersion of the
frequencies ωqν as a function of the momentum q for each branch ν.

Quantum theory of the vibrating lattice

So far, lattice vibrations have been evaluated using classical mechanics. Nev-
ertheless, the classical theory is not adequate to explain several behaviors.
For instance, the classical law of Dulong and Petit, which states that the
contribution of the vibrating lattice to the specific heat is independent of
the temperature, fails loudly at low temperatures and quantum mechanics
is required to account for it [6]. Consequently, and for practical purposes, it
is convenient to turn to the quantum theory. Plugging the ionic harmonic
potential definition at equilibrium in Eq. 1.33 into the ionic Hamiltonian in
Eq. 1.6, and explicitly expressing the ionic kinetic operator in terms of the
ionic cartesians coordinates, the ionic harmonic Hamiltonian is written as:

Ĥion = U0 +
∑
lsα

(P̂αls)
2

2Ms
+

1

2

∑
lsα
l′s′α′

ûαlsC
αα′
ss′ (l − l′)ûα′l′s′ , (1.40)

where the commutation relations in real space are well-established as [6, 106]:

[P̂ls, P̂l′s′ ] = [ûls, ûl′s′ ] = 0; [ûαls, P̂
α′
l′s′ ] = iδαα′δss′δll′ , (1.41)

If we now substitute in Eq. 1.40 the real ionic displacements and momenta
operators with their Fourier transforms, defined respectively as:

uαls =
1√
Nq

1BZ∑
q

eiq·Tluαs (q); Pαls =
1√
Nq

1BZ∑
q

eiq·TlPαs (q), (1.42)
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and making use of the identity
∑

l e
i(q+q′)·Tl = Nqδ−qq′ , we obtain the

expression of the ionic harmonic Hamiltonian in the reciprocal space:

Ĥion =U0+
1BZ∑
q

(∑
sα

P̂αs (−q)P̂αs (q)

2Ms
+

1

2

∑
sα
s′α′

ûαs (−q)Cαα
′

ss′ (q)ûα
′
s′ (q)

)
. (1.43)

Following the definition of the canonical commutation relations in the real
space in Eq. 1.41, it is straightforward to show that the ionic displacement
and momentum operators in the reciprocal space satisfy the following canon-
ical commutation relations:

[P̂s(q), P̂s′(q
′)] = [ûs(q), ûs′(q

′)] = 0

[ûαs (q), P̂α
′

s′ (q′)] = iδq,−qδαα′δss′
(1.44)

In second quantization, both the reciprocal ionic displacements and mo-
menta operators can be expanded in terms of the creation and destruc-
tion/annihilation operators of each phonon mode |q, ν〉, â†qν and âqν respec-
tively, as follows:

ûαs (q) =
∑
ν

1√
2Msωqν

εsαqν(âqν + â†−qν)

P̂αs (q) = −i
∑
ν

√
Msωqν

2
εsαqν(âqν − â†−qν).

(1.45)

The operators â†qν and âqν are equivalent to the standard non-Hermitian
ladder operators of a simple quantum harmonic oscillator and satisfy the
following commutation relations [6, 106]:

[âqν , â
†
q′ν′ ] = δqq′δνν′ ; [âqν , âq′ν′ ] = [â†qν , â

†
q′ν′ ] = 0. (1.46)

Plugging Eq. 1.45 into Eq. 1.43 and using the relations in Eqs. 1.36-1.39, the
ionic harmonic Hamiltonian in second quantization can be written as the
sum of the Hamiltonians of 3Nion independent quantum harmonic oscilla-
tors:

Ĥion = U0 +

1BZ∑
q

∑
ν

ωqν

(
â†qν âqν +

1

2

)
. (1.47)

The corresponding ionic eigenstate is equal to the product of the eigenstates
of the 3Nion independent quantum harmonic oscillators:

|Ψβ
ion〉 =

∏
qν

|nqν〉 =
∏
qν

(â†qν)nqν√
nqν !

|0〉 , (1.48)
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where |0〉 is the state of no phonons and nqν denotes the number of phonon
modes |q, ν〉. The energy eigenvalue Eβ of this ionic eigenstate is equal to:

Eβ = 〈Ψβ
ion|Ĥion|Ψβ

ion〉 = U0 +
1BZ∑
q

∑
ν

ωqν

(
nqν +

1

2

)
(1.49)

At this point, note that the ionic Schrödinger equation in Eq. 1.6 has been
solved within the harmonic approximation, and therefore, the total many-
body problem is solved within the adiabatic and harmonic approximations.
Since phonons are bosons, in thermal equilibrium, the lattice dynamics of a
solid can formally be considered as a gas of independent phonons obeying
the Bose-Einstein statistics, i.e. with an occupation number:

〈nqν〉 = nB(ωqν) =
1

exp
[
ωqν/(kBT )

]
− 1

. (1.50)

Finally, it is worth introducing here the useful magnitude of the phonon
density of states (phDOS), which, similar to DOS for electrons in Eq. 1.26,
gives the number of phonon modes with frequency ω per unit cell:

F (ω) =
1

Nq

1BZ∑
q

∑
ν

δ(ω − ωqν) (1.51)

1.4.3 Density linear response theory

As seen from Eq. 1.36, the phonon modes at a momentum q are obtained by
diagonalizing the corresponding dynamical matrix, which is determined by
the Fourier transform of the interatomic force constant matrix (Eq. 1.37).
In turn, the latter is formally defined as the negative first-order derivative of
the ionic forces {FI}, with respect to the ionic displacements (Eq. 1.34). The
most direct way to calculate the interatomic force constants is from finite
differences within a supercell, in which the desired q is defined as a recip-
rocal lattice vector. This procedure is known as the frozen-phonon method.
Despite of its wide use in literature because of its simple implementation
within DFT [107–113], this method may involve the treatment of supercells
that may become impractically large when evaluating the dynamical matrix
in the long-wavelength limit (q→ 0).

Alternatively, from Eq. 1.34, the interatomic force constants can be also
obtained by differentiating the Hellmann-Feynman forces in Eq. 1.30:

Cαα
′

ss′ (l, l′) =

∫
∂n(r)

∂uαls

∣∣∣∣
u=0

∂Vext(r)

∂uα
′
l′s′

∣∣∣∣
u=0

dr

+

∫
n(r)

∂2Vext(r)

∂uαls∂u
α′
l′s′

∣∣∣∣
u=0

dr +
∂2Eion

∂uαls∂u
α′
l′s′

∣∣∣∣
u=0

,

(1.52)
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where n(r) = n0(r, {R0
I}), Vext(r) = Vext(r, {R0

I}) and Eion = Eion({R0
I})

for the sake of clarity in the notation. The calculation in Eq. 1.52 re-
quires the knowledge of the ground-state electron density as well as its
first-order derivatives with respect to the ionic displacements10 ∂n(r)/∂uαls.
The ground-state electron density is already directly accessible from the self-
consistent DFT calculation of the relaxed crystal. On the other hand, the
first-order derivative of the electron density can be calculated making use
of the linear response theory [114–116], where, in addition, the responses
to perturbations of different momenta are decoupled. Thus, one can evalu-
ate directly the dynamical matrix at any arbitrary momentum q avoiding
the use of supercells and limiting calculations to the unit cell. Substituting
Eq. 1.52 in Eq. 1.37:

Dαα′
ss′ (q) =

1√
MsMs′

[∫ (
∂n(r)

∂uαs (q)

)∗∂Vext(r)

∂uα
′
s′ (q)

dr

+

∫
n(r)

∂2Vext(r)(
∂uαs (q)

)∗
∂uα

′
s′ (q)

dr +
∂2Eion(

∂uαs (q)
)∗
∂uα

′
s′ (q)

]
u=0

.

(1.53)

Within this theory, the first-order derivatives of the electron density and the
external potential are related by:

∂n(r)

∂uαs (q)
=

∫
χq(r, r′)

∂Vext(r
′)

∂uαs (q)
dr′, (1.54)

where χq(r, r′) is the static, i.e. frequency-independent, density-response
function11 of the system of interacting electrons to any external perturbation
of momentum q. Substituting Eq. 1.54 in Eq. 1.53, it is straightforward to
show that the dynamical matrix can be rewritten as follows:

Dαα′
ss′ (q) =

1√
MsMs′

[∫∫ (
∂Vext(r

′)

∂uαs (q)

)∗(
χq(r, r′)

)∗∂Vext(r)

∂uα
′
s′ (q)

drdr′

+

∫
n(r)

∂2Vext(r)(
∂uαs (q)

)∗
∂uα

′
s′ (q)

dr +
∂2Eion(

∂uαs (q)
)∗
∂uα

′
s′ (q)

]
u=0

.

(1.55)

Within this formalism, the central problem is to calculate the interacting
density-response function. The problem can be also formulated in the Kohn-
Sham picture of non-interacting electrons. Within this approach, any ex-
ternal perturbation is self-consistently screened by an electronic potential

10Note that, both, the adiabatic definition of the interatomic force constant matrix in
Eq. 1.52, and the dynamical matrix in Eq. 1.53, are defined by the static response of the
electron density to the ionic motion. Therefore, they already incorporate the static effects
of the electron-phonon interaction, which is an unequivocal signal that the ground-state
electronic properties govern the lattice vibrational structure of the crystal [99, 100].

11In literature, the density-response function is also called susceptibility or polarizability.
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set up by the density-response resulting from the Hartree and exchange-
correlation energy terms (Eq. 1.14), leading to a change in the effective po-
tential. Thereby, the first-order derivatives of the Kohn-Sham potential and
the external potential are related by [115, 116]:

∂VKS(r)

∂uαs (q)
=

∫ (
εq(r, r′)

)−1∂Vext(r
′)

∂uαs (q)
dr′

=
∂Vext(r)

∂uαs (q)
+

∫
K(r, r′)

∂n(r′)

∂uαs (q)
dr′,

(1.56)

where εq(r, r′) is the dielectric function and K(r, r′) is the Hartree and
exchange-correlation kernel, which is defined as:

K(r, r′) =
δVH(r)

δn(r′)
+
δVxc(r)

δn(r′)
=

1

|r− r′|
+
δVxc(r)

δn(r′)
. (1.57)

Combining Eqs. 1.54 and 1.56, one obtains the expression relating the inverse
of the dielectric function and the interacting density-response function:

(
εq(r, r′)

)−1
= δ(r− r′) +

∫
K(r, r′′)χ(r′′, r′)dr′′ (1.58)

The relation between the first-order derivatives of the self-consistent
screened Kohn-Sham effective potential and the density reads:

∂n(r)

∂uαs (q)
=

∫
χ0
q(r, r′)

∂VKS(r′)

∂uαs (q)
dr′

=

∫
χ0
q(r, r′)

(
∂Vext(r

′)

∂uαs (q)
+K(r, r′)

∂n(r′)

∂uαs (q)

)
dr′,

(1.59)

where χ0
q(r, r′) = χ0

q(r, r′, ω = 0) is the static, i.e. frequency-independent,
density-response function of the system of non-interacting electrons to any
external perturbation of momentum q. Within DFT, the non-interacting
density-response function is easily derived from standard first-order time-
independent perturbation theory in terms of the Kohn-Sham single-electron
states [81]:

χ0
q(r, r′, ω) =

1

Nk

1BZ∑
k

∑
mn

f(εkn)− f(εk+qm)

εkn − εk+qm + ω + iη
×(

ψkn(r)
)∗
ψk+qm(r)

(
ψk+qm(r′)

)∗
ψkn(r′),

(1.60)

where η is a positive real infinitesimal. Substituting Eq. 1.59 in Eq. 1.53 and
using the relation in Eq. 1.56, we obtain an additional expression for the
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dynamical matrix in which χ0
q(r, r′) appears explicitly:

Dαα′
ss′ (q) =

1√
MsMs′

[∫∫ (
∂VKS(r′)

∂uαs (q)

)∗(
χ0
q(r, r′)

)∗∂VKS(r)

∂uα
′
s′ (q)

drdr′

−
∫∫ (

∂n(r)

∂uαs (q)

)∗
K(r, r′)

∂n(r′)

∂uα
′
s′ (q)

drdr′

+

∫
n(r)

∂2Vext(r)(
∂uαs (q)

)∗
∂uα

′
s′ (q)

dr +
∂2Eion(

∂uαs (q)
)∗
∂uα

′
s′ (q)

]
u=0

.

(1.61)

From the first term on the right-hand side of Eq. 1.61, it is clear that the
adiabatic dynamical matrix in Eq. 1 is valid as long as a electronic static-
screening of lattice vibrations is similar to the response function at typical
phonon frequencies, i.e. χ0

q(r, r′, ω) ≈ χ0
q(r, r′). In other words, adiabatic

phonons are valid as long as the phonon-mediated electronic transition en-
ergies between occupied and empty states are much greater than the vibra-
tional frequencies themselves, i.e. |εkn − εk+qm| � ω in Eq. 1.60.

By combining Eq. 1.54 and 1.59, we obtain an explicit expression for
calculating the interacting density-response function in terms of the Hartree
and exchange-correlation kernel and the non-interacting density-response
function:

χq(r, r′) = χ0
q(r, r′) +

∫∫
χ0
q(r, r′′)K(r′′, r′′′)χq(r′′′, r′)dr′′dr′′′, (1.62)

or equivalently: [
χq(r, r′)

]−1
=
[
χ0
q(r, r′)

]−1 −K(r, r′). (1.63)

In the same way, combining Eq. 1.56 and 1.59, we obtain an explicit ex-
pression for calculating the dielectric function in terms of the Hartree and
exchange-correlation kernel and the non-interacting density-response func-
tion:

εq(r, r′) = δ(r, r′)−
∫
K(r, r′′)χ0

q(r′′, r′)dr′′. (1.64)

Thus, in order to find χq(r, r′) and εq(r, r′), one can calculate χ0
q(r, r′) by

means of Eq. 1.60 and afterwards solve the matrix equations in Eq. 1.62 and
Eq. 1.64, respectively. This method is historically known within the micro-
scopic theory of lattice dynamics as the dielectric approach [100, 115–117]
and has been successfully applied in several simple metals [118–121]. The
great advantage of this procedure is that all the information needed for
computing the dynamical matrix comes already from a single self-consistent
first principles DFT calculation. Still, the calculation of the interacting
density-response function and the dielectric function is typically highly ex-
pensive and time consuming, since it requires the inversion of large matrices
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Figure 1.2. Schematic representation of the self-consistent loop for solving the set
of Sternheimer equations in Eqs. 1.56 and 1.65-1.67.

in Eq. 1.63 for each momentum q, as well as the convergence of the non-
interacting density-response function in Eq. 1.60, which involves an expen-
sive sum over unoccupied bands within the 1BZ.

1.4.4 Density functional perturbation theory

An alternative method to overcome these drawbacks is the density functional
perturbation theory (DFPT) [30–33, 122, 123]. Within this formalism, one
actually only needs the knowledge of the occupied Kohn-Sham electronic
structure in order to self-consistently solve the set of the so-called Stern-
heimer equations. In this way, despite of evaluating perturbed quantities,
the computational cost of determining the density-response to a single per-
turbation is of the same order as that needed to calculate the unperturbed
ground-state density.
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Regarding Eq. 1.24, the first-order derivative of the electron density with
respect to the ionic displacements can be written in terms of the Kohn-Sham
wave functions and their first-order derivatives as follows:

∂n(r)

∂uαs (q)
=

1

Nk

1BZ∑
k

∑
n

f(εkn)×((
∂ψkn(r)

∂uαs (q)

)∗
ψkn(r) +

(
ψkn(r)

)∗∂ψkn(r)

∂uαs (q)

)
.

(1.65)

Within perturbation theory [106], the first-order derivatives of the Kohn-
Sham wave functions are determined by the first-order correction of the
Kohn-Sham Schrödinger equation in Eq. 1.13:

(ĤKS − εkn)
∂ψkn(r)

∂uαs (q)
= −

(
∂V̂KS

∂uαs (q)
− ∂εkn
∂uαs (q)

)
ψkn(r), (1.66)

where the first-order derivative of the Kohn-Sham energy reads:

∂εkn
∂uαs (q)

=

〈
ψkn

∣∣∣∣ ∂V̂KS

∂uαs (q)

∣∣∣∣ψkn

〉
=

∫ (
∂VKS(r)

∂uαs (q)

)∣∣ψkn(r)
∣∣2dr, (1.67)

and the first-order derivative of the Kohn-Sham potential is obtained by
means of Eq. 1.56, which actually depends on the first-order derivative of
the electron density.

Eqs. 1.65-1.67, together with Eq. 1.56, compose the set of Sternheimer
equations for the perturbed Kohn-Sham system. The latter has to be solved
self-consistently through an efficient numerical iterative procedure [30–
33, 122–124] in order to calculate the first-order derivatives of the elec-
tron density, or equivalently those of the Kohn-Sham potential, with re-
spect to the ionic displacements. Figure 1.2 illustrates schematically the
self-consistent loop for solving the set of Sternheimer equations, in clear
analogy with the self-consistent loop for solving the set of Kohn-Sham equa-
tions in Fig. 1.1 for the unperturbed case.
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Chapter 2

Electron-phonon interaction
from first principles

The theoretical formalism presented in Chapter 1 is insufficient for describ-
ing several physical phenomena observed in experiments. In particular, the
coupling between electrons and phonons, i.e. the electron-phonon interac-
tion, plays a crucial role in the charge transport and the thermodynamical
properties of solids, among which superconductivity stands out [2].

In this chapter, we introduce the theoretical formalism used throughout
this thesis for calculating several physical properties related to the electron-
phonon interaction in solids from first principles. Indeed, the electron-
phonon Hamiltonian appears as the natural first step when going beyond
the adiabatic approximation in Sec. 2.1, and is derived from the ground-state
electronic structure given by DFT and the lattice vibrational structure given
by DFPT. By means of many-body perturbation theory based on Green’s
functions together with some additional approximations, in Sec. 2.2 we de-
rive practical first principles expressions for calculating the electron and
phonon self-energies due to the electron-phonon interaction. The effects of
the electron-phonon interaction on electrons and phonons are discussed in
Sec. 2.3 and 2.4, respectively. The concepts of electron and phonon quasi-
particles, as well as the electron and phonon spectral functions, are also
introduced. Section 2.5 is devoted to deduce from the electron and phonon
self-energies all the relevant physical properties of the electron-phonon in-
teraction that have been studied throughout this thesis. We also present
the semi-empirical McMillan-Allen-Dynes formula for estimating the super-
conducting critical temperature of metals. Finally, in Sec. 2.6, we introduce
an interpolation technique based on maximally localized Wannier functions
for efficiently perform first principles calculations of the electron-phonon
interaction.

35
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2.1 Beyond the adiabatic approximation

Within the adiabatic approximation (Sec. 1.2), the non-adiabatic interac-
tion term ∆Ĥαα′ has been neglected when solving the total many-body
Schrödinger equation (Eq. 1.4). However, this procedure is not always to-
tally justified [2, 5]. From Eq. 1.5, we see that ∆Ĥαα′ physically describes the
coupling between electrons and the ionic motion, i.e. the so-called electron-
phonon interaction. The right-hand side of Eq. 1.5 is composed of a first
term dealing with the first-order derivatives of the electronic wave func-
tion with respect to the ionic positions and a second term dealing with the
second-order derivatives. Henceforth, we limit to the first-order derivatives,
which contribute at linear order in the ionic displacements, and therefore,
are the important part of the electron-phonon interaction [2].

Within DFT, the ground-state system of many interacting electrons is
replaced by the Kohn-Sham system of non-interacting electrons (Sec. 1.3.1).
In this context, the linear-order electronic-phonon interaction in Eq. 1.5 can
be easily rewritten within the second quantization formalism making use
of the usual fermionic creation and annihilation operators, ĉ†kn and ĉkn,
respectively, of the Kohn-Sham single-electron states [2, 5]. Thereby, the
electron-phonon Hamiltonian is given by:

Ĥep =
∑
lsα

1

Ms

1BZ∑
kk′

∑
nn′

〈ψk′n′ |P̂αls |ψkn〉 ĉ†k′n′ ĉknP̂
α
ls . (2.1)

In order to get a non-vanishing contribution in Eq. 2.1, we need to explicitly
take into account that the Kohn-Sham electron states are perturbed when
the ions are displaced from their equilibrium positions. Within standard
time-independent perturbation theory, the perturbed Kohn-Sham states are
linearly expanded as: |ψkn〉 + |∆ψkn〉, with |ψkn〉 the unperturbed Kohn-
Sham states and |∆ψkn〉 the corresponding first-order corrections given
by [106]:

|∆ψkn〉 =

1BZ∑
k′′ 6=k

∑
n′′ 6=n

〈ψk′′n′′ |∆V̂KS|ψkn〉
εkn − εk′′n′′

|ψk′′n′′〉 , (2.2)

where ∆V̂KS is the first-order correction to the Kohn-Sham potential in
terms of the ionic displacements with respect to their equilibrium positions:

∆VKS =
∑
lsα

∂VKS

∂uαls
uαls. (2.3)

It is worth noting that a static, i.e. frequency-independent, definition has
been adopted for the change in the Kohn-Sham potential when account-
ing for the first-order change in the Kohn-Sham states in Eq. 2.2. This is
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indeed a reminiscence of the adiabatic approximation, where only electro-
static fields are assumed. In fact, a proper definition of the electron-phonon
interaction should include a dynamic, i.e. frequency-dependent, change in
the Kohn-Sham potential by means of a treatment within time-dependent
perturbation theory. Nevertheless, this is computationally not practical for
first-principles calculations, and hence, a frequency-independent formalism
is followed for the derivation of the coupling functions. Recalling that the
momentum operator reads as: Pαls = −i(∂/∂ûαls) and using Eqs. 2.2 and
2.3, it is straightforward to see that the matrix element in Eq. 2.1 can be
rewritten as follows:

〈ψk′n′ |P̂αls |ψkn〉 = −i
〈
ψk′n′

∣∣∣∣ ∂

∂ûαls

∣∣∣∣∆ψkn

〉
= −i

〈
ψk′n′

∣∣∣∣∂V̂KS
∂uαls

∣∣∣∣∆ψkn

〉
εkn − εk′n′

. (2.4)

Plugging Eq. 2.4 into Eq. 2.1 and using the Fourier transform of the ionic mo-
mentum operator in terms of the bosonic ladder operators for each phonon
mode |qν〉 in Eq. 1.45 [6], we arrive to a Fröhlich-like reformulation of the
electron-phonon Hamiltonian as follows [2, 5]:

Ĥep =
1√
Nq

1BZ∑
kq

∑
mnν

gνmn(k,q)ĉ†k+qmĉkn(âqν + â†−qν). (2.5)

In this form, it is easy to see that the electron-phonon Hamiltonian describes
the emission or absorption of phonon modes by the relaxation or excita-
tion, respectively, of electron-hole pairs. The self-consistent static-screened
electron-phonon matrix element in Eq. 2.5 is given by [2]:

gνmn(k,q) =
∑
sα

εsαqν√
2Msωqν

gsαmn(k,q), (2.6)

where the self-consistent static-screened potential-change matrix element is
defined as [2]:

gsαmn(k,q)=
∑
l

eiq·Tl
〈
ψk+qm

∣∣∣∣∂V̂KS

∂uαls

∣∣∣∣ψkn

〉
=

〈
ψk+qm

∣∣∣∣ ∂V̂KS

∂uαs (q)

∣∣∣∣ψkn

〉
. (2.7)

The electron-phonon matrix element in Eq. 2.6 gives the probability ampli-
tude for effectively scattering an electron from the Kohn-Sham state |ψkn〉
to the Kohn-Sham state |ψk+qm〉 via the absorption of a phonon mode |qν〉
and the emission of a phonon mode |−qν〉, as shown in Figs. 2.1(a) and
(b), respectively. This magnitude has physical dimensions of energy. The
potential change matrix element in Eq. 2.7 describes the strength of the ef-
fective coupling between the Kohn-Sham electron states |ψkn〉 and |ψk+qm〉
via the change in the Kohn-Sham potential due to the ionic displacement
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Figure 2.1. Diagrams that represent the vertex interactions of Ĥep in Eq. 2.5.
The time evolution is depicted from left to right. Straight red and wavy blue
lines represent electrons and phonons, respectively. The green dot represents the
electron-phonon matrix element g = gνmn(k,q) in Eq. 2.6. In the phonon absorption
diagram (a) energy conservation requires εkn + ωqν = εk+qm, while in the phonon
emission diagram (b) εkn = εk+qm+ω−qν . Momentum conservation is also satisfied
for each case.

uαs (q) for a lattice distortion of momentum q. This magnitude has physical
dimensions of energy per length.

All the ingredients needed for calculating the electron-phonon matrix
elements in Eq. 2.6, and therefore, for constructing the electron-phonon
Hamiltonian Ĥep in Eq. 2.5, are directly available from state-of-the-art self-
consistent first principles calculations based on DFT (Sec. 1.3.1) and DFPT
(Sec. 1.4.4). Although the matrix elements are not directly probed magni-
tudes from experiment, they are essential for the definition of all the mea-
surable physical properties related to the electron-phonon interaction.

2.2 From a many-body formalism to practical ex-
pressions

The electron-phonon interaction affects both the electronic and lattice vibra-
tional structures of the system, which in turn modify the electron-phonon
interaction itself [2]. The effects due to the electron-phonon interaction are
self-consistently taken into account by means of many-body perturbation
theory based on Green’s functions [5]. Within this formalism, the poles of
the resulting functions define the so-called elementary excitations or quasi-
particles of the system [5], i.e. dressed particles with renormalized energies
and finite lifetimes due to many-body interactions. In this regard, the inter-
acting particle Green’s function is obtained from the non-interacting particle
Green’s function1 and the so-called particle self-energy via the Dyson’s equa-

1In literature, the interacting particle Green’s function is also known as the dressed or
perturbed particle Green’s function. The non-interacting particle Green’s function is also
known as the bare or unperturbed particle Green’s function.
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Figure 2.2. Diagrammatic representation of the Dyson’s equation for (a) electrons
in Eq. 2.8 and (b) phonons in Eq. 2.9. The double straight red and wavy blue
lines represent the interacting electron and phonon Green’s functions, Gkn and
Dqν , respectively. The single straight red and wavy blue lines represent the non-
interacting electron and phonon Green’s functions, G0kn and D0

qν , respectively.

tion [2, 5]. The self-energy is the key magnitude in the many-body Green’s
function perturbation theory. It encodes all the information of the many-
body effects on the particle absent in the non-interacting Green’s function.
For electrons, the Dyson’s equation reads as:

Gkn(ω) = G0
kn(ω) + G0

kn(ω)Σkn(ω)Gkn(ω), (2.8)

or equivalently:
(
Gkn(ω)

)−1
=
(
G0
kn(ω)

)−1 − Σkn(ω), where Gkn(ω) and
G0
kn(ω) are the interacting and non-interacting electron Green’s functions,

respectively, and Σkn(ω) is the electron self-energy. In the same way, for
phonons, the Dyson’s equation reads as:

Dqν(ω) = D0
qν(ω) +D0

qν(ω)Πqν(ω)Dqν(ω), (2.9)

or equivalently:
(
Dqν(ω)

)−1
=
(
D0

qν(ω)
)−1 − Πqν(ω), where Dqν(ω) and

D0
qν(ω) are the interacting and non-interacting phonon Green’s functions,

respectively, and Πqν(ω) is the phonon self-energy. The diagrammatic repre-
sentations of Eqs. 2.8 and 2.9 are shown in Figs. 2.2(a) and (b), respectively.

Throughout this work, only the diagonal elements, n = n′ in Eq. 2.8
and ν = ν ′ in Eq. 2.9, have been retained for the evaluation of the electron
and phonon self-energy matrices, respectively, and hence for the interacting
electron and phonon Green’s function matrices, respectively. We therefore
neglect off-diagonal terms, n 6= n′ in Eq. 2.8 and ν 6= ν ′ in Eq. 2.9, which is
equivalent to disregarding any coupling and any hybridization between dif-
ferent non-interacting electronic bands or different non-interacting phonon
branches. In this way, the interacting electrons maintain the orbital char-
acter of the non-interacting electrons, as well as the interacting phonons
maintain the polarization of the non-interacting phonon mode, but both
with renormalized properties. This is a rather common procedure in the
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Figure 2.3. Diagrammatic representation of (a) the electron self-energy and (b)
the phonon self-energy using Feynman rules [5, 21]. They are shown in their exact
form, and within the Migdal’s approximation (Γ ≈ g) [125] together with the sub-
stitution of the interacting Green’s functions by their non-interacting counterparts,
Gkn(ω) ≈ G0kn(ω) and Dkn(ω) ≈ D0

kn(ω), respectively. The green dot represents
the electron-phonon coupling first-order vertex function, equivalent to the electron-
phonon matrix element g = gνmn(k,q) in Eq. 2.6. In turn, the open green circle
represents the electron-phonon full vertex function Γ = Γνmn(k,q, ω, ω′), which ac-
counts for the infinite number of Feynman diagrams.

literature [4] and a safe approximation as demonstrated in practical calcu-
lations.

In the absence of many-body interactions, the electronic system is in its
ground state, which is obtained by means of self-consistent first principles
DFT calculations. The well-known temperature-dependent expression of
the so-called retarded Green’s function for a non-interacting electron in the
Kohn-Sham state |ψkn〉 is defined as the simple pole at the infinitely long-
lived Kohn-Sham energy εkn [2, 5, 21]:

G0
kn(ω) = lim

η→0+

f(εkn)

ω − εkn − iη
+

1− f(εkn)

ω − εkn + iη
, (2.10)

where η is a positive real infinitesimal. Similarly, the lattice vibrational
structure is obtained by means of self-consistent first principles DFPT calcu-
lations. The well-known temperature-dependent expression of the retarded
non-interacting Green’s function for a phonon mode |qν〉 is defined in terms
of the infinitely long-lived adiabatic phonon frequency ωqν [2, 5, 21]:

D0
qν(ω) = lim

η→0+
2ωqν

(
1 + nB(ωqν)

ω2 − (ωqν − iη)2
− nB(ωqν)

ω2 − (ωqν + iη)2

)
, (2.11)

Plugging Eq. 2.10 and Eq. 2.11 into Eq. 2.8 and Eq. 2.9, respectively, and
taking η = 0, the interacting electron and phonon Green’s functions are
defined as:

Gkn(ω) =
1

ω − εkn − Σkn(ω)
, (2.12)
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and:

Dqν(ω) =
2ωqν

ω2 − ω2
qν − 2ωqνΠqν(ω)

, (2.13)

respectively. Regarding the electron and phonon self-energies, their ex-
pressions can be derived by examining their diagrammatic representa-
tions in Figs. 2.3(a) and (b), respectively, following the standard Feynman
rules [5, 21]. The electron and phonon self-energies are formally written
as [5]:

Σkn(ω) =
i

Nq

1BZ∑
q

∑
mν

∫
dω′

2π

(
gνmn(k,q, ω)

)∗Gk+qm(ω + ω′)

×Dqν(ω′)Γνmn(k,q, ω, ω′),

(2.14)

and:

Πqν(ω) = − i

Nk

1BZ∑
k

∑
mn

∫
dω′

2π

(
g∗νmn(k,q, ω)

)∗Gk+qm(ω + ω′)

× Gkn(ω′)Γνmn(k,q, ω, ω′),

(2.15)

respectively, where Γνmn(k,q, ω, ω′) is the electron-phonon full vertex func-
tion, containing the infinite series of Feynman diagrams. In what follows,
Σkn(ω) will refer to the electron self-energy function and Πqν(ω) to the
phonon self-energy function.

The latter function can be separated into the sum of the lowest first-order
vertex diagram, which is described by the linear electron-phonon matrix ele-
ment gνmn(k,q) in Eq. 2.6 containing a single-phonon process (Fig. 2.1), and
the additional vertex correction term that comprises all the infinite higher-
order vertex diagrams containing multi-phonon processes [2, 5]. Migdal
argued that the corrections induced by the higher-order vertex terms in
Γνmn(k,q, ω, ω′) are small, of the order of 1/

√
MI for normal metals [125].

Therefore, a widely used approximation in Eqs. 2.14 and 2.15 is to neglect
higher-order vertex corrections and directly substitute Γνmn(k,q, ω, ω′) by
gνmn(k,q). Besides, for practical reasons, it is common to substitute the
interacting electron and phonon Green’s functions by their non-interacting
counterparts. These approaches lead then to the following expressions for
the electron and phonon self-energies [2, 4, 5]:

Σkn(ω) =
i

Nq

1BZ∑
q

∑
mν

∣∣gνmn(k,q)
∣∣2 ∫ dω′

2π
G0
k+qm(ω + ω′)D0

qν(ω′), (2.16)

and:

Πqν(ω) = − i

Nk

1BZ∑
k

∑
mn

∣∣gνmn(k,q)
∣∣2 ∫ dω′

2π
G0
k+qn(ω + ω′)G0

km(ω′). (2.17)
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In order to find practical expressions for the electron and phonon self-
energies, we can use Eqs. 2.10 and 2.11 in Eqs. 2.16 and 2.17, respectively,
and performed the corresponding integrations in the complex plane [21].
Thereby, we find the extensively used temperature-dependent practical ex-
pressions for the so-called retarded electron and phonon self-energies due to
the electron-phonon interaction [2, 4, 5]:

Σkn(ω) = lim
η→0+

1

Nq

1BZ∑
q

∑
mν

∣∣gνmn(k,q)
∣∣2×(

1− f(εk+qm) + nB(ωqν)

ω − εk+qm − ωqν + iη
+

f(εk+qm) + nB(ωqν)

ω − εk+qm + ωqν + iη

)
,

(2.18)

and:

Πqν(ω) = lim
η→0+

1

Nk

1BZ∑
k

∑
mn

∣∣gνmn(k,q)
∣∣2( f(εkn)− f(εk+qm)

εkn − εk+qm + ω + iη

)
. (2.19)

In Eqs. 2.18 and 2.19, the sign in the imaginary infinitesimal on the denom-
inators indicates that these functions are actually retarded, i.e. they have
all poles below the real axis. In addition, the retarded electron and phonon
self-energies have to satisfy causality, and therefore, their real and imaginary
parts are related by Kramers-Kronig relations [2, 5]:

ReΣkn(ω) = − 1

π

∫ ∞
−∞

ImΣkn(ω′)

ω − ω′
dω′

ImΣkn(ω) =
1

π

∫ ∞
−∞

ReΣkn(ω′)

ω − ω′
dω′.

(2.20)

and:

ReΠqν(ω) = − 1

π

∫ ∞
−∞

ImΠqν(ω′)

ω − ω′
dω′

ImΠqν(ω) =
1

π

∫ ∞
−∞

ReΠqν(ω′)

ω − ω′
dω′.

(2.21)

Before concluding with this section, it is important to note that the non-
interacting phonon modes are calculated by diagonalizing the dynamical
matrix in Eq. 1.53, which already accounts for the static response of the
electron density to the ionic motion, i.e. the static effects of the electron-
phonon interaction. The importance of this detail is better understood from
examining the double integral in the first term on the right-hand side of
the additional expression of the dynamical matrix in Eq. 1.61, where we
substitute χ0

q(r, r′) by the expression in Eq. 1.60, obtaining:

dαα
′

ss′ (q) =
1

Nk

1BZ∑
k

∑
mn

(
gsαmn(k,q)√

Ms

)∗
gs
′α′
mn (k,q)√
Ms′

f(εkn)− f(εk+qm)

εkn − εk+qm
. (2.22)
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Rewriting the equation above in the phonon-mode representation, i.e. the
representation in which the dynamical matrix is diagonal and equal to the
square of the phonon frequencies, by means of a unitary transformation:

dνν(q) =
∑
ss′

∑
αα′

(
εsαqν
)∗
dαα

′
ss′ (q)εs

′α′
qν

=
2ωqν

Nk

1BZ∑
k

∑
mn

∣∣gνmn(k,q)
∣∣2(f(εkn)− f(εk+qm)

εkn − εk+qm

)
= 2ωqνΠqν(0),

(2.23)

we show that the first term on the right-hand side of Eq. 1.61 is directly
related to the frequency-independent term of the retarded phonon self-
energy in Eq. 2.19. Therefore, the latter is already included in the adia-
batic description of the dynamical matrix and the phonon modes resulting
from self-consistent first principles DFPT calculations that form our non-
interacting phonon description (Eq. 2.11). Thus, the actual expression of
the retarded phonon self-energy that correctly takes into account the ef-
fects of the electron-phonon interaction on phonons beyond the adiabatic
approximation, i.e. non-adiabatic effects, is given by [4]:

Π̃qν(ω) = Πqν(ω)−Πqν(0) = lim
η→0+

1

Nk

1BZ∑
k

∑
mn

∣∣gνmn(k,q)
∣∣2×(

f(εkn)− f(εk+qm)

εkn − εk+qm + ω + iη
−
f(εkn)− f(εk+qm)

εkn − εk+qm

)
.

(2.24)

2.3 Effects of the electron-phonon interaction on
electrons

Once the retarded electron self-energy is calculated from first principles, we
have immediate access to the retarded interacting electron Green’s function
by means of Eq. 2.12. The poles of the interacting electron Green’s function
determine the electron quasi-particle structure of the system, allowing to
study the renormalization of the non-interacting electronic structure induced
by the electron-phonon interaction. Furthermore, the spectral representa-
tion of the interacting Green’s function, i.e. the electron spectral function, is
an extremely useful physical magnitude, since it is experimentally accessible
by means of ARPES [38].

2.3.1 Electron quasi-particles

The electron quasi-particle structure is conformed by the poles of the in-
teracting electron Green’s function in Eq. 2.12. Thus, the electron quasi-
particle poles are the solutions of the following equation:

ω = εkn + Σkn(ω) = εkn + ReΣkn(ω) + iImΣkn(ω), (2.25)
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where it is clear that the real and imaginary parts of the electron self-energy
contain all the necessary information to compute the energy renormalization
and lifetime, respectively, of an electron in the Kohn-Sham state |ψkn〉 with
energy εkn propagating in a many-body system.

Although ω has been so far considered as purely real, the electron
Dyson’s equation in Eq. 2.25 must be self-consistently solved within the
whole complex energy plane z. This is so because of the complex defini-
tion of the electron self-energy, and consequently, the energy argument and
the electron quasi-particle pole itself, whose renormalized energy Ekn and
linewidth Γkn can be compactly expressed as an ordinary complex number
zkn = Ekn − iΓkn. The energies Ekn yield the band structure corrected by
the electron-phonon interaction, while the linewidth Γkn is connected with
the electron quasi-particle lifetime as τkn = 1/(2Γkn). In order to correctly
extend Eq. 2.25 into the complex energy plane, the electron self-energy needs
to be considered as a complex function of complex energy, i.e. Σkn(z). Nev-
ertheless, simply replacing real excitation energies by their complex counter-
parts (ω → z) usually leads to discontinuous functions across the real axis [5].
In fact, one needs to resort to the analytic continuation of these functions
in order to recover mathematically meaningful expressions [21, 114, 126]. In
this sense, Refs. [35, 36] proposed a scheme for solving the electron Dyson’s
equation within the complex plane, by first replacing ω → z in the elec-
tron self-energy for the upper half complex plane, and then, by analytically
continuing Σkn(z) from the upper to the lower half complex plane.

The electron Dyson’s equation in Eq. 2.25 can be rewritten using the
complex definition of the electron quasi-particle pole as a system of two
coupled non-linear equations defined in the whole complex plane [35, 36]:

Ekn = εkn + ReΣkn(Ekn − iΓkn)

Γkn = −ImΣkn(Ekn − iΓkn),
(2.26)

where it appears obvious that the electron quasi-particle linewidth has a cru-
cial impact on its renormalized energy, and vice versa. It is also worth noting
that the equation system in Eq. 2.26 may lead to several solutions, due to
the non-linear character of the self-energy function [35, 36]. In this way, one
can define the first-order Laurent series expansion of the interacting electron
Green’s function in the vicinity of the different electron quasi-particle (qp)
poles as follows:

Gqp
kn(z) =

∑
j

Z(j)
kn

z − z(j)
kn

=
∑
j

Z(j)
kn

z − E(j)
kn + iΓ

(j)
kn

, (2.27)

where the index j accounts for the possibility of several electron quasi-
particle states, i.e. a multiple-electron quasi-particle picture, starting from

a non-interacting Kohn-Sham single-electron state |ψkn〉. In Eq. 2.27, Z(j)
kn
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represents the dimensionless complex renormalization factor of the j-th elec-
tron quasi-particle state. Physically, it is related to the spectral weight of
the electron quasi-particle pole. Mathematically, it is defined as the com-
plex residue of the analytical continuation of the interacting electron Green’s

function Gkn(z) evaluated at the complex pole z
(j)
kn [35, 36]. Since the electron

quasi-particle pole is a first-order pole in Eq. 2.26, the renormalization fac-
tor can be directly obtained by applying the well-known simple-pole residue
formula as follows:

Z(j)
kn = Res

(
Gkn(z), z

(j)
kn

)
=

1

1− Σ
′
kn(z

(j)
kn)

. (2.28)

The most standard treatment used in literature for solving the electron
Dyson’s equation is to simply ignore the complex nature of the energy plane
by neglecting the interplay between the electron quasi-particle energy and
linewidth in Eq. 2.25 [4]. Thereby, one avoids any analytical continuation of
the electron self-energy and arrives to a non-lineal equation equivalent to the
Brillouin-Wigner (BW) perturbation theory method [5]. Within the above
procedure, the approximate electron quasi-particle energy EBW

kn is obtained
by self-consistently solving the real part of the electron Dyson’s equation in
Eq. 2.26 along the real axis and the approximate linewidth ΓBW

kn is obtained
by directly evaluating the imaginary part of the electron self-energy at EBW

kn :

EBW
kn = εkn + ReΣkn(EBW

kn )

ΓBW
kn = −ImΣkn(EBW

kn ).
(2.29)

Note that one can also recover the most basic and non-selfconsistent
Rayleigh-Schrödinger (RS) perturbation theory method [5] by replacing
EBW

kn → εkn in the argument of the electron self-energy function in Eq. 2.29.

A popular procedure for improving the Brillouin-Wigner perturbation
theory results (Eq. 2.29) is the so-called quasi-particle expansion, in which
the improved approximate electron quasi-particle linewidth is defined as
[4, 38]:

ΓBW
kn = −ZBW

kn ImΣkn(EBW
kn ) (2.30)

where ZBW
kn is the real renormalization factor of the approximate electron

quasi-particle state. It is defined as in Eq. 2.28 but this time only considering
the derivative of the real part of the electron self-energy evaluated at EBW

kn :

ZBW
kn =

1

1− ReΣ
′
kn(EBW

kn )
. (2.31)

It is worth noting that there is no justification for the general use of these
standard procedures, since the real and imaginary parts of the electron self-
energy are usually of the same order of magnitude.
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Indeed, the standard schemes are only acceptable in the limit close to
the Fermi level at zero temperature, where the imaginary part of the elec-
tron self-energy, and hence, the imaginary part of the electron quasi-particle
pole, vanishes (Appendix C). In this limit, Eqs. 2.26 and 2.29 are there-
fore equivalent. The momentum-derivative of the real part of the electron
Dyson’s equation accounts for the distortion of the band structure due to the
electron-phonon interaction, showing that the electron quasi-particle band
velocity decreases as [2]:

∇kEkn = ∇kεkn + ∇kReΣkn(Ekn)→ Vkn =
vkn

1 + λkn
, (2.32)

where Vkn = ∇kEkn and vkn = ∇kεkn are the effective band velocities
of the electron quasi-particle and the non-interacting electron, respectively.
This can be also interpreted as an enhancement of the electron quasi-particle
band mass due to the electron-phonon interaction, given by [2]:

M∗kn = m∗kn(1 + λkn), (2.33)

where M∗kn and m∗kn are the effective band masses of the electron quasi-
particle and the non-interacting electron, respectively.

The dimensionless magnitude λkn is the so-called mass enhancement
parameter or state-dependent electron-phonon coupling strength, and ac-
counts for the distortion of the non-interacting Kohn-Sham electron state
|ψkn〉 close to the Fermi level due to the electron-phonon interaction. It is
given by [2]:

λkn = −∂ReΣkn(ω)

∂ω

∣∣∣∣
ω=εkn=0

(2.34)

2.3.2 The electron spectral function

The so-called electron spectral function physically describes the probability
distribution of electrons with energy ω at momentum k in a many-body
system. This magnitude is precisely of high physical interest, since it is
directly probed by a variety of experimental ARPES techniques [38]. The
electron spectral function for an electron state with band index n is related
to the corresponding interacting electron Green’s function as follows [2, 5]:

Akn(ω) =− 1

π
ImGkn(ω) = − 1

π
Im

[
1

ω − εkn − Σkn(ω)

]

=− 1

π

ImΣkn(ω)[
ω − εkn − ReΣkn(ω)

]2
+
[
ImΣkn(ω)

]2 .
(2.35)

Akn(ω) obeys the following sum rule that guarantees the conservation of the
number of charge carriers [2, 5]:∫ ∞

−∞
dωAkn(ω) = 1. (2.36)
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Figure 2.4. Representation of the electron spectral function for (a) the non-
interacting case in which the electron has the Kohn-Sham energy εkn, and (b)
and (c) considering the case in which the electron quasi-particle has acquired a
renormalized energy Ekn and a linewidth Γkn, with a purely real and complex quasi-
particle strength, Zkn = 1 and Zkn = eiπ/6, respectively. Top panels represent
Akn(ω) in the real energy axis. Bottom panels show the contour map in the complex
energy plane of Akn(z), where quasi-particle poles are located by dashed black lines
at zkn = εkn in panel (a), and zkn = Ekn − iΓkn in panels (b) and (c). The cuts
at Im[z] = 0 represented by horizontal solid black lines correspond to the spectra
shown in top panels. The color code scale represents the height of the spectral line.

As an aid for later physical interpretations, it is useful to briefly explore
how the main features of the electron spectral function evolves from the non-
interacting case in the absence of any interaction, i.e. Σkn(ω) = 0, to the in-
teracting case in the presence of many-body interactions, i.e. Σkn(ω) 6= 0. In
this respect, let us start from the spectral representation of a non-interacting
electron in the Kohn-Sham state |ψkn〉 with energy εkn, related to the
temperature-independent expression of the non-interacting electron Green’s
function as follows [2, 5]:

A0
kn(ω) = − 1

π
ImG0

kn(ω) = lim
η→0+

− 1

π
Im

[
1

ω − εkn + iη

]
= δ(ω−εkn), (2.37)

leading to a Dirac delta function at εkn that trivially fulfills the sum rule in
Eq. 2.36. The top panel in Fig. 2.4(a) represents the non-interacting electron
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spectral function A0
kn(ω) in Eq. 2.37, while the bottom panel represents the

corresponding contour map in the complex energy of its analytic continua-
tion A0

kn(z). Let us now analyze the spectral representation of the interact-
ing electron. As in Eq. 2.27, the interacting electron Green’s function can
be expanded up to first-order in terms of a multiple-electron quasi-particle
picture, whose corresponding spectral function is given by [36]:

Aqp
kn(ω) =− 1

π
ImGqp

kn(z) = − 1

π

∑
j

Im

[
Z(j)
kn

ω − E(j)
kn + iΓ

(j)
kn

]

=
1

π

∑
j

Γ
(j)
knReZ(j)

kn(
ω − E(j)

kn

)2
+
(

Γ
(j)
kn

)2 −

(
ω − E(j)

kn

)
ImZ(j)

kn(
ω − E(j)

kn

)2
+
(

Γ
(j)
kn

)2 ,

(2.38)

which is a sum of weighted even Lorentzian functions and odd Dawson func-

tions centered at the energies E
(j)
kn for each j-th electron quasi-particle state.

Taking into account that the electron quasi-particle spectral function in
Eq. 2.38 must obey the sum rule in Eq. 2.36, the following relation can be
trivially derived: ∫ ∞

−∞
dωAqp

kn(ω) =
∑
j

ReZ(j)
kn 6 1. (2.39)

which shows that the total spectral weight coming from electron quasi-
particle states is equal to the sum of the real parts of the renormalization
factors, being smaller than or equal to unity. As a simple illustration, we
only consider the spectral representation of a single-electron quasi-particle
state with renormalized energy Ekn and finite linewidth Γkn. The top panels
of Figs. 2.4(b) and (c) represent the electron quasi-particle spectral function
Aqp

kn(ω) in Eq. 2.38 for the cases in which the electron quasi-particle renor-
malization factor is purely real and complex, respectively. The bottom pan-
els of Figs. 2.4(b) and (c) represent the contour maps in the complex energy
plane of the corresponding analytical continuations of Aqp

kn(z), respectively.
Unlike the non-interacting case, in which the pole is at εkn in the real

axis, in the interacting case the electron quasi-particle pole is located in
the lower half complex plane at zkn = Ekn − iΓkn. This makes the non-
interacting Dirac delta spectral representation broaden and acquire a peaked
line shape in the interacting case. In the ideal interacting case, the electron
quasi-particle renormalization factor is purely real and the complex pole is
perpendicularly orientated with respect to the real energy axis. This leads
to a perfectly symmetric Lorentzian spectral function in the real axis, whose
peak is located at the electron quasi-particle energy Ekn with a full-width at
half-maximum of 2Γkn. In the more general case where the electron quasi-
particle renormalization factor has a finite imaginary part, the pole is rotated
a finite angle within the complex plane from the previous ideal orientation.
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This has the direct effect of distorting the previous ideal Lorentzian spectral
function into an asymmetric spectral peak shape, whose maximum is shifted
from the electron quasi-particle energy, Ekn.

Actual interacting electron spectra are by far more complicated than
the previous simple examples. Indeed, many-body interactions make the
spectral structures to extend over a wide energy range with quite irregu-
lar shapes. Even in the simple Einstein model (Appendix C), the electron
quasi-particle renormalization factors acquire finite imaginary components,
which lead to the appearance of asymmetric spectral peaks instead of perfect
Lorentzians.

2.4 Effects of the electron-phonon interaction on
phonons

Once the retarded phonon self-energy is calculated from first principles by
means of Eq. 2.24, we have immediately access to the retarded interacting
phonon Green’s function by means of Eq. 2.13. On the one hand, the poles of
the interacting phonon Green’s function determine the phonon quasi-particle
branch structure of the system, allowing to study the renormalization of the
lattice vibrational structure induced by the electron-phonon interaction. On
the other hand, the spectral representation of the interacting phonon Green’s
function, i.e. the phonon spectral function, is an extremely useful physical
magnitude, since it is experimentally accessible by means of INS/IXS and
Raman scattering [39, 40].

2.4.1 Phonon quasi-particles

The phonon quasi-particle structure is conformed by the poles of the inter-
acting phonon Green’s function in Eq. 2.13, substituting Πqν(ω) in Eq. 2.19
by Π̃qν(ω) in Eq. 2.24. Thus, the phonon quasi-particle structure are the
solutions of the following equation:

ω2 = ω2
qν + 2ωqνΠ̃qν(ω) = ω2

qν + 2ωqνReΠ̃qν(ω) + i2ωqνImΠ̃qν(ω), (2.40)

where it is also clear that the real and imaginary parts of the phonon self-
energy contain all the information on the frequency renormalization and
the lifetime, respectively, of a non-interacting adiabatic phonon mode |qν〉
propagating in a many-body system.

As we have done for electrons, the phonon Dyson’s equation in Eq. 2.40
must be self-consistently solved within the whole complex frequency plane
z, due to the complex definition of both, the phonon self-energy and its
frequency argument, and due to the complex character of the phonon quasi-
particle pole itself, whose renormalized frequency Ωqν and linewidth γqν
can be expressed as zqν = Ωqν − iγqν . The frequencies Ωqν represent the
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corrected phonon dispersion relation by the non-adiabatic electron-phonon
coupling, while the linewidth γqν is connected to the phonon quasi-particle
lifetime by τqν = 1/(2γqν). Therefore, as for electrons, the analytical con-
tinuation of the non-adiabatic phonon self-energy, Π̃qν(z), is in principle
mandatory for properly solving the phonon Dyson’s equation.

The phonon Dyson’s equation in Eq. 2.40 can be rewritten using the com-
plex definition of the phonon quasi-particle pole as a system of two coupled
non-linear equations defined in the whole frequency complex plane [4]:

Ω2
qν = ω2

qν + γ2
qν + 2ωqνReΠ̃qν

(
Ωqν − iγqν

)
γqν = −ωqν

Ωqν
ImΠ̃qν

(
Ωqν − iγqν

)
,

(2.41)

where it is also evident the crucial impact of the phonon quasi-particle
linewidth on its renormalized frequency and vice versa. Also for phonons,
the non-linear character of the phonon Dyson’s equation system in Eq. 2.41
may lead to additional several solutions. Thus, one can define the first-order
Laurent series expansion of the interacting phonon Greens function in the
vicinity of the different electron quasi-particle (qp) poles as follows [127]:

Dqp
qν(z) =

∑
j

Z(j)
qν

z − z(j)
qν

− Z(j)
qν

z + z
(j)
qν

=
∑
j

2z
(j)
qνZ(j)

qν

z2 −
(
z

(j)
qν

)2

=
∑
j

2
(

Ω
(j)
qν − iγ(j)

qν

)
Z(j)
qν

z2 −
(

Ω
(j)
qν − iγ(j)

qν

)2 ,

(2.42)

where the index j accounts for the possibility of several phonon quasi-particle
modes, i.e. a multiple-phonon quasi-particle picture, starting from an adia-

batic single-phonon mode |qν〉. In Eq. 2.42 Z(j)
qν represents the dimensionless

complex renormalization factor of the j-th phonon quasi-particle mode. Sim-
ilar to electrons, it physically describes the spectral weight of the phonon
quasi-particle pole. Mathematically, it is defined as the complex residue
of the analytical continuation of the interacting phonon Green’s function
evaluated at the complex pole:

Z(j)
qν = Res

(
Dqν(z), z

(j)
qν

)
=

1

z
(j)
qν /ωqν − Π̃′qν

(
z

(j)
qν

) . (2.43)

The standard treatment for solving the phonon Dyson’s equation is
to simply ignore the complex nature of the frequency plane by neglecting
the interplay between the phonon quasi-particle frequency and linewidth in
Eq. 2.40 [4]. Thereby, one avoids any analytical continuation of the phonon
self-energy and arrives to a non-lineal equation equivalent to the Brillouin-
Wigner (BW) perturbation theory [5]. Within the above procedure, the
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approximate renormalized phonon quasi-particle frequency ΩBW
qν is obtained

by self-consistently solving the real part of the phonon Dyson’s equation in
Eq. 2.41 only along the real axis and the approximate linewidth γBW

qν is ob-
tained by directly evaluating the imaginary part of the phonon self-energy
at ΩBW

qν : (
ΩBW
qν

)2
= ω2

qν + 2ωqνReΠ̃qν(ΩBW
qν )

γBW
qν = − ωqν

ΩBW
qν

ImΠ̃qν(ΩBW
qν ).

(2.44)

However, the most standard treatment used in literature for the case of
phonons is still the non-selfconsistent Rayleigh-Schrödinger (RS) perturba-
tion theory method, where ΩBW

qν is replaced by ωqν in the argument of the
phonon self-energy in Eq. 2.44.

2.4.2 The phonon spectral function

Similar to electrons, the so-called phonon spectral function physically de-
scribes the probability distribution of phonons with frequency ω at momen-
tum q in a many-body system. This magnitude is precisely of high physical
interest, since it is directly probed by a variety of experimental techniques,
among which the INS/IXS and Raman scattering [39, 40]. The phonon
spectral function for a phonon mode with branch index ν is related to the
corresponding interacting phonon Green’s function as follows [2, 5]:

Bqν(ω) =− 1

π
ImDqν(ω) = − 1

π
Im

[
2ωqν

ω2 − ω2
qν − 2ωqνΠ̃qν(ω)

]

=− 1

π

4ω2
qνImΠ̃qν(ω)(

ω2 − ω2
qν − 2ωqνReΠ̃qν(ω)

)2
+ 4ω2

qν

(
ImΠ̃qν(ω)

)2 ,
(2.45)

which fulfills the following sum-rule that guarantees the conservation of the
number of emitted or absorbed phonon modes [127]:∫ ∞

0
dωBqν(ω) = 1 (2.46)

In the absence of the non-adiabatic electron-phonon interaction,
i.e. Π̃qν(ω) = 0, the spectral representation of the phonon mode |qν〉 is
related to the temperature-independent expression of the non-interacting
phonon Green’s function in Eq. 2.11 as follows [2, 5]:

B0
qν(ω)=− 1

π
ImD0

qν(ω)= lim
η→0
− 1

π
Im

[
2ωqν

ω2 − (ωqν − iη)2

]
=δ(ω±ωqν), (2.47)

leading to a Dirac delta function at ±ωqν (Fig. 2.4(a)), which trivially fulfills
the sum rule in Eq. 2.46. On the other hand, as in Eq. 2.42, the Green’s
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function for an interacting phonon, i.e. Π̃qν(ω) 6= 0, can be expanded up
to first-order in terms of a multiple-phonon quasi-particle picture, whose
corresponding spectral representation is given by [127]:

Bqp
qν(ω) = − 1

π
ImDqp

qν(ω) = − 1

π

∑
j

Im

[
2z

(j)
qνZ(j)

qν

ω2 −
(
z

(j)
qν

)2

]

=
1

π

∑
j

(
Ω

(j)
qν ± ω

)
ImZ(j)

qν + γ
(j)
qν ReZ(j)

qν(
Ω

(j)
qν ± ω

)2
+
(
γ

(j)
qν

)2 ,

(2.48)

which is a sum of weighted even Lorentzian functions and odd Dawson func-

tions centered at the frequencies ±Ω
(j)
qν for each j-th phonon quasi-particle

mode. In addition, Bqp
qν(ω) is an even function [127], i.e. Bqp

qν(ω) = Bqp
qν(−ω),

and therefore: ∫ ∞
0

Bqp
qν(ω)dω =

1

2

∫ ∞
−∞

Bqp
qν(ω)dω. (2.49)

Taking into account that the phonon quasi-particle spectral function in
Eq. 2.48 must obey the sum rule in Eq. 2.46, the following relation can be
trivially derived: ∫ ∞

0
Bqp

qν(ω)dω =
∑
j

ReZ(j)
qν 6 1, (2.50)

which shows that the total spectral weight coming from phonon quasi-
particle modes is equal to the sum of the real parts of the renormalization
factors, which should be smaller than or equal to unity. Similarly to elec-

trons, the imaginary character of Z(j)
qν in Eq. 2.48 leads to the appearance of

asymmetric peaks in the phonon quasi-particle spectral function.
The most standard procedure used in literature for rationalizing both,

experimentally and theoretically, the phonon spectral function in terms of
quasi-particle modes is to completely neglect the imaginary part of the
renormalization factors, i.e. to interpret the spectrum using full-symmetric
Lorentzian functions (Fig. 2.4(b)). As seen for electrons, this can give
wrong estimations of the renormalized phonon quasi-particle frequencies and
linewidths, since the actual phonon spectral functions are by far more com-
plicated (Fig. 2.4(c)).

2.5 Relevant physical properties of the electron-
phonon interaction

In this section, all the additional relevant physical properties related to the
electron-phonon interaction studied throughout this thesis are derived from
the retarded electron and phonon self-energies in Eqs. 2.18 and 2.24.
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2.5.1 The Eliashberg spectral function and the electron-
phonon coupling strength

On the one hand, in order to get a more direct formulation of the state-
dependent electron-phonon coupling strength or mass enhancement param-
eter defined in Eq. 2.34, one can start from the explicit expression of the
imaginary part of the electron self-energy in Eq. 2.18 that can be obtained
by using of the following mathematical property:

lim
η→0+

1

a+ iη
= P

(
1

a

)
− iπδ(a). (2.51)

Applying Eq. 2.51 to Eq. 2.18, the imaginary part of the electron self-energy
is directly expressed as follows:

ImΣkn(ω) = − π

Nq

1BZ∑
q

∑
mν

∣∣gνmn(k,q)
∣∣2×[(

1− f(εk+qm) + nB(ωqν)
)
δ(ω − εk+qm − ωqν)+(

f(εk+qm) + nB(ωqν)
)
δ(ω − εk+qm + ωqν)

]
.

(2.52)

Since the state-dependent electron-phonon coupling strength in Eq. 2.34 has
been physically defined as a property close to the Fermi level (ω = εkn → εF)
at zero temperature, i.e. nB(ωqν) = 0, we can rewrite the imaginary part of
the electron self-energy in Eq. 2.52 as follows:

ImΣkn(ω) = −π
∫ ∞

0
dω′
[
α2F−kn(ω′)

(
1− f(ω − ω′)

)
+

α2F+
kn(ω′)f(ω + ω′)

]
,

(2.53)

where the so-called state-dependent Eliashberg spectral functions α2F±kn(ω)
are properly defined as follows [43]:

α2F±kn(ω) =
1

Nq

1BZ∑
q

δ(ω − ωqν)
∑
mν

∣∣gνmn(k,q)
∣∣2δ(εkn − εk+qm ± ω). (2.54)

These functions can be interpreted as the probability of scattering at zero
temperature an electron (-) or a hole (+) from the Kohn-Sham state |ψkn〉
with energy εkn to all the other energetically allowed states via the emis-
sion of a phonon of frequency ω, or equivalently as the phDOS in Eq. 1.51
weighted by the electron-phonon interaction. One can recover the expres-
sion of the real part of the electron self-energy in terms of the Eliashberg
functions by plugging Eq. 2.53 into the Kramers-Kronig relations in Eq. 2.20:
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ReΣkn(ω) =

∫ ∞
−∞

dω′′
∫ ∞

0
dω′

[
α2F−kn(ω′)

1− f(ω′′ − ω′)
ω − ω′′

+

α2F+
kn(ω′)

f(ω′′ + ω′)

ω − ω′′

]
.

(2.55)

The differences between α2F±kn(ω) are usually small, since the scale of the
electron energies scale is typically much larger than that of the phonon
frequencies. One can therefore assume that: α2F+

kn(ω) ≈ α2F−kn(ω), and the
real part of the electron self-energy can be rewritten as [2]:

ReΣkn(ω) = −
∫ ∞
−∞

dω′′
∫ ∞

0
dω′
(
α2F+

kn(ω′)+α2F−kn(ω′)
)ω′f(ω′′ + ω)

ω′′2 − ω′2
. (2.56)

Plugging Eq. 2.56 into Eq. 2.34 and having that ∂f(ω′′+ω)/∂ω|ω=0 = δ(ω′′)
at zero temperature, the state-dependent electron-phonon coupling strength
is given by:

λkn =

∫ ∞
0

dω
α2F+

kn(ω) + α2F−kn(ω)

ω
, (2.57)

which, using the state-dependent Eliashberg functions in Eq. 2.54, can be
also written as:

λkn =
1

Nq

1BZ∑
q

∑
mν

∣∣gνmn(k,q)
∣∣2

ωqν
δ(εkn − εk+qm ± ωqν). (2.58)

Likewise, the electron-phonon coupling strength can be averaged over the
Fermi surface as:

λ =
1

NF

1

Nk

1BZ∑
k

∑
n

λknδ(εkn − εF) =

∫ ∞
0

dω
α2F+(ω) + α2F−(ω)

ω
, (2.59)

where the FS-averaged Eliashberg spectral functions are defined as:

α2F±(ω) =
1

NF

1

Nk

1BZ∑
k

∑
n

α2F±kn(ω)δ(εkn − εF) (2.60)

The expression of the electron-phonon coupling strength can be also
rationalized starting from the imaginary part of the phonon self-energy. The
explicit expression for the latter is deduced by applying the mathematical
relation in Eq. 2.51 to the retarded phonon self-energy in Eq. 2.24:

ImΠ̃qν(ω) = − π

Nk

1BZ∑
k

∑
mn

∣∣gνmn(k,q)
∣∣2(f(εkn)− f(εk+qm)

)
×

δ(εkn − εk+qm + ω).

(2.61)
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As mentioned in Sec. 2.4.1, the most standard procedure for studying the
effects of the electron-phonon interaction on phonons is the Rayleigh-
Schrödinger perturbation theory. Within this approach, the phonon
quasi-particle linewidth is given by evaluating the imaginary part of
the phonon self-energy in Eq. 2.61 at the adiabatic phonon frequency2,
i.e. γRS

qν = −ImΠ̃qν(ωqν):

γRS
qν =

π

Nk

1BZ∑
k

∑
mn

∣∣gνmn(k,q)
∣∣2(f(εkn)−f(εk+qm)

)
×

δ(εkn − εk+qm + ωqν).

(2.62)

Following the seminal work of Allen [128], we can consider that the phonon
frequencies are much smaller than the electron energies. From this, and
taking into account that at zero temperature the Fermi-Dirac occupation
factors are unit step functions, i.e. f(εkn) = θ(εF − εkn), it is deduced that
the factor f(εkn)−f(εk+qm) can be substituted by the following expression:

f(εkn)− f(εk+qm) = θ(εkn)− θ(εk+qm) ≈ ωqνδ(εkn − εF). (2.63)

Substituting Eq. 2.63 into Eq. 2.62 and assuming that ωqν � |εkn− εk+qm|,
we arrive to the following simplified expression of the phonon linewidth

γRS
qν =

ωqνπ

Nk

1BZ∑
k

∑
mn

∣∣gνmn(k,q)
∣∣2δ(εkn − εk+qm)δ(εkn − εF). (2.64)

The latter approximation can be also used in Eq. 2.59, from which the FS-
averaged electron-phonon coupling strength can be expressed in terms of
γRS
qν as follows:

λ =
1

Nq

1BZ∑
q

∑
ν

λqν = 2

∫ ∞
0

dω
α2F (ω)

ω
, (2.65)

where λqν is the electron-phonon coupling strength related to the phonon
mode |qν〉, defined as:

λqν =
2

πNF

γRS
qν

ω2
qν

, (2.66)

and the FS-averaged Eliashberg spectral function is defined as:

α2F (ω) =
1

πNF

1

Nq

1BZ∑
q

∑
ν

γRS
qν

ωqν
δ(ω − ωqν). (2.67)

2The same result can be obtained from the Fermi’s golden rule (Appendix D).
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From the perspective of phonons, one can also evaluate the strength of the
electron-phonon coupling by means of the FS-averaged squared electron-
phonon matrix element for each phonon mode |qν〉, which is equivalent to
a sort of electronphonon weighted nesting function, defined by:

〈|gqν |2〉 =
1

NF

1

Nk

∑
kmn

|gνmn(k,q)|2δ(εkn − εk+qm ± ωqν)δ(εkn − εF). (2.68)

2.5.2 McMillan-Allen-Dynes formula

Undoubtedly, the most spectacular physical phenomenon due to the
electron-phonon interaction is the phonon-mediated superconductivity [2, 5].
Briefly said, in the superconducting state, the many-body system appears
as a condensate formed by electron pairs, the so called Cooper pairs, whose
pairing mechanism is provided by the electron-phonon interaction [129, 130].
In this regard, the appropriate theoretical framework for calculating the tem-
perature up to which the material is superconductor, i.e. the superconduct-
ing critical temperature Tc, is the Eliashberg theory, which implies solving
the set of the so-called Eliashberg equations [131, 132].

Nevertheless, most first principles calculations of the phonon-mediated
superconducting critical temperature in solids rely on a semi-empirical ex-
pression first introduced by McMillan [133] and then refined by Allen and
Dynes [134]. Within this approach, the superconducting critical tempera-
ture is approximated by:

Tc =
ωlog

1.2
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
, (2.69)

where ωlog is the logarithmic average of the phonon frequencies, defined as:

ωlog = exp

[
1

λ

∫ ∞
0

dω
α2F+(ω) + α2F−(ω)

ω
logω

]

= exp

[
2

λ

∫ ∞
0

dω
α2F (ω)

ω
logω

]
,

(2.70)

where λ is the FS-averaged electron-phonon coupling strength (Eq. 2.59 and
2.65) and µ∗ is a parameter describing the Coulomb repulsion. Throughout
this thesis, the McMillan-Allen-Dynes formula in Eq. 2.69 is taken for calcu-
lating the superconducting critical temperature, with the Coulomb potential
µ∗ treated as an adjustable parameter. It must also be said that it generally
yields results in good agreement with experiments [132], even though this
procedure introduces a large uncertainty in the value of Tc, since it is based
on quantities averaged on the Fermi surface.
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2.6 Electron-phonon interaction using Wannier
interpolation

First principles calculations of the electron-phonon interaction require large
1BZ-summations over electron states and phonon modes of functions, since
they usually exhibit strong variations along the Fermi surface or other
{k,q, ω} phase-spaces. This inconvenient can be easily appreciated by look-
ing for instance, at the retarded electron and phonon self-energies in Eq 2.18
and Eq. 2.19, where whenever the difference between electron energies ap-
proaches the phonon frequency, the denominators become small and the
function to sum large. Compared to self-consistent first principles DFT
calculations, which are typically converged using meshes of the order of
10 × 10 × 10 k-points [93, 94], the numerical convergence of the electron-
phonon interaction calculations with respect to the k and q-point grids
needs a very large number of points (> 106), which implies the use of much
finer meshes [4]. However, determining the Kohn-Sham electron wave func-
tions ψkn(r) and energies εkn, but mostly the adiabatic phonon frequencies
ωqν and polarization vectors εsqν together with the first-order derivatives of
the Kohn-Sham effective potential ∂VKS(r)/∂uαs (q), and hence the electron-
phonon matrix elements gνmn(k,q), is a prohibitive task in such fine grids.
In fact, even the non-selfconsistent solution of the Kohn-Sham Schrödinger
equation (Eq. 1.13) turns out to be impracticable for so many points. In
order to overcome this challenge, the development of interpolation schemes
based on maximally localized Wannier functions has turned out in the last
years to be a very useful tool to obtain not only the Kohn-Sham ener-
gies [135–137] but also the electron-phonon matrix elements in very fine
k and q-point meshes [4, 138–140], making thus converged first principles
calculations of the electron-phonon interaction affordable.

2.6.1 Maximally localized Wannier functions

As seen in Sec. 1.3.2, the Kohn-Sham electron states |ψkn〉 are Bloch states
usually expressed in terms of lattice-periodic functions ukn(r) (Eq. 1.17) [6].
In order to interpolate them, it is advantageous to alternatively describe
Bloch states in terms of linear combinations of functions localized in the
real space, i.e. the so-called Wannier functions [142].

To this end, the gauge freedom of Bloch states in the reciprocal space
can be exploited in order to get functions that are localized in the real space.
Indeed, Bloch states posses an inherent arbitrary phase at each momentum
k, by which, if |ψkn〉 is a valid Bloch state of the system, then the rotated
state |ψ̃kn〉 = eiθkn |ψkn〉 is equally valid, with θkn being any real and peri-
odic function in the reciprocal space. In this respect, the basic properties of
Fourier transforms state that the smoother a reciprocal-space object is, the
sharper (more localized) is the transformed real-space object. Therefore,
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Figure 2.5. Illustrative explanation of the maximally localized Wannier rotation
on Bloch states. Panel (a) shows a priori wrinkled Bloch wave functions in the
reciprocal space (left) and its corresponding delocalized Fourier transform func-
tion in the real space (right). Panel (b) shows smooth Wannier rotated Bloch
wave functions in the reciprocal space (left) and its corresponding highly localized
Fourier transform, i.e. the maximally localized Wannier function, in the real space.
Reproduced with permission from Ref. [141] by Julen Ibañez Azpiroz.

the goal is to construct a set of θkn for which the rotated Bloch functions
are as smooth as possible in the reciprocal space in order to obtain Wannier
functions as localized as possible in the real space by a Fourier transform.

In the most general case, for a chosen set of M Kohn-Sham electron
bands well-separated from all the other bands by finite energy gaps all
over the 1BZ, one can generalize the gauge freedom of the Bloch states
at each momentum k by means of a M × M unitary matrix Umn(k) as
follows [135–137]:

|ψ̃kn〉 =
M∑
m

Umn(k) |ψkm〉 , (2.71)

where |ψ̃kn〉 are the so-called Wannier rotated Bloch states. In this way, the
Wannier functions, which are intended to be centered at the Bravais lattice
vector T and are normalized as: 〈WTn|WT′n′〉 = δTT′δnn′ , are defined by
the following Fourier transforms:

|WTn〉 =
1

Nk

1BZ∑
k

e−ik·T |ψ̃kn〉 =
1

Nk

1BZ∑
k

e−ik·T
∑
m

Umn(k) |ψkm〉 . (2.72)
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The most widely used method for constructing Umn(k) is by imposing the
minimization of the quadratic spread of the Wannier functions around their
centers in the real space, i.e. maximizing the real space localization. The
quadratic spread functional of the Wannier functions is defined as [135–137]:

Ω =
∑
n

(
〈W0n|r2|W0n〉 − 〈W0n|r|W0n〉2

)
, (2.73)

By expressing the latter in terms of the Bloch states using Eq. 2.72, we
minimize Ω with respect to Umn(k) by means of an iterative numerical pro-
cedure [135–137]. The resulting Wannier functions are the so-called maxi-
mally localized Wannier functions (MLWFs). The impact of the maximally
localized Wannier rotation on the Bloch states is illustratively explained
in Fig. 2.5. In Fig. 2.5(a), the direct Fourier transform of a priori wrin-
kled Bloch states |ψkn〉 in the reciprocal space (left panel) turns out to
be delocalized in the real space (right panel). In Fig. 2.5(b), the Fourier
transform of smooth Wannier rotated Bloch states |ψ̃kn〉 in the reciprocal
space (left panel) turns out to be highly localized in the real space, i.e. the
maximally localized Wannier function (right panel). In this thesis, the cal-
culation of MLWFs is done by means of the WANNIER90 post-processing
algorithm [143].

2.6.2 Interpolation of the electron band structure

Among the several interesting applications of the MLWFs, one can use the
real space localization property for efficient interpolations of the electron
band structure in the reciprocal space from a typical DFT coarse k-point
mesh to a fine k′-point mesh. Indeed, once the unitary matrices Umn(k) are
calculated, the Wannier rotated Kohn-Sham Hamiltonian can be constructed
on the coarse mesh by means of Eq. 2.71:

H̃mn
KS (k) = 〈ψ̃km|ĤKS|ψ̃kn〉 =

M∑
i,j

(
Uim(k)

)∗ 〈ψki|ĤKS|ψkj〉Ujn(k)

=

M∑
i,j

(
Uim(k)

)∗
εkiδijUjn(k) =

M∑
i

(
Uim(k)

)∗
εkiUin(k).

(2.74)

The Wannier rotated Hamiltonian matrices can be then Fourier transformed
to the real space as follows:

H̃mn
KS (T) = 〈W0m|ĤKS|WTn〉 =

1

Nk

1BZ∑
k

e−ik·TH̃mn
KS (k). (2.75)

Figure 2.6 shows an example for the case of MoS2. Panel (a) shows how
the maximally localization of the Wannier functions in the real space makes
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H̃mn
KS (T) spatially decay from the center of the Bravais lattice T = 0 to

the boundaries of the supercell crystal. Indeed, the boundary supercell
components and those beyond are negligible with respect to the lattice-
center components. Therefore, the inverse Fourier transform of H̃mn

KS (T)
can be safely taken to any other k′-point on the fine mesh as:

H̃mn
KS (k′) =

∑
T

eik
′·TH̃mn

KS (T). (2.76)

Finally, by diagonalizing H̃mn
KS (k′) one obtains the electron energies εk′n

on the fine mesh for the chosen M electron bands, completing then the
interpolation of the electron band structure based on MLWFs. Likewise,
the unitary matrices Umn(k′) are formed by the eigenvectors of H̃mn

KS (k′) and
Bloch states on the fine mesh can be constructed by Fourier antitransforming
Eq. 2.72:

|ψkn〉 =
∑
m

Unm(k′) |ψ̃km〉 =
∑
m

Unm(k′)
∑
T

eik
′·T |WTn〉 (2.77)

It is worth noting that the Wannier interpolation of the Kohn-Sham Hamil-
tonian from the coarse k-point mesh to the fine k′-point mesh is much faster
than solving non-selfconsistently the Kohn-Sham Schrödinger equation on
the fine k′-point mesh. Therefore, this technique turns out to be extremely
useful when studying electronic properties as the DOS (Eq. 1.26) or elec-
tronic response functions (Eq. 1.60).

2.6.3 Interpolation of the electron-phonon matrix elements

At this point, one can take advantage of the Wannier interpolation of the
electron band structure (Sec. 2.6.2) for interpolating the electron-phonon
matrix elements and improve the convergence of first principles calculations
of the electron-phonon interaction [4, 138–140]. In the coarse electron mo-
mentum k and phonon momentum q meshes, the potential change matrix
elements defined in Eq. 2.7 can be Wannier rotated by means of Eq. 2.71 as
follows:

g̃sαmn(k,q) =
∑
i,j

(
Uim(k + q)

)∗
gsαij (k,q)Ujn(k). (2.78)

The Wannier rotated potential change matrix elements can be the Fourier
transformed to the real space as follows:

g̃sαmn(Te,Tp) =

〈
W0m

∣∣∣∣∂VKS

∂uαs

∣∣∣∣WTem

〉
=

1

NkNq

1BZ∑
k,q

e−i(k·Te+q·Tp)g̃sαmn(k,q),

(2.79)
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Figure 2.6. Spatial decay in logarithmic scale of the largest components of the
Fourier transfoms of (a) the Wannier rotated Kohn-Sham Hamiltonian H̃mn

KS (Te)

energies and (b) the dynamical matrix Dαα′

ss′ (Tp). Te and Tp represent the Bravais
lattice vectors for the MLWFs in Eq. 2.72 and the first-order derivative of the Kohn-
Sham potential with respect to the ionic displacement, respectively. (c) Spatial
decay of the Fourier transform of the Wannier rotated potential change matrix
elements g̃sαmn(Te,Tp). The data are plotted as a function of distance along several
directions and correspond to the undoped MoS2 monolayer studied in Chapter 4.

where Te and Tp represent the Bravais lattice vectors for the MLWFs in
Eq. 2.72 and the first-order derivative of the Kohn-Sham potential with re-
spect to the displacement of the s-th ion, respectively. Due to the spatial
localization of both the MLWFs and the ionic displacement perturbations,
the Fourier transformation of the potential change matrix elements in the
Wannier representation g̃sαmn(Te,Tp) decays rapidly with both Te and Tp

compared to the simple Fourier transformation in the Bloch representation
gsαmn(Te,Tp). This is clearly shown in Fig. 2.6(c) for the largest components
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Figure 2.7. Schematic representation of the interpolation scheme based on max-
imally localized Wannier functions of the electron-phonon matrix elements. Red
boxes represent the Wannier interpolation of the electron band structure and green
boxes represent the Fourier interpolation of the dynamical matrix, both indispens-
able for the Wannier interpolation of the electron-matrix elements described in blue
boxes.

of the potential change matrix elements of the MoS2 monolayer. Therefore,
one can neglect terms in the boundary and outside the supercell crystal, and
the Fourier antitransform of Eq. 2.79 can be safely done in order to obtain
the Wannier rotated potential change matrix elements on the fine electron
momentum k′ and phonon momentum q′-point meshes as follows:

g̃sαmn(k′,q′) =
∑

Te,Tp

ei(k
′·Te+q′·Tp)g̃sαmn(Te,Tp). (2.80)

The Wannier rotated potential change matrix elements are then transformed
to the Bloch representation with the knowledge of the unitary matrices
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Umn(k′) on the fine k′-point mesh as follows:

gsαmn(k′,q′) =
∑
i,j

Umi(k
′ + q′)gsαij (k′,q′)

(
Unj(k

′)
)∗
, (2.81)

and finally, one obtains the electron-phonon matrix elements gνmn(k′,q′) on
the fine k′ and q′-point grids by means of Eq. 2.6. The frequencies and
polarization vectors εsαq′ν and ωq′ν on the fine q′-point mesh are obtained by
simply Fourier interpolating the dynamical matrix (Eq. 1.53), whose Fourier
transform is also highly localized in the real space, as seen in Fig. 2.6(b)
for the largest components of the MoS2 monolayer. Figure 2.7 illustrates
schematically the steps to follow in the Wannier interpolation procedure of
the electron-phonon matrix elements [4, 138–140].
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Chapter 3

Electron-phonon interaction
at the Tl/Si(111) surface

At the surface, crystals are characterized by the loss of periodicity and the
corresponding breakdown of the inversion symmetry with respect to the
surface plane. This makes the potential felt by the electrons be different from
that of the bulk, giving rise to the so-called surface electron states, whose
density probability amplitudes are strongly localized near the surface of the
material and exponentially decay into the bulk [144, 145]. Similarly, the
lack of the inversion symmetry also promotes the existence of the so-called
surface phonon modes, whose polarization vector amplitudes mainly involve
the vibration of ions close to the surface [146, 147]. In most of the cases,
the surface electron states and the potential changes induced by the surface
phonon modes are localized in the real space, leading to a large overlap
that tends to enlarge the electron-phonon matrix elements (Eq. 2.6). In
this regard, the electron-phonon interaction has been investigated in several
surface systems, where it has been established that, as a general rule, the
coupling is enhanced [41–46].

In non-magnetic materials, the combination of both time-reversal sym-
metry, i.e. εkn(↑) = ε−kn(↓), and inversion symmetry, i.e. εkn(↑) = ε−kn(↑),
implies that the electron states with the same band index n at the same
momentum k but with opposite spin directions must be spin-degenerate,
i.e. εkn(↑) = εkn(↓). With the breakdown of the inversion symmetry at
surfaces, only the time-reversal symmetry is maintained, and the spin-
degeneracy condition is released, i.e. εkn(↑) 6= εkn(↓). Under these con-
ditions, the spin-orbit coupling, far from be a mere relativistic energy cor-
rection, introduces important qualitative changes in the electronic properties
of surface materials, such as the generation of spin-split and spin-polarized
electron states, even in nominally non-magnetic surfaces. This is the so-
called Rashba effect [148]. The first experimental observation of spin-split
surface electron states was made by LaShell et al. in 1996 on the Au(111)

65
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noble surface (Z = 79) by an ARPES experiment [149]. Later, the interpre-
tation of spin-polarized bands was confirmed by an spin-resolved ARPES
experiment [150], in good agreement with theoretical calculations [151]. It
turns out that both the spin-splitting and the spin-polarization of the sur-
face states on the Au(111) surface are well described with the Rashba model,
which approximates in a simple way the effects of the spin-orbit coupling on
a two-dimensional (2D) free electron gas. In the Rashba model, the original
spin-degenerate 2D parabolic band is spin-split into two isotropic spin-split
parabolas with opposite chiral spin-polarizations lying on the surface plane
and perpendicular to the electron momentum (Appendix E). Since then, ad-
ditional Rashba-like spin-splittings have been discovered in many other clean
metallic terminations [47, 48, 152–159], encouraged by an increasing interest
in non-magnetic surfaces with strong spin-orbit coupling as a new promising
source for emergent spintronic applications [62–67].

Moreover, large anisotropic spin-splittings and peculiar spin-polarization
structures that deviate from the Rashba model have been theoretically pre-
dicted and experimentally detected during the last decade on a large variety
of clean surfaces covered by heavy elements, in order to take advantage of
their strong atomic spin-orbit interaction [49–51]. This was first reported
by Ast et al. in 2007 when analyzing the spectrum of the Ag(111) sur-
face (Z = 47) doped with the heavy element Bi (Z = 83) using ARPES
techniques [160]. They concluded that the measured giant spin-splitting of
∼ 200 meV results from the additional breakdown of the surface in-plane
inversion symmetry, leading thus to a considerably out-of-plane rotation of
the spin-polarization. The potential technological importance of this finding
for possible spintronic applications [62–67] accelerated the search for similar
spin-splitting effects specially on semiconductor surfaces, such as Si (Z = 14)
and Ge (Z = 32), covered by heavy element (Z > 79) monolayers [52–61]. In
particular, the semiconductor Si(111) termination covered by a Tl monolayer
(Z = 81), i.e. the Tl/Si(111) surface, exhibits the largest spin-splitting en-
ergy (∼ 600 meV) reported in literature, due to its specific crystal structure
together with the strong atomic spin-orbit coupling of the heavy element
Tl adatoms [161–166]. These systems exhibit a set of well-defined and ex-
ceptionally large spin-split surface states within the bulk band gap near the
Fermi level, accompanied by out-of-plane spin-polarization patterns. The
latter ensure a robust spin-dependent 2D character of the electronic trans-
port properties, almost in the absence of any appreciable bulk contribution.
Therefore, understanding the charge and spin coupled dynamics in 2D sys-
tems with strong spin-orbit coupling is of capital importance and a very
active research front at the moment [68–70].

Surface band splittings due to the spin-orbit coupling can be of the or-
der of 100 meV close to the Fermi level, as for instance on the Au(111)
surface [149], competing in magnitude with typical phonon frequencies in
the low-energy domain of electronic excitations. Therefore, any study of the
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electron-phonon interaction at surfaces with strong relativistic effects should
include the spin-orbit coupling not only as an energy correction but also as a
responsible for the generation of an entire spin-polarized electronic structure
that modulates the phonon-mediated electronic scattering. In this regard,
the coexistence of both, spin-orbit and electron-phonon interactions, has
been historically investigated considering theoretical models based on the
Frhlich and Holstein Hamiltonians [72–74]. Moreover, first-principles calcu-
lations had limited to treat the role of the spin-orbit coupling in the electron-
phonon interaction as simple relativistic corrections of the electron energy
and phonon frequency [167, 168]. Recently, concurrent works with this the-
sis have illustrated some important aspects related to the spin-polarization
in 2D systems. Some examples are the spin and valley-dependent phonon-
mediated scattering in transition-metal dichalchogenides [76, 77] and the
absence of backscattering in topological surface states [78].

In this chapter, we provide a comprehensive first principles analysis of the
role played by the electron spin and the spin-orbit coupling in the electron-
phonon interaction of the relativistic Tl/Si(111) surface. In Sec. 3.1.1, we
briefly introduce the theoretical framework for explicitly incorporating the
electron spin degree of freedom together with relativistic effects up to the
spin-orbit coupling within the DFT and DFPT formalisms, as well as in
practical first principles calculations of the electron-phonon interaction. Sec-
tion 3.2 is devoted to present the crystal structure of the Tl/Si(111) surface,
as well as its singular electronic and lattice vibrational properties calculated
from first principles. In this regard, we compare relativistic results taking
into account and neglecting the spin-orbit coupling, in order to appreciate
its effects on the Tl/Si(111) surface. This information will be essential in
Sec. 3.3 for analyzing the impact of surface state spin-polarizations induced
by the spin-orbit coupling on first principles calculations of the electron-
phonon interaction of the Tl/Si(111) surface. The spin-polarization of the
spin-split surface states offers the possibility of explicitly investigating the
spin-dependence of the electron-phonon coupling in two regimes radically
different. On the one hand, Rashba model-like surface in-plane spin polar-
izations lead to a strong spin-dependent electron-phonon interaction. On the
other hand, surface out-of-plane spin polarizations lead to a spin-suppression
of the electron-phonon interaction. Finally, in Sec. 3.4 a summary of the re-
sults and the main conclusions drawn in this chapter are given.

3.1 Electron spin and relativistic effects

In this section, we will present the extension of both DFT and DFPT for-
malisms for including both the electron spin degree of freedom and rela-
tivistic effects up to the spin-orbit coupling, i.e. spin-DFT spin-DFPT, in
Sec. 3.1.1 and 3.1.2, respectively. Section 3.1.3 will be devoted to describe the
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way the electron spin enters into first principles calculations of the electron-
phonon interaction through the coupling matrix elements.

3.1.1 Spin-density functional theory

The DFT formalism as described in Sec. 1.3.1 is based on non-relativistic
quantum mechanics, which ignores the spin degree of freedom of the electron
and the Einstein’s special relativity [169]. However, the explicit treatment
of the electron spin is mandatory in the determination of a wide variety
of properties of matter, such as magnetism [170]. It is also mandatory for
taking into account relativistic effects, which are crucial for the correct de-
scription of the electronic and lattice vibrational properties in both magnetic
and non-magnetic materials [171]. In fact, non-relativistic mechanics gives
results with a leading error of the order of (v/c)2, where v is the electron
velocity and c is the speed of light [106, 172]. For isolated atoms, this error is
of the order of (Zα)2, with α = 1/c ≈ 1/137 the dimensionless fine structure
constant, leading to too large relativistic corrections in systems containing
heavy atoms [173]1. In such cases, an extension of DFT including both the
electron spin and relativistic effects, i.e. spin-DFT, is imperative.

Spin-DFT was founded a decade after the standard formalism and is
based on the idea that the energy of a many-body electronic system in
its fundamental state is defined as a functional not only of the electron
charge density n(r) but also of the electron spin magnetization density vec-
tor m(r) [174–177]. Within this formalism and in the absence of magnetic
fields, the exact ground-state energy of the electronic system is the global
minimum value of the energy functional, which is determined by the exact
ground-state electron charge and spin magnetization densities2. As stan-
dard DFT, the system of many interacting electrons moving in an external
potential is replaced by an auxiliary Kohn-Sham system of non-interacting
electrons moving in an effective potential, i.e. the electronic screened exter-
nal potential, on the condition that both systems have the same ground-state
electron charge and spin magnetization densities, n0(r) and m0(r), respec-
tively.

Within the spin-DFT formalism, the Kohn-Sham single-electron eigen-
states are generalized by two-component spinors, which explicitly incorpo-
rate the space of the electron spin spanned by |±〉:

|ψkn〉 ⊗ |±〉 = |ψσkn〉 =

(
|ψ+

kn〉
|ψ−kn〉

)
, (3.1)

where the index σ is the quantum number accounting for the spin degree of
freedom. Note that the spinorial structure of the electron wave function in

1(Zα)2 ∼ 30% for a tungsten, or wolfram, atom with Z = 74.
2E0

el = Eel[n0,m0] < Eel[n,m], ∀ n(r) 6= n0(r) and m(r) 6= m0(r)
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Eq. 3.1 makes possible the non-collinear character of the spin polarization,
i.e. the possibility of the electron state to be spin-polarized in any direction
in space. Likewise, the electron charge and spin magnetization densities
are compactly given by the charge- and spin-density 2× 2 matrix, which is
defined in terms of the Kohn-Sham spinors as follows:

nσσ′(r) =
1

Nk

1BZ∑
k

∑
n

f(εkn)
(
ψσkn(r)

)∗
ψσ
′

kn(r)

=
1

2

(
n(r) +mz(r) mx(r)− imy(r)
mx(r) + imy(r) n(r)−mz(r)

)
,

(3.2)

From here, the charge density is explicitly given by:

n(r) =
1

Nk

1BZ∑
k

∑
n

∑
σ

f(εkn)
∣∣ψσkn(r)

∣∣2, (3.3)

and the spin magnetization density vector is explicitly given by:

m(r) =
1

Nk

1BZ∑
k

∑
n

∑
σσ′

f(εkn)
(
ψσkn(r)

)∗
σσσ′ψ

σ′
kn(r), (3.4)

where σ = (σx, σy, σz) are the 2 × 2 Pauli matrices, related to the spin

angular momentum operator as: Ŝ = 1
2 σ̂, and defined as:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.5)

The Kohn-Sham spinor wave functions in Eq. 3.1 are the solutions of the
generalization of the Schrödinger equation in Eq. 1.13 for spin-1

2 particles,
i.e. the so-called Schrödinger-Pauli equation [178]. The latter takes into
account the interaction of electrons with a magnetic field B(r), described by
the magnetic vector potential A(r), such that B(r) = ∇×A(r). Neglecting
current contributions, the Kohn-Sham Schrödinger-Pauli equation is given
by the following pair of coupled differential eigenvalue equations:∑
σ′

[((
p̂−Â(r)

)2
+ V̂KS(r)

)
δσσ′−

1

2
σ̂σσ′ ·B̂(r)

]
ψσ
′

kn(r) = εknψ
σ
kn(r). (3.6)

In this thesis, we focus on nominally non-magnetic materials, such that
A(r) = 0 and B(r) = 0 in Eq. 3.6, and m(r) = 0 in Eq. 3.4, retain-
ing only n(r) 6= 0 in Eq. 3.2. On the other hand, we are interested in
including relativistic effects in our theoretical framework. In relativistic
quantum mechanics, the proper way to describe any system of spin-1

2 mas-
sive particles is the Dirac equation [179, 180]. For simplicity, the quasi-
relativistic limit (v/c� 1) of the Dirac equation is adopted, which is equiv-
alent to the Schrödinger-Pauli equation including relativistic effects up to
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order (v/c)2 [172] (Appendix F). In the absence of magnetic fields, the quasi-
relativistic generalization of the Kohn-Sham Schrödinger equation is given
by the following pair of coupled differential eigenvalue equations:

∑
σ′

Ĥσσ′
KS ψ

σ′
kn(r) =

∑
σ′

(
− ∇̂2

2
δσσ′ + V̂ σσ′

KS (r)

)
ψσ
′

kn(r) = εknψ
σ
kn(r), (3.7)

where the spinor coefficients |ψ±kn〉 are coupled due to the spin-dependence

of the relativistic Kohn-Sham potential V σσ′
KS (r). The latter is a 2×2 matrix

in the spin-space and is defined as (Appendix F):

V σσ′
KS (r) =

(
Vext(r) + VH(r) + Vxc(r) + ∆Hmv + ∆HD

)
δσσ′ + ∆Hσσ′

SO . (3.8)

The first three terms on the right-hand side of Eq. 3.8 have been already
introduced in the standard DFT formalism (Sec. 1.3.1). The fourth and
fifth terms are the so-called scalar relativistic effects and correspond to the
mass-velocity and Darwin corrections, ∆Hmv and ∆HD, respectively. The
latter terms are called scalar relativistic, since, despite their relativistic na-
ture, they are spin-independent and act equivalently as an scalar interaction
term for each spinor component. Finally, the sixth term corresponds to the
so-called spin-orbit interaction, i.e. the coupling between the spin and the
orbital angular momenta of the electron. In the quasi-relativistic limit, the
spin-orbit interaction term may be written as:

∆HSO =
1

4c2
σ ·
(
∇V (r)× p

)
, (3.9)

where V (r) is the effective potential acting on electrons. Eq. 3.9 can be
illustrated within classical elecrodynamics. An electron moving with mo-
mentum p in the potential V (r) experiences a magnetic field in its rest
frame of reference that arises from the relativistic Lorentz transformation
including the Thomas precession of the electric field resulting from the gra-
dient of the potential, i.e. B = −

(
∇V (r)× p

)
/(2c2) [181]. The interaction

of the electron spin with this magnetic field leads to the spin-orbit coupling
term: ∆HSO = −S ·B, equivalent to Eq. 3.9.

In the absence of magnetic fields, the spin-orbit interaction is the only
spin-dependent 2×2 matrix responsible of coupling the spinor coefficients in
Eq. 3.7. Note that the latter can only be taken into account if the spinorial
definition of the electron wave function in Eq. 3.1 is incorporated into first
principles calculations. In fact, a non-collinear spin-DFT calculation is said
to be fully relativistic if the spin-orbit interaction is included within the
Kohn-Sham potential in Eq. 3.8, i.e. all the relativistic effects up to order
(v/c)2 are included. Instead, if not included, the pair of coupled eigenvalue
equations in Eq. 3.7 are disconnected.

It is worth noting that relativistic effects originate close to the ionic
cores in solids, while the intersticial regions remain well-described in the
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non-relativistic limit [171]. In practice, spin-DFT calculations include rel-
ativistic interaction terms up to the spin-orbit coupling in a self-consistent
manner within the pseudopotentials that form the external potential act-
ing on electrons (Appendix B) [81]. Moreover, within spin-DFT, Vxc is
commonly approximated either with the so-called spin-LDA [182] or spin-
GGA [183, 184], although it has also been seen that the differences using
non-relativistic exchange-correlation energy functionals in relativistic calcu-
lations are small [185–188]. In summary, Eqs. 3.3−3.8 compose the set of rel-
ativistic spin-dependent Kohn-Sham equations that must be self-consistently
solved as the standard and spin-independent DFT scheme in Fig. 1.1.

3.1.2 Spin-density functional perturbation theory

The incorporation of the electron spin into the DFPT formalism is easily
done by starting from the spin-density 2× 2 matrix in Eq. 3.2 and following
the same derivations as in Sec. 1.4 for the spin-independent theory. Thereby,
one first arrives to the following expression of the dynamical matrix:

Dαα′
ss′ (q) =

1√
MsMs′

[∑
σσ′

∫ (
∂nσσ′(r)

∂uα
′
s′ (q)

)∗∂V σσ′
ext (r)

∂uαs (q)
dr

+
∑
σσ′

∫
nσσ′(r)

∂2V σσ′
ext (r)(

∂uαs (q)
)∗
∂uα

′
s′ (q)

dr +
∂2Eion(

∂uαs (q)
)∗
∂uα

′
s′ (q)

]
u=0

,

(3.10)

where the electron spin is included through the product between the first-
order derivatives with respect to the ionic displacements of the spin-density
and the external potential, which are spin-dependent 2× 2 matrices. In this
way, one arrives to the following set of equations:

∂V σσ′
KS (r)

∂uαs (q)
=
∂V σσ′

ext (r)

∂uαs (q)
+

∫
Kσσ′
ττ ′ (r, r

′)
∂nττ

′
(r′)

∂uαs (q)
dr′, (3.11)

∂nσσ′(r)

∂uαs (q)
=

1

Nk

1BZ∑
k

∑
n

f(εkn)×((
∂ψσkn(r)

∂uαs (q)

)∗
ψσ
′

kn(r) +
(
ψσkn(r)

)∗∂ψσ′kn(r)

∂uαs (q)

)
,

(3.12)

∑
σ′

Ĥσσ′
KS

∂ψσ
′

kn(r)

∂uαs (q)
+
∂V̂ σσ′

KS

∂uαs (q)
ψσ
′

kn(r) =
∂εkn
∂uαs (q)

ψσkn(r)+εkn
∂ψσkn(r)

∂uαs (q)
, (3.13)

∂εkn
∂uαs (q)

=
∑
σσ′

〈
ψσkn

∣∣∣∣ ∂V̂ σσ′
KS

∂uαs (q)

∣∣∣∣ψσ′kn〉, (3.14)



72 3. Electron-phonon interaction at the Tl/Si(111) surface

which conform the set of spin-dependent coupled Sternheimer equations that
must be self-consistently solved as the spin-independent DFPT scheme in
Fig. 1.2. It is worth noting that, in the spin-dependent case, the Hartree
and exchange-correlation kernel in Eq. 3.11, as well as the spin-density re-
sponse functions within the linear response theory, is a spin-dependent 4×4
matrix [166].

3.1.3 Coupled spin and electron-phonon matrix elements

As seen above, the main features of the spin-dependent formalism are the
spinorial structure of the Kohn-Sham electron states in Eq. 3.1 and the 2×2
matrix structure of the change in both electron spin-density in Eq. 3.12 and
spin-dependent Kohn-Sham potential in Eq. 3.11. Thus, in first principles
calculations of the electron-phonon interaction, the electron spin is included
within the electron-phonon matrix elements, which now become the scalar
product between Kohn-Sham spinors via the phonon-induced change of the
spin-dependent 2× 2 Kohn-Sham potential:

gνmn(k,q) =
∑
sα

εsαqν√
2Msωqν

gsαmn(k,q)

=
∑
sα

εsαqν√
2Msωqν

∑
σσ′

〈
ψσk+qm

∣∣∣∣ ∂V̂ σσ′
KS

∂uαs (q)

∣∣∣∣ψσ′kn〉, (3.15)

We emphasize that, from the above equation, the electron-phonon matrix
element measures the phonon-mediated electronic scattering amplitude be-
tween the general Kohn-Sham spinorial states |ψkn〉 and |ψk+qm〉. There-
fore, this terms accounts for both phonon-induced spin-conserving (σ = σ′)
and spin-flip (σ 6= σ′) transitions due to the electron-phonon interaction.
The spin-flip contributions to the electron-phonon coupling strength in non-
magnetic materials are usually several orders of magnitude smaller than the
spin-conserving contributions [189].

3.2 The Tl/Si(111) surface: electrons and
phonons

In this section, we start describing the crystal structure of the Tl/Si(111)
surface in Sec. 3.2.1. This is essential for understanding the first principles
calculated ground-state electronic properties and lattice vibrational proper-
ties in Sec. 3.2.3 and Sec. 3.2.4, respectively. The computational methods
are described in Sec. 3.2.2.
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Figure 3.1. Crystal structure of the bulk silicon. (a) Along the [111] lattice
direction, the conventional cubic unit cell of the diamond structure is formed by
six (111) lattice planes with 2D hexagonal structure, stacked in an AABBCC ar-
rangement, with A, B and C planes represented by red, green and magenta colors,
respectively. (b) Top view of the in-plane 2D hexagonal structure. Red, green and
magenta spheres represent the different relative atomic positions in the (111) plane
according to the A, B and C arrangements, respectively. (c) The unit cell of the
2D hexagonal layered structure.

3.2.1 The crystal structure of the Tl/Si(111) surface

The substrate material of the Tl/Si(111) surface consists of the bulk silicon,
which crystallizes in the diamond structrure with an experimental lattice
parameter ad = 5.43 Å [6] and whose conventional cubic unit cell is shown
in Fig. 3.1(a). Along the [111] lattice direction (black vector), the diamond
conventional unit cell can be seen as formed by six (111) lattice planes with
2D hexagonal structure that are stacked in a AABBCC arrangement, as
represented by the red (A), green (B) and magenta (C) planes. Taking
the [111] stacking direction as the cartesian ẑ-axis, the unit cell of the 2D
hexagonal layered structure (Fig. 3.1(b)) is described by the following direct
lattice vectors:

a1 = ahx̂, a2 = −ah

2
(x̂ +

√
3ŷ), and a3 = c ẑ, (3.16)

and a basis of six atoms, or layers, one for each (111) lattice plane within
the diamond conventional unit cell, whose positions in crystal coordinates
are gathered in Table 3.1. The in-plane 2D hexagonal lattice parameter
ah is related to that of the diamond structure, ad, by ah = ad/

√
2, and the

lattice parameter perpendicular to the hexagonal plane is given by c =
√

6ah.
Figure 3.1(c) shows the conventional unit cell for the 2D hexagonal layered
structure. Indeed, this is the crystal unit cell we will use for simulating the
bulk silicon oriented along the [111] diamond lattice direction, and referred
to as Si(111) in the following.
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Table 3.1. The six atom basis of the hexagonal layered crystal unit cell.

Atom Arrangement
Crystal coordinates
a1 a2 a3

1 A 0 0 0
2 A 0 0 1/4
3 B 1/3 1/3 1/3
4 B 1/3 1/3 7/12
5 C 2/3 2/3 2/3
6 C 2/3 2/3 11/12

Bulk thallium crystallizes in a standard hexagonal close-packed struc-
ture [6], and therefore, Tl adatoms represent an ideal candidate to deposit
on top of the Si(111) substrate. Among the three possible adsorbing sites,
low-energy electron diffraction (LEED) and x-ray scattering (XRS) experi-
ments [190, 191], as well as first principles calculations [192], have confirmed
that the so-called T4 site represents the most stable binding configuration
for the adsorption of Tl adatoms. In fact, when every T4 site of the bulk-
truncated Si(111) termination is covered by a Tl adatom, a well-ordered
(1 × 1) Tl monolayer formed over the Si(111) surface is obtained, i.e. the
Tl/Si(111) surface. This can be better understood by looking at Fig. 3.2,
where the top and bottom panels represent the side and top view, respec-
tively, of (a) the bulk-truncated Si(111) surface and (b) the Tl/Si(111)
surface. In comparison with the bare Si(111) termination that presents
an AABBCC arrangement, the Tl overlayer breaks with the stacking or-
der and is arranged as the next-to-last Si layer, i.e. the T4 site, leading to
an AABBCB arrangement that conserves the 2D hexagonal layered crystal
structure with lattice parameter ah (red lines in Figs. 3.2(a) and(b)).

The Tl/Si(111) surface belongs to the P3m1 space group, exhibiting a
C3v symmetry, composed of a C3 three-fold rotational symmetry and three
σv mirror planes along the equivalent [112] diamond lattice directions, rep-
resented by black lines in Fig. 3.2(c). Figure 3.2(d) displays the reciprocal
lattice centered in the 2D surface BZ (SBZ) together with the high-symmetry
Γ, M and K(K′) points represented by dots. While the whole C3v symmetry
is found at the Γ point, at the M point the C3 symmetry is lost but the
specular symmetry (C1h) is maintained. Conversely, at the K(K′) points,
the C3 symmetry is maintained but the mirror symmetry is lost. These
symmetry considerations will be useful later for explaining the particular
spin-polarization texture of spin-split surface states at the Tl/Si(111) sur-
face.
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Figure 3.2. Side view (top) and top view (bottom) of (a) the bulk-truncated
Si(111) and (b) the Tl/Si(111) surfaces. Big gray and small blue spheres represent
the Tl monolayer and the Si substrate layers, respectively. The solid red lines
display the in-plane 2D hexagonal unit cell with lattice parameter ah. (c) Crystal
structure of the Tl/Si(111) surface showing only the Tl monolayer and the last Si
layer. The σv mirror planes are indicated by black lines. (d) Corresponding surface
Brillouin zone with the high-symmetry points (Γ, M and K(K′)) indicated by black
dots.

3.2.2 Computational methods

All the self-consistent first principles calculations have been performed
within the non-collinear spin-DFT [174–177] and spin-DFPT [33] for-
malisms as implemented in the Quantum Espresso package [93, 94]. The
exchange-correlation energy has been approximated within the Perdew-
Burke-Ernzerhof (PBE) spin-GGA parametrization [90, 185]. An energy
cutoff of 50 Ry has been used for the converged plane wave expansion. The
norm-conserving pseudopotential approximation [97] has been used to in-
clude the 3s23p23d0 valence electrons in the case of the Si atom, and the
6s26p16d0 valence electrons in the case of the Tl atom. Likewise, fully rel-
ativistic pseudopotentials [188] have been constructed in order to take into
account relativistic effects up to the spin-orbit interaction.
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Figure 3.3. Schematic representation of the crystal unit cell employed for modeling
the Tl/Si(111) surface using the slab technique. The hydrogen adlayer covering the
opposite side of the slab is introduced in order to saturate the silicon dangling
bonds.

The bulk Si(111) is simulated by the crystal unit cell shown in Fig. 3.1(c).
A variable cell relaxation of the diamond structure using the present Si
pseudo-potential gives a relaxed lattice parameter ad = 5.47 Å, which has
a relative error less than 1% compared to the experimental value [6]. This
value leads to the 2D hexagonal lattice parameter ah = 3.87 Å. The ground-
state electronic properties of the bulk Si(111) are evaluated considering a
16 × 16 × 8 Monkhorst-Pack k-point mesh in combination with fixed oc-
cupation factors, since the bulk silicon is a well-known semiconductor [6].
The lattice vibrational properties are obtained from a calculation of the
dynamical matrices on a 4× 4× 2 q-point mesh.

On the other hand, the Tl/Si(111) surface is a semi-infinite material that
can not be simply reduced to a crystal unit cell repeated along the three
direct lattice vectors in the real space, since periodicity is lost along the
direction perpendicular to the surface. Thus, we simulate the Tl/Si(111)
surface by means of the so-called slab technique. Within this procedure,
the crystal unit cell must contain a sufficient amount of atoms along the
surface-perpendicular direction in order to reproduce the properties of both,
the bulk and the surface, and also needs to hold enough vacuum between
the two sides of the slab for avoiding any interplay between the adjacent
terminations. Figure 3.3 exhibits the crystal unit cell used for simulating the
Tl/Si(111) surface, where the in-plane 2D hexagonal structure of the bulk
Si(111) is maintained along the plane parallel to the surface. The considered
slab consists of ten Si layers with a Tl monolayer on one termination of the
slab. The silicon dangling bonds at the other end of the slab are saturated by
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inserting a single hydrogen coverage [165, 166]. This is a common and safe
procedure, since surface electron states associated to the hydrogen overlayer
have usually binding energies well below the Fermi level, with a negligible
interplay for the physical phenomena we are interested in. Besides, each
slab is separated by a vacuum distance of 10.0 Å. Note that both the
number of Si atoms for modeling the substrate and the vacuum distance
considered are smaller than in previous works [165], in order to reduce the
computational cost for the phonon calculations. The ground-state electronic
properties of the Tl/Si(111) surface have been evaluated considering a 24×
24 Monkhorst-Pack k-point mesh in combination with a fixed occupation
smearing, since the Tl/Si(111) surface is a semiconductor with a gap [165,
166]. The lattice vibrational properties have been evaluated from dynamical
matrices computed on a 8×8 q-point mesh. The equilibrium ionic positions
are obtained by lattice geometry optimization (Sec. 1.4.1) with all the atomic
forces relaxed up to at least 10−6 Ry/a0.

3.2.3 Ground-state electronic properties

We focus now on the ground-state electronic properties of the Tl/Si(111)
surface. The left-hand sides of Fig. 3.4 (a) and (b) display the electron band
structure of the Tl/Si(111) surface with respect to the Fermi level (hori-
zontal dotted black line) in the eV and meV range, respectively, while the
right-hand sides show the corresponding DOS. The solid blue and dashed
orange lines represent the calculations considering scalar relativistic effects
and fully relativistic effects including the spin-orbit coupling, respectively.
The shaded gray area illustrates the bulk band projection of the Si(111) sub-
strate, which covers the energy continuum of all the electron states belonging
to the bulk. Indeed, representing the band structure of the Tl/Si(111) sur-
face along with the silicon bulk band projection is a valuable practice in
order to distinguish the so-called surface states of pure 2D character from
the so-called surface resonances of 3D nature. The surface states correspond
to the energies that are not degenerate with the bulk continuum and emerge
outside of it within the bulk forbidden band gap structure. Conversely, the
surface resonances correspond to the energies that are degenerate with the
bulk band projection. They can mix with bulk states and form states that
propagate deep into the bulk.

In the case of the Tl/Si(111) termination, our scalar relativistic calcu-
lations clearly exhibit two spin-degenerate surface bands, labeled S1 for the
highest energy occupied surface states and S2 for the lowest energy un-
occupied surface states, lying within the forbidden silicon bulk band gap
projection in the (−1, 1) eV energy range. Likewise, a semiconductor state
with an energy gap of ∼ 380 meV is described. When the spin-orbit coupling
is included, the S1 surface band spin-splits into the S↓1 and S↑1 surface bands,
dominating the low-energy region below the Fermi level. The S2 surface band
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Figure 3.4. Electron band structure for the (a) eV and (b) meV energy ranges
(left) and the corresponding DOS (right) of the Tl/Si(111) surface. The scalar
and fully relativistic calculations are represented by solid blue and dashed orange
lines, respectively. The gray shaded area in (a) denotes the bulk band projection
of the Si(111) substrate. The energy contours of the surface states at (c) k = kA
with εkA = −60 meV, (d) k = kB with εkB = −200 meV and (e) k = kC with
εkC = 500 meV.

spin-splits into the S↓2 and S↑2 surface bands, yielding the strongest spin-split
energy known in literature (∼ 600 meV at the K(K′) points), dominating
the low-energy region above the Fermi level. Thereby, the band gap strongly
decreases up to a value of ∼ 60 meV. These calculations show an excellent
agreement with photoemission measurements [161–164] and previous theo-
retical studies [165, 166]. Above the Fermi level, the strong spin-splitting
assures that only intra-band electronic transitions will occur within the low-
energy phase space (Fig. 3.4(a)). In contrast, below the Fermi level, the
spin-splitting is not so large and the low-energy phase space is separated
in two regions (Fig. 3.4(b)): region I (white shaded area), where intra-band

electronic transitions between spin-split S↑1 surface states dominate, and re-
gion II (cyan shaded area), where both intra-band and inter-band transitions

are equally accessible for both spin-split S↑1 and S↓1 surface states.



3.2. The Tl/Si(111) surface: electrons and phonons 79

Figures 3.4(c)-(e) represent the scalar (solid blue lines) and fully rela-
tivistic (dashed orange lines) constant energy contours for three selected
representative momenta in the electron band structure plots in Figs. 3.4(a)-
(b): kA and kB near the Γ point for the occupied surface bands, and kC in the
unoccupied K(K′) valley. The binding energies at kA, kB and kC the energies
are −60 meV, −200 meV and 500 meV, respectively. While the contours
of the unoccupied surface band appear rather isotropic around the K(K′)
valleys, the contours corresponding to the occupied surface bands present
a hexagonal (daisy-flower-like) anisotropy. These features explain the 2D
step-like structure of the DOS in the right side of Fig. 3.4(a) corresponding
to the unoccupied quasi-parabolic valleys, as well as the one dimensional
(1D)-like character at the top of the DOS right side of Fig. 3.4(b) corre-
sponding to the occupied surface bands. Note that in the fully relativistic
case, two 1D-like singularities distanced from about 40 meV are exhibited,
one for each spin-split surface band.

Spin-polarization of the spin-split surface states

Together with the surface ground-state electronic structure, it is rele-
vant to study the spin-polarization pattern of the spin-split surface states.
The latter is defined as the expectation value of the Pauli spin-operator,
i.e. mkn = 〈ψkn|σ |ψkn〉. This quantity measures the k-dependence of the
spin quantization axis for each spin-split surface band of index n, which due
to its intrinsic strong spin-orbit coupling and the symmetry of the crystal
exhibits a peculiar structure that deviates considerably from the Rashba
model [193]. Figure 3.5 displays the calculated momentum-resolved spin-

polarization texture of the spin-split surface bands S
(↓,↑)
1 (top) and S

(↓,↑)
2

(bottom) of the Tl/Si(111) surface. The black arrows and the color code
represent the surface in-plane and out-of-plane components of the spin-
polarization, respectively. Due to time-reversal symmetry, the surface states
are spin-polarized in nearly opposite directions for each pair of spin-split
bands, thereby assuring the non-magnetization of the material. A net spin-
polarization exists for each spin-split surface band at any k-point on the
SBZ, except at the Γ and M points. At these high symmetry points, the
inversion symmetry due to the mirror plane in combination with the time-
reversal symmetry forces the spin-degeneracy [194].

Close to the Γ point, the electron spin is chirally polarized in the plane of
the surface and perpendicular to the momentum k for each spin-split surface
band. In addition, each pair of spin-split surface bands are spin-polarized in
the opposite direction, analogously to the Rashba model (Appendix E) [148].
However, the surface-perpendicular component of the spin polarization in-
creases to the detriment of its in-plane components as we move away from
the SBZ center along the ΓK direction, until the spin is totally polarized
perpendicular to the surface at the K valley. The same happens along the



80 3. Electron-phonon interaction at the Tl/Si(111) surface

Figure 3.5. Momentum-dependent spin-polarization maps of the S
(↓,↑)
1 and S

(↓,↑)
2

surface bands in the surface BZ. Arrows (black) represent the in-plane component
mx

kn x̂ + my
kn ŷ, while the background color code shows the surface-perpendicular

component mz
kn.

ΓK′ direction, with the spin at the K′ point being polarized in the opposite
direction to K for each spin-split surface band. The latter indicates that in-
traband backscattering between the spin-polarized K and K′ valleys should
be strongly suppressed in this system. Conversely, along the ΓM direction,
the surface states keep the Rashba model-like pure in-plane spin-polarization
perpendicular to k.

The different features of the spin-polarization can be rationalized in
terms of orbital compositions looking at the cross product entering the spin-

orbit coupling in Eq. 3.9. While the highest occupied S1/S
(↓,↑)
1 surface states

at the Γ point have a predominant out-of-plane polarized Tl and close-to-

surface Si pz orbital character, the lowest unoccupied S2/S
(↓,↑)
2 surface states

at the K(K′) points have a predominant in-plane polarized Tl px + py or-
bital character. Since, close to the Γ point, the potential gradient is oriented
along the surface-perpendicular direction ẑ, the cross product ∇V (r)×k is
parallel to the surface plane and perpendicular to the electron momentum,
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Figure 3.6. Phonon dispersion relation for the (a) 0-65 meV and (b) 0-10 meV
frequency ranges (left) and the corresponding phDOS (right) of the Tl/Si(111)
surface. The scalar and fully relativistic calculations are represented by solid blue
and dashed orange lines, respectively. The gray shaded area denotes the bulk
projection of the Si(111) substrate. (c) Schematic representation of the surface
phonon modes with in-plane longitudinal (L) and shear horizontal (SH) polarization
at q = K and M, and the out-of-plane Rayleigh mode (RM).

yielding a spin polarized in the plane. At the K(K′) point, however, the
potential gradient is constrained in the plane of the surface, and thus, the
spin aligns in the direction perpendicular to the plane.

3.2.4 Lattice vibrational properties

Let us now analyze the lattice vibrational properties of the Tl/Si(111) sur-
face. The left-hand sides of Fig. 3.6(a) and (b) display the phonon dispersion
relation of the Tl/Si(111) surface for the complete 0-65 meV and the low-
frequency 0-10 meV vibrational frequency ranges, respectively, while the
right-hand sides show the corresponding phDOS. The solid blue and dashed
orange lines represent the lattice vibrational structure resulting from self-
consistent DFPT calculations performed with scalar and fully relativistic
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effects, respectively. The shaded gray area illustrates the bulk projection
of the Si(111) substrate, which covers the frequency continuum of all the
phonon modes belonging to the bulk. Similar to electrons, the so-called
surface phonon modes are the branches emerging outside the bulk projec-
tion, while the branches within the bulk continuum are called surface vibra-
tional resonances. From Fig. 3.6(a), we notice that there is no appreciable
difference between the scalar and fully relativistic calculations in the vibra-
tional structure. Figure 3.6(b) shows the three low-frequency acoustic sur-
face phonon modes, which correspond fundamentally to localized vibrations
connected to the Tl adatom displacements, as schematically represented in
Fig. 3.6(c). Ordered by increasing frequency, we label these phonon branches
according to their polarization. These are: the lowest-frequency in-plane
polarized longitudinal (L) and transversal or shear horizontal (SH) modes,
and the highest-frequency out-of-plane polarized Rayleigh mode (RM). In
Fig. 3.6(c), we represent the polarization amplitudes for the L, SH and RM
vibrational modes at the K(K′) and M points. While the RM mode main-
tains an out-of-plane polarized vibration and a rather dispersionless branch
at frequency of about 7 meV through the SBZ, L and SH branches exhibit
a more heterogeneous behavior with frequencies roughly centered at 3 and
4 meV. Note that the chiral in-plane polarized modes at the K(K′) points
are non-degenerate due to the broken symmetry, as seen experimentally in
other 2D materials [195].

3.3 Coupled spin and electron-phonon interaction

In this section, we investigate the precise role played by the peculiar electron
spin-polarization in Fig. 3.5 and the spin-orbit interaction in the electron-
phonon interaction of the Tl/Si(111) surface. To this end, we proceed to
compare scalar and fully relativistic first-principles calculations of the state-
dependent Eliashberg functions, α2F±kn, and the electron-phonon coupling
strength, λkn, for the low-energy range close to the Fermi level. We di-
vide the analysis in two different regimes: i) the lowest energy unoccupied
surface states (Sec. 3.3.2) and ii) the highest energy occupied surface states
(Sec. 3.3.3), due to their different spin textures. The computational methods
are described in Sec. 3.3.1.

3.3.1 Computational methods

The electron-phonon matrix elements in Eq. 3.15 have been calculated con-
sidering the full-spinor Kohn-Sham electron states together with the spin-
dependent first-order derivatives of the Kohn-Sham potential with respect to
the ionic displacements. We considered a coarse grid of 24× 24 k-points for
electrons and one of 8× 8 q-points for phonons. The SBZ integrals involved
in the computation of α2F±kn (Eq. 2.54) and λkn (Eq. 2.58) were performed
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in very fine k-point and q-point grids by means of the Wannier interpola-
tion scheme of electron-phonon matrix elements (Sec. 2.6.3). The Wannier
interpolation was limited to the surface bands. Therefore, the sum over the
electron band index runs over the S1 and S2 surface states for the scalar
relativistic case, and S

(↓,↑)
1 and S

(↓,↑)
2 surface states for the fully relativistic

case. For the phonon branch index, we considered all the phonon modes. In
order to obtain numerically converged results, the SBZ integrals below the
Fermi level are computed on fine 1000 × 1000 k-point and 1000 × 1000 q-
point meshes. The delta functions δ(εkn−εk+qm±ωqν) and δ(ω−ωqν) were
replaced by Gaussian functions, δ(x) = (σ

√
2π)−1 exp[−(x/σ)2/2], with a

smearing value of σ = 2 meV and 0.1 meV, respectively. On the other
hand, converged SBZ integrals above the Fermi level are obtained on fine
3000×3000 k-point and 1500×1500 q-point meshes with the delta functions
δ(εkn − εk+qm ± ωqν) and δ(ω − ωqν) replaced by Gaussian functions with
a smearing value of σ = 6 meV and 0.1 meV, respectively.

3.3.2 Spin-suppression of the electron-phonon interaction

We start focusing on the role played by the electron spin and the spin-orbit
coupling in the electron-phonon interaction of the lowest energy unoccupied
surface states in the Tl/Si(111) surface. Figure 3.7(a) shows the calculated
λkn for the scalar relativistic S2 surface band (solid blue line) and for the fully

relativistic spin-split S↓2 surface band (dashed orange line), as a function of
the momentum k around the bottom of the K valley along the high symmetry
ΓK and KM directions. For the spin-split S↑2 surface band, the phonon-
mediated scattering with bulk electron states dominates and it is outside of
the scope of this work. The contribution of the three low-frequency acoustic
phonon modes represents 95% of the electron-phonon coupling strength of
the lowest energy unoccupied surface states around the K point, putting in
evidence the large surface character of the electron-phonon interaction. This
figure reflects the strinking quantitative and qualitative differences between
the scalar and fully relativistic results. At K, the electron-phonon coupling
strength for the spin-split S↓2 surface state nearly vanishes (λ

K,S↓2
< 0.01),

which is in complete constrast with its spin-degenerate S2 counterpart, where
we find that λK,S2

= 0.35. Likewise, moving away from the center of the K
valley, our calculations show that the mass enhancement parameter for the
scalar relativistic surface band λk,S2 remains about one order of magnitude
stronger than that for the fully relativistic one λ

k,S↓2
. The reason of the step-

like structure of λk,S2 observed in the immediate vicinity of the K point is
that phonon-emitting electron scattering is not energetically accessible at
the bottom of the K valley. Hence, the term δ(εkn− εk+qm +ωqν) does not
contribute to Eq. 2.58, or equivalently the term α2F+

kn(ω) = 0 in Eq. 2.57.
In fact, only phonon-emitting hole scattering processes are possible, which
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Figure 3.7. (a) State-dependent electron-phonon coupling strength λkn for the
lowest energy unoccupied surface states around the K valley along the high sym-
metry ΓK and ΓM directions. The solid blue and dashed orange lines display the
results for the scalar relativistic S2 and the fully relativistic spin-split S↓2 surface
bands, respectively. (b) k′ momentum-resolved contribution map within the SBZ
to λkn at the electron momentum k = kC for the scalar S2 (left) and the spin-split

S↓2 (right) surface bands. kC is shown in Fig. 3.4(a). The color code represents the
intensity of the λkn(k′) contribution. (c) The Eliashberg function, α2Fkn(ω), eval-

uated at k = kC for the scalar S2 and the spin-split S↓2 surface bands, represented
by the solid blue and dashed orange lines, respectively. The green area represents
the phDOS in meV−1.

means that solely the term δ(εkn − εk+qm − ωqν) contributes to Eq. 2.58,
or equivalently the term α2F−kn(ω) 6= 0 in Eq. 2.57. However, as soon as
the difference between the scalar S2 surface state energy and that of the
bottom of the valley equals, or is greater than, the smallest surface phonon
frequency, i.e. |εk,S2 − εK,S2

| > ωmin, phonon-emitting electron scattering
events are also allowed, resulting in λk,S2 > 0.7 = 2λK,S2

. As the momentum

k moves further away from the center of the K valley and the energy εk,S2

increases, the electron-phonon coupling strength grows smoothly, following
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the same trend as the DOS in the righ-hand side of Fig. 3.4(a). For the
relativistic case, as the energy ε

k,S↓2
increases, the electron-phonon coupling

strength λ
k,S↓2

increases smoothly up to values always not larger than 0.2

for the fully relativistic spin-split S↓2 surface states.

Figure 3.7(b) represents the contribution3 maps from each k′-point on
the SBZ to λkn (Eq. 2.58) for the scalar relativistic S2 (left) and the

fully relativistic spin-split S↓2 (right) surface states at the fixed momentum
k = kC close to the K point (left panel of Fig. 3.4(a)). Note that we have
λkC ,S2 = 0.88 and λ

kC ,S
↓
2

= 0.18 (blue and orange dots, respectively, in

Fig. 3.7(a)). The most obvious difference between the two maps appear at
the momentum k′ = K′, where the contribution is maximum in the scalar
relativistic case but results to be negligible in the fully relativistic one. This
distinction can be rapidly rationalized by means of spinor overlap arguments.
As seen in the bottom panels of Fig. 3.5, the spin-split unoccupied surface
spinor states near the K and K′ points have surface-perpendicular and oppo-
site spin-polarizations. Therefore, phonon-mediated spin-flip K↔ K′ inter-
valley electronic transitions are strongly suppressed in the fully relativistic
case. This is in complete contrast with the scalar relativistic case, where the
spin-conserving inter-valley scattering channels are perfectly accessible and
dominate the electron-phonon interaction (color code in Fig. 3.7(b)). On
the other hand, the phonon-mediated spin-conserving K ↔ K (K′ ↔ K′)
intra-valley electronic transitions count in the same manner for both scalar
and fully relativistic cases, although with a noticeably smaller probability
than the spin-conserving inter-valley processes.

In Fig. 3.7(c), we present the low-frequency range of the state-dependent
Eliashberg spectral functions (Eq. 2.54) for the scalar relativistic S2 and

the fully relativistic S↓2 surface states at k = kC , represented by the solid
blue and dashed orange lines, respectively. The green area represents the
phDOS in the right-hand side of Fig. 3.6(b). It is appreciated that both
scalar and fully relativistic functions exhibit moderate peaks at frequencies
near 3 meV and higher frequencies. These moderate peak indicate that
the surface electrons at the unoccupied K valley are weakly coupled to the
longitudinal surface in-plane polarized and out-of-plane polarized acoustic
phonon branches. However, while almost absent in the fully relativistic
case, an outstandingly strong peak is also present at frequencies near 4 meV
for the scalar relativistic α2Fkn(ω). This evidences the strong coupling
of surface electrons at the unoccupied K valley to the transversal in-plane
polarized acoustic phonon branch. This strong coupling is expected due to
the surface in-plane px+py orbital character of the lowest energy unoccupied
surface states at the K valley (Sec. 3.2.3). Indeed, the most striking effect
of including the electron spin in α2Fkn(ω) is the suppression of the large

3The k′-point contribution to λkn is defined such that: λkn =
∑

k′ λkn(k′)/Nk′
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peak at ω ≈ 4 meV in the fully relativistic case. This peak appears more
than three orders of magnitude smaller than that of the scalar relativistic
case, which is explained by the suppression of the phonon-mediated spin-flip
inter-valley electronic scattering.

3.3.3 Spin-dependent strong electron-phonon interaction

We come now to describe the role played by the electron spin and the spin-
orbit coupling in the the electron-phonon interaction of the highest energy
occupied surface states in the Tl/Si(111) surface. Figure 3.8(a) shows the
calculated λkn for the scalar S1 (solid blue line) and the fully relativistic spin-

split S↑1 (short-dashed dark-orange line) and S↓1 (long-dashed light-orange
line) surface bands, as a function of the momentum k close to the Γ point
along the high symmetry ΓM and ΓK directions. It is worth noting that the
contribution of the three low-frequency acoustic phonon modes represents
90% of the electron-phonon coupling strength of the highest energy occupied
surface states around the Γ point, reflecting the large surface character of
the electron-phonon interaction. Regions I (white shaded area) and II (cyan
shaded area) correspond to those in Fig. 3.4(b). In the fully relativistic case,
λkn are damped by up to a factor of 3 compared to the scalar relativistic
results within the region I, while they are of the same order of the scalar
results within the region II. It is interesting that the largest values of the
electron-phonon coupling strength for both scalar and fully relativistic cases
are obtained within the region I, with λS2 ∼ 2.2 and λ

S↑2
∼ 1.4, respectively.

Indeed, the enhancement of the electron-phonon interaction in the region I
is directly connected to the 1D-like DOS singularities of the occupied surface
bands (right panel of Fig. 3.4(b)).

Figure 3.8(b) and (c) show the contribution map from each k′-point on
the SBZ to λkn for the scalar relativistic S1 (left) and the fully relativis-

tic spin-split S↑1 (right) surface states at k = kA within the region I and
k = kB within the region II, respectively. Note that we have λkA,S1 = 1.85
and λ

kA,S
↑
1

= 0.65, represented by the blue and orange dots, respectively,

in the region I of Fig. 3.8(a), and λkB ,S1 = 0.42 and λkB ,S1 = 0.50, repre-
sented by the blue and orange dots, respectively, in the region II. While the
contribution maps displayed in the left and right panels of Fig. 3.8(c) are
very similar, Fig. 3.8(b) shows that the fully relativistic contributions are
strongly weakened comparing to the scalar relativistic case. This weakening
is easily understood in terms of spin-state overlaps. Let us recall that the
spin-polarizations of the occupied spin-split surface states follow a Rashba
model [148] showing an in-plane chiral spin-polarization near the Γ point
(top panels of Fig. 3.5). As explained in detail in Appendix E, in the Rashba
model, the spinor overlaps between two states at momenta k and k′ within
the same spin-split band (intra-band electronic scattering) appear modu-
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Figure 3.8. (a) State-dependent electron-phonon coupling strength λkn for the
highest energy occupied surface states around the Γ point along the high symmetry
ΓM and ΓK directions. The solid blue, short-dashed dark-orange and long-dashed
light-orange lines display the results for the scalar relativistic S1 and the fully rela-
tivistic spin-split S↑1 and S↓1 surface bands, respectively. Regions I and II correspond
to the ones in Fig. 3.4. (b) and (c) k′ momentum-resolved contribution map within

the SBZ to λkn for the scalar S1 (left) and spin-split S↑1 surface bands at the electron
momentum k = kA (region I) and k = kB (region II), respectively. kA and kB are
shown in Fig. 3.4 (b). (d) The Eliashberg function α2Fkn(ω) evaluated at k = kA
(top) and k = kB (bottom) for the scalar S1 and the spin-split S↑1 surface bands,
represented by the solid blue and dashed orange lines, respectively. The green area
represents the phDOS in meV−1.
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lated by the factor (1 + cos θ)/2 with respect to the spin-independent case,
where θ is the angle between k and k′. Still, the spinor overlaps between
two states belonging to different spin-split bands (inter-band electronic scat-
tering), appear modulated by the factor (1 − cos θ)/2 with respect to the
spin-independent case. It is interesting to see that at momenta for which
both inter-band and intra-band scattering channels are allowed (region II),
the sum of the latter factors gives the unity and one recover the same struc-
ture as in the spin-independent case. This is actually what happens for the
electron-phonon coupling strength at kB within the region II, where the spin-
split contribution map (right panel of Fig. 3.8(c)) are qualitatively similar to
that of the spin-degenerate case (left panel of Fig. 3.8(c)), leading to mass
enhancement parameters quantitatively similar. Following this argument,
we observe that, at kA within the region I, only intra-band contributions are
energetically accessible for the spin-split S↑1 surface states. In this regard, it
is shown that the fully relativistic contribution map (right panel Fig. 3.8(b))
is modulated by the geometrical factor (1 + cos θ)/2 compared to the scalar
relativistic contribution map (left panel Fig. 3.8(b)).

In Fig. 3.8(d), we present the low-frequency range of α2Fkn(ω) for the

scalar relativistic S1 and fully relativistic S↑1 surface states, represented by
the solid blue and dashed orange lines at k = kA (top) and k = kB (bottom),
respectively. The green area represents the phDOS associated with the low-
frequency acoustic phonon modes. We observe that, at the momentum kA,
the Eliashberg spectral functions exhibit a quite spread spectral distribu-
tion exhibiting a moderate peak at ω = 3, but with most of the spectral
weight at higher frequencies. This indicates that a stronger coupling of the
occupied surface electrons to the out-of-plane acoustic phonon branch. It is
worth noting that spin-dependent function exhibits a reduced spectral struc-
ture similar in shape to the spin-independent case, putting in evidence the
modulation of the contributions to the electron-phonon coupling strength in
the region I. Moreover, at the momentum kB, both spin-independent and
spin-dependent α2Fkn(ω) show almost the same spectral structure. This
is consistent with the fact that the electron-phonon coupling strengths and
that the corresponding contribution maps are practically equivalent for both
cases. Note also that for this momentum almost all the spectral weight is col-
lected in one single peak at ω ≈ 7 meV, indicating the strong coupling of the
occupied surface electrons to the out-of-plane acoustic phonon branch. This
strong coupling is expected due to the surface out-of-plane pz orbital char-
acter of the highest energy occupied surface states at the Γ point (Sec. 3.2.3)

3.4 Conclusions

In this chapter, we have demonstrated the fundamental role played by the
electron spin and the relativistic effects on the dynamics of surface electrons
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at the Tl/Si(111) surface. We have shown that the spin-orbit induced spin-
polarization of the surface states governs the electron-phonon interaction
and enters in a decisive way by modulating the electron-phonon matrix
elements.

To this end, in Sec. 3.1, we have introduced the theoretical formalism
for including the electron spin and relativistic effects up to the spin-orbit
coupling into self-consistent first principles DFT and DFPT calculations,
as well as into electron-phonon interaction first principles calculations. In
Sec. 3.2, we have presented the calculated ground-state electronic and lattice
vibrational properties of the Tl/Si(111) surface and the Si(111) bulk, as well
as compared both in order to properly identify the surface electron states
and phonon modes. We have observed that the inclusion of the electron
spin and the spin-orbit coupling induce the spin-splitting of the surface band
structure together with the generation of fully spin-polarized surface states.
In this regard, peculiar spin-polarization textures with surface out-of-plane
finite components that deviate from the Rashba model are obtained due to
strong surface in-plane potential gradients, as well as strong spin-splitting
energies as large as 600 meV. In Sec. 3.3, we have calculated the surface
state-dependent electron-phonon coupling strengths and Eliashberg spectral
functions.

For the lowest energy unoccupied surface bands, the spin-dependent
electron-phonon coupling strength appears strongly weakened compared to
the spin-independent one, due to the spin-suppression of the inter-valley
electron-phonon matrix elements, as these states exhibit a strong collinear
spin-valley structure. Therefore, surface electrons can not backscatter in this
case and only intra-valley phonon-mediated electronic scattering is accessi-
ble, which are so small close to the bottom of the valley that the electron-
phonon interaction is practically absent. This condition makes the low-
energy range of unoccupied surface states at the Tl/Si(111) an ideal scenario
that opens up an avenue to greatly improve the efficiency of spin currents
for silicon spintronics applications.

For the highest energy occupied surface bands, while the restriction im-
posed by the spin-polarization should also apply to the occupied surface
bands (S1), the spin-dependent electron-phonon coupling strength remains
remarkably high with λmax ∼ 1.4. In this case, spin-dependent contributions
to the coupling strength are not spin-suppressed but modulated by a smooth
scattering angular-dependent geometrical factor that includes no backscat-
tering. Thereby, a strong electron-phonon interaction regime is reached in
the presence of the spin-orbit interaction. This result opens up new theoret-
ical perspectives since, for instance, spin-polarized polaron-like states may
be favored, which clearly demands a deeper understanding of the transport
properties in this surface. We believe that this work should stimulate further
experimental and theoretical investigations in this research front.
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Chapter 4

Electron-phonon interaction
at the MoS2 monolayer

One of the main goals of this thesis is to explore the effects beyond the
adiabatic approximation due to the electron-phonon interaction, i.e. non-
adiabatic effects. These effects can be traced back by comparing theoret-
ically calculated electron and phonon spectral functions including the ef-
fects due to the electron-phonon coupling with electron band structures and
phonon dispersion relations resulting from DFT and DFPT calculations,
respectively. In this respect, first principles calculations of both, renor-
malized electron band structures and phonon dispersion relations, are of
paramount importance for the experimental community in order to explain
the features observed in both, electron and phonon spectral measurements,
respectively. In order to illustrate the typical signatures of the coupling be-
tween electrons and phonons, it is instructive to consider a coupled electron-
phonon system within the Einstein model. The latter consists of a single
non-interacting electron band dispersing linearly with energy εk = vF|k| and
one non-interacting dispersionless optical phonon mode with frequency ωo

that interact with each other at zero temperature1.

With respect to electrons, the most significant manifestation of the
electron-phonon coupling in the interacting electron spectral functions are
the so-called “kinks” at energies around to the phonon frequency ωo [4]. This
typical feature distorts the non-interacting electron band structure close to
the Fermi level and exhibits several peaks evidencing the breakdown of the
single-quasiparticle picture. This physical phenomenon was already pre-
dicted qualitatively by Engelsberg and Schrieffer in the early 1960s by an-
alytically studying a coupled electron-phonon system within the Einstein
and Debye models taking into account the whole complex energy plane [37].
More recently, Eiguren et al. generalized the previous method in combina-

1The reader is referred to Appendix C for a detailed description of the coupled electron-
phonon system within the Einstein model.
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tion with ab initio calculations for quantitative studies in realistic materials,
where the importance of the complex nature of both quasi-particle energy
and its renormalization factor were highlighted [35, 36]. Connecting with
this, we mention that a proper evaluation of the electron quasi-particle band
structure taking into account the complex energy plane (Eq. 2.26) shows that
the electron-phonon interaction splits the one non-interacting electron band
into two different quasi-particle bands, dividing the electron spectrum in two
regions: one for energies below ωo and the other one above it. On the one
hand, electron states at energies below ωo do not have sufficient energy for
decaying by emitting any phonon, and therefore, are well-defined electron
quasi-particles with idealized infinite lifetime. However, from a quantum
many-body point of view, these electron states are allowed to simultane-
ously emit and reabsorb phonons by means of virtual processes, leading to
the formation of a heavy cloud of phonons that dresses them and leads to
an increase of their effective band mass, or equivalently a reduction of their
effective band velocity, similar to polarons in insulators. On the other hand,
electrons at energies above ωo do have sufficient energy for decaying by the
emission of phonons, and therefore, have a finite lifetime. In this case, vir-
tual processes are less probable in favor of real emissions of phonons, leading
to a decrease of the electron effective band mass, or equivalently an increase
of the effective band velocity. On the experimental side, photoemission kinks
have been observed in many ARPES experiments [196–202] and reported in
first principles calculations [203–205].

With respect to phonons, the most significant manifestation of the
electron-phonon interaction in the interacting phonon spectral functions are
Kohn anomalies [206]. These features correspond to sharp dips or frequency
softenings in the phonon dispersion relations as a result of an abrupt change
in the electronic screening due to lattice vibrations, when occupied and un-
occupied electron states close to the FS are effectively connected by a phonon
mode [5]. Contrary to the possible kinks in photoemission spectra, the Kohn
anomalies are usually well captured by first principles DFPT calculations,
as demonstrated by the good agreement with some experimental measure-
ments [207–210]. The reason of this good agreement lies in the fact that the
calculation of phonons even within the adiabatic approximation includes the
static contribution to the electronic screening of lattice vibrations (Eq. 1.61).
Moreover, the dynamical contributions beyond the adiabatic approximation
can usually be neglected even in metals, since the electron energies are usu-
ally much larger than typical phonon frequencies. Nevertheless, the pos-
sibility of large non-adiabatic frequency corrections to phonon branches in
the long-wavelength limit was already proposed in the late 1950s and early
1960s [37, 131], as well as in subsequent theoretical studies in simple mod-
els [211–214]. Since then, a great effort has been made in order to detect
those effects. In fact, it has been only recently that these effects have been
identified by comparing experimental and theoretical results [104, 215–226].
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In all these referenced systems, an approximated ab initio lattice vibrational
theory including non-adiabatic effects due to the electron-phonon interac-
tion has proved to be essential in order to interpret the experiments, which
otherwise could not be explained. In recent literature, the detection of non-
adiabatic effects has been mostly limited to phonons in the BZ center, and
the renormalization frequencies and the lifetimes of phonon modes have al-
ways been calculated using the Brillouin-Wigner or Rayleigh-Schrödinger
perturbation theory (Eq. 2.44). Indeed, a proper evaluation of the phonon
quasi-particle dispersion relation taking into account the complex frequency
plane (Eq. 2.41) as it is done in this thesis was missing.

In this context, the electric field effect has recently emerged as an ideal
route for easily tuning the Fermi level, and hence, tailoring the nature and
strength of many-body interactions in 2D semimetal and semiconductors
via carrier-doping [227, 228]. Thereby, the possibility of systematic dop-
ing, together with many experiments performed in an electron-doped MoS2

monolayer top-gated field effect transistor, have recently revealed signa-
tures of a strong electron-phonon interaction in electron and phonon spec-
tra, posing a challenge for a proper theoretical interpretation. On the
one hand, Raman experiments have uncovered the strong sensitivity to
electron-doping of the BZ center optical phonons with dominant out-of-
plane polarization, which exhibit an increasing frequency softening at low
carrier concentrations (ρ < 2 × 1013 cm−2) [229]. Although this effect was
first understood by means of adiabatic phonon calculations, later works fo-
cussing on the small momentum range have pointed out the importance of
non-adiabatic corrections when increasing the electron-doping concentration
(ρ ∼ 5× 1013 cm−2) [230, 231]. On the other hand, ARPES experiments at
larger doping concentrations (ρ > 5 × 1013 cm2) have revealed an unprece-
dented electron photoemission spectrum showing an unambiguous doubly
split structure related to phonons [232]. These results go hand in hand
with the spin-valley locking superconductivity experimentally found in this
system [233–236], which has been theoretically explained by a considerable
strengthening of the electron-phonon interaction upon doping [237–240].

In this chapter, we provide a comprehensive first principles analysis of
the effects due to the electron-phonon interaction on both, the electron
and phonon spectral functions of the electron-doped MoS2 monolayer. Sec-
tion 4.1 is devoted to present the crystal structure of the MoS2 monolayer,
as well as the doping-dependent electronic and lattice vibrational struc-
tures calculated from first principles. We observe that deep changes in the
Fermi surface upon doping promote the generation of Kohn anomalies in
the adiabatic phonon dispersion relation in agreement with previous calcu-
lations [237–239] and become lattice instabilities at larger doping values. In
Sec. 4.2, we present the calculated phonon spectral function as a function of
electron-doping and including non-adiabatic effects due the electron-phonon
interaction. At momenta away from the BZ center, the frequency of the
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phonon modes are barely affected but large spectral broadenings are re-
ported, indicating that phonons acquire finite lifetimes that decrease upon
doping. More interestingly, at momenta close to the BZ center, larger fre-
quency hardenings and sharper dispersions upon doping emerge for the op-
tical phonon branches, accompanied by an intricate and broadened phonon
spectral function. The latter results are illustrated by means of a simple an-
alytical Einstein-like model. Likewise, we explain the emergent spectrum in
terms of a multiple-phonon quasi-particle picture which puts in evidence the
splitting of the optical phonon branch induced by the electron-phonon in-
teraction. In Sec. 4.3, we present the calculated electron spectral function as
a function of electron-doping and including effects due the electron-phonon
interaction. A genuine electron spectral function equivalent to the experi-
mentally measured one [232] is obtained. A combination of first principles
calculations of the electron-phonon interaction and a consistent complex
energy plane analysis of electron quasi-particle poles sheds light into the
physical origin of the intricate photoemission spectrum and reveal that – at
least – three coexisting quasi-particle bands are present. Finally, in Sec. 4.4,
a summary of the results and the main conclusions drawn in this chapter
are given.

4.1 The MoS2 monolayer: electrons and phonons

We start this section by describing the crystal structure of the MoS2 mono-
layer in Sec. 4.1.1. The first principles calculated ground-state electronic
properties and lattice vibrational properties of the undoped semiconductor
monolayer are presented in Sec. 4.1.3. This is an important step before refer-
ring to the electron-doped metallic monolayer. The first principles calculated
ground-state electronic properties and lattice vibrational properties of the
doped metal monolayer are presented in Sec. 4.1.4. Our calculations cover
electron-doping concentrations ranging up to ρ = 0.15 e/u.c., or equivalently
ρ ≈ 17 × 1013 e/cm2. The deep changes in the Fermi surface shape upon
doping promote the access of an increasing number of nesting channels. This
explains the fluctuations of the doping-dependent lattice vibrational struc-
ture, when rationalized in terms of phonon-mediated and spin-conserving
electronic scattering transitions. This is an imperative step before analyz-
ing the electron-phonon interaction and serves as a preliminary diagnosis
of the coupling dependence on doping. The computational methods are
described in Sec. 4.1.2.

4.1.1 The crystal structure of the MoS2 monolayer

This material crystallizes in a hexagonal close-packed structure and is com-
posed of two planes of sulfur (S) atoms with an intercalated plane of molyb-
denum (Mo) atoms, which are bound to S atoms in a trigonal prismatic
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Figure 4.1. (a) Top and (b) side view of the crystal unit cell employed for modeling
the MoS2 monolayer using the slab technique. Green and red spheres represent Mo
and S atoms, respectively. a represents the in-plane lattice parameter, set equal to
a = 3.16 Å, and d represents the distance between Mo and S atomic planes. The
height of the unit cell is fixed equal to c = 5a = 15.80 Å. (c) The change in the
inter-planar distance d as a function of the electron-doping concentration ρ. In the
undoped case, the relaxed inter-planar distance is equal to d = 1.56 Å, equivalent
to a Mo-S bond length of 2.40 Å and a vacuum distance of 12.68 Å.

arrangement. The crystal structure of this system has the P6m2 symmetry
space group, equivalent to the D3h symmetry point group, without inversion
symmetry [241]. Since the material is correctly described by one isolated sin-
gle layer, we resort to the slab technique. Figures 4.1(a) and (b) show the
top and side views, respectively, of the unit cell of the MoS2 monolayer,
which is described by the following direct lattice vectors:

a1 = a x̂, a2 =
a

2
(−x̂ +

√
3ŷ), and a3 = c ẑ, (4.1)

where a represents the in-plane lattice parameter, which has been taken
equal to the experimental bulk value, a = 3.16 Å [242], and c is the height
of the unit cell, which has been set equal to c = 5a = 15.80 Å. This is a large
enough vacuum space in order to avoid any interplay between adjacent MoS2
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Table 4.1. The three atom basis of the MoS2 monolayer crystal unit cell.

Atom
Crystal coordinates

a1 a2 a3

S −1/3 0 d/c
Mo 0 0 0
S −1/3 1/3 −d/c

slabs. The unit cell has a basis of three atoms, whose positions in crystal
coordinates are gathered in Table 4.1, where d represents the distance be-
tween the Mo and S atomic planes, or simply the inter-planar distance. For
all the cases considered in this chapter, i.e. with and without considering
doping, the equilibrium cell geometry of the monolayer is determined by re-
laxing all atomic forces up to at least 10−6 Ry/a0. In this regard, Fig. 4.1(c)
shows the evolution of the change in the relaxed inter-atomic planar dis-
tance d as a function of the considered electron-doping concentrations ρ. As
a reference, the relaxed inter-planar distance for the undoped monolayer is
equal to d = 1.56 Å, equivalent to a Mo-S bond length of 2.40 Å, which is in
good agreement with previous theoretical calculations [241]. The SBZ of the
MoS2 monolayer is the same as that of the Tl/Si(111) surface (Fig. 3.2(d)).

4.1.2 Computational methods

All the self-consistent first-principles calculations have been performed
within the noncollinear spin-DFT [174–177] and DFPT [33] formalisms as
implemented in the Quantum Espresso package [93, 94]. The exchange-
correlation energy has been approximated using the Perdew-Zunger (PZ)
spin-LDA parametrization [88]. An energy cutoff of 80 Ry has been used for
the converged planewave basis expansion. The norm-conserving pseudopo-
tential approximation [97] has been employed to include the 4d55s15p0 va-
lence electron states in the case of the Mo atom (Z = 42), and the 3s23p43d0

valence electrons in the case of the S atom (Z = 16). Likewise, fully rela-
tivistic pseudopotentials [188, 243] have been constructed in order to take
into account relativistic effects up to the spin-orbit interaction.

In the case of the undoped semiconductor MoS2 monolayer (Sec. 4.1.3),
the ground-state electronic properties are evaluated considering a 32 × 32
Monkhorst-Pack k-point mesh in combination with fixed Fermi-Dirac occu-
pation factors. The corresponding lattice vibrational properties are eval-
uated based on the calculation of the dynamical matrices on a 8 × 8
q-point mesh. In the case of the doped metal MoS2 monolayer (Sec. 4.1.4),
the ground-state electronic properties are evaluated considering a 32 × 32
Monkhorst-Pack k-point mesh and Fermi-Dirac occupation factors are taken
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into account with a spreading value of 5 mRy, more suitable for metals with
a well-defined FS. The corresponding lattice vibrational properties are eval-
uated based on the calculation of the dynamical matrices on a 8× 8 q-point
mesh. Electron-doping effects are self-consistently simulated by the addi-
tion of excess electronic charge into the unit cell, which is compensated by a
uniform positive jellium background in order to remove divergences [93, 94].

It is worth noting that, unlike in the undoped case, the dynamical ma-
trices of the doped monolayer are not directly taken from the DFPT calcu-
lations but have been obtained by means of an additional non-selfconsistent
procedure. For the doped monolayer, DFPT calculations are based on previ-
ous converged DFT calculations, which include BZ summations on a coarse
32 × 32 k-point mesh and Fermi-Dirac occupation factors are taken into
account with a spreading value of 5 mRy, i.e. equivalent to an energy of
∼ 68 meV and a temperature of ∼ 790 K. In fact, this energy is enough
to produce a remarkable smoothing of the Fermi surface that can mask
pronounced changes of its structure, which are at the origin of several in-
teresting phenomena such as Kohn anomalies. It would be desirable to
perform DFPT calculations with smaller smearing broadening values in or-
der to have a better description of the topology of the Fermi surface. This
demands finer k-point meshes for achieving converged results, making self-
consistency computationally prohibitive. Nevertheless, one can take advan-
tage from the first term on the right-hand side of Eq. 1.61, whose explicit
expression can be cast in the form of Eq. 2.22, as in the scheme proposed in
Ref. [104]. In fact, note that the latter term is already accessible from DFT
and DFPT calculations. Thus, the idea is to compute a non-selfconsistent
and converged 1BZ summation of the first term on the right-hand side of
Eq. 1.61 in a finer k-point mesh and with a smaller smearing broadening by
means of Wannier interpolation techniques (Sec. 2.6) and substitute it with
the one coming directly from DFPT calculations on the dynamical matrix.
In this way, we have used a fine 720 × 720 k-point mesh and Fermi-Dirac
occupation factors are taken into account with a spreading value of 5 meV,
i.e. equivalent to a temperature of ∼ 60 K. In a next step, the adiabatic
phonon modes are obtained by solving the secular eigenvalue problem of the
so resulting dynamical matrix, det

∣∣Dαα′
ss′ (q)− ω2

∣∣ = 0.

4.1.3 The undoped semiconductor MoS2 monolayer

In this section, we present the calculated electronic and lattice vibrational
properties of the undoped MoS2 monolayer.

Ground-state electronic properties

We start presenting the calculated electronic properties of the undoped
MoS2 monolayer, whose electron band structure in the eV range is shown in
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Figure 4.2. (a) Electron band structure of the undoped MoS2 monolayer on the eV
range of energy and centered on the semiconducting direct energy band gap of about
1.7 eV at the K(K′) high-symmetry points. (b) Zoom in of the unoccupied low-
energy conduction-band structure delimited by the horizontal dashed black lines in
(a) (left) and the corresponding DOS (right) of the undoped MoS2 monolayer on
the meV range of energy. Solid blue and dashed red lines represent opposite full
out-of-plane spin-polarized bands.

Fig. 4.2(a). The undoped semiconductor monolayer exhibits a direct energy
band gap of about 1.7 eV at the high-symmetry K(K′) points, which is in
good agreement with previous experimental and theoretical values [244–250].
Figure 4.2(b) displays the zoom in of the unoccupied low-energy conduction-
band structure of the undoped MoS2 monolayer, delimited by horizontal
dashed black lines in Fig. 4.2(a), (left) and its corresponding DOS (right).
This electron momentum and energy (k, ε) region represents the phase-space
available when adding finite electron-doping concentrations to the system
(Sec. 4.1.4). The low-energy conduction-band structure consists of a distri-
bution of valleys located at the high-symmetry K(K′) points and the Q(Q′)
points, which are at about half way along the equivalent ΓK(ΓK′) directions.
The main energy conduction-band minimum is predicted at the bottom of
the K(K′) valleys, while an additional second minimum is also predicted
at the bottom of the Q(Q′) valleys about 140 meV higher in energy. The
conduction-valleys are split in energy by the action of the spin-orbit inter-
action and present opposite full out-of-plane spin-polarizations in the whole
SBZ, which are represented by the solid blue and dashed red lines. While the
spin-orbit (SO) interaction induces an energy splitting of ∆SO ∼ 80 meV at
the Q(Q′) conduction-valleys, the K(K′) conduction-valleys appear almost
spin-degenerated (∆SO 6 3 meV). The latter is in clear contrast with the
case of the occupied high-energy valence-states at K(K′) points, where a
large spin-splitting of about ∆SO ∼ 150 meV is obtained.

The full out-of-plane spin-polarization can be easily understood due to
the pure 2D nature of the MoS2 monolayer, where both the electron mo-
mentum k and the effective potential, as well as its gradient asymmetry
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Table 4.2. Orbital composition in percentage for the low-energy conduction-states
(LE-CS) at the Q(Q′) and K(K′) points, and the high-energy valence-state (HE-
VS) at the K(K′) points of the undoped MoS2 monolayer. For each orbital angular
momentum l, we distinguish between the combinations of orbitals m aligned parallel
(‖) or perpendicular (⊥) to the monolayer (x, y) plane.

Atom lm
LE-CS HE-VS LE-CS

at Q(Q′) at K(K′) at K(K′)

S s 1 % 0 % 0 %
S px + py (‖) 32 % 22 % 16 %
S pz (⊥) 14 % 0 % 0 %

Mo s 1 % 0 % 5 %
Mo px + py (‖) 0 % 1 % 0 %
Mo pz (⊥) 0 % 0 % 0 %
Mo dxy + dx2−y2 (‖) 44 % 77 % 0 %
Mo dz2 + dzx + dzy (⊥) 8 % 0 % 79 %

∇V (r), are constrained parallel to the monolayer plane (x, y). The corre-
sponding cross product

(
k ×∇V (r)

)
points out of the plane and couples

to the spin, forcing it to align perpendicular to the plane [251]. For this
reason, the spin-orbit coupling term is expected to be larger for the elec-
tron states with more in-plane orbital character. The orbital composition of
the low-energy conduction-states (LE-CS) at the K(K′) and Q(Q′) points,
as well as for the high-energy valence-state (HE-VS) at the K(K′) points is
gathered in Table 4.2. We define PXlmkn as the squared module of the projec-
tions of the Kohn-Sham states |ψkn〉 and the the orthogonalized X atomic
pseudo-states |ϕPS

Xlm〉 with {l,m} orbital angular momentum quantum num-
bers (Appendix B), as follows:

PXlmkn =

∣∣ 〈ϕPS
Xlm|ψkn〉

∣∣2
〈ψkn|ψkn〉

. (4.2)

From Table 4.2, we appreciate that the states at Q(Q′) conduction-valleys
and the valence-states at the K(K′) points are mainly composed of in-plane
polarized orbitals, and therefore, exhibit larger spin-splittings. Conversely,
the K(K′) conduction-valleys have a predominant out-of-plane polarized or-
bital character, and thus, present a much smaller spin-splitting, which is
almost unappreciable. We finish this section by noting that the orbital com-
position of the conduction-valley structure of the undoped MoS2 monolayer
remains almost unchanged upon doping.
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Figure 4.3. (a) Phonon dispersion relation (left) and the corresponding phDOS
(right) of the undoped MoS2 monolayer. Acoustic and optical lattice normal modes
are represented by solid and dashed gray lines, respectively, and are well separated
by a frequency gap of about 6 meV. (b) Schematic representation of the polarization
vectors for the E′′, E′, A′1 and A′′2 optical phonon branches at q = Γ.

Lattice vibrational properties

We come now to present the calculated lattice vibrational properties of the
undoped MoS2 monolayer, whose phonon dispersion relation (left) and its
corresponding phDOS (right) are shown in Fig. 4.3(a). The set of low-
frequency acoustic vibrational modes (solid gray lines) is completely sep-
arated from the set of high-frequency optical modes (dashed gray lines) by
a gap of about 6 meV. The in-plane vibrating longitudinal (LA) and trans-
verse (TA) acoustic phonon branchs present a linear dispersion near the
Γ point and have higher frequency than the out-of-plane polarized acous-
tic (ZA) branch, showing the typical parabolic dispersion for one-layered
systems [252].

Regarding the optical phonon modes, the corresponding polarization vec-
tors at the q = Γ point are schematically represented in Fig. 4.3(b). The E′′

and E′ vibrational branches correspond to two pairs of in-plane longitudinal
(LO) and transverse (TO) optical modes. While the E′′ modes correspond
to the in-plane vibrations of the S atoms in counterphase, the E′ modes
correspond to the in-plane vibrations of the Mo and S atoms in counter-
phase to each other. In addition, while the E′′ branches are degenerated
at the Γ point with a frequency of 36 meV, the E′ branches are split with
a LO-TO splitting of 0.5 meV at frequencies between 48 and 49 meV. The
A′1 vibrational modes correspond to the almost dispersionless optical branch
with the S atoms vibrating counterphase in out-of-plane direction and with
a frequency of 51 meV at the Γ point. It is important to note for the follow-
ing discussion that the Mo atoms remain static for the A′1 mode at q = Γ,
while at q = Q(Q′), K(K′) and M these atoms exhibit in-plane vibrations.
Finally, the A′′2 phonon modes correspond to the highest-frequency optical
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branch, with the Mo and S atoms vibrating counterphase in out-of-plane
direction and with a frequency of 59 meV at the Γ point.

4.1.4 The electron-doped metallic MoS2 monolayer

In this section, we present the calculated electronic and lattice vibrational
properties of the MoS2 monolayer as a function of doping. Our calcula-
tions cover electron-doping concentrations ranging up to ρ = 0.15 e/u.c., or
equivalently ρ ≈ 17× 1013 e/cm2.

Doping-dependent electronic properties

We start analyzing the evolution of the electronic properties of the MoS2

monolayer as a function of doping. Figure 4.4 shows the low-energy electron
conduction-valley structure (left) and its corresponding DOS (right), while
Fig. 4.5 displays the resulting Fermi surface contours, for all the electron-
doping levels considered in this work. Following the convention adopted
in Fig. 4.2(b), the solid blue and dashed red lines in Fig. 4.4 and contours
in Fig. 4.5 represent opposite full out-of-plane spin-polarized conduction-
valleys and Fermi sheets, respectively. Besides, in Fig. 4.4, the dashed-dotted
green lines delimit the shaded green area that represent the energy window
within which an electron-hole pair can energetically be excited by the emis-
sion or absorption of a phonon with maximum frequency ωmax = 60 meV,
which is about the maximum frequency of the actual vibrational structure
(Fig. 4.3(a)).

It is worth noting the high sensitivity of the energy difference between
the bottom of the K(K′) and Q(Q′) conduction-valleys upon doping. In
fact, the energy difference decreases as the electron-doping concentration in-
creases, and eventually becomes negative with even higher doping (Fig. 4.4).
This relative energy shift has been already observed in previous theoretical
works [237, 253]. It has been explained in terms of a higher Coulomb re-
pulsion for the more localized electron states at the K(K′) valleys, with a
prevalent out-of-plane orbital character, compared to the more spread states
at the Q(Q′) valleys, with a prevalent in-plane orbital character (Table 4.2).
Figure 4.4 highlights the importance of self-consistently incorporating the ef-
fects of doping on both the calculation of the electronic ground state and the
lattice vibrational properties, where the correct band structure is necessary
in order to appropriately account for the electrostatic screening (Eq. 1.60).

The progressive population of the conduction-valley structure with in-
creasing electron-doping concentrations (Fig. 4.4) promotes the gradual
emergence of multiple and fully out-of-plane spin-polarized Fermi sheets,
which in turn results in an increasing number of possible electron-phonon
scattering channels. From the deep changes in the Fermi surface shape
(Fig. 4.5), one can distinguish three different electron-doping regimes:
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Figure 4.4. Low-energy electron conduction-band structure (left) and its corre-
sponding DOS (right) of the MoS2 monolayer for the electron-doping concentrations
ρ = 0.015 (a), 0.030 (b), 0.045 (c), 0.060 (d), 0.075 (e), 0.090 (f), 0.105 (g), 0.120
(h), 0.135 (i) and 0.150 e/u.c. (j). Solid blue and dashed red lines represent oppo-
site full out-of-plane spin-polarized bands. The Fermi level is set to zero (horizontal
dotted black line). Horizontal dashed-dotted green lines delimit the energy window
(shaded green areas) within which an electron-hole pair can be excited (relaxed) by
the decay (emission) of a phonon with maximum frequency ωmax = 60 meV.
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Figure 4.5. Fermi surface contour map of the MoS2 monolayer for the electron-
doping concentrations ρ = 0.015 (a), 0.030 (b), 0.045 (c), 0.060 (d), 0.075 (e),
0.090 (f), 0.105 (g), 0.120 (h), 0.135 (i) and 0.150 e/u.c. (j). Solid blue and dashed
red contours represent the opposite full out-of-plane spin-polarized Fermi sheets.
In the “small” doping regime (panels (a)-(d)), the almost spin-degenerated K(K′)
conduction-valleys are only occupied. In the “intermediate” doping regime (panels
(e)-(h)), the lower spin-split Q(Q′) conduction-valleys get also populated. In the
“large” doping regime, the upper spin-split Q(Q′) conduction-valleys become finally
filled.
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Figure 4.6. Fermi surface nesting wave vectors (green arrows) connecting different
Fermi sheets within the SBZ as a function of the electron-doping regime. Solid
blue and dashed red contours represent the opposite full out-of-plane spin-polarized
Fermi sheets. In the “small” doping regime, K↔ K′ nesting connections mediated
by q = K(K′) are only allowed (panel (a)). In the “intermediate” doping regime,
allowed nesting connections include: K ↔ Q and K′ ↔ Q′ transitions, as well as
Q ↔ Q′ transitions, mediated by q = Q(Q′) (panel (b)); K ↔ K′ transitions,
as well as Q ↔ Q′ transitions, mediated by q = K(K′) (panel (c)); and K ↔ Q′

and K′ ↔ Q transitions, as well as channels connecting equivalent Q or Q′ Fermi
sheets, mediated by q = M (panels (d) and (e)). In the “large” doping regime, the
same nesting connections as for the “intermediate” regime mediated by q = Q(Q′),
K(K′) and M are represented in panels (f), (g), and (h) and (i), respectively.



4.1. The MoS2 monolayer: electrons and phonons 105

• The “small” doping regime. This regime is found for electron-doping
concentrations ρ 6 0.06 e/u.c. (ρ / 7 × 1013 e/cm2). In this case,
only the almost spin-degenerate K(K′) conduction-valleys are occupied
(Figs. 4.4(a)-(d)). The corresponding Fermi sheets around the K(K′)
points are the only ones present (Figs. 4.5(a)-(d)).

• The “intermediate” doping regime. This regime is found for
electron-doping concentrations 0.06 e/u.c 6 ρ 6 0.12 e/u.c
(7× 1013 e/cm2 / ρ / 14× 1013 e/cm2). In this case, the lower spin-
split Q(Q′) conduction-valleys start populating (Figs. 4.4(e)-(h)). The
corresponding out-of-plane spin-polarized Fermi sheets appear located
at the equivalent Q(Q′) points (Figs. 4.5(e)-(h)).

• The “large” doping regime. This regime is found for electron-doping
concentrations ρ > 0.12 e/u.c. (ρ ' 14×1013 e/cm2). In this case, the
upper spin-split Q(Q′) conduction-valleys, i.e. the whole conduction-
valley structure, become finally filled (Figs. 4.4(i) and (j)). At the
equivalent Q(Q′) points, two opposite full out-of-plane spin-polarized
Fermi sheets are present (Figs. 4.5(i) and (j)).

In order to continue the discussion, it is important to analyze how the chang-
ing in the Fermi surface shape upon doping affects the nesting properties
of the MoS2 monolayer. The Fermi surface nesting describes the connec-
tion of different Fermi sheets, or different parts of the same Fermi sheet,
by means of a given wave vector q. This function is correctly expressed
by considering the imaginary part of the non-interacting density-response
function (Eq. 1.60) in the static limit (ω → 0) assuming constant matrix
elements [254]:

lim
ω→0

Imχ0
q(ω)

ω
=

1

Nk

∑
k

δ(εkn − εF)δ(εk+qm − εF). (4.3)

We conclude that the more pieces of the Fermi surface are connected to
each other in the above way, the stronger is the nesting. This is a valuable
information, as we will see in the following lines.

Apart from the trivial q = Γ wave vector that gives rise to intra-valley
electronic transitions, the possible nesting momenta q connecting the differ-
ent Fermi sheets, i.e. inter-valley transitions, of the doped MoS2 monolayer
are schematically represented by green arrows in Fig. 4.6, in the following
way:

• q = Q(Q′), which connects the Fermi sheet of the K valley with those
of the Q valleys and the Fermi sheet of the K′ valley with those of the
Q′ valleys. It also leads to Q↔ Q′ transitions (Figs. 4.6(b) and (f)).

• q = K(K′), which connects the Fermi sheets of the K and K′ valleys
(Fig. 4.6(a)). It also leads Q↔ Q′ transitions (Figs. 4.6(c) and (g)).
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• q = M, which connects the Fermi sheet of the K valley with those of
the Q′ valleys and the Fermi sheet of the K′ valley with those of the
Q valleys (Figs. 4.6(d) and (e)). It also connects the Q′ valleys with
themselves and the Q valleys with themselves (Figs. 4.6(h) and (i)).

Note that, while all the previous possible nesting mechanisms are allowed
within the electronic structure of the “intermediate” and “large” electron-
doping regimes, in the case of the “small” doping regime only the wave
vector q = K(K′) is allowed to mediate inter-valley transitions. It is also
important to bear in mind that the spin-polarization modulates and inhibits
the electron-phonon interaction. For instance, the scattering channels con-
necting the Q and Q′ conduction-valleys driven by phonons with momenta
q = Q(Q′) and K(K′) (Figs. 4.6(b) and (c)) are expected to be suppressed,
since both electron states present opposite spin-polarizations.

Doping-dependent lattice vibrational properties

We come now to analyze the evolution of the lattice vibrational properties
of the MoS2 monolayer as a function of doping. This step provides an initial
valuable examination of the interaction. The presence of frequency soft-
enings in the lattice vibrational structure gives a first indication of strong
electron-phonon couplings. Figure 4.7 compares the undoped (solid gray
lines) and doped (dashed magenta lines) adiabatic phonon dispersion rela-
tions of the MoS2 monolayer (left) and their corresponding phDOS (right)
for the all the electron-doping levels considered in this study. In connec-
tion with Sec. 4.1.4, we recall that Figs. 4.7(a)-(d) correspond to the “small”
doping regime, Figs. 4.7(e)-(h) to the “intermediate doping regime”, and
Figs. 4.7(i) and (j) to the “large” doping regime.

Let us start with the “small” doping regime (Figs. 4.7(a)-(d)). In this
range, a significant frequency dip of about 5 meV is reported for the A′1
optical phonon branch at momenta near q = Γ and M. An even larger
frequency softening of about 10 meV is obtained for the LA acoustic branch
at momenta near q = M. This indicates that the A′1 phonon mode with
momentum q = Γ is effectively coupled to the electron states at the K(K′)
valleys by spin-conserving intra-valley electronic scattering processes. This
coupling is explained by looking at the polarization vector of the A′1 phonon
mode with momentum q = Γ (Fig. 4.3(b)) and the orbital character of the
electron states at the K(K′) conduction-valleys (Table 4.2). Both are both
of out-of-plane nature, leading to a large overlap in the electron-phonon
matrix elements. Likewise, the softening of both the A′1 and LA phonon
modes at q = M puts in evidence the presence of effective phonon-mediated
spin-conserving K′ ↔ Q (Fig. 4.6(c)) and K↔ Q′ (Fig. 4.6(d)) inter-valley
electronic scattering processes. This coupling is also explained by the large
overlap resulting from the in-plane nature of the LA and A′1 phonon modes
at q = M and the empty and occupied electron states at the Q(Q′) and
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Figure 4.7. Phonon dispersion relation (left) and its corresponding phDOS (right)
of the MoS2 monolayer for the electron-doping concentrations ρ = 0.015 (a), 0.030
(b), 0.045 (c), 0.060 (d), 0.075 (e), 0.090 (f), 0.105 (g), 0.120 (h), 0.135 (i) and
0.150 e/u.c. (j). Solid gray and dashed magenta lines represent the undoped and
doping-dependent phonon branches, respectively. Note that the doping-dependent
results are derived from the non-selfconsistent procedure described in Sec. 4.1.4.
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K(K′) conduction-valleys, respectively. It is also worth noting the absence
of any doping-effect on the phonon modes at q = K(K′), even when nesting
is possible for these momenta (Fig. 4.6(a)). This is an indication of the
lack of effective coupling between the phonon modes at q = K(K′) and the
electron states at the Fermi level.

In the intermediate doping regime, additional frequency dips appear for
the in-plane polarized acoustic and the optical E′′ and A′1 phonon branches at
momenta near q = Q(Q′) and K(K′) (Figs. 4.7(e)-(h)). The Kohn anomalies
for the A′1 vibrational branch at q = Γ and M, as well as for the LA phonon
mode at q = M, are intensified, with impressive softening values larger than
10 meV. This enhancement of the screening directly results from the increase
in the number of Fermi sheets at these electron-doping levels. This gives rise
to additional effective phonon-mediated spin-conserving electronic scattering
channels connecting occupied and unoccupied states between the K(K′) and
Q(Q′) conduction-valleys (Figs. 4.6(b) and (c)), as well as the Q(Q′) valleys
with themselves (Figs. 4.6(d) and (e)). As before, the strong couplings can
be rationalized in terms of large electron-phonon matrix elements resulting
from large overlaps between the potential changes induced by the lattice
vibrational normal modes and the electron states.

Finally, within the large doping regime, the in-plane polarized acous-
tic Kohn anomalies develop instabilities at q = Q(Q′), K(K′) and M
(Figs. 4.7(i) and (j)). At these electron-doping levels, the whole spin-
polarized conduction-valley structure is occupied (Figs. 4.4(i) and (j)),
and therefore, the number of Fermi surface nesting channels is maximum
(Fig. 4.6). Indeed, in this range, the electrostatic screening is so large that
a phase transition of the crystal is energetically favorable, as proposed in
Ref. [238].

The insensitivity to the electron-doping for the ZA, E′′ and A′′2 vibra-
tional branches has been numerically obtained, as expected from symmetry
arguments [238, 255]. For these reasons, we exclude these phonon modes
from the following discussion.

4.2 Electron-phonon effects on the phonon spec-
tral function

In this section, we present a comprehensive ab initio analysis of the non-
adiabatic effects due to the electron-phonon interaction on the phonon spec-
tral function of the electron-doped MoS2 monolayer as a function of dop-
ing. Figure 4.8 represents the calculated phonon spectral function for all
the electron-doping levels in which the lattice is stable. The dashed black
lines show the corresponding adiabatic phonon dispersions (dashed magenta
lines in Fig. 4.7). The color code represents the height of the phonon spectral
function. The differences between the adiabatic phonon branches and the
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Figure 4.8. Density plot of the phonon spectral function of the MoS2 monolayer
for the electron-doping concentrations ρ = 0.015 (a), 0.030 (b), 0.045 (c), 0.060 (d),
0.075 (e), 0.090 (f), 0.105 (g) and 0.120 e/u.c. (h). The color code scale represents
the height of the spectral function. Dashed black lines represent the adiabatic
phonon dispersion relations.
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main features defined by the phonon spectral function allow to appreciate
the non-adiabatic corrections induced by the electron-phonon interaction.
We divide the analysis in two different parts: Secs. 4.2.2 and 4.2.3 are de-
voted to the large momentum regime (q � Γ) and the small momentum
regime (q → Γ), respectively. For the phonon modes driving effective elec-
tronic inter-valley scattering q � Γ, large spectral broadenings are identi-
fied. For the long-wavelength optical phonon modes with q→ Γ, responsible
for intra-valley scattering, large frequency hardenings and sharp dispersions
accompanied by intricate spectral structures emerge. In Sec. 4.2.4, we ratio-
nalize the emergent spectrum within the small momentum regime in terms of
a multiple-phonon quasi-particle picture, which explicitly accounts for the
splitting of the adiabatic optical phonon branch induced by the electron-
phonon interaction. The computational methods are described in Sec. 4.2.1.

4.2.1 Computational methods

The potential change matrix elements in Eq. 2.7 have been calculated con-
sidering the full-spinor Kohn-Sham electron states and the spin-dependent
first-order derivatives of the Kohn-Sham potential with respect to the ionic
displacements on coarse 16 × 16 k-point and 8 × 8 q-point meshes for
electrons and phonons, respectively. The SBZ summations involved in
the computation of the converged phonon self-energy (Eq. 2.19) and FS-
averaged electron-phonon coupling strength (Eq. 2.59) are performed using
fine 1800× 1800 k-point and 1800× 1800 q-point meshes by means of the
Wannier interpolation scheme of electron-phonon matrix elements. The
Wannier interpolation is limited to the spin-split low-energy conduction-
bands, and therefore, the sum over the band indexes runs over the two of
them. The sum over the branch index runs over all the phonon modes
of the MoS2 monolayer. The imaginary part of the phonon self-energy
(Eq. 2.61) is calculated for a frequency range of ω ∈ [−100 meV; 100 meV]
with a frequency step of ∆ω = 0.05 meV and replacing the delta functions
δ(εkn−εk+qm−ω) by Gaussian functions with a broadening value of 1 meV.
The Fermi-Dirac occupation factors are taken into account with a spreading
value of 5 meV (∼ 60 K). The real part of the phonon self-energy is recovered
by means of Kramers-Kronig relations in Eq. 2.21 from the imaginary part,
and the phonon spectral function is then obtained by means of Eq. 2.45. Re-
garding the FS-averaged electron-phonon coupling strength (Eq. 2.59), the
delta functions δ(εkn−εk+qm±ωqν) and δ(εkn−εF) are replaced by Gaussian
functions with a broadening of 2 meV. The superconducting critical temper-
atures are estimated by the semi-empirical McMillan-Allen-Dynes formula
in Eq. 2.69 with Coulomb repulsion parameters ranging from µ∗ = 0.00 to
µ∗ = 0.25 values.
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Figure 4.9. The phonon linewidth γqν as a function of doping for (a) acoustic and
(b) optical vibrational modes at q ≈ Q(Q′), K(K′) and M, represented by solid blue,
dotted red and dashed green lines. In panel (a), circles and squares represent the
acoustic TA and LA phonon modes, respectively, while, in panel (b), the optical E′

and A′1 phonon modes, respectively. (c) The electron-phonon coupling strength λ
and (d) the superconducting critical temperature Tc as a function of doping. Black
circles are experimental data from Ref. [233] and colored lines represent Tc for the
Coulomb potential parameter in the range 0.00 6 µ∗ 6 0.25. The white and shaded
gray areas correspond to the small and intermediate doping regime, respectively.

4.2.2 Large momentum regime (q� Γ)

In this section, we analyze the non-adiabatic effects induced by the electron-
phonon interaction on the phonon spectral function of the doped MoS2

monolayer within the large momentum regime. By the large momentum
regime we refer to the set of wave vectors q away from the Γ point that take
part in the phonon-mediated inter-valley electronic scattering. This is gov-
erned by the doping-dependent topology of the Fermi surface, as explained
in Sec. 4.1.4, and comprises momenta near q = Q(Q′), K(K′) and M.

In Fig. 4.8, we observe that the non-adiabatic electron-phonon correc-
tions upon doping do not change appreciably the adiabatic phonon dis-
persions within the large momentum regime, and, to a large extent, we
can say that the renormalized phonon frequencies follow the adiabatic ones,
i.e. Ωqν ≈ ωqν . Thus, we assume that the only significant spectral feature
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related to the electron-phonon coupling is the broadening of the phonon
linewidth. Thereby, the phonon linewidth is taken approximately equal to
the imaginary part of the phonon self-energy in Eq. 2.61 evaluated at the
adiabatic frequency itself, which is the same as one would obtain by Fermi’s
golden rule or the Rayleigh-Schrödinger perturbation theory approach in
Eq. 2.62. Figure 4.9 represents the calculated values of γRS

qν as a function of
the electron-doping for the phonon modes effectively coupled to electrons
and evaluated at momenta near q = Q(Q′) (solid blue lines), K(K′) (dot-
ted red lines) and M (dashed green lines). We distinguish the small and
intermediate doping regimes, which are represented by the white and gray
areas, respectively. In Fig. 4.9(a), the LA and TA acoustic phonon branchs
are represented by squares and circles, respectively. On the other hand, in
Fig. 4.9(b), the A′1 and E′ optical phonon branchs are represented by squares
and circles, respectively.

At small doping concentrations, only the LA and A′1 phonon modes at
q = M exhibit weak but appreciable linewidth broadenings. This is an
expected behavior, since in this doping regime these are the only phonon
modes that are effectively coupled to electrons (Sec. 4.1.4). Therefore, the
LA and A′1 phonon modes at q ≈ M decay by exciting spin-conserving
K ↔ Q′ (K′ ↔ Q) inter-valley electron-hole pairs. The real electronic
excitations become energetically accessible when both occupied and unoc-
cupied states at the K(K′) and Q(Q′) valleys, respectively, are within the
phonon-mediated energy window (shaded green area in Fig. 4.4). The lat-
ter, as well as the resulting finite phonon linewidth broadening, occur for
electron-doping concentrations ρ > 0.045 e/u.c..

At intermediate doping concentrations, the in-plane polarized E′ and
A′1 optical phonon modes at q ≈ Q(Q′) and K(K′) acquire appreciable
finite linewidth broadenings. This is also an expected behavior, since
in this doping regime many additional effective phonon-mediated spin-
conserving inter-valley electron-hole pair excitations become energetically
available (Sec. 4.1.4). Likewise, the broadening of the above discussed
phonon linewidths at q ≈ M is also enhanced. It is particularly remarkable
that the LA phonon branch at this precise momentum exhibits linewidth
values as large as three times that of the other modes.

Continuing with this discussion, it is important to point out that the
phonon linewidth is intimately related to the electron-phonon coupling
strength (Eqs. 2.65 and 2.66). The phonon linewidth is a magnitude which
accounts for the electron-phonon interaction, so that the wider is the phonon
linewidth the more the given phonon mode contributes to the interaction.
Figure 4.9(c) represents the electron-phonon coupling strength of the MoS2

monolayer as a function of doping. The interaction is found to be very weak
within the small doping regime, exhibiting small but finite values of about
λ ∼ 0.1. This must result from the effective coupling of electrons to phonon
modes at q → Γ, since we have already ruled out the contributions from
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phonon modes with q � Γ. Within the intermediate doping regime, the
electron-phonon coupling strength exhibits a rapidly growing enhancement
up to values of about λ ∼ 2, which resembles in shape to the outstand-
ing linewidth broadening of the LA phonon mode at q ≈ M (green line in
Fig.4.9(a)). One concludes that the electron-phonon interaction at the MoS2

monolayer is mainly governed by the spin-conserving inter-valley electronic
scattering mediated by LA phonon modes with q ≈ M. We recall that
the latter includes K ↔ Q′ and K′ ↔ Q transitions, as well as transitions
between equivalent Q or Q′ valleys (Figs. 4.6(d) and (e)).

In relation to the strong coupling described in the previous paragraph,
several theoretical works [237–240] have proposed the electron-phonon in-
teraction as the mechanism responsible for the superconductivity experi-
mentally found in gate-tuned MoS2 thin flakes [233–236]. Indeed, the onset
of superconductivity has been reported at electron-doping concentrations of
ρ ≈ 6 × 1013 e/cm2, i.e. ρ ≈ 0.05 e/u.c. for our modeled unit cell, which
coincides with the large strengthening of the electron-phonon interaction
(Fig. 4.9(c)). Figure 4.9(d) displays the calculated superconducting critical
temperature Tc as a function of doping. Black circles represent the experi-
mental data from Ref. [233], while the colored lines represent our calculations
using the McMillan-Allen-Dynes semi-empirical formalism with a Coulomb
potential parameter µ∗ ranging from 0 to 0.25. It is seen that our calcula-
tions reproduce qualitatively the experimentally measured dome-shaped su-
perconducting region and the order of magnitude of Tc. This is quite remark-
able because the McMillan-Allen-Dynes formula assumes an average of the
Fermi surface and neglects all the electronic anisotropy. In addition, Tc val-
ues computed with µ∗ = 0 follow the experiment up to ρ = 0.09 e/u.c., while
for higher electron-doping concentrations calculations a value of µ∗ = 0.2
and 0.25 reproduces the experimental data more closely. This suggests that
for smaller doping levels within the intermediate doping regime the electron-
electron interaction is not dominant, but for higher concentrations regime
the Coulomb repulsion is necessary in order to properly describe Tc.

4.2.3 Small momentum regime (q→ Γ)

In this section, we analyze the non-adiabatic effects induced by the electron-
phonon interaction on the phonon spectral function of the doped MoS2

monolayer within the small momentum regime (q → Γ). In the small mo-
mentum limit, we focus on the optical phonon branches that take part in
the phonon-mediated intra-valley electronic scattering. We thus avoid dis-
cussing the acoustic modes, since their coupling with electrons vanishes,
gνmn(k,q)→ 0, when q→ Γ [2].

Figure 4.10 shows the calculated phonon spectral function within the
small momentum regime for all the electron-doping levels considered in this
work except those within the large doping regime. In fact, this figure is a
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Figure 4.10. Density plot of the phonon spectral function of the MoS2 mono-
layer within the small momentum regime for the electron-doping concentrations
ρ = 0.015 (a), 0.030 (b), 0.045 (c), 0.060 (d), 0.075 (e), 0.090 (f), 0.105 (g) and
0.120 e/u.c. (h) near Γ. The color code scale represents the height of the spectral
function. Dashed black lines represent the adiabatic phonon dispersion relations.
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zoom of Fig. 4.8 between Γ and Q. The dashed black lines show the corre-
sponding adiabatic phonon dispersion relations. The color code represents
the height of the phonon spectral function. Unlike in the large momen-
tum regime, in this case the non-adiabatic electron-phonon effects are not
only limited to the broadening of the phonon linewidth but also lead to
a large hardening of the phonon frequency at q = Γ, accompanied by an
increasingly steeper dispersion of the branch slightly away from the SBZ
center. Therefore, the adiabatic approximation completely breaks down in
this momentum regime. While at small doping concentrations only the out-
of-plane polarized A′1 optical phonon branch exhibits significant spectral
features (Figs. 4.8(a)-(d)), the in-plane polarized E′ optical phonon modes
also display appreciable spectral features within the intermediate doping
regime (Figs. 4.8(e)-(h)). The latter appear rather insensitive to doping, un-
like the former case. This is consistent with the fact that the corresponding
electron-phonon matrix elements do not vary significantly with increasing
the electron-doping concentration. The electron-phonon matrix elements
obtained from first-principles calculations for the E′ branches at q = Γ in-
teracting with electron states at k = K(K′) are smaller than 1 meV for all
the electron-doping levels. For electron states at k = Q(Q′), the electron-
phonon matrix elements are found in the range of 30 − 40 meV for all the
electron-doping levels. Henceforth, we focus exclusively on the A′1 optical
phonon branch, which reveals the most interesting and complex evolution
of the spectral features as a function of doping.

Coupling of the low-energy electron conduction-bands to the A′1
optical phonon branch at q→ Γ within an Einstein-like model

In order to get a better insight into the physics related to the A′1 opti-
cal phonon branch at q → Γ, we derive a simple analytic model for the
MoS2 monolayer that reproduces our first-principles results. As seen in
Fig. 4.2(b), the low-energy electron conduction-band structure consists of
two almost spin-degenerated valleys centered at the K(K′) points and two
spin-split valleys centered at the Q(Q′) points. Thus, phonon-mediated
inter-band electron-hole scattering can be neglected within the small mo-
mentum regime, since the low-energy spin-split conduction-bands are oppo-
site spin-polarized, and only phonon-mediated intra-valley electronic scat-
tering is considered by spin-converving arguments. In addition, we just
account for conduction-valleys that are filled up to electron-doping levels in
the intermediate doping regime (Figs. 4.4(a)-(h)), since the lattice becomes
unstable for larger electron-doping concentrations. For this reason, the up-
per spin-split Q(Q′) conduction-valleys are not included in this analisis, as
they get populated only within the large doping regime.

After these initial considerations, we formulate the Einstein-like model
for simulating the MoS2 monolayer. This consists of a free electron gas com-
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Table 4.3. Ab-initio calculated parameters used in the Einstein-like model for the
MoS2 monolayer. εxF is the energy of the Fermi level with respect to the bottom
of the occupied x = K(K′) and Q(Q′) valleys, respectively. gxo are the intra-band
electron-phonon matrix elements for the A′1 phonon mode at q = Γ interacting with
electron states at strictly x = K(K′) and Q(Q′) k-momenta.

ρ (e/u.c.) ε
K(K′)
F (meV) ε

Q(Q′)
F (meV) g

K(K′)
o (meV) g

Q(Q′)
o (meV)

0.000 - - 87 66
0.015 28 - 84 68
0.030 67 - 82 69
0.045 91 - 65 86
0.060 104 - 52 98
0.075 110 18 46 104
0.090 112 35 41 109
0.105 111 49 35 114
0.120 107 61 30 119

posed of four equivalent K(K′)-like spin-degenerated valleys and six equiv-
alent Q(Q′)-like lower spin-split valleys. These bands are considered as
perfectly parabolic dispersing εxk = |k2|/(2m∗x)− εxF, where m∗x the electron
effective band mass and εxF the energy of the Fermi level with respect to the
bottom of the x = K(K′) and Q(Q′) conduction-valleys. The energy disper-
sions εxk have been characterized by means of a fitting procedure for all the
electron-doping levels and considering the ΓK direction. In more detail, we
obtain m∗

K(K′)
= 0.60 and m∗

Q(Q′)
= 0.80. The parameter values of εxF are

taken from first-principles calculations. The free electron gas interacts with
one single optical phonon branch, which is assumed as adiabatic and dis-
perses like the A′1 vibrational branch, i.e. ωqo = ωqA′1

. The coupling strength
is approximated by constant electron-phonon matrix elements gxo , which are
obtained from the ab initio calculations for the A′1 phonon branch at q = Γ.
All these parameters are gathered in Table 4.3 for all the electron-doping
levels.

In the following, we derive the phonon self-energy that accounts for
the non-adiabatic electron-phonon effects within this Einstein-like model.
Adapting Eq. 2.19 to this proposed model, we find that the non-adiabatic
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phonon self-energy is written as:

Π̃qo(ω) = lim
η→0+

1

Nk

1BZ∑
k

∑
x

Nx
∣∣gxo ∣∣2×(

f(εxk)− f(εxk+q)

εxk − εxk+q + ω + iη
−
f(εxk)− f(εxk+q)

εxk − εxk+q

)
,

(4.4)

where Nx is the number of equivalent valleys for x = K(K′) and Q(Q′)-like
valleys, i.e. NK(K′) = 4 and NQ(Q′) = 6. Since we are dealing with the MoS2

monolayer, i.e. a pure 2D material, we can conveniently approach the sum
in Eq. 4.4 as a 2D integral [6]:

lim
Nk→∞

1

Nk

1BZ∑
k

= A

∫
dk

(2π)2
, (4.5)

where A =
√

3a2/2 is the area of the in-plane hexagonal unit cell, with the
in-plane lattice parameter a = 3.16 Å. Substituting Eq. 4.5 into Eq. 4.4:

Π̃qo(ω) =
∑
x

Nx
∣∣gxo ∣∣2(χ0

qx(ω)− χ0
qx(0)

)
, (4.6)

where χ0
qx(ω) is the integral expression of the non-interacting density-

response function for the 2D free electron gas, i.e. the 2D Lindhard function,
at the x valley, given by:

χ0
qx(ω) = lim

η→0+
A

∫
dk

(2π)2

f(εxk)− f(εxk+q)

εxk − εxk+q + ω + iη
. (4.7)

Indeed, Eq. 4.7 has the following well-kwon analytical result [256]:

χ0
qx(ω) = −nxFA

(
1± 1

2q2

2m∗xω ∓ q2∣∣2m∗xω ∓ q2
∣∣√(2m∗xω ∓ q2)2 − (2qkxF)2

)
, (4.8)

where and q = |q|, and nxF = m∗x/(2π) and kxF =
√

2m∗xε
x
F are the DOS and

the electron momentum at the Fermi level of a 2D free electron gas at the
x valley. Finally, we find that the A′1 phonon spectral function accounting
for the non-adiabatic electron-phonon effects within the small momentum
regime for the Einstein-like model is given by:

Bqo(ω) = − 1

π
Im

[
2ωqo

ω2 − ω2
qo − 2ωqoΠ̃qo(ω)

]
. (4.9)

Figure 4.11 compares the spectral function for the A′1 phonon mode of
the MoS2 monolayer obtained from ab initio calculations and the Einstein-
like model, both evaluated within the small momentum limit along the ΓK
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Figure 4.11. Density plot of the spectral function of the MoS2 monolayer for
the A′1 phonon mode within the small momentum regime along the ΓK direction
obtained by means of ab initio calculations (left) and the Einstein-like model (right)
for the electron-doping concentrations ρ = 0.015 (a), 0.030 (b), 0.045 (c), 0.060 (d),
0.075 (e), 0.090 (f), 0.105 (g), and 0.120 e/u.c. (h). The color code scale represents
the height of the spectral function. Dashed black lines represent the adiabatic
dispersion relations. Solid gray lines bound the electron-hole excitation damping
continuum of the Einstein-like model. These are delimited by: (q2 + 2qkxF)/2m∗x >
ω > (q2− 2qkxF)/2m∗x, where kxF is the Fermi momentum for each x = K(K′) (outer
lines) and Q(Q′)-like (inner lines) valley.
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direction for all the electron-doping levels except for those within the large
doping regime. The dashed black lines show the corresponding adiabatic dis-
persion relation for the A′1 phonon mode (dashed magenta lines in Fig. 4.7).
The color code represents the height of the phonon spectral function. The
good agreement between both phonon spectra for all the electron-doping
levels confirms that our analytic model contains all the relevant physics of
the non-adiabatic electron-phonon renormalizations.

We can observe that the intensity of the spectral effects decreases with
larger carrier concentrations within the small doping regime, where only
K(K′) intra-valley electron-hole scattering occurs (Figs. 4.11(a)-(d)). This
trend is explained by the growing electronic screening that increasingly re-

duces the value of the screened electron-phonon matrix element g
K(K′)
o upon

doping (Table 4.3). On the other hand, the spectral effects are outstandingly
enhanced as the electron-doping concentration grows within the intermedi-
ate doping regime, where Q(Q′) intra-valley electronic transitions are also
allowed (Figs. 4.11(e)-(h)). In particular, for ρ = 0.12 e/u.c. in Fig. 4.11(h),
the renormalization of the adiabatic branch ωqo, which has a frequency of
43.1 meV at q = Γ, results in a sharp phonon peak with maxima at fre-

quencies ω ≈ 57 meV and 63 meV at q = Γ and |q| ≈ 0.05 Å
−1

along the
ΓK direction, respectively. These values correspond to a frequency hard-
ening of ∼ 33% and 46%, respectively, being both of them larger than
the largest frequency renormalization value reported so far in any mate-

rial (∼ 30%) [221]. This is explained by the larger values of g
Q(Q′)
o , which

also increases rather unexpectedly upon doping, still within the interme-

diate doping regime, which is unlike g
K(K′)
o . Such a behavior has been re-

cently explained in terms of an electrostatic screening suppression caused by
out-of-plane potential changes in inequivalent multi-valley materials, which
promote the enhancement of the electron-phonon interaction [230].

For all the electron-doping levels considered in Fig. 4.11, it is seen
that the main renormalized phonon peak acquires an appreciable linewidth

broadening at a given finite momentum |q| ≈ 0.03− 0.05 Å
−1

along the ΓK
direction. By exploring the phonon spectral functions of the Einstein-like
model, we quickly notice that the linewidth broadening occurs as soon as
the phonon peak enters within the dissipative electron-hole pair excitation
continua of the K(K′) and Q(Q′) valleys, which are bounded by solid gray
lines in Fig. 4.11. Indeed, the phonon modes with frequencies higher than
the threshold of the Landau damping region do not decay, i.e. ImΠ̃qo(ω) = 0,
leading to well-defined phonon quasi-particles with idealized infinitely long
lifetimes (γqo = 0). Nevertheless, from a quantum many-body point of
view, these phonon modes are allowed to excite virtual electron-hole pairs
of lower energy, even in the absence of available energy. Therefore, one
finds that in this range ReΠ̃qo(ω) 6= 0 [257]. Thereby, a dressing cloud of
charge carriers is produced, which oscillates with the lattice and results in
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an increase of the frequency of the phonon modes. This gives a physical
explanation of the observed hardening and steeper dispersions in Fig. 4.11.
Close to the left border of the Landau damping region, the undamped and
highly renormalized phonon branch reaches its maximum frequency follow-
ing a similar dispersion to that of the dissipative electronic continuum edge
ω ' (q2 + 2qkxF)/(2m∗x). At this frequency, the lattice and the dressing
electronic cloud vibrate in phase. The result is that the phonon velocity
coincides with the Fermi velocity, Ωqo/|q| ≈ |vF| [211–213]. On the other
hand, at higher momenta within the Landau damping region, phonons ac-
quire a finite lifetime, i.e. γqo 6= 0, since they are energetically allowed to
decay by exciting real electron-hole pairs, i.e. ImΠ̃qo(ω) 6= 0. Thus, for these
damped phonons, virtual electron-hole pair excitations become less proba-
ble in favor of real excitations, so that ReΠ̃qo(ω) → 0 and the frequency
renormalizations vanish.

Note that we have rationalized the above non-adiabatic electron-phonon
spectral signatures by means of a simple Einstein-like model. Therefore, we
conclude that the occurrence of this phenomenon is not unique to the doped
MoS2 monolayer and should be expected for any optical phonon branch in
similar conditions as described in this section.

4.2.4 Phonon quasi-particle branch splitting

We analyze now the intricate dynamical structure of the spectral function
for the strongly interacting A′1 optical phonon mode within the intermedi-
ate momentum regime. By exploring more closely Fig. 4.11, we observe that
along with the above illustrated main renormalized phonon peak around
ω ∼ 55 − 65 meV, a substantial part of the spectral weight remains in the
lower frequency range of the phonon spectrum (blue area). This spectral
feature develops inside the dissipative electron-hole pair excitation contin-
uum, and thus, has quite a wide structure. While immediately close to
q = Γ its spectral weight is negligible, the low-frequency feature accumu-
lates an increasing weight when approaching the adiabatic optical branch
to the detriment of the high-frequency peak. In addition, the low-frequency
spectral weight increases with the strength of the non-adiabatic electron-
phonon effects, that is with the electron-phonon coupling strength upon
doping. We come now to explain these spectral features in terms of phonon
quasi-particle poles.

Figure 4.12(a) displays a cut of the phonon spectral function calculated
from first-principles, BqsA′1(ω) (gray area), for the A′1 optical branch and

ρ = 0.12 e/u.c., at the momentum qs = |q| = 0.05 Å
−1

along the ΓK
direction. We also represent the phonon quasi-particle spectral functions
obtained from solving the phonon Dyson’s equation within the standard
Rayleigh-Schrödinger (RS), BRS

qsA′1
(ω) (long-dashed light-blue line), and the
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Figure 4.12. The spectral function and the self-energy for the A′1 phonon mode

and ρ = 0.12 e/u.c. evaluated at qs = |q| = 0.05 Å
−1

along the ΓK direction.
(a) The gray area represents the ab initio calculated phonon spectral function,
BqsA′

1
(ω). The long-dashed light-blue and short-dashed dark-blue lines represent

the phonon quasi-particle spectral functions obtained from the standard procedures
based on the Rayleigh-Schrödinger, BRS

qsA′
1
(ω), and Brillouin-Wigner, BBW

qsA′
1
(ω), per-

turbation theory approaches. The vertical dotted black arrow indicates the adia-
batic phonon spectral delta-line. (b) The solid orange and dashed magenta lines
show the real and imaginary parts of Π̃qsA′

1
(ω), respectively. The dotted black line

represents the inverse of D0
qsA′

1
(ω), whose cut with the real part of the self-energy

defines ΩBW
qsA′

1
. (c) The double-phonon quasi-particle spectral function obtained by

the numerical fitting procedure, Bqp
qsA′

1
(ω), and the spectral contributions of the

high-frequency, B
(1)
qsA′

1
(ω), and the low-frequency, B

(2)
qsA′

1
(ω), phonon quasi-particle

poles, are represented by the solid black, short-dashed red and long-dashed green
black lines, respectively. (d) Contour map of the phonon quasi-particle spectral
function on the complex plane z, where the two complex poles are well-defined at

z
(1)
qsA′

1
and z

(2)
qsA′

1
. The color code represents the height of the spectral function.
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Table 4.4. The phonon quasi-particle frequency, ΩxqsA′
1
, linewidth, γxqsA′

1
, and

renormalization factor, ZxqsA′
1
, within the Rayleigh-Schrödinger (x = RS) and

Brillouin-Wigner (x = BW) perturbation theory approaches, and within our nu-
merical fitting procedure, x = (1) and (2), starting from the adiabatic frequency
ωqsA′

1
= 43.1 meV for the A′1 optical phonon mode and ρ = 0.12 e/u.c. at qs. Recall

that the quasi-particle complex poles are defined as zxqsA′
1

= ΩxqsA′
1
− i γxqsA′

1
.

x Ωx
qsA′1

(meV) γxqsA′1
(meV) ZxqsA′1

RS 54.1 8.8 0.78

BW 62.3 3.4 0.69

(1) 62.9 2.6 0.52 + i 0.12 (∼ 65%)
(2) 36.3 9.4 0.33 + i 0.04 (∼ 35%)

Brillouin-Wigner (BW), BBW
qsA′1

(ω) (short-dashed dark-blue line), perturba-

tion theory approaches (Eq. 2.44). Figure 4.12(b) shows the phonon self-
energy calculated from first-principles, Π̃qsA′1

(ω), where its real and imag-
inary parts are represented by the solid orange and dashed magenta lines,
respectively. We also represent the inverse of the bare phonon propagator,
D0
qsA′1

(ω)
−1

(dotted black lines), whose intersection with the real part of

the phonon self-energy defines the frequency of the phonon quasi-particle
within the Brillouin-Wigner perturbation theory approach, ΩBW

qsA′1
. While

the first principles quantity BqsA′1(ω) displays a double peak-like structure
with maxima at ω ≈ 36 and 62 meV, both spectra resulting from the stan-
dard procedures (RS and BW) exhibit a single Lorentzian peaked function.
The frequency, linewidth and real renormalization factor values for the latter
are gathered in Table 4.4. Note that BRS

qsA′1
(ω) completely fails describing the

ab initio phonon spectral function, while its high-frequency spectral feature
at ω ≈ 62 mev is roughly approximated by BBW

qsA′1
(ω). This is consistent with

the fact that the Brillouin-Wigner perturbation theory is only valid when∣∣ImΠ̃qsA′1
(ω)
∣∣ � ReΠ̃qsA′1

(ω), which is satisfied in the vicinity of ΩBW
qsA′1

, as

it as can be seen in Fig. 4.12(b).

The low-frequency feature of BqsA′1(ω) at ω ≈ 36 meV develops at fre-
quencies where the imaginary part of the self-energy is larger than the real
part. It is therefore reasonable to think that this spectral feature originates
from an additional phonon quasi-particle pole with larger linewidth. As
seen in Sec. 2.4.1, the non-linear character of the phonon Dyson’s equation
in Eq. 2.41 leads to the possibility of finding several solutions, i.e. a multiple-
phonon quasi-particle picture. This is properly defined when the whole com-
plex frequency plane is considered as we will see shortly. To this end, in prin-



4.2. Electron-phonon effects on the phonon spectral function 123

ciple we should need an analytic continuation of the phonon self-energy into
the complex plane. Instead of this, we assume that the phonon self-energy is
analytic in the entire complex plane. We numerically fit BqsA′1(ω) by meas
of Eq. 2.48 in order to extract the position of the complex poles and the
complex renormalization factors of the phonon quasi-particles. The result
is that we find that a double complex pole picture is consistent with the dy-
namical structure of BqsA′1(ω). The frequency, linewidth and complex renor-
malization factor values of the fitted double-phonon quasi-particle structure
are also gathered in Table 4.4 ((1) and (2)). Figure 4.12(c) shows the fit-
ted double-phonon quasi-particle spectral function, Bqp

qsA′1
(ω) (solid black

line). In this figure we also show the spectral contributions of the high-

frequency, B
(1)
qsA′1

(ω) (short-dashed red line), and low-frequency, B
(2)
qsA′1

(ω)

(long-dashed green line), phonon quasi-particle poles, whose corresponding
spectral weights represent about the 65% and 35% of the total, respectively.
Note that the double-phonon quasi-particle spectral function fits perfectly
with the phonon spectral function. Figure 4.12(d) exhibits the contour map
of the doule-phonon quasi-particle spectral function in the whole complex
frequency plane, with the high-frequency and low-frequency poles found at

z
(1)
qsA′1

and z
(2)
qsA′1

, respectively (Table 4.4).

Physically, the high-frequency phonon quasi-particle mode has its fre-
quency within the dissipative electron-hole pair excitation continuum of the
K(K′) valleys, and therefore, acquires a finite linewidth, since it is allowed to
decay into K(K′) intra-valley electron-hole pairs excitations. However, at the
same time, it is also more energetic than the threshold of the Landau damp-
ing at the Q(Q′) valleys. Thereby, the excitation of virtual electron-hole
processes is strongly promoted, leading to a strong frequency renormaliza-
tion of this phonon mode. On the other hand, the low-frequency phonon
quasi-particle mode has its frequency also within the dissipative electron-
hole pair excitation continuum of the Q(Q′) valleys. Thus, this mode de-
cays into the corresponding electron-hole pair excitations and results highly
damped, with a linewidth 3.5 times larger than that of the high-frequency
mode.

The precision of the double-phonon quasi-particle picture puts in evi-
dence the origin of the splitting of the adiabatic A′1 optical phonon mode at
qs into two different and well-defined non-adiabatic phonon modes. In order
to get an even deeper insight about the phonon branch splitting as described
above, we expand our phonon quasi-particle analysis to a finite momentum
interval close to Γ. Figures 4.13(a) and (b) show the frequency and linewidth
dispersions, respectively, of the phonon quasi-particle modes for the A′1 opti-
cal phonon branch and ρ = 0.12 e/u.c. within the small momentum regime
along the ΓK direction. We compare the single-phonon quasi-particle so-
lutions resulting from the Rayleigh-Schrödinger (light-dashed blue lines)
and Brillouin-Wigner (dark-solid blue lines) perturbation theory approaches
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Figure 4.13. The renormalized phonon (a) frequency and (b) linewidth dispersions
for the A′1 phonon mode and ρ = 0.12 e/u.c., within the small momentum regime
along the ΓK direction. The adiabatic phonon dispersion ωqA′

1
is represented by the

dotted black line. The phonon quasi-particle frequencies and linewidths resulting
from the Rayleigh-Schrödinger, ΩRS

qA′
1

and γRS
qA′

1
, and the Brillouin-Wigner, ΩBW

qA′
1

and γBW
qA′

1
, perturbation theory approaches are represented by the long-dashed light-

blue and solid dark-blue lines, respectively. The frequencies and the linewidths of

the high-frequency, Ω
(1)
qA′

1
and γ

(1)
qA′

1
, and low-frequency, Ω

(2)
qA′

1
and γ

(2)
qA′

1
, phonon

quasi-particle modes resulting from the numerical spectral fitting procedure are
represented by open red circles and open green squares, respectively. In panel (a),
solid gray lines bound the electron-hole pair excitation continua in the Einstein-like
model as in Fig. 4.11. The size of the markers is proportional to the spectral weight
of each pole.

with the double-phonon quasi-particle structure. The high-frequency and
low-frequency phonon quasi-particle poles resulting from the numerical spec-
tral fitting procedure are represented by the open red circles and the open
green squares, respectively. Note that, in panel (a), the solid gray curves
represent the left bounds of the electron-hole pair excitation continua for
the K and Q valleys. We observe that the results of the standard single-
phonon quasi-particle results are valid very close to Γ and deep within the
Landau damping region, while the non-adiabatic splitting of the optical
branch occurs in the vicinity of the edge of the electron-hole pair excitation
continua. Moving away from the Γ point, the renormalized high-frequency
optical branch approaches the Landau damping region and an appreciable
part of the spectral function is smoothly transferred into the damped low-
frequency acoustic branch. Once the high-frequency peak overlaps with the

electron-hole pair continua at momentum |q| ≈ qs = 0.05 Å
−1

along the
ΓK direction, its linewidth broadens rapidly. This coincides with the total
transfer of the spectral weight of the high-frequency branch to the emer-
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gent low-frequency branch, which follows a damped dispersion similar to
the adiabatic one at higher momenta.

4.3 Electron-phonon effects on the electron spec-
tral function

In this section, we analyze the electron spectral function of the electron-
doped MoS2 monolayer considering a procedure similar to that of Sec. 4.2.
In Sec. 4.3.2, we examine the doping-dependence of the electron-phonon ef-
fects on the electron spectral function. In Sec. 4.3.3, we analyze in more the
detail the specific doping level for which multiple band splittings or “kinks”
are observed in the electron spectral function, recently measured in ARPES
experiments [232]. We rely on a reasoning of the energy-dependent structure
of the imaginary part of the electron self-energy in order to understand the
emergence of these spectral features. Finally, in Sec. 4.3.4, we combine our
ab initio electron-phonon calculations with a complex energy plane anal-
ysis of the electron quasi-particle poles. We show that the singular band
splitting or “kink” structure observed in the ARPES experiments can be
explained by three coexisting electron quasi-particle states. One of these
states, despite being strongly interacting with the accompanying virtual
phonon cloud, presents an exceptionally long lifetime. The computational
methods are described in Sec. 4.3.1.

4.3.1 Computational methods

The potential change matrix elements in Eq. 2.7 have been calculated con-
sidering the full-spinor Kohn-Sham electron states and the spin-dependent
first-order derivatives of the Kohn-Sham potential with respect to the ionic
displacements on coarse 16×16 k-point and 8×8 q-point meshes for electrons
and phonons, respectively. The SBZ summations involved in the converged
computation of the electron self-energy in Eq. 2.18, and the electron state-
dependent and phonon mode-dependent electron-phonon coupling strength
in Eqs. 2.58 and 2.68, respectively, are performed using fine 3000 × 3000
k-point and 1500 × 1500 q-point meshes by means of the Wannier inter-
polation scheme of electron-phonon matrix elements. As for phonons, the
Wannier interpolation is limited to the spin-split low-energy conduction-
bands, and therefore, the sum over the band indexes runs over the two of
them. The sum over the branch index runs over all the phonon modes
of the MoS2 monolayer. The imaginary part of the electron self-energy
(Eq. 2.52) is calculated for an energy range of ω ∈ [−500 meV; 500 meV]
with an energy step of ∆ω = 0.02 meV and replacing the delta functions
δ(ω−εk+qm±ωqν) by Gaussian functions with a broadening value of 1 meV.
These calculations were performed at zero temperature (T = 0 K). In these
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conditions, the Bose-Einstein occupation factors for phonons are equal to
zero and the Fermi-Dirac occupation factors for electrons are related to
Heaviside step functions, f(εkn) = H(εF − εkn). The real part of the elec-
tron self-energy is recovered by means of the Kramers-Kronig relations in
Eq. 2.20 from the imaginary part, and the electron spectral function is then
obtained by means of Eq. 2.35. Regarding the electron state-dependent and
phonon mode-dependent electron-phonon coupling strength (Eqs. 2.58 and
2.68), the delta functions δ(εkn− εk+qm±ωqν) and δ(εkn− εF) are replaced
by Gaussian functions with a broadening value of 1 meV.

Analytical continuation of the electron self-energy

As noted in Sec. 2.3.1, in order to find the proper complex solutions of the
electron quasi-particle equation in Eq. 2.26, we need in principle to perform
the analytical continuation of the electron self-energy from the upper half
complex energy plane into the lower half. To this end, we calculate the
electron self-energy from first principles only along the real energy axis,
and then, we use a generalization of the method outlined in Ref. [36] to
handle electron self-energies without assuming the particle-hole symmetry.
For doing so, we use the Kramers-Kronig relations in Eq. 2.20 integrated by
parts:

Σkn(ω + iη) = −
∫ ∞
−∞

dω′ log[ω − ω′ + iη]
∂ImΣkn(ω′′)

∂ω′′

∣∣∣∣∣
ω′′=ω′

+ C. (4.10)

As it is known, the simple replacement of ω by z in Eq. 4.10 is not valid, as
the branch-cuts introduced by the logarithmic term makes the direct numer-
ical integration inappropriate [126]. However, we adopt a numerical strategy
based on the analytical integration of ∂ImΣkn(ω)/∂ω as a piecewise poly-
nomial. In this regard, we have used a cubic spline interpolation, thereby
ensuring the continuity of the first and second derivatives of the latter term
all over the real energy ω axis.

4.3.2 Doping-dependent electron spectral function

In this section, we analyze the evolution of the electron-phonon effects
on the electron spectral function of the MoS2 monolayer as a function of
doping. Figure 4.14 represents the calculated electron spectral function for
the electron-doping concentrations ρ = 0.015 (a), 0.030 (b), 0.045 (c) and
0.060 e/u.c. (d) within the small doping regime, and ρ = 0.075 (e) and
0.105 e/u.c. (f) within the intermediate doping regime. Again, we do not
consider the large doping regime, since the crystal is unstable. The dashed
black lines show the low-energy bare electron conduction-brand structures
(Fig. 4.4). The color code represents the height of the electron spectral func-
tion. The differences between the bare electron conduction-bands and the



4.3. Electron-phonon effects on the electron spectral function 127

Figure 4.14. Density plot of the electron spectral function of the MoS2 monolayer
for the electron-doping concentrations ρ = 0.015 (a), 0.030 (b), 0.045 (c), 0.060
(d), 0.075 (e) and 0.105 e/u.c. (f). The color code scale represents the height of
the spectral function. Dashed black lines represent the low-energy bare electron
conduction-band structure.
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main features defined by the electron spectral functions allow to appreciate
the corrections induced by the electron-phonon interaction.

Within the small doping regime, only the almost spin-degenerate K(K′)
conduction-valleys are occupied, and hence, only these appear in the simu-
lated photoemission spectra. For the lowest electron-doping concentration
(Fig. 4.14(a)), the binding energy of the K(K′) conduction-valleys is less
than the frequency of the A′1 optical phonon mode at q = Γ, which in this
case is the only interacting phonon mode (Sec. 4.2). In these conditions,
the electron-phonon interaction presents two distinct spectral features [4]: a
renormalized valley with heavier effective mass and a so-called satellite fur-
ther down at ω ≈ ωΓA′1

= 50.6 meV. In fact, the satellite features have been

recently observed in ARPES experiments in doped oxides [205, 228, 258–
260]. For larger dopings but still within the small doping regime, the bind-
ing energy of the K(K′) conduction-valleys is larger than the frequency of
the A′1 optical phonon mode at q = Γ, and therefore, the obtained elec-
tron spectral functions resembles more the spectrum of the Einstein model
(Appendix C). As seen in Fig. 4.9(c), the electron-phonon coupling strength
exhibits rather small values within the small doping regime (λ ∼ 0.1), and
therefore, the electron-phonon effects are rather weak. Indeed, the electron
spectral functions look very similar to bare electron band structures.

The situation changes drastically as we enter the intermediate doping
regime. The K(K′) conduction-valleys become strongly renormalized ex-
hibiting unprecedented multiple spectral band-splittings or “kinks” that re-
produce the recent intricate ARPES measurements in electron-doped MoS2

monolayer [232]. These outstanding spectral features are signatures of the
strong enhancement of the electron-phonon coupling strength in this system
at intermediate electron-doping concentrations (λ > 0.5) (Fig. 4.9(c)) and
the onset of the superconducting state (Fig. 4.9(d)). On the other hand,
the lower spin-split Q(Q′) conduction-valleys also get populated within the
intermediate doping regime, and hence, they appear in the simulated pho-
toemission spectra. These figures demonstrate the outstanding strength of
the electron-phonon coupling in the Q(Q′) conduction-valleys, which exhibit
multiple unequivocal satellites in the spectral function, as well as a strong
spectral band-splitting with increasing doping.

4.3.3 Electron spectral function with multiple kinks

In this section, we analyze the multiple band-splitting or “kink” structure
observed experimentally in the electron spectral function of the electron-
doped MoS2 monolayer at the K(K′) valleys [232]. We focus on the calcu-
lated electron spectral function for the doping concentration ρ = 0.075 e/u.c.
within the “intermediate” doping regime (Fig. 4.14(e)). To this end, it is im-
portant to do a deep inspection of the electron-phonon interaction for this
specific electron-doping level. Figure 4.15(a) shows the low-energy bare elec-
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Figure 4.15. (a) Electron conduction-band structure (left) and the correspond-
ing DOS (right) of the MoS2 monolayer for the electron-doping concentration
ρ = 0.075 e/u.c.. Solid blue and dashed red lines represent opposite full out-of-plane
spin-polarized bands. The Fermi level is set to zero (horizontal dotted black line).
(b) Phonon dispersion relation represented by colored lines, where the color code
indicates the electron-phonon weighted nesting function 〈|gqν |2〉 for each phonon
mode |qν〉. (c) and (d) Momentum resolved state-dependent electron-phonon cou-
pling strength λkn within the SBZ for the occupied spin-up (↑) (blue color code)
and spin-down (↓) (red color code), respectively. The green arrows depict the most
relevant spin-conserving phonon-mediated inter-valley electronic transitions within
the “intermediate” doping regime. These are driven by phonon modes with equiva-
lent momenta close to q = M and connecting the Q′(Q) valleys with themselves and
with the outer states of the K(K′) valleys for the spin-up (spin-down) polarization.

tron conduction-band structure (left) and the corresponding DOS (right).
The solid blue and dashed red lines represent opposite full out-of-plane spin-
polarized conduction-valleys. The almost spin-degenerate K(K′) valleys and
the lower spin-split Q(Q′) valleys are occupied, with binding energies of
εK(K′) = −118 meV and εQ(Q′) = −22 meV, respectively. Note that the lat-

ter energy is located within the phonon frequency range. Figure 4.15(b) dis-
plays the adiabatic phonon dispersion relation with the color code represent-
ing the electron-phonon weighted nesting function, or equivalently the FS-
averaged squared electron-phonon matrix element, 〈|gqν |2〉 for each phonon
mode |qν〉 (Eq. 2.68). Figures 4.15(c) and (d) show the momentum-resolved
electron-phonon coupling strength, λkn, within the SBZ for the occupied
electron states with spin-up and spin-down polarizations, respectively.
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Indeed, the large values of 〈|gqν |2〉 for the acoustic (A) and the op-
tical (O) phonon modes at momentum q = M with frequencies around

ωM
A = 16 meV and ωM

O = 46 meV, respectively, as well as the momentum-
resolved density maps of the λkn for each of the occupied spin-polarized
bands definitely confirm that the electron-phonon interaction is dominated
by these specific phonon-mediated spin-conserving electronic scattering pro-
cesses. In particular, among all the possible inter-valley channels connecting
the Fermi sheets, the phonon modes at momentum q = M connect the equiv-
alent Q′(Q) with themselves and with the outer states of the K(K′) valleys
for the spin-up (spin-down) polarization (green arrows in Figs. 4.15(a),(c)
and (d)). Specially remarkable are the large values of the state-dependent
electron-phonon coupling strengths, which are as large as λkn ∼ 1.2 near
K(K′). Note that this coincides with the assertions given in the previous
sections for the specific electron-doping level.

We come now to explain the origin of the multiple band-splittings of the
electron spectral function. To this end, we illustrate the configuration of the
electron spectral function in terms of the energy-dependent structure of the
imaginary part of the electron self-energy. Figure 4.16(a) shows the ab initio
calculated electron spectral function including the electron-phonon effects of
the MoS2 monolayer for the low-energy conduction-band structure and the
electron-doping concentration ρ = 0.075 e/u.c.. The framed area delimited
by the dashed black rectangle is displayed in Fig. 4.16(b) One immediately
realizes that the electron spectral function exhibits two sharp band-splittings
at binding energies coinciding with the ωM

A and ωM
O phonon frequencies. The

calculated electron spectral function reproduces in great detail the recent
ARPES measurements performed by Kang et al. [232]. The left panels of
Figs. 4.16(c) and (d) represent the decomposition of the zoom of the electron
spectral function in Fig. 4.16(b) into the outer (spin-up) and inner (spin-
down) spin-split electron conduction-bands, respectively. The middle panels
represent the corresponding dynamical structure of the imaginary part of the
electron self-energy, evaluated at k = kA close to K (vertical dashed black
lines in left panels). The right panels rationalize the imaginary part of the

electron self-energy in terms of energy-conserving and spin-converving ωM
A

and ωM
O phonon-mediated scattering processes connecting electrons from the

DOS of occupied states at the equivalent Q′ valleys to the injected hole states
at kA.

First of all, we find that the outer spin-split valley shows outstandingly
strong spectral electron-phonon signatures, while the inner spin-split valley
shows much weaker spectral details. This is consistent with the above idea
that the electron-phonon interaction is governed by q = M phonon-mediated
spin-conserving electronic transitions. Indeed, the outer spin-split K valley
has the same spin-polarization as the lower spin-split Q′ valley, and hence,
both valleys are effectively coupled. Conversely, the inner spin-split K has
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Figure 4.16. Electron spectral function of the MoS2 monolayer conduction-band
structure for the electron-doping concentration ρ = 0.075 e/u.c. calculated from
first-principles and including electron-phonon interaction effects. The solid black
lines represent the non-interacting bare electron conduction-bands. The color code
scale represents the height of the spectral function. (a) Spectral function along the
ΓKM high-symmetry direction within the SBZ. (b) Zoom of the spectral function
on the area highlighted in (a) by the dashed black rectangle. Zoom of the spectral
function for the (c) outer and (d) inner spin-split states of the K conduction-valley.
In the middle panels, the corresponding imaginary part of the electron self-energy
is evaluated for the electron state at k = kA. The onsets of the rectangular maxima

are at ωM
A and ωM

O , while their width is related to the enhanced DOS (right panel)
of the occupied Q′ valleys (green shaded area).
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the opposite spin-polarization, and thus, the coupling suppresses (Sec. 3.3.2).
On the other hand, the imaginary part of the electron self-energy of the
outer spin-split band exhibits a rather uncommon rectangular-shaped dou-
ble structure of width ∼ |εQ(Q′)| = 22 meV (black double-arrows) with on-

sets precisely at binding energies corresponding to the ωM
A and ωM

O phonon
frequencies. The low-energy rectangular shape in the imaginary part of the
self-energy function with onset at ωM

A frequency has a maximum value of

almost 28 meV, while the high-energy rectangular shape with onset at ωM
O

has a maximum value of almost 10 meV. These two rectangular shapes are
separated by a narrow window of almost 8 meV centered at the binding en-
ergy ω ∼ 42 meV with almost a vanishing value of ∼ 1 meV. It is actually
the large increase of the DOS at the occupied Q′ valleys that is the re-
sponsible of enhancing the available phase-space of the strongly-interacting
Q′ → K scattering process leading to the maximum values of ImΣkA↑(ω)
(green shaded areas in Fig. 4.16(e)).

It is also worth discussing the most uncommon spectral feature found in
the ARPES experiment [232], found also in our calculated electron spectral
at ω ∼ 42 meV. Indeed, this feature, if demonstrated to be a well-defined
electron quasi-particle, would correspond to a very long-lived state despite
being strongly interacting. This is a unique characteristic of the electron-
doped MoS2 monolayer, arising from the fact that the K(K′) and Q(Q′)
conduction-valleys have different binding energies and that there are ba-
sically two relevant phonon modes which effectively connect those valleys.
Following the previous energy conservation arguments, one notices that the
rectangular-shaped double structure with the dip at ω ∼ 42 meV in the
imaginary part of the electron self-energy will appear as long as electron
states at the Q′ valleys are occupied and the condition ωM

O − ωM
A > |εQ(Q′)|

holds. Thereby, no electron from the occupied Q′ valleys can scatter to fill
the injected hole at k = kA with energies between the two rectangular max-
ima. We therefore deduce that this electron state is very long-lived and that
a double band-splitting structure at momenta near the K valley is obtained
as a consequence of the above observation (Figs. 4.14(e) and 4.16(c)). How-

ever, for higher doping concentrations, it is found that |εQ(Q′)| > ωM
O − ωM

A .
In this case, the sharp double band-splitting strucuture is replaced by more
common features in the electron spectral function (Fig. 4.14(f)).

In ordinary metals, the imaginary part of the electron-phonon self-energy
is a monotonically increasing function due to the practical constant DOS
close to the Fermi level within an energy range equal to typical phonon
frequencies (Appendix C). Therefore, this situation is radically different to
what it is observed in the electron-doped MoS2 monolayer, and probably in
other doped semiconductors.
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Figure 4.17. Comparison of (a) the electron spectral function and (b) the electron
quasi-particle poles dispersion found for the outer spin-split conduction-band near
the K point. The solid black lines represent the non-interacting bare electron band.
In (a), the color code scale represents the height of the spectral function. In (b),
the dashed gray line represent the electron quasi-particle energy dispersion resulting
from the Brillouin-Wigner perturbation theory approach (Eq. 2.29), while the red
(1), green (2) and blue (3) dots represent the energy dispersion for the the multiple-
electron quasi-particle picture found by solving properly the quasi-particle equation
in Eq. 2.26 (left). The length of the bars represent the spectral weight of each
pole. In the right panel, the electron quasi-particle linewdiths with respect to
their energies are shown. (c) and (d) Comparison of the 3D-representation of the
spectral function resulting directly from first-principles calculations (gray color)
and the contributions from each complex quasi-particle pole, following the same
color convention as in (b).

4.3.4 Multiple electron quasi-particle poles

In this section, we come now to rationalize the multiple band-splittings
observed in the electron spectral structure in terms of electron quasi-particle
poles (Sec. 2.3.1).

Figure 4.17 compares the electron spectral function (panel (a)) with the
electron quasi-particle band structure (panel (b)) of the MoS2 monolayer
for the electron-doping concentration ρ = 0.075 e/u.c.. For the sake of clar-
ity, we have focused on the same momentum region as in Fig.4.16(c) and
only on the strongly interacting outer spin-split conduction-band of the K
valley. In Fig. 4.17(b), the dashed gray line represents the electron quasi-
particle band structure resulting from the Brillouin-Wigner perturbation
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theory approach (j = BW) (Eq. 2.29), while the red (j = 1), green (j = 2)
and blue (j = 3) dots represent the multiple-electron quasi-particle band
structure found by properly solving the electron quasi-particle equation in
the entire complex energy plane (Eq. 2.26). Close to the Fermi momen-

tum, |k|‖ΓK − K = −0.125 Å
−1

, and the Fermi level, ω = 0, a polaron-

like band (j = 1) [37] (Appendix C) appears with a strongly renormal-

ized dispersion and a large lifetime, i.e a small linewidth Γ
(1)
kn � 1 meV.

As the electron momentum k approaches to the K point, the electron
quasi-particle band becomes dispersionless, saturating at the binding en-
ergy ω ∼ −16 meV and gradually losing its spectral weight in favor of
deeperly bounded electron quasi-particle states. Far enough from the Fermi

momentum at ω < −68 meV, we find a damped (Γ
(3)
kn > 1 meV) electron

quasi-particle band (j = 3), following a similar dispersion to the one of
the bare electron band structure. The most interesting result is that for

intermediate values of the momentum, |k|‖ΓK − K ∈ [−0.125;−0.075] Å
−1

,

and energy, ω ∈ [−38;−48] meV, an additional electron quasi-particle band
(j = 2) is found, which exhibits a practically flat dispersion with an impor-
tant spectral weight. This electron quasi-particle band appears long lived,
since it lies just within the energy window where the imaginary part of the

electron self-energy has almost a gap. It has a linewidth Γ
(2)
kn ∼ 0.35 meV,

which almost negligible compared to the deep-energy damped quasi-particle
band j = 3. Indeed, the j = 2 electron quasi-particle solutions constitute
strongly-interacting and long lived states tending to localization. Said in
pass, this result is not obtained by any means when only the real part of the
self-energy is considered for calculating the dispersion of the quasi-particles,
i.e. Brillouin-Wigner perturbation theory approach (dashed gray line).

Figures 4.17(c) and (d) compare the three-dimensional (3D) spectral rep-
resentations of the interacting electron Green’s function, Ak↑(ω) (Eq. 2.35),
and the result obtained by considering the multiple-electron quasi-particle
band structure, Aqp

k↑(ω) (Eq. 2.38). The latter is explicitly broken into the
spectral contributions of each electron quasi-particle band, with the red,
green and blue colors associated to the j = 1, 2 and 3 electron quasi-particle
bands, respectively. The agreement between the interacting electron and
electron quasi-particle spectral functions is strikingly good. Moreover, the
electron spectral weight condition (Eq. 2.36) is well fulfilled here as the inte-
gral of Aqp

k↑(ω) turns out to be of the order but less than the unity for all the
electron momenta analyzed. Indeed, this 3D spectral representation helps
us to understand in which way the spectral weight is transferred from one
electron quasi-particle band to the other ones as a function of the momen-
tum k, even when for some values of the momentum all the three many-body
solutions coexist.
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4.4 Conclusions

In this chapter, we have performed a comprehensive first principles analysis
of the electron-phonon interaction in the electron-doped MoS2 monolayer.
In particular, we have focused on studying the non-adiabatic effects due to
the electron-phonon coupling on the adiabatic phonon dispersion relations,
as well as the effects due to the electron-phonon coupling on the bare electron
band structures, as a function of doping.

In Sec. 4.1, we have presented the calculated ground-state electronic and
lattice vibrational properties of the MoS2 monolayer and studied their evolu-
tion from the undoped semiconductor to the increasingly doped metal phase.
The electron-doping concentrations are divided in three different regimes,
small, intermediate and large, depending on the level of occupation of the
low-energy electron conduction bands. Significant doping-induced changes
in the Fermi surface topology promote an enhancement of the Fermi sur-
face nesting. This enhancement rationalized in terms of phonon-mediated
and spin-conversing scattering processes is able to explain the strong de-
pendence of the phonon dispersions on the electron-doping. Besides, the
increasing electrostatic screening in response to phonon modes induce the
development of lattice instabilities, precisely at the doping values at which
all the multiple inequivalent spin-split conduction valleys start getting popu-
lated. This analysis already highlights the strong interaction between K(K′)
and Q′(Q) valleys, which is mediated by in-plane acoustic and out-of-plane
optical phonon modes at momentum q = M.

In Sec. 4.2, we have analyzed the non-adiabatic electron-phonon effects
on the phonon spectral function of the electron-doped MoS2 monolayer.
We separately focus on the large (q � Γ) and small (q → Γ) momentum
regimes. Within the large momentum regime, phonon modes are hardly
renormalized and acquire finite lifetimes, exhibiting strong broadening of
their linewidths upon doping and are satisfactorily described using the
Rayleigh-Schrödinger perturbation theory. In particular, the in-plane po-
larized longitudinal acoustic (LA) phonon mode at q = M exhibits the most
outstanding enhancement of its linewidth upon doping when passing from
the small to the intermediate doping regime. This is followed by a similar
strengthening of the electron-phonon coupling and the development of super-
conductivity, which has been experimentally measured [233]. All this makes
it clear that the strong electron-phonon interaction is dominated by the
LA phonon mode at q = M mediated electronic scattering of the equivalent
Q′(Q) valleys with themselves and those involving the K(K′) valleys. Within
the small momentum regime, the out-of-plane polarized optical mode (A′1)
appears strongly renormalized upon doping, exhibiting large frequency hard-
enings, in agreement with Refs. [230, 231]. Furthermore, sharp dispersions
close to the Γ point when approaching to the phase-space area correspond-
ing to the electron-hole pair excitation continuum appear. This physical
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phenomenon is rationalized in terms of virtual electron-hole pair excitations
by means of an Einstein-like model for the MoS2 monolayer. Likewise, we
show that the intricate dynamical structure of the phonon spectral function
is explained by the splitting of the adiabatic phonon branch into two physi-
cally different phonon quasi-particle branches. Though the MoS2 monolayer
represents a good example of strong electron-phonon interaction with a sim-
ple electron valley structure, it is evident that the physics described in this
section is not unique to this system but of a quite general nature.

Finally, in Sec. 4.3, we have analyzed the electron-phonon effects on the
electron spectral function of the electron-doped MoS2 monolayer. While
we find that within the small doping regime the renormalization effects are
rather weak, a larger doping leads to an intricate electron spectra at the K
valley that are in good agreement with recent ARPES experiments [232].
We also find that the outer spin-split K valley is strongly renormalized due
to its effective coupling to the lower spin-split Q′ valleys by means of phonon
modes at q = M, while the inner spin-split band is weakly affected due to
spin-conserving arguments. The genuine double band-splitting or “kink”
structure of the outer spin-split valley is rationalized in terms of available
electronic scattering phase-space from the lower spin-split Q′ occupied states
to the injected hole in the K valley, which under certain circumstances lead
to narrow energy windows where electrons are highly renormalized and long
lived due to virtual phonon processes. The singular spectral features are ex-
plained by a threefold spin-polarized electron quasi-particle band structure
resulting from a single bare electron band, with the electron quasi-particle
spectral function perfectly resembling the three-peak and double-gap struc-
ture observed in the simulated and ARPES measured spectra. These results
rule out the original interpretation of Ref. [232] in terms of multi-phonon
(higher order) excitations nor to side-bands or satellites without a clear
physical meaning. It is worth noting here that one electron quasi-particle
band appears long-lived and strongly renormalized, exhibiting a practically
flat dispersion that indicates a sort of real space localization property, leav-
ing the possibility of spin-polarized polaron-like states. We believe that
these results may serve as a guidance to understand, explore and eventually
take advantage of many-body interactions in future works.



Overview and final
conclusions

The main goal of this thesis has been to investigate from first principles cal-
culations the spin-dependence and the effects beyond the adiabatic approxi-
mation in connection with the electron-phonon interaction in solids. To this
end, we have focused on nanostructures with strong relativistic corrections,
which are preferential materials due to their strong spin-dependent electronic
properties even when they are nominally non-magnetic. Besides, these low-
dimensional materials show an enhancement of the electron-phonon interac-
tion and they are experimentally accessible by means of several techniques.

The ground-state electronic and lattice vibrational properties have been
studied from state-of-the-art ab initio calculations based on the DFT and
DFPT theoretical formalisms which are described in Chapter 1. Based on
the latter formalisms, the electron-phonon interaction has been described
and a variety of well-known calculable expressions for the coupling related
magnitudes has been derived in Chapter 2 using several approaches and in
combination with many-body perturbation theory based on Green’s func-
tions. In this context, the converged computation of all these magnitudes
requires a large number of k-points and q-points which is usually not ac-
cessible, or even prohibitive in many cases, by standard DFT and DFPT
calculations. The systematic calculation of the wide variety of electron-
phonon magnitudes has been possible through state-of-the-art techniques
based on maximally localized Wannier functions for interpolating Kohn-
Sham electron states and energies, as well as the electron-phonon matrix
elements.

In Chapter 3, we have focused on the strongly relativistic Tl/Si(111) sur-
face. In order to incorporate the electron spin degree of freedom together
with relativistic effects up to the spin-orbit coupling into the theoretical for-
malism, we have turned to the quasi-relativistic limit of the Dirac equation.
This leads to the generalization of DFT and DFPT to the non-collinear spin
case in which Kohn-Sham wave functions are described by two-component
spinors and the Kohn-Sham potential is described by a 2 × 2 matrix in
the spin space including relativistic corrections. Apart from the relativis-
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tic electron energy and phonon frequency corrections, the spin-orbit cou-
pling determines the spin-polarization of spin-split low-dimensional electron
states, governing the electron-phonon matrix elements. We have compared
ground-state electronic and lattice vibrational properties of the narrow-gap
semiconductor Tl/Si(111) surface with and without taking into account the
non-collinear structure of the electron spin and the spin-orbit interaction.
We have demonstrated that the unique crystal structure of this surface, com-
bined with the inherent strong spin-orbit interaction due to the Tl heavy
element, gives rise to spin-split surface states arising within the silicon bulk
band gap in good agreement with ARPES experiments. While low-energy
occupied surface states are rather spin-split and exhibit a Rashba-like spin-
polarization, low-energy unoccupied surface states are strongly spin-split
– the largest spin-splitting energy known in the literature – and exhibit
a surface-perpendicular collinear spin-polarization. We have found that
the electron spin and the spin-orbit interaction play a different role in the
electron-phonon interaction of the Tl/Si(111) surface above and below the
Fermi level. While the coupling is practically spin-suppressed for electron
states at the bottom of the unoccupied surface bands, a strong and spin-
dependent coupling remains for electron states in the top of the occupied
surface bands. The former is a very attractive result for potential spin-
tronic applications, since it ensures spin-polarized long-lived surface states,
well-defined from bulk contributions, ensuring an ideal scenario for robust
coupled spin-charge transport properties.

In Chapter 4, we have focused on the transition metal dichalcogenide
MoS2 monolayer. We have been interested in the low-energy electron
conduction-band structure of the monolayer, which is composed of multi-
ple and inequivalent spin-split valleys and very attractive for coupled spin-
valley or valleytronics applications. We have seen that the increase of the
electron-doping in the monolayer allows the tuning of the Fermi level, ac-
companied by quantitative shifts in the mutilvalley structure. This leads to
deep changes in the shape of the Fermi surface of the system that promote
the emergence of Kohn anomalies in the phonon dispersion relations, which
even become lattice instabilities at highest dopings and point out a strength-
ening of the electron-phonon coupling. This enhancement goes hand in hand
with the experimentally measured development of supercodunctivity upon
doping in this material. We have also analyzed the importance of electron-
phonon effects beyond the adiabatic approximation on bare electrons and
adiabatic phonons. For the phonon modes in the large momentum regime
(q� Γ), we have obtained large spectral broadenings that are linked to the
strengthening of the electron-phonon coupling, and hence, to the onset of
superconductivity. For the phonon modes in the small momentum regime
(q→ Γ), we have discovered that optical modes are strongly renormalized in
the long-wavelength limit as a result of virtual electron-hole pair excitations.
Indeed, we have found that the electron-phonon interaction gives rise to two
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non-adiabatic phonon quasi-particle modes from a single adiabatic phonon
mode. We have been able to reproduce the effects by means of a simple
but efficient Einstein model that collects all the physics and demonstrates
the general character of the physical phenomenon. As for electron states,
we have found a really outstanding spectra as a result of the strengthening
of the electron-phonon coupling upon doping, which is in good agreement
with recent ARPES experiments. We have rationalized these singular spec-
tral features in terms of phonon-mediated and spin-conserving electronic
transitions within the multi-valley structure. The conclusion is that this
unique spectrum results from the strong interaction between equally spin-
polarized inequivalent valleys mediated by more than one phonon mode. We
have explained the intricate experimental electron spectrum in terms of a
multiple electron quasi-particle band structure, which arises from a single
bare electron band. Indeed, this study turns out to be essential in order to
correctly interpret recent ARPES experiments in the electron-doped MoS2

monolayer, which probably represents the first experiment in which a double
band splitting in the electron spectrum has been observed unambiguously.
Finally, we have highlighted the presence of a highly renormalized and long-
lived spin-polarized quasi-particle flat band, which could favor the formation
of spin-polarized polaron-like states.

To put an end to this thesis, we have demonstrated the importance of
explicitly taking into account the non-collinear spin and the spin-orbit cou-
pling in electron-phonon calculations at low dimensions. Likewise, we have
deepened in the idea of a consistent solution of the Dyson’s equation within
the entire complex plane in order to describe the physically significant quasi-
particle structures of materials. We finish this section by emphasizing that
we have discovered a new physical mechanism in relation with the electron-
phonon interaction which induces a many-body splitting that emerges for
the optical phonon branches in the long-wavelength limit.
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Appendix A

Exchange-correlation
functional approximations

As it has already been stated in Sec. 1.3.1, DFT is based on the Hohenberg-
Kohn theorems [27] and the Kohn-Sham approximation [28]. While Kohn-
Sham equations (Eq. 1.13-1.15) are derived in an exact form, their practical
implementation depends on the ability of approximating as precisely and
easily as possible the exchange-correlation energy functional, Exc[n], whose
exact form is unknown [29, 81]. In this appendix, we briefly review the
two methods we have used throughout this thesis for approximating the
exchange-correlation energy functional, which are the most commonly used
approximations: the local density approximation (Sec. A.1) and the gener-
alized gradient approximation (Sec. A.2).

A.1 Local density approximation

The simplest and most intuitive approximation to the exchange-correlation
energy functional was already proposed in the original paper of Kohn and
Sham in 1965 [28]. This approach consists in assuming that, in the limit of an
infinitesimally small volume, the electron charge density of the real system
is constant and equal to that of the homogeneous electron gas (HEG). As
a consequence, the exchange-correlation energy per electron is assumed to
behave locally as that of the HEG. This approach is known as the local
density approximation (LDA). Within this approximation, the exchange-
correlation energy reads as:

ELDA
xc [n] =

∫
n(r)εHEG

xc

(
n(r)

)
dr, (A.1)

and the exchange-correlation potential, Vxc(r), reads as:

V LDA
xc (r) =

δELDA
xc [n]

δn(r)
=

(
εHEG
xc

(
n(r)

)
+ n(r)

dεHEG
xc

(
n(r)

)
dn(r)

)
, (A.2)
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with εHEG
xc

(
n(r)

)
the exchange-correlation energy per electron in a HEG with

electron charge density n(r).
This energy can be split into the exchange and correlation components,

so that: εHEG
xc

(
n(r)

)
= εHEG

x

(
n(r)

)
+ εHEG

c

(
n(r)

)
. On the one hand, the

exchange energy per electron for HEG has an exact analytical expression
given by [6]:

εHEG
x

(
n(r)

)
= −3

4

(
3

π

) 1
3 (
n(r)

) 1
3 . (A.3)

From this and by means of Eq. A.2, one can also derive the analytical ex-
pression of the exchange potential:

V LDA
x (r) = −4

3
εHEG
x

(
n(r)

)
= −

(
3n(r)

π

)1/3

, (A.4)

and a simple form can also be obtained for the exchange energy functional
in Eq. A.1:

ELDA
x [n] = −3

4

(
3

π

) 1
3
∫ (

n(r)
) 4

3 dr. (A.5)

On the other hand, the correlation term has not an analytical expression
and various parametrizations based on different calculations exist in the
literature [86, 261, 262]. The fitting used throughout this thesis corresponds
to the simple analytical form parametrized by Perdew and Zunger (PZ) [88],
based on the numerical calculations from nearly exact quantum Monte Carlo
calculations for the HEG by Ceperley and Alder [87].

Although in principle LDA should only be satisfactory in the limit of
the HEG, i.e. for large and slowly varying electron charge densities, expe-
rience has shown that this approximation works surprisingly well beyond
its expected range of validity [29, 263]. However, LDA is prone to fail in
the case of highly inhomogeneous and localized density distributions. It
also works poorly in the case of strongly correlated systems, where the ef-
fects of the electron-electron interactions go far beyond the HEG model. In
addition, LDA generally tends to overestimate binding energies, and conse-
quently, underestimate bond lengths. Finally, it can be especially disastrous
in semiconductors, since it systematically underestimates band gap ener-
gies [29, 81].

A.2 Generalized gradient approximation

The next natural step in approximating the exchange-correlation energy
functional is to realize that realistic electron charge density distributions
are not homogeneous. Therefore, the inclusion of information about their
spatial variations can be a good strategy in order to create functionals that
describe better real materials [29, 81]. This is practically done by allowing
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the functional to depend on not just the local density but also on its gradient,
∇n(r). This approach is known as the generalized gradient approximation
(GGA). Within this approximation, the exchange-correlation energy reads
as:

EGGA
xc [n] =

∫
n(r)εxc

(
n(r), |∇n(r)|

)
dr. (A.6)

There exist as many types of GGA functional as ways there are for includ-
ing the correction of the density gradient in the exchange-correlation energy
per electron. The two most widely used GGA functionals are the Perdew-
Wang functional (PW91) [89] and the Perdew-Burke-Ernzerhof functional
(PBE) [90]. In this thesis, calculations using the GGA approach to the
exchange-correlation energy functionals are based on the latter approxima-
tion. Experience has demonstrated that GGA generally works better than
LDA in predicting the geometry of the crystals as well as binding energies.
Nevertheless, GGA is not a universal improvement over LDA, and also gives
qualitatively wrong results for materials where electrons tend to be very
localized and strongly correlated.

It is worth noting that there is no a priori rule to choose the best
exchange-correlation functional approximation depending on the material
under study. In fact, the best way to proceed is to test different function-
als and observe which one gives the result that satisfies best our demands
regarding the property we want to evaluate. Finally, it must also be said
that there are many other types of exchange-correlation energy functionals,
e.g. meta-GGA, which includes density gradient corrections of greater order
than one, or hybrid-GGA, which describe exchange-correlation energies as a
mixture of LDA and GGA exchange-correlation functionals including exact
exchange energies [29, 81]. However, the analytical parametrization of this
kind of approximations is far more complicated, and inevitably implies more
calculations and more computing time.
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Appendix B

The norm-conserving
pseudopotential generation

As seen in Sec. 1.3.4, the pseudopotential approximation is an advantageous
method for simplifying the description of atoms, and hence, that of solids.
Within this approximation, the electron-nucleus potential of any given atom
is replaced by an effective potential, i.e. the pseudopotential, which models
the interaction between the valence electrons and the ion core. Thereby, one
assumes the core electrons to be frozen together with the atomic nucleus as
a single element. Likewise, the pseudopotential is constructed in such a
way that the valence electron eigenstates are described by nodeless pseudo-
wavefunctions. This approach has double computational benefits: it allows
to deal with few delocalized valence electrons and the pseudo-wavefunctions
of the latter can be expanded with far fewer plane waves, making plane
wave basis sets of practical use. In this appendix, we describe the process
for generating norm-conserving pseudopotentials [97], which are the ones we
use in this thesis.

When constructing the pseudopotential of any given atom, the first thing
to do is select a suitable set of valence electron states. This can be done
by comparing the extension of the wave functions of the outermost elec-
tron eigenstates. The latter are obtained in the spherical atomic potential
geometry through an all-electron DFT calculation of the atomic electronic
structure subject to the choice of the exchange-correlation energy functional
approximation (Appendix A). These all-electron (AE) wave functions are
defined as: ϕAE

nlm(r) = RAE
nl (r)Ylm(θ, φ), where RAE

nl (r) represents the radial
part of the wave function, Ylm(θ, φ) are the spherical harmonic functions,
and n and {l,m} are the principal and orbital angular momentum quantum
numbers, respectively. As an illustrative example, Fig. B.1 shows the radial
parts of the all-electron wave functions for the outer electron eigenstates of
the wolfram (W), also known as tungsten, atom (Z = 74) with the follow-
ing electronic configuration: [Xe]4f145d46s26p0. In this case, 5d, 6s and 6p
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Figure B.1. Radial parts of the calculated all-electron wave functions for the outer
electron eigenstates of the W atom. r denotes the radial distance from nucleus. 5d,
6s, and 6p are the selected valence states for constructing the pseudopotential,
whose wave functions are represented by the dashed blue, green and red lines,
respectively. 5s, 5p, 4d and 4f states are considered within the ion core, whose
wave functions are represented by the solid gray, orange, magenta and cyan lines,
respectively.

states, whose all-electron wave functions are represented by the dashed blue,
red and green lines, respectively, are good valence electron candidates for
building the W pseudopotential. Indeed, the latter exhibit larger amplitude
distributions far from the nucleus (r = 0) than 5s, 5p, 4d and 4f states,
whose all-electron wave functions are represented by the solid gray, orange,
magenta and cyan lines, respectively, and almost meet the normalization
condition at already r = 4 a.u..

Afterwards, one has to create the so-called pseudo-wavefunctions (PS)
for each selected valence electron state {l,m}, which are also defined as:
ϕPS
lm(r) = RPS

l (r)Ylm(θ, φ). Therefore, the question is reduced to construct
the radial part of the pseudo-wavefunctions, RPS

l (r). As a general rule, for
each orbital angular momentum quantum number l, one must choose an
arbitrary cutoff radius rlc, and then, construct the radial part of the pseudo-
wavefunctions in such a way that RPS

l (r) = RAE
nl (r) ∀ r > rlc and RPS

l (r)
smoothly vanishes as r → 0 ∀ r < rlc. This procedure allows to use far
fewer plane waves for computationally describing pseudo-wavefunctions and
is well justified because the binding properties of materials do not depend
on the form of the wave functions close to the nucleus. Note that in order to
retain as precisely as possible the electronic and scattering properties, one
also has to make sure that the energy eigenvalues of the all-electron and the
pseudo-wavefunctions are identical, as well as their logarithmic derivatives at
r = rlc. Besides, the pseudopotentials used in this thesis have been generated
respecting the norm-conserving condition [97], which requires the integrated
probability distribution of the all-electron and pseudo-wavefunctions inside
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Figure B.2. (a) Comparison between the radial parts of the all-electron wave
functions (dashed lines) and the pseudo-wavefunctions (solid lines) for the 5d (blue),
6s (green), and 6p (red) states of the W atom. The cutoff radius for each channel
are r5dc = 2.30 a.u. and r6sc = r6pc = 3.10 a.u., respectively. (b) The corresponding
ionic pseudopotentials Vl(r) for orbital angular momentum quantum numbers l = 0,
1 and 2, represented by the dashed green, red and blue lines, respectively. Vl=0(r)
is the local channel. The ionic core potential −Zion/r is represented by the solid
black line. It is clearly shown that Vl(r) = Vloc(r) = −Zion/r ∀ r > rlc.

rlc to be the same:∫ rlc

0
r2
(
RPS
l (r)

)2
dr =

∫ rlc

0
r2
(
RAE
nl (r)

)2
dr. (B.1)

The constructed radial parts of the pseudo-wavefunctions (solid lines) for
the 5d, 6s and 6p states of the W atom represented by the blue, red
and green lines, respectively, are compared to their all-electron counter-
parts (dashed lines) in Fig. B.2(a). Once we make sure that the selected
pseudo-wavefunctions fulfill all the previous requirements of transferability
and norm-conservation, we can separately build the ionic pseudopotential
Vl(r) for each orbital angular momentum quantum number l by inverting
the radial Schrödinger equation with the all-electron energy eigenvalue, εAE

nl ,
yielding to:

Vl(r) = εAE
nl −

l(l + 1)

2r2
+

1

2rRPS
l (r)

d2

dr2

(
rRPS

l (r)

)
. (B.2)

Note that Vl(r) is not universally defined but depends on the arbitrarily cho-
sen requirements of the valence configuration and the cutoff radius for gener-
ating the radial part of the corresponding pseudo-wavefunction. Thus, there
is not one best pseudopotential for any given element, but many choices in
fact, each one optimized for some particular use. For computational benefit,
pseudopotentials are usually recast into the Kleinman-Bylander separable
form [264], where the ionic pseudopotential operator, V̂ , is separated into a
local (loc) l-independent part, V̂loc, and a non-local (NL) l-dependent part,
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V̂NL, as:

V̂ = V̂loc + V̂NL = V̂loc +
∑
lm

|δVlϕPS
lm〉 〈δVlϕPS

lm|
〈ϕPS

lm|δVl|ϕPS
lm〉

, (B.3)

and δVl(r) = Vl(r)− Vloc(r) is the non-local term for each angular momen-
tum. One must define one of the angular momenta as the local channel in
such a way that, for this precise angular momentum, Vl(r) = Vloc(r) ∀ r,
and therefore, δVl(r) = 0 ∀ r. Note that Vloc(r) = −Zion/r ∀ r > rloc

c , where
Zion is the number of chosen valence electrons. In addition, since RPS

l (r) =
RAE
nl (r) ∀ r > rlc for each angular momentum, Vl(r) = Vloc(r) ∀ r > rlc.

Therefore, by construction, δVl(r) = 0 ∀ r > rlc, and hence, all the long-
range Coulomb effects are included within Vloc(r). All these points are well
illustrated in Fig. B.2(b), which displays the pseudopotentials Vl(r) for l = 0
(s), 1 (p) and 2 (d) angular momenta represented by the dashed green, red
and blue lines, respectively. In this case, the angular momentum l = 0 (s)
is the local channel.

Fully relativistic pseudopotentials

As noted in Sec. 3.1.1, all relativistic effects originate deep in the ionic core,
and therefore, can be directly included within pseudopotentials by generat-
ing them from atomic electronic structure calculations through the relativis-
tic Dirac equation in the spherical atomic potential geometry. In this case,
the spin S and the orbital L angular momenta of the electron are added
and the total angular momentum reads J = L + S, with allowed quantum
numbers j = l± 1

2 and mj = m± 1
2 for l > 0, and j = 1

2 and mj = 1
2 for l = 0.

The Dirac equation can be solved in the non-relativistic limit, v/c � 1, as
an expansion in powers of (v/c)2 and keeping the fully relativistic correc-
tions (Appendix F). The corresponding eigenstates are defined by the set
of two-component spinor wave functions as: ϕAE

njlmj
(r) = RAE

njl(r)Yjlmj (θ, φ),

where RAE
njl(r) represents the radial part of the wave function and Yjlmj (θ, φ)

are the so-called spin-angular functions with the following two-component
spinor form:

Yj=l±
1
2
,mj=m± 1

2
jlmj

(θ, φ) =
1√

2l + 1

 √
l ±mj + 1

2Ylmj− 1
2
(θ, φ)

±
√
l ∓mj + 1

2Ylmj+ 1
2
(θ, φ)

 . (B.4)

As in the non-relativistic case, one has to create the pseudo-
wavefunctions defined as: ϕPS

jlmj
(r) = RPS

jl (r)Yjlmj (θ, φ). Once again, the
question is reduced to construct the radial part of the pseudo-wavefunctions,
RPS
jl (r), but this time for each total angular momentum quantum num-

ber j for each orbital angular momentum quantum number l. Indeed, in
the fully relativistic case, the functions ϕAE

njlmj
(r) are simultaneously eigen-

functions of the operators L̂2, Ŝ2, Ĵ2 and Ĵz, as well as of the operator
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Figure B.3. (a) Comparison between the radial parts of the all-electron wave
functions (dashed lines) and the pseudo-wavefunctions (solid lines) for the 5d3/2
(dark blue), 5d5/2 (light blue), 6s1/2 (green), 6p1/2 (dark red) and 6p3/2 (light
red) fully relativistic states of the W atom. The cutoff radius for each channel are

r
5dj
c = 2.30 a.u., r

6p1/2
c = 2.60 a.u. and r

6s1/2
c = r

6p3/2
c = 3.10 a.u., respectively. (b)

The corresponding ionic pseudopotentials Vjl(r) (dashed lines) for total and orbital
angular momenta quantum numbers j = 1

2 with l = 0 (green), j = 1
2 (dark red)

and 3
2 (light red) with l = 1, and j = 3

2 (dark blue) and 5
2 (light blue) with l = 2.

Vl=0(r) is the local channel. The ionic core potential −Zion/r is displayed by the

solid black line. It is clearly shown that Vl(r) = Vloc(r) = −Zion/r ∀ r > r
lj
c .

L̂ · Ŝ = 1
2(Ĵ2 − L̂2 − Ŝ2), which is proportional to the spin-orbit interaction

term. In fact, due to the spin-orbit coupling, eigenstates with l 6= 0 that
are degenerated 2(2l + 1) times in the non-relativistic case, are spin-split
into two sets of eigenstates in the fully relativistic case: one with j = l + 1

2
degenerated 2j + 1 = 2l + 2 times and the other with j = l − 1

2 degener-
ated 2j + 1 = 2l times. For eigenstates with l = 0 that are degenerated
2 times in the non-relativistic case, there is no spin-splitting and only one
fully relativistic eigenstate is obtained with j = 1

2 . This can be seen for
the W atom in Fig. B.3(a), where it is shown that the 5d states are spin-
split into the 5d3/2 (dark blue line) and 5d5/2 (light blue lines) states, and
the 6p states split into the 6p1/2 (dark red lines) and 6p3/2 (light red lines)
states, compared to the non-relativistic case in Fig. B.2(a). The 6s (green
lines) states are not spin-split, since they have l = 0. Note that all-electron
and pseudo-wavefunctions are represented by the dashed and solid lines,
respectively.

Once the relativistic pseudo-wavefunctions are satisfactorily constructed
fulfilling the requirements of transferability and norm-conservation, we sep-
arately build the relativistic ionic pseudopotential Vjl(r) for each total an-
gular momentum quantum numbers j = l± 1

2 , by inverting the radial Dirac
equation with the fixed all-electron eigenvalues εAE

njl . Within the Kleinman-
Bylander separable form (Eq. B.3), it is straightforward to generalize the
separated ionic pseudopotential operator V̂ = V̂loc + V̂NL to the fully rela-
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tivistic case, in such a way that the non-local part is defined as:

V̂NL =
∑
ljmj

|δVjlϕPS
jlmj
〉 〈δVjlϕPS

jlmj
|

〈ϕPS
jlmj
|δVjl|ϕPS

jlmj
〉

, (B.5)

where δVjl(r) = Vjl(r)− Vloc(r) for each total angular momentum quantum

number j. Figure B.2(b) shows the ionic pseudopotentials V j
l (r) represented

by the dashed lines for j = 1
2 with l = 0 (green), j = 1

2 (dark red) and 3
2

(light red) with l = 1, and j = 3
2 (dark blue) and 5

2 (light blue) with l = 2
total and orbital angular momenta of the generated pseudopotential of the
W atom, represented by the dashed blue, red and green lines, respectively.
In this case, the angular momentum l = 0 is the local channel.



Appendix C

The Einstein model

In this appendix, we illustrate the renormalization effects due to the electron-
phonon interaction on electrons by means of a simple coupled electron-
phonon system based on the instructive Einstein model (EM). The Einstein
model describes a single (non-interacting) electron band dispersing linearly
with energy εk = vF|k| interact with a single (non-interacting) dispersion-
less phonon branch with frequency ωo, as seen in Fig. C.1. Electrons and
phonons interact by means of a coupling strength λo at zero temperature,
T = 0. The Einstein model is a highly idealized case but, as we will show
in the following, it is very useful for understanding the physics behind the
electron-phonon interaction, even in realistic materials.

From Eq. 2.18 and using the analytical expressions for both the electron
band structure and the phonon dispersion relation, together with the inte-
gral definitions for infinite sums over momenta1, we arrive to the analytical
expression of the electron self-energy due to the electron-phonon interaction
for the Einstein model, given by [2, 5, 37]:

ΣEM(ω) = lim
η→0+

λoωo

(
− iπ + ln

[
ω − ωo + iη

ω + ωo + iη

])
. (C.2)

Since the retarded electron self-energy satisfies causality (Sec. 2.2), its real
and imaginary parts are related by Kramers-Kronig relations. The analytical
expression of the real part of the electron self-energy is explicitly given by:

ReΣEM(ω) = λoωo ln

[
ω − ωo

ω + ωo

]
, (C.3)

1In d spatial dimensions, we have that:

lim
Nk→∞

1

Nk

∑
k

= V d
∫

dk

(2π)d
. (C.1)
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Figure C.1. The energy scales in the Einstein model. The black solid and green
dashes lines represent the linear dispersing electron band with energy εk = vF|k|
and the dispersionless optical phonon branch with frequency ωo. The horizontal
black dotted line represents the Fermi level εF, set at ω = 0.

and that of its imaginary part is explicitly expressed as:

ImΣEM(ω) = −πλoωo

(
H(−ω − ωo) +H(ω − ωo)

)
, (C.4)

where H(x) is the Heaviside step function. Note that the analytical expres-
sion of the electron self-energy is derived assuming that the non-interacting
density of states is constant and equal to that of the Fermi level.

In Fig. C.2(a), we represent the real and the imaginary parts of the elec-
tron self-energy by the solid cyan and dashed orange lines, respectively, as
a function of the excitation energy ω for a representative Einstein model
with λo = 1/4. The ω-dependent structure of the electron self-energy is
better understood by looking at its imaginary part, which exhibits a step
structure: ImΣEM(ω) = 0 ∀ |ω| < ωo and πλoωo ∀ |ω| > ωo. This structure
is simply explained when reasoning which phonon-mediated electronic scat-
tering processes are allowed and forbidden depending on the energy of the
excitation by many-body arguments and the Pauli exclusion principle [265],
as schematically illustrated in Fig. C.2(b). On the one hand, for |ω| < ωo,
excited electron states (ω > 0) are forbidden to scatter, since they do not
have enough excitation energy for decaying into any available unoccupied
state by the emission of a phonon (panel (3)). Similarly, excited hole states
(ω < 0) are forbidden to scatter, since they do not have enough binding
energy for being filled by any available occupied state by the emission of
a phonon mode (panel (2)). Therefore, in this case, ImΣEM = 0. On the
other hand, for |ω| > ωo, excited electron states are allowed to scatter,
since they have enough excitation energy for decaying into any available
unoccupied state by the emission of a phonon (panel (4)). Similarly, excited
hole states are allowed to scatter, since they have enough binding energy
for being filled by any available occupied state by the emission of a phonon
(panel (1)). Since the value of the density of states is constant within the
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Figure C.2. (a) The real and the imaginary parts of the electron self-energy
due to the electron-phonon coupling for an Einstein model with λo = 1/4 are
represented by the solid cyan and orange dashed lines. The excitation energy ω is
measured from the Fermi level, set at ω = 0. (b) Schematic explanation of the step
structure of ImΣEM(ω). The shaded gray and white areas represent the occupied
and unoccupied energy space, respectively. Excitations with ω < 0 are injected hole
states and excitations with ω > 0 are injected electron states, represented by solid
empty and solid gray-full circles, respectively. Occupied and unoccupied states are
represented by dashed gray-full and dashed empty circles, respectively.

Einstein model, as well as the electron-phonon coupling strength, the imag-
inary part of the electron self-energy is finite. From Eq. 2.52, we obtain
that ImΣEM(ω) = −πλoωo. This abrupt change in the imaginary part of
the electron self-energy makes its real part exhibit maximum logarithmic
peaks at precisely the phonon frequencies, |ω| = ωo, with a finite slope at
ω → 0 with −∂ReΣEM(0)/∂ω = λo (Eq. 2.34). For energies larger than the
phonon frequency, ReΣEM(ω) vanishes. The sharp structure of the electron
self-energy for the Einstein model appears because the model is designed
for zero temperature. In more realistic systems, a finite temperature softens
the step-like structure of the imaginary part of the electron self-energy and
flattens the logarithmic-like peaks of its real part.

Let us now analyze the renormalization effects of the electron-phonon
coupling on the non-interacting electron band structure within the Einstein
model. In Fig. C.3(a), we represent with a color code the dressed electron
spectral function Ak(ω) (Eq. 2.35). The non-interacting energy dispersion is
represented by the dotted black line. To complete this analysis, we also also
describe the dressed electron band structure induced by the electron-phonon
interaction in terms of electron quasi-particles. To this end, we solve the
electron Dyson’s equation by using the analytic continuation of the electron
self-energy for the Einstein model from the upper to the lower complex half
plane [35–37, 126], which is given by:

ΣEM(z) = λoωo

(
− iπ + ln

[
i(ωo − z)

]
− ln

[
− i(z − ωo)

])
. (C.5)
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Figure C.3. (a) The dressed electron spectral function for the Einstein model
with λo = 1/4. The color code scale represents the height of the spectral line. A
non-zero value of ωo/20 is chosen in order to discern electron spectral peaks when
ImΣEM(ω) = 0. (b) The solid blue line represents the electron quasi-particle band
structure (left) and the quasi-particle linewidth as a function of the energy (right)
obtained by solving the approximate electron Dyson’s equation within the Brillouin-
Wigner perturbation theory approach (Eq. 2.29). (c) The filled green and red circle
markers represent the multiple-electron quasi-particle band structure resulting from
properly solving the complex electron Dyson’s equation (Eq. 2.26). The size of the
markers indicates the spectral weight of each quasi-particle. The white and gray
areas represent the energy space in which ImΣEM(ω) = 0 and ImΣEM(ω) = πλoωo,
respectively. The dashed black line represent the bare linear dispersion εk.

In Fig. C.3(b), we represent the electron quasi-particle structure resulting
from solving the approximate electron Dyson’s equation only along the real
axis within the Brillouin-Wigner (BW) perturbation theory approach as in
Eq. 2.29 (solid blue line), while in Fig. C.3(c) we show the multiple-electron
quasi-particle structure resulting from solving the proper complex electron
Dyson’s equation as in Eq. 2.26 (green and red circle markers). The left pan-
els of Figs. C.3(b) and (c) represent the corresponding electron quasi-particle
band structure together with that of the non-interacting band (dotted black
line), while the right panels represent the electron quasi-particle linewidth
as a function of its energy together with the imaginary part of the elec-
tron self-energy (dashed orange line). Looking at the height of Ak(ω) in
Fig. C.3(a), it is evident that the electron-phonon interaction divides the
spectrum of both electrons (ω > 0) and holes (ω < 0) in two regions, one
for excitation energies close to the Fermi level in the range of the phonon
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frequency, i.e. |ω| < ωo, and the other one for higher excitation energies
beyond the phonon frequency, i.e. |ω| > ωo.

On the one hand, for |ω| < ωo, the spectral line appears as a sharp peak,
since the scattering of charge carriers by the emission of a phonon is forbid-
den at these energies, i.e. ImΣEM(ω) = 0. The imaginary part of the electron
self-energy does not play any role at these energies, and therefore, the ap-
proximate electron quasi-particle band EBW

k and the proper quasi-particle

band E
(1)
k in the left panels of Figs. C.3(b) and (c), respectively, are equal.

In addition, these quasi-particle states are seen as infinitely long-lived with

null linewidths, i.e. Γ
(1)
k = ΓBW

k = 0 in the right panels of Figs. C.3(b) and
(c). Compared to the non-interacting linear electron band, the dispersions

of Ak(ω), EBW
k and E

(1)
k are highly renormalized close to the Fermi level.

The flattening of the electron quasi-particle band with respect to the non-
interacting case puts in evidence both the reduction of the band velocity
(Eq. 2.32) and the enhancement of the effective band mass (Eq. 2.33) close
to the Fermi level, due to the electron-phonon interaction. In fact, from a
quantum many-body point of view electrons and holes are allowed to emit
and reabsorb phonons by means of virtual processes, despite of the absence
of available energy for real phonon-emission. This leads to the formation of
a heavy cloud of phonons that dresses the charge carriers and makes their
effective mass to increase, explaining the behavior described above. As we
move away from the Fermi level towards the phonon frequency, i.e. |ω| . ωo,
the largest spectral renormalizations are found, induced by the logarithmic
peaked structure of the real part of the electron self-energy at |ω| = ωo

(Fig. C.2(a)). While the approximate electron quasi-particle states track the
maxima of Ak(ω) exhibiting a “kink” structure at EBW

k ≈ ±ωo, the electron

quasi-particle band E
(1)
k approaches ±ωo asymptotically as k moves away

from kF, losing increasingly its spectral weight (marker size in the right
panel of Fig. C.3(c)). This can be interpreted as an increasingly localized
state due to the dressing of the heavy cloud of phonons originating from the
virtual processes, analogous to a polaron state in insulators.

On the other hand, for |ω| > ωo, the electron-phonon interaction pro-
motes the splitting of the non-interacting band structure with the appear-

ance of an additional electron quasi-particle band E
(2)
k for both injected

electrons and holes, along with the dispersionless renormalized band E
(1)
k .

In this energy range, the scattering of charge carriers by the emission of
a phonon is allowed, i.e. ImΣEM(ω) 6= 0, and hence, the electron-phonon
interaction leads to the broadening of the electron spectral line. Thus,

the electron quasi-particle band E
(2)
k represents a dressed electron damped

state which has acquired a finite linewidth, i.e. Γ
(2)
k 6= 0, and hence, a

finite lifetime. Γ
(2)
k follows the constant value of the imaginary part of

the electron self-energy for |ω| � ωo. This behavior is also exhibited by
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the approximate electron quasi-particle linewidth, ΓBW
k . At these energies,

the electronic scattering involving the real emission of phonons are much
more probable than the virtual processes, leading to a reduction of the en-
ergy renormalizations with respect to the non-interacting band structure,

i.e. ReΣEM(ω) → 0 (Fig. C.2(a)). Consequently, both Γ
(2)
k and ΓBW

k tend
to −ImΣEM(εk) = πλoωo, which is the value that one obtains from the
Fermi’s golden rule or the Rayleigh-Schrödinger perturbation theory ap-

proach. When approaching the phonon frequency, i.e. |ω| & ωo, Γ
(2)
k is

slightly enhanced with respect to ImΣEM(ω). On the contrary, ΓBW
k ex-

hibits an unphysical enhancement, originating from the divergence of ZBW
k

at these energies, since ReΣ′EM(ω)→∞ (Eq. 2.31).
The examination of the electron quasi-particle structure for the Einstein

model reveals that the standard approximation of neglecting the imaginary
part of the quasi-particle poles for solving the electron Dyson’s equation
(Eq. 2.29) is inappropriate even for this simple model. Indeed, at excita-
tion energies close to the the phonon frequency from the Fermi level, the
spectral function is well represented by a multiple-electron quasi-particle
picture, resulting from solving the electron Dyson’s equation within the
whole complex plane. Note that the Einstein model allows to visualize that
the electron-phonon interaction governs the actual low-energy carrier quasi-
particle dynamics that in turn has a profound impact on the transport and
thermodynamical properties of metals.



Appendix D

Fermi’s golden rule for
electron and phonon
self-energies

Fermi’s golden rule states that the scattering rate, i.e. the probability of
scattering per unit time, for an initial state |i〉 with energy εi into all the
possible final states |f〉 with energy εf by an excitation with energy ω0

resulting from the perturbation ∆Ĥ is given by:

1

τi
= 2π

∑
f

| 〈f |∆Ĥ|i〉 |2δ(εi − εf + ω0). (D.1)

The decay rate of any particle is related to the imaginary part of its self-
energy due to many-body interactions, and evaluated at the unperturbed
energy within standard perturbation theory. Regarding the electron-phonon
interaction, we have that 1/τkn = 2|ImΣkn(εkn)| for electrons and 1/τqν =
2|ImΠ̃qν(ωqν)| for phonons. From Eq. D.1 and using many-body arguments
based on the Pauli exclusion principle [265], one finds that the decay rate of
a Kohn-Sham single-electron state with momentum k and band index n is
given by:

1

τkn
= 2
∣∣ImΣkn(εkn)

∣∣ =
2π

Nq

1BZ∑
q

∑
mν

∣∣gνmn(k,q)
∣∣2×([

1− f(εk+qm)
][

1 + nB(ωqν)
]
δ(εkn − εk+qm − ωqν)+

f(εk+qm) nB(ωqν) δ(εkn − εk+qm − ωqν)+[
1− f(εk+qm)

]
nB(ωqν) δ(εkn − εk+qm + ωqν)+

f(εk+qm)
[
1 + nB(ωqν)

]
δ(εkn − εk+qm + ωqν)

)
.

(D.2)

The first term on the right-hand side of Eq. D.2 refers to the electronic scat-
tering from the state |ψkn〉 to the state |ψk+qm〉, which has the probability
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1−f(εk+qm) of not being occupied, by the emission of a phonon mode |qν〉,
with 1 + nB(ωqν) its corresponding temperature factor. The second term
is of a many-body character. It appears because one must include by the
Pauli exclusion principle the possibility for electronic scattering from the
state |ψk+qm〉, which has the probability f(εk+qm) of being occupied, to
the state |ψkn〉 by the absorption of a phonon mode |qν〉, with nB(ωqν) its
corresponding temperature factor. The third and fourth terms have an anal-
ogous interpretation as the first and second terms, respectively, but this time
related to the respective absorption and emission of a phonon mode |q, ν〉.
In the same way, from Eq. D.1 and using many-body arguments based on
the Pauli exclusion principle, one finds that the decay rate of an adiabatic
phonon mode with momentum q and branch index ν is given by:

1

τqν
= 2
∣∣ImΠ̃qν(ωqν)

∣∣ =
2π

Nk

1BZ∑
k

∑
mn

∣∣gνmn(k,q)
∣∣2×(

f(εkn)
[
1− f(εk+qm)

]
δ(εkn − εk+qm + ωqν)−

f(εk+qm)
[
1− f(εkn)

]
δ(εkn − εk+qm + ωqν)

)
.

(D.3)

The first term on the right-hand side of Eq. D.3 refers to the decay of a
phonon mode |q, ν〉 into an electron-hole pair excitation, composed of the oc-
cupied state ψkn and the unoccupied state ψk+qm, with probabilities f(εkn)
and 1 − f(εk+qm), respectively. The second term is of a many-body char-
acter. Because of the Pauli exclusion principle, one must exclude the pos-
sibility of creating a phonon mode |q, ν〉 induced by the relaxation of an
electron-hole pair, composed of the unoccupied state ψkn and the occupied
state ψk+qm, with probabilities 1 − f(εkn) and f(εk+qm), respectively. If
now one simplifies Eqs. D.2 and D.3 and makes the dynamical replacement
εkn → ω and ωqν → ω, respectively, the absolute value of the imaginary
part of Eqs. 2.52 and 2.61 are easily obtained. Finally, one recovers the lat-
ter complete expressions of the retarded electron and phonon self-energies
by applying a Kramers-Kronig relation to electrons:

Σkn(ω) = lim
η→0+

1

π

∫ ∞
−∞

∣∣ImΣkn(ω′)
∣∣

ω − ω′ + iη
dω′, (D.4)

and to phonons:

Πqν(ω) = lim
η→0+

1

π

∫ ∞
−∞

∣∣ImΠqν(ω′)
∣∣

ω − ω′ + iη
dω′. (D.5)



Appendix E

The Rashba model

In this appendix, we review the basic aspects of the Rashba model [148],
which is broadly considered as the standard model for analyzing the prop-
erties of surface electron states under a strong spin-orbit interaction. The
inversion asymmetry at surfaces directly enters in the spin-orbit coupling
term in Eq. 3.9 through the gradient of the potential. Within the Rashba
model, the surface potential gradient is assumed as a constant electric field
completely oriented along the surface-perpendicular direction, ẑ, leading to
the simplified spin-orbit interaction term:

HR = αR(σ × p) · ẑ = αR(σxpy − σypx), (E.1)

where αR = ε/(4c2) is the so-called Rashba parameter that controls the
strength of the spin-orbit coupling, with ε the electric field determined by the
out-of-plane potential gradient, and (x, y) is the surface plane. The Rashba
model considers that the simplified spin-orbit coupling in Eq. E.1 acts on a
2D free electron gas constrained to the surface plane, which has analytic so-
lutions. For an in-plane momentum k‖ = (kx, ky, 0) = k‖(cosϕk‖ , sinϕk‖ , 0),
the electron spinor wave functions and energies are:

ψk‖,±(r‖) =
eik‖·r‖√

2

(
ie
−iϕk‖/2

±eiϕk‖/2

)
and εk‖,± =

k2
‖

2m∗
± αRk‖, (E.2)

respectively, with m∗ the electron effective band mass. The corresponding
spin-polarization vectors, which are defined as the expectation value of the
Pauli spin-operator, are given by

mk‖,± = 〈ψk‖,±|σ|ψk‖,±〉 = ±

 sinϕk‖

− cosϕk‖

0

 ⊥ k‖. (E.3)

From Eqs. E.2 and E.3, it is clear that the effect of the simplified spin-orbit
coupling in Eq. E.1 within the Rashba model is to split the original spin-
degenerate 2D parabolic band into two isotropic spin-split parabola with
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Figure E.1. Schematic representation of the spin-orbit interaction induced en-
ergy splitting within the Rashba model. (a) The original spin-degenerated 2D
free electron parabolic band is split into (b) two isotropic parabola with opposite
spin-polarizations, lying within the surface plane and perpendicular to the electron
momentum k‖.

opposite chiral in-plane spin-polarizations, perpendicular to the correspond-
ing electron momentum k‖. The general features of the Rashba model are
displayed schematically in Fig. E.1.

Let imagine now an external perturbation of momentum q‖ that in-
volves an effective change ∆Vq‖ in the potential. Without the spin-
orbit interaction, the matrix element describing this perturbation between
two electron states at momenta k‖ + q‖ and k‖ is equal to g(k‖,q‖) =

〈ψk‖+q‖ |∆Vq‖ |ψk‖〉, where ψk‖(r‖) = eik‖·r‖ . When the spin-orbit inter-
action is taken into account, the matrix element will be governed by the
overlap between the spin states. Thereby, the matrix element between two
electron spinor states within the same spin-split band reads as:

g±±(k‖,q‖) = 〈ψ±k‖+q‖
|∆Vq‖ |ψ

±
k‖
〉

=
g(k‖,q‖)

2

(
− ieiϕk‖/2 ± e−iϕk‖/2

)(ie−iϕk‖+q‖/2

±eiϕk‖+q‖/2

)

= g(k‖,q‖) cos

(
θ

2

)
,

(E.4)

where θ = ϕk‖+q‖ − ϕk‖ . The corresponding scattering probability is given
by the squared module of the matrix elements, and hence, reads as:

|g±±(k‖,q‖)|2 = |g(k‖,q‖)|2 cos2

(
θ

2

)
= |g(k‖,q‖)|2

1 + cos θ

2
. (E.5)
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Similarly, the matrix element between two electron spinor states in dif-
ferent spin-split bands reads as:

g±∓(k‖,q‖) = 〈ψ±k‖+q‖
|∆Vq‖ |ψ

∓
k‖
〉

=
g(k‖,q‖)

2

(
− ieiϕk‖/2 ± e−iϕk‖/2

)(ie−iϕk‖+q‖/2

∓eiϕk‖+q‖/2

)

= g(k‖,q‖)i sin

(
θ

2

)
,

(E.6)

and in the same way we find that g∓±(k‖,q‖) = g±∓(k‖,q‖). The corre-
sponding scattering probability is given by the squared module of the matrix
elements, and hence, reads as:

|g±∓(k‖,q‖)|2 = |g∓±(k‖,q‖)|2 = |g(k‖,q‖)|2 sin2

(
θ

2

)
= |g(k‖,q‖)|2

1− cos θ

2
.

(E.7)

Therefore, it is easy to see that the spin-split intra-band and inter-band
electronic scattering are modulated by the geometrical factors (1 + cos θ)/2
and (1− cos θ)/2, respectively.
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Appendix F

From the Dirac equation to
the Schrödinger-Pauli
equation

In this appendix, we illustrate how to incorporate the electron spin degree
of freedom and the relativistic interactions in non-relativistic quantum me-
chanics on which the DFT formalism is based.

In the framework of relativistic quantum mechanics, the proper way to
describe any system of spin-1

2 massive particles as electrons is the Dirac
equation [179, 180], which generalizes the Schrödinger equation in a rela-
tivistically covariant form. For an electron moving in the external electric
scalar potential φ and magnetic vector potential A, which are recast into
the electromagnetic four-potential defined as: Aµ =

(
φ/c,−A

)
, the Dirac

equation can be write in the form of two coupled equations for the large (L)
and small (S) two-component spinors, ψL and ψS , respectively [172]:∑

σ′

c
[
σσσ′ · (p−A)

]
ψσ
′
S =(ε′ − c2 − φ)ψσL∑

σ′

c
[
σσσ′ · (p−A)

]
ψσ
′
L =(ε′ + c2 − φ)ψσS

, (F.1)

where ε′ is the relativistic energy of the particle and σ = {σx, σy, σz} are
the 2 × 2 Pauli matrices, which are related to the spin angular momentum
operator as Ŝ = 1

2 σ̂ and are defined as:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (F.2)

In addition, in Eq. F.1 the large and small two-component spinors form
the four-component Dirac spinor. Nevertheless, the Dirac spinor is rather
“uncomfortable” to deal with. In this sense, using the second equation in
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Eq. F.1 in order to get rid of the small spinor in the first equation, one
obtains that:

[
σ · (p−A)

][ c2

ε′ + c2 − φ

][
σ · (p−A)

]
ψL = (ε′ − c2 − φ)ψL, (F.3)

At this point, one can approximate the relativistic Dirac equation in Eq. F.3
adopting the quasi-relativistic limit, i.e. v/c� 1, with v the electron veloc-
ity [172]. Within this limit, one can assume that the non-relativistic energy
of the electron ε is related to the relativistic one as: ε = ε′ − c2. Thus, we
can make the following expansion up to order (v/c)2:

c2

ε+ 2c2 − φ
=

1

2

(
1− ε− φ

2c2
+O

(
(v/c)4

))
. (F.4)

Plugging this relation into Eq. F.3, one arrives to a Schrödinger-Pauli-like
equation of the form:

ĤLψL = εψL, (F.5)

where ĤL is a 2× 2 matrix Hamiltonian:

ĤL =
1

2

[
σ̂ · (p̂− Â)

][
1− ε− φ̂

2c2

][
σ̂ · (p̂− Â)

]
+ φ̂ (F.6)

Note that in the non-relativistic limit of the Dirac equation, i.e. v/c → 0,
Eq. F.5 becomes the Schrödinger-Pauli equation [178]:[

1

2
(p̂− Â)2 − 1

2
σ̂ · B̂ + φ̂

]
ψL = εψL, (F.7)

which corresponds to the formulation of the Schrödinger equation for spin-1
2

particles taking into account the Stern-Gerlach or Zeeman interaction that
describes the coupling between the magnetic moment of the electron spin
and the external magnetic field B = ∇ ×A (second term on the left-hand
side of Eq. F.6).

Nevertheless, this last equation completely neglects relativistic interac-
tions. In order to maintain them within the quasi-relativistic limit, one must
keep the second term on the right-hand side of Eq. F.4. In the following, for
simplicity we treat the non-magnetic case, i.e. A = 0, and hence B = 0, in
Eq. F.6. Yet, there are some drawbacks with the interpretation of Eq. F.5.
First, the large two-component spinor ψL does not satisfy the normalization
requirement because the probabilistic interpretation of the Dirac equation
requires that: ∫ ((

ψL(r)
)†
ψL(r) +

(
ψS(r)

)†
ψS(r)

)
dr = 1. (F.8)
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From the second equation in Eq. F.1, one can adopt the following approxi-
mation for the small two-component spinor:

ψS ≈
σ · p

2c
ψL. (F.9)

This suggests that in the quasi-relativistic approach we should work with a

new two-component wave function defined as: ψ = ΩψL with Ω = 1 + p2

8c2
,

where the normalization requirement is fulfilled up to order (v/c)2 as:∫ (
ψ(r)

)†
ψ(r)dr ≈

∫ (
ψL(r)

)†(
1 +

p2

4c2

)
ψL(r)dr ≈ 1, (F.10)

Using this new definition, one must modify Eq. F.5 and multiply it from the

left by Ω−1 = 1− p2

8c2
. Thereby, one obtains:

Ω−1ĤLΩ−1ψ = εΩ−2ψ. (F.11)

Explicitly, keeping terms up to order (v/c)2, we have:[
p̂2

2
+ φ̂+

1

8c2

[
{p̂2, ε− φ̂}− 2(σ̂ · p̂)(ε− φ̂)(σ̂ · p̂)

]
− p̂4

8c2

]
ψ = εψ. (F.12)

The third term of the Hamiltonian on the left-hand side of Eq. F.12 depends
on the energy ε, which is the solution of the eigenvalue problem. For over-
coming this incongruity, we use the useful property for any pair of operators
{Â2, B̂} − 2ÂB̂Â =

[
Â, [Â, B̂]

]
. We make σ̂ · p̂ = Â, and ε − φ̂ = B̂. The

following equality is derived1:[
σ̂ · p̂, [σ̂ · p̂, ε− φ̂]

]
= ∇̂ · ∇̂φ̂+ 2σ · (∇̂φ̂× p̂). (F.13)

Then, plugging Eq. F.13 into Eq. F.12, one recovers an equation free of the
aforementioned difficulties that can be regarded as the Schrödinger-Pauli
equation for spin-1

2 electrons which additionally includes relativistic inter-
actions up to order2 (v/c)2:∑
σ′

[(
p2

2
+ φ− p4

8c2
+

∇ ·∇φ

8c2

)
δσσ′ +

σσσ′ ·
(
∇φ× p

)
4c2

]
ψσ′ = εψσ. (F.14)

In Eq. F.14, the first two terms do not need any explanation, as they
are already presented in non-relativistic quantum mechanics. The third and
fourth terms are the so-called scalar-relativistic (SR) corrections and are,
respectively, known as the mass-velocity and the Darwin terms. The fifth
term is associated with the fully relativistic (FR) correction of the spin-orbit
(SO) interaction, i.e. the coupling between the spin and the orbital angular
momenta of the electron.

1The following equalities are used: (σ ·A)(σ ·B) = A ·B+ iσ(A×B) and ∇×∇φ = 0
2Note that Eq. F.14 has been derived in the absence of any external magnetic potential,

i.e. A = 0 and hence, the external magnetic field is B = ∇ ×A = 0. If one wanted to
include such a magnetic field or potential, one would have to substitute p → p −A and
take into account the Stern-Gerlach or Zeeman interaction term 1

2
σ̂ · B̂.
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Resumen

Esta tesis se centra en el acoplamiento entre electrones y fonones. Los fonones
se definen como las excitaciones elementales de baja enerǵıa correspondien-
tes a los cuantos asociados a las vibraciones colectivas de la red atómica
en sólidos cristalinos. De hecho, el estudio de la interacción electrón-fonón
es contemporáneo al concepto mismo de los fonones, que data de hace casi
un siglo a la vez que el nacimiento de la teoŕıa cuántica de los sólidos. Por
lo tanto, el acoplamiento entre electrones y fonones representa uno de los
caṕıtulos más estudiados de la F́ısica del Estado Sólido y está considerable-
mente documentado en una gran cantidad de libros y revistas [1–4].

A pesar de ser un tema muy estudiado, la interacción electrón-fonón
continúa atrayendo un gran interés, ya que está presente en una gran va-
riedad de fenómenos f́ısicos. De esta manera, tiene gran influencia en la
dependencia con la temperatura de la capacidad caloŕıfica electrónica y de
la movilidad, la conductividad y la resistencia eléctrica en los metales y en
los semiconductores, aśı como en la termalización de portadores de carga
“calientes” y en el efecto termoeléctrico. También influye en las propiedades
ópticas de los semiconductores y aislantes, ya que participa activamente en
la dependencia con la temperatura de la banda prohibida (en inglés gap)
y en la absorción óptica asistida por fonones en los materiales con un gap
indirecto. Además, la interacción electrón-fonón da lugar a desdoblamien-
tos caracteŕısticos de las bandas de los electrones, llamadas estructuras de
pliegues (en inglés kinks), en los espectros de fotoemisión y a fuertes dis-
minuciones en las frecuencias de los fonones, llamadas anomaĺıas de Kohn,
en los espectros de dispersión inelástica de luz o de neutrones. Del mismo
modo, desempea un papel fundamental en la superconductividad convencio-
nal o mediada por fonones, ya que proporciona el mecanismo para atraer
electrones y emparejarlos en superconductores convencionales.

La velocidad efectiva, equivalente a la masa efectiva, la enerǵıa real y el
tiempo de vida de los estados de electrón, aśı como la frecuencia y el tiempo
de vida de los modos de fonón, están determinados por las interacciones
de muchos cuerpos [5]. Estos incluyen la interacción tanto de los electro-
nes como de los fonones con otras excitaciones de part́ıculas individuales –
electrones o huecos excitados – aśı como con excitaciones de pares electrón-
hueco y con otras excitaciones colectivas – fonones, plasmones, magnones o
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excitones – y defectos de los sólidos. Para ilustrar la importancia de la inter-
acción electrón-fonón, es importante destacar que a temperaturas realistas
del orden de unos pocos cientos de Kelvin, el espacio de fases para la dis-
persión electrónica se reduce a una ventana estrecha de enerǵıa del orden de
10 meV cerca del nivel de Fermi en metales. Este rango de enerǵıas coincide
con las frecuencias t́ıpicas de los fonones, mientras que las enerǵıas t́ıpicas
de transición electrónica son del orden de 10 meV [6]. De esta manera, la
dinámica de baja enerǵıa de los portadores de carga, es decir, electrones y
huecos excitados, está generalmente dominada por la dispersión electrónica
mediada por fonones, la cual, por lo tanto, gobierna las propiedades termo-
dinámicas y de transporte de los sólidos [7].

Los primeros estudios sobre la interacción electrón-fonón se realizaron
entre las décadas de 1930 y 1950 [8–13]. Estos fueron motivados por la
necesidad de establecer una teoŕıa cuántica para el transporte en sólidos,
basada en Hamiltonianos semiemṕıricos de Frhlich [14] y de Holstein [15]
junto con el uso del modelo de gas de Fermi para los electrones [16] y los
modelos de Einstein [17] y de Debye [18] para los fonones. Estos trabajos
iniciales fueron esenciales para comprender la estructura matemática de los
elementos de matriz de la interacción electrón-fonón y el papel desempeado
por el apantallamiento eléctrico en el cambio del potencial inducido por los
desplazamientos de la red. Sin embargo, fue a finales de la década de 1950 y
a principios de la década de 1960 que comenzó a formularse la teoŕıa de la
interacción electrón-fonón tal y como se conoce actualmente. Para ello, se
utilizó un enfoque basado en la teoŕıa cuántica de campos, como resultado
del advenimiento de la teoŕıa del ĺıquido de Landau-Fermi [19] – junto con el
concepto de cuasi-part́ıcula – y el desarrollo de la teoŕıa de perturbaciones
basado en las funciones de Green de muchos cuerpos [5] – junto con el
concepto de autoenerǵıa, que relaciona los propagadores sin perturbar y
perturbados a través de la ecuación de Dyson. La formulación general, y
todav́ıa hoy la más completa, de la teoŕıa de la interacción electrón-fonón se
estableció durante los aos 1960 y 1970 [20, 21].

Esta tesis se basa en cálculos ab initio de la interacción electrón-fonón,
cuyos primeros cálculos no se realizaron hasta finales de la década de
1990 [22–26]. La razón de esta demora es que la formulación y la imple-
mentación práctica de la teoŕıa del funcional de la densidad (de sus siglas
en inglés DFT) [27–29] tardó desde mediados de la década de 1960 hasta
la década de 1980, mientras que el desarrollo de la teoŕıa de la perturba-
ción del funcional de la densidad (de sus siglas en inglés DFPT) [30–33] no
llegó hasta los últimos aos de la década de 1980 y principios de la década
de 1990. De hecho, hoy por hoy, los cálculos de primeros principios de la
interacción electrón-fonón se basan en expresiones aproximadas pero úti-
les de la interacción [2] que tienen como punto de partida las propiedades
electrónicas y vibracionales resultantes de las teoŕıas de DFT y de DFPT,
respectivamente [4]. Estos formalismos teóricos se basan en la aproximación
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adiabática [34], la cual supone que los electrones responden instantánea-
mente al movimiento de la red. Este enfoque conduce a una imagen f́ısica
simplificada de los electrones moviéndose en una red ŕıgida, y de los fonones
incluyendo sólo el apantallamiento electrostático en las vibraciones de la red.
Sin embargo, se espera que la interacción electrón-fonón afecte tanto a los
estados de electrón como a los modos de fonón definidos dentro de la apro-
ximación adiabática, dando lugar a una renormalización de sus propiedades
y una disminución de sus tiempos de vida.

Uno de los objetivos principales de esta tesis es analizar el impacto de
la interacción electrón-fonón más allá de la aproximación adiabática, es de-
cir, los efectos no adiabáticos. De hecho, las correcciones no adiabáticas
debidas a la interacción electrón-fonón se han detectado generalmente com-
parando estructuras de banda de electrones sin perturbar y relaciones de
dispersión de fonones adiabáticos con funciones espectrales de electrones y
fonones, respectivamente, calculadas teóricamente o medidas experimental-
mente. Las funciones espectrales son magnitudes de gran interés f́ısico, ya
que su estructura dependiente del momento y de la enerǵıa describe la den-
sidad de probabilidad de los estados de electrón o de los modos de fonón,
conteniendo información valiosa sobre las propiedades de las cuasi-part́ıcu-
las, aśı como de las interacciones de muchos cuerpos [2, 5]. Es importante
sealar que, si bien los efectos no adiabáticos de la interacción electrón-fonón
se han estudiado ampliamente en electrones sin perturbar, estos efectos se
han limitado principalmente al centro de la zona de Brillouin en el caso de los
fonones adiabáticos [4]. Por otro lado, las estructuras de banda de electro-
nes renormalizados y las relaciones de dispersión de fonones renormalizados
se han calculado generalmente utilizando las teoŕıas de perturbaciones de
Brillouin-Wigner y de Rayleigh-Schrdinger [5]. Aunque estos cálculos han
sido muy útiles para estimar cuantitativamente varios fenómenos f́ısicos,
también conducen a resultados divergentes y sin significado f́ısico. En este
sentido, investigaciones recientes han racionalizado con éxito las esctructu-
ras de kinks en los experimentos de fotoemisión en términos de múltiples
bandas de electrones renormalizados con diferente significado f́ısico y que
surgen de una sola banda sin perturbar debido a la interacción electrón-
fonón [35, 36]. Estos trabajos combinan cálculos de primeros principios con
las propiedades anaĺıticas de las funciones de Green [37] para resolver de
manera autoconsistente la ecuación de Dyson en todo el plano complejo de
enerǵıa, dando lugar a una evaluación sistemática de las cuasi-part́ıculas a
partir de técnicas ab initio. Vale la pena destacar que no se tiene constancia
de ningún estudio en estos términos sobre la renormalización de los fonones
adiabáticos debido a la interacción electrón-fonón.

En el lado experimental, la espectroscoṕıa de fotoemisión con resolución
angular [38] y la dispersión inelástica de neutrones y de rayos X, aśı como
la dispersión de Raman, [39, 40] son las técnicas más comunes para son-
dear las funciones espectrales de electrones y de fonones, respectivamente.
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La mayoŕıa de estas técnicas analizan la componente del momento paralela
a la superficie y, por lo tanto, son sólo adecuadas para estudiar materiales
bidimensionales (2D) o cuasi-2D, donde la interacción electrón-fonón es ge-
neralmente más fuerte [41–46]. Aśı pues, las superficies de baja dimensión
y las monocapas representan un entorno privilegiado para estudiar, tanto
experimental como teóricamente, los efectos no adiabáticos de la interacción
electrón-fonón en electrones y en fonones y, de este modo, comprobar la ido-
neidad de las teoŕıas de muchos cuerpos. En este sentido, los sistemas 2D
compuestos de elementos pesados han resultado tener un valor aadido muy
interesante. En estos materiales, la falta de la simetŕıa de inversión inherente
a la superficie y el fuerte acoplamiento esṕın-órbita inherente al elemento
pesado dan lugar a la generación de estados de superficie de electrón desdo-
blados y polarizados en el esṕın, incluso en materiales no magnéticos [47–61].
Por lo tanto, comprender la dinámica acoplada de la carga y del esṕın a bajas
enerǵıas en sistemas 2D con un fuerte acoplamiento esṕın-órbita es de capital
importancia debido a sus atractivas aplicaciones en el campo de la espintróni-
ca [62–67] y se ha convertido en una ĺınea de investigación muy activa en la
actualidad [68–70]. Sin embargo, la coexistencia de las interacciones esṕın-
órbita y electrón-fonón sólo se ha investigado considerando modelos teóricos
instructivos basados en los Hamiltonianos de Frhlich y de Holstein [71–74].
No ha sido hasta hace muy poco, y simultáneamente con esta tesis, que el
papel del acoplamiento esṕın-órbita en la interacción electrón-fonón se ha
tratado más allá de simples correcciones relativistas [75–78].

El objetivo principal de esta tesis es dar un paso más en el campo de
la investigación de la interacción electrón-fonón. Por un lado, se estudia el
papel que desempean el esṕın del electrón y el acoplamiento esṕın-órbita en
la interacción electrón-fonón en superficies con fuertes interacciones relati-
vistas a partir de cálculos de primeros principios. Por otro lado, se analiza la
renormalización no adiabática debido a la interacción electrón-fonón no sólo
en electrones sin perturbar sino también en fonones adiabáticos, yendo más
allá de las aproximaciones teóricas estándar, en materiales que representan
un desaf́ıo para las teoŕıas de muchos cuerpos.

Esta tesis se organiza de la siguiente manera. El Caṕıtulo 1 está dedicado
a describir los formalismos teóricos de DFT y de DFPT utilizados para cal-
cular a partir de primeros principios las propiedades electrónicas del estado
fundamental y las propiedades vibracionales de la red en los sólidos. Estas
propiedades son esenciales en el Caṕıtulo 2 para formular el Hamiltoniano
de la interacción electrón-fonón, aśı como para derivar expresiones prácti-
cas para una gran variedad de magnitudes relacionadas con la interacción,
donde se utilizan varias aproximaciones en combinación con la teoŕıa de per-
turbaciones de muchos cuerpos basada en las funciones de Green. En este
caṕıtulo, se presta especial atención al marco teórico adecuado para calcu-
lar las propiedades de cuasi-part́ıcula del electrón y del fonón. Se presentan
también las técnicas vanguardistas basadas en funciones de Wannier máxi-
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mamente localizadas [135–137] para interpolar los estados y las enerǵıas
de electrón, aśı como los elementos de matriz de la interacción electrón-
fonón [4, 138–140]. El uso de esta metodoloǵıa permite realizar cálculos de
primeros principios que requieren de una gran cantidad de puntos para con-
verger y que no son generalmente accesibles, siendo incluso prohibitivos en
muchos casos, mediante cálculos estándar de DFT y de DFPT.

En el Caṕıtulo 3, se considera una monocapa de talio (Tl) sobre una su-
perficie de silicio en la dirección (111), es decir la superficie de Tl/Si(111).
El grado de libertad del esṕın del electrón junto con las interacciones re-
lativistas, incluyendo el acoplamiento esṕın-órbita, se incorporan dentro de
la teoŕıa de DFT recurriendo al ĺımite cuasi-relativista de la ecuación de
Dirac. Esto lleva a la generalización del formalismo teórico al caso de esṕın
no colineal, en el que las funciones de onda del electrón se describen me-
diante un vector de dos componentes y el potencial que sufren los electrones
se describe mediante una matriz 2 × 2, el cual ya incorpora las interaccio-
nes relativistas. La superficie de Tl/Si(111), que es un semiconductor con
un gap de enerǵıa estrecho, exhibe dos reǵımenes completamente diferen-
tes con respecto de la polarización de esṕın para los estados de superficie
desdoblados. Esto se debe al fuerte acoplo esṕın-órbita asociado al elemento
pesado Tl en combinación con la estructura cristalina espećıfica de este ma-
terial, en buena concordancia con los experimentos de fotoemisión [161–166].
Mientras que los estados de superficie ocupados de baja enerǵıa aparecen
moderadamente desdoblados y exhiben una polarización de esṕın similar a
la de Rashba [148], los estados de superficie no ocupados de baja enerǵıa
están fuertemente desdoblados – con la enerǵıa de desdoblamiento del esṕın
más grande recogida en la literatura – y exhiben una polarización de esṕın
colineal y perpendicular a la superficie. De esta manera, se encuentra que el
esṕın del electrón y la interacción esṕın-órbita entran de una manera deci-
siva modulando e incluso suprimiendo la interacción electrón-fonón debajo
y encima del nivel de Fermi en la superficie de Tl/Si(111). Este último as-
pecto resulta muy atractivo para posibles aplicaciones en el campo de la
espintrónica, ya que garantiza estados de superficie bien separados de las
contribuciones del volumen y con largos tiempos de vida, aśı como con po-
larizaciones de esṕın bien definidas, todo ello asegurando un escenario ideal
para un transporte robusto y acoplado de carga y de esṕın.

En el Caṕıtulo 4, se considera la monocapa del dicalcogenuro de metal
de transición MoS2. A bajas enerǵıas, este material presenta una estructura
de bandas de conducción de electrón compuesta de varios valles desiguales,
que están desdoblados y polarizados de manera colineal en el esṕın. Una vez
dopada, esta estructura resulta muy atractiva para aplicaciones en el campo
de la valletrónica, es decir, la electrónica que asocia las bandas de electrones
con forma de valles con el grado de libertad del esṕın del electrón. El au-
mento del dopaje electrónico en la monocapa permite el ajuste del nivel de
Fermi, conduciendo a cambios significativos en la forma de la superficie de
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Fermi y, a su vez, promoviendo la aparición de anomaĺıas de Kohn. Para los
dopajes más altos, estas anomaĺıas se convierten incluso en inestabilidades
de la red, siendo evidente el aumento de la interacción electrón-fonón. Este
fortalecimiento del acoplamiento va de la mano con la superconductividad
medida experimentalmente en el material dopado [233–236]. Se estudia la
importancia de los efectos no adiabáticos relacionados con la interacción
electrón-fonón y regulados por la polarización del esṕın electrónico tanto
para electrones como para fonones en función del dopaje electrónico. Con
respecto de los fonones, para los modos con longitudes de onda cortas se
observan grandes ensanchamientos de la función espectral, vinculados al au-
mento de la interacción electrón-fonón. Para los modos con longitudes de
onda largas se observa que los modos ópticos se renormalizan dramática-
mente como resultado de excitaciones virtuales de pares electrón-hueco. De
hecho, la interacción electrón-fonón da lugar a la aparición de dos modos no
adiabáticos de cuasi-part́ıcula de fonón bien definidos en el plano complejo
de frecuencia a partir de un solo modo adiabático, y cuya naturaleza f́ısica
es capaz de entenderse de manera general por medio de un sencillo modelo
de Einstein. En cuanto a los electrones, se encuentra un espectro realmente
sobresaliente como resultado del aumento de la interacción electrón-fonón
con el dopaje y en excepcional acuerdo con experimentos de espectroscoṕıa
de fotoemisión recientemente medidos [232]. Este experimento representa
probablemente el primero en el que se ha observado ineqúıvocamente un
doble kink en las bandas del espectro del electrón. Estas singularidades es-
pectrales se racionalizan en términos de transiciones electrónicas mediadas
por fonones y conservando el esṕın dentro de la estructura de varios valles.
La conclusión es que este espectro único es el resultado de la fuerte interac-
ción entre valles desiguales e igualmente polarizados, mediada por más de
un modo de fonón de frecuencia distinta. Asimismo, se explica el compli-
cado espectro experimental de electrones en términos de una estructura de
múltiples bandas de cuasi-part́ıcula, que surge a partir de una sola banda de
electrones sin perturbar. Finalmente, se incide en la presencia de una banda
de cuasi-part́ıcula altamente renormalizada y casi plana, con una polariza-
ción de esṕın bien definida y un largo tiempo de vida, que podŕıa favorecer
la formación de estados de tipo polarón polarizados en el esṕın.
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[49] G. Bihlmayer, S. Blügel, and E. V. Chulkov, “Enhanced Rashba
spin-orbit splitting in BiAg(111) and PbAg(111) surface alloys from
first principles”, Phys. Rev. B 75, 195414 (2007).

[50] S. Mathias, A. Ruffing, F. Deicke, M. Wiesenmayer, I. Sakar,
G. Bihlmayer, E. V. Chulkov, Y. M. Koroteev, P. M. Echenique,
M. Bauer, and M. Aeschlimann, “Quantum-Well-Induced Giant
Spin-Orbit Splitting”, Phys. Rev. Lett. 104, 066802 (2010).

[51] A. Eiguren and C. Ambrosch-Draxl, “Spin polarization and
relativistic electronic structure of the 1× 1 H/W(110) surface”, New
Journal of Physics 11, 013056 (2009).

[52] I. Barke, F. Zheng, T. K. Rügheimer, and F. J. Himpsel,
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[152] G. Nicolay, F. Reinert, S. Hüfner, and P. Blaha, “Spin-orbit splitting
of the L-gap surface state on Au(111) and Ag(111)”, Phys. Rev. B
65, 033407 (2001).

[153] Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov,
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M. Donath, “Spin texture with a twist in momentum space for
Tl/Si(111)”, Phys. Rev. B 91, 245420 (2015).
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