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Abstract 

This study examined the role of external information in monitoring language production. 

In a typing-to-dictation task, participants were deprived of all or part of visual feedback. Data 

were analyzed using signal detection theory (SDT) applied to a multi-component monitoring 

framework. Results showed that removing the visual information affected the correction of 

typing errors more than their conscious detection (Exps 1, 2). Reinstating partial visual 

information (positional information) increased correction rates but not to the level of full visual 

information, independently of the probability of error detection (Exps 2, 3). Analysis of SDT 

parameters showed that while manipulating visual information affected the informativeness of 

the signal for both correction and conscious detection of errors, participants treated this change 

differently in the two tasks. We discuss the implications of the results, and more generally, the 

utility of SDT, for theories of monitoring and control in language production. 

Highlights

 Three experiments manipulating visual feedback while typing single words

 Error detection moderately impacted by visual feedback removal

 Error correction relying heavily on visual feedback

 Positional information helpful, but letter identity essential for corrections 

 Application of signal detection theory to multichannel language monitoring
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Introduction

Performance monitoring refers to the processes involved in the surveillance of one’s 

cognitive and motor operations in order to ensure a satisfactory outcome. It is thus true, by 

definition, that monitoring must be sensitive to the output of cognitive processes; we realize that 

we have spoken the wrong word when we hear ourselves, or realize that a typing error has 

occurred when the incorrect letter appears on the screen. In fact, sensory processing of the output

(i.e., “external monitoring”) can probably provide the most reliable feedback on one’s own 

performance, as there is no uncertainty about the outcome once the output is externally available.

The downside of external monitoring is that it comes too late, limiting the scope of monitoring to

detecting errors that have already been made, as opposed to preventing errors from happening in 

real time. To solve this problem, “internal monitoring” mechanisms have been proposed, which, 

despite their various flavors, share the premise that monitoring need not rely on the final output 

of the process. An important question is how the labor is divided between internal and external 

mechanisms. Obviously, in the learning phase of a task, when performance is very error-prone 

and strong internal representations are not yet available, adjustments must be guided by 

performance outcome. Thus, learning is expected to depend heavily on the external monitoring. 

Less well known is the role of external monitoring once a task is learned and internal 

representations are well developed. This study addresses this question.

Performance monitoring in language production

Language production provides an excellent testbed for performance monitoring in real 

life for several reasons: (1) it is a complicated generative task that captures the true demands on 

the cognitive system better than artificial two-choice button-press tasks. (2) It is an extremely 

well-practiced task, which obviates the need for training in the lab and consequently avoids 

differences in how well people have learned the artificial task. (3) Avoiding errors and 

maintaining fluency are two natural and simultaneous goals of language production that people 

have years of experience balancing. For these reasons, studying monitoring in language 

production is not only informative about the specific case of language, but also more broadly of 

how humans monitor complex cognitive behavior.

3



Monitoring models in language production include both external (e.g., external channel in

the perceptual loop; Levelt, 1983; DIVA, Guenther, 1995; Guenther, 2016; Tourville & Guenther,

2011), and internal monitoring mechanisms (e.g., internal channel of the perceptual loop,

Hartsuiker & Kolk, 2001; Levelt, 1983; or other mechanisms, e.g., Hickok, 2012; Nooteboom & 

Quené, 2019; Nozari, Dell, & Schwartz, 2011; Pickering & Garrod, 2013; see Nozari & Novick, 

2017, and Nozari, 2020, for reviews). The label “external channel” in this literature refers to 

mechanisms that process the final outcome of production, once it becomes available externally 

for processing through the perceptual system. “Internal channel”, on the other hand, refers to 

processes that rely heavily on internal representations with or without the involvement of the 

perceptual system. External monitoring mechanisms are particularly powerful for explaining the 

fine-tuning of a system which aims to produce a nuanced output, such as children mastering the 

native phonology of their language (Guenther, 2016). They, however, have trouble accounting to 

very quick repairs. For instance, in the classic example “v- horizontal” from Levelt (1983), the 

repair starts immediately after the interruption of the first segment of the word, with no delay. 

This rapid timeline is incompatible with an external monitor, which would need to process the 

acoustic signal, detect its mismatch to the intended signal, issue a command to halt ongoing 

behavior and plan a repair. Internal monitoring models account for such findings by proposing 

mechanisms that can detect an error internally, i.e., before it is articulated. Extensions of some of

those models also naturally explain behaviors beyond error detection, for example why speakers 

take longer to produce words when the chance of making an error is higher (Nozari & Hepner, 

2019a, 2019b).

The question of the division of labor between external and internal monitoring channels 

has been investigated in spoken production, mostly by contrasting error detection under 

circumstances when auditory feedback is available or blocked by noise (e.g., Nooteboom & 

Quené, 2017; Oomen & Postma, 2001; Postma & Kolk, 1992; Postma & Noordanus, 1996). In a 

classic study of auditory blocking, Lackner and Tuller (1979) had participants push a button if 

they detected their speech errors in conditions with and without noise. The results showed that 

participants not only frequently detected their errors in the noise-masked condition, but that they 

were also faster to do so compared to the no-noise condition. These findings were taken as 

evidence for fast and efficient monitoring through the internal channel without any contribution 

from the external channel (see Postma & Kolk, 1992 for similar findings). Converging evidence 
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from other studies also points to a quick and efficient internal monitoring channel (Hartsuiker, 

Pickering, & de Jong, 2005). For instance, fast interruptions (i.e., short error-to-cut-off intervals) 

and repairs (i.e., short cut-off-to-repair intervals) indicate that the response must have been 

monitored and repair processes may have been already initiated before articulation began

(Postma & Oomen, 2005).

The evidence reviewed above points to an efficient internal channel, capable of error 

monitoring even in the absence of the external channel. The question then is: Does the external 

channel have any influence on monitoring errors in language production? Two lines of evidence 

suggest that it does. The first was provided by a clever study by Lind, Hall, Breidegard, 

Balkenius, and Johansson (2014) in which the authors manipulated auditory feedback such that 

on a small subset of trials, participants heard a different word from what they had produced. For 

example, they heard “green” instead of “grey”, while they were performing a Stroop task in 

which they had to name the ink color of a color word. When the lag between production and 

playback was short, participants reported the artificially inserted word as their own production on

68% of trials, thereby accepting an error they had not produced based on information from the 

external channel. These results demonstrate convincingly that when the external and internal 

monitoring systems process different information, the former can sometimes overwrite the latter. 

This situation, however, is not common in everyday life.

The second line of evidence in favor of some contribution of external monitoring in 

language production comes from studies showing a decrease in the proportion of detected and 

corrected errors under noise-masked conditions. For example, Postma and Noordanus (1996) had

participants explicitly report their errors by pressing a button while reciting tongue-twisters and 

found a slightly lower rate of reporting errors under noise-masked than normal conditions (50% 

vs. 64%, respectively). Other studies have used correction performance as a proxy for 

monitoring. For example, Postma & Kolk (1992) had participants recite tongue-twisters and 

produce natural sentences in conditions with and without noise. While error rates were 

comparable in the two conditions, correction rates were about 50% lower under noise for both 

tongue-twisters and sentences. When accuracy was emphasized, participants made fewer errors 

and corrected a higher proportion of those errors, but the difference in the repair rate between 

conditions with and without noise persisted. Oomen et al. (2001) also found lower correction 
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rates under noise (a 17% decrease). More recently, however, Nooteboom & Quené (2017) found 

no difference in correction rates with and without noise-masking.

To summarize, the evidence in favor of internal monitoring in spoken production is 

convincing. The existence of an external channel is also undisputed. More controversial is the 

contribution of the external channel to monitoring in everyday production. It would also be 

desirable to differentiate between the role of external channel in conscious awareness of errors 

vs. applying corrections. Below, we discuss why typing provides a better medium than spoken 

production for addressing these issues.

Monitoring in typing

As discussed in the previous section, one of the best methods for assessing the 

contribution of the external channel to monitoring is to remove its contribution, and examine the 

change to indices of monitoring such as conscious detection and correction of errors when the 

only available channel is the internal channel. In practice, this approach runs into non-trivial 

problems when applied to spoken production. For one thing, noise masking does not completely 

block the external channel because of bone conduction. For external noise to override any trace 

of self-produced auditory input, it has to be very loud, in which case the distraction and 

disturbance that it causes the speaker makes it difficult to claim that it only differs from the 

control condition in that it has removed the contribution of the external channel. Moreover, 

blocking the auditory input activates the Lombard reflex which causes changes to the primary 

production processes such as fundamental frequency and speech rate (Lane & Tranel, 1971), 

again making this condition different from the control condition in more than just one way. Even 

the ideal designs cannot overcome these physiologically induced constraints.

Other modalities of language production, however, are not subject to similar constraints. 

When the output is visual, as in typing, it can be completely removed without causing additional 

disturbance or distraction. Typing could thus provide a strong alternative for investigating the 

contribution of the external channel to performance monitoring. Typing has a special place in 

cognition as an activity that is situated at the intersection between language, motor, and visual 

processing. Its strong similarity to spoken language production has been demonstrated by 

showing the influence of psycholinguistic factors on typed performance indices, as well as the 

common error types in typing (Pinet & Nozari, 2018; Pinet, Ziegler, & Alario, 2016). Moreover, 

our past work has shown that principles such as feedback from the sublexical to the lexical layer 

that have been established in spoken production (e.g., Dell, 1984), are also evident from the 
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pattern of typing errors, even after the potential contribution of phonological processing is 

partialled out (Pinet & Nozari, 2018).

More recently, we have also demonstrated that monitoring in typing has the same 

electrophysiological signatures previously reported in non-linguistic forced-choice tasks, such as 

the error-related negativity (ERN), error-related positivity (Pe), feedback-related negativity 

(FRN), and frontocentral positivity (FCP; Pinet & Nozari, 2020). Of these, ERN has also been 

recovered in spoken production (e.g., Riès, Janssen, Dufau, Alario, & Burle, 2011), further 

supporting the theoretical position that typing and spoken production share similar domain-

general principles of monitoring with each other and with other cognitive tasks (e.g., Hanley, 

Cortis, Budd, & Nozari, 2016; Nozari et al., 2011; see Roelofs, 2020 for a criticism and Nozari, 

2020, for a response to this criticism). These similarities, together with the absence of the 

problems associated with blocking the external channel, make typing a good candidate for 

studying the contribution of the external channel to monitoring in language production and more 

broadly for complex cognitive tasks. The claim, of course, is not that the findings can be 

immediately extrapolated to spoken production, as there are inarguable differences between 

speaking and typing, such as amount of practice and the motor processes involved. Instead, these

findings suggest that typing can provide clean information about the division of labor between 

two monitoring channels in a task that similarly taps into domain-general monitoring 

mechanisms.

To our knowledge, four studies have, to date, investigated the role of the external channel

in monitoring in typing. Logan & Crump’s (2010) manipulation was identical to Lind et al.’s 

(2014) study. They manipulated the typing output on the screen to either insert (on 6% of trials) 

or correct errors (on ~45% of trials). Expert typists accepted the inserted errors as their own on 

around 70% of such trials and took credit for the inserted corrections on around 90% of the 

artificially corrected trials. Interestingly, when they were briefed that manipulations were 

possible, and were given the additional options of “inserted” or “corrected” errors, they were 

able to detect 80% of inserted and 50% of corrected errors as such. This latter finding confirms 

that the external channel can indeed overwrite the internal channel, but that the extent of its 

contribution may be overestimated in studies that artificially manipulate the external output.

Three other studies have used the technique of removing the contribution of the external 

channel by preventing the immediate appearance of the visual output. These studies used 

participants that have a high level of proficiency in typing, but who were not necessarily 

formally trained and were therefore a better representative of the general population. Kalfaoğlu 

& Stafford (2014) used a sentence-copying task without visual feedback and found that 
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participants were able to correct 60% of their errors in the absence of any visual information. 

This study, however, did not include a control condition with real-time visual feedback. Snyder, 

Logan, & Yamaguchi (2015) used a word copying task with and without real-time visual 

feedback and found lower rates of error detection (29% decrease) without visual feedback, as 

measured by explicit reports. The study, however, did not allow participants to correct their 

errors. Moreover, copy-typing encourages reliance on the visual modality that may be absent in 

typing words from meaning. 

Most recently, in an EEG study, we had participants type single words that they heard 

with immediate and delayed visual feedback, and were allowed to use the backspace to correct 

their errors (Pinet & Nozari, 2020). Before displaying the visual output in the delayed-feedback 

condition, participants were explicitly asked if they had made an error. Performance was 

compared between the two feedback conditions. While accuracy and response times (RTs) were 

comparable between the two conditions, inter-keystroke intervals (IKIs) were significantly 

longer in the condition without immediate visual feedback. Importantly, we observed a steep 

drop in the correction rate (from 42% to 9%). Explicit judgments in the delayed-feedback 

condition revealed that participants were aware of 54% of committed errors in this condition, 

suggesting that the absence of corrections could not be simply attributed to the fact that errors 

had not been detected. The results of this study suggested considerable reliance on external 

feedback for error correction, higher than reported in any previous studies. However, the sample 

size was relatively small (17 participants). Moreover, the study did not include explicit 

metacognitive judgments on error awareness in the immediate-feedback condition, thus we were 

unable to determine whether the external channel had any role in conscious detection of errors or

not. Finally, while the results suggested a significant dependence of repairs on visual feedback, 

the study provided no information on why that was the case, i.e., what kind of information in the 

visual output was deemed necessary for attempting repairs? The current study was designed to 

answer these questions.

Current study

In three experiments, we expanded the design of Pinet & Nozari (2020) to investigate the 

contribution of the external channel, i.e., visual output processing, to conscious detection and 

correction of errors. All experiments use a typing-to-dictation paradigm, in which participants 
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type a real English word upon hearing it. Unlike copy-typing (i.e., typing by looking at the 

written forms of words), typing-to-dictation requires retrieving the lexical representation, as 

English orthography is not transparent (e.g., participants cannot type “yacht” correctly unless 

they first map sounds on to the proper lexical item, access its spelling,  and then retrieve its 

segments). The production part of the task, thus, taps into the second stage of word production, 

i.e., mapping lexical items to segments (see Dell, Nozari, & Oppenheim, 2014 for a detailed 

review of the stages of word production). This claim is supported by the evidence showing that 

the typing-to-dictation performance is sensitive to lexical frequency (Bonin, Méot, Lagarrigue, &

Roux, 2015; Pinet et al., 2016) which has a strong locus in mapping lexical items to segments 

(e.g., Kittredge, Dell, Verkuilen, & Schwartz, 2008; Nozari, Kittredge, Dell, & Schwartz, 2010), 

as well as the properties of errors in this task which point to sequencing problems typical of 

mapping lexical items to segments (e.g., Hepner, Pinet, & Nozari, 2018). This makes the task 

ideal for studying segmental errors in language production. 

In all experiments, participants heard a word and typed it before a deadline with the 

option of correcting their errors as in real life. Once they finished typing the word, they were 

asked to judge whether they had made an error or not (the metacognitive judgment task). The 

different experiments manipulated what participants saw on the screen as they were typing. 

Figure 1 summarizes the design of the three experiments. Experiment 1 had two conditions: the 

word-feedback condition was the baseline condition, in which participants saw what they typed 

on the screen in real-time, just like normal typing. In the no-feedback condition, nothing 

appeared on the screen until participant had finished typing and had responded yes/no in the 

metacognitive judgment task (Figure 1a). This experiment had two goals: 1) to replicate the 

finding of the critical dependence of corrections on visual feedback reported by Pinet & Nozari 

(2020) with a sample size more than twice as large. 2) To test the importance of visual feedback 

for conscious detection of errors (recall that this was not possible to determine in the previous 

study because we had only collected metacognitive judgments in the no-feedback condition).

To anticipate, results of Experiment 1 replicated a role for visual output in both conscious

detection and correction of errors, albeit with a larger magnitude for the latter. This result brings 

up the question “What information in the visual output is so critical for applying repairs?”. The 

real-time visual output provides two types of information: position (where I am in the word?) 

and letter identity (what letter did I just type?). Removing positional information while retaining 
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letter identity is not feasible. Using a method such as rapid serial visual presentation (RSVP) of 

typed letters would remove spatial information about position but would retain temporal 

information. We thus opted for keeping positional information and removing letter identity using 

a condition similar to password typing. 

Figure 1: Schematics of the design of the three experiments. (a) In Experiment 1, a stimulus was presented 

auditorily, and participants typed it either with (word-f) or without (no-f) visual feedback. They made a 

metacognitive judgment on every trial and were shown what they had typed afterwards. The design of 

Experiments 2 (b) and 3 (c) differed from Experiment 1 only in the feedback provided during the typing period.

Exp 2 included word-feedback and no-feedback conditions, and a new condition (position-f) condition in 

which letters were replaced with dots. Exp 3 included the word-f and position-f conditions and added a new 

(pos+cue-f) condition in which a red hash mark was displayed online on top of each erroneous letter typed. f 

= feedback; pos = position. 

Why would positional information help with correction? Correcting involves stopping the

current action and deleting one or more letters to correct the erroneous keystroke. One role of 

visual information could be to provide information about the current position, in particular while 

going backwards during the correction process. If positional information is critical for 

corrections, independently of letter identity, we should see a significant improvement in repair 
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attempts when people have access to positional information in real-time as they type. Experiment

2 tested this prediction by adding the third condition, the position-feedback condition, in which 

dots appeared on the screen during typing, similar to when people type masked passwords in real

life (Figure 1b). The results replicated the main findings of Experiment 1 and in addition 

revealed a small but statistically significant increase in correction rates when positional 

information was available in real time.

The results of Experiment 2 shed light on the relative contribution of positional 

information to corrections in real-life situations. But from a theoretical perspective, it can be 

argued that the absolute contribution of positional information to corrections can only be studied 

when error detection and error correction are cleanly disentangled. Experiment 3 was designed to

address this issue. The no-feedback condition was removed, and a position+cue-feedback 

condition was added in which a red hash mark appeared immediately above the incorrect letter as

soon as a participant typed it (Figure 1c). This condition, therefore, removed the need for 

detecting errors, by externally cueing participants to the occurrence of an error, and provided an 

opportunity to study the pure influence of positional information on corrections. 

Application of the signal detection theory (SDT) to the studying of monitoring 

The current study follows the general theoretical framework proposed in Nozari & 

Hepner (2019a), which has been inspired by the signal detection theory (SDT; see Wixted, 2020; 

for a historical review and applications in cognitive psychology). The main assumption is that 

each attempt of producing a word, naturally leads to the generation of information that helps the 

system estimate the probability that the word might be an error. This information can be defined 

under the general umbrella of “conflict”, which is determined on the basis of the difference 

between the activation of two (or more) representations. When one representation has much 

stronger activation than all others, conflict is low, and the probability of an error is estimated to 

be low. When, on the other hand, more than one representation is activated, conflict is high, and 

the trial is estimated to have a higher chance of ending in an error. In this general framework, the

hypothetical distribution of error trials is associated with an overall higher amount of conflict, 

while the hypothetical distribution of correct responses is associated with lower amounts of 

conflict (Figure 2). Since initiating a corrective action requires a binary decision (an error has or 

has not been committed), the system needs a way to translate the probability of error to a yes/no 
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decision. This is achieved by placing a criterion somewhere between the two distributions of 

correct and error trials. Trials associated with values of conflict higher than the criterion would 

be labeled as “error”, while trials with values of conflict lower than the criterion would be 

labeled as “correct” (Figure 2).

In earlier work (e.g., Hanley et al., 2016; Nozari et al., 2011; Nozari & Hepner, 2019a, 

2019b), the source of conflict was primarily attributed to production-internal dynamics, i.e., 

activation of the correct and wrong response(s) within the production system. But conflict can 

also be defined in the context of other monitoring mechanisms. For example, in classic forward 

models (see Guenther, 2016 for a review), a motor target activates its corresponding sensory 

(auditory and proprioceptive) targets. When the actual auditory and proprioceptive stimulus (i.e., 

the outcome of production) is processed, if it is the same as the anticipated one, there is no 

conflict. If, however, the two differ, as would be in the case of errors, the system would 

experience “conflict”. Thus, the concept of conflict, broadly defined, can be used to unify 

different monitoring mechanisms under an umbrella of a multi-component monitoring system 

(Nozari, 2020). In this framework, the conflict signal is a sum of all sources of information 

provided by different monitoring mechanisms. This account makes a clear prediction: if a 

monitoring mechanism contributes significantly to monitoring, its removal should lead to a lower

quality of the conflict signal, and consequently poorer monitoring performance. SDT provides a 

formal framework to test this hypothesis. Moreover, SDT can be applied separately to different 

tasks that are contingent on monitoring. We test two such behaviors, correction attempts and 

metacognitive judgments determining awareness over committed errors. 

Four response types are defined in the SDT framework when applied to monitoring (also 

called SDT-type II; see Wixted, 2020 for a review): A Hit is defined as detecting/correcting a 

response which should have been detected/corrected, i.e., an error. A Miss is defined as not 

detecting/correcting what should have been detected and corrected, i.e., an error. A Correct 

Rejection refers to not detecting/correcting a response which did not need detection/correction, 

i.e., a correct response, and finally, a False Alarm refers to detecting/correcting a response which 

did not need detection/correction, i.e., a correct response. These four types of responses can be 

collected for both corrections and metacognitive judgments of conscious detection of errors. The 

SDT model fitted to individual participants’ data can estimate two critical parameters, d́ (d 

prime), which indexes how far apart the two distributions are, and c (criterion), which indexes 
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where the criterion is placed for the binary (error/correct) decision (Figure 2a). Formally, this 

parameter denotes the number of standard deviations from the “ideal observer” position, i.e., 

when the criterion is placed at the intersection of the correct and error distributions. Therefore, 

positive values indicate a shift to the right, while negative values mark a shift to the left (Figure 

2b and c).

When the quality of information is high, the two distributions have little overlap ( d́ is 

large). A decrease in the quality of monitoring signal is thus expected to manifest as a lower d́. In

our experiments, we use this logic to measure the contribution of (full or partial) visual 

information to the monitoring signal. A significant drop in d́ would imply a substantial role for 

such information. The value of the criterion provides a different kind of information: how does 

behavior change as a function of decreased quality of information reflected in lower d́? Three 

outcomes are possible: 1) participants may shift their criterion to the right (Figure 2b). This 

reflects an attempt to decrease the probability of False Alarms, while sacrificing some Hits. 2) 

Alternatively, participants may shift their criterion to the left (Figure 2c). This means an attempt 

to keep the Hit rate high, while accepting an undesirable increase in False Alarms. 3) Finally, 

participants may keep their criterion in the same place, reflecting no particular preference in 

avoiding False Alarms or maximizing Hits. 

In each of the three experiments, we estimated d́ and criterion by fitting a SDT model to 

data from individual participants separately for corrections and metacognitive judgments on error

awareness, and used the results to draw conclusions about the contribution of visual information 

to the underlying monitoring signal in these two tasks, as well as changes to participants’ overt 

behavior as a function of removing such information. 
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Figure 2. Signal detection theory applied to the distributions of correct and error trials regarding the 

level of conflict. The distance between the two distribution is captured by d́. Larger d́ s reflect cleaner 

separation of correct and error distributions, i.e., a cleaner monitoring signal. How to respond to the 

monitoring signal is determined by the placement of the criterion. The “ideal observer” position is 

assumed to be at the intersection of the two distributions (a). Criterion can be shifted either to the right 

(b) or to the left (c). Shifting the criterion to the right decreases False Alarms at the cost of increasing 

Misses. Shifting the criterion to the left has the opposite effect. 

Experiment 1

Methods

Participants

In this and the following experiments, a predetermined sample size of 42 was set as the 

target. Participants were recruited via Amazon Mechanical Turk. They were consented under a 

protocol approved by the Institutional Review Board of Johns Hopkins School of Medicine and 

were compensated for their participation. Participation eligibility was determined by a screening 

test administered before participants were accepted into the study. This test had two parts: In the 

first part, participants typed 15 words to dictation, with a relaxed deadline (5000 ms). In the 

second part, they typed 15 words to dictation, under a shorter deadline (2000 ms). The end of the 

auditory stimulus, i.e., when they were able to start typing was indicated by a short beep. The 

upcoming end of the typing period was indicated by a lower pitched beep, 500 ms before the 

effective end of the trial. Participants had to reach 80% accuracy on the first part, and finish 
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typing at least 80% of trials under the time limit (with minimum 50% accuracy) on the second 

part. If they did not meet these criteria, they did not proceed with the rest of the experiment. We 

ran as many participants as needed until 42 participants passed the screening test and were 

included. The total number of participants run to reach 42 who passed the test was 63.  

The 42 participants (17 male) were 21-58 years old (mean = 35.6±8) and were all speaking 

English at home and at work (two were native Spanish speakers, that learned English at 3 and 9 

years old)1. All participants had finished high school and 36 (86%) had some college education.

Their typing speed and accuracy were estimated with a screening typing test at the beginning of 

the session (see below). In our sample typing speed ranged from 51 to 102 words per minute 

(mean = 72.5 ± 12 wpm), and accuracy ranged from 80 to 100% (mean = 93 ±6%).

Materials

Stimuli were 600 7- and 8-letter words from the English Lexicon Project database (Balota et 

al., 2007). The number of items was determined by balancing the need for sufficient 

observations, while keeping the duration of the experiment under an hour. Word frequency 

(log) ranged from 1.7 to 3. Plural and compound words, and words that had homophones were

not included in the material. Words were recorded by a native English speaker. They were 

divided into two lists of 300 items to be used in each condition, counterbalanced on number of

phonemes, syllables, letters, phonological and orthographic neighbors, word and bigram 

frequency, and percentage of bimanual alternations.

Procedures

The experiment was programmed using the jsPsych library (de Leeuw, 2015), embedded 

in an HTML environment. The Python library psiTurk (Gureckis et al., 2016) was used to handle 

participants’ recruitment and compensation. Participants performed the experiment online using 

their own computer and keyboard. Experimental files are available at this address: 

10.17605/OSF.IO/9TC5X. The main experimental session consisted of a typing-to-dictation task.

We manipulated whether visual feedback appeared on the screen as participants were typing 

1� Since this study used a screening test to assess typing ability, the most unbiased decision was to include 
everyone who passed the screening test. To address potential concerns about including two non-native 
English speakers and one participant older than 40 years of age, we repeated all the analyses without these
three participants. The pattern of results was unchanged. We, therefore, report the results using the whole 
sample. 
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(baseline/word-feedback condition) or not (no-feedback condition). In the no-feedback 

condition, the screen remained blank for the entire duration of the trial. Conditions were blocked 

and participants saw them in a counterbalanced order. One of the two balanced lists of stimuli 

was used for each feedback condition. The list used for each condition was also counterbalanced 

between participants.

The structure of a trial was as follows: participants heard a word, followed by a beep 

(1000 Hz, 100ms). They were instructed to type the word as fast and as accurately as possible 

when they heard the first beep and to finish typing before a second beep (500 Hz, 100ms), 

1800ms after the first one. They had 500ms after the second beep to finish typing their answer, 

making it a total typing duration of 2300ms from the first beep before the trial was terminated. 

At the end of the trial, participants were prompted to make a metacognitive judgment on their 

performance, when the following sentence appeared: "Did you make an error in what you first 

typed?". They had to answer “yes” or “no” by pressing the “Y” or “N” keys, respectively. 

Participants were explicitly told that if they made a mistake and corrected it, it still counted as an

error and they should answer “yes”. Then there was a 500ms interval before the next word was 

presented. There were breaks every 50 trials.

Data analysis

Any words that contained a keystroke not expected in the target word was considered an 

error. Reaction times (RTs) were calculated from the end of the auditory stimulus to the first 

keystroke. Interkeystroke intervals (IKIs) were the time intervals between consecutive 

keystrokes and were averaged over each word. RTs and IKIs outside of 3SD of the mean of each 

participant were removed for further analysis. Hit Rates, Misses, Correct Rejections and False 

Alarms were calculated for each condition for each participant, and SDT parameters ( d́' and 

criterion) were estimated using the psycho R package (version 0.4.91, Makowski, 2018, R 

version 3.3.3). General performance measures (error rates, RTs and IKIs) were analyzed using 

linear mixed effect models (lmerTest R package version 3.0-1, Kuznetsova et al., 2017). The 

main predictor was condition (word-feedback vs. no-feedback) using a simple effect coding. The 

random effect structure included random intercepts for both participants and items. As some 

models did not converge with the inclusion of random slopes, these were left out of all models to

keep all analyses consistent. Because monitoring indices (SDT parameters) are calculated over 

all trials per participant, the structure of these data is no longer hierarchical. Therefore, these 
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parameters were analyzed using linear regression with similar contrast coding used for the 

analysis of general performance measures described above. Data and analysis scripts can be 

found here: 10.17605/OSF.IO/9TC5X.

Results

One participant was excluded because his error rate was an outlier in the error 

distribution of participants based on visual inspection (above 65% in both conditions). From the 

remaining data, 2.4% of outlier RT and IKI data were excluded. Figure 3 shows the distribution 

of errors, RTs and IKIs in the word-feedback and no-feedback conditions. Across 41 participants,

5391 errors (22%) were committed, 2782 in the word-feedback and 2609 in the no-feedback 

condition. The error rate in the no-feedback condition was significantly lower than the word-

feedback condition (21.2±10.3% vs. 22.6±10.7%; β = 0.088, z = 2.6, p = .009). Average RTs, on 

the other hand, were higher in the no-feedback compared to the word-feedback condition 

(390.2±76ms vs. 362±92ms; β = 29.7, t = 16.8, p <.001). The same was true for IKIs 

(168.7±24ms vs. 163.3±26ms; β = 5.86, t = 15.2, p <.001).

Figure 3. Mean error rates (a), RTs (b), and IKIs (c) in the word-feedback (word-f) and no-

feedback (no-f) condition in Experiment 1.

Metacognitive judgments. The overall rate of error awareness (Hit rate) was 69% and 54% in the 

word-feedback and no-feedback conditions, respectively (see Table 1). A comparison of Hit rates

across the two groups showed significantly lower Hit rates in the no-feedback compared to the 

word-feedback condition (.53 ± .13 vs. .70 ± .15; β = -.18, t = -5.8, p <.001; Figure 4a). Model-
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estimated d́ was significantly lower for the no-feedback compared to word-feedback condition 

(2.1 ± 0.4 vs. 2.9 ± 0.6; β = -.81, t = -7.0, p <.001; Figure 4b), whereas the location of the 

criterion did not significantly differ between the two conditions (1.0 ± .4 vs. .9 ± .3; β = .08, t = 

1.1, p = .32; Figure 4c).

Corrections. The overall rate of correction attempts (Hit rate) was 28% (763 attempts) in the 

word-feedback and 8% (221 attempts) in the no-feedback conditions (Figure 4c, Table 2). A 

comparison of Hit rates across the two groups showed significantly lower Hit rates in the no-

feedback compared to the word-feedback condition (.09 ± .10 vs. .31 ± .23; β = -.22, t = -5.8, p 

<.001; Figure 4e). Model-estimated d́ was significantly lower for the no-feedback compared to 

word-feedback condition (1.2 ± .6 vs. 2.0 ± .8; β = -.83, t = -5.1, p <.001; Figure 4e). The 

difference in d́ s was accompanied by a criterion shift: the criterion was significantly higher in 

the no-feedback compared to the word-feedback condition (2.2 ± .4 vs. 1.7 ± .5; β = 0.50, t = 5.1,

p < .001; Figure 4f).

18



Figure 4. Results of the metacognitive judgments (upper panel) and corrections (lower panel) in 

the word-feedback (word-f) and no-feedback (no-f) conditions in Experiment 1.

Table 1. Descriptive statistics for error detection in the three experiments.

Experiment 1 Experiment 2 Experiment 3
Baseline No Baseline No Position Baseline No Position

Raw counts Errors 2782 2609 2050 1990 2041 1494 1406 1216

Hit rate 69% 54% 69% 55% 57% 72% 58% 86%

By participants Hit rate 70.7 ± 15% 52.7 ± 13% 68 ± 19% 50 ± 21% 54 ± 19% 72 ± 14% 58 ± 17% 87 ± 16%

FA rate 1.43 ± 2.5% 3.0 ± 4.0% 1.7 ± 2.3% 4.5 + 6.1% 3.9 ± 4.8% 0.77 ± 1.0% 2.0 ± 3.1% 0.55 ± 1.0%

Dprime 2.9 ± 0.6 2.1 ± 0.4 2.7 ± 0.6 1.9 ± 0.4 2.0 ± 0.5 3.0 ± 0.5 2.4 ± 0.5 3.7 ± 0.7

Criterion 0.9 ± 0.3 1.0 ± 0.4 0.90 ± 0.4 0.98 ± 0.5 0.95 ± 0.5 0.93 ± 0.3 1.0 ± 0.3 0.7 ± 0.3
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Table 2. Descriptive statistics for error correction in the three experiments.

Experiment 1 Experiment 2 Experiment 3
Baseline No Baseline No Position Baseline No Position

Raw counts Errors 763 221 403 94 195 558 259 441

Hit rate 28% 8% 19% 3.90% 8.50% 35% 17% 33%

By participants Hit rate 31 ± 23% 8.6 ± 10% 23 ± 19% 5.3± 6% 11 ± 10% 35 ± 20% 18 ± 15% 33 ± 25%

FA rate .35 ± .6% .16 ± .3% 0.19 ± 0.4% 0.20 ± 0.4% 0.25 ± 0.4% 0.36 ± 0.5% 0.12 ± 0.3% 0.22 ± 0.4%

Dprime 2.0 ± 0.8 1.2 ± 0.6 1.7 ± 0.7 0.8 ± 0.4 1.3 ± 0.5 2.1 ± 0.6 1.6 ± 0.6 2.1 ± 0.8

Criterion 1.7 ± 0.5 2.2 ± 0.4 1.8 ± 0.4 2.2 ± 0.3 2.0 ± 0.3 1.5 ± 0.4 2.1 ± 0.4 1.9 ± 0.5

Discussion

Removing immediate visual feedback caused a slowdown in initiation times and a 

lengthening of IKIs. These effects were accompanied by a slight but significant increase in 

accuracy. Thus, although these effects indicate a change in typing performance in the absence of 

immediate visual feedback, the presence of the speed-accuracy trade-off prevents the conclusion 

that efficient typing necessarily depends on the visual feedback. In fact, they suggest that 

accurate typing of single words is possible without visual feedback, although participants seem 

to approach the task with more vigilance, i.e., more stringent monitoring. Of specific interest to 

us was the role of visual feedback in error awareness and correction. Both suffered from the 

removal of immediate visual feedback, albeit to different degrees. While error awareness showed

a 15% drop over a 69% baseline (word-feedback) condition (a 22% change), correction 

performance showed a 20% decrease over a 28% baseline condition (a 71% change). This 

suggests greater reliance of error correction —compared to error awareness— on visual 

feedback, replicating previous results from Pinet & Nozari (2020). 

SDT fitting further shed light on the similarities and differences between conscious 

detection and correction: in both cases, there was a significant decrease in d́ when visual 

feedback was removed. This result is compatible with the proposal that the conflict signal is a 

sum of multiple sources of information and gets noisier when one source (the external channel) 

is removed. On the other hand, a significant criterion shift was exclusive to correction attempts. 

This finding means that participants only change their correction (and not their judgment) 

behavior in response to the poorer discriminability in the no-feedback condition. This is most 

likely because correction attempts are costly; participants must stop ongoing behavior, erase the 

mistake, replace the segment with a repair, and resume typing. This takes both time and effort. 
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By shifting their criterion to the right (see Figure 2b), they are showing a tendency to minimize 

the chance of unnecessary corrections (False Alarms dropped from 3.5% to 1.6%). Yes/no 

metacognitive judgments, on the other hand, are not associated with similarly high cognitive 

costs. For this reason, participants need not shift their criterion despite the decreased 

discriminability. 

These results raise an important question: why are corrections so difficult in the absence 

of visual feedback? In other words, what aspect of visual feedback provides the critical 

information necessary for correction attempts? Experiment 2 tests the contribution of two aspects

of the visual signal to correction attempts: position in the sequence and letter identity.

Experiment 2

Methods

Participants

The recruitment, consenting, and compensation procedures were similar to Experiment 1. 

A total of 67 participants were screened until the pre-determined sample size of 42 was reached, 

none of whom had participated in Experiment 1. Participants (16 males) were 20-67 years old 

(mean = 37.4±11 years old) and all were native English speakers2. All participants had finished 

high school and 35 (85%) had some college education. The screening procedure was similar to 

Experiment 1. In the current sample typing speed ranged from 44 to 119 words per minute (mean

= 69.2 ± 16 wpm), and accuracy ranged from 80 to 100% (mean = 93 ±6%). 

Materials

Stimuli were similar to Experiment 1. The words were divided into three lists of 200 

items each, counterbalanced for the number of phonemes, syllables and letters, word and bigram 

frequency, and percentage of bimanual alternations. 

Procedure

The general procedure was similar to Experiment 1. In addition to the word-feedback and

no-feedback conditions, we added a position-feedback condition. In this new condition, instead 

of the letters appearing on the screen, the symbol “•” appeared, similar to when typing a 

password online. Experimental files are available at this address: 10.17605/OSF.IO/9TC5X.

2� Similar to Experiment 1, the removal of the oldest participant of the sample did not change the 
pattern of results reported here.
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Data analysis

We followed the same analysis procedure as Experiment 1. Contrasts were pre-planned 

and treatment-coded. To compare all our conditions to each other, we used two different 

contrasts codings, alternatively taking word-feedback and no-feedback as the reference level. 

Data and analysis scripts can be found here: 10.17605/OSF.IO/9TC5X

Results

One participant was excluded because of a technical issue in recording its keystrokes. 

Another participant was removed because his mean RT was an outlier in the RT distribution of 

the sample based on visual inspection (above 900ms). Figure 5 shows the distribution of errors, 

RTs and IKIs in the word-feedback, no-feedback, and position-feedback conditions. Across 40 

participants, 6081 errors (26%) were committed, 2050 in the word-feedback, 1990 in the no-

feedback, and 2041 in the position-feedback condition. The error rate was not significantly 

different between the word-feedback and no-feedback conditions (25.6 ± 13% vs. 24.9±13%; β =

0.035, z = 0.86, p = .39), between the word-feedback and position-feedback (25.5±12%; β = 

-0.005, z = -0.12, p = .91), or between the no-feedback and position-feedback (β = -0.042, z = 

-0.98, p =.33). RTs, on the other hand, were significantly longer for the no-feedback compared to

the word-feedback (377.3±87ms vs. 359.2±87ms; β = 19.6, t = 8.8, p <.001). They were also 

significantly longer for the position-feedback compared to the word-feedback condition 

(378.0±84ms; β = 21.2, t = 9.6, p <.001). The comparison between the position-feedback and no-

feedback revealed no significant difference (β = 1.6, t = 0.72, p = .48). IKIs were also 

significantly longer for the no-feedback compared to the word-feedback (178.0±29ms vs. 

172.1±28ms; β = 6.1, t = 11.8, p < .001). The same was true for the comparison between 

position-feedback and word-feedback (176.0±28ms; β = 4.2, t = 8.3, p <.001). The comparison 

between position-feedback and no-feedback revealed significantly longer IKI in the no-feedback 

condition (β = -1.8, t = -3.5, p <.001).
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Figure 5. Mean error rates (a), RTs (b), and IKIs (c) in the word-feedback (word-f), no-feedback 

(no-f) and position-feedback (position-f) condition in Experiment 2.

Metacognitive judgments. The overall rate of error awareness (Hit rate) was 69% in the word-

feedback, 55% in the no-feedback, and 57% in the position-feedback conditions, respectively 

(Table 1). Similar to Experiment 1, a comparison of Hit rates across the word-feedback and no-

feedback conditions showed significantly lower Hit rates in the latter (.50 ± .21 vs. .68 ± .19; β = 

-0.18, t = -4.0, p<.001; Figure 6a). The same was true in the comparison between the Hit rate in 

the position-feedback condition (.54 ± .19) vs. the word-feedback condition (β = -0.14, t = -3.1, p

= .002). There was no significant difference in the Hit rates between the position-feedback vs. 

no-feedback conditions (β = 0.039, t = 0.88, p = 0.38). The contrasts comparing model-estimated

d́ s yielded similar results (Figure 6b). Average d́ was significantly lower in the no-feedback 

compared to word-feedback condition (1.9 ± .4 vs. 2.7 ± .6; β = -0.81, t = -7.5, p <.001). 

Similarly, average d́ in the position-feedback condition (2.0 ± .5) was significantly lower than 

word-feedback condition (β = -0.69, t = -6.4, p <.001), but not significantly different from the 

no-feedback condition (β = 0.12, t = 1.1, p =.27). The criterion, however, was not significantly 

different for any of the comparisons (word-feedback, .9 ± .4, vs. no-feedback, .98 ± .5, β = 0.08, 

t = .76, p =.45; word-feedback vs. position-feedback, .95 ± .5; β = 0.05, t = 0.47, p =.64; no-

feedback vs. position-feedback, β = -0.03, t = 0.11, p =.78; Figure 6c).

Corrections. The overall rate of correction attempts (Hit rate) was 19% in the word-feedback, 

4% in the no-feedback, and 9% in the position-feedback conditions, respectively (Table 2). 

Similar to Experiment 1, a comparison of Hit rates across the word-feedback and no-feedback 
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conditions showed significantly lower Hit rates in the latter (.23 ± .19 vs. .05 ± .06; β = -0.17, t =

-6.1, p<.001; Figure 6d). Hit rates in the position-feedback condition (.11 ± .10) were 

significantly lower than the word-feedback condition (β = -0.12, t = -4.1, p<.001), and 

marginally higher than the Hit rates in the no-feedback condition (β = 0.06, t = 2.0, p = .0498). 

Analyses of d́ painted an even clearer picture: average d́ (Figure 6e) was significantly lower in 

the no-feedback compared to word-feedback condition (.43 ± .9 vs. 1.1 ± 1.1; β = -0.82, t = -6.3, 

p<.001). Average d́ in the position-feedback condition (.69 ± .9) was significantly different from 

both of the other conditions: significantly lower than the word-feedback condition (β = -0.51, t = 

-3.9, p<.001), and significantly higher than the no-feedback condition (β = 0.31, t = 2.4, 

p=0.019). Moreover, in keeping with the results of Experiment 1, and in contrast to the pattern of

results for metacognitive judgments, criterion placement changed as a function of condition 

(Figure 6f). The average criterion value was significantly higher in the no-feedback compared to 

word-feedback condition (2.2 ± .3 vs. 1.8 ± .4; β = 0.39, t = 5.1, p<.001). The average criterion 

value in the position-feedback (2.0 ± .3) was significantly higher than the word-feedback 

condition (β = 0.21, t = 2.7, p=.008), and significantly lower than the no-feedback condition (β = 

-0.18, t = -2.4, p=.019).
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Figure 6. Results of the metacognitive judgments (upper panel) and corrections (lower panel) in 

the word-feedback (word-f), no-feedback (no-f) and position-feedback (position-f) conditions in 

Experiment 2.

Discussion

Experiment 2 replicated most of the results reported in Experiment 1. RTs and IKIs were 

significantly longer in the no-feedback vs. word-feedback conditions. But unlike Experiment 1, 

accuracy was comparable between the two conditions, removing the concern about the speed-

accuracy trade-off. The common finding of the two experiments, therefore, is that typing 

accuracy for single words in experienced typists does not critically depend on the presence of 

absence of visual feedback, but the removal of immediate visual feedback makes typists more 

cautious by slowing down the initiation and execution of the response (see also Pinet & Nozari, 

2020). Importantly, the results of metacognitive judgments and corrections closely mirrored 
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those found in Experiment 1. The error awareness rate in the word-feedback and no-feedback 

conditions were very close in the two experiments (69% vs. 54% in Experiment 1 and 69% vs. 

55% in Experiment 2), showing reliable and replicable estimates, with about 20% drop in error 

awareness as a function of the removal of immediate visual feedback in both cases. Error 

correction rates in the word-feedback and no-feedback conditions were noisier (28% vs. 8% in 

Experiment 1, and 19% vs. 4% in Experiment 2), but both showed large and comparable drops 

(71%-79%) as a result of the removal of immediate visual feedback. Critically, Experiment 2 

replicated the much greater decline in the rate of error correction compared to error awareness in 

the absence of immediate visual feedback. Finally, Experiment 2 replicated the finding that 

participants’ decision criterion only changed for corrections, but not for error awareness 

judgments in line with our interpretation that participants adjust their criterion based on the cost 

of a False Alarm, which is higher for repair attempts than for metacognitive judgments.

The new manipulation in Experiment 2 was providing immediate visual feedback in the 

forms of dots to mask the typed letters. This kind of feedback signals positional information to 

the participants without providing information about letter identity. Thus, changes to 

performance (if any) would reflect the role of positional information provided by visual 

feedback. The results were as follows: Not surprisingly, we found no evidence to suggest that 

providing positional information helped error awareness; performance in the metacognitive 

judgment task was comparable between no-feedback and position-feedback conditions, and both 

were significantly poorer than the word-feedback condition with comparable decline rates (20% 

for no-feedback and 17% for position-feedback). We can thus conclude that becoming aware of 

having committed an error shows some sensitivity to the presence of immediate visual feedback, 

but the critical information is not about the position, but the identity, of letters. 

In contrast to this, we found that providing positional information helped correction 

performance; repair Hit rates were doubled in the position-feedback compared to no-feedback 

condition (9% compared to 4%), although they did not quite reach the rate of repair in the word-

feedback condition (19%). Analyses of d́ s showed that the signal provided by position in the 

position-feedback condition was significantly better than the no-feedback, but significantly 

poorer than the word-feedback condition. Analyses of the criterion values mirrored these 

findings; the criterion in the position-feedback condition falls right in between the no-feedback 

and word-feedback conditions, meaning that participants were encouraged by the positional 
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information to attempt more repairs, but were still aware of the higher chance of False Alarms 

compared to when both position and identity information were available, thus not shifting their 

criterion all the way to the level matching the word-feedback condition.

To summarize, Experiment 2 replicated the key findings in Experiment 1, and shed more 

light on the way in which visual information may be important for typing (Table 3). The results 

indicated that error correction (but not error awareness) benefited from the presence of positional

information, but such information alone was not sufficient to promote correct repairs to the level 

of full visual feedback with letters identity. The application of SDT further showed that 

participants were keenly aware both of the usefulness of positional information and of the limits 

provided by such information, and adjusted their criterion accordingly. 

While these results show the limitation of positional information in guiding corrections in

settings that are applicable to real-life (e.g., password typing), we cannot claim that we have 

determined the absolute limits of the contribution of visual information to correction 

performance. To answer that question, we must create a situation in which positional information

has the best possible chance of helping typing performance. Experiment 3 does so by providing 

deterministic external cues when an error is made (i.e., removing uncertainty about “whether” a 

correction is necessary or not), and comparing correction performance with positional 

information alone vs. normal feedback, which contains information on both the position and 

identity of typed letters. If participants’ corrections improve with external cueing, we would 

conclude that the lower correction rates were due to uncertainty about whether there is an error. 

If not, we would conclude that the fewer correction attempts reflect participants’ estimation that 

there is not sufficient information to undertake a repair, regardless of detecting one. 

Experiment 3

Methods

Participants

The recruitment, consenting, and compensation procedures were similar to Experiments 1

and 2. A total of 80 participants were screened with the aim of including 42 participants who 

passed the screening test. Due to a registration error, only 41 participants were included in this 

study, none of whom had participated in either Experiments 1 nor 2. Participants (17 male) were 

24-55 years old (mean = 35.7±7) and all were native English speakers. All participants had 
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finished high school and 35 (82%) had some college education. The screening procedure was 

similar to Experiments 1 and 2. In the current sample typing speed ranged from 46 to 101 words 

per minute (mean = 75.7 ± 14 wpm), and accuracy ranged from 80 to 100% (mean = 94 ±6%). 

Materials

Stimuli were similar to Experiment 1 and 2. The same three lists of 200 items as in 

Experiment 2 were used. 

Procedure

The general procedure was similar to Experiment 1. We removed the no-feedback 

condition, and instead added a position+cue-feedback condition to the word-feedback and the 

position-feedback conditions. The new position+cue-feedback condition was similar to the 

position-feedback condition, in that the symbol “•” appeared instead of the letters when 

participants were typing, but had the additional feature of displaying a red hash mark above the 

dot whenever participants typed the wrong letter. Experimental files are available at this address: 

10.17605/OSF.IO/9TC5X.

Data analysis

We followed the same analysis procedures as in Experiment 2. Contrasts were pre-

planned and treatment-coded. To compare all our conditions to each other, we used two different 

contrasts settings, alternatively taking word-feedback and position-feedback as the reference 

level. Data and analysis scripts can be found here: 10.17605/OSF.IO/9TC5X.

Results

Two participants were excluded, one because of his outlier error rate, and one because of 

his outlier average RT, based on visual inspection of the data. Figure 7 shows the distribution of 

errors, RTs and IKIs in the word-feedback, position-feedback, and position+cue-feedback 

conditions. Across 39 participants, 4274 errors (18%) were committed, 1494 in the word-

feedback, 1406 in the no-feedback, and 1216 in the position-feedback condition. The error rate 

was not significantly different between the word-feedback and position-feedback conditions 

(19.2 ± 8% vs. 18.0±7%; β = 0.068, z = 1.5, p = .13), but it was significantly lower in the 

position+cue-feedback (17.6±7%) compared to the word-feedback position (β = 0.11, z = 2.5, p 

= .01). Position-feedback and position+cue-feedback conditions did not differ significantly in 
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terms of accuracy (β = 0.05, z = 1.2, p = .21). Responses were significantly slower for the 

position-feedback compared to the word-feedback (361.1±52 vs. 329.4±50; β = 32.8, z = 15.9, p 

<.001) condition. They were also significantly slower for the position+cue-feedback (347.0±60) 

compared to the word-feedback condition (β = 18.9, z = 9.2, p <.001). The position+cue-

feedback was, however, significantly faster than the position-feedback (β = -13.9, z = -6.7, p 

<.001). IKIs were also significantly longer for the position-feedback compared to the word-

feedback (166.2±23ms vs. 161.1±25ms; β = 5.4, z = 11.0, p <.001). The same was true for the 

comparison between position+cue-feedback (166.8±26ms) and word-feedback (β = 6.0, z = 12.2,

p = <.001). The comparison between position+cue-feedback and position-feedback revealed no 

significant difference (β = 0.57, z = 1.16, p = .25).

Figure 7. Mean error rates (a), RTs (b), and IKIs (c) in the word-feedback (word-f), position-

feedback (position-f), and position+cue-feedback (pos+cue-f) condition in Experiment 3.

Metacognitive judgments. The overall rate of error awareness (Hit rate) was 72% in the word-

feedback, 58% in the position-feedback, and 86% in the position+cue-feedback conditions, 

respectively (Table 1). Similar to Experiment 2, a comparison of Hit rates across the word-

feedback and position-feedback conditions showed significantly lower Hit rates in the latter (.72 

± .14 vs. .58 ± .17; β = -0.14, t = -4.0, p <.001; Figure 8a). Not surprisingly, error awareness was 

the highest in the position+cue-feedback condition, since the presence of an error had been 

externally cued. Performance was still not perfect (.87 ± .16), indicating that participants must 

have missed some of the error cues. Nevertheless, metacognitive judgments of error awareness 

were significantly higher in this condition compared to both the word-feedback (β = 0.14, t = 4.1,
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p <.001) and position-feedback (β = 0.28, t = 8.1, p <.001) conditions. Since the cueing of errors 

has been externally provided in the position+cue-feedback condition, it is not meaningful to 

compare d́ and criterion for metacognitive judgments in this condition compared to the other 

two. However, the comparison of d́ s and criterion placement between word-feedback and 

position-feedback conditions is meaningful, and replicates what was reported in Experiment 2. 

Average d́ was significantly lower in the position-feedback (2.4 ± .5) compared to the word-

feedback condition (3.0 ± .5; β = -0.66, t = -5.2, p <.001; Figure 8b). The criterion was, on the 

other hand, not significantly different between the two conditions (word-feedback, .93 ± .3; vs. 

position-feedback, 1.0 ± .3; β = 0.07, t = 0.96, p = .34; Figure 8c).

Corrections. The overall rate of correction attempts (Hit rate) was 35% in the word-feedback, 

17% in the position-feedback, and 33% in the position+cue-feedback conditions, respectively 

(Table 2). Hit rates in the position-feedback condition (.19 ± .15) were significantly lower than 

the word-feedback condition (.36 ± .21; β = -0.17, t = -3.7, p <.001), whereas Hit rates in the 

position+cue-feedback condition (.34 ± .25) were comparable to the word-feedback condition (β 

= -0.02, t = -0.5, p =.62), and significantly higher than the position-feedback condition (β = 0.15,

t = 3.3, p =.0013). Analysis of d́ s found an identical pattern (Figure 8e), with significantly lower d́

s in the position-feedback compared to the word-feedback condition (1.6 ± .6 vs. 2.1 ± 0.6; β = 

-0.47, t = -2.9, p =.004), comparable d́ rates in the position+cue-feedback (2.1 ± 0.8) and word-

feedback conditions (β = -0.02, t = -0.15, p =.88), and significantly higher d́ s in the 

position+cue-feedback compared to the position-feedback condition (β = 0.44, t = 2.8, p =.0059).

Criterion was significantly higher in the position-feedback (2.1 ± .4) compared to the word-

feedback condition (1.5 ± .4; β = 0.35, t = 3.7, p <.001; Figure 8f), whereas criterion in the 

position+cue-feedback condition (1.9 ± .5) was comparable to the word-feedback condition (β = 

0.09, t = 0.9, p =.35), and significantly lower than the position-feedback condition (β = -0.26, t = 

-2.9, p =.0046).

Successful repairs. The results of the correction analysis showed that correction attempts were 

bumped up to the level of word-feedback condition when the occurrence of an error was 

externally cued. This might simply reflect the pressure to correct because of the external cue. We 

thus conducted an additional analysis to understand whether these externally cued repairs had the
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same success rate in correcting the mistake as the self-initiated repairs. Of the committed 

corrections, 295 (53%) were successful repairs in the word-feedback, 142 (55%) in the position-

feedback, and 180 (41%) in the position+cue-feedback condition. A non-parametric test showed 

that, despite comparable Hit rates for correction attempts, the success rate was significantly 

lower for the externally-cued repairs (i.e., in the position+cue-feedback) compared to the word 

condition (40±21% vs. 50±24%; z = -2.58, p = .0096). On the other hand, while position-

feedback had a lower Hit rate than the word-feedback condition, the success rate in the former 

(47±28%) was comparable to the latter (z = -0.39, p = .69).

Figure 8. Results of the metacognitive judgments (upper panel) and corrections (lower panel) in 

the word-feedback (word-f), position-feedback (pos-f) and position+cue-feedback (pos+cue-f) 

conditions in Experiment 3.
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Discussion

Comparisons of error rates and RTs between word-feedback and position-feedback 

replicated those of Experiment 2. Error rates in the position+cue-feedback condition was 

comparable to that in the position-feedback condition, but participants were faster in the former, 

most likely because the external error signals reduced their reliance on internal monitoring 

processes that slowed them down in the visually-impoverished typing condition. Comparisons of

metacognitive judgments of error awareness in the word-feedback and position-feedback 

conditions also replicated those reported in Experiment 2, with a modest but significant drop in 

error awareness when letter identity has been removed. We can thus conclude with confidence 

that visual information in the form of letter identity is important for error awareness. As for 

corrections, in both experiments Hit rates were significantly lower in the position-feedback 

compared to the word-feedback condition. Analyses of the SDT-derived parameters confirmed 

this pattern. In both experiments, d́ was significantly lower for the position-feedback condition 

and the criterion was significantly higher, implying the same tendency to attempt fewer repairs in

the condition with lower discriminability, i.e., the position-feedback condition, in both 

experiments. Together, these findings suggest that positional information does not help error 

awareness, but does improve corrections, albeit not to the level that full visual information does. 

Moreover, when the success of repair attempts was compared, we found comparable success 

rates between word-feedback and position-feedback conditions (48% vs. 46%), showing that 

although the initiation of the repair depended, to some extent, on seeing the letters, once a repair 

was internally initiated, it was completed with equal success rates independently of visual 

information regarding the letter identity. 

 Recall that error awareness was lower in the position-feedback compared to the word-

feedback condition (Table 3). If this is the source of fewer correction attempts in the position-

feedback conditions, externally cueing errors should significantly improve the correction 

behavior. The position+cue-feedback condition in Experiment 3 was designed to test this 

prediction. At first glance, it seems that the results confirmed this prediction: correction 

performance in the position+cue-feedback condition rose to the level of word-feedback 

condition. But testing the success of repairs told a different story: when errors were externally 

cued, only 40% of the attempted repairs were successful, which was significantly lower than the 
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success rate in the word-feedback condition. To summarize, fewer correction attempts in the 

absence of visual information are not primarily due to the uncertainty about whether an error has 

or has not occurred. Rather, the lower correction attempts in the absence of visual information 

about letter identity imply that participants rely on this information and can gauge that repairs are

much less likely to be successful in the absence of such information.  

Table 3. Qualitative summary table of the findings in the three experiments. Higher/lower stand

for the direction of significant differences, N.S. stands for non-significant difference. IKI = 

Interkeystroke interval, RT = Response time; Pos = position.

Experiment 1 Experiment 2 Experiment 3

No vs. Baseline

No vs. 

Baseline

Position vs.

Baseline Position vs. No 

Position vs. 

Baseline

Pos+Cue vs. 

Baseline

Pos+Cue 

vs. Position

Performance Error rate lower N.S. N.S. N.S. N.S. lower N.S.

RT higher higher higher N.S. higher higher lower

IKI higher higher higher higher higher higher N.S

Error 

detection

Hit rate lower lower lower N.S. lower higher higher

Dprime lower lower lower N.S. lower - -

Criterion N.S. N.S. N.S. N.S. N.S. - -

Error 

correction

Hit rate lower lower lower higher lower N.S. higher

Dprime lower lower lower higher lower N.S. higher

Criterion higher higher higher lower higher N.S. lower

General Discussion

This study investigated the role of visual information provided by the external channel on

monitoring performance in typing. The typing-to-dictation paradigm taps into lexical-to-
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segmental mapping and is thus a good choice for studying segmental errors which result from 

this part of the language production system. Using this task, in three experiments, we 

manipulated visual feedback by removing part of or all visual information from the screen, and 

investigated the change to typing speed and accuracy, as well as conscious detection and 

correction of errors. In a nutshell, results suggested that removal of the visual feedback changed 

monitoring performance by slowing down the initiation and execution of typing, causing a 

modest decrease in conscious awareness of errors, and a much more dramatic decrease in the 

correction of errors. While providing positional information (as in masked password typing) 

caused a statistically significant improvement in corrections, the effect was small, suggesting that

participants relied heavily on letter identity for applying repairs. We unpack these findings 

below.

The effect of visual feedback on the speed and accuracy of typing 

When visual feedback was completely removed in Experiment 1, participants were 

slower to start typing (i.e., longer RTs) and took longer to type the whole word (longer IKIs). 

Longer RTs and/or IKIs as a function of removing visual feedback replicate previous findings in 

both typing to dictation (Pinet & Nozari, 2020) and copy-typing (Snyder et al., 2015), and were 

internally replicated in this paper as well. Reports on the change to typing accuracy, however, 

have been less consistent. Snyder and Logan (2015) reported a significant decrease in the 

accuracy of copy-typing when visual feedback was removed, but that task is likely to exaggerate 

reliance on visual information. Of the three experiments that have used typing to dictation with 

similar methodologies, two have found no change in accuracy (Pinet & Nozari, 2020, and 

Experiment 2 in the current paper), while one found statistically significantly higher accuracy in 

the absence of visual feedback (Experiment 1 in the current paper). These results suggest that 

typing accuracy in practiced typists does not critically depend on the visual outcome, at least for 

single words. However, the absence of such information consistently changes the speed with 

which people approach and complete the task (i.e., both reaction times and typing speed). This is 

compatible with a multi-channel monitoring account in which the removal of part of the 

information pertinent to monitoring increases the uncertainty about performance outcome. 

Slowing down is a successful coping strategy, since it allows for greater accumulation of 

evidence via the internal monitoring channels (see Nozari & Hepner, 2019a for a discussion). 
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The effect of visual feedback on conscious detection and correction of errors in typing 

While prior studies had investigated the effect of removing visual feedback on typing, 

two issues had remained unaddressed: (a) the first concerns the separation of the effect on 

conscious detection of errors vs. error correction. This distinction is especially important in light 

of the evidence pointing to some degree of automaticity in error correction, such as quick and 

efficient repairs in young children and individuals with aphasia that is dissociable from conscious

awareness of the nature of the error (see Nozari, Martin, & McCloskey, 2019 for a discussion of 

evidence). Prior studies either did not probe conscious error detection (Kalfaoğlu & Stafford, 

2014), did not have the correct condition for distinguishing error awareness from correction 

(Pinet & Nozari, 2020), or prohibited corrections altogether (Snyder et al., 2015). (b) The second

issue was that while all these studies hinted at some influence of visual information on 

monitoring performance, it remained unclear what kind of visual information was critical for 

good monitoring behavior. The present study addressed these two concerns.

Results of both Experiments 1 and 2 showed that correction rates plummeted when the 

visual word was completely removed, with a dramatic decrease in the range of 70-80%, closely 

replicating the results of Pinet & Nozari (2020). Previously, Kalfaoğlu & Stafford (2014) 

reported higher correction rates (~60%) in the absence of visual feedback, but it must be noted 

that their study provided no baseline with normal visual feedback against which this number can 

be compared. Importantly, participants were explicitly instructed to correct as many errors as 

they could with no time limit on the task, and copied the sentences they had to type, meaning that

they had access to correct spelling for all the words. Given that these conditions should provide 

the best chance for corrections, a correction rate of only 60% implies a critical role for visual 

feedback in monitoring, compatible with the conclusion drawn from the findings of the 

experiments reported in the current paper.  

In comparison to correction attempts, conscious detection of errors was less sensitive to 

the removal of visual information. Still detection rate did decrease by about 20% in both 

Experiments 1 and 2. In line with our interpretation that removing the external channel deprives 

the system of one source of information useful for distinguishing between correct and error trials,

application of SDT to the data revealed significantly smaller d́ (i.e., less cleanly-separated correct

and error distributions) in the absence of visual information for both correction and conscious 
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detection of errors. Interestingly, the decrease in d́, common to both correction and conscious 

detection, was accompanied by different patterns of criterion setting. Experiment 1 showed that 

participants only adjusted their criterion for corrections (a shift towards minimizing False 

Alarms) but did not change its location for metacognitive judgments. Experiment 2 replicated 

this pattern.

The dissociation between the pattern of change to d́ and c for corrections vs. conscious 

detections demonstrates that while the underlying mechanisms for both functions make use of 

visual information, and thus suffer from the removal of such information, the system responds 

differently to the decreased quality of information in these two cases. When False Alarms are 

costly, e.g., as in attempting a repair that was not needed, participants are much more willing to 

sacrifice a Hit when the quality of information for separating correct and error trials is poor. On 

the other hand, when there is no increase to the cost, as in no consequence to responding yes/no 

in a metacognitive judgment task, participants are willing to accept the increased False Alarm 

rate in order to avoid a large increase in Misses. This pattern, in turn, suggests that the great 

decrease in correction rates when visual information is absent, is less about not knowing that an 

error has been committed (and thus a repair was needed), and more about avoiding the cost of an 

uncertain repair.

The above pattern naturally leads to the second issue that has been overlooked in past 

studies, i.e., what kind of information do participants rely on for corrections, the absence of 

which causes such large drops in correction rates? The visual word contains two potentially 

useful sources of information as feedback to the typist: position and letter identity. Experiment 2 

removed letter identity while preserving positional information by creating a masked-password-

like typing situation. The first finding was that providing positional information did not help 

conscious awareness of errors and there was no reason to expect it would. This finding was 

replicated in Experiment 3. Providing positional information, however, caused a small but 

statistically significant increase in correction rates. Average d́ increased compared to the no-

feedback condition, suggesting that positional information provided a useful source of 

information for attempting correction. Criterion also shifted to the left compared to the no-

feedback condition, suggesting that with the addition of more information participants were more

willing to attempt correction in order to increase the Hit rate. Both d́ and criterion fell between 

the word-feedback and no-feedback conditions, suggesting indirectly that while positional 
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information was helpful, letter identity remained an important source of information for 

corrections. Finally, Experiment 3 was designed to determine whether the drop in correction 

rates in the absence of letter identity reflected participants’ hesitation about whether an error had 

occurred, or alternatively, participants’ accurate evaluation that the current information was not 

sufficient to attempt a successful repair. By externally cueing errors, the task removed the 

uncertainty about error occurrence. The results showed that this manipulation prompted more 

repair attempts, but critically, these repairs were less successful than those that were self-initiated

in conditions without external error cues. This finding shows that the fewer repair attempts in the

absence of letter identity is a sound decision reflecting the lack of sufficient information for 

repairs that have a high likelihood of success. This, in turn, suggests that visual information 

about letter identity plays a key role in successful corrections. 

A potential concern in this study is that removing visual feedback may have shifted 

attention towards visual inspection of fingers during typing, and thus visual information may 

have continued to contribute significantly to the detection and repair processes. There are several

reasons to believe that the results are not strongly dependent on this possibility. (1) The average 

typing speed in this sample was 72 wpm, which leaves little time for detailed processing of 

visual information from fingers, even if participants have looked at their hands. (2) In self-

reports administered at the end of each experiment fewer than 1/3 of participants reported 

looking at their hands during typing (26% for Experiment 1, 29% for Experiment 2 and 3). Note 

that there was no penalty for reporting that they did look at their hands during typing. Therefore, 

there is no reason to believe that the self-reports are unreliable. (3) Importantly, the results 

suggest that the removal of visual feedback from the screen did have a statistically significant 

effect on both detection and correction. If these effects were observed despite the fact that 

participants may have compensated for some of the lost visual information by looking at their 

hands, then the current results constitute even stronger evidence for the role of visual feedback 

from the screen on error awareness and repair behavior. It is also worth mentioning that covering

hands to avoid the possibility of looking at them can cause other issues, such as misplacing the 

hands on the keyboard, which would lead to errors that are not cognitively interesting. Therefore,

even though we cannot rule out the possibility that some of the participants may have looked at 

their hands on some of the trials, the current design is still the most suitable for our purpose, and 

the conclusions are unlikely to change based on this possibility.  
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We also acknowledge that the findings of the study were obtained from a population of 

typists who demonstrated a certain level of typing proficiency (as tested by our screening tests). 

It is possible (and perhaps expected) that visual feedback plays a much more critical role in the 

speed and accuracy of typing performance, and potentially also on monitoring performance, in 

less proficient typists.  

Implications for theories of monitoring and control in language production

Traditionally, language research has remained somewhat separate from research on the 

rest of cognition, due in part to the influence of modular views (e.g., Fodor, 1983) and in part, 

the linguistic theory (e.g., Chomsky, 1968). Consequently, a fundamental problem in cognitive 

science, i.e., the problem of task optimization and the frameworks that have been developed to 

address this problem, have made little contact with the field of language production (Anders & 

Alario, 2019; Anders, Riès, van Maanen, & Alario, 2015; see Nozari & Hepner, 2019a for a 

criticism). This omission has influenced theoretical positions on some of the fundamental aspects

of language production. For example, Nozari and Hepner (2019b) demonstrated that the long-

standing question around the competitiveness of lexical selection is ill-posed if the problem of 

selection is viewed as a SDT-type II problem. This, in turn, changes the question from “is lexical 

selection competitive or not?” to “what factors determine the degree of competitiveness in the 

lexical selection process?”, and provides a path by investigating the distinct contribution of the 

factors that affect the underlying information vs. those that affect the placement of a selection 

criterion (see also Costa, 2019; Mahon & Navarrete, 2019; Melinger & Abdel Rahman, 2019; 

Nozari & Hepner, 2019a; Oppenheim & Balatsou, 2019).

A very similar problem exists in how language research has viewed monitoring and 

control mechanisms. For decades the dominant monitoring account was a comprehension-based 

account (Levelt, 1983; 1989) which, by the virtue of being based on “comprehension”, viewed 

the conscious detection and correction of errors as the goal of the monitoring process. Aside from

the problem of timing mentioned in the introduction, this account does not naturally predict a 

dissociation between metacognitive awareness over errors and a correction attempt, i.e., if the 

goal of the monitoring system is to correct errors, why doesn’t it do that job, and what is the 

advantage of being aware of an error if it is not corrected? Approached from the perspective of a 

task-optimization framework, however, the problem makes much more sense: what contributes 
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to decisions (implicit or explicit) regarding conscious detection and correction is determined a) 

by sources of information that determine the shape of the underlying distributions of correct and 

error responses, and b) by the variables that determine the location of the decision criterion. 

The implication of adopting this perspective is posing a new set of questions as key 

questions for understanding the monitoring-control loops that regulate language production. For 

example, expanding the scope of monitoring from a system that detects occasional “errors”  to 

one that constantly monitors the subtle fluctuations in control demand in the system in order to 

adjust the level of control (Freund & Nozari, 2018), shifts the focus from questions such as 

which error detection mechanism is the right one (Roelofs, 2020), to investigating the 

contribution of various sources of information that are relevant for detecting subtle changes in 

system’s performance. The current study provided a framework for doing just that. Moreover, the

separation of detection/correction functions from metacognitive awareness over errors paves the 

way for investigating repair mechanisms that have not been entertained in the language 

production literature until recently. For instance, Logan (2018) asserts that despite automaticity 

in the primary production processes, repairs must depend on attentional control. Contrary to this 

view, Nozari et al. (2019) and Nooteboom & Quené (2020) propose that the basic repair 

mechanism need not be dependent on conscious and controlled processes. Taking advantage of 

the fact that multiple related responses are often activated during production, these authors 

proposed that correct responses are likely to be highly co-activated along with the error 

responses. If an error is detected, e.g., through having activation levels close to a competing 

response, the system may automatically select the next most highly activated response as repair. 

In support of this idea, Nooteboom & Quené (2020) showed that repairs were often the correct 

response and more so in cases where competition from other responses was minimal, as in the 

case of single errors. These errors are also shown to have quicker error-to-cutoff and cut-off-to-

repair times, further showing the quick process of swapping them with the next best response, 

compared to messier errors that have more than one competitor activated. The dissociation 

between the correction behavior and metacognitive awareness observed in the current paper 

suggests that conscious awareness of having committed an error is certainly not enough for 

attempting repairs and may not even be necessary for initiating a repair. This, in turn, prompts a 

more careful investigation of the mechanisms underlying the repair of linguistic errors. 
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In other words, the application of SDT to the problem of language production (and its 

monitoring and control) is not just a methodological choice. Rather, the utilization of such a 

framework aims at making a much broader theoretical statement, namely, that language 

production, similar to many other cognitive systems, is a self-regulating performance-optimizing 

system, special in terms of its representations but not its operations (Nozari, 2018). 

Conclusion

In this study, we adopted the theoretical position that monitoring combines multiple 

sources of information (Nozari, 2020), the absence of each of which can decrease the quality of 

the monitoring signal and lead to poorer discrimination of errors from correct trials. We tested 

this prediction by applying the SDT framework to the detection and correction performance 

when some or all of visual information from the external channel had been removed. The 

prediction was borne out: removal of the visual signal affected both conscious detection and 

correction of typing errors, with corrections showing a greater dependence on such information. 

When part of visual information (positional information) was reinstated, the quality of signal 

increased, although not to the level of full information. Moreover, the application of SDT proved 

useful in interpreting how the system deals with the lower quality of signal when task demands 

are very different. Participants naturally shifted their criterion to avoid False Alarms when the 

cost of False Alarms were high, as in attempting corrections on already correct responses. When 

the cost was not so high, as in deciding whether an error had been committed or not, criterion 

was not shifted, showing flexible and adaptive use of information in optimizing behavior. 

Similarly, we found that participants’ lower correction rates in the absence of visual information 

about letter identity reflected their accurate estimation regarding the insufficiency of the 

available information for undertaking repairs. 

Collectively, these findings suggest that monitoring is a multi-channel adaptive 

mechanism that can be modeled as a decision-making process superimposed on a conflict 

detection framework. The goal of this system is not simply to detect as many errors as possible, 

but to optimize performance in accordance with task goals. 
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