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Abstract: The main aim of the present study was to compare the effects of flywheel strength training
and traditional strength training on fitness attributes. Thirty-six well trained junior basketball players
(n = 36; 17.58 ± 0.50 years) were recruited and randomly allocated into: Flywheel group (FST; n = 12),
traditional strength training group (TST; n = 12) and control group (CON; n = 12). All groups attended
5 basketball practices and one official match a week during the study period. Experimental groups
additionally participated in the eight-week, 1–2 d/w equivolume intervention conducted using a
flywheel device (inertia = 0.075 kg·m−2) for FST or free weights (80%1 RM) for TST. Pre-to post
changes in lower limb isometric strength (ISOMET), 5 and 20 m sprint time (SPR5m and SPR20m),
countermovement jump height (CMJ) and change of direction ability (t-test) were assessed with
analyses of variance (3 × 2 ANOVA). Significant group-by-time interaction was found for ISOMET
(F = 6.40; p = 0.000), cmJ (F = 7.45; p = 0.001), SPR5m (F = 7.45; p = 0.010) and T test (F = 10.46; p = 0.000).
The results showed a significantly higher improvement in cmJ (p = 0.006; 11.7% vs. 6.8%), SPR5m
(p = 0.001; 10.3% vs. 5.9%) and t-test (p = 0.045; 2.4% vs. 1.5%) for FST compared to the TST group.
Simultaneously, th FST group had higher improvement in ISOMET (p = 0.014; 18.7% vs. 2.9%), cmJ
(p = 0.000; 11.7% vs. 0.3%), SPR5m (p = 0.000; 10.3% vs. 3.4%) and t-test (p = 0.000; 2.4% vs. 0.6%)
compared to the CON group. Players from the TST group showed better results in cmJ (p = 0.006;
6.8% vs. 0.3%) and t-test (p = 0.018; 1.5% vs. 0.6%) compared to players from the CON group. No
significant group-by-time interaction was found for sprint 20 m (F = 2.52; p = 0.088). Eight weeks
of flywheel training (1–2 sessions per week) performed at maximum concentric intensity induces
superior improvements in cmJ, 5 m sprint time and change of direction ability than equivolumed
traditional weight training in well trained junior basketball players. Accordingly, coaches and trainers
could be advised to use flywheel training for developing power related performance attributes in
young basketball players.

Keywords: isoinertial training; strength training; vertical jump; change of direction ability

1. Introduction

It has been acknowledged in the scientific literature that strength training produces
several morphological and neural adaptive changes in the human body, including increases
in muscle’s cross-sectional area, muscle fiber pennation angles and musculotendinous
stiffness as well as motor unit recruitment, rate coding (firing frequency), synchronous
motor unit activity and neuromuscular inhibition [1]. These types of adaptations enable an
increase in strength and power—both of them have been extensively proven to be related
to sport performance across a continuum of sports events [2]. Consequently, strength
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training has become a cornerstone of strength and conditioning programs for athletes [3].
In addition, optimizing the load and time spent in strength training may be one of the
most important considerations for strength and conditioning coaches (especially in team
sports), where success is multifaceted and with a broad spectrum of physical, physiological,
technical and tactical abilities that need to be targeted regularly in the training process and
integrated periodization [4]. Consequently, in both sport science and everyday practice
there is a need for elucidating and incorporating effective but also time sparing strength
training methods [5]. In this vein, many different strength training methods have been pre-
sented in the past, including the use of free weights, kettlebells, elastic bands and resistance
training machines [6]. These different traditional strength training methods, including both
eccentric and concentric muscle actions, are prescribed based on concentric force parame-
ters with propensity to underload the lengthening phase of movement as muscle produces
more force during eccentric phase of movement [7]. There is a growing body of research
asserting that strength training programs which adequately load the lengthening phase of
movement, called eccentric training, might induce superior neuromuscular adaptations
(faster cortical activity, inversed motoneuron activity pattern, improved muscle-tendon unit
morphology and structure) compared with traditional strength training. In addition, there
is increasing evidence in recent scientific literature implying that eccentric strength training
is a potent stimulus for boosting physical performance [8,9], with flywheel iso-inertial
resistance training especially highlighted recently for its efficiency in both performance
and clinical settings [10] as well as specificity [11].

Concisely, flywheel training is a relatively new training method consisting of partici-
pants accelerating a flywheel during concentric phase of movement with kinetic energy
returned during the eccentric phase of movement, thus requiring significant eccentric
muscle action (eccentric overload) to slow the flywheel. This presents an alternative means
of providing external load in resistance exercises which can be achieved by flywheel re-
sistance [12]. Flywheel training enables overload in the eccentric phase, by resisting the
eccentric force later in the eccentric range of motion [13]. Considering performance out-
comes in the athletic population, eight to eleven weeks of flywheel training with one/two
sessions a week has been found effective to enhance countermovement jump height (CMJ),
change of direction ability and linear sprint in young and adult soccer players [14–18].
Furthermore, literature found six and seven weeks of flywheel training (two-three and
one session per week, respectively) to be a robust tool to significantly enhance cmJ, squat
jump, 20 m sprint, change of direction (t-test) and maximal strength [19] as well as max-
imal strength (Half squat 1 RM) and 20 m sprint [20] in professional handball players.
Interestingly, the effects of flywheel training on performance outcomes in basketball are
scarce. To the best of the authors knowledge, only one study [21] reported significant
improvements in countermovement jump and squat power after implementing one session
a week of flywheel training (four sets of eight repetitions of the squat, 24 weeks) in a sample
of 26 regional level adult basketball players (males and females). Change of direction,
muscular strength, vertical jumping ability and repetitive short-distance sprints are all
important fitness attributes required for the physical demands of a basketball game [22].
In addition, the relevance of performing explosive and fast movements, such as sprints,
jumps and change of direction has increased in modern basketball [22]. Finally, lower
body strength has been extensively reported to be related to lower body power perfor-
mance [23]. Therefore, it is of interest for both sport scientists and basketball practitioners
to elucidate the effects of innovative training methods for power and strength development
in basketball.

Although strength and conditioning coaches use various methods to develop neuro-
muscular factors in youth basketball players [24], no studies to date, as far as we know,
have investigated the effects of flywheel training on strength and power attributes in
young basketball players. It should be recognized that the continuation of habitual team
sport practice during puberty was proven to induce substantial improvements in lower
body strength per se, without additional resistance training performed [25]. Consequently,
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the inclusion of the control group with regular basketball practice would improve clar-
ity of whether performance adaptations are consequence of strength training or specific
sport training linked to the possible growth and muscular development. This was not
the case with previous similar investigations conducted on young soccer players [14,15].
Furthermore, to the best of our knowledge, there are no studies with relatively old (U-18),
highly trained and resistance training-experienced adolescents that have compared the ef-
fects of continuing with specific sport practice or including flywheel or traditional strength
training to regular basketball practice. Recently, meta-analysis exploring the flywheel
training performance effects revealed that most interventions caried out on 5 to 10 weeks
training period [13]. Further, in vertical inertial flywheel training, similar to our research
design [14,19,26], differences in strength and power performance in 6- and 8-week training
period were found. As a result of this analysis, an eight-week training period is consistent
with previous research.

Taking all aforementioned, the main aim of this study was to compare the in-season
effects of eight week of equivolumed flywheel vs. traditional strength training on lower
body strength, countermovement jump, t-test and 5 and 20 m sprint performance in well-
trained young basketball players. We hypothesized that flywheel training will produce
superior effect in all observed fitness attributes.

2. Materials and Methods
2.1. Participants

Thirty-six well trained junior male basketball players volunteered to participate in the
study and were randomly assigned to 3 groups: the first experimental group (FST; n = 12;
age = 17.58 ± 0.52 years; height = 190.54 ± 4.98 cm; body mass = 75.53 ± 5.43 kg; training
experience = 6.17 ± 1.19 years) which performed strength training on a flywheel training
device ((D11 full, Desmotec, Biella, Italy), the second experimental group (TST; n = 12;
age = 17.52 ± 0.58 years; height = 190.58 ± 6.56 cm, body mass = 78.78 ± 8.01 kg; training
experience = 6.92 ± 2.88 years) which performed traditional free weights strength training
and the control group (CON; n = 12; age = 17.56 ± 0.54 years; body mass = 192.81 ± 3.99 cm;
weight = 80.00 ± 8.76 kg; training experience = 6.58 ± 1.38 years) which maintained regular
basketball practice.

All players where regional level, from Novi Sad (Serbia) and played for the teams
contesting in the junior league of Vojvodina province during the season in which the
investigation took place. All players had basketball training experience of a minimum
of 4 years, without lower limb injury or illness 4 months prior to the study. During
the program, all participants had 5 basketball trainings (90 min per training) and one
game a week. In addition, participants were all familiar with resistance training regularly
exploited throughout the season, but without previous experience with flywheel device.
The requirements and obligations during the study were explained to all participants, as
well as the purpose of the research. Each participant could withdraw from the research
at any time. No players reported injuries throughout the study duration and no one
withdraw from the research. The study fits the Declaration of Helsinki (2008), actualization
in Fortaleza 2013 [27], for medical research involving human participants.

The study protocol was reviewed and approved by the ethics committee of the Uni-
versity of Novi Sad, Serbia. (Ref. No. 44-01-02/2019-3). All participants voluntarily
accepted to enroll in the study and signed an informed consent, while parents or legal
representatives signed for underage subjects.

2.2. Study Design

The experimental program was organized during the second part of the competition
period, in March and April 2019. Initial testing was organized seven days prior to the first
practice session, and after testing players from the FST and TST groups attempt two sets
with six–eight repetitions on an isoinertial device (FST group) and with weights (TST group)
in order to familiarize with the training protocol. Three days before starting the program,
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both experimental groups had a second familiarization training with exercises on an
isoinertial device and with free weights. Supervised strength training for the experimental
groups was conducted during the morning hours in the lab facility at a Faculty of sport
and physical education, University of Novi Sad, supplied with all necessary equipment
(flywheel, bars, plates, elastic bands . . . ). All participants were supervised by PhD
students with extensive strength training experience to help ensure high quality training
sessions. The sessions were performed on every Tuesday, Wednesday and Thursday, in
groups of no more than 6 players and monitored by at least two PhD students at all
times. Three to six days after the intervention period final testing was conducted, identical
with initial one considering time of testing, order and protocols of testing procedures
and examiners. All participants were strongly advised to avoid any strenuous activity
24 h before testing. The control group did not receive any additional training apart from
regular basketball trainings and weekend-games during the intervention. During the week,
but not on the same day as the experimental program, one basketball training session,
was supplemented with bodyweight strength training for all groups. This training was
regularly implemented throughout the season, at the beginning of the training, lasting 25
to 30 min. The participants were not allowed to take stimulants, or any other substances
for improving performance during the study.

2.3. Measurements

Anthropometric measurements were taken by an International Society for Advance-
ment in Kinanthropometry (ISAK) level three anthropometrist, following the standard
procedures prior to initial testing [28]. The height and body mass technical error of mea-
surement (TEM) was less than 0.02%, and were measured with an SECA (Seca GmbH,
Hambrug, Germany) measuring rod, (precision of 1 mm; range: 130–210 cm) and an SECA
model scale (precision of 0.1 kg; range: 2–130 kg).

Prior to initial testing, data on training experience and anthropometric measures of
standing height and body weight were taken for each subject. The lower extremity isometric
strength test (ISOMET) was performed with peak force measured on an isoinertial device
(D11 full, Desmotec, Biella, Italy). The participant was connected to the device by a strap
with one end tied to the device and the other to a waistcoat worn by the participant. The
strap was tightened not to allow the respondent to move up. The Desmotec device has
two contact panels that are connected to a computer equipped with the software (D.Soft,
Desmotec, Biella, Italy). The participant stands in a semi-squat position, flexion at 100
degrees angle, and his hands are placed on his hips. At the sign, the subject exerts pressure
on the plates for 10 s, maximum voluntary isometric contraction. The contact panels
measure the force that the participant produces and which is read on the computer. The test
was done twice, with a rest period of 2 min, and the better result, expressed in kilograms,
was recorded. Good test-retest reliability (α = 0.889) was found for this parameter.

Countermovement jump test—CMJ—was conducted according to Bosco protocol [29]
on a contact platform Just Jump, Probotics, USA. During the cmJ, all participants were
instructed to start with upright posture and their hands on their hips. After swift downward
phase to semi squat position, participants jump up in the air maximally keeping hands on
their hips and landing in an upright position with their knees extended. Three attempts
were allowed, with 45 s of passive recovery between trials. The best jump performance
was registered and used for further analysis. cmJ is characterized by a very low variability
between tests (coefficient of variation of 3.0%) [30], with excellent test-retest reliability
(α = 0.918) found in our study.

Subjects performed a 20 m sprint test, with 5 m split time and times were recorded
using light gates (Microgate—Witty, Italy). Two submaximal efforts were included at the
end of specific warm up, followed two 20 m sprint trials, with two minutes of passive
recovery between trials. After a specific warm-up, including the 2 submaximal efforts
(around 90% of max speed), two trials were completed. The subject started from the
crouched position with the front foot positioned 0.3 m behind the first timing gate, where
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players started voluntarily and accelerate maximally to the finish line. During the test,
the participants were verbally encouraged to run with maximum effort. The better results
were used for further statistical analysis (SPR5 m and SPR20 m). The 20 m sprint test has
demonstrated high level of reliability in our study (α = 0.901 and α = 0.914 for 5 m and
20 m sprint, respectively), which is similar to previous study findings [31].

Agility t-test was conducted according to Semenick [32]. The participants starts
with front foot positioned 0.3 m before the light gate. The test includes forward running,
shuffling sideways and in the end backwards running. The trial was not counted if the
player crossed one foot over the other while shuffling or failed to touch the base of the cones.
Times were recorded using light gates (Microgate—Witty, Italy), placed at the start/end
position. Two trials were completed with 2 min of passive recovery, and better result was
taken for analysis [33]. Good test-retest reliability (α = 0.875) was found for this parameter.

2.4. Training Interventions

Two sessions were conducted to familiarize participants with the training method in
order to optimize training adaptations. Two experimental groups (FST and TST) attended
8 weeks of individually supervised strength training, 1–2 training sessions per week, with
12 training sessions in total. The number of training sessions and sets increased progres-
sively throughout the program (Table 1), with at least 48 h rest between sessions. The
experimental groups (FST and TST) had the same number of training sessions, sets and
repetitions per set during the experimental treatment for each training session (equivol-
umed training protocols). Moderate inertial load (0.075 kg m2) was chosen for half squat
and Romanian deadlift for FST group based on findings by Sabido et al. [34] reporting
that these loads maximized eccentric overload. All other exercises except Rotational pallof
press for both FST and TST participants were conducted with 85% of 1 RM.

Each training session consisted of 5 drills, with the only difference in the two exercises:
while the FST group practiced Romanian deadlift (RDL) and half squats (HS) on the
isoinertial device, the TST group practiced half squats (HS) and Romanian deadlift (RDL)
with free weights. Two minutes of passive recovery was allowed between exercises and
sets. For flywheel exercises each set begins with two submaximal attempts that are not
counted in the total number of repetitions, and then the subject continues to exercise with
maximum voluntary attempts the required number of repetitions. For half squat exercise,
the subject begins with concentric phase caried out from about 90-degree knee angle to
near full extension and then continues, without stopping, the phase of eccentric contraction.
Participants were briefed to perform the concentric phase with maximum effort, while
applying maximal force after the first third of the lengthening phase in order to stop the
flywheel at about 90 of knee flexion, thus achieving eccentric overload [21]. It has been
recognized that special eccentric strategies are required to apply breaking force over the
entire range of motion at certain joint angles to achieve the desired eccentric overload [35].
Romanian deadlift was standing upright holding the Kbar in front and with shoulders
width apart.

For Romanian deadlift, the participants stands on an isoinertial device, placing a
Kbar in front of the body, connected to the device by a strap. In the initial position the
participant is bent at the hips, the back is straight, the arms are outstretched and the bar
is below the knee (knee almost fully extended). The exercise begins by raising the body
with maximal voluntary contraction (concentric phase) to an upright position when the
strap is stretched to the maximum. It is immediately continued by winding the tape and
the participants enters the braking phase in order to stop in the initial position (eccentric
phase), after which the next repetition follows without a pause. The bar moves close to the
body during exercise.



Int. J. Environ. Res. Public Health 2021, 18, 1181 6 of 12

Table 1. Training program for flywheel (FST) and traditional strength training (TST) groups.

FST TST

Week 1–2 Week 1–2

Number of training sessions: 1 Number of training sessions: 1
One-arm dumbbell row (2 × 8) One-arm dumbbell row (2 × 8)
Rotational pallof press 2 × (2 × 12–15) Rotational pallof press 2 × (2 × 12–15)
Biceps curls + upright row complex (2 × 8) Biceps curls + upright row complex (2 × 8)
Half squat on isoinertial device (2 × 8) Half squat with free weights (2 × 8)
Romanian Deadlift (RDL) on isoinertial device (2 × 8) Romanian deadlift (RDL) with free weights (2 × 8)

Week 3–4 Week 3–4

Number of training sessions: 1 Number of training sessions: 1
One-arm dumbbell row (3 × 8) One-arm dumbbell row (3 × 8)
Rotational pallof press 2× (3 × 12–15) Rotational pallof press 2 × (3 × 12–15)
Biceps curls + upright row complex (3 × 8) Biceps curls + upright row complex (3 × 8)
Half squat on isoinertial device (3 × 8) Half squat with free weights (3 × 8)
Romanian Deadlift (RDL) on isoinertial device (3 × 8) Romanian deadlift (RDL) with free weights (3 × 8)

Week 5–6 Week 5–6

Number of training sessions: 2 Number of training sessions: 2
One-arm dumbbell row (3 × 8) One-arm dumbbell row (3 × 8)
Rotational pallof press 2 × (3 × 12–15) Rotational pallof press 2 × (3 × 12–15)
Biceps curls + upright row complex (3 × 8) Biceps curls + upright row complex (3 × 8)
Half squat on isoinertial device (3 × 8) Half squat with free weights (3 × 8)
Romanian Deadlift (RDL) on isoinertial device (3 × 8) Romanian deadlift (RDL) with free weights (3 × 8)

Week 7–8 Week 7–8

Number of training sessions: 2 Number of training sessions: 2
One-arm dumbbell row (4 × 8) One-arm dumbbell row (4 × 8)
Rotational pallof press 2 × (4 × 12–15) Rotational pallof press 2 × (4 × 12–15)
Biceps curls + upright row complex (4 × 8) Biceps curls + upright row complex (4 × 8)
Half squat on isoinertial device (4 × 8) Half squat with free weights (4 × 8)
Romanian Deadlift (RDL) on isoinertial device (4 × 8) Romanian deadlift (RDL) with free weights (4 × 8)

2.5. Statistical Analysis

Data are presented as mean ± standard deviation (SD). Normality of distribution was
examined using the Shapiro–Wilk test. Levene’s test for the assessment of homoscedasticity
was applied. At pre-test, between-group comparisons were analyzed by univariate analysis
of variance (ANOVA) with the factor group (FST, TST and CON), and between-group
comparisons under the influence of experimental treatment were analyzed by a two-
way ANOVA (3 × 2). Statistical significance was set a priori at p ≤ 0.05. Post-hoc test
(Least Significant Difference test—LSD) following ANOVA was used to determine the
significance of factors interaction. Cohen’s d as the measure of the effect size of the mean
difference was calculated by subtracting the means and dividing the result by the pooled
standard deviation. A Cohen’s d of ≤0.20 = trivial, 0.20–0.60 = small, 0.61–1.20 = moderate,
1.21–2.0 = large and ≥2.01 = very large, as suggested by Hopkins et al. [36]. Data were
processed using the SPSS statistical software package, version 20 (Chicago, IL, USA).

3. Results

No significant between-group differences were detected in pretest for any variable
analyzed. In addition, no meaningful group-by-time interaction was found for sprint 20 m
(F = 2.52; p = 0.088) (Table 2).
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Table 2. Between-group differences in selected variables with % of improvement and Cohen’s effect size (d).

FST TST CON

IN FIN % d IN FIN % d IN FIN % d p

ISOMET 92.33 ± 10.57 109.83 ± 7.81 18.7 1.883 90.25 ± 10.35 105.25 ± 9.36 16.6 1.520 92.42 ± 4.08 94.33 ± 3.28 2.9 0.516 0.000 ‡

CMJ 52.36 ± 3.33 59.29 ± 2.97 11.7 2.196 51.45 ± 3.61 55.22 ± 3.07 6.8 1.125 50.77 ± 2.53 50.92 ± 2.56 0.3 0.059 0.001 †,‡,∆

SPR5m 1.16 ± 0.04 1.04 ± 0.02 10.3 3.795 1.18 ± 0.07 1.11 ± 0.05 5.9 1.151 1.18 ± 0.03 1.14 ± 0.06 3.4 0.843 0.010 †,‡

SPR20m 3.20 ± 0.11 3.07 ± 0.09 4.1 1.294 3.24 ± 0.10 3.13 ± 0.11 3.4 1.046 3.21 ± 0.051 3.19 ± 0.56 0.6 0.05 0.088
t-test 10.07 ± 0.10 9.83 ± 0.07 2.4 2.781 10.04 ± 0.09 9.90 ± 0.08 1.4 1.644 10.12 ± 0.07 10.06 ± 0.06 0.6 0.92 0.000 †,‡,∆

ISOMET—isometric strength test; cmJ—countermovement jump test; SPR5m—20 m sprint test; SPR20m—5 m sprint test; t test—agility
t-test; IN—initial tests result ± standard deviation; FIN—final test result ± standard deviation; %—percentage of improvement; p—level of
statistical significance; †—statistically significant difference between FST and TST group; ‡—statistically significant difference between FST
and CON group; ∆—statistically significant difference between TST and CON group.

Significant group-by-time interaction was found for ISOMET (F = 6.40, p = 0.000), while
post hoc analysis revealed differences between FST and CON groups (p = 0.014). Comparing
the results of the initial and final measurements, FST group had an improvement of 18.7%,
(large effect size) the TST group achieved an improvement of 16.6% (large effect size), while
the CON groups result was improved by 2.9% (small effect size). Significant group-by-
time interaction was found for cmJ (F = 7.45; p = 0.001), with post hoc analysis revealing
differences between FST and TST group (p = 0.006), but also FST and CON (p = 0.000) as
well as CST and CON (p = 0.006). The experimental groups, FST and TST achieved progress
of 11.7% (very large effect size) and 6.8% (large effect size), respectively. The CON group
had an improvement of 0.3% (trivial effect size). The group-by-time interaction for the
5 m sprint variable (SPR5m) showed a significant difference between groups (F = 7.45;
p = 0.010). Post hoc analysis showed that there were significant differences between the
FST and TST groups (p = 0.001) and between FST and CON groups (p = 0.000), while
there was no significant difference between the TST and CON (p = 0.333). Considering the
percentage of improvements, 10.3% (very large effect size), 5.9% (moderate effect size) and
3.4% (moderate effect size) were reported for the FST, TST and CON groups, respectively.
For the t-test, an analysis of the group-by-time interaction showed statistically significant
differences (F = 10.46; p = 0.000) between groups. Post hoc analysis showed a significant
difference (p = 0.000) between the FST and CON groups as well as between TST and
CON groups (p = 0.018). Furthermore, a statistically significant difference was also found
between the FST and TST groups (p = 0.045). When expressed as a percentage, the reported
improvements were 2.4% (very large effect size) for the FST group, 1.4% (large effect size)
for the TST group and 0.6% for the CON group (moderate effect size).

4. Discussion

It has been proposed that flywheel training is an efficient method for enhancing
a myriad of fitness attributes in team sport athletes [13]. However, studies exploring
the effectiveness of flywheel training with basketball athletes is lacking. Therefore, the
aim of the present investigation was to compare the in-season effects of equivolumed
flywheel vs. traditional strength training on lower body strength, countermovement
jump, change of directions ability and sprint performance in well-trained young basketball
players. The results of this research indicate that there were no differences in strength
improvements for two experimental protocols while flywheel training was proved to
be superior for developing agility, vertical jump and 5 m sprint time. Flywheel group
displayed significantly higher improvements in strength, vertical jump, 5 m sprint time and
change of direction ability compared to control group. Players from traditional strength
training group showed better results in vertical jump and change of direction ability
compared to players from control group. Interestingly, adding one/two sessions a week
of flywheel training appears to be an appropriate strategy for enhancing lower body
strength during competitive period in young basketball players while adding equivolumed
traditional strength training seems less effective. Finally, neither training modality was
proved effective for enhancing 20 m sprint performance.
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Although this type of practice is very popular in the last decades [13], scanty studies
have compared the effects of flywheel and traditional weight training on performance
in athletic population [17,19,37], and generally presented data similar to our study find-
ings. In a six week study by Maroto-izguierdo et al. [19], 15 flywheel training sessions
(4 × 7 maximal intensity half squats done with 0.145 kg·m2 moment inertia) produced
superior improvements (p < 0.05–0.001) compared to traditional weight training (4 × 7 leg
presses with load corresponding to 7 repetitions maximum (7 RM) for each set) for ver-
tical jump (9.8% vs. 3.4%), change of direction ability (−7% vs. −4.4%) but also 20 m
sprint time (−10% vs. −5.1%) in professional handball players. In addition, no significant
differences between strength training modalities were observed for maximum strength
improvement (12.2% and 7.9% for flywheel and traditional weight training, respectively).
The outcomes of the 8 week Corratela et al. [17] study demonstrated that flywheel strength
training performed once per week with up to 6 sets of 8 repetitions of squats produced
superior improvements to equivolumed traditional weight training (80% of 1 RM) for
change of direction ability (−7% vs. −2%, respectively) and 20 + 20 m sprints (−4% vs.
−1%, respectively) but not for jumping (squat jump and countermovement jump) and
sprinting abilities (10 m sprint and 30 m sprint) in professional soccer players. Furthermore,
lower body strength increased significantly and similarly in both groups. Finally, effects of
flywheel and traditional strength training on 10-m sprint, cmJ and lower body strength
(1 RM squat) were examined on 38 active male football players by Sagelv et al. [37]. During
six weeks of intervention (2 sessions per week), both flywheel and traditional strength
training progressively increased squat exercise from 3 sets with 6 repetitions (week one) to
4 sets with 4 repetitions (week six). Flywheel group performed exercise with individually
adjusted inertia enabling high power outputs (>4 watts·kg−1) while traditional strength
training comprised of 4 sets with 4 repetitions (85% of 1 RM) was performed with maximum
intended velocity. In addition, an equivolumed Nordic hamstring exercise was included
for both groups with three sets of 4–10 repetitions to counteract expected strength gains in
quadriceps muscle. Both groups significantly improved cmJ (9% and 8% for flywheel and
traditional strength group, respectively) and identically decreased 10 m sprint time (2%)
without between group differences for either variable. Interestingly, traditional strength
training was proved superior to flywheel training in improving lower body strength (46%
vs. 19%, respectively), with the noteworthy observation that traditional weight training
was conducted with high loads (85%) and maximal intended velocity which is likely the
primary reason for observed improvements [38]. Collectively, the aforementioned study
corroborates our study findings that flywheel training induces superior power-related
performance but not strength outcomes to traditional weight training modalities in the
athletic population.

In addition, these studies suggest that flywheel training is potent tool for strength
and power related performance attribute improvements in the well-trained population,
which is broadly supported with several other studies. Indeed, a recent meta-analysis
reported flywheel-training induced strength improvements, but also no difference in
strength increase after flywheel vs. traditional weight training [39]. Askling et al. [16] and
deHoyo et al. [14] after 10 weeks of flywheel training (16 and 17 sessions, respectively)
in elite soccer players (seniors and juniors, respectively) reported significant strength
(p ≤ 0.05; 19% and 15% for eccentric and concentric strength, respectively) and 30 m
sprint time (p ≤ 0.05; 2.4%) improvements as well as vertical jump (7.6%) and sprint
time (20 m sprint, 1.5%; and 10 m flying sprint, 3.3%) improvements, respectively. In
addition, six weeks of flywheel training, performed twice a week, has been shown to
induce statistically higher improvements in squat jump and drop jump performance as
well as change of direction ability compared to volume-matched plyometric training
in well-trained junior soccer players [18]. On the contrary, implementing one flywheel
training session per week for 7 weeks was found ineffective for lower body strength
(1 RM in the half squat), 20 m sprint time, and cmJ improvements in professional handball
players [20], suggesting that more than one flywheel training per week, with up to 4 sets
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(7 reps), is needed for substantial power-related performance improvements in the athletic
population [1]. Indeed, Corattela et al. [17] reported significant improvements in change
of direction ability and vertical jump performance (SJ and cmJ) after 6 weeks of flywheel
strength training performed just once per week but with higher number of sets and reps
(6 and 8, respectively). Collectively, these data support efficacy of flywheel training for
improving broad range of strength and power -related performance attributes in well
trained population, with noteworthy caution considering threshold load that needs to be
met in order to obtain significant improvements. Clearly, additional investigations about
the topic are warranted.

It is interesting to note that we found no significant effects of flywheel nor traditional
strength training on 20 m sprint performance in our participants. Somewhat in line with
our findings, no change in 20 m sprint time was reported after horizontal flywheel training
in physically active men [40]. It has been previously reported that low-velocity strength
training may not be effective in improving sprinting ability in adolescents, especially well-
trained athletes [41]. However, two-to-three flywheel sessions per week has been proven to
increase the sprinting ability in handball players [19]. In addition, sprint time (10 and 20 m)
significantly improved following 9 weeks of strength training in youth soccer players [42].
We can speculate that our study results are on one side consequence of the training status
of our participant (well trained), as it has been shown that trained adolescents displayed
hindered improvements in sprint outcomes with strength training compared to untrained
one [43]. On the other hand, training and testing specificity could be also responsible as
upward force-vector application during training likely play an important determinant
in inducing specific functional adaptations [27]. In addition, 20 m sprint is rarely seen
in a basketball game and practice and consequently sprint tests over shorter distances
(5–10 m) might be more specific with acceleration and deceleration, rather than speed, as a
far stronger predictor of basketball performance [44,45].

Although beyond the scope of this study, mechanisms that enables reported im-
provements in strength and power related performance outcomes should be concisely
hypothesized. Flywheel training enables maximal force output throughout the entire
concentric part of movement, but also short periods of overload in the eccentric phase
of movement [13]. As exercise intensity has been acknowledged as a major determinant
for strength training induced adaptations [46,47]. It can be speculated that this flywheel
specific loading pattern (concentrically maximally loaded-eccentrically overloaded) is
most likely responsible for superior effects for power-related performance outcomes in
our study. Furthermore, eccentric overload induced specific neuromuscular adaptations
such as dampened motor recruitment [48] with preferential recruitment of high threshold
motor unit and higher cortical activity [49]. Finally, it has been reported that increase
in eccentric phase force output leads to increase in following concentric phase force out-
put [50–52]. Collectively, this physiological distinctiveness supports our study findings
and the beneficial use of flywheel training to optimize strength and power adaptations in
young basketball athletes.

Several limitations of the study should be highlighted. We did not monitor load of
regular basketball practice done by all participants with their respective coaches, which
could somewhat blur the picture of obtained strength training effects. In addition, this study
engaged male trained basketball players, without preceding experience in the flywheel
training. Accordingly, the results may not translate to flywheel-experienced athletes.
Finally, our study lasted for 8 weeks only, while comparative investigations with traditional
strength modalities of longer durations are needed.

5. Conclusions

In summary, eight weeks of flywheel training with 1–2 sessions per week, including
up to 4 sets of 8 repetitions of the half squat and Romanian deadlift exercises performed
with maximum concentric intensity produces superior enhancement in vertical jump, 5 m
sprint time and change of direction ability to equivolumed traditional strength training
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in well-trained young basketball players. In addition, both strength training modalities
were equally effective in maximal strength gains. Therefore, low-volume/high-intensity
flywheel strength training seems to be an efficient tool to induce strength and power-related
adaptations in well-trained young basketball players.

Author Contributions: Conceptualization, M.D.M.S. and M.M.; methodology, P.D., J.C.-G. and
N.M.; software, V.S., B.B. and J.C.-G.; validation, J.C.-G., B.B., N.M. and V.S.; formal analysis, P.D.;
investigation, V.S., B.B., M.M. and M.D.M.S.; resources, N.M.; data curation, J.C.-G.; writing—original
draft preparation, M.D.M.S. and M.M.; writing—review and editing, J.C.-G., P.D., B.B. and N.M.;
visualization, M.M.; supervision, P.D.; project administration, B.B.; funding acquisition, N.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by ethics committee of the University of Novi Sad, Serbia.
(Ref. No. 44-01-02/2019-3; 20.03.2019).

Informed Consent Statement: Written informed consent has been obtained from the patient(s) to
publish this paper.

Conflicts of Interest: We declare no conflict of interest.

References
1. Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med.

2018, 48, 765–785. [CrossRef]
2. Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 1. Biological basis of maximal

power production. Sports Med. 2011, 41, 17–38. [CrossRef]
3. McGuigan, M.R.; Wright, G.A.; Fleck, S.J. Strength training for athletes: Does it really help sports performance? Int. J. Sports

Physiol. Perform. 2012, 7, 2–5. [CrossRef]
4. Hernández-Davó, J.L.; Sabido, R.; Behm, D.G.; Blazevich, A.J. Effects of resistance training using known vs unknown loads on

eccentric-phase adaptations and concentric velocity. Scand. J. Med. Sci. Sports 2018, 28, 407–417. [CrossRef] [PubMed]
5. Illera-Domínguez, V.; Nuell, S.; Carmona, G.; Padullés, J.M.; Padullés, X.; Lloret, M.; Cussó, R.; Alomar, X.; Cadefau, J.A. Early

Functional and Morphological Muscle Adaptations During Short-Term Inertial-Squat Training. Front. Physiol. 2018, 9, 1265.
[CrossRef] [PubMed]

6. American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance
training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [CrossRef] [PubMed]

7. Dudley, G.A.; Tesch, P.A.; Miller, B.J.; Buchanan, P. Importance of eccentric actions in performance adaptations to resistance
training. Aviat. Space Environ. Med. 1991, 62, 543–550. [PubMed]

8. McNeill, C.; Beaven, C.; McMaster, D.; Gill, N. Eccentric Training Interventions and Team Sport Athletes. J. Funct. Morphol.
Kinesiol. 2019, 4, 67. [CrossRef]

9. Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017,
47, 917–941. [CrossRef]

10. Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical applications of iso-inertial, eccentric-overload (YoYo) resistance
exercise. Front. Physiol. 2017, 8, 241. [CrossRef]

11. Franchi, M.; Maffiuletti, N. Distinct modalities of eccentric exercise: Different recipes, not the same dish. J. Appl. Physiol. 2019,
127, 881–883. [CrossRef] [PubMed]

12. Chiu, L.Z.; Salem, G.J. Comparison of joint kinetics during free weight and flywheel resistance exercise. J. Strength Cond. Res.
2006, 20, 555–562. [CrossRef]

13. Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of flywheel training on strength-related variables: A meta-analysis. Sports Med.
Open 2018, 4, 55. [CrossRef] [PubMed]

14. de Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a
10-week in-season eccentric overload training program on muscle-injury prevention and performance in junior elite soccer
players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [CrossRef] [PubMed]

15. Tous-Fajardo, J.; Gonzalo-Skok, O.; Arjol-Serrano, J.L.; Tesch, P. Enhancing change-of-direction speed in soccer players by
functional inertial eccentric overload and vibration training. Int. J. Sports Physiol. Perform. 2016, 11, 66–73. [CrossRef] [PubMed]

16. Askling, C.; Karlsson, J.; Thorstensson, A. Hamstring injury occurrence in elite soccer players after preseason strength training
with eccentric overload. Scand J. Med. Sci. Sports 2003, 13, 244–250. [CrossRef]

17. Coratella, G.; Beato, M.; Cè, E.; Scurati, R.; Milanese, C.; Schena, F.; Esposito, F. Effects of in-season enhanced negative work-based
vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol. Sport 2019, 36,
241–248. [CrossRef]

http://doi.org/10.1007/s40279-018-0862-z
http://doi.org/10.2165/11537690-000000000-00000
http://doi.org/10.1123/ijspp.7.1.2
http://doi.org/10.1111/sms.12933
http://www.ncbi.nlm.nih.gov/pubmed/28628245
http://doi.org/10.3389/fphys.2018.01265
http://www.ncbi.nlm.nih.gov/pubmed/30246805
http://doi.org/10.1249/MSS.0b013e3181915670
http://www.ncbi.nlm.nih.gov/pubmed/19204579
http://www.ncbi.nlm.nih.gov/pubmed/1859341
http://doi.org/10.3390/jfmk4040067
http://doi.org/10.1007/s40279-016-0628-4
http://doi.org/10.3389/fphys.2017.00241
http://doi.org/10.1152/japplphysiol.00093.2019
http://www.ncbi.nlm.nih.gov/pubmed/31070957
http://doi.org/10.1519/R-18245.1
http://doi.org/10.1186/s40798-018-0169-5
http://www.ncbi.nlm.nih.gov/pubmed/30547232
http://doi.org/10.1123/ijspp.2013-0547
http://www.ncbi.nlm.nih.gov/pubmed/24910951
http://doi.org/10.1123/ijspp.2015-0010
http://www.ncbi.nlm.nih.gov/pubmed/25942419
http://doi.org/10.1034/j.1600-0838.2003.00312.x
http://doi.org/10.5114/biolsport.2019.87045


Int. J. Environ. Res. Public Health 2021, 18, 1181 11 of 12

18. Fiorilli, G.; Mariano, I.; Iuliano, E.; Giombini, A.; Ciccarelli, A.; Buonsenso, A.; Calcagno, G.; di Cagno, A. Isoinertial Eccentric-
Overload Training in Young Soccer Players: Effects on Strength, Sprint, Change of Direction, Agility and Soccer Shooting Precision.
J. Sports Sci. Med. 2020, 19, 213–223.

19. Maroto-Izquierdo, S.; García-López, D.; de Paz, J.A. Functional and muscle-size effects of flywheel resistance training with
eccentric-overload in professional handball players. J. Hum. Kinet. 2017, 60, 133–143. [CrossRef]

20. Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of adding a weekly eccentric-overload training
session on strength and athletic performance in team-handball players. Eur. J. Sport Sci. 2017, 17, 530–538. [CrossRef]

21. Gual, G.; Fort-Vanmeerhaeghe, A.; Romero-Rodrıguez, D.; Tesch, P.A. Effects of in-season inertial resistance training with eccentric
overload in a sports population at risk for patellar tendinopathy. J. Strength Cond. Res. 2016, 30, 1834–1842. [CrossRef] [PubMed]
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Azpiroz, M.; Terrados, N. Anthropometry and performance of top youth international male basketball players in Spanish national
academy. Nutr. Hosp. 2018, 35, 1331–1339. [CrossRef] [PubMed]

25. Harries, S.K.; Lubans, D.R.; Callister, R. Resistance training to improve power and sports performance in adolescent athletes: A
systematic review and meta-analysis. J. Sci. Med. Sport 2012, 15, 532–540. [CrossRef] [PubMed]

26. Gonzalo-Skok, O.; Tous-Fajardo, J.; Suarez-Arrones, L.; Arjol-Serrano, J.L.; Casajús, J.A.; Mendez-Villanueva, A. Single-leg power
output and between-limb imbalances in team sports players: Unilateral vs. bilateral combined resistance training. Int. J. Sports
Physiol. Perform. 2016, 32, 1–44. [CrossRef]

27. Hellmann, F.; Verdi, M.; Schlemper, B.R., Jr.; Caponi, S. 50th anniversary of the Declaration of Helsinki: The double standard was
introduced. Arch. Med. Res. 2014, 45, 600–601. [CrossRef] [PubMed]

28. Stewart, A.; Marfell-Jones, M.; Olds, T.; Ridder, H. International Standards for Anthropometric Assessment; International Society for
the Advancement of Kinanthropometry—ISAK: Lower Hutt, New Zealand, 2011.

29. Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol.
Occup. 1983, 50, 273–282. [CrossRef]
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