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a b s t r a c t 

The linearly constrained minimum variance beamformer is frequently used to reconstruct sources underpinning 

neuromagnetic recordings. When reconstructions must be compared across conditions, it is considered good prac- 

tice to use a single, “common ” beamformer estimated from all the data at once. This is to ensure that differences 

between conditions are not ascribable to differences in beamformer weights. Here, we investigate the localiza- 

tion accuracy of such a common beamformer. Based on theoretical derivations, we first show that the common 

beamformer leads to localization errors in source reconstruction. We then turn to simulations in which we at- 

tempt to reconstruct a (genuine) source in a first condition, while considering a second condition in which there 

is an (interfering) source elsewhere in the brain. We estimate maps of mislocalization and assess statistically the 

difference between “standard ” and “common ” beamformers. We complement our findings with an application to 

experimental MEG data. The results show that the common beamformer may yield significant mislocalization. 

Specifically, the common beamformer may force the genuine source to be reconstructed closer to the interfering 

source than it really is. As the same applies to the reconstruction of the interfering source, both sources are pulled 

closer together than they are. This observation was further illustrated in experimental data. Thus, although the 

common beamformer allows for the comparison of conditions, in some circumstances it introduces localization 

inaccuracies. We recommend alternative approaches to the general problem of comparing conditions. 
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. Introduction 

Magnetoencephalography (MEG) is a functional brain imaging

echnique that measures the scalp magnetic field resulting from

he electrical currents flowing through the apical dendrites of neu-

ons ( Hämäläinen et al., 1993 ). This technique is appreciated for being

on-invasive and for having outstanding temporal resolution (of the or-

er of the millisecond) ( Hari and Puce, 2017 ). It also features a good

patial resolution (of the order of 5 mm) for focal cortical sources. How-

ver, reconstructing the electrical current distribution from MEG data

s an ill-posed inverse problem ( Hämäläinen et al., 1993 ). For example,

uch a problem admits more than one solution, as there exist source

onfigurations in the brain that produce no extracranial magnetic field.

ne therefore needs to add constraints, which lead to several types of
ource reconstruction methods. 
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One of the most widely used source reconstruction methods is the lin-

arly constrained minimum variance (LCMV) beamformer ( Hillebrand

t al., 2005; Robinson, 1999; vanVeen et al., 1997 ). In the present work

e will refer to this filter simply as the beamformer . It is a linear spa-

ial filter, meaning that it estimates the source activity at a given brain

ocation as a weighted sum of the MEG data at different sensors. By suc-

essively scanning over a source grid covering the entire brain, one can

uild maps of brain activity. The beamformer is also adaptive, which

eans that its weights depend on the measured MEG data via their co-

ariance matrix ( Sekihara and Nagarajan, 2008 ). This dependence gives

o the beamformer one of its most interesting properties: it reconstructs

ctivity from scanned sources while suppressing interferences (from re-

ote sources or undesirable artifacts) without having to specify their

onfiguration ( Hillebrand et al., 2005; Robinson, 1999; vanVeen et al.,

997 ). Another desirable property of the beamformer is that it exhibits

o mislocalization, at least with suitable depth bias correction and when
uary 2021 
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ensor noise is homogeneous without any cross-talk ( Greenblatt et al.,

005 ). 

In some cases however, the beamformer leads to confusing results.

his occurs specifically when reconstructed source maps are compared

etween conditions, precisely because the beamformer is adaptive. Dif-

erences between source maps reconstructed with the beamformer can

tem from a difference in the beamformer weights rather than in brain

ctivity per se . To circumvent this ambiguity, a workaround was pro-

osed as good practice ( Gross et al., 2013 ). The idea is to apply to both

onditions a common beamformer based on the covariance matrix aver-

ged over the two conditions. Since the filter weights are now identical,

ifferences between source maps can be securely ascribed to differences

etween conditions. 

To the best of our knowledge, the adequacy of such a common beam-

ormer and in particular its localization accuracy, has not yet been as-

essed. In fact, since it implies estimating the filter’s weights from a

ovariance matrix that does not correspond to the underlying source

onfiguration, it is legitimate to expect some amount of mislocaliza-

ion ( Greenblatt et al., 2005 ). In the present report, we appraise the lo-

alization accuracy of the common beamformer in simple situations in

hich two conditions are associated with single sources with variable

nter-source distance and signal-to-noise ratio (SNR). We first demon-

trate analytically the existence of mislocalization (see Section 2 ) and

uantify it on realistic simulations as well as on experimental MEG data

see Sections 3 and 4 ). 

. Theory 

In the present section, we explore analytically the localization accu-

acy of the common beamformer. The following considerations focus on

he estimation of one-dimensional dipolar sources and homogeneous, di-

gonal measurement noise, as in Sekihara and Nagarajan (2008) . How-

ver the derived insights hold more generally, as will be illustrated in

ection 4 . 

.1. General setting 

A unit current dipole at location ⃗𝑟 generates a topographical distribu-

ion of sensor response known as the source gain and represented here

s a column vector 𝑔 = 𝑔( ⃗𝑟 ) . Using the beamformer with unit-noise-gain

onstraint ( Sekihara and Nagarajan, 2008 ), a given sensor topography

 is mapped onto a source distribution 𝑠 ( ⃗𝑟 ) = 𝑤 ( ⃗𝑟 ) 𝑏 via the weights 

 ( ⃗𝑟 ) = 

𝑔( ⃗𝑟 ) t Σ−1 √
𝑔( ⃗𝑟 ) t Σ−2 𝑔( ⃗𝑟 ) 

, (1)

ith Σ a sensor data covariance matrix whose choice is the topic of the

resent paper. We have chosen here the unit-noise-gain normalization

|𝑤 ( ⃗𝑟 ) || = 1 to ensure the absence of localization biases when Σ corre-

ponds to the data 𝑏 ( Greenblatt et al., 2005 ). 

We consider a simple situation where a single dipolar source is ac-

ive in two separate conditions. In condition 1, this source is located at

⃗ 1 and its time course has zero mean and standard deviation 𝜎1 . In con-

ition 2, the source is moved at another location ⃗𝑟 2 and its time course

as zero mean and standard deviation 𝜎2 . The corresponding data co-

ariance matrices are 

1 = 𝜎2 1 𝑔 1 𝑔 
t 
1 + 𝜎2 0 𝕀 and Σ2 = 𝜎2 2 𝑔 2 𝑔 

t 
2 + 𝜎2 0 𝕀 , (2)

here 𝑔 1 = 𝑔( ⃗𝑟 1 ) and 𝑔 2 = 𝑔( ⃗𝑟 2 ) denote the gain at the two source lo-

ations. These covariance matrices also contain the independent con-

ribution of diagonal sensor noise with variance 𝜎2 0 at each sensor. In

he standard beamformer formulation, Σ in formula (1) is Σ1 in condi-

ion 1 and Σ2 in condition 2. The common beamformer approach rather

rescribes using the average 

= 

1 (Σ1 + Σ2 ) . (3)

2 

2 
ithout loss of generality, we will only focus on the source reconstruc-

ion for condition 1. Accordingly, the source active in condition 1 will

e called the genuine source, and the source active in condition 2 the in-

erfering source. The combination (3) of the two single-source activation

odels (2) is mathematically equivalent to a fictitious common condi-

ion containing these two sources simultaneously active (with standard

eviation diminished by a factor 
√
2 ) and temporally uncorrelated. Our

oal is to investigate how the inclusion of the source in condition 2

nterferes with the reconstruction of the source in condition 1, hence

ur terminology. However, it is important to emphasize that the two

ources are never active at the same time as they are present in separate

onditions. Introducing a temporal correlation between them would not

eflect the problem at hand. 

.2. Analytical considerations 

The basic tool to investigate localization accuracy is the point-spread

unction 

 1 ( ⃗𝑟 ) = 𝑤 ( ⃗𝑟 ) 𝑔 1 (4)

f the genuine source. It represents the source distribution estimated by

he beamformer (1) when it is applied to a sensor distribution generated

y a unit source at ⃗𝑟 1 in the absence of noise. It can also be viewed as the

quare root of the beamformer output power, 𝑃 1 ( ⃗𝑟 ) = 𝐹 1 ( ⃗𝑟 ) 2 . Using the

oint-spread function 𝐹 1 turns out to be more convenient for analyti-

al developments and we follow this convention below. However, when

urning to simulated and experimental data in Sections 3 and 4 , we shall

witch to the power formulation. With an unbiased beamformer, the

lobal maximum of 𝐹 1 ( ⃗𝑟 ) occurs at ⃗𝑟 1 ( Sekihara and Nagarajan, 2008 ).

islocalization is thus defined as the difference in location between the

lobal maximum of 𝐹 1 ( ⃗𝑟 ) and 𝑟 1 . Under the assumption that measure-

ent noise is diagonal and of equal variance for each sensor, we derive

he analytic form of 𝐹 1 in the supplementary material S1. The profile

f 𝐹 1 depends on the source standard deviations 𝜎𝑖 ( 𝑖 = 1 , 2 ) in the two

onditions through the SNR parameters 

𝑖 = 

𝜎2 
𝑖 

𝜎2 0 

||𝑔 𝑖 ||2 , 𝑖 = 1 , 2 , (5)

nd on the angles between the gain vectors 𝑔( ⃗𝑟 ) , 𝑔 1 , and 𝑔 2 (which mea-

ure the overlap of their sensor-level topographies due to magnetic field

pread). 

An adaptation of the localization argument in Sekihara and Nagara-

an (2008) can be used to show that 𝐹 1 reaches its global maximum at

ocation ⃗𝑟 if 𝑔( ⃗𝑟 ) is proportional to 

 max = (2 + 𝛼1 ) ̂𝑔 1 + 𝛼2 cos ( 𝜃12 ) ̂𝑔 2 , (6)

here �̂� 𝑖 ( 𝑖 = 1 , 2 ) is the gain vector 𝑔 𝑖 rescaled to have unit norm and 𝜃12 
s the angle between 𝑔 1 and 𝑔 2 ( cos ( 𝜃12 ) = �̂� t 1 ̂𝑔 2 ). The proof is developed

n the supplementary material S1. The sensor topography (6) is a lin-

ar mixture of the two gain vectors weighted by their SNR and overlap.

trictly speaking, it does not correspond to any dipolar topography 𝑔( ⃗𝑟 )
ecause a single current dipole cannot produce exactly the distribution

enerated by two separate non-silent dipoles. So this criterion to locate

he global maximum does not apply, except when: (i) there is no inter-

ering source ( 𝛼2 = 0 ), which reduces to the standard beamformer, (ii)

he genuine and interfering sources generate similar sensor topographies

 𝑔 1 and 𝑔 2 are proportional; �̂� 1 = ± ̂𝑔 2 and cos ( 𝜃12 ) = ±1 ), which generi-

ally occurs only when they co-localize ( ⃗𝑟 1 = ⃗𝑟 2 ), and (iii) their sensor

opographies do not overlap ( 𝑔 1 and 𝑔 2 are orthogonal; cos ( 𝜃12 ) = 0 ),
hich corresponds to situations where genuine and interfering sources

re very far apart or in a very different orientation. In these situations,

he common beamformer localizes accurately at ⃗𝑟 = ⃗𝑟 1 since 𝑔 max is pro-

ortional to 𝑔 1 . The cases of interest (ii) and (iii) show that mislocaliza-

ion can only occur for interfering sources within a shell around the

enuine source, neither too close nor too far away. 
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In this in-between situation, the above criterion cannot locate strictly

he global maximum but it can nevertheless provide an approximation,

s there might exist a dipole location ⃗𝑟 b (that will be dubbed best fitting )

or which the gain vector 𝑔 b = 𝑔( ⃗𝑟 b ) resembles the topography 𝑔 max . This

ccurs when the genuine and interfering sources are nearby. In fact,

e show in the supplementary material S1 that 𝑔 max ≈ 𝑔( ⃗𝑟 b ) (up to an

rrelevant renormalization of 𝑔 max and up to quadratic corrections in

|𝑟 2 − ⃗𝑟 1 ||), where 

⃗ b ≈ (1 − 𝜌) ⃗𝑟 1 + 𝜌𝑟 2 with 𝜌 = 

𝛼2 cos ( 𝜃12 ) ||𝑔 1 ||∕ ||𝑔 2 ||
2 + 𝛼1 + 𝛼2 cos ( 𝜃12 ) ||𝑔 1 ||∕ ||𝑔 2 || . (7)

urthermore, within this approximation we may expect the global max-

mum of the point-spread function 𝐹 1 to localize closer to 𝑟 b than to

he genuine source location ⃗𝑟 1 . This means that, when the genuine and

nterfering sources are not too distant, the common beamformer will

islocalize the genuine source somewhere in between ⃗𝑟 1 and ⃗𝑟 2 . Note,

owever, that the best-fitting location 𝑟 b does not necessarily coincide

ith the global maximum of the beamformer output, so Eq. (7) should

ot be used to quantify localization errors. In fact, mislocalization actu-

lly occurs between ⃗𝑟 1 and ⃗𝑟 b , as we discuss now. 

To better characterize this mislocalization, let us consider the explicit

xpression of the filter weights 𝑤 ( ⃗𝑟 ) and the associated point-spread

unction 𝐹 1 ( ⃗𝑟 ) . In the nearby-source approximation (7) where 𝑔 1 and 𝑔 2 
oth closely resemble 𝑔( ⃗𝑟 b ) = 𝑔 b , the common beamformer reduces to

 standard beamformer associated with the best-fitting dipolar source

ith equivalent standard deviation 𝜎b = 

√ 

( 𝜎2 1 + 𝜎2 2 )∕2 , so 

 ( ⃗𝑟 ) ≈
�̂� ( ⃗𝑟 ) t − 𝑎 b ( ̂𝑔 ( ⃗𝑟 ) t �̂� b ) ̂𝑔 t b √

1 − 𝑏 b ( ̂𝑔 ( ⃗𝑟 ) t �̂� b ) 2 
, (8)

ith 𝑎 b = 𝛼b ∕( 𝛼b + 2) , 𝑏 b = 𝛼b ( 𝛼b + 4)∕( 𝛼b + 2) 2 , and 𝛼b = 𝜎2 b ||𝑔 b ||2 ∕ 𝜎2 0 .
e show in the supplementary material S1 that this holds up to

uadratic corrections in ||𝑟 2 − ⃗𝑟 1 || and at sufficiently large equivalent

NR, 𝛼b ≫ 1 (so here 𝑎 b ≈ 𝑏 b ≈ 1 ). This analytic form can be under-

tood from the basic optimization problem defining the beamformer

 Sekihara and Nagarajan, 2008 ). The first term in the numerator is

roportional to the gain pattern �̂� ( ⃗𝑟 ) due to the unit-gain constraint.

he second reflects the suppression of the equivalent source activity

t 𝑟 b (which approximately combines the suppression of the genuine

nd interfering sources) due to variance minimization. The denomina-

or merely enforces the unit-noise-gain normalization. Since the weights

re tuned to suppress activity from ⃗𝑟 b rather than ⃗𝑟 1 , the corresponding

oint-spread function (4) 

 1 ( ⃗𝑟 ) ≈ ||𝑔 1 || ( ̂𝑔 ( ⃗𝑟 ) 
t �̂� 1 ) − 𝑎 b ( ̂𝑔 t b ̂𝑔 1 )( ̂𝑔 ( ⃗𝑟 ) 

t �̂� b ) √
1 − 𝑏 b ( ̂𝑔 ( ⃗𝑟 ) t �̂� b ) 2 

(9)

xhibits a competition between (i) the profile of topographical overlap

f the genuine source ( ̂𝑔 ( ⃗𝑟 ) t �̂� 1 ), which peaks at 𝑟 1 , and (ii) that of the

est-fitting source ( ̂𝑔 ( ⃗𝑟 ) t �̂� b ), which peaks at ⃗𝑟 b . The second term in the

umerator and the denominator (both driven by the combined suppres-

ion of the genuine and interfering sources) will conspire to move the

lobal maximum away from 𝑟 1 towards 𝑟 b , so mislocalization emerges

n between ⃗𝑟 1 and ⃗𝑟 b . The best-fitting dipole location thus acts as an “at-

ractor ” for the global maximum. This is illustrated by the fact that the

oint-spread function may reach higher values at ⃗𝑟 b than at ⃗𝑟 1 , depend-

ng on the topographical overlap of the genuine and best-fitting sources.

ndeed, analysis of the ratio 

𝐹 1 ( ⃗𝑟 b ) 
𝐹 1 ( ⃗𝑟 1 ) 

≈

√ 

1 − 𝑏 b ( ̂𝑔 t b ̂𝑔 1 ) 2 

1 − 𝑎 b ( ̂𝑔 t b ̂𝑔 1 ) 2 
�̂� t b ̂𝑔 1 (10) 

hows that the common beamformer outputs more signal at the best-

tting source whenever the topographical overlap �̂� t b ̂𝑔 1 exceeds a given

alue, equal to 1∕ 
√
2 ≈ 0 . 7 at high SNR (where 𝑎 b ≈ 𝑏 b ≈ 1 ). The condi-

ion 0 . 7 < �̂� t b ̂𝑔 1 < 1 defines implicitly a shell where mislocalization must

appen. 
3 
.3. Illustration with a toy model simulation 

We have demonstrated that the common beamformer is bound to

islocalize the genuine source at 𝑟 1 when the interfering source loca-

ion ⃗𝑟 2 is within a shell whose shape and size depend on the overlap of

heir sensor topography and on their SNR. The reason is that the filter

eights are tuned to cancel both activities (even though only the gen-

ine source is really active in the considered condition), which leads

o a decreased output at the genuine source location 𝑟 1 and increased

utput somewhere in between ⃗𝑟 1 and ⃗𝑟 2 . 

We derived this conclusion in the nearby-source limit to reveal

he basic mechanism underlying mislocalization of the common beam-

ormer, but the principle extends beyond this approximation. Instead of

eveloping the full analysis (see the supplementary material S1 for ex-

licit expressions), we illustrate this claim using a toy model simulation

here an array of sensors placed on a line measures a signal coming from

ources underneath that is proportional to the inverse of the squared

ensor–source distance. Accordingly, the gain vector for source location

⃗ = [ 𝑥, 𝑦 ] at sensors located at ⃗𝑟 𝑠 = [ 𝑥 𝑠 , 0] is 𝑔( ⃗𝑟 ) = ||𝑟 − ⃗𝑟 𝑠 ||−2 . We placed

1 sensors with 𝑥 𝑠 ranging from −10 to +10 with spacing of 1 and two

ources at 𝑟 1 = [−1 , −3] and 𝑟 2 = [1 , −3] , both with an SNR of 30 (i.e.,

1 = 𝛼2 = 30 ). The corresponding sensor profiles are shown in Fig. 1 a.

e also depict in Fig. 1 b their weighted combination 𝑔 max pertaining

o the common beamformer as well as the source gain 𝑔 b at the best-

tting location, which in our case was ⃗𝑟 b = [−0 . 09 , −3 . 34] (identified by

east-squares minimization of ||�̂� ( ⃗𝑟 ) − �̂� max ||). 
We illustrate the main difference between the standard and com-

on beamformers by considering the filter weights 𝑤 1 = 𝑤 ( ⃗𝑟 1 ) and

 b = 𝑤 ( ⃗𝑟 b ) (see Figs. 1 c,d). Localization accuracy is assessed in Fig. 2 .

or the standard beamformer (Fig. 1 c), the weight 𝑤 1 follows the sen-

or profile of the genuine source gain due to the unit-gain constraint,

o it exhibits maximum overlap with 𝑔 1 . The weight 𝑤 b tends to follow

he profile of 𝑔 b to fulfill the unit-gain constraint but is further modi-

ed to cancel the genuine source activity at ⃗𝑟 1 in order to minimize the

utput variance. This leads to poor overlap with 𝑔 1 . Therefore the point-

pread function (4) is maximal at the genuine source location 𝑟 1 with

ower values at other locations such as ⃗𝑟 b , and the beamformer localizes

ccurately (see Fig. 2 a). 

We now turn to the common beamformer (Fig. 1 d). Compared to

ig. 1 c, the weight 𝑤 1 is modified to enforce the extra activity suppres-

ion due to the interfering source, which decreases its overlap with 𝑔 1 .

n the other hand, the weight 𝑤 b now follows better the profile of 𝑔 b 
o its overlap with 𝑔 1 increases and exceeds that for 𝑤 1 . The common

eamformer thus mislocalizes the genuine source (see Fig. 2 b). It is

oteworthy that the fit between 𝑤 b and �̂� b was not perfect (Fig. 1 d,

ompare with the case of 𝑤 1 in Fig. 1 c), which reflects the approxi-

ate nature of the equivalent beamformer (8) . Another deviation from

he nearby-source limit is that the best-fitting source and the maxi-

um of the point-spread function are not necessarily located on a line

oining 𝑟 1 and 𝑟 2 (Fig. 2 b). Still, the mechanism leading to mislocal-

zation with the common beamformer stands (see also supplementary

aterial S1). 

. Materials and methods 

The theoretical developments of Section 2 demonstrate the possibil-

ty of mislocalization with the common beamformer. However, these

onsiderations did not quantify to which extent mislocalization hap-

ens in the brain, and they were limited to one-dimensional forward-

odeling and uncorrelated homogeneous measurement noise. To bypass

hese limitations, we developed simulations based on two-dimensional

orward-modeling derived from anatomical MRIs and MEG noise record-

ngs of 19 subjects. We also considered experimental MEG data acquired

n one subject. 
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Fig. 1. Standard and common beamformers in the 

toy model. In this model, a genuine source of stan- 

dard deviation 1 was placed at [−1 , −3] and an inter- 

fering source of standard deviation 1 was placed at 

[1 , −3] . Sensors located at [ 𝑥 s , 0] ( 𝑥 s = −10 , −9 , … , 10 ) 
measure a signal equal to the inverse of the squared 

sensor-source distance. (a) Normalized gain profile cor- 

responding to the genuine ( ̂𝑔 1 , blue trace) and inter- 

fering ( ̂𝑔 2 , red trace) sources. These traces are repro- 

duced in dashed lines in subsequent plots. (b) Sen- 

sor profile for which the common beamformer output 

would be maximum ( ̂𝑔 max , yellow trace), and its closest 

(best-fitting) approximation ( ̂𝑔 b , purple trace) that cor- 

responds to a source located at ⃗𝑟 b = [−0 . 09 , −3 . 34] . (c) 

Weights for the standard beamformer at ⃗𝑟 1 ( 𝑤 1 ̂𝑔 1 = 1 ), 
while 𝑤 b is tuned to cancel the activity coming from 

𝑟 1 ( 𝑤 b ̂𝑔 1 = 0 . 35 ). (d) For the common beamformer, 𝑤 1 
cancels more of the activity coming from 𝑟 1 ( 𝑤 1 ̂𝑔 1 = 
0 . 55 ) than does 𝑤 b ( 𝑤 b ̂𝑔 b = 0 . 81 ). 

Fig. 2. Point-spread function 𝐹 1 for the stan- 

dard and common beamformers in our toy 

model, normalized to peak at value 1. The 

simulated genuine (left grey circle) and inter- 

fering (right white circle) sources are shown 

as well as the best-fitting source location (red 

circle). 
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.1. Subjects 

One group of 19 subjects (mean age 30 years, range 23–40 years;

 females and 10 males; previously included in Vander Ghinst et al.,

016 ) and a 33-years old male subject participated in this study. All

ere right-handed according to self-report, and had no history of neu-

opsychiatric disorder. The study was approved by the ethics com-

ittee of CUB Hôpital Erasme. Subjects participated after informed
onsent. A  

4 
.2. Data acquisition 

In the group of 19 subjects, five minutes of resting-state MEG data

as recorded within a broader experimental protocol ( Vander Ghinst

t al., 2016 ). For the single subject, MEG data was recorded while stimu-

ating electrically the left and right tibial nerves. A total of 1200 squared-

ave pulses long of 0.2 ms were delivered at weak motor threshold with

00 ms inter-stimulus interval to each side in two separate recordings.

ll MEG data were collected using a 306-channel whole-scalp neuro-
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agnetometer (Vectorview 

tm for the 19 resting-state data and Triux tm 

or single-subject data of tibial nerve stimulation, MEGIN Oy, Helsinki,

inland) installed at the CUB Hôpital Erasme and placed in a light-

eight magnetically shielded room (Maxshield tm , MEGIN Oy, Helsinki

inland) (for its technical characteristics, see Carrette et al., 2011; De

iège et al., 2008 ). The recording passband was set to 0.1–330 Hz, and

he sampling rate to 1 kHz. 

Four head-tracking coils monitored the subjects’ head position inside

he MEG helmet. Their location relative to anatomical fiducials, as well

s at least 150 head-surface points, were recorded prior to MEG data ac-

uisition using an electromagnetic tracker (Fastrack, Polhemus, Colch-

ster, VT, USA). In the group of 19 subjects, electrooculograms (EOG)

onitored vertical and horizontal eye movements, and electrocardio-

ram (ECG) recorded heartbeat signals, time-locked to MEG signals. 

High-resolution 3D T1-weighted magnetic resonance images (MRIs)

ere acquired using a 1.5 Tesla MRI scanner (Intera tm , Philips, The

etherlands). 

.3. Data preprocessing 

Continuous MEG data was first preprocessed off-line using the tem-

oral signal space separation method (correlation coefficient 0.9; seg-

ent length set to recording duration) to suppress external interferences

nd to correct for head movements ( Taulu, Simola, Kajola, 2005 ). To fur-

her suppress heartbeat, eye-blink, and eye-movement artifacts, thirty

ndependent components were then evaluated with the FastICA toolbox

 Hyvärinen et al., 2001 ) from the MEG data low-pass filtered at 25 Hz,

nd those displaying a correlation exceeding 0.15 with any EOG or ECG

ignal were subtracted from the full-rank MEG data ( Barros et al., 2000 ).

ndividual noise covariance matrices ( Σnoise ) were then computed from

he cleaned resting-state data restricted to the planar gradiometers. Note

hat this definition of noise covariance based on resting-state activity

arks an important difference with the theoretical analysis of Section 2

ased on diagonal, homogeneous noise. The resting state encompasses a

omplex spatio-temporal source dynamics (see, e.g., Wens et al., 2019 ),

owever this dynamics is typically not phase-locked to task-related brain

ctivity. That is why it is usually considered as noise for evoked re-

ponses, as will be simulated here. 

MEG and MRI coordinate systems were co-registered using the 3

natomical fiducial points for initial estimation and the head-surface

oints for further manual refinement. The MRIs were segmented using

he Freesurfer software ( Reuter et al., 2012 ). Then, a non-linear trans-

ormation from individual MRIs to the MNI brain was computed using

he spatial normalization algorithm implemented in Statistical Paramet-

ic Mapping (SPM8; see Ashburner and Friston, 1999; Ashburner et al.,

997 ). This transformation was used to map a homogeneous 5-mm grid

ampling the MNI brain volume onto individual brain volumes. For each

ubject and grid point, the gain matrix corresponding to three orthogo-

al current dipoles was computed using the one-layer Boundary Element

ethod implemented in the MNE software suite ( Gramfort et al., 2014 ).

his matrix was further reduced to its two first principal components

orresponding to the gain of current dipoles approximately tangential

o the skull, while the discarded component corresponds to the gain

f the close-to-silent current dipole perpendicular to the skull (which

ould be completely silent in a spherical head model). The resulting

wo-dimensional gain matrices will be denoted below by 

( ⃗𝑟 ) = [ 𝑔 𝑢 ( ⃗𝑟 ) , 𝑔 𝑣 ( ⃗𝑟 )] , (11)

here 𝑔 𝑢 ( ⃗𝑟 ) and 𝑔 𝑣 ( ⃗𝑟 ) are the gains in the two first principal directions

, 𝑣 . Note that this source orientation ( 𝑢, 𝑣 ) plane naturally varies with

he corresponding source location 𝑟 . This two-dimensional projection

s necessary to obtain computationally stable beamformer weights (see

qs. (13) and (14) ). 
5 
.4. Simulated data 

As in Section 2 , we sought to reconstruct with the common beam-

ormer a genuine source of an evoked response at ⃗𝑟 1 in condition 1, tak-

ng into account an interfering source of an evoked response at ⃗𝑟 2 active

n a separate condition 2. For the sake of simplicity and computation

fficiency, in all simulations, we directly incorporated the effect of sim-

lated sources in the data covariance matrix, rather than actually pro-

uce simulated MEG time-series from which covariance matrices would

ave been derived. The genuine source was placed at the left primary

ensory-motor cortex (SM1; MNI coordinates 𝑟 1 = [−35 , −30 , 55] mm)

long the antero-posterior ( 𝑦 ) axis. The corresponding gain vector will

e denoted by 𝑔 1 . The interfering source location ⃗𝑟 2 was probed system-

tically across the whole brain volume. Its orientation was chosen in its

 𝑢, 𝑣 ) plane so that the associated sensor topography maximally overlaps

ith 𝑔 1 . Specifically, we chose the combination 𝑔 2 = 𝑛 𝑢 𝑔 𝑢 ( ⃗𝑟 2 ) + 𝑛 𝑣 𝑔 𝑣 ( ⃗𝑟 2 )
ith 𝑛 2 𝑢 + 𝑛 2 𝑣 = 1 that maximizes �̂� t 1 ̂𝑔 2 . This setup was chosen based on

ection 2 to optimize the detection of possible mislocalization biases and

ence represents the worst-case scenario. We do not investigate explic-

tly the best-case scenario where 𝑔 2 is orthogonal to 𝑔 1 (which is always

chievable by a suitable choice of 𝑛 𝑢 , 𝑛 𝑣 ) simply because this scenario

ould systematically lead to no localization error (see Section 2 ). 

In that two-source setting, the data covariance matrix (3) fed to the

ommon beamformer was 

= 

1 
2 
𝜎2 1 𝑔 1 𝑔 

t 
1 + 

1 
2 
𝜎2 2 𝑔 2 𝑔 

t 
2 + Σnoise . (12)

he main difference with the theoretical considerations of Section 2 is

hat we used realistic estimates of noise covariance Σnoise extracted

rom individual resting-state data. Given the very large number of time

amples in each of these data (of the order of 3 × 10 5 ) compared to the

umber 𝑁 = 204 of sensors, the estimation error on Σnoise was negligi-

le. Furthermore, since the same noise covariance estimate was used in

he common beamformer and the standard beamformer (obtained with

= 𝜎2 1 𝑔 1 𝑔 
t 
1 + Σnoise ), the covariance estimation error was preserved and

herefore did not hamper their comparison. 

We fixed the standard deviation parameters 𝜎1 and 𝜎2 in terms of

he SNR values (5) , using as single-sensor noise level 𝜎2 0 defined as the

ean noise variance across the 𝑁 sensors (i.e., 𝜎2 0 = trace (Σnoise )∕ 𝑁).

e considered both balanced and unbalanced SNRs across the two con-

itions, specifically (i) equally high SNRs 𝛼1 = 𝛼2 = 100 , (ii) equally low

NRs 𝛼1 = 𝛼2 = 30 , (iii) dominating genuine source 𝛼1 = 100 , 𝛼2 = 30 ,
nd (iv) dominating interfering source 𝛼1 = 30 , 𝛼2 = 100 . As a compari-

on, the evoked data for the left and right tibial nerve stimulations had

NR 600 and 400 (see Section 3.7 ). Lower SNRs 𝛼1 = 𝛼2 = 10 are con-

idered in the supplementary material S2. 

.5. Source reconstruction 

For source reconstruction, we used the vectorial beamformer with

nit-noise-gain constraint, whose two-dimensional weights are obtained

s ( Sekihara et al., 2001 ) 

 𝑢 ( ⃗𝑟 ) = 

[
( 𝐺 

t ( ⃗𝑟 )Σ−1 𝐺( ⃗𝑟 )) −1 𝐺( ⃗𝑟 ) t 
]
𝑢 
Σ−1 

√
Υ𝑢𝑢 

, (13)

nd similarly for the other direction 𝑣 (see Eq. (11) ), where the subscript

enotes the selection of the corresponding component. The denominator

s the square root of the 𝑢, 𝑢 component of the matrix 

( ⃗𝑟 ) = ( 𝐺 

t ( ⃗𝑟 )Σ−1 𝐺( ⃗𝑟 )) −1 ( 𝐺 

t ( ⃗𝑟 )Σ−2 𝐺 ( ⃗𝑟 ))( 𝐺 

t ( ⃗𝑟 )Σ−1 𝐺 ( ⃗𝑟 )) −1 (14)

nd ensures a unit-noise normalization ||𝑤 𝑢 ( ⃗𝑟 ) || = 1 . Another weight

ormalization scheme is considered in the supplementary material S3.

he inversion of Σ was stabilized using Tikhonov regularization, i.e.,

he inverse of each eigenvalue 𝜆 was taken as 𝜆∕( 𝜆2 + 𝜖2 ) with the reg-

larization parameter 𝜖 set to 1% of the largest eigenvalue. (See sup-

lementary material S4 for justification and comparison with another

egularization procedure.) Note that the inversion of the 2 × 2 matrix
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Fig. 3. Example in a typical subject of the topographical overlap between the 

gain of the genuine source (SM1, white star on left panel) and the maximally- 

correlated gain at each interfering source. The color scale corresponds to values 

of overlap |cos ( 𝜃12 ) |. 
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t ( ⃗𝑟 )Σ−1 𝐺( ⃗𝑟 ) was then well conditioned thanks to the two-dimensional

rojection described above Eq. (11) . 

These beamformer weights were used to build the power map in

ondition 1 as follows ( Sekihara and Nagarajan, 2008 ): 

 1 ( ⃗𝑟 ) = 𝜎2 1 ( 𝑤 𝑢 ( ⃗𝑟 ) 𝑔 1 ) 2 + 𝜎2 1 ( 𝑤 𝑣 ( ⃗𝑟 ) 𝑔 1 ) 2 + 𝑤 𝑢 ( ⃗𝑟 )Σnoise 𝑤 𝑢 ( ⃗𝑟 ) t 

+ 𝑤 𝑣 ( ⃗𝑟 )Σnoise 𝑤 𝑣 ( ⃗𝑟 ) t . (15) 

his quantity is a two-dimensional, noisy analog to the squared point-

pread function 𝐹 1 ( ⃗𝑟 ) 2 . It is important to note that, for simplicity, our

ain simulations used the same gain matrices to generate source activa-

ion vectors 𝑔 1 , 2 (Eqs. (12) and (15) ) and to compute the beamformers

eights 𝑤 𝑢,𝑣 ( ⃗𝑟 ) (Eqs. (13) and (14) ). This corresponds to the so-called

inverse crime ” where estimation inaccuracy in gain vectors is not taken

nto account. The effect of such inaccuracies is explored in the supple-

entary material S5. 

.6. Mislocalization mapping in simulations 

Power maps were computed for each of the 19 subjects and further

ormalized by their average value for convenience, so that scales are

n multiples of the mean power value. We also quantified where and to

hich extent mislocalization happens. We built a mislocalization map

y computing for each possible interfering source the coordinate differ-

nces Δ𝑥, Δ𝑦, and Δ𝑧 between the locations of the genuine source and

f the global maximum of 𝑃 1 obtained with the common beamformer.

he mislocalization map was then obtained as the Euclidean norm 

 = 

√ 

Δ𝑥 
2 
+ Δ𝑦 

2 
+ Δ𝑧 

2 
(16)

f these coordinate differences averaged across the 19 subjects. 

We also assessed statistically if the resulting mislocalization is higher

hen using the common beamformer than the standard one. To that

im, we built a statistical map 𝜒 = 

√ 

𝑍 

2 
𝑥 + 𝑍 

2 
𝑦 + 𝑍 

2 
𝑧 , where 

 𝑥 = 

Δ𝑥 common − Δ𝑥 standard 
𝜎𝑥 + 𝜖𝑥 

(17)

s a regularized 𝑧 score for the mislocalization difference along the 𝑥

xis, and similarly for 𝑍 𝑦 and 𝑍 𝑧 . Here, 𝜎𝑥 is the sample standard devi-

tion of this difference, and the regularization parameter 𝜖𝑥 was set to

0% of the maximum value of 𝜎𝑥 over all interfering sources, so as to

ame the influence of low variance locations ( Ridgway et al., 2012 ). We

ested the omnibus null hypothesis that common and standard beam-

ormers produce similar mislocalization errors across all the interfering

ources. The statistical threshold for the 𝜒 maps at a 5% significance

evel was obtained from the permutation distribution of the maximum

f 𝜒, which was generated by randomly exchanging the beamformer

ype label ( “common ” and “standard ”) for each subject before comput-

ng 𝜒 (2000 permutations). All supra-threshold values were deemed sig-

ificant. To further increase the sensitivity of this test while preserving

ontrol of the family-wise error rate, we applied the jump-down ap-

roach ( Nichols and Holmes, 2002 ). We repeated the same permutation

ests restricted to the sub-threshold part of the 𝜒 map, determined a

ew threshold, and retained all supra-threshold sources as being sig-

ificant. This procedure was continued iteratively until no significant

ource remained. The resulting set of supra-threshold locations defined

 statistical mask that we applied to the mislocalization map 𝐷 for the

ommon beamformer. 

.7. Comparison of two evoked responses 

Lastly, we illustrated the mislocalization effect by applying the com-

on beamformer to experimental MEG data recorded in response to

lectrical left and right tibial nerve stimulation in one subject. This

aradigm was chosen because the recruited brain areas are anatomically

lose though clearly distinct (i.e., close to the midline within opposite
6 
erebral hemispheres). The preprocessed data was cut into epochs from

00 to 250 ms relative to stimulation onset, and averaged across epochs.

A similar analysis without noise reduction is described in the supple-

entary material S6.) The covariance matrix Σ was then obtained within

ime windows of interest on the basis of these epoch-averaged, evoked

ata. We considered the maximum response times, but also the periods

xhibiting maximal correlation between the sensor topographies in the

eft and right stimulations. This was done to maximize the chance of de-

ecting mislocalization, as the sensor response to a focal brain activation

s a proxy of the corresponding source gain, so topographical overlap is

aximized in this window (Section 2 ). Note that we did not include the

aseline into the estimation of the covariance matrix, which would have

een to the effect of increasing the noise on the covariance matrix and

ence decrease the potential for mislocalization. 

Power maps in the two conditions (left and right stimulation) were

stimated with the weights (13) according to 

 ( ⃗𝑟 ) = 𝑤 𝑢 ( ⃗𝑟 )Σ𝑤 𝑢 ( ⃗𝑟 ) t + 𝑤 𝑣 ( ⃗𝑟 )Σ𝑤 𝑣 ( ⃗𝑟 ) t . (18)

ere Σ denotes either the covariance of the single-condition evoked data

ithin the window of interest (standard beamformer) or their average

ver the two conditions (common beamformer). Of note, the covariance

atrix Σ in Eqs. (13) and (14) was regularized with diagonal loading of

% of its largest eigenvalue, which was added to its diagonal prior to

nversion (see, e.g., Brookes et al., 2008; Gross et al., 2001 ). This was

ecessary in the case of these evoked responses, as further justified in the

upplementary material S4. We used the bootstrap statistics (200 resam-

lings) to assess the impact of beamformer type (standard vs. common)

n the distance between reconstructed sources to left and right tibial

erve stimulation ( Efron and Tibshirani, 1994 ). 

. Results 

Here, we expand our theoretical results using simulated and experi-

ental MEG data. We first examine the spatial structure of source gain

verlap, given its importance revealed in Section 2 . We then illustrate

he mislocalization of the common beamformer using selected power

aps and the mislocalization maps obtained from simulations. Finally,

e sought to detect mislocalization in MEG evoked responses. 

.1. Topographical overlap of source gains 

Fig. 3 presents a map of overlap between the gain vectors of a source

laced at the left SM1 cortex and of any other source across the brain

olume in the orientation of maximum correlation ( |cos ( 𝜃12 ) | in the no-

ation of Section 2 ). These maps illustrate that topographical overlap
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Fig. 4. Example of power maps in a typical subject for the genuine source at left 

SM1 (white star, 
→
𝑟 1 = [−35 , −30 , 55 ] ) with 𝛼1 = 100 and an interfering source at 

locations ⃗𝑟 2 (green star) with increasing distances and 𝛼2 = 100 . Source orienta- 

tions are optimized for maximum topographical overlap, and locations are given 

in MNI coordinates (mm). The color scale is from 0 to the map’s maximum in 

each case, to best highlight the maximum’s location. 
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ecreases as sources are separated, from complete overlap when they

oincide to almost no overlap whatever the source orientation at dis-

ances greater than 10 cm. As explained in Section 2 , mislocalization is

xpected for substantial yet non-extreme overlap. Accordingly, Fig. 3 in-

icates that mislocalization should not occur beyond approximately 5

m from the genuine source location. Note that this corresponds to a

orst-case scenario, as the source gain at the varying location is maxi-

ally correlated with the source gain of the left SM1 source, hence max-

mizing overlap everywhere. This means that this 5 cm domain might

e overestimated compared to more realistic situations, where source

rientations are not optimized for mislocalization (e.g., anatomically

onstrained to be normal to the cortical surface). 

.2. Examples of mislocalization bias 

Fig. 4 shows the reconstructed power maps in one example subject

or the SM1 genuine source and selected interfering sources, both at

NR 𝛼1 = 𝛼2 = 100 . 2 The global maximum was located in between the

enuine source and the interfering source (Fig. 4 a–e). This mislocaliza-

ion bias was negligible for very close sources (Fig. 4 a), increased as

ource separation increased (Figs. 4 b–d) to reach 1.4 cm in Fig. 4 d,

nd then decreased for larger separations down to no mislocalization at

nter-source distances larger than 5 cm (Fig. 4 f). These observations fit

ith our expectations based on Section 2 and Fig. 3 . 

.3. Mislocalization maps 

Fig. 5 a presents the mislocalization map with balanced SNRs 𝛼1 =
2 = 100 for the same example subject. It shows the magnitude of the
2 The sparsity of these maps is likely due to the beamformer’s generic prop- 

rties for good SNRs. Our results however also hold for experimental MEG data 

see Section 4.4 ), where the reconstructed activity maps are smoother. 

i  

c  

u  

r  

7 
ocalization error (that is, the distance between the global maximum

nd the genuine source locations) when the interfering source is moved

cross the brain volume. In accordance with Fig. 4 , mislocalization oc-

urred on a shell covering distances from 1 to 5 cm from the genuine

ource with mislocalization peaking up to 1.6 cm. Note that the absence

f mislocalization when genuine and interfering sources almost coincide

as was explained in Section 2 ) is reflected by a zone of low mislocal-

zation in the close vicinity (say within 1 cm) of the genuine source. 

This observation generalized to the group level, as shown in

igs. 5 b,c. The corresponding mislocalization shell was further isolated

y the statistical mask exhibiting only the interfering sources yielding

islocalization significantly larger than for the standard beamformer

Fig. 6 a). In this case, the main part of the significant shell was com-

rised between 1 to 5 cm with mislocalization values mainly between

.5 and 1 cm (Fig. 6 b). It involved regions where the topographical

verlap between genuine and interfering source gains was mainly above

.6 (Fig. 6 c). 

The existence of this mislocalization shell for 𝛼1 = 𝛼2 = 100 persisted

hen we varied the sources SNR. Fig. 6 d illustrates the case of bal-

nced but lower SNR, 𝛼1 = 𝛼2 = 30 . The corresponding scatter plots in-

icate an increased size of the significant mislocalization shell as well

s higher mislocalization values, generally ranging from 0.5 to 1.5 cm

Fig. 6 e) and topographical overlaps above 0.3 (Fig. 6 f). The case of

nbalanced SNRs with dominating interfering source ( 𝛼1 = 30 , 𝛼2 = 100 )
ielded even greater values of significant mislocalization (Fig. 6 g),

eaching up to 2 cm and more (Fig. 6 h) and corresponding topographi-

al overlap mainly above 0.5 (Fig 6 i). The case of unbalanced SNRs with

ominant genuine source ( 𝛼1 = 100 , 𝛼2 = 30 ) led to no significant mis-

ocalization. Further lowering SNRs generally yielded thinner shells of

ignificant mislocalization (see supplementary material S2 for the case

1 = 𝛼2 = 10 ). 
Several variants of these simulation results are reported in the sup-

lementary materials to assess the effect of weight normalization (sup-

lementary material S3), covariance regularization scheme (supplemen-

ary material S4) and forward model inaccuracy (supplementary mate-

ial S5). 

.4. Mislocalization for experimental data 

Fig. 7 presents the time courses of the evoked responses to left and

ight tibial nerve stimulation in our test subject. The gradiometer with

aximum absolute amplitude peaked at 44 ms for both the left and

ight tibial nerve responses, with SNRs of approximately 600 and 400

respectively). Reconstructions with the common beamformer at these

ime steps yielded no substantial mislocalization. This is because the left

esponse at 44 ms and the right response at 44 ms (see Figs. 8 a,b) did

ot overlap sufficiently: their correlation was 0.622. Given the insights

f Section 2 , this degree of overlap was too low for mislocalization to

ccur with the common beamformer. 

To maximize our chances of disclosing some mislocalization effect,

e identified the 10 ms-wide time window exhibiting highest correla-

ion (Figs. 9 and 8 c,d). The resulting window spread from 44 to 54 ms

ost-stimulus and featured a topographical overlap between 0.656 and

.800. The corresponding source reconstructions obtained with the stan-

ard and common beamformers are displayed in Fig. 10 . Peak locations

btained with the standard beamformer (Figs. 10 a,c) located the foot

rea of the primary somatosensory cortex contralateral to stimulation.

hey were more than 2.5 cm apart. The common beamformer pulled the

wo peak locations towards each other (distance reduced to less than 1

m; Fig. 10 b,d). Bootstrap statistics identified a trend towards signifi-

ance ( 𝑝 = 0 . 095 ) for the difference in such distance between standard

nd common beamformers (i.e., 1.5 cm). This difference in distance is

n line with our estimations based on simulations, which yielded mislo-

alization up to 1 cm (see Fig. 6 b). In the case of right tibial nerve stim-

lation, the common beamformer even reconstructed the activity in the

ight (and hence wrong) hemisphere, which is anatomically aberrant.
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Fig. 5. Mislocalization map in the same example sub- 

ject as in Fig. 4 (a) (color scale 0–1.5 cm), and group- 

level mislocalization map (b, c) (color scale 0–1 cm). 

Genuine source in SM1 with 𝛼1 = 100 (white star), 

and varying interfering source location with 𝛼2 = 100 . 
Sagittal slices in the MNI brain are at 𝑥 = −35 mm. 

Fig. 6. Mislocalization for the common beamformer compared with the standard one. Only statistically significant values are shown on leftmost maps ( 𝑝 < 0 . 05 , 
permutation test), and they appear in red on the central and rightmost plots depicting the magnitude of mislocalization as a function of the distance to the genuine 

source (central) or as a function of the topographical overlap between genuine and interfering sources’ gain (right). The genuine source is in SM1 (white star on 

leftmost maps), for different combinations of SNRs. 
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Fig. 7. Evoked responses at all gradiome- 

ters to left (a) and right (b) tibial nerve stim- 

ulation. The shaded area indicates the win- 

dow of highest correlation between sensor 

topographies identified in Fig. 9 . Note that 

the large-amplitude response peaking at 2 

3 ms is an artifact caused by the electrical 

current delivered to the tibial nerve. 

Fig. 8. Topographic distributions of magnetic responses (color scale: Euclidian 

norm of gradiometer data) for left (a, c) and right (b, d) tibial nerve stimulation 

at the maximum response (top) or within the maximum correlation window 

(bottom, see Fig. 9 ). 
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Fig. 9. Correlation between the sensor topographies (gradiometers only) of 

evoked responses during left and right tibial nerve stimulations as a function 

of post-stimulus time. A shaded area highlights the window of maximum corre- 

lation. 
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imilar results held when analyzing these data without noise suppres-

ion (supplementary material S6). 

. Discussion 

We have assessed the validity of the recommendation to use a com-

on beamformer when reconstructing MEG sources in more than one

ondition with the beamformer approach ( Gross et al., 2013 ). Our re-

ults demonstrate that such a common beamformer can lead to mislocal-

zation. In the simple setting where there is a single source at different

ocations in two separate conditions (i.e., in different recordings), the

ommon beamformer reconstructs each source closer to the other than

t actually is, hence reducing their differences. This happens when the

ources produce sensor responses that overlap substantially yet not com-

letely, which in practice is the case when sources are close to parallel

nd between 1 and 5 cm apart, although the precise separation actu-

lly depends on several parameters such as the SNR in both conditions.
9 
he above conclusions, obtained from analytical considerations and syn-

hetic MEG data simulated with real MEG noise and head models, were

n line with experimental MEG data. 

.1. Pitfalls of the common beamformer 

In the present report, we have focused on the simple setting in which

here is a single “genuine ” source in condition 1 and a single “interfer-

ng ” source in condition 2. We assessed how the reconstruction of the

enuine source location with a common beamformer is impacted by the

resence of the interfering source. When the interfering source is within

–5 cm from the genuine source and for a reasonable range of SNRs

30–100), the common beamformer produced a maximum power out-

ut somewhere in between the genuine and interfering source locations.

n other words, the interfering source acted as an attractor for the re-

onstructed location of the genuine source. 

The mislocalization values obtained in the balanced SNR case were

s high as 1.5 cm. Looking at a worst case scenario, for sources 3 cm

part, the common beamformer may reconstruct a single source in the

iddle, at the same location for both conditions. Along the same lines,

n our MEG evoked responses, sources to left and right tibial nerve stim-

lation were pulled closer to each other by 1.5 cm: initially more than

.5 cm away, they were reconstructed less than 1 cm apart (Fig. 10 ).

ote that 1–2 cm is about the size of a sulcus. 

That said, the amount of mislocalization actually depends on several

arameters. Our theory and simulations highlighted the crucial role of

ource topographical overlap in the generation of mislocalization, so

hat problems may arise for topographical overlaps exceeding 0.7 (see

ection 2.2 ). Still, the SNR of the genuine and interfering sources do

trongly influence this theoretical limit (see Figs. 6 c,f,i). Other details

f the beamformer may also matter (e.g., data preprocessing, covari-

nce matrix regularization, or weight normalization). So our estimates

rovide qualitative rules of thumb but precise evaluations are bound to

ary across different implementations. A systematic comparison along

he lines of Jaiswal et al. (2020) will be useful in the future. 
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Fig. 10. Reconstructed power maps for left (top) and right (bottom) tibial nerve 

stimulations with a standard (a, c) and a common (b, d) beamformer. Each map 

is a temporal average over the maximum-correlation window (see Fig. 9 ). Color 

scale from 0 to 5 times the mean power value of each map. MNI coordinates of 

map maxima reported in mm and indicated on map by a white star. 
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The first crucial aspect to discuss is topographical overlap. Mislocal-

zation occurs only when genuine and interfering sensor responses do

verlap substantially yet not fully. Accordingly, in our simulations we

ave systematically explored interfering sources whose sensor topog-

aphy is maximally correlated with that at the genuine location. This

eans that we have selected sources that are close to parallel. As the

ngle between sources increases the overlap between sensor responses

iminishes, and the mislocalization issue disappears. This effect was also

een in the experimental data. In this case, the overlap varied in time

ue to a dynamic rotation of the dipolar magnetic field pattern (Fig. 8 ).

islocalization was only seen at the time window of maximum corre-

ation between the left and right sensor responses. In this respect, our

imulations and experimental data focused on the worst-case scenarios.

e did not explore the best-case scenario wherein the interfering source

rientation would be selected to generate a sensor topography orthog-

nal to that of the genuine source simply because this setting would

rivially lead to no localization error. Hence, the issue might be less

rastic in real applications. For example, beamforming with anatomical

onstraints (i.e., sources oriented normal to the cortical surfaces) might

ossibly lead to less amount of mislocalization with the common beam-

ormer. 

The second important parameter is source SNR. We have mainly fo-

used on the case of comparable SNRs (exactly equal in the case of

ur simulations and slightly unbalanced for experimental MEG data).

s highlighted above, this very common setting leads to a mislocaliza-
10 
ion of up to 1.5 cm. It is far from the worst case since unbalanced

ituations wherein the SNR of the interfering source was about three

imes that of the genuine source led to larger localization errors of up to

.3 cm (Fig. 6 ) and even up to 3 cm in some subjects (not shown). The

econstructed location was pulled all the more towards the interfering

ocation. In the case of experimental MEG data, we indeed observed that

he right tibial stimulation, featuring a lower SNR than the left one, was

ulled towards the other side of the brain, actually even entering the

ther hemisphere (Fig. 10 c,d). 

Implementational details of the beamformer also affect mislocaliza-

ion ( Jaiswal et al., 2020 ), though they likely impact the general lo-

alization performance of beamformers (including the standard beam-

ormer) rather than being specific to the common beamformer. We

ound that noise reduction (signal space separation and independent

omponent analysis) does not substantially modulate localization accu-

acy (supplementary material S6), which makes sense given that beam-

orming inherently suppresses correlated noise ( vanVeen et al., 1997 ).

lthough in theory the beamformer actually uses noise to naturally reg-

larize the covariance matrix ( vanVeen et al., 1997 ), avoiding noise re-

uction does not lift the need of regularization in practical applications

uch as evoked responses (supplementary material S4). The procedure

o regularize the covariance matrix also impacts localization accuracy,

nd we considered here two widely-used approaches, i.e., Tikhonov and

diagonal loading ” regularizations. Significant mislocalization due to

he common beamformer was observed with both, although its values

ere somewhat tamed with the latter (supplementary material S4). Note

hat “diagonal loading ” regularization was used for our experimental

EG data showing mislocalization. Finally, weight normalization also

ffects localization accuracy. We focused here on the unit-noise-gain

eamformer but we also showed that mislocalization remains signifi-

ant when using the array-gain beamformer, albeit slightly tamed (sup-

lementary material S3). 

Lastly, it is worth mentioning that our focus on single-source con-

ition data may not provide fully realistic estimates of the extent of

islocalization with the common beamformer. This simple setting was

seful to identify the roots of this mislocalization effect and to system-

tically investigate the impact of several parameters discussed above.

owever it may not be representative of more complex experimental

ituations including several sources per condition. As such, some open

uestions are how the common beamformer behaves when applied to

ulti-source configurations and what is the impact of varying the over-

ap or the SNR of these sources within each condition as well as across

he two conditions. Critically, we have not investigated such versatile

ettings here. Since estimates of localization errors depend on several

ethodological details, the quantitative results may not be particularly

epresentative anyway. Still, it is reasonable to think that the poten-

ial for cancellation and mislocalization is higher because the presence

f multiple sources will affect beamformer weights to a higher degree.

hese questions should be addressed in future studies. 

.2. Avoiding mislocalization with or without a common beamformer 

In principle, using a common beamformer is safe solely when the

ources of the two conditions under study are far from each other or

lose to orthogonal. Critically, this means that, in several practical sit-

ations, the mislocalization that we have exhibited may have a more

imited impact than suggested in our simulations (which impose near-

arallel orientations). On the other hand, the safe domain of source sep-

ration or orientation angle depends among other things on their SNR,

o that it may be difficult to be sure a priori of the validity of the com-

on beamformer. If a common beamformer must nevertheless be used,

 criterion based on values of source gain overlap at both locations could

e applied as in Section 4.1 , keeping in mind that it can only provide

ualitative rules of thumb (as discussed above). Note that the theoret-

cal considerations developed in Section 2 showed that mislocalization

appens everywhere except when the genuine and interfering sources
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enerate perfectly orthogonal sensor responses. Hence in all rigor us-

ng the common beamformer exposes one to mislocalization, although

n practice the mislocalization biases can be mild and below the spatial

esolution of MEG. 

The way the covariance matrix is computed can also drastically mod-

late the potential for mislocalization effect imputable to the common

eamformer. There exist different beamforming approaches to source

ocalize evoked responses. The classical approach is the spatiotemporal

eamformer where the covariance matrix is that of the epoch-averaged

ensor response ( Hashimoto et al., 2001; 2003; Sekihara et al., 2001 ).

hat approach is well grounded on the theory of adaptive linear fil-

ering and ensures a high localization accuracy ( Sekihara and Nagara-

an, 2008 ), but it also requires appropriate regularization to prevent

ancellation effects induced by unavoidable deviations from dipolarity

n the response, or correlation between multiple sources ( Hashimoto

t al., 2001; 2003 ). This type of beamformer is thus susceptible to exhibit

he mislocalization of the common beamformer. Of note, our theoretical

onsiderations, simulations and analysis of MEG evoked responses were

ll developed within that framework. Alternatively, the event-related

eamformer rather uses the covariance of the unaveraged data. The re-

ulting filters applied to epoch-averaged data also localizes sources cor-

ectly ( Sekihara et al., 2001 ). In this case, the beamformer is tuned to

ancel strong electromagnetic interferences such as those produced by

eartbeats, eye blinks, tooth braces, cranial clips or implanted stimula-

ors, if those have not been removed with efficient methods such as tem-

oral signal space separation ( Bourguignon et al., 2016; Carrette et al.,

011; Kakisaka et al., 2013; Song et al., 2009; Tanaka et al., 2009; Taulu

nd Hari, 2009; Taulu and Simola, 2006 ) or independent component

nalysis ( Vigario et al., 2000 ). This is because unaveraged MEG data

s typically dominated by noise and brain rhythms. An important con-

equence of this observation is that the event-related beamformer does

ot adapt to the activity of interest during the evoked responses, so that

t does not make much of a difference to construct the weights upon

he covariance matrix of condition 1, of condition 2 or of their average

o reconstruct evoked responses. In other words, the common and the

tandard beamformers should produce similar results and no mislocal-

zation specific to the common beamformer should arise. Accordingly,

his partially non-adaptive character of the weights alleviates the com-

arability issues raised by Gross et al. (2013) . That said, mislocalization

f the type reported here could still emerge with the event-related beam-

ormer when dealing with induced responses. In this case, responses in

ingle trials can feature a high SNR of up to 500 at the most responsive

ensor (see e.g. Pfurtscheller et al., 1998 ). 

.3. Conclusion 

Altogether, the common beamformer may be a useful tool to identify

ifferences between conditions not ascribable to differences in the filter

eights, but the risk of mislocalization exists. Further, the mislocaliza-

ion effect tends to blur the localization differences between conditions,

hich is not desirable either. An alternative solution is to use an event-

elated beamformer built on rest or baseline recordings ( Moiseev et al.,

015 ). One exception, however, could be the case where both conditions

xhibit activations of the same focal source but with different SNRs. The

ommon beamformer may then be of use, since it avoids the problem of

NR-dependent spreads ( Gross et al., 2013 ) while avoiding mislocaliza-

ion (as proven in Section 2 ). 

That said, the very notion of contrasting smooth source maps — re-

ardless of the linear reconstruction method used — is inherently flawed

rom the beginning ( Bourguignon et al., 2018 ). This is because, as ex-

lained for example in Maris and Oostenveld (2007) , the size of MEG

econstructions bears no true meaning, and only the location of their

aximum (as well as its value) should really be understood as mean-

ngful, at least in the context of focal brain responses. 

Based on the above, the only accurate comparison approach that

e recommend is to identify maps maxima within each condition and
11 
ompare statistically their location ( Bourguignon et al., 2018 ) or their

mplitude. In this context, the concerns raised in Gross et al. (2013) and

he need for a common beamformer are moot. Maps in each condi-

ion can be reconstructed with two different methods, the key be-

ng to disclose as little mislocalization as possible. Good practice in

his endeavor should thus be to use the standard (condition-specific)

ather than the common beamformer. Partially non-adaptive methods

uch as the event-related beamformer or fully non-adaptive approaches

uch as eLORETA ( Pascual-Marqui, 2007 ), or sparse non-linear algo-

ithms ( Friston et al., 2008; Gramfort et al., 2012; 2013; Uutela et al.,

999 ) are also good candidates. 

uthor contribution 

G.L.G., P.P., V.W. and M.B. designed study; G.L.G., V.W. and M.B.

ontributed to analytical tools; G.L.G. and M.B. performed experiment;

.L.G., V.W. and M.B. analysed data; G.L.G., P.P., V.W. and M.B. wrote

nd reviewed manuscript. 

ata and code availability statement 

The data that support the findings of this study are available from

he corresponding author upon reasonable request. 

cknowledgments 

G.L.G. was supported by postdoctoral grant from FNRS-FWO Excel-

ence Of Science project Memodyn (ID EOS 30446199). M.B. has been

upported by the program Attract of Innoviris (grant 2015-BB2B-10), by

he Spanish Ministry of Economy and Competitiveness (grant PSI2016-

7175-P), and by the Marie Sklodowska-Curie Action of the European

ommission (grant 743562). This study and the MEG project at CUB

ôpital Erasme were financially supported by the Fonds Erasme (Re-

earch Convention: “Les Voies du Savoir ”, Fonds Erasme, Brussels, Bel-

ium). 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.neuroimage.2021.117793 

eferences 

shburner, J. , Friston, K. , 1999. Nonlinear spatial normalization using basis functions.

Hum. Brain Mapp. 7 (4), 254–266 . 

shburner, J. , Neelin, P. , Collins, D. , Evans, A. , Friston, K. , 1997. Incorporating prior

knowledge into image registration. NeuroImage 6 (4), 344–352 . 

arros, A.K. , Vigario, R. , Jousmaki, V. , Ohnishi, N. , 2000. Extraction of event-related sig-

nals from multichannel bioelectrical measurements. IEEE Trans. Biomed. Eng. 47 (5),

583–588 . 

ourguignon, M. , Molinaro, N. , Wens, V. , 2018. Contrasting functional imaging para-

metric maps: The mislocation problem and alternative solutions. NeuroImage 169,

200–211 . 

ourguignon, M. , Whitmarsh, S. , Piitulainen, H. , Hari, R. , Jousmki, V. , Lundqvist, D. ,

2016. Reliable recording and analysis of meg-based corticokinematic coherence in

the presence of strong magnetic artifacts. Clin. Neurophysiol. 127 (2), 1460–1469 . 

rookes, M.J. , Vrba, J. , Robinson, S.E. , Stevenson, C.M. , Peters, A.M. , Barnes, G.R. , Hille-

brand, A. , Morris, P.G. , 2008. Optimising experimental design for meg beamformer

imaging. NeuroImage 39 (4), 1788–1802 . 

arrette, E. , De Tiège, X. , Op deBeeck, M. , Herdt, V.D. , Meurs, A. , Legros, B. , Raedt, R. ,

Deblaere, K. , Roost, D.V. , Bourguignon, M. , Goldman, S. , Boon, P. , Bogaert, P.V. ,

Vonck, K. , 2011. Magnetoencephalography in epilepsy patients carrying a vagus nerve

stimulator. Epilepsy Res. 93 (1), 44–52 . 

arrette, E. , Op de Beeck, M. , Bourguignon, M. , Boon, P. , Vonck, K. , Legros, B. , Gold-

man, S. , Bogaert, P.V. , De Tiège, X. , 2011. Recording temporal lobe epileptic activity

with meg in a light-weight magnetic shield. Seizure 20 (5), 414–418 . 

e Tiège, X. , Op deBeeck, M. , Funke, M. , Legros, B. , Parkkonen, L. , Goldman, S. , Bo-

gaert, P.V. , 2008. Recording epileptic activity with meg in a light-weight magnetic

shield. Epilepsy Res. 82 (2), 227–231 . 

fron, B. , Tibshirani, R.J. , 1994. An Introduction to the Bootstrap. Chapman and

Hall/CRC . 

https://doi.org/10.1016/j.neuroimage.2021.117793
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0010


G. Lucena Gómez, P. Peigneux, V. Wens et al. NeuroImage 230 (2021) 117793 

F  

 

G  

 

G  

 

G  

 

G  

G  

 

 

G  

 

H  

 

H

H  

 

H  

 

H  

 

H  

J  

 

 

K  

 

 

M  

M  

N  

W  

 

 

P  

 

P  

 

R  

R  

 

R  

S  

S  

 

S  

 

 

T  

 

T  

 

T  

T  

U  

V  

 

 

v  

 

V  

 

riston, K. , Harrison, L. , Daunizeau, J. , Kiebel, S. , Phillips, C. , Trujillo-Barreto, N. , Hen-

son, R. , Flandin, G. , Mattout, J. , 2008. Multiple sparse priors for the m/eeg inverse

problem. NeuroImage 39 (3), 1104–1120 . 

ramfort, A. , Kowalski, M. , Hmlinen, M. , 2012. Mixed-norm estimates for the m/EEG

inverse problem using accelerated gradient methods. Phys. Med. Biol. 57 (7),

1937–1961 . 

ramfort, A. , Luessi, M. , Larson, E. , Engemann, D.A. , Strohmeier, D. , Brodbeck, C. , Parkko-

nen, L. , Hmlinen, M.S. , 2014. Mne software for processing meg and eeg data. Neu-

roImage 86, 446–460 . 

ramfort, A. , Strohmeier, D. , Haueisen, J. , Hmlinen, M. , Kowalski, M. , 2013. Time-fre-

quency mixed-norm estimates: Sparse m/eeg imaging with non-stationary source ac-

tivations. NeuroImage 70, 410–422 . 

reenblatt, R. , Ossadtchi, A. , Pflieger, M. , 2005. Local linear estimators for the bioelec-

tromagnetic inverse problem. IEEE Trans. Signal Process. 53, 3403–3412 . 10 

ross, J. , Baillet, S. , Barnes, G.R. , Henson, R.N. , Hillebrand, A. , Jensen, O. , Jerbi, K. ,

Litvak, V. , Maess, B. , Oostenveld, R. , Parkkonen, L. , Taylor, J.R. , van Wassenhove, V. ,

Wibral, M. , Schoffelen, J.M. , 2013. Good practice for conducting and reporting meg

research. NeuroImage 65, 349–363 . 

ross, J. , Kujala, J. , Hämäläinen, M. , Timmermann, L. , Schnitzler, A. , Salmelin, R. , 2001.

Dynamic imaging of coherent sources: Studying neural interactions in the human

brain. Proc. Natl. Acad. Sci. 98 (2), 694–699 . 

ämäläinen, M. , Hari, R. , Ilmoniemi, R.J. , Knuutila, J. , Lounasmaa, O.V. , 1993. Magne-

toencephalography —theory, instrumentation, and applications to noninvasive studies

of the working human brain. Rev. Mod. Phys. 65, 413–497 . 

ari, R. , Puce, A. , 2017. MEG-EEG primer. Oxford University Press, Oxford, New York . 

ashimoto, I. , Kimura, T. , Iguchi, Y. , Takino, R. , Sekihara, K. , 2001. Dynamic activation of

distinct cytoarchitectonic areas of the human si cortex after median nerve stimulation.

Neuroreport 12, 1891–1897 . 08 

ashimoto, I. , Kimura, T. , Tanosaki, M. , Iguchi, Y. , Sekihara, K. , 2003. Muscle afferent

inputs from the hand activate human cerebellum sequentially through parallel and

climbing fiber systems. Clin. Neurophysiol. 114 (11), 2107–2117 . 

illebrand, A. , Singh, K.D. , Holliday, I.E. , Fopturlong, P.L. , Barnes, G.R. , 2005. A new

approach to neuroimaging with magnetoencephalography. Hum. Brain Mapp. 25 (2),

199–211 . 

yvärinen, A. , Karhunen, J. , Oja, E. , 2001. Independent Component Analysis. John Wiley

& Sons . 

aiswal, A. , Nenonen, J. , Stenroos, M. , Gramfort, A. , Dalal, S.S. , Westner, B.U. , Litvak, V. ,

Mosher, J.C. , Schoffelen, J.-M. , Witton, C. , Oostenveld, R. , Parkkonen, L. , 2020. Com-

parison of beamformer implementations for meg source localization. NeuroImage 216,

116797 . 

akisaka, Y. , Mosher, J.C. , Wang, Z.I. , Jin, K. , Dubarry, A.-S. , Alexopoulos, A.V. ,

Burgess, R.C. , 2013. Utility of temporally-extended signal space separation algo-

rithm for magnetic noise from vagal nerve stimulators. Clin. Neurophysiol. 124 (7),

1277–1282 . 

aris, E. , Oostenveld, R. , 2007. Nonparametric statistical testing of eeg- and meg-data. J.

Neurosci. Methods 164 (1), 177–190 . 

oiseev, A. , Doesburg, S.M. , Grunau, R.E. , Ribary, U. , 2015. Minimum variance beam-

former weights revisited. NeuroImage 120, 201–213 . 

ichols, T.E. , Holmes, A.P. , 2002. Nonparametric permutation tests for functional neu-

roimaging: a primer with examples. Hum. Brain Mapp. 15 (1), 1–25 . 
12 
ens, V. , Bourguignon, M. , Vander Ghinst, M. , Mary, A. , Marty, B. , Coquelet, N. ,

Naeije, G. , Peigneux, P. , Goldman, S. , De Tiège, X. , 2019. Synchrony, metastability,

dynamic integration, and competition in the spontaneous functional connectivity of

the human brain. NeuroImage 199, 313–324 . 

ascual-Marqui, R. D., 2007. Discrete, 3d distributed, linear imaging methods of

electric neuronal activity. part 1: exact, zero error localization. ArXiv e-prints,

arXiv:0710.3341. 

furtscheller, G. , Zalaudek, K. , Neuper, C. , 1998. Event-related beta synchronization

after wrist, finger and thumb movement. Electroencephalogr. Clin. Neurophys-

iol./Electromyogr. Motor Control 109 (2), 154–160 . 

euter, M. , Schmansky, N.J. , Rosas, H.D. , Fischl, B. , 2012. Within-subject template esti-

mation for unbiased longitudinal image analysis. NeuroImage 61 (4), 1402–1418 . 

idgway, G.R. , Litvak, V. , Flandin, G. , Friston, K.J. , Penny, W.D. , 2012. The problem of

low variance voxels in statistical parametric mapping; a new hat avoids a haircut.

NeuroImage 59 (3), 2131–2141 . 

obinson, S. , 1999. Functional neuroimaging by synthetic aperture magnetometry (sam).

Recent advances in biomagnetism . 

ekihara, K. , Nagarajan, S. , 2008. Adaptive spatial filters for electromagnetic brain imag-

ing. Ser. Biomed. Eng. . 

ekihara, K. , Nagarajan, S.S. , Poeppel, D. , Marantz, A. , Miyashita, Y. , 2001. Reconstruct-

ing spatio-temporal activities of neural sources using an meg vector beamformer tech-

nique. IEEE Trans. Biomed. Eng. 48 (7), 760–771 . 

ong, T. , Cui, L. , Gaa, K. , Feffer, L. , Taulu, S. , Lee, R.R. , Huang, M. , 2009. Signal space sep-

aration algorithm and its application on suppressing artifacts caused by vagus nerve

stimulation for magnetoencephalography recordings. J. Clin. Neurophysiol. 26 (6),

392–400 . 

anaka, N. , Thiele, E.A. , Madsen, J.R. , Bourgeois, B.F. , Stufflebeam, S.M. , 2009. Magne-

toencephalographic analysis in patients with vagus nerve stimulator. Pediatr. Neurol.y

41 (5), 383–387 . 

aulu, S. , Hari, R. , 2009. Removal of magnetoencephalographic artifacts with temporal

signal-space separation: demonstration with single-trial auditory-evoked responses.

Hum. Brain Mapp. 30 (5), 1524–1534 . 

aulu, S. , Simola, J. , 2006. Spatiotemporal signal space separation method for rejecting

nearby interference in MEG measurements. Phys. Med. Biol. 51 (7), 1759–1768 . 

aulu, S. , Simola, J. , Kajola, M. , 2005. Applications of the signal space separation method.

IEEE Trans. Signal Process. 53 (9), 3359–3372 . 

utela, K. , Hmlinen, M. , Somersalo, E. , 1999. Visualization of magnetoencephalographic

data using minimum current estimates. NeuroImage 10 (2), 173–180 . 

ander Ghinst, M. , Bourguignon, M. , Op de Beeck, M. , Wens, V. , Marty, B. , Hassid, S. ,

Choufani, G. , Jousmki, V. , Hari, R. , Van Bogaert, P. , Goldman, S. , De Tiège, X. , 2016.

Left superior temporal gyrus is coupled to attended speech in a cocktail-party auditory

scene. J. Neurosci. 36 (5), 1596–1606 . 

anVeen, B.D. , vanDrongelen, W. , Yuchtman, M. , Suzuki, A. , 1997. Localization of brain

electrical activity via linearly constrained minimum variance spatial filtering. IEEE

Trans. Biomed. Eng. 44, 867–880 . 

igario, R. , Sarela, J. , Jousmiki, V. , Hamalainen, M. , Oja, E. , 2000. Independent compo-

nent approach to the analysis of eeg and meg recordings. IEEE Trans. Biomed. Eng.

47 (5), 589–593 . 

http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00070-7/sbref0045

	Localization accuracy of a common beamformer for the comparison of two conditions
	1 Introduction
	2 Theory
	2.1 General setting
	2.2 Analytical considerations
	2.3 Illustration with a toy model simulation

	3 Materials and methods
	3.1 Subjects
	3.2 Data acquisition
	3.3 Data preprocessing
	3.4 Simulated data
	3.5 Source reconstruction
	3.6 Mislocalization mapping in simulations
	3.7 Comparison of two evoked responses

	4 Results
	4.1 Topographical overlap of source gains
	4.2 Examples of mislocalization bias
	4.3 Mislocalization maps
	4.4 Mislocalization for experimental data

	5 Discussion
	5.1 Pitfalls of the common beamformer
	5.2 Avoiding mislocalization with or without a common beamformer
	5.3 Conclusion

	Author contribution
	Data and code availability statement
	Acknowledgments
	Supplementary material
	References


