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Effect of interactions in the interference pattern of Bose-Einstein condensates
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Understanding the effect of interactions in the phase evolution of expanding atomic Bose-Einstein condensates
is fundamental to describing the basic phenomenon of matter wave interference. Many theoretical and experi-
mental works tackled this problem, always with the implicit assumption that the mutual interaction between two
expanding condensates rigidly modifies the phase evolution through an effective force. In this paper, we present
a combined experimental and theoretical investigation of the interference profile of expanding *’Rb condensates,
with a specific focus on the effect of interactions. We come to the different conclusion that the mutual interaction

produces local modifications of the condensate phase only in the region where the wave packets overlap.
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I. INTRODUCTION

The first experimental evidence of the interference between
two atomic Bose-Einstein condensates back in 1997 [1] was
welcomed as a breakthrough demonstration of macroscopic
phase coherence. Since then, interference of two or multiple
condensates has been the focus of intense research, both to
study the coherence properties [2] and to detect the presence
of phase defects, such as vortices or solitons [3,4], and even to
reveal spin-orbit coupling [5]. In addition, condensates were
soon recognized as ideal sources for matter-wave interferom-
etry [6], and used to measure gravity [7-9], rotations [10-12],
and fundamental physical constants [13,14]. In this context
interatomic interactions play an important role: On one hand,
they might induce detrimental dephasing [15-17]; on the other
hand, they are a resource for entanglement-enhanced sensitiv-
ity, e.g., via the use of squeezed states [18-22].

Despite repeated scrutiny [23-26], in the presence of in-
teractions even the basic phenomenon of two interfering
condensates still shows interesting and unraveled features
[27-29]. At the mean-field level, the self-interaction of an
individual condensate drives its phase evolution [30], while
the mutual interactions between two condensates are usually
taken into account via the modification of the condensates
center-of-mass motion [2,25,31]. In doing so, the implicit as-
sumption is made that the condensate phase is “rigid” [32,33],
i.e., not locally deformable but only globally variable.
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Here we show, through an experiment backed by a theoreti-
cal analysis and numerical simulations, that the assumption of
phase rigidity must be abandoned, at least in certain regimes.
Indeed, we find that the mutual interactions between two inter-
fering condensates lead to local modifications of their phase
that are essential for the precise description of the conden-
sates interference. These results are obtained by performing a
quantitative analysis of the interference pattern of interacting
condensates in free fall and comparing the experimental find-
ings with numerical simulations based on the Gross-Pitaevskii
(GP) equation and with semianalytical models that assume
phase rigidity. We show that while semianalytic models fail to
quantitatively describe the observed fringe spacing, these are
instead well reproduced by the GP equation. Also, we show
that the phase of the macroscopic wave function cannot be
described only through the dynamical variables of the center-
of-mass motion, i.e., velocity and position.

The paper is organized as follows. Section II presents the
experimental results obtained applying a sequence of Bragg
pulses on an expanding 8’Rb condensate. The integrated den-
sity distribution of the interferogram is analyzed performing a
Fourier transform (FT). The main wave vector obtained from
the Fourier analysis is compared with (i) the analytical expres-
sion for two expanding condensates neglecting their mutual
interaction, (ii) the prediction including mutual interaction
through an effective force [31], and (iii) with numerical GP
simulations. The measurements clearly show that the mutual
interaction between the two expanding condensates modifies
their phase evolution. In Sec. III we present a theoretical anal-
ysis of the simplest scenario of two interfering condensates
[1,34], revealing that the phase modification due to mutual
interactions is not fully captured by an effective force arising
from the repulsion between the two wave packets, as consid-
ered for example in [2,25,31]. In particular, we evidence a
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lattice direction

FIG. 1. Schematic of the interferometric procedure.

local modification of the phase in the region where the two
condensates superimpose. Finally, in Sec. IV we summarize
our results and discuss the outlooks.

II. EXPERIMENT

Expanding interacting condensates are produced with an
interferometric sequence of two resonant 77 /2 Bragg pulses
of a lattice potential, separated by a time interval A¢. Each
7 /2 Bragg pulse is a matter-wave beam splitter, coupling the
two £/ik; momentum states along the lattice direction, where
kp = m/d and d is the optical lattice constant [35]. After
the second pulse, at both output ports of the interferometer we
have two expanding and interfering condensates, which have
started their expansion separated by the distance accumulated
in the time interval between the two pulses, approximately
2(hky /m)At, where m is the atomic mass (see Fig. 1).

In particular, we produce a single 8’Rb condensate with
N =2 x 10°-5 x 10’ atoms in the |F = 2, mp = 2) state in
a hybrid trap [36] using a quadrupole magnetic field and an
optical dipole potential generated by a single focused laser
beam, as detailed in Ref. [37] and schematically shown in
Fig. 2. Typical frequencies of the confining potential are
(Vx, vy, V) 2 (50, 15, 60) Hz. We then excite a dipole motion
along the x direction. When the condensate reaches the veloc-
ity v = hk; /m, we switch off the trapping potential and, after
a delay time f4c1ay, We perform the Bragg pulse sequence.

The optical lattice potential for the Bragg pulses is pro-
duced by two laser beams at Ajgr = 1064 nm propagating
(as schematically shown in Fig. 2) at angles —o = —22.5°
(Lattice Beam 1) and & + o (Lattice Beam 2) with respect to
the x axis in the horizontal xy plane, and inclined at angles
of —f = —16° and 7 + B, with respect to the same plane.
This configuration produces an optical lattice along the x axis
with a spacing d = Ajaser/(2 cos o cos B) = 599 nm and k;, =
m/d. We typically have a lattice potential height Vi, ~ 5E,,
where E, = hzkz /(2m) and m are the recoil energy and the
mass for 8’Rb atoms. The Bragg pulse, lasting Tpulse A 65 us,
is a /2 pulse, i.e., a beam-splitter producing two equally
populated condensates with opposite momenta +7k;. After
the two Bragg pulses, we measure the atomic density distri-
bution waiting an additional time interval adjusted to keep
constant the total time of flight rrorp = 33 ms. At each output
port of the interferometer, labeled with A and B as indicated
in the schematic of Fig. 1, we observe the interference of two
condensates that are prepared by the interferometric sequence

Trap Beam

N

Quadrupole Coils

FIG. 2. Schematic of the experimental apparatus, showing the
beam of the optical dipole trap (red), the quadrupole coils (light
brown), and the beams of the optical lattice used for the Bragg pulses
(brown). Both the trap and the lattice beams are at a wavelength
Maser = 1064 nm.

in a configuration where they are spatially separated and have
(approximately) the same velocity.

We performed two different sets of measurements: In the
first set we vary the condensate separation Ax by varying the
time Ar between the two Bragg pulses and keep constant the
delay before the first Bragg pulse, #4e1ay; in the second set, vice
versa, At is fixed and #4e1ay 18 varied. Let us start by the former
set. In Fig. 3, upper row, we show the measured atomic density
distribution integrated along the y direction measured at port
B of the interferometer with #4e1,y = 1 ms varying the time
between the two Bragg pulses At from 0.6 ms to 1.8 ms. Note
that the contrast of the interferometer at port B is expected

FIG. 3. Column density in the xz plane for #gj,y = 1 ms and
different values of Ar (0.6 ms, 1.0 ms, 1.4 ms, and 1.8 ms, from
left to right). The mean atom number is N = 2 x 10° and the har-
monic trapping frequencies (of the initial trap) are (wy, @y, ;) =
2w x (50, 15, 60) Hz. First row: Density distribution measured at

the port B of the interferometer. Second row: GP simulation for the
same experimental parameters. The box size is 192 um.
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FIG. 4. Fringe wave vector K; as a function of At: The exper-
imental data (red points) are compared with the results of the GP
simulations (continuous blue line with a band representing a 50%
uncertainty on N) and the theoretical prediction of Eq. (2) for the
noninteracting case (dashed blue line). The dotted blue line is cal-
culated correcting the center-of-mass motion of the two condensates
using the effective force in Eq. (3) (see text). Here f4e1,y = 1 ms.

to be C = 1 independent from fluctuations in the efficiency
of the Bragg coupling, as long as the two pulses are equal
[38]. We typically measure a smaller contrast, C =~ 0.4, at
both ports, which we attribute to an angle of ~5° between
the detection view, defined by the direction of probe laser
beam, and the yz plane of the fringes. This angle affects the
fringes’ spacing negligibly (0.3%). The lower row of Fig. 3
shows the corresponding density profiles obtained from the
GP simulation.

In order to measure the fringe wave vector K, we further
integrate the 2D density profiles along the z axis, and then
we extract Ky from the corresponding FT, see Fig. 4, as a
function of the evolution time At (red points). In this figure
we also show the result of GP simulations (continuous blue
line), which nicely match the experimental data.

In the simulations, the condensate is described by a wave
function ¥ (r,t) that evolves according to the GP equation
[39]

2
iho,y = [—;—mVZJrU(rJ)JrgIWIz}w, (1

with g = 47 i%a/m and a = 994, the s-wave scattering length.
Here U(r,t) represents the Bragg potential, with the same
sequence as in the experiment [40].

Regarding the effect of interactions on the interference
pattern, it is instructive to compare the above results with the
expected value of the fringe wave vector for the case of two
condensates which interfere in the absence of mutual interac-
tions, Ky o: In this case, since the interfering wave functions
have no relative velocity, we have (see, e.g., Refs. [2,41] and
the discussion in Sec. III)

_m Ax(troR)
i Ax(tTor)

where x = x, — x; = (2hk; /m)At is the separation between
the condensate centers of mass, A, (v = x,y, z) are the di-

Kf'() 5)(, (2)

mensionless scaling parameters governing the expansion of
the condensate in the Thomas-Fermi regime [30], and tror
represents the total expansion time. This result corresponds
to the dashed blue curve in Fig. 4, which displays a significant
deviation with respect to the full GP results and the experi-
mental data. This is not surprising, as here the condensates
are indeed interacting.

Then, in order to account for the effect of the mutual
repulsion, we consider an approach that has been often used
in the literature, namely we assume that the phase of the two
condensates is modified by an additional velocity term pro-
duced by an effective force due to the mean-field interaction
of the two condensates [2,25,31]. According to the discussion
in [31] [see their Eq. (34)], the effective force (that here acts
along one of the strongly confined directions of the trap) can
be written as

ma).f|8x(t)|
Ae()3Ay (A1)

where §x(¢) is the time-dependent distance between the cen-
ters of mass of the two expanding condensates and the sign
=+ refers to the right and left condensate, respectively [42].
Though not explicitly mentioned in Ref. [31], in the deriva-
tion of Eq. (3) there is the implicit assumption that the two
condensates substantially overlap. In our present setup, this
condition restricts its limits of applicability to A < 1 ms. The
above expression of F,(¢) is then used to compute the position
and velocity of the center of mass of the two condensates at
t = tror. Finally, the fringe wave vector is evaluated through
the Eq. (B2) discussed in Appendix B, and it is shown in
Fig. 4 as a dotted blue line. Remarkably, it turns out that this
effective approach overestimates the effect of interactions and
it produces a wave vector smaller than observed. We shall
see in Sec. III that the failure of this approach resides in
the assumption of “rigidity” of the condensate phase, that in
general is not justified in the presence of local interactions, as
they are likely to produce local variation of the phase.

In a second series of measurements, we kept constant the
time between the two Bragg pulses, At = 1 ms, and we varied
Idelay from 0.5 ms to 4.0 ms, which amounted to varying
the BEC density entering the interferometer with éx almost
constant (except for small effects of the interactions). Samples
of the column density patterns measured at port B are shown
in Fig. 5, along with the results of the GP simulation for the
same sets of parameters.

The corresponding values of the fringe wave vector Ky
are shown in Fig. 6 (red points), along with the prediction
of Eq. (2) (dashed blue line), the results obtained using the
effective force in Eq. (3) (dotted blue line), and the result of
full GP simulation (continuous blue line). As one may naively
expect, this figure shows that the effects of interactions are
predominant at short times where atomic densities are larger,
whereas for longer times, since the atomic densities are lower,
the fringe spacing approaches the prediction for the nonin-
teracting case. Again we see that the center-of-mass motion
induced by the force F, implies a wave-vector variation (blue
dotted line in Fig. 6) larger than the experimental data and the
GP results [43].

Till now, we extracted K; by analyzing the density profiles
integrated along the y and z directions, thus averaging over

F@)=+ 3)
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FIG. 5. Column density in the xz plane measured at port B of
the interferometer, at t = tror. Here we vary fgeay (0.5 ms, 1.5
ms, 2.5 ms, and 3.5 ms, from left to right), while Az =1 ms is
fixed. First row: Experimental data with a mean atom number N =
5 x 10° and harmonic frequencies of the initial trap (w;, wy, w;)
2w x (55,15, 65) Hz. Second row: GP simulations. The box size is
192 pum.

different densities’ regions of the atomic cloud. The effect
of interactions can be highlighted in a single measurement if
we evaluate the interference fringe wave vector for different
sections of the atomic density distribution along the z axis.
In Fig. 7 we show the FT row by row of a single image,
i.e., for varying z coordinates: In the outer regions of low
(column) density the fringes are thinner and, correspondingly,
the peak of the Fourier transform moves towards larger wave
vectors, in agreement with the trend displayed in Fig. 6. Thus
the interferograms display peculiarly curved fringes that have
been previously observed [2] and studied [23,24]. Interest-
ingly, the semianalytical models assuming the phase as rigidly
determined by the center-of-mass motion of the condensates
predict the same fringe wave vector, independent of the den-
sity variation along the z axis (see Appendix A).

Our observations clearly show that the mutual repulsive
interactions of two interfering condensates produce quanti-

.
F .
Lt

05 10 15

20 25 30 35 40
tdelay (ms)

FIG. 6. Fringe wave vector Ky as a function of #4,y, for fixed
At = 1 ms. The red points correspond to the experimental data, the
dashed blue line is the theoretical prediction of Eq. (2), and the
continuous blue line represents the results of the GP simulations
(with a band representing a 50% uncertainty on N). The dotted blue
line is calculated correcting the center-of-mass motion of the two
condensates using the effective force in Eq. (3), as in Fig. 4.

Z_n
k

FIG. 7. FT row by row of the column density distribution in the
xz plane for At = 1.6 ms and #4.1y = 1 ms: Experiment (left) and GP
simulation (right). The box size is 0.82 um~! (wave-vector space,
horizontal) and 192 pum (coordinate space, vertical).

tative modifications of their interferogram. Though similar
effects have already been pointed out in previous experiments
[2,31], and have been addressed by various theoretical works
[23,25,26,31], still a clear explanation is lacking. In particular,
the assumption that interaction effects can be accounted for by
an effective force rigidly altering the phase of the expanding
condensates through their center-of-mass motion seems not
fully justified in our case. Then, in order to make a further
step and clarify this matter, in the following we consider a
simplified scenario which captures the essential features of the
experiment and permits a thorough theoretical analysis of the
effects of the mutual repulsion on the phase of two expanding
condensates.

III. THEORETICAL ANALYSIS OF THE PHASE

Two condensates with identical density distribution are
placed at distance d along the x direction, as shown in Fig. 8.
At time ¢t = 0 the two condensates are released from the
trapping potential and let expand. Each condensate, consisting
of N/2 atoms, is prepared in the ground state of an axially
symmetric harmonic trap, w, = @, > wy. As for the interac-
tion, for simplicity we restrict the analysis to the symmetric
case g11 = g12 = g2 = g (this is an excellent approximation
for experiments with 8’Rb).

For clarity, we start by considering the case in which
the atoms in the two condensates occupy different internal
quantum states (that we indicate as |1) and ||)), so that
the corresponding wave functions evolve according to two
coupled Gross-Pitaevskii (GP) equations. This choice has the
advantage that it allows one to clearly identify the phase
of each condensate, at any time. Then, we shall extend the
discussion to the experimental situation, in which the two con-
densates are formed by atoms in the same internal quantum
state, and, despite being at a distance d apart, are described by

1 >
t >

-2 a2 x

FIG. 8. Sketch of the system considered here: Two condensates
with the same density distribution, initially placed at distance d, are
let expand freely until they overlap and interfere (when projected
onto the same quantum state).
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a single coherent wave function. These two scenarios are anal-
ogous to those considered in [31], with the difference that here
we do not consider two different momentum states, but rather
two wave packets that are spatially separated, initially. In the
first case [that we will refer to as (A)], the two condensates are
in different internal states, when they overlap an instantaneous
/2 pulse is (ideally) applied to mix ||) and |1), and the
density in one internal state becomes |y (r, 1) + Y (r, t)|%,
with the mixed terms producing the interference pattern. In
the second case [referred to as (B)], with all atoms in the same
internal state, the same interference term appears naturally
from different pieces of the total wave function ¥ (r, t), as it
will be clear later on.

In the following, we shall discuss how the phase of each
condensate is affected by the mutual interaction, and how this
determines the wave vector of the interference pattern. Since
the overlap between the two condensates occurs along the x
direction, we will focus on the behavior of the phase along the
x axis, namely for y = z = 0. In particular, we want to provide
a quantitative answer to the following question: Is it possible
to describe the modification of condensate phase in terms of
the effective force that determines the center-of-mass motion
of the two interacting condensates?

In order to do so, in the rest of this section we analyze the
phase resulting from the GP evolution, and we compare it with
the expected behavior (in dimensionless units, see Appendix
A):

1O o A0
O(x,t) = ZA(I)X + |:a(t) A(t)a(t)]x' @

We recall that the above expression has been obtained assum-
ing that the mutual repulsion between the two condensates
can be described in terms of an effective force F(r) that
determines the condensates center-of-mass motion. In this
framework, «(¢) represents the position of the condensate
center of mass at time ¢ and «(#) the corresponding velocity.

A. Different internal states

We start with the case of two condensates in different in-
ternal states, described by the wave functions ¥ »(r, ), which
obey the following GP equations [44]:

. i

iho, Y = [—%vz + gly +g|1/fz|2}¢1,
2 (5)

iho, Yy = [—%vz + glyn)? +g|¢1|2}/f2-

The two condensates are initially displaced by a distance d =
20 pm, and expand for a variable time up to 10 ms. In Fig. 9
we show the phase of the two components and the density of
the |1) state after a recombining 7 /2 pulse, at t = 8 ms, when
the two condensates are substantially overlapped. Since the
two phases ®;(x, t) are expected to be quadratic functions of
the coordinate x [see Eq. (4)], and indeed Fig. 9(a) shows that
they have an almost parabolic shape [45], it is natural to fit the
numerical data with the following expression:

@) (e, 1) = Sap (O + by(t)x + co(0), ©

phase (units of 27)

O N W Lo I
T
L

density (arb. units)

AN
L S

MJ\A) L

-40 -30 =20 —-10 O 10 20 30 40

a (pm)

FIG. 9. Interference pattern for case A at t = 8 ms. (a) Plot of
the phase of the two condensates (solid lines) and of @{i’ (dotted-
dashed line); (b) the density n4(x, 0, 0) of the |1) state after a 7 /2
pulse (solid line), along with the density distribution |v;(x, 0, 0)|> of
the two condensates just before the pulse (dashed lines). The shaded
areas represent the two regions of the fit (see text).

where ay, by, c, are fitting parameters. The index £ = L, R, not
to be confused with i = 1, 2, is introduced because we are
going to perform two independent fits of the phase—one in
the interference region where the two condensate overlap and
the other in the outer portion of the condensate. In particular,
here we are going to refer to the phase ®;(x, 7) of the leftmost
condensate, so that the outer and inner regions correspond to
L and R, respectively (see the shaded areas in Fig. 9).

Let us now analyze the result of the fit from a quantitative
viewpoint. In Fig. 10 we compare the fitted values of a; z(¢)
with the prediction of Eq. (4), assuming the approximate
expression A(f) = /1 + 12, namely A(t)/A(t) =1/(1 + 2).
This figure shows that a; nicely follows the expected be-
havior, whereas agy displays a significant deviation at f >~ 3
ms when, during the expansion, the two condensates start to
overlap. This is a first hint of a local effect of the interaction

0 2 4 6 8 10
t (ms)

FIG. 1(_). Fitted values of a; g(t) compared with the expected
behavior A(t)/A(t) =t/(1 +1?), both expressed in dimensionless
units. The dotted line is a guide to the eye.

043314-5



A. BURCHIANTI et al.

PHYSICAL REVIEW A 102, 043314 (2020)

0.06 . i
0.04
0.02 ° i

(um/ms)

= —0.02 | ° e o ]
004 | 4o

—0.06 | & - . ]
70408 L dH L ° L L L b

0 2 4 6 8 10
t (ms)

ty

OCl

vel

FIG. 11. Values of &,(t) (¢ = L, R) extracted from the fit of the
phase [see Eq. (8)] (red circles) compared with the center-of-mass
velocity X.y (t) (solid line). This figure shows that the linear term of
the phase is not related to the center-of-mass velocity.

between the two condensates, which cannot be accounted for
by a global modification of the phase.
We now turn to the linear term. According to Eq. (4), the
expected value of b, (t) is
bty = ) - Daagr) )
= - — .
‘ ()
In order to verify this relation, we proceed as follows. First, we
indicate with x., (1) = f x|y (r)|?dr the x coordinate of the
first condensate center of mass, obtained from the numerical
simulations, and with X, (f) the corresponding velocity. Then,
by replacing «a(t) with x.,(¢#) and A(z)/A(¢) with a,(t) in
Eq. (7), we define

(1) = be(t) + ap(t)xem (1), (®)

that we compare with x.,(¢), in Fig. 11. Again, this figure
reveals that the value of &, (¢) in Eq. (11), resulting from the
fit of the condensate phase, presents a substantial deviation
from the center-of-mass velocity obtained from the numerical
solution of the GP equations. The above result indicates that
in general it is not justified to describe the phase simply in
terms of the effective force that determines the center-of-mass
motion of the two interacting condensates, as it is usually
assumed in the literature [2,31]. This fact is particularly rel-
evant for experiments that use condensate for interferometric
purposes. Indeed, the deviation from the simple behavior in
Eq. (4) leads to measurable effects in the wavelength of the
interference pattern. A comparison between the analytical ex-
pression in Eq. (B1) and the value of the fringe wave vector K¢
extracted from a sinusoidal fit of the fringes [46], at different
evolution times, is shown in Fig. 12. The explanation for
this behavior is the following: the condensate’s phase, and
therefore the fringe wave vector, are locally affected by the
interactions, not through the center-of-mass velocity.

B. Same quantum state

In this case the whole system can be described by a sin-
gle wave function ¥ that evolves according to the same GP
equation as in Eq. (1), with U = 0. In order to proceed with
the same analysis as in the previous case, we can conveniently
split the wave function in two components, ¥ = Y + ¥, that
we associate to the two initial condensates; see Fig. 8. Then,
it is straightforward to prove that Eq. (1) (with U = 0) is for-

6 Ca=0 —
Q= Tem
K= 2bg
GP (A . ]
GP (B

K¢ (pm™?)
.

t (ms)

FIG. 12. Fringe wave vector K; as a function of time. The values
extracted from a sinusoidal fit of the density modulations [see, e.g.,
Fig. 9(b)] as obtained from the GP simulations (for cases A, B)
are compared to the formula in Eq. (B2), for different settings. The
continuous line corresponds to the case in which the two conden-
sates do not interact (¢ = 0), the dashed line to & = X, and the
dotted-dashed line obtained from the fitted value of bg, Ky = 2b.
The excellent agreement between the latter and the GP values (for
the present case, A) provides a consistency check between the fits of
the wave-function phase and of the fringes, which are independent.

mally equivalent to the following two coupled GP equations:

iy = [~ V2 4+ g 32 [Yil® + 2gRe(¥v2)] ¥,

ihd Yy = [—4. V7 +g X0, Wil + 28 Re(¥iv2) ¥,

©))
that differs from Eq. (5) owing to the presence of the term
proportional to Re(y/{ ). This manifestly shows that here
the role of interactions can be more complex, with respect to
the previous case of two different quantum states. We remark
that the choice of the splitting is not unique—the mean-field
term |y + V2 |*>(¥1 + V) could be split differently between
the two equations, see, e.g., Ref. [31]—and somewhat arbi-
trary, as the two components are distinguishable only initially,
when they are spatially separated. Nevertheless, it produces a
mean-field potential that is defined real, and it is symmetric
under the permutation 1 <> 2. Such a splitting is useful for
identifying two components which eventually interfere and to
keep track of the corresponding phases.

Then, we proceed as in the previous case. The two con-
densates are initially displaced by a distance d = 20 um, and
are let expand for a variable time, up to 10 ms. The total
density and the phase of the two components are shown in
Fig. 13, at t = 8 ms. In this case the phases ®;(x, ¢) display
a clean parabolic shape only outside the interference region,
so that we restrict the quadratic fit, see Eq. (6) only to the
leftmost region—the shaded area in Fig. 13—and remove the
index £. We find that the coefficient of the quadratic term,
a(t), behaves like a;, in Fig. 10, nicely following the expected
behavior A(¢)/A(r) = t/(1 + 12). Needless to say, this has no
influence on the fringe spacing, as the latter is affected only
by the phase in the overlap region. Notice that here the phase
is characterized by “jumps” in correspondence of the density
minima, associated to the presence of (quasi)nodes. The am-
plitude of the jumps is always less than or equal to m: They
range from low amplitude knees that bend smoothly around
finite size density minima to sudden jumps of amplitude
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FIG. 13. Interference pattern for case B at t = 8 ms. (a) Plot of
the phase of v, and vy, (solid lines), and of ®/* (dotted-dashed
line); (b) total density |, + v,|* (solid line), along with |¢/;|*> and
[y,]2. All quantities are plotted as a function of x, for y = z = 0. The
shaded area represents the region where we fit the phase of ¥, (see
text).

in correspondence of density nodes, where the wave function
changes sign. As for the velocity term, the combination of
Eq. (8) with the result of the fit is shown in Fig. 14, along
with the center-of-mass velocity x.,(#) (solid line) and the
corresponding curve for the previous case in Fig. 11. From
this figure we evince that (i) the value of &,(¢) inferred from
the fit of the phase displays a larger deviation from the actual
center of mass, with respect to the case treated in the pre-
vious section, and (ii) the effect of the mutual repulsion on
the center-of-mass motion of the two components is stronger
than in the previous case. The fact that in the present case
B (condensates in the same quantum state) interactions play
a more relevant role with respect to the previous case A
(different quantum states) is also evident from the values
of the fringe wave vector shown in Fig. 12 (empty circles).
Indeed, in the present case the deviation from the prediction

velocity (pm/ms)
s
[N

t (ms)

FIG. 14. Values of a(r) extracted from the fit of the phase [see
Eq. (8)] (red circles) compared with the center-of-mass velocity
Xem (1) (solid line). As a reference we also show the center-of-mass
velocity of the previous case (dotted-dashed line); see Fig. 11.

for the noninteracting case is substantially larger than in case
A.

IV. SUMMARY AND OUTLOOK

We have presented a quantitative investigation of the in-
terference produced by two expanding condensates where
mutual interactions play a substantial role. The wave vector of
the interferogram fringes has been measured varying the tim-
ing of an interferometer consisting in two 7 /2 Bragg pulses.
The experimental data have been compared with two semi-
analytical models obtained either by neglecting altogether the
mutual interactions or by accounting for them through an ef-
fective force that globally alters the center-of-mass dynamics,
and hence the condensates’ phases, finding that this approach
fails to quantitatively match the observations. We have also
performed GP simulations which remarkably agree with the
experiment. Motivated by these results, in order to clarify
the effect of mutual interactions on the phase of the interfer-
ing condensates, we have introduced a simple but instructive
model of two initially separated condensates which interact
and interfere during the expansion [1]. By analyzing their
phase evolution we reach the main conclusion that we have
to abandon the idea of a rigid phase, globally modified by the
interactions. Instead, we have shown that interactions affect
the phase only locally, in the region where the two interfering
wave packets superimpose.

These results, which we believe have a general validity
for a deeper understanding of matter wave interference, open
perspectives for interferometric applications of interacting
Bose-Einstein condensates.
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APPENDIX A: EXPANSION OF A SINGLE WAVE PACKET
IN THE PRESENCE OF AN EXTERNAL FORCE

Here, we recall how a single condensate expands in the
presence of an external force along the x axis, generated by the
linear potential U (x) = —F (¢)x. The condensate wave func-
tion v (r, t) evolves according to the GP equation in Eq. (1)
that admits solutions of the form

Y, 1) = @l —a(t),y, z;1)e™mP O =@/ (A])

Then, by setting

a=p, B=F/m, y=2B"/m, (A2)
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it is straightforward to get

hz
ind,p(& 1) = [—%% +glo(E, t)|2]¢(£, 1, (A3)

where we have defined & = r — «(¢)e, and e, is the unit vector
in x direction. This equation, along with Eq. (A1), tells us
that if @(x,t) is the wave function of a freely expanding
condensate, the wave function of a condensate that expands
in the presence of the force F = F(t)e, is obtained from the
former as

Y(r, 1) = glx —a(t),y, z;t)e™ O e=iv @/ (A4)

where «(t) is obtained by integrating Egs. (A2).

In the Thomas-Fermi regime relevant for the experiment,
the expansion of each of the two condensates is character-
ized by an almost self-similar behavior [39] described by
the Castin-Dum scaling parameters [30,31]. In particular, the
x-dependent component ¢(x,t) of the phase of a conden-
sate initially in the ground state of a harmonic potential of
frequency w,, and centered in x = 0, is described by the
following simple analytical expression:

oo 1x2 1 A@)
o(x, )—Ea—i}w—xm,

where ap, = «/l/(mw,) is the harmonic-oscillator length and
A1) > /1 4+ w2t? is the transverse scaling parameter for an
elongated trap [30]. In order to simplify the notations, it is
convenient to use dimensionless variables by introducing ay,
as length scale and w, as time scale. Then, velocities are
measured in units of «/fAw,/m. In the rest of this section all
quantities are assumed to be dimensionless (this corresponds
to setting 7 = 1 = m in the previous expressions).

Then, the overall phase of i in Eq. (A4) can be written as
Dd(x,t)+ D'(y, z,t), where

B0, T O
= 2k(t)x +[a(t) Mt)a(t):|x,

(A5)

d(x, 1) (A6)

whereas ®’(y, z, t) accounts for the dependence on the spatial
coordinates y, z, and includes also terms that depend only on
time.

If one is interested in the behavior of the phase just as a
function of x, namely for y =z = 0 as in Sec. II, then the
contribution of @' can be safely neglected (it amounts to a
global phase). Instead, if one is interested in the dependence
of the fringe wave vector upon the density of the condensate,
in principle @’ cannot be ignored (see below).

The above Eq. (A6) shows that the phase ®(x,t) of an
expanding condensate contains two terms: A quadratic term
(in the coordinate x), whose coefficient i(t) /A(¢) depends on
the trap frequency [39], and a linear term that depends on the
center-of-mass position «(#) and its velocity a(r).

APPENDIX B: TWO INTERFERING WAVE PACKETS

The interference of two wave packets produces a den-
sity pattern proportional to cos[A®(x, )] = cos[D;(x,t) —
®;(x, t)]. According to Eq. (4), we have (modulo a global
phase)

oA
Ad(x, 1) = |:8a(t) — méa(r)]x = Kyx, (B1)

where da = a1 — a3, Ky denotes the wave vector of the in-
terference fringes. Here we are considering a system that is
invariant under parity, where the two condensates experience
opposite forces; thus we have «; = —ap = o and

Ky = 2[a(1) — a(t)i(t)/1(0)]. (B2)

When the @’ contribution is taken into account, an extra
term AQ’ = @) — P/ arises: However, since &| = ¢,, AP’
is identically zero and the present model does not capture
the curvature of the interference fringes due to the density
dependence of the wave vector.
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