
Exclusive Substitutional Nitrogen Doping on Graphene Decoupled
from an Insulating Substrate
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ABSTRACT: The on-surface synthesis of atomically flat N-doped graphene on
oxidized copper is presented. Besides circumventing the almost standard use of
metallic substrates for growth, this method allows producing graphene with ∼2.0
at % N in a substitutional configuration directly decoupled from the substrate.
Angle-resolved photoemission shows a linear energy-momentum dispersion
where the Dirac point lies at the Fermi level. Additionally, the N functional
centers can be selectively tailored in sp2 substitutional configuration by making
use of a purpose-made molecular precursor: dicyanopyrazophenanthroline
(C16H6N6).

■ INTRODUCTION

The Nobel Prize recognition to the discovery of graphene in
2010 boosted the efforts to produce this two-dimensional (2D)
material, which opened a new paradigm of relativistic
condensed matter physics. One of the most remarkable
features of graphene originates from the linear dispersion of
its π and π* bands at the Dirac point in the vicinity of the
Fermi level, which accounts for the description of pristine
graphene as a zero-gap semiconductor.1,2 This material with
outstanding physical properties has inspired the seek for a
mechanism to control its behavior in a tunable manner, and
nonsurprisingly, studies on the functionalization of graphene
with the presence of heteroatoms such as N, B, and Si have
appeared in an exponential way.3−6 For instance, nitrogen-
doped graphene (N-graphene) was first reported in 2009 from
the pyrolysis of pyridine and ammonia in the arc discharge of
graphite electrodes,7 but later studies have optimized its
growth with a wide scope of techniques.8−13 Several
applications of N-graphene have already been tested toward
a new generation of batteries,14−16 oxygen reduction,17

hydrogen generation,18 biosensors,19,20 supercapacitors,21,22

and quantum dots.23,24 Ideally, the method used for the
synthesis of graphene should be chosen according to the
intended application.
Especially in applications where the control of the electronic

properties plays a critical role in the performance, the growth
mechanism should be understood. Different N bonding
environments can affect the local electronic structure, so for
N-graphene, the goal is to gain control on the electronic
properties incorporating substitutional functional centers and

the least possible vacancy-related defects. Also, the work
function and carrier concentration of N-graphene are changed
by the dopants.25,26 A decoupling from the surface can also
open interesting application pathways. With all this in mind,
on-surface synthesis can be one of the most versatile strategies
to build such complex low-dimensional materials and use them
as-grown. To some extent, this method can be related to
chemical vapor deposition (CVD), in which vapors of
pyrazine,7 ammonia,27 acetonitrile,14 and triazine28 among
others have been used, but making N-graphene with mainly
substitutional configuration is still extremely challenging with
such methods. Studies carried out with ion implantation have
shown that N can be incorporated onto the surface,29,30 and
further work has proven the incorporation of the heteroatoms
at the local level with techniques such as scanning tunneling
microscopy, which require a metallic surface to ease character-
ization.26,28,31 However, CVD can offer a scalability advantage,
but the effect of catalytic surfaces used must be carefully taken
into account. For instance, a metallic substrate can negatively
interfere with the performance of graphene, and this is the
reason why fabricating graphene-based electronic devices
requires several transfer processes to place either directly
onto insulators or onto high κ-dielectric materials.32−34 These
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processes undermine the quality of graphene and make it
prone to wrinkling,33−35 explaining, in turn, the considerable
amount of research still looking for a clear route to fabricate
high-quality graphene on suitable substrates.13,36−39

Herein, we report an on-surface synthesis method to grow
N-graphene using a nitrogen-rich polycyclic aromatic hydro-
carbon as feedstock, namely, dicyanopyrazophenanthroline
(see Figure 1).40 This derivative possesses a high C/N ratio

(16:6): all the nitrogen atoms are incorporated into the
aromatic framework in sp2- or other sp-N configuration, and it
can be deposited by sublimation. The molecular deposition
studies on different surfaces include single-crystalline Cu(111),
polycrystalline copper foil, and the corresponding oxidized
surfaces. Remarkably, the use of dicyanopyrazophenanthroline
leads to the exclusive incorporation of N in sp2 configuration
within the graphene hexagonal lattice from the first step with a
doping level of ∼2.0 at %, which represents at least double the
amount of substitutional atoms reported for N-graphene grown
on an insulating material (Table 1). It is important to remark
that this value corresponds to substitutional doping if it is
compared to the literature, where the doping values reported
combine the portion of different bonding environments.
Furthermore, N-graphene grown on insulating oxidized
Cu(111) shows an energy-momentum dispersion with the
Dirac point lying at the Fermi level, demonstrating that the
oxide layer decouples graphene from the substrate.

■ METHODS
A dicyanopyrazophenanthroline C16H6N6 molecule was used
as C/N feedstock, and its synthesis and capability to induce the
incorporation on the graphene network have been reported
elsewhere.40 We have grown N-doped graphene, and its
spectroscopic characterization has been carried out in situ in

ultrahigh vacuum (UHV) via photoemission spectroscopy
(PES) in different energy ranges as explained later, as well as
with low-energy electron diffraction (LEED). PES was
performed using a dedicated spectrometer equipped with a
monochromated Al Kα source (1486.6 eV) and a Scienta
RS4000 analyzer. It is also equipped with a He II lamp
operating at 40.8 eV for ultraviolet PES. Polycrystalline copper
foil (0.025 mm) from Alfa Aesar and a Cu(111) single crystal
(ϕ 5 mm × 2 mm) from MaTecK GmbH were used as starting
materials. For the sample preparation, the Cu(111) single
crystal and the Cu foil were cleaned by Ar+ sputtering for
several cycles for 60 min and then annealed at 800 K for
another 60 min. C16H6N6 was subsequently deposited on the
clean Cu(111) and the clean Cu polycrystalline copper foil at
room temperature in UHV using a Knudsen cell working at
∼400 K. The deposition rates were monitored using a quartz
micro balance. To obtain oxidized surfaces, the samples were
exposed to air during 5 min, while additional metallic Cu(111)
and Cu foil samples were kept under UHV conditions. The
following annealing treatment at 1250 K was performed on all
samples. Scanning transmission electron microscopy (STEM)
measurements were performed with a Nion UltraSTEM 100
electron microscope operated at 60 keV.41 The TEM grid
preparation was carried out using the polymethylmethacrylate
(PMMA)-based technique, which included the coating of
graphene with PMMA, etching of the copper foil with FeCl3 to
place the suspended graphene on TEM grids, and, finally, the
PMMA removal with acetone.42 Scanning electron microscopy
was carried out using a Zeiss Supra 55 VP microscope.

■ RESULTS AND DISCUSSION

The use of C16H6N6 results in the effective growth of graphene
on the substrates in question. Nevertheless, significant
differences appear looking in their spectroscopic responses.
First, our samples show graphene portions ranging from 0.5 to
2 μm independently from the surface where they were grown,
which hints that the grain size distribution is linked to the
feedstock rather than to the nature of the substrate (see a
representative scanning electron micrograph of this type of
material in Figure 2). Further microscopy measurements were
carried out by STEM. This was carried out for analytical and
structural inspection on suspended graphene transferred to
TEM grids in the feasible cases as later described together with
the surface structural analysis via LEED and ARPES. With
these pieces of information, we are able to gather valuable
information on the electronic dispersion (momentum vs
energy) of N-graphene on Cu(111) compared to the oxidized
counterpart. All these results are explained below in detail.
Focusing first on the molecular precursor that is a derivative

of the phenanthroline molecule, featuring an extended π-
conjugated system, it provides the initial advantage that it bears

Figure 1. Dicyanopyrazophenanthroline (C16H6N6) molecule was
used as a precursor for the synthesis of N-graphene. Its structure has
favored the formation of N substitutional configuration. Left:
C16H6N6 molecule. Right: N-graphene.

Table 1. Reported Studies on N-Graphene Directly Grown on Insulators or High κ-Dielectric Materials

feedstock N (at %) N-configuration reference

molecular nitrogen (N2) N.A. pyridinic/pyrrolic 36
ammonia (NH3) N.A pyridinic 37
ammonia (NH3) 0.1 pyrrolic/sp2 38
hexaazotriphenylene (C18N12) 7.8 pyridinic/pyrrolic/sp2 39
pyridine (C5H5N) 0.6 sp2 (2.5 eV)a 13
dicyanopyrazophenanthroline (C16H6N6) 2.0 sp2 (1 eV)a here

aObservable fwhm at the N 1s in XPS.
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multiple nitrogen sites susceptible to coordinate with the
metal, including a strong chelating phenanthroline ring, a
bridging pyrazine ring, and cyano groups43,44 (see Figure 1).
These coordination sites are crucial to prevent the desorption
of the molecular precursor during the high-temperature on-
surface synthesis process we applied. In particular, at these
temperatures, the molecules decompose and rearrange on the
surface to provide the most stable lattice, given the local
chemical composition under the given conditions. Here, the
chemical nature of the feedstock will dominate the
decomposition rates that in turn will affect key factors such
as the local composition. However, a mechanistic overview of
the reaction or any intermediate cannot be matched with well-
established polymerization mechanisms.
The process was followed in-situ monitoring the cleanliness,

purity, and, afterward, the molecular transformation with the
use of XPS with an Al Kα (1486.6 eV) monochromated

source. Survey scans and a closer inspection to the C, N, and
Cu regions were performed for all samples. Also, the O1s core
level signal was taken into account for the appropriate cases.
First, analyzing the processes using the Cu(111) surface,
Figure 3, shows the C 1s and N 1s core level spectra recorded
directly after the deposition of the C16H6N6 molecule (top)
and after the transformation into N-graphene (bottom). The
Shirley background was subtracted in these spectra before
deconvolution.45 The C 1s signal corresponding to the
substrate with C16H6N6 as-deposited reveals four components
at 283.7, 284.3, 284.9, and 285.6 eV, which are ascribed
correspondingly to the C−N, C−C, CN, and CN
bonding environments, respectively.46−48 The ratio between
the integrated area of these peaks (2:3:2:1) is in good
agreement with the proportions in the chemical structure of
the C16H6N6 molecule (Figure S1 in the Supporting
Information). It is important to remark that the absence of a
notorious shift of the C 1s peak (and implicitly of its
components) confirms that our material corresponds basically
to monolayer coverage (Figure S2 in the Supporting
Information). On the other hand, the two components
observed in the N 1s spectrum (see Figure 3b) can be
attributed to NC (397.1 eV) and NC (398.5 eV).46,49

The surface described so far corresponds to the raw deposition
of the molecules at room temperature, but various post-
deposition annealing treatments were tested. For annealing
temperatures lower than 1100 K, only minor changes were
observed in XPS, which lead us to use higher temperatures for
the molecular transformation into N-graphene (see spectra
recorded at different temperatures in Figure S3 in the
Supporting Information). Once the annealing temperature
reached 1250 K, a major change was evident. In particular, the
C 1s peak in Figure 3a narrows down significantly in Figure 3c,

Figure 2. Representative SEM micrograph of N-graphene grown on
Cu foil showing the 2D material grown over surfaces with a cross
section ranging from 0.5 to 2 μm.

Figure 3. C 1s and N 1s XPS spectra of C16H6N6 on Cu(111) “as-deposited” (a,b) and after annealing at 1250 K (c,d). The experimental data are
represented as dots, and the fitted data are represented as solid lines. Note that the low binding energy peak besides the corresponding
substitutional N is related to Mo 3p3/2 present in the sample holder.
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suggesting the fading of at least two components, leading to a
single chemical environment. Note that previous work on sp2

C systems has allowed revealing the characteristic spectra for
different structures including graphene.6,50,51 Here, the spectra
have been fitted with a Voigtian profile by taking into account
a Gaussian contribution associated with the resolution of our
spectrometer with the monochromated X-ray source. In this
specific case, this C 1s spectrum can be fitted almost
exclusively by a single peak at 284.4 eV with a full width at
half-maximum (fwhm) of 0.8 eV, which is in very good
agreement with the values corresponding to graphene in
synchrotron and lab-based photoemission experiments.13,52,53

Furthermore, a shift of the C 1s can be expected because of the
N incorporation on the lattice and the interaction with the
specific metallic substrate, but the largest contribution to this
core response arises from the sp2-hybridized C atoms.
Regarding the N incorporation into the lattice of N-graphene
grown on the Cu(111) substrate, Figure 3b,d shows the core
level N 1s spectra where the components below 399 eV
recorded straight after the molecular deposition correspond to
the nitrilic and pyridinic bonding environments in agreement
with the structure of the molecule.40 On the other hand, after
annealing, the N-graphene spectrum is notoriously different. A
considerable number of studies reported in the literature have
focused on N-graphene, but in seldom cases, both local and
bulk sensitive methods have successfully proven to be a N
incorporation profile. Table 1 shows a summary of the reports
on N-graphene directly grown on oxides or high κ-dielectric
materials. In contrast with those and other reports in the
literature on N-graphene, where the assignment of exclusive
bonding environments is clearly limited by resolution, here, the
N 1s spectrum shows a single peak at 400.6 eV with an fwhm
of 1 eV. Only in this way, the spectra can be safely ascribed
almost exclusively to substitutional nitrogen because it is
obtained from a Voigtian profile that considers the intrinsic
Gaussian experimental resolution and the lifetime Lorentzian
broadening.54 Furthermore, by analyzing the relative areas of
the N 1s and C 1s peaks (corrected by the atomic cross
sections),55 a N content of 2.0 at % has been found in average
in these N-graphene samples. The XPS results obtained for the
polycrystalline foil are very similar to those obtained from the
Cu(111) single crystal from the content and bonding
configuration points of view. Also, the N-graphene samples
grown on the oxidized surfaces were examined in XPS. The C
1s and N 1s responses have consistently shown a shift toward
lower binding energies (∼0.15 eV) and ∼2.0 at % N in
substitutional configuration (Figure S4 in the Supporting
Information). An advantage of using the foil is that preparing
microscopy grids for further observation is achieved with lesser
effort. With this material, we performed annular dark-field
(ADF) imaging in STEM pursuing an atom-by-atom
identification.56 The collected signal from the atoms is
originated from Rutherford scattering, and it increases with
the atomic number, so we are able to identify the dopants
clearly. Figure 4 shows an atomically resolved ADF-STEM
image of the N-graphene grown from a polycrystalline foil. The
images show a regular pattern of atoms forming a hexagonal
lattice with a nearest-neighbor distance of 0.14 nm character-
istic between the C atoms.26,57 A careful observation of Figure
4 unveils a higher contrast in two atoms of the image. The line
profiles of these atoms are depicted in the inset of Figure 4a. As
expected, N atoms (Z = 7) show a higher contrast than C
atoms (Z = 6) in the ADF-STEM images. Moreover, the

relative ADF-STEM intensity between the N and the C atoms
(4:3) is in very good agreement with previously reported
work.56 The N atoms observed in the micrographs are clearly
in substitutional configuration (see Figure S5 in the Supporting
Information).
We keep in mind that the main focus has been to work

toward a one-step method that enables us to obtain a high-
quality N-graphene that can be used directly after the
molecular transformation. Previous studies have shown that
the presence of oxygen on copper can significantly influence
the final quality of graphene and this is often related to the
oxygen concentration during synthesis.58−62 Our on-surface
method offers a very controlled alternative to explore the
advantage of using an oxide instead of a metallic surface to
produce N-graphene. More specifically to the synthesis, after
C16H6N6 deposition, the samples were exposed to air for 5 min
and then placed again under UHV conditions. This hints that
the substrate plays a key role for a controllable adsorption of
the molecular species and also during the on-surface
synthesis.63,64 The 5 min exposure to air is a good compromise
between quality and decoupling of graphene from its substrate,
which represents a significant advancement to the state-of-the-
art on N-graphene synthesis. The analysis corresponding to
this material is shown in Figure 5. The panel a shows the C 1s
spectrum of the N-graphene on the oxidized Cu(111) with its
corresponding deconvolution. Compared to graphene on
Cu(111) (Figure 3c), a shift toward lower binding energies
(0.1 eV) is observed, which is the first hint toward a low

Figure 4. Medium-angle ADF-STEM image of graphene: (a) as-
acquired and (b) filtered image using 4 × 4 Gaussian blur. (c) Line
profiles acquired along the two lines depicted in panel (b).
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interaction of the N-graphene with the substrate. This has been
reported for graphene on oxidized Cu(111)9,34,65 grown from
CVD. Further looking at the C 1s, the response corresponding
to N-graphene on crystalline Cu(111), in Figure 3c, is very
different from the spectrum of N-graphene on oxidized
Cu(111), which has additional components. Besides the peak
at 284.3 eV corresponding to sp2-hybridized C atoms on
oxidized Cu(111), the minor components at 284.8 and 285.4
eV reflect the presence of carbon in another binding
environment, which might be attributed to C−OH and C−
O bonds,66−68 justified by the formation of molecular species
on the surface with O and H atoms that are present after the
feedstock’s decomposition. Furthermore, the LEED diffraction
pattern in Figure 5b obtained after annealing the C16H6N6 at
1250 K deposited on oxidized Cu(111) shows well-defined
spots, suggesting a long-range order over extended zones of the
surface. To disambiguate the interpretation of this diffraction
pattern and gain deeper insight into the surface structure, we
have performed LEED simulations using LEEDpat software69

(Figure 5c). With this, it was possible to associate the LEED
spots to a surface reconstruction described by the matrix

−( )3 2
1 2 and its three equivalent rotational domains. This

surface reconstruction has been interpreted as a distorted
Cu(100)-( 2 × 2 )R45°-O layer on the Cu(111) sub-
strate.34,70,71 Note that a careful observation of Figure 5b
unveils a circular ring typical of polycrystalline graphene just
above the 1 × 1 diffraction spots of Cu(111). For the sake of
comparison, the graphene grown on the clean Cu(111) was
inspected. Also, in this case, the diffraction pattern corresponds
to the characteristic ring from polycrystalline graphene
combined with the first0order diffraction of Cu(111) (Figure
S6 in the Supporting Information).
To further analyze the electronic performance of the N-

graphene on oxidized Cu(111), ARPES measurements where

performed with a photon energy of 40.8 eV (He II source).
The fingerprint of graphene in ARPES on Cu and other metals
is well established in the literature. Graphene on Cu(111)
shows a Dirac point residing at 0.4 eV below the Fermi level
(corresponding to n-type doping).34,72−76 Our N-graphene
sample grown on Cu(111) shows the Dirac point residing at
0.43 eV below the Fermi level (Figure 5e). Only for graphene
decoupled from the substrate, the intrinsic Dirac cone of
pristine graphene can be retained, and this has been shown in
the literature with methods such as decoupling by gold
intercalation under graphene grown on nickel,77 the growth on
polycrystalline samples finding decoupled flakes by micro-
ARPES,78 and by actually oxidizing Cu prior to the growth,34

where an additional flat band is observed at ∼0.8 eV below the
EF, which originates from the hybridization of the Cu4s and the
O2p states. In Figure 5d, the linear dispersion of the π and π*
bands at the vicinity of the Dirac point along the ΓK direction
in the Brillouin zone is observed. Note that the Dirac point
here is around 0.1 eV below EF, which is associated to the
charge transfer that arises from the N-substitution. We expect
distribution of the dopants to be random but it is mainly
substitutional, differing from previous studies that correlate the
local densities around N impurities versus the spectral densities
given by ARPES79 in samples where a larger N concentration
can be attained but not necessarily exclusively on direct
substitutional fashion. Moreover, this confirms that the
presence of copper oxide favors the decoupling of N-graphene
from its metallic substrate.80−82

■ CONCLUSIONS

In summary, we have proved the feasibility of on-surface
synthesis of N-graphene using C16H6N6 as the molecular
precursor, which has allowed obtaining a material with nearly
exclusive substitutional N, which is in turn decoupled from its

Figure 5. (a) XPS C 1s deconvoluted core level spectrum recorded on N-doped graphene grown on oxidized Cu(111). The inset shows the N 1s
core level spectrum with the corresponding deconvolution. (b) Experimental LEED pattern of polycrystalline graphene on oxidized Cu(111)
acquired at 94.2 eV at nearly normal incidence. The dashed curved arrow indicates the position of the graphene ring. (c) Simulated LEED pattern.
The visible spots in the experimental pattern have been highlighted. The white arrows point at one of the Cu(111) and Cu2O spots. The ARPES
image of N-graphene on oxidized Cu(111) (d) and Cu(111) (e), acquired with a photon energy of 40.8 eV (He II) along the ΓK direction. The
white dotted line shows the position of the Fermi level.
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catalytic surface. Our method has been proven for single-
crystalline Cu(111) and polycrystalline copper foils, which
represent a technologically relevant low-cost option. We have
shown that it is possible to grow N-graphene with ∼1.4−2 at %
N in substitutional configuration. Further studies on the
tunability of this doping level would enhance the applicability
of doped graphene grown by this method even more. Our
ARPES measurements show that N-graphene is decoupled
from its substrate, opening encouraging prospect for its direct
growth on other relatively inexpensive high κ-dielectric
materials.
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(10) Usachov, D.; Vilkov, O.; Grüneis, A.; Haberer, D.; Fedorov, A.;
Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.;
Oehzelt, M.; et al. Nitrogen-doped graphene: efficient growth,
structure, and electronic properties. Nano Lett. 2011, 11, 5401−5407.
(11) Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. Large-scale growth and
characterizations of nitrogen-doped monolayer graphene sheets. ACS
Nano 2011, 5, 4112−4117.
(12) Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress
in nitrogen-doped graphene: synthesis, characterization, and its
potential applications. ACS Catal. 2012, 2, 781−794.
(13) Yang, J.; He, W.; Jiang, Q.; Chen, Z.; Ju, H.; Xue, X.; Xu, Z.;
Hu, P.; Yu, G. Hydrogen-Dominated Metal-Free Growth of
Graphitic-Nitrogen Doped Graphene with n-type transport behaviors.
Carbon 2020, 161, 123−131.
(14) Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.;
Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films
for lithium battery application. ACS Nano 2010, 4, 6337−6342.
(15) Qiu, Y.; Li, W.; Zhao, W.; Li, G.; Hou, Y.; Liu, M.; Zhou, L.;
Ye, F.; Li, H.; Wei, Z.; et al. High-rate, ultralong cycle-life lithium/
sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014,
14, 4821−4827.
(16) Zhou, X.; Wan, L.-J.; Guo, Y.-G. Binding SnO2Nanocrystals in
Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-
Ion Batteries. Adv. Mater. 2013, 25, 2152−2157.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c06415
J. Phys. Chem. C 2020, 124, 22150−22157

22155

https://pubs.acs.org/doi/10.1021/acs.jpcc.0c06415?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c06415/suppl_file/jp0c06415_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Juan+Carlos+Moreno-Lo%CC%81pez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-1078-8607
http://orcid.org/0000-0003-1078-8607
mailto:juan.moreno@univie.ac.at
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paola+Ayala"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5851-6638
mailto:paola.ayala@univie.ac.at
mailto:paola.ayala@univie.ac.at
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Filippo+Fedi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giacomo+Argentero"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-0406-8208
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marco+Carini"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Johnny+Chimborazo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jannik+Meyer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-4023-0778
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+Pichler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-5377-9896
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aurelio+Mateo-Alonso"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5316-2594
http://orcid.org/0000-0002-5316-2594
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c06415?ref=pdf
https://dx.doi.org/10.1038/nmat1849
https://dx.doi.org/10.1039/c5cs00542f
https://dx.doi.org/10.1039/c5cs00542f
https://dx.doi.org/10.1016/j.jmmm.2015.10.012
https://dx.doi.org/10.1016/j.jmmm.2015.10.012
https://dx.doi.org/10.1039/c5ra05338b
https://dx.doi.org/10.1039/c5ra05338b
https://dx.doi.org/10.1103/physrevlett.113.115501
https://dx.doi.org/10.1103/physrevlett.113.115501
https://dx.doi.org/10.1063/1.4752736
https://dx.doi.org/10.1002/adma.200901285
https://dx.doi.org/10.1002/adma.200901285
https://dx.doi.org/10.1021/nn103584t
https://dx.doi.org/10.1021/nn103584t
https://dx.doi.org/10.1021/nn103584t
https://dx.doi.org/10.1103/physrevb.86.075401
https://dx.doi.org/10.1103/physrevb.86.075401
https://dx.doi.org/10.1021/nl2031037
https://dx.doi.org/10.1021/nl2031037
https://dx.doi.org/10.1021/nn200766e
https://dx.doi.org/10.1021/nn200766e
https://dx.doi.org/10.1021/cs200652y
https://dx.doi.org/10.1021/cs200652y
https://dx.doi.org/10.1021/cs200652y
https://dx.doi.org/10.1016/j.carbon.2020.01.051
https://dx.doi.org/10.1016/j.carbon.2020.01.051
https://dx.doi.org/10.1021/nn101926g
https://dx.doi.org/10.1021/nn101926g
https://dx.doi.org/10.1021/nl5020475
https://dx.doi.org/10.1021/nl5020475
https://dx.doi.org/10.1002/adma.201300071
https://dx.doi.org/10.1002/adma.201300071
https://dx.doi.org/10.1002/adma.201300071
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c06415?ref=pdf


(17) Yang, H. B.; Miao, J.; Hung, S.-F.; Chen, J.; Tao, H. B.; Wang,
X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M.; et al. Identification of
catalytic sites for oxygen reduction and oxygen evolution in N-doped
graphene materials: Development of highly efficient metal-free
bifunctional electrocatalyst. Sci. Adv. 2016, 2, No. e1501122.
(18) Fei, H.; Dong, J.; Arellano-Jimeńez, M. J.; Ye, G.; Kim, N. D.;
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Goḿez-Rodríguez, J. M. Combining nitrogen substitutional defects
and oxygen intercalation to control the graphene corrugation and
doping level. Carbon 2018, 130, 362−368.
(30) Martín-Recio, A.; Romero-Muñiz, C.; Pou, P.; Peŕez, R.;
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