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Despite the effort, time and money contributed to treat cancer, it is still the second leading 

cause of death worldwide. Boron Neutron Capture Therapy (BNCT), which is able to 

balance high therapeutic efficacy with low undesired side effects, is a promising tool to treat 

cancer. BNCT is a binary approach where two components with low-toxicity require co-

localization in tumor tissue to be activated as therapeutic agent. That is, high accumulation 

of boron-10 (10B) in tumor tissue needs to be achieved and subsequently irradiated by thermal 

neutrons. A nuclear reaction will be triggered in which boron-10 captures a neutron and 

decays into lithium while releasing an alpha particle (10B(n, α, γ)7Li). The originated particles 

generate cellular damage which subsequently leads to cell death. 

To achieve efficient and successful BNCT certain conditions need to be fulfilled. A physical 

challenge was the provisioning of neutrons in clinics, but newly developed accelerators, 

producing high intensity epithermal neutron beams, are now available. Furthermore, boron 

delivery agents able to deliver sufficient amounts of 10B selectively into tumor tissue need to 

be produced. To date, only two compounds (sodium borocaptate (BSH) and 

boronophenylalanine (BPA)) are used in clinical trials, yet, their pharmacological limitations 

arise need for new and improved BNCT drugs. 

Nanomaterials have been increasingly used in drug delivery due to their high loading abilities, 

low cytotoxicity and high bio-compatibility. Additionally, abnormal conditions in diseased 

tissue, such as inflammation or tumor growth, open the possibility of passive targeting for 

nanomaterials due to the enhanced permeability and retention (EPR) effect. 

In the current PhD thesis, we have worked on the development of small, but highly 

boronated particles as 10B carriers for the application in BNCT. Therefore, two different 

nanoparticles were developed and evaluated; one gold-nanomaterial based (AuNP) with a 

core diameter of 3 - 5 nm and one carbon based (carbon dots; CDs) with a core size of 

around 7 nm. Particles of small size come generally with the advantage of a rather fast 

clearance and elimination, hence, lower toxicity due to reduced organ and tissue uptake 

compared to bigger particles. However, high uptake in the diseased organ/tissue, such as a 

tumor, is desired. In this PhD we approached the challenge to achieve the balance between 

small and fast clearing particles but retention in tumor tissue by introducing a pre-targeting 

strategy. 

The principle of pre-targeting is based on the high specificity of monoclonal antibodies 

(mAbs) towards their target. In tumor tissue such targets can be certain over-expressed cell 

membrane receptors. In our case we worked with breast cancer tumor models, using the 

antibody Trastuzumab (Herceptin®), which targets the membrane receptor HER2. For pre-

targeting the antibody is functionalized with a moiety able to undergo a bioorthogonal click 

reaction (here trans-cyclooctene, TCO) with the drug delivery agent, itself functionalized with 

the counterpart for the click reaction (here tetrazine). The conjugated mAb is injected 

intravenously and after it is cleared from blood and healthy tissue, the drug delivery agent is 

administered. It clicks to the mAb in tumor tissue and is retained, whereas otherwhere fast 

eliminated. 

The work of this thesis started with the functionalization of monoclonal antibodies and the 

analysis of the obtained conjugates. Besides TCO for the pre-targeting strategy, the chelator, 
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p-NCS-Bz-DFO (a desferrioxamine derivative) was used to enable the radiolabeling of the 

mAb with the positron emitter zirconium-89 (89Zr) and thus the tracking of such in vivo by 

Positron Emissions Tomography (PET) imaging. The conjugation of both ligands was 

achieved by random conjugation, that is, by coupling reactions to free available amine groups 

of lysine residues in the mAb. This method is favored due to its mild reaction conditions 

together with rather easy and fast results. However, this non-site-specific method leads to a 

mixture with a high variety of conjugates. With the ratio of moieties per mAb playing an 

important role to determine the efficacy of the functionalized conjugate, we wanted to gain 

closer insight of the obtained mAb species. Therefore, three different analytical methods 

were used: (i) a direct titration method, (ii) MALDI/TOF MS (Matrix-Assisted Laser 

Desorption-Ionization / Time Of Flight Mass Spectrometry) and (iii) UPLC/ESI-TOF MS 

(Ultra High Performance Liquid Chromatography / Electrospray ionization - Time Of Flight 

Mass Spectrometry). The aim was to not only achieve the average number of moieties per 

mAb in the heterogenic mixture, but also to obtain a distribution of the different conjugates 

present. We, furthermore, wanted to answer the question if the number of moieties available 

on the surface of the mAb correlates with the total number of attached ligands by comparing 

the direct method (giving the available ligands) to mass analytic (giving the total number of 

ligands). For these investigations we used two different FDA and EMA approved mAbs: the 

above mentioned Trastuzumab and Bevacizumab (Avastin®, targets VEGF-A, a vascular 

endothelial growth factor). The study, described in Chapter 3, showed how challenging the 

analysis of antibodies, conjugated with a respectively small ligand, is. Direct titration offered 

quantitative results about the average number of functionalizations per mAb in all cases. 

MALDI/TOF MS showed in our hands questionable results, but UPLC/ESI-TOF MS 

offered the desired insight of the distribution of conjugates, with higher accuracy for DFO- 

compared to TCO-conjugates. 

After the evaluation of the TCO-functionalized Trastuzumab for its binding affinity, 

biodistribution and internalization properties, we tackled the synthesis and characterization 

of small spherical gold nanoparticles (AuNPs), loaded with boron clusters, named COSAN 

(Cobalt bis[dicarbollide]), and functionalized with tetrazine to enable the click reaction. The 

particles, analyzed by transmission electron microscopy (TEM), showed homogeneous 

distribution, with a core size of 3-5 nm, increasing to 12-15 nm in diameter after 

functionalization. The AuNPs were radiolabeled by doping the gold core with [64Cu]CuCl2, 

allowing in vivo experiments while tracking the particles by PET imaging. Evaluating the 

distribution of the particles showed slower clearance than expected from such small particles, 

with high liver and spleen accumulation. The slow clearance from tumor tissue, with highest 

accumulation at 48 h post injection, limited improvement under pre-targeting conditions. 

Chapter 4 was concluded that the small AuNPs do not possess the desired properties for 

pre-targeting, yet, high boron loading was achieved and tumor uptake due to the EPR effect 

could be witnessed. 

To overcome the hurdle of a slow clearing boron delivery agent as experienced with the 

AuNPs, we changed the type of particles from a metal core to organic boron carbon dots 

(B-CDs). This work is described in Chapter 5. High biocompatibility, low cytotoxicity and 

rather fast and inexpensive synthesis of carbon dots suggest their potential application as 

boron-10 delivery agents in the context of BNCT. Yet, to the best of our knowledge, B-CDs 
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have never before been investigated for BNCT. For the pre-targeting approach and in vivo 

studies, we functionalized with tetrazine and radiolabeled with a fluorine-18-prosthetic group 

([18F]FPyTFP), respectively. The distribution of the dots in vivo showed the desired fast 

clearance via kidney and bladder from all organs and tissue, including the tumor. When 

applying the pre-targeting strategy, the tumor accumulation was about 2.8 %ID/cm3, but the 

desired retention in tumor tissue could be achieved. Hence, B-CDs, combined with a pre-

targeting strategy, are promising new BNCT agents. 
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A pesar del esfuerzo económico y humano destinado en las últimas décadas a combatir el 

cáncer, éste sigue constituyendo una de las principales enfermedades en el mundo 

desarrollado y representa la segunda causa de muerte a nivel mundial. Además, su incidencia 

se espera que aumente en los próximos años, debido a la mayor esperanza de vida, factores 

ambientales y hábitos poco saludables. Por este motivo, es imperativo desarrollar nuevas 

terapias que resulten más efectivas y produzcan menos efectos tóxicos y secundarios sobre 

los pacientes.  

La terapia de captura de neutrones por boro (BNCT, del inglés Boron Neutron Capture Therapy) 

es una estrategia terapéutica binaria, que puede combinar a priori una elevada eficacia 

terapéutica mientras se minimizan los efectos secundarios. El principio de funcionamiento 

de la BNCT es sencillo en concepto y muy intuitivo, y se basa en la capacidad que presentan 

ciertos átomos, entre ellos el 10B (el boro es un elemento con dos isótopos estables, 10B y 11B, 

con abundancias del 20 y 80%, respectivamente) de capturar neutrones térmicos. Dicha 

captura se traduce en la formación de un átomo de boro excitado, que se desintegra mediante 

fisión dando lugar a la formación de una partícula alfa y un ion de litio (reacción nuclear 

notada como 10B(n, α, γ )7Li). La partícula alfa y el ion litio tienen una energía elevada, y 

presentan una transferencia de energía lineal muy alta y un rango cercano al diámetro de una 

célula. De este modo, si se consigue acumular una cantidad suficiente de átomos de 10B de 

manera preferente o selectiva en el tejido tumoral, y posteriormente éste se irradia con 

neutrones térmicos, la reacción de captura neutrónica y subsiguiente emisión de iones resulta 

en el daño y muerte celular en la zona tumoral. Aquellas zonas en las que no hay átomos de 

boro no se ven prácticamente afectadas por la terapia (Figura 1). 

 

Figura 1: Principio de funcionamiento de la BNCT. Tras acumulación selectiva de átomos de 10B en 
las células tumorales, se lleva a cabo una irradiación neutrónica, produciendo la reacción nuclear 
10B(n, α, γ )7Li, que en última instancia produce el daño celular en el tumor, sin afectar al tejido sano.  

Para lograr que la BNCT resulte eficiente y exitosa, es necesario que se den ciertas 

condiciones. En primer lugar, su aplicación se ha visto tradicionalmente limitada por la 

necesidad de acceder a fuentes de neutrones, que hasta hace pocos años requería llevar a 
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cabo las intervenciones en las inmediaciones de un reactor nuclear. Sin embargo, en los 

últimos años se han desarrollado ciclotrones que permiten obtener haces de neutrones de 

intensidad y energía adecuadas para llevar a cabo los estudios terapéuticos, facilitando por lo 

tanto la traslación al entorno clínico. El segundo problema relacionado con la BNCT es la 

necesidad de desarrollar entidades químicas capaces de acumular una cantidad suficiente de 

átomos de boro en el tumor, manteniendo baja la acumulación en tejido sano y en sangre. 

Generalmente, se acepta que una concentración de 25-30 µg de 10B por gramo de tumor y 

una relación de concentración tumor/tejido sano y tumor/sangre de 4/1 son suficientes para 

garantizar eficacia terapéutica con efectos secundarios mínimos. Históricamente, se ha 

aprovechado el metabolsimo acelerado en los tumores y la sobre-expresión de determinados 

receptores para conseguir la acumulación preferencial de compuestos ricos en boro en el 

tejido tumoral. Sin embargo, y a pesar de más de 80 años de esfuerzo, en la actualidad tan 

sólo se utilizan en el entorno clínico dos compuestos: borocaptato de sodio (BSH) y 

boronofenilalanina (BPA), aunque ambos presentan poca especificidad por el tejido tumoral 

y sólo son eficaces en determinado tumores. 

Con la emergencia de la nanotecnología, se han empezado a utilizar nanosistemas como 

potenciales portadores de boro con el fin de acumular una gran cantidad de boro en el tejido 

tumoral. De hecho, es posible preparar nanomateriales con alta biocompatibilidad y larga 

circulación en sangre. Además, gracias al efecto conocido como enhanced permeability and 

retention (EPR) los nanosistemas se acumulan de manera preferente en los tumores, ya que 

los tumores presentan una vasculatura imperfecta con fenestraciones y un drenaje linfático 

deficitario. 

En esta tesis doctoral se ha combinado la experiencia previa adquirida en el grupo de 

investigación de Radioquímica e Imagen Nuclear relativa a (i) nanotecnología; (ii) química 

del boro; y (iii) imagen nuclear y experimentación animal, para abordar la implementación de 

una estrategia de pre-targeting basada en nanotecnología para su aplicación en BNCT. 

Concretamente, se ha trabajado en el desarrollo de partículas pequeñas y ricas en boro. Por 

un lado, se han desarrollado y evaluado nanopartículas de oro (AuNP) con un diámetro de 

núcleo de 3 - 5 nm, y por otro lado nanopartículas de carbono (CDs, del inglés carbón dots) 

con un tamaño de núcleo de alrededor de 7 nm. Se eligieron nanopartículas (NPs) de 

pequeño tamaño ya que éstas presentan generalmente un aclarado relativamente rápido y 

poca acumulación en los órganos del sistema reticuloendotelial (RES), actualmente conocido 

como MPS (del inglés Mononuclear phagocytic system). Esto resulta en una menor toxicidad ya 

que hay menos acumulación en tejido sano. Es importante mencionar que un aclarado rápido 

también se traduce en una menor biodisponibilidad. En consecuencia, uno de los retos de 

esta tesis doctoral consistía precisamente en conseguir un equilibrio entre el aclarado del 

organismo y la acumulación en el tejido tumoral. 

La novedad principal de la presente tesis doctoral se basa en la utilización de la estrategia de 

pre-targeting para conseguir la acumulación en tumor. Dicha estrategia es conocida y ha sido 

utilizada en el contexto de la imagen molecular, pero no de la terapia. El pre-targeting se basa 

en conseguir la acumulación de un fármaco (componente 2) utilizando para ello la 

acumulación previa de otro componente (componente 1). El componente 1 se acumula en 

el tumor gracias a una interacción específica, como puede ser la unión a un receptor 
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determinado que se encuentra sobre-expresado en células tumorales. En el caso de la tesis 

doctoral, se ha utilizado como componente 1 un anticuerpo (mAb), concretamente 

Trastuzumab (Herceptin®), que tiene gran afinidad por los receptores de membrana HER2. 

Dicho anticuepro se funcionalizó con un ligando capaz de producir una reacción 

bioortogonal (trans-cicloocteno, TCO). El componente 2, en nuestro caso las NPs ricas en 

boro, se funcionalizaron con el grupo complementario para dar la reacción bioortogonal (en 

este caso, tetrazina). Para llevar a cabo la estrategia de pre-targeting se inyecta en primer lugar 

el mAb funcionalizado por vía intravenosa. Una vez se ha producido la acumulación en 

tumor y el aclaramiento de la sangre y tejido sano, se administra el componente 2, que se 

distribuye por todo el cuerpo pero se acumula únicamente donde es capaz de producirse la 

reacción bioortogonal con el componente 1, es decir en el tumor (Figura 2). 

 

Figura 2: esquema de la estrategia de pre-targeting. En primer lugar, se administra un anticuerpo 
funcionalizado con un grupo capaz de dar lugar a una reacción bioortogonal (1). Una vez se ha 
producido la acumulación en tumor y aclaramiento (2) se administra el segundo componente (3), que 
en este caso es una nanopartícula con una funcionalidad capaz de dar la reacción bioortogonal. La 
reacción bioortogonal entre los dos componentes se da únicamente en el tumor, produciendo la 
acumulación del segundo componente (4), momento en el que debería llevarse a cabo la irradiación 
neutrónica (5). 

El trabajo de esta tesis se inició implementado metodologías para la funcionalización de los 

anticuerpos y el análisis de los conjugados obtenidos (capítulo 3). Además del TCO, 

necesario para dar la reacción bioortogonal, se decidió incorporar un quelante bifuncional, 

concretamente p-NCS-Bz-DFO (un derivado de la desferrioxamina) con el fin de permitir el 

marcaje radiactivo utilizando el isótopo emisor de positrones zirconio-89 (89Zr), que 

permitiría de este modo su seguimiento tras administración in vivo utilizando tomografía por 

emisión de positrones (PET). La conjugación de ambos ligandos simultáneamente se logró 

mediante la conjugación aleatoria, es decir, mediante reacciones de acoplamiento a grupos 

amino disponibles, debido a la presencia de lisinas en el mAb. Este método es muy atractivo 

ya que requiere unas condiciones de reacción suaves resulta muy sencillo. Sin embargo, se 
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trata de un método no específico, y en consecuencia no se conocen a priori ni el número ni 

la distribución de las funcionalidades incorporadas, resultando generalmente en mezclas de 

conjugados. Así pues, el primer objetivo de la tesis doctoral fue establecer métodos analíticos 

para una correcta caracterización de los mAbs funcionalizados, con el fin de conocer el 

número de funcionalizaciones promedio, así como conocer mejor la distribución de mAbs 

con cada número de funcionalizaciones, y el número de dichas funcionalizaciones que están 

“disponibles” para una eventual reacción de formación del complejo (caso del DFO) o de 

reacción bioortogonal (caso del TCO). Con tal fin, se utilizó una combinación de métodos 

analíticos, incluyendo: (i) un método de valoración directa, (ii) MALDI/TOF MS (Matrix-

Assisted Laser Desorption-Ionization / Time Of Flight Mass Spectrometry) y (iii) UPLC/ESI-TOF 

MS (Cromatografía Líquida de Ultra-resolución / Ionización de Electrospray - 

Espectrometría de Masa de Tiempo de Vuelo). Para estas investigaciones, se utilizaron dos 

mAbs aprobados por la FDA y la EMA diferentes: el mencionado anteriormente 

Trastuzumab, y Bevacizumab (Avastin®, que es específico para el factor de crecimiento 

endotelial vascular VEGF-A. Los métodos de valoración directa permitieron obtener datos 

cuantitativos acerca del número de funcionalizaciones promedio por mAb. La técnica de 

MALDI ofreció resultados algo ambiguos, debido a la poca resolución de la técnica y a la 

pequeña masa molecular de las funcionalizaciones incorporadas, que impidieron una correcta 

resolución de las diferentes señales. Por contrapartida, la técnica UPLC/ESI-TOF MS 

permitió obtener datos cuantitativos fiables acerca de la presencia de diferentes grados de 

funcionalización, especialmente en el caso del DFO. 

Una vez caracterizada la funcionalización del Trastuzumab, se abordó el trabajo relativo al 

desarrollo de nanosistemas y su evaluación in vivo. En primer lugar se ensayó la síntesis y 

caracterización de nanopartículas de oro esféricas (AuNP), cargadas con clústeres de boro. 

Concretamente, como unidad rica en boro se utilizó el COSAN (Cobalto bis[dicarballuro]), 

que es un complejo mixto de cobalto que integra dos clústeres de carborano, cada uno de 

ellos con 9 átomos de boro y con carga global negativa. Asimismo, se incorporó a las NPs 

ligandos funcionalizados con tetrazina, con el fin de permitir la reacción bioortogonal con el 

TCO. Las partículas se analizaron mediante microscopía electrónica de transmisión (TEM), 

que demostró una distribución homogénea de tamaño de núcleo (3-5 nm). El marcaje de las 

NPs para su posterior evaluación mediante PET se llevó a cabo mediante dopaje del núcleo 

de oro utilizando el isótopo emisor de positrones cobre-64. La evaluación de la distribución 

de las partículas se llevó a cabo en un modelo animal de cáncer de mama, generado mediante 

inoculación subcutánea de células BT-474 en ratones inmunodeprimidos. Los estudios de 

imagen mostraron un aclarado de las NPs más lento del esperado, con alta acumulación de 

hígado y bazo. Esto resultó en una baja biodisponibilidad, y en consecuencia también en una 

baja acumulación tumoral. Posteriormente, se ensayó la estrategia de pre-targeting. Para ello, se 

ensayó en primer lugar la biodistribución del anticuerpo funcionalizado y marcado con 89Zr, 

observándose una buena acumulación en el tumor a las 24-48 horas tras la administración 

intravenosa (Figura 3). Puesto que los estudios in vivo e in vitro llevados a cabo demostraron 

que se producía la internalización del anticuerpo en las células tumorales, se decidió abordar 

los estudios de pre-targeting administrando el componente 2 (NPs de oro) a las 24 horas tras 

la administración del anticuerpo. De este modo, se adquirió un compromiso entre la 

acumulación en tumor, el aclarado de sangre y tejido sano, y la posible internalización del 
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mAb, que en última instancia reduce la probabilidad de que se produzca la reacción 

bioortogonal en el tumor. Los estudios llevados a cabo demostraron que la acumulación de 

las NPs en el tumor no es superior cuando se utiliza la estrategia de pre-targeting, cuando se 

compara con la acumulación alcanzada con las NPs inyectadas individualmente. La falta de 

resultados positivos se interpretó en términos de la retención de las NPs en el tumor. Puesto 

que dicha retención es alta, tal y como se observó en los estudios llevados a cabo sólo con 

las NPs, no se observa una mejora cuando se aplica la estrategia de pre-targeting. 

 

Figura 3: Imágenes PET obtenidas a diferentes tiempos tras administración de Trastuzumab 
funcionalizado y marcado con 89Zr, en un modelo animal de cáncer de mama generado por 
inoculación subcutánea de células BT-474 en ratones inmunodeprimidos. 

Para superar el obstáculo que supone el aclaramiento lento de las NPs, se optó 

porsteriormente por ensayar nanosistemas de menor tamaño, concretamente nanopartículas 

de base carbono, conocidas habitualemnte como carbon dots (CDs), dopadas con boro (B-

CDs). Se escogieron estos nanosistemas ya que presentan una elevada biocompatibilidad, 

baja citotoxicidad y su síntesis es relativamente rápida y económica. La estrategia planteada 

fue la misma que la expuesta anteriormente para las NPs de oro. Sin embargo, en este caso 

se utilizó como componente 2 de la estrategia de pre-targeting los mencionados B-CDs, 

preparados para presentar grupos amino libres sobre la superficie, los cuales se aprovecharon 

para incorporar las unidades de tetrazina (con el fin de permitir la reacción bioortogonal) y 

el radiomarcaje, el cual se logró utilizando el grupo prostético [18F]FPyTFP, que presenta alta 

reactividad hacia los grupos amino. 

Los ensayos efectuados con los B-CDs mediante PET en el mismo modelo animal 

anteriormente mencionado demostraron un aclaramiento y eliminación vía orina muy 

rápidos según lo esperado, y una acumulación baja en el tumor. Al ensayar la estrategia de 

pre-targeting, se obtuvo un patrón de biodistribución muy parecido, con una eliminación rápida 

y una baja acumulación en el tumor. Sin embargo, un análisis más exhaustivo de la 

acumulación de los B-CDs en tumor en función del tiempo demostró que, mientras que la 

concentración de B-CDs en el tumor disminuye con el tiempo en el grupo control 

(administración únicamente de los B-CDs), dicha concentración se mantiene constante en 

condiciones de pre-targeting. Este resultado demuestra una mayor retención de los 

nanosistemas cuando el experimento se lleva a cabo en condiciones de pre-targeting, y 
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corrobora que la reacción bioortogonal se produce (Figura 4). Los resultados sugieren que la 

estrategia es válida, si bien para un funcionamiento óptimo podría ser adecuado seleccionar 

un anticuerpo con menor internalización celular, y aplicar el segundo componente de la 

reacción a tiempos más largos. Así mismo, una mayor circulación (eliminación más lenta) del 

segundo componente (nanosistema) ofrecería también mejores resultados. 

 

Figura 4: Izquierda: Concentración de B-CDs en el tumor a diferentes tiempos tras administración 
intravenosa en un modelo animal de cáncer de mama. En violeta, resultados obtenidos en condiciones 
de pre-targeting. En azul, concentraciones obtenidas tras administración únicamente de los B-CDs; 
derecha: imágenes PET-CT representativas de cuerpo completo, y de acumulación selectiva en la 
zona tumoral en condiciones de pre-targeting (arriba) y de no pre-targeting (abajo). 
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Chapter 1: General introduction 

1.1 Cancer 

The term cancer embraces different diseases which can affect any part of the body. All in 

common have a (mostly) fast growth of cells out of their usual behavior. They penetrate into 

surrounding tissue, forming a tumor. Some cancer types even spread to other organs to form 

metastases. This stage usually leads to an immense increase of the death rate. In Figure 1 the 

incidence and mortality of the most common types of cancer worldwide are shown (2018): 

 

Figure 1: Estimated number of incident cancer cases and deaths worldwide in 2018 (both sexes, all 
ages) (1). 

As the second leading cause of death worldwide (about 1 out of 6 deaths), cancer was 

responsible for an estimated 9.6 million deaths in 2018. The highest risk factors leading to 

cancer (about 30 % of all cases) are overweight, a lack of fruit and vegetables in diet, too little 

physical activity as well as the use of tobacco and alcohol. Whilst in 2017 in high-income 

countries 90 % reported treatment services are available, in low-income countries it´s only 

26 % (2). 

The major difficulties of curing cancer are not only the variety of the different kinds of 

tumors but also the late-stage presentation and inaccessibility for diagnosis and treatment. 

Therefore, the development of new therapies and improvement of existing ones is required 

where therapeutic efficacy and harmful side effects are carefully balanced. 

1.2 Boron neutron capture therapy 

1.2.1 General discription 

Boron neutron capture therapy (BNCT) is a unique way to treat cancer. It is a binary 

approach where two non- or low-toxic components require co-localization in tumor tissue 

to become effective. In the process, a compound enriched with stable boron-10 

(approximately 20 % of the natural element boron) is injected intravenously and accumulates 

in tumor tissue. A neutron beam, directed to the affected tissue, leads to a nuclear reaction 

of boron-10 (10B) into a recoiled lithium nucleus (7Li3+) and an alpha particle (α = 4He2+) 
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(Figure 2). The high cross section of Boron-10 atoms (σ = 3840 barns) enables the capture 

of thermal neutrons and hence, the nuclear reaction 10B(n,α,γ)7Li. Gordon Locher proposed 

this principle first in 1936 (3). 

 

Figure 2: Nuclear reaction in BNCT. 10B is capable to capture thermal neutrons, resulting in the 
formation of an unstable 11B atom which ultimately disintegrates with the consequent emission of 
one alpha particle, one lithium ion and one gamma ray. 

The particles released following neutron capture are highly charged and have a high 

molecular weight. Those properties result in a high linear energy transfer (LET); that is, they 

can release a high amount of energy to the material traversed per unit distance. Therefore, 

the pathway is short with a fast loss of energy, producing a severe damage to the 

environment. Exactly these properties are used in BNCT. The emitted ions, when selectively 

or preferentially accumulated in tumor tissue, will induce severe damage on a length range 

smaller than the diameter of a single cell (4-10 µm, Figure 2) (4) and tumor cells will be 

destroyed while the surrounding healthy tissue is spared (Figure 3). Selectivity also refers to 

the fact that no other main constituent elements of the body, i.e. oxygen, nitrogen and 

carbon, have a high cross section for neutrons. Nitrogen and hydrogen are able to capture 

neutrons (nuclear reactions: 14N(n,p)14C and 1H(n,y)1H) with σ = 10-24 barns, which is 

negligible when compared to 10B cross section (3840 barns). Nevertheless, this feasibility 

limits the strength of the neutron beam due to the abundance of these elements (5). 

 

Figure 3: The principle of BNCT. If boron atoms can be selectively accumulated in tumor cells, 
neutron irradiation results in the emission of ionizing particles which result in tumor cell damage 
while sparing healthy tissue. 
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For boron to be able to capture a neutron, the neutrons need to have low energy (thermal 

neutrons; E < 0.5 eV) when reaching the boron atoms. However, thermal neutrons only 

have a very limited depth of penetration into tissue (3-4 cm) and are only of use for skin 

tumors like melanoma. Nowadays neutrons with higher energy (epithermal neutrons, 

> 0.5 eV < 10 keV) are used for the beam. They lose energy during the penetration (8 cm) 

of the tissue and reach the boron enriched compound with the energy of thermal neutrons 

(5). 

 

The advantages of BNCT are the high efficiency, high selectivity towards tumor tissue and a 

high chance to target multicentric deposits of tumors at the same time. However, these 

features can only be reached by a high dose gradient between cancer cells and healthy tissue. 

Recent research is focused on (i) the availability of neutrons via neutron accelerators to 

enable BNCT away from nuclear reactors; (ii) the optimization of neutron penetration into 

tissue; and (iii) delivering a sufficient amount of boron-10 while keeping the ratio between 

tumor and normal tissue high to guarantee low background and therefore minimize side 

effects. 

1.2.2 Boron delivery agents - general requirements 

Many requirements are given for a successful boron delivery agent besides low toxicity. It 

needs to be able to deliver a sufficient amount of boron into the tumor tissue. The aim is to 

reach at least 20 µg 10B/g tumor (~109 atoms/cell). On the other hand, the uptake of boron 

in other tissue should be low, obtaining a ratio of ≥ 5 between tumor to normal tissue and 

tumor to blood. Furthermore, a rapid clearance from blood and normal tissue is desired, but 

persistence in tumor until and during neutron irradiation should happen (5). The 

development of boron-10 delivery agents capable to selectively accumulate in tumor cells at 

a therapeutic dose still remains a major challenge.  

1.2.3 From history to recent research 

In 1932 Chadwick discovered the neutron which was the fundament for Locher to describe 

in 1936 the principle of a neutron capture therapy for cancer (6). However, the first actual 

performance of a BNCT trial on a malignant glioma was not conducted until 1951, when 

finally, the graphite research reactor in Brookhaven was available as neutron source (4).  

The very first compounds to deliver 10B into tumor tissue were in the 1950s boric acid and 

its derivatives. However, they are non-selective and have a very low retention time in tumor 

tissue (see Table 1). The second generation of boron delivery agents was developed in the 

1960s. The compounds were boron-rich bio-molecules with low molecular weight, such as 

carbohydrates, amino acids, nucleic acids and small peptides. The advantages were the low 

toxicity and an increased residence time in the tumor when evaluated in animal models. The 

only two BNCT delivery agents currently used in clinical trials are from that second 

generation. Sodium mercaptoundecahydro-closo-dodecaborate (Na2B12H11SH), commonly 

known as sodium borocaptate (BSH), and the boron containing amino acid (L)-4-dihydroxy-

borylphenylalanine, known as boronophenylalanine (BPA) (Figure 4) (7; 8; 9). However, 

none of them fulfills the required criteria as described above. Most commonly used for high 

grade gliomas and recurrent head and neck cancer (7), their main drawback is, besides low 
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selectivity and retention time, a high variety in tumor uptake among tumor regions as well as 

between patients (10). 

    

Figure 4: Chemical structures of sodium Borocaptate (BSH, left) and boronophenylalanine (BPA, 
right); currently the only compounds used in the clinics.  

For further improvement, compounds have to be enriched with a number of boron atoms 

as high as possible, in order to deliver a sufficient amount into tumor tissue. One alternative 

to achieve this is to attach one or more polyhedral borane anions or carboranes (boron 

clusters) to small, tumor targeting bio-molecules or to monoclonal antibodies. One such 

boron cluster analogue is the so called COSAN (cobalt bis(dicarbollide)), which is a 

metallocarborane in which a cobalt atom is sandwiched between two carboranyl clusters (11). 

The net charge of the complex, which is delocalized over the whole cluster, is -1, which 

makes COSAN an amphiphilic compound (Figure 5). 

 
Figure 5: Structure of COSAN. 

This third generation of delivery agents was hence able to transfer a higher amount of 10B 

into the tumor when coupled to targeting moieties (9; 10; 12). In Table 1 an overview of the 

three generations of boron delivery agents is shown. 

Table 1: Progress of delivery agents since the 1950th with boric acid derivatives as first generation. 
The second generation refers to boron-rich bio-molecules with low molecular weight, whereas the 
third generation uses boron cluster for higher boron loadings. 

 

First 

Generation 

Second 

Generation 

Third 

Generation 

Example 
 

 

Boric acid 

 
 

Boronated amino acid (BPA) 
 

Carbohydrate with boron cluster 

Further progress focused on the fact that the effect of BNCT is proportional to the number 

of 10B atoms accumulated in tumor cells. Hence, macromolecules such as polymers and 

dendrimers (Figure 6) containing a high number of boron atoms were developed and linked 

to targeting vectors (10; 13). These compounds were finally close to all the requirements to 



_____________________________________________________________________________ 

5 
 

Chapter 1: General introduction 

become promising BNCT drug candidates. However, all of them present certain limitations 

and none of them has replaced BPA and BSH, which are still the two main compounds used 

in clinical practice. Hence, there is still room for improvements: the side effects, which occur 

mainly through insufficient tumor-to-healthy tissue ratios, still need to be reduced. 

Additionally, compounds capable to accumulate a high amount of 10B atoms in different 

types of tumors still need to be developed. 

 
Figure 6: Example of a heavy boronated dendrimer (13). 

1.2.4 Nanomaterials as boron delivery agents  

Nanoparticles (NPs) can be defined as particles with a size lower than 100 nm in at least one 

dimension. Due to their small size, their physic-chemical properties differ from bulk 

materials. Additionally, NPs present a high surface to volume ratio, can be functionalized 

with a wide range of molecules and loaded with significant amount of cargo. Because of this, 

they have emerged as key elements in the drug development pipeline. This fact is even more 

relevant in oncology, where the differences between tumor and healthy tissue allow passive 

targeting by the enhanced permeability and retention (EPR) effect. EPR is based on the 

nature of most tumors to grow fast, which results in the need to change tissue conditions. 

Angiogenesis, the growth of additional blood vessel out of existing ones, is present. 

However, these new vessels are leaky, the permeability for NPs from blood to tissue is 

enhanced, and also the lymphatic system is less developed which leads to a prolonged 

retention time of NPs in tumor tissue (Figure 7) (14; 15). 

 

Figure 7: EPR effect. The process of neoangeogenesis occurring in tumors results in leaky 
vasculature with an immature lymphatic drainage, facilitating penetration of nanoparticles from blood 
into the tissue and prolonged retention. 
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The emergence of NPs in biomedicine has also impacted BNCT, and nanosystems have 

gained attention as boron delivery agents. The idea is to achieve a high boron loading, a 

longer circulation half-life and passive tumor targeting through the EPR effect. Liposomes, 

as example, are able to carry small boronated molecules both in their lipophilic bilayer and/or 

in their hydrophilic core (Figure 8, left) (16). Also, Micelles and other nanomaterials like 

carbon nanotubes (Figure 8, right) (17) and silicon nanowires are in research. In this project, 

however, gold nanoparticles as well as boron carbon dots are chosen as delivery agents. 

    

Figure 8: Left: Liposome, containing boronated molecules (16), right: boron cluster on a carbon 
nanotube (adapted from (17)). 

1.2.4.1 Gold nanoparticles 

Gold nanoparticles (AuNP) are one of the key materials in biomedicine. They are suitable as 

drug delivery agents for several reasons. They are biocompatible, have low toxicity, are 

tunable in shape and size (which affects their biodistribution) and easy to functionalize with 

high loadings on their surface (18). There are, among others, spherical NPs, nanorods (NR) 

and gold stars which can be easily modified on their surface by a covalent sulfide bonding. 

To influence the circulation time, surface and charge of the particles can be modified. 

Positively charged particles have a higher rate of internalization, whereas negatively charged 

particles typically show a longer blood circulation time (19). Another advantage is the 

possibility to synthesize AuNP in aqueous solutions, which makes the transfer to 

physiological media easy. Many different strategies have been reported for the preparation 

of AuNP (20), being the most commonly employed the direct reduction of chloroauric acid 

(HAuCl4) in the presence of e.g. sodium borohydride or citrate, which results in the 

formation of nearly monodisperse AuNP in sizes up to 200 nm (21). 

In this work we focused on small spherical AuNPs (core: 3-5 nm, shell: 10-15 nm) loaded 

with COSAN (see 1.2.3 From history to recent research). The low size results in a high 

surface area to volume ratio which allows heavy loading with therapeutic agents next to other 

functionalization. Furthermore, the biodistribution of smaller particles show increased 

accumulation and penetration into tumor tissue through the EPR effect (14).  

1.2.4.2 Carbon Dots 

Carbon dots (CDs) are part of the carbon allotrope family and have gained increasing 

attention since their discovery in 2004 by Scrivens et al. (22). They are quasi-spherical, smaller 

than 10 nm in size, low in cytotoxicity and high in biocompatibility. They consist primarily 
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of carbon next to hydrogen, oxygen and nitrogen. The benefits of CDs are their optical 

characteristics with an intense fluorescence together with flexible physio-chemical properties 

(e.g. hydrophilic or hydrophobic) due to variations in their synthesis and varying functional 

groups on the surface, leading to a broad field for application like metal detection, solar cells 

and biological approaches such as drug delivery agents (23). Another advantage besides their 

flexibility is a rather easy, usually one step synthesis via microwave out of relatively 

inexpensive compounds such as citric acid and ethylene diamine. 

Even though, the detailed mechanism of the formation of CDs is still unclear and surely 

different for each type of dots. However, it is commonly accepted that the major steps are 

polymerization of the single compounds followed by carbonization and formation of the 

CDs (Figure 9) (23). The most common functional groups left on the surface on hydrophilic 

CDs are carboxyl-, hydroxyl- and/or amino- groups (24). 

 

Figure 9: Schematic mechanism of CDs formation (23). 

In this work we focused on hydrophilic CDs due to the advantage that physiological buffers 

can be used as solvents and therefore, the particles can be used in biological systems. Other 

than the AuNPs, where boron was attached at the surface of the particles, carbon dots can 

be doped with boron, forming so called Boron Carbon Dots (B-CDs), using e.g. sodium 

tetraborate to form the core of the particles. 

1.3 Pre-targeting 

1.3.1 Bioorthogonal ‘click’ reaction 

Pre-targeting is based on a certain type of a chemical reaction which can occur in vivo, the 

bioorthogonal ‘click’ reaction. A coupling reaction in vivo needs to fulfill very specific 

properties. Certainly, nontoxicity of the reaction compounds but also of any possible side 

products generated by the coupling reaction. Furthermore, the reaction needs to be 

optimized for aqueous medium at the temperature of 37 °C. To gain good yields in biological 

systems a fast reaction rate which enables the coupling reaction even with very low 

concentrations is essential. If the reaction additionally does not interfere with any other 

native biochemical processes, it belongs to the field of bioorthogonal chemistry. 

Recently several such reactions were investigated and described (25; 26; 27). But one of these 

showed outstanding qualities: The inverse-electron-demand Diels Alder coupling between a 

tetrazine derivative (Tz, diene) and a trans-cyclooctene (TCO, dienophile) derivative 

(Figure 10) (28). Opposite to most click reactions described so far, this reaction does not 

need a catalyst. Moreover, the only by-product is N2, which is nontoxic, and high yields are 

reached at an incredible speed (reaction rate constant of k = 2000 M-1s-1). 



_____________________________________________________________________________ 

8 
 

Chapter 1: General introduction 

 

Figure 10: Scheme of an inverse-electron-demand Diels Alder reaction, example from (29). 

1.3.2 The principle of pre-targeting 

The origin of the pre-targeting strategy arose in the field of radioimmunology where a 

radiolabeled monoclonal antibody (mAb) accumulates in tumor tissue by binding to a specific 

target. This way, depending on the radionuclide, either imaging or therapy can be performed. 

However, one major drawback is a high radiation dose for the patient due to slow distribution 

and clearance (days) of mAbs from blood and healthy tissue. To prevent negative side effects 

by radiation doses to non-tumor tissue, the strategy of pre-targeting was introduced (15; 28; 

30; 31). In such a strategy, a functionalized mAb, which is enabled to undergo a 

bioorthogonal ‘click’ reaction is injected intravenously. After its accumulation in tumor tissue 

and clearance from blood and healthy tissue, a small molecule carrying the radionuclide is 

injected. This small compound distributes and clears fast from the body. However, passing 

through the tumor it will ‘click’ to the antibody and remain, resulting in high sensitivity and 

low background signal (Figure 11). 

In the context of pre-targeting, there are certain key factors that need to be taken into 

consideration: (i) a high, selective (or preferential) accumulation of the mAb in the target 

tissue (in this case, the tumor) is required; (ii) the second compound, capable to undergo the 

bioorthogonal click reaction with the mAb, needs to be injected once the mAb is cleared 

from the blood, in order to avoid the click reaction to occur in the blood, which would 

prevent the reaction taking place in the tumor; and (iii) the second compound needs to clear 

fast from the body. In the context of imaging, this results in a decrease of background signal 

and hence enhances image quality and sensitivity. In the context of therapy, the fast clearance 

prevents high radiation dose in healthy tissue. In most cases, the pre-targeting strategy does 

not result in higher accumulation than direct targeting, although higher tumor to healthy 

tissue ratios can be achieved.  
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Figure 11: Original pre-targeting strategy. First, a functionalized mAb is administered, which 
accumulates in the tumor tissue (1). After clearance of the unbound mAb (2), the second component 
is administered (3), and the bioorthogonal reaction occurs in the tumor (4) with consequent 
entrapment.   

Because of the above-mentioned requirements, the second component is typically a small 

molecule. However, in this work we envisaged the possibility to apply the pre-targeting 

strategy from a slightly different perspective. Our idea was based on the following rationale: 

First, a TCO-functionalized mAb is administered and accumulates in tumor tissue by binding 

to an overexpressed receptor. After the slow clearance, fast clearing boron loaded NPs 

(AuNPs or B-CDs) functionalized with tetrazine moieties (to enable the click reaction with 

TCO-functionalized mAbs) are injected. By the time that a high concentration of particles 

had reached the tumor tissue and cleared from other tissue, the irradiation with neutrons can 

take place to initiate the nuclear reaction of 10B into 7Li3+ with the release of alpha particles 

which leads to the desired cell death in tumor tissue (Figure 12). 

 

Figure 12: Pre-targeting strategy using highly boronated nanoparticles as second component. 
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1.3.3 Why pre-targeting? 

Delivery agents, such as NPs, should have a sufficient size, to ensure uptake and retention 

in the desired tissue like a tumor (32). However, this property is non-specific and therefore 

the retention is also prolonged in other tissues such as the liver which could lead to non-

desired side effects (e.g. drug induced liver injury). Moving to smaller particles the situation 

can be reversed; the clearance is too fast, the particles are not retained in tissue and are not 

able to deliver their therapeutic effect, yet toxicity is usually very low (33). Introducing pre-

targeting, using small, but highly boronated NPs, functionalized with a tetrazine moiety, the 

advantages of small and fast clearing agents can be met, that is, fast clearance from blood 

and healthy tissue and low toxicity, yet, the retention in tumor tissue is assured by the click 

reaction to the pre-injected antibody.  

1.4 The need for tracking: Nuclear imaging 

One of the key aspects in BNCT is the appropriate selection of the time window in which 

boron irradiation needs to be applied, this is, when after administration of the drug the boron 

accumulation in the tumor and both the tumor to healthy tissue and the tumor to blood 

ratios are maximal, in order to maximize therapeutic effect while minimizing off target side 

effects. Hence, there is a need to determine the pharmacokinetic properties of new chemical 

entities before their evaluation in therapeutic experiments.  This information can be obtained 

using classical pharmacokinetic studies (e.g. fluid and organ extraction followed by analysis 

using chromatographic techniques). However, an elegant and non-invasive alternative relies 

in nuclear imaging techniques.   

Nuclear imaging includes single photon emission computerized tomography (SPECT) and 

positron emission tomography (PET). Both in vivo imaging techniques are ultra-sensitive and 

minimally invasive. After administration of a trace amount of a gamma (SPECT) or positron 

(PET) emitting labeled compound, the ultimately occurring high energy photons (gamma 

ray) are detected. The origin of the decay and therefore the location of the radiolabel can be 

quantitatively calculated. These techniques are often combined with computerized 

tomography (CT) or newly also with magnetic resonance imaging (MRI) to achieve both, 

anatomical (CT, MRI) and metabolic (SPECT, PET) information. In this work we focused 

on PET-CT which has higher spatiotemporal resolution over SPECT. 

1.4.1 Positron emission tomography 

Positron emission tomography (PET) is an excellent tool to image biochemical processes in 

vivo. In PET, the distribution of a compound labeled with a positron emitter (radiotracer) can 

be followed and represented in a three-dimensional image. In most cases, the radiotracers 

accumulate in a certain area of the body and hence, make them visible by photon detectors. 

PET is most frequently used in cardiology (34), neurological (35) and oncological (36) 

diseases either for diagnosis and/or therapy progress. However, also in research PET is a 

very helpful tool (see 1.4.2 PET in drug development). 

Positron emitting isotopes decay by a β+-emission. The nucleus of these nuclides is rich in 

protons. To stabilize this unbalanced situation a proton (p) turns into a neutron (n) whereas 

a positron (β +, antiparticle of the electron, therefore also written as ‘e+’) and an electron-

neutrino (ν) are emitted (Figure 13). The electron-neutrino takes part of the energy and serves 
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the spin preservation. The positron in contrast takes the other part of the energy and balances 

the charge. Following, the equations of the β+ decay are shown: 1) nucleus level, 2) isotopic 

level. 

𝑝1
1 + → 𝑛0

1 + 𝑒1
0 + + 𝜈𝑒0

0 + 𝑄     (1) 

𝑋𝑁𝑍
𝐴 → 𝑌𝑁+1𝑍−1

𝐴 + 𝑒1
0 + + 𝜈𝑒0

0 + 𝑄    (2) 

 

Figure 13: Schematic representation of the radioactive decay by positron emission. 

During this procedure the nuclide (X) transforms into another element (Y), the daughter 

product. Q describes the energy of the decay and the difference of the mass of the 

transformation (E = mc2). 

The emitted positron (β+), which has a specific kinetic energy related to the nuclide (although 

positrons are not emitted with a single energy but following an energy distribution, which is 

characteristic for each positron emitter), will interact with an electron of the environment 

after losing energy to a certain point and a short-lived positronium will arise (37). The 

positronium in turn decays by annihilation, a procedure in which two gamma quanta 

(photons) with the energy of 511 keV are transmitted to the opposite side of each other 

(180°). These photons are detected by PET scanners. The detection of two photons 

simultaneously by two opposite detectors (coincidence detection) defines a line of response 

(LOR). The detection of hundreds of thousands of coincidences enables the reconstruction 

of a three-dimensional image which contains quantitative information of the regional 

distribution of the radiotracer.  A drawback in PET is the fact that the emission of the 

positron is not in the exact same place as the emission of the two photons. This difference 

coincides with the distance that the positron travels before annihilating (positron range; 

typically a few millimeters), and depends on the energy of the emitted positron. Ultimately, 

this fact results in a decreased spatial resolution. However, new devices are able to statistically 

correct for this to a certain extent, and the resolution of modern PET scanners (especially 

preclinical ones) is close or below the positron range (Figure 14) (38). 
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Figure 14: Scheme of PET principle. A positron is emitted and after travelling a certain distance 
(positron range) it annihilates with an electron, resulting in the formation of 2 photons (511 keV 
each) which are emitted in opposite directions and detected by special detectors as coincidence 
events.  

A competitive way for proton rich nuclei to stabilize is to decay via electron capture (EC). A 

proton in the nucleus absorbs an electron from the close K- or L- electron shell. The proton 

converts into a neutron with the emission of an electron-neutrino (Figure 15). The generated 

daughter nuclide is in an excited state and therefore releases excitement via x-ray or Auger 

electrons (filling of the inner-shell vacancy by an electron of a higher-energy shell of the same 

atom, the thereby released energy emits another electron and a chain reaction can arise). 

Following, the equations of the EC are shown: 3) nucleus level, 4) isotopic level. 

𝑝1
1 + + 𝑒1

0 − → 𝑛0
1 + 𝜈𝑒0

0 + 𝑄     (3) 

𝑋𝑁𝑍
𝐴 + 𝑒1

0 − → 𝑌𝑁+1𝑍−1
𝐴 + 𝜈𝑒0

0 + 𝑄    (4) 

 

Figure 15: Schematic representation of the radioactive decay by electron capture. 

Other than in the β+ decay where the freed energy is split between the β+-particle and the 

neutrino which leads to a continuous energy spectrum, here the entire energy is carried by 

the neutrino and gives a single sharp energy profile. However, as no positron is emitted this 

decay is not useful for PET and radionuclides need to be selected carefully with a high 

percentage of β+ decay, as other radiation types do not contribute to image quality but 

increase the radiation dose to the investigated subject. 

1.4.2 PET in drug development 

Besides the use of PET in clinics for diagnostic and to follow the progress of a disease and 

its therapy, it is increasingly used in drug development. PET is a useful tool to evaluate 

https://en.wikipedia.org/wiki/Inner-shell_electrons
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pharmacokinetic properties (like biodistribution and metabolism) but also in proof of target 

(does the drug aim for the predicted target?), proof of mechanism (is a downstream 

component affected?) and proof of efficacy (to predict the outcome before clinical studies) 

of a new drug (39).  

Irrespective of the application, it has to be considered that a radionuclide (positron emitter) 

needs to be inserted into the new drug. Ideally the radioisotope ‘simply’ exchanges an existing 

stable atom, e.g. 11C for 12C, or 13N for 14N. Yet, for more complex compounds such as 

proteins, antibodies or NPs, this way of radiolabeling is not possible. Hence, the radionuclide 

is additionally attached and therefore the structure of the compound changed. In these cases, 

it becomes necessary to evaluate if behavior and properties remain unaffected. Furthermore, 

it is obligatory to keep in mind that the PET image represents the distribution of the 

radionuclide, not to the actual drug. That is, if the radiolabeling is not stable, or if the drug 

decomposes in vivo, the visible PET image is due to the fragment which contains the 

radionuclide and misinterpretation of the obtained image is possible. Because of this, 

evaluation of the stability of the label and determination of metabolism is paramount for 

proper image interpretation.  

In the particular case of pre-targeting for therapeutic applications as proposed in this PhD 

thesis, PET is very helpful as it enables: (i) the determination of the ideal time window when 

the second component has to be administered. This is, the time point at which the 

concentration of the mAb in the tumor is maximum, which can be determined by 

radiolabeling the mAb and performing PET studies at different time points after 

administration; and (ii) the time at which neutron irradiation should be performed, that is, 

the time window at which the accumulation of the second component in the tumor is 

maximum. This can be determined by radiolabeling the second component (in our case, the 

NP), and performing PET studies at different time points after administration (Figure 16). 

The radiolabeling strategy and the radionuclide to be used depend on different factors, as 

discussed below (see 1.4.3 PET nuclides).  

 

Figure 16: Timing in pre-targeting. PET imaging can provide information about the concentration 
of the labeled species over time, thus enabling appropriate selection of the time window to proceed 
to the following step: administration of the second component or neutron irradiation. 
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1.4.3 PET nuclides 

To acquire good-quality PET images, no matter if in clinic or in research, the choice of the 

radionuclide is critical. The most important PET nuclides are summarized in Table 2. 

Table 2: The most important PET radionuclides and their properties. 

Nuclide Half-life 
Transformation 

(Frequency %) 

Max. β+-

energy [MeV] 

Max. β+-range 

in H20 [mm] 

Method of 

production 

11C 20.40 min 
β+ (99.8) 

EC (0.2) 
0.96 3.8 

10B(d,n)11C 
14N(p,α)11C 

13N 9.96 min β+ (100.0) 1.19 5.0 
12C(d,n)13N 
16O(p,α)13N 

15O 2.03 min 
β+ (99.9) 

EC (0.1) 
1.73 7.6 

14N(d,n)15O 
15N(p,n)15O 

18F 109.65 min 
β+ (96.9) 

EC (3.1) 
0.63 2.2 18O(p,n)18F 

64Cu 12.70 h 

β+ (17.8) 

β- (38.4) 

EC (43.8) 

0.65 2.5 
64Ni(p,n)64Cu 

64Ni(d,2n)64Cu 

68Ga 67.71 min 
β+ (89.1) 

EC (10.9) 
1.90 13.6 

68Ge/68Ga-
Generator 

89Zr 78.41 h 
β+ (22.3) 

EC (76.6) 
0.90 3.8 89Y(p,n)89Zr 

 

The selection of the nuclide depends on many different factors. The main required property 

for a PET nuclide is obviously the β+-decay, in best cases with a high percentage. But, also 

the energy of the positron is relevant. It should be low to have a short positron range (see 

1.4.1 Positron emission tomography) which will improve the resolution of the image. 

Another important characteristic is the half-life. It is to be taken into account that the 

radiotracer needs to be synthesized and purified, then passes a quality-control and sometimes 

needs to be delivered to another institution. Furthermore, the half-life needs to suit the 

biological half-life of the molecule under investigation so that the subject is not affected by 

a high radiation dose but the radiotracer is still detectable during its whole process.  

Besides, the chemical properties of the nuclide will dictate the way of radiolabeling, either by 

covalent binding of non-metal nuclides or through the use of a chelator which will generate 

a stable complex with a metal nuclide. 

Finally, the availability of the nuclide places a role in the selection. Some are synthesized by 

nuclide generators (e.g. 68Ga which is produced in commercially available 68Ge/68Ga 

generators) which are usually very easy to handle for daily hospital work. Many others are 

generated in a cyclotron (e.g. 18F, 11C, 89Zr, 64Cu). This equipment is much more complex and 

more expensive in maintenance. Thus, just some institutions are able to afford it. Finally, 

nuclides can be synthesized within a nuclear reactor which needs again more personal care, 

more safety and more financial afford (e.g. the SPECT nuclide 131I).  
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As described above there are many factors to be considered when choosing a radionuclide. 

In this study very different components with different requirements concerning the nuclide 

had to be labeled. In the following section, a brief introduction to the PET radionuclides 

used in the context of this PhD thesis is included.   

Nuclide for antibodies - 89Zr 

 

The biodistribution of monoclonal antibodies is very slow. Therefore, a nuclide needs to be 

selected which is able to follow its nature, thus a nuclide with a long enough half-life. At 

present the most common nuclide in immuno-PET is Zirconium-89 (89Zr). Its half-life is 

3.27 days (78.41 h) and is therefore ideal to monitor the pharmacokinetic of mAbs in tumors.  

The most common way to produce 89Zr is the bombardment of an natural yttrium foil with 

protons in a cyclotron via the nuclear reaction of 89Y(p,n)89Zr (40). After irradiation the metal 

foil is dissolved in acid (6 M HCl), then purified by a hydroxamate column (e.g. functionalized 

Waters Sep-Pak® Plus Accell CM cation exchanged resin), which can selectively trap 89Zr 

and be finally eluted with oxalic acid (41).  

The decay of 89Zr to stable Yttrium-89 (89Y) occurs to 76.6 % by electron capture (EC) and 

22.3 % by positron emission (β+-decay), which makes it suitable for PET. However, before 

stable 89Y forms, a metastate of 89mY is generated which de-excites in only 16 seconds to its 

stable nuclide, with emission of a gamma ray with an energy of 909 keV. A scheme of the 

decay is shown in Figure 17. 

       

Figure 17: Decay scheme for 89Zr (max energy shown). 

Finally, the chemical route for radiolabeling the mAb needs to be considered. As 89Zr is a 

metal, a covalently bound chelator is used to build a stable complex in physiological 

89Zr properties at a glance 

t1/2 = 3.3 d = 78.4 h = 4704.6 min 

EC: 76.6 % 

β+: 22.3 % 
 Eave(β+) = 397 keV 

Emax(β+) = 897 keV 

E(γ) = 909 keV 
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conditions with the nuclide. To date desferrioxamine (DFO) - chelators are the state of the 

art. The labeling conditions are very mild which allows to label mAbs without denaturizing 

them. The p-isothiocyanatobenzyl-DFO (p-SCN-Bz-DFO) can be covalently bound to 

amine groups of lysine residues present in the amino acid sequence forming a thiourea bond 

(Figure 18). Recently, Vugts et al. are investigating more stable chelator-radionuclide 

complexes like the tetrahydroxamate chelator called DFO* (DFO star) (42). 

 

Figure 18: Schematic representation of mAb conjugation with p-SCN-Bz-DFO and labeling with 
89Zr   

Nuclide for AuNP- 64Cu 

 

There are several different methods to radiolabel NPs with a metal-nuclide, e.g. (i) using pre-

radiolabeled synthons, which are incorporated into the NPs during production; (ii) direct NP 

activation where the radioisotope is generated in situ using nuclear reactions; and (iii) after-

loading, where the isotope is incorporated, attached or entrapped after the synthesis of the 

NPs (43). Labeling on the surface allows adding the radiolabel as last step after the synthesis 

and functionalization of the particles, simplifying the handling during those procedures and 

minimizing radiation dose to the operator. However, the labeling is an additional moiety, 

which might change the surface properties. Therefore, in this work we focused on the 

incorporation of the radio metal into the gold core during synthesis, by doping the core with 
64Cu (44). Even though the radiolabeling yield is usually lower, the high stability of the label 

and preventing changes to the properties are significant advantages (43). 

Using 64Cu with its half-life of almost 13 hours gives the necessary flexibility for the 

evaluation of NPs. It is used for both, smaller molecules as well as bigger and slower clearing 

components. Therefore, it is ideal to monitor smaller AuNPs, which distribute faster than 

big compounds like antibodies, but slower than small molecules. 

The production of 64Cu can be done either with a cyclotron or a nuclear reactor. However, 

the most common methodology is by the 64Ni(p,n)64Cu (45) nuclear reaction. In this process, 

64Cu properties at a glance 

t1/2 = 12.7 h = 762.0 min 

EC: 43.8 % 

β- = 38.4 % 

β+ = 17.8 % 
 Eave(β+) = 278 keV 

Emax(β+) = 653 keV 

E(γ) = 1.35 MeV 
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a gold disk, electroplated with enriched nickel-64 is irradiated in the cyclotron with protons. 

After the bombardment 64Cu is separated from 64Ni by an ion exchange column. The 

enriched nickel can be recovered and reused which makes the pricey procedure more cost-

efficient (46). 

The isotope Copper-64 is highly unusual as it decays by three different processes; into 64Ni 

with 43.8 % electron capture and 17.8 % positron emission, which makes it suitable for PET, 

and with 38.4 % to 64Zn by beta minus (electron, β-) emission, which makes it also eligible 

for therapy (Figure 19). 

 

Figure 19: Decay scheme for 64Cu (max energy shown). 

Nuclide for B-CDs - 18F 

 

Whereas antibodies and AuNPs are rather slow distributed and cleared from the in vivo 

subject by elimination mainly through liver and spleen, B-CDs are eliminated in only minutes 

through the kidneys. Therefore, a radionuclide with shorter half-life can be chosen. 18F is 

probably the most used PET-nuclide and with a half-life of close to 2 hours ideal to evaluate 

the distribution of B-CDs. However, other than 89Zr and 64Cu, 18F is no metal and needs to 

be coupled to the molecule by covalent bonding. Yet, the possible coupling reactions are 

limited to the product of the 18F production by cyclotron. Its either produced as [18F]F- or as 

[18F]F2 enabling fluorinations by nucleophilic or electrophilic substitution, respectively (47). 

Furthermore, a late introducing of the radiolabel in the synthesis is favored. Therefore, and 

to increase possibilities of radiolabeling, so called prosthetic groups are introduced. Those 

are small organic molecules, radiolabeled in very few steps, containing a functional group 

which enables easy binding to another component, like e.g. NPs (48; 49). 

18F properties at a glance 

t1/2 = 1.8 h = 109.8 min 

EC: 3.1 % 

β+: 96.9 % 

 Eave(β+) = 250 keV 
Emax(β+) = 633 keV 

E(γ) =  511 keV 
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In this work [18F]F- was produced by irradiating 18O-enriched water ([18O]H2O) with protons 

leading to the nuclear reaction of 18O(p,n)18F. A precursor (TfO-Me3NPyTFP+) was 

fluorinated to obtain the prosthetic group [18F]F-Py-TFP (Figure 20) which could be coupled 

to amine residues of the B-CDs (50). 

 

Figure 20: [18F]F-Py-TFP prosthetic group. 

Besides its convenient half-life, a decay into 18O of 97 % by positron emission and only 3 % 

electron capture makes 18F an almost perfect PET nuclide. Furthermore, the low energy of 

its positrons leads to high resolution PET images. A scheme of its decay is shown in 

Figure 21. 

 
Figure 21: Decay scheme for 18F (max energy shown). 
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2.1 Justification of the study: the PET3D project 

Drug development usually takes a lot of time, money and resources, such as chemicals, 

biologicals and in vivo subjects. Positron emission tomography (PET) can be used to minimize 

the use of experimental animals, and accelerate the whole process by identifying poor 

candidates at early stages in the process, thus saving time and money while increasing the 

effectiveness to design and develop drugs.  

The PET3D project (PET imaging in Drug Design and Development) originated out of this 

statement. It is a MSCA-ITN (Marie Skłodowska-Curie Actions Innovative Training 

Network), funded by the European Commission under the H2020 – MSCA-ITN-2015 

program (grant agreement No. 675417) for a duration of 4 years (June 2016 – May 2020) (1). 

The aim of the project was to train 15 early stage researchers (ESR), located at 8 different 

institutions in Europe, to become experts in PET imaging and drug development. The 

institutions involved were the University of Aberdeen (with Professor Matteo Zanda as 

project coordinator, later in Loughborough University), the VUmc Amsterdam (now UMC), 

the Vrije Universiteit Brussel, the University of Bergen, CIC biomaGUNE in Donostia-San 

Sebastián (host of this PhD), the European Institute for Molecular Imaging in Münster and 

two industrial partners, Imanova (now Invicro; UK) in London and AstraZeneca in Mölndal 

(Sweden). Covering the main diagnostic/therapeutic areas in which PET is used (oncology, 

cardiovascular and central nervous system) PET3D was coordinated in five research work 

packages (WP) (Figure 1). 

 

Figure 1: Research work packages of the European project PET3D: WP1: ‘Nanoparticles and Small 
Molecule Tracers in Oncology PET Imaging’; WP 2: ‘Biologicals as Tracers in Oncology PET 
Imaging’; WP 3: ‘Pre-targeted Labeling of Biomolecules in Oncology PET Imaging’; WP 4: 
‘Cardiovascular PET Imaging’; WP 5: ‘CNS PET Imaging’. 

The advantages of using PET in drug development have already been discussed in chapter 

one (1.4.2 PET in drug development). Besides the evaluation of pharmacokinetic properties, 

questions like ‘What and where is the disease?’, ‘Is the disease accurately targeted by the therapy?’ and ‘Is 

the treatment effective?’ can be answered before going into the third clinical phase, not only 

preventing a late failure of the drug in the process of evaluation, but also achieving an 

immense improvement in time and cost (2). 

The PhD in hand, titled “A pre-targeting approach to boron neutron capture therapy: 

towards multipurpose Boron-Enriched Therapeutic Agents” was carried out in the frame of 

WP3, ‘Pre-targeted Labeling of Biomolecules in Oncology PET Imaging’. It builds on the 

existing knowledge (including chemistry, radiochemistry, nanotechnology and in vitro and in 

vivo analysis) in the radiochemistry and molecular imaging group at CIC biomaGUNE under 

the supervision of Dr. Jordi Llop. His expertise in boron chemistry, radiochemistry, 

nanotechnology and molecular imaging is proven by publications (3; 4; 5; 6; 7), previous and 
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current research projects, and invited national and international lectures. The core of the 

experimental work was executed at the host institution CIC biomaGUNE in Donostia-San 

Sebastián, Spain. Additionally, secondments were carried out taking advantage of the 

expertise existing in other institutions of PET3D. The expertise in antibodies (conjugation 

and radiolabeling) available in the radiology and nuclear medicine group with Dr. Daniëlle 

Vugts at the VUmc (now UMC) in Amsterdam, Netherlands, and the expertise in medicinal 

chemistry (bioorthogonal click chemistry) at the Institute of Medical Sciences at the 

University of Aberdeen, Scotland, in the group of Prof. Matteo Zanda. 

Cancer, still being the second leading cause of death worldwide (8), brings great need in the 

design and development of new drugs. This PhD focuses on the promising cancer therapy 

of BNCT (see Chapter 1). Even though there are already successful clinical trials being 

conducted, the lack of a boron delivery agent able to deliver a sufficient amount of 10B into 

tumor tissue combined with high selectivity has limited the use of BNCT and impeded the 

move to become a more standardized therapy. To reach the aim of this PhD, the 

development of novel BNCT agents on multi-functionalized NPs, able to selectively 

accumulate boron atoms in tumor tissue using a pre-targeting strategy, the following 

objectives were appointed. 

2.2 Objectives 

The specific objectives of this PhD thesis were: 

1. To select and radiolabel a cancer cell targeting monoclonal antibody (mAb) suitable for 

pre-targeting; to optimize the trans-cyclooctene (TCO) functionalization of the selected 

candidate to enable the in vivo click reaction. 

2. To analyze the randomly conjugated antibody, comparing mass analysis with direct 

methods, to predict the efficiency for pre-targeting. 

3. To investigate the pharmacokinetic properties of the functionalized antibody in a 

subcutaneous tumor mouse model using PET-CT. 

4. To investigate the internalization of the antibody in vitro and in vivo. 

5. To design, synthesize, characterize and radiolabel multifunctionalized nanoparticles (gold 

NPs and boron-carbon dots), heavily loaded with boron to ensure a sufficient delivery 

to tumor tissue, and functionalized with tetrazine to enable the in vivo click reaction with 

the TCO functionalized antibody. 

6. To evaluate the pre-targeting strategy in vivo in subcutaneous tumor mouse models using 

PET-CT. 
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3.1 Introduction 

Over the last decades monoclonal antibodies (mAbs) have experienced a huge increase in 

interest as scientific tool as well as human therapeutics. Their unrivaled property is a very 

high specificity towards their target (antigen) with high affinity and avidity. This property is 

due to the antigen binding site of the mAbs (Figure 1). 

 

Figure 1: Schematic structure of an immunoglobulin type mAb (IgG), consisting out of two heavy 
chains (light grey) and two light chains (dark grey), as well as the antigen binding fragment (Fab) and 
the constant fragment (Fc). The black connections visualize disulfide bonds. 

Monoclonal antibodies can be functionalized with a wide variety of molecules to introduce 

different properties. For example, by generating antibody-drug conjugates to act as drug 

carriers in which the targeting properties of the mAb are combined with the therapeutic 

abilities of the drug (1; 2); additionally, they can be functionalized with imaging capabilities 

by attaching radionuclides or fluorescent dies, enabling subsequent in vivo tracking using 

nuclear imaging techniques such as Positron Emission Tomography (PET) or Single Photon 

Emission Computed Tomography (SPECT) (3), or enabling their tracking both at 

microscopic and macroscopic levels using different optical microscope modalities or 

tomographic techniques, respectively (4; 5). Finally, they also can be functionalized with 

molecules capable to undergo bioorthogonal reactions in vivo, to be applicable in pre-targeting 

strategies (6; 7; 8). 

When tackling the modification of mAbs, several aspects are to be considered. Most 

important, the conditions need to be mild to prevent denaturation and degradation of the 

protein and therefore loss of its biological function. Then, the newly formed bond must be 

stable under physiological conditions and finally it must not significantly compromise the 

specificity of the antibody-antigen binding site. To overcome issues related to the latter, over 

the last years many groups have investigated site-specific conjugation (3; 9; 10; 11), which 

consists of conjugating the functionality to a selective functional group of the mAb, usually 

present on both heavy chains. Common methods are functionalizing the glycans or reducing 

the sulfide bonds and using the resulting reactive groups to couple the ligand (Figure 2). 

Advantages of the site-selective conjugation are a defined number of ligands per antibody, 

homogeneity and a higher chance to keep the antigen binding site unchanged. 
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Figure 2: Schematic presentation of site-specific conjugation by reducing disulfide bonds (black) or 
functionalizing glycans (blue). 

However, more frequently used is the random conjugation (6; 12; 13; 14), where the ligand 

is attached to the accessible primary amines group of lysine residues via N-

hydroxysuccinimide ester (NHS-ester) or isothiocyanates, or to the thiol group of cysteine 

residues via maleimides through thio-Michael addition reactions (Figure 3). Disadvantages 

of those methods are the lack of site-specificity and stoichiometric control, the production 

of a high heterogeneity of conjugates and the risk of modifications to the antibody-antigen 

binding site (15). Despite these aspects, the mild reaction conditions together with the 

straightforward and rather easy procedure to functionalize mAbs are advantage enough to 

be the preferred method. 

 

Figure 3: Schematic presentation of random conjugation by using primary amine groups of lysine 
side chains or thiol groups of cysteine side chains. 

For this PhD project two different antibody modifications were performed, using random 

conjugation to lysine residues: (i) the conjugation with a metal chelator, a desferrioxamine 

derivative (p-NCS-Bz-DFO), to enable radiolabeling with the PET radionuclide Zirconium-

89 (89Zr); and (ii) the functionalization with trans-cyclooctene (TCO-NHS) to allow the 

bioorthogonal click reaction with a tetrazine functionalized component required for the pre-

targeting strategy. Each mixture of conjugates (Figure 4) was analyzed using a variety of 

analytical methods, including a direct titration method (photometric for TCO, radiometric 

for DFO) and mass analysis, including MALDI/TOF MS (Matrix-Assisted Laser 

Desorption-Ionization / Time Of Flight Mass Spectrometry) and UPLC/ESI-TOF MS 
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(Ultra High Performance Liquid Chromatography / Electrospray ionization - Time Of Flight 

Mass Spectrometry). The approach, using different analytical methods, was initiated to enable 

comparison between the direct method, which gives an average number only of available 

moieties, and the mass analysis, which gives an average number of all bound moieties per 

mAb and, with the help of mathematical fittings, the distribution of the different conjugates 

present in the heterogenic mixture. 

 

Figure 4: Schematic presentation of the obtained heterogenic conjugates after random conjugation 
to lysine residues. Although the average ratio of ligand per mAb is usually determined, closer insight 
in the reality of the obtained heterogenic mixture is more challenging. 

Conjugation and analysis have been performed on two different antibodies, both FDA and 

EMA approved. Bevacizumab (sold under the trade name Avastin®) is a humanized mAb 

that targets VEGF-A (vascular endothelial growth factor) and hence inhibits the growth of 

blood vessels (16). Due to the presence of angiogenesis in most cancer types, VEGF-A is 

generally overexpressed in tumors. Trastuzumab (sold under the trade name Herceptin®), 

also humanized, targets HER2, an extracellular domain of the epidermal growth factor 

receptor (EGFR) (16). The pathway of HER2 leads to cell division and growth. By 

Trastuzumab binding to HER2, an immune-mediated response is induced, which causes 

internalization and down-regulation of HER2, hence suppressing cell growth. Herceptin is 

used to treat gastric tumors as well as breast cancer in which HER2 is overexpressed. 

3.2 Objectives 

The specific objectives of this work were: 

1. To conjugate the two antibodies, Bevacizumab and Trastuzumab, in different molar 

ratios with the ligands TCO-NHS or p-NCS-Bz-DFO. 

2. To analyze the obtained conjugates with direct titration methods; photometric for 

TCO, radiometric for DFO. 

3. To analyze the obtained conjugates with mass analysis: MALDI/TOF MS and 

UPLC/ESI-TOF MS, and compare the results to those obtained in Objective 2. 

3.3 Results and discussion 

3.3.1 TCO conjugation – direct method 

TCO is usually attached to mAbs to enable pre-targeting strategies. For an efficient in vivo 

click reaction to occur, the TCO not only needs to be attached to the mAb, but also available 

for the complement bioorthogonal reagent injected in second place. Hence, during 
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characterization it is important to determine not only the average ratio of TCO-moieties per 

antibody after random conjugation, but also those that are available for reaction, as a small 

moiety like TCO (152 Da; compared to the antibody: 150 kDa) could be masked by 

hydrophobic interactions with the mAb (17). 

First, we tackled the determination of available TCO-groups, information that can be 

obtained using titration methods. Therefore, we used a tetrazine-fluorophore compound (6-

methyl-tetrazine-sulfo-Cy3 = mTzCy3), which undergoes a fast click reaction with the TCO 

moiety, to establish a direct photometric method. In brief, the antibody was conjugated with 

different molar-equivalents of TCO-NHS (60 min at room temperature), purified via spin 

filtration, and mTzCy3 added to induce the click reaction (Figure 5). After incubation (5 min 

at room temperature) the functionalized mAb was purified again, the UV-VIS-spectra 

measured and the concentration of both, mAb and fluorophore, determined. 

 

Figure 5: TCO conjugation followed by mTzCy3 coupling to determine the average ratio of 
TCO/mAb via titration, a direct photometric method. 

UV-VIS-spectrophotometric measurements were carried out with a NanoDrop® 

Spectrophotometer. It uses the Lambeert-Beer’s Law (𝐴 = ɛ ∗ 𝑙 ∗ 𝑐; A = absorbance, ɛ = 

extinction coefficient, l = path length, c = concentration) to calculate the concentration from 

the absorbance. The following extinction coefficients have been used: ɛ(mAb) = 

210 
𝐿

𝑚𝑚𝑜𝑙∗𝑐𝑚
 (NanoDrop® default for immunoglobulin type mAbs) and ɛ(mTzCy3) = 

151 
𝐿

𝑚𝑚𝑜𝑙∗𝑐𝑚
 (taken from datasheet of Jena Bioscience). The advantages of NanoDrop® 

are the fast analysis and the small amount of sample necessary per measurement.  

However, to ensure plausibility of the method and investigate possible interferences during 

the assays (which could alter the determination of concentration needed to calculate the ratio 

of available TCO per mAb), a preliminary evaluation was performed by measuring the 

absorbance of different compounds (containing functional groups which are involved in the 

protocol) at different concentrations in an individual fashion (Figure 6) and after the click 

reaction (Figure 7). 
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Figure 6: UV-VIS spectra of A) mTzNH2, B) mTzCy3, C) TCO-OH, D) TCO-NHS, E) NHS-OH, 

F) mAb. 

The spectra show that TCO itself has no light absorbance. However, both tetrazine (A) and 

NHS (E) spectra show their maximum absorbance at around 260 nm which can also be 

found in the TCO-NHS (D) spectrum (Figure 6). Taking into account that the maximum 

absorbance of the mAb is at 280 nm (F) interference could apply. However, during the 

procedure tetrazine moieties would be clicked to TCO moieties resulting in a different 

chemical structure, which may lead to a different absorbance profile. The NHS moiety on 

the other hand is cleaved off during the conjugation of the mAb with TCO-NHS and isn’t 

present anymore after purification. Hence, measurements of clicked compounds in different 

ratios to each other were performed (Figure 7). 
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Figure 7: UV-VIS spectra after click reaction in different ratios to each other of A) mTzNH2 + 

TCO-OH, B) mTzNH2 + TCO-NHS, C) mTzCy3 + TCO-OH, D) mTzCy3 + TCO-NHS. 

Looking at the spectrum after the click reaction between mTzNH2 and TCO-OH (A) the 

signal at 260 nm disappears, whereas after the addition of TCO-NHS the signal can still be 

observed due to the NHS moiety (B). The same behavior can be witnessed using mTzCy3 

instead of mTzNH2 (C, D). Hence, the chemical change of tetrazine during the click reaction 

resolves the possible interference with the mAb signal. 

To further evaluate the method a titration with mTzCy3 was carried out to assure a 

quantitative binding of mTzCy3 to all available TCO moieties. Therefore, Bevacizumab was 

reacted with 30 eq. TCO-NHS for 90 min at RT, purified, split into 6 fractions and 3 each 

incubated with either 1/6th or 1/3rd moles mTzCy3 of the initial amount of TCO-NHS 

(divided by 6 for the 6 fractions). In this case, using initially 30 eq. of TCO-NHS per mAb it 

would be 5 and 10 eq. mTzCy3 per mAb. The determined ratios of conjugated TCO per 

mAb were with 1.12 ± 0.03 for 1/6th and 1.13 ± 0.09 for 1/3rd not significant different and 

it was concluded that the reaction was already quantitative with 1/6th moles mTzCy3 of the 

initiated amount of TCO-NHS (Table 1). 

Table 1: Results of study to ensure quantitative reaction between Bevacizumab-TCO (30 eq. TCO-
NHS) and mTzCy3 with 1/6th and 1/3rd moles mTzCy3 per initiated TCO-NHS after 60 min 
incubation at room temperature (values are expressed as mean ± standard deviation, n = 3). 

 Bevacizumab 

mTzCy3/ 

TCO-NHS 
TCO/mAb 
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1/3rd 1.13 ± 0.09 
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Also, a kinetic study, quenching the mTzCy3 incubation at different time points (1 - 45 min), 

was carried out. Therefore, Bevacizumab was reacted with 50 eq. TCO-NHS for 60 min at 

RT, purified, split into 7 fractions and incubated at room temperature with 1/6th moles 

mTzCy3 (in relation to initiated TCO-NHS). After each time point the reaction was stopped 

by spin filtration. The determined ratios of conjugated TCO per mAb didn’t alter 

significantly between 1 min and 45 min (Table 2), which led to the conclusion that already 

after 1 min a quantitative reaction was achieved. This outcome was expected as the reaction 

between TCO and tetrazine, the inverse-electron-demand Diels Alder reaction, is known and 

used for its very fast and clean reaction (see Chapter 1, paragraph 1.3.1 Bioorthogonal ‘click’ 

reaction). 

Table 2: Results of kinetic study for the click reaction between Bevacizumab-TCO and mTzCy3 
from 1 min to 45 min incubation time at room temperature. 

 Bevacizumab 

Incubation time 

(min) 

average ratio 

TCO/mAb 

1 2.3 

5 2.3 

10 2.3 

15 2.3 

20 2.2 

30 2.2 

45 2.2 

In conclusion, it could be shown that there is no interference in the UV-VIS spectra with the 

mAb signal due to tetrazine or NHS after the click reaction and a quantitative binding of 

mTzCy3 could be assured to all available TCO moieties after one minute incubation using 

1/6th moles of the initial amount of TCO-NHS. Therefore, the plausibility of the method 

was approved and the evaluation of the mAb conjugation could be performed. 

Once demonstrated that the titration method shows no interferences and that the reaction 

between TCO and tetrazine is quantitative, we tackled the determination of the number of 

TCO moieties attached and available at the mAb for different mAb/TCO reaction ratios. 

With that aim, and as described above, the antibody was reacted in different molar ratios 

with TCO-NHS, purified and incubated with mTzCy3 (Figure 5). After purification by spin 

filter samples were measured using UV-VIS spectrophotometry (Figure 8) and the 

concentrations of the antibody as well as the concentrations of the fluorophore (which equals 

the concentration of bound and available TCOs) were determined. 

Noteworthy, precipitation of mAb was observed when high molar ratios of TCO per mAb 

(≥100:1) were used. The precipitation is, most likely, due to reduced solubility of highly 

loaded mAbs, either due to loss of their net surface charge by conjugation to lysine residues 

and/or due to increased hydrophobicity as a consequence of incorporation of ligands (18). 

The precipitation phenomenon was clearly reflected in the UV-VIS spectra, were lower 

antibody concentrations were found at high TCO/mAb ratios due to worse recovery from 

the spin filter after purification (Figure 8). 
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Figure 8: UV-VIS spectra of the direct analysis of mAb-TCO conjugates (here Bevacizumab) with 

the tetrazine-fluorophore (mTzCy3); TCO was coupled in molar ratios of 1:20, 1:30, 1:40, 1:50, 1:100, 

1:200 and 1:0 as control. 

Table 3: Results of conjugation efficacy (average TCO/mAb) by direct analysis for Bevacizumab 

and Trastuzumab (values are expressed as mean ± standard deviation, n(Bevacizumab) ≥ 3, 

n(Trastuzumab) ≥ 2). 

 Bevacizumab Trastuzumab 

Coupling ratio 

mAb:TCO-NHS 

Resulting average conjugate 

TCO/mAb 

1:0 0.0 ± 0.0 0.0 ± 0.0 

1:20 0.6 ± 0.0 1.0 ± 0.3 

1:30 1.0 ± 0.1 1.6 ± 0.1 

1:40 1.3 ± 0.1 2.0 ± 0.5 

1:50 1.9 ± 0.4 2.1 ± 0.1 

1:55  2.5 ± 0.8 

1:100 2.9 ± 0.4  

1:200 5,2  

The results show that, even after optimizing the reaction conditions, independent of the 

ratio, the coupling of TCO-NHS to Bevacizumab had a yield of roughly 3 %, to Trastuzumab 

about 5 %. In other words: out of 30 deployed TCO-NHS only about 1 and 1.6 TCO were 

bound to Bevacizumab or Trastuzumab, respectively. The most likely reason for the low 

yield is the instability of NHS-ester in aqueous conditions. The hydrolysis of TCO-NHS into 

TCO-OH and NHS-OH is faster than the aminolysis, the desired coupling reaction to the 

amine group (19). The results shown in Table 3 for high ratios of TCO-NHS (1:100 and 

1:200) per mAb need to be handled with doubts. As mentioned before, precipitation of the 

mAb was observed and full recovery of the conjugated mAb from the spin filter wasn’t 

possible. That could have resulted in a false determination of bound TCO/mAb as it is likely 

that a fraction of mAb with higher conjugations was precipitated, not recovered and 

therefore not embraced in the asserted result. To yet enable a comparison between the 

different ratios, despite the loss of antibody in the 1:100 and 1:200 reaction-ratios, the ratio 
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of the maximum absorbance between the fluorescence (corresponding to available TCO, at 

550 nm) and the mAb (at 280 nm) was determined, using the average of all measurements, 

and is presented in Table 4 as well as in a normalized UV-VIS spectra (Figure 9). 

Table 4: Ratio of the absorbance for Bevacizumab conjugations with TCO between the maximum 

absorbance of the fluorescence (corresponding to TCO) at around 550 nm and the maximum 

absorbance of the mAb at around 280 nm. 

 Bevacizumab 

Coupling ratio 

mAb:TCO-NHS 

Ratio of absorbance 

550 nm/280 nm 

1:0 0.0 

1:20 0.3 

1:30 0.4 

1:40 0.5 

1:50 0.6 

1:100 1.1 

1:200 1.6 

 

Figure 9: Normalized UV-VIS spectra of the direct analysis of mAb-TCO conjugates (here 

Bevacizumab) with the tetrazine-fluorophore (mTzCy3); TCO was coupled in molar ratios of 1:20, 

1:30, 1:40, 1:50, 1:100, 1:200 and 1:0 as control. 

The absorbance-ratio between the fluorophore and the mAb show clearly that the 

conjugation, even though it is a random conjugation, increases proportional to the ratio of 

the initial reaction-ratio. Looking closer to the higher ratios; the 1:100 reaction is with 1.1 

close to the expected ratio, which would be 1.2, twice the ratio of 1:50, whereas the 1:200 is 

with only 1.6 further away, verifying the theory, that we weren’t able to determine the real 

ratio due to the precipitation of highly conjugated antibody. 

3.3.2 DFO conjugation – direct method 

The conjugation with the chelator p-NCS-Bz-DFO enables the radiolabeling of antibodies 

with the radionuclide 89Zr. The conjugation was again random to lysine residues of either 
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Bevacizumab or Trastuzumab; however, this time the coupling was not through an NHS 

ester as for TCO but via isothiocyanate coupling. For the direct evaluation of the obtained 

average conjugate, titrations with 89Zr spiked Zirconium were performed (Figure 10) (20). 

Therefore, the production of a “cold” (non-radioactive) Zirconium oxalate solution 

(90Zr(C2O4)2) with precise defined concentration was necessary. Zirconium chloride was 

dissolved in 4 M HCl and a trace of 89Zr (0.1 - 0.2 µCi; 3700 - 7400 Bq) was added. The 

solution was passed over a hydroxamate column to trap Zr4+. After washings with 

hydrochloric acid and water the column was eluted with 1 M oxalic acid and Zr-oxalate 

collected in different fractions. The radioactivity of each was measured in a gamma counter 

(Wallach Wizard, PerkinElmer) and used to determine the concentrations. After the 

zirconium oxalate solutions were decayed the titration could be performed. Therefore, 

Trastuzumab was conjugated with different molar-equivalents (3, 5, 10 eq.) of p-NCS-Bz-

DFO and purified. For each conjugation four equal fractions were taken and respectively 

incubated with a different ratio (0, 1, 2 and 3 molar eq. Zr4+ per mAb) of “cold” Zirconium 

(90Zr-oxalate), which however, contained the same trace of “hot” Zirconium (89Zr-oxalate, 

radioactive). After purification with size exclusion column (PD10 GE Healthcare) the 

radioactivity of each of the four mAb fractions was determined and the fraction with zero 

eq. of “cold” zirconium was normalized to 100 % labeling yield. The percentage calculated 

for the other fractions presented the amount of captured Zirconium out of the excess. 

Naturally, the more “cold” zirconium was added, the less “hot” zirconium was bound and 

the labeling yield decreased (Figure 11). Out of those relations the average amount of p-NCS-

Bz-DFO per mAb could be calculated. 

 

Figure 10: p-NCS-Bz-DFO conjugation and Zirconium titration to determine average ratio of 
DFO/mAb via direct radiometric method. 

 

Figure 11: Graphical representation of PD10 purification after 89Zr spiked labeling to visualize 
different labeling yields respectively to the excess of “cold” Zirconium. 

The results of the p-NCS-Bz-DFO conjugation to Bevacizumab and Trastuzumab are shown 

in Table 5. The coupling yield between DFO and Bevacizumab is slightly higher with 29 % 
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(3 eq.) 25 % (5 eq.) and 14 % (10 eq.), whereas Trastuzumab achieves yields of only 4 % 

(3 eq.) 14 % (5 eq.) and 13 % (10 eq.). Unexpected is the very low yield for Trastuzumab 

with 3 eq. p-NCS-Bz-DFO. A possible explanation could be a wrong determination of the 

deployed “cold” Zirconium oxalate solution, which was produced on site out of Zirconium 

chloride (𝑍𝑟𝐶𝑙4 + 𝐶2𝐻2𝑂4 ∗ 2 𝐻2𝑂
𝐻𝑦𝑑𝑟𝑜𝑥𝑎𝑚𝑡𝑒 𝑐𝑜𝑙𝑢𝑚𝑛  
→                 𝑍𝑟(𝐶2𝑂4)2 ) as described above. A 

repetition of the experiments, including the production of Zirconium oxalate followed by 

the titration of the DFO conjugated mAb, should be carried out. 

Table 5: Results of conjugation efficacy (average DFO/mAb) by direct analysis for Bevacizumab 
and Trastuzumab (values are expressed as mean ± standard deviation, n = 2). 

 Bevacizumab Trastuzumab 

Coupling ratio 

mAb:p-NCS-Bz-DFO 

Resulting average conjugate 

DFO/mAb 

1:3 0.87 ± 0.32 0.13 ± 0.01 

1:5 1.26 ± 0.33 0.70 ± 0.35 

1:10 1.47 ± 0.30 1.31 ± 0.20 

The objective of this chapter was the determination of obtained ratios after random 

conjugation between ligand and antibody, using different analytical methods to reveal 

possible differences of the number of available and actually attached ligands. After the direct 

analysis by titration of the two ligands, TCO and DFO, mass analyses were performed. 

3.3.3 Analysis with MALDI/TOF MS 

MALDI is a mild, fast and rather easy method to determine the mass of biomolecules; 

consequently, it is a commonly used method to analyze antibody-drug-conjugates (18). A 

typical antibody spectrum shows two signals, corresponding to the single and double charged 

species of the mAb (Figure 12). By attaching a ligand to the mAb, such as a drug or chelator, 

the mass increases by a multiple number of the mass of the moiety, leading to a shift of the 

peak center. Hence the antibody loading can be calculated from the change of the peak 

position. 

To analyze the antibody-samples by MALDI a buffer exchange from PBS (storage buffer) 

into 0.1 % TFA in water was performed via spin filtration. The samples were measured using 

the dried droplet method on a polished stainless-steel probe (Bruker Daltonics) using 1 µL 

sample mixed with 1 µL sDHB matrix (for details see 3.5 Experimental part.) 

 

Figure 12: MALDI spectrum of native Bevacizumab, showing the single (150 000 m/z) and double 
charged (75 000 m/z) species. 
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As mentioned before, using random conjugation to lysine residues of the mAb yields in a 

variety of conjugates (Figure 4). Together with the fact that the ligands used in this work are 

small (TCO: 152 Da and DFO: 753 Da) compared to the size of the mAb (150 kDa) the 

shift of the peak center between the native mAb and its conjugates was small and difficult to 

identify as such. Additionally, MALDI-TOF has a relatively poor mass accuracy for large 

molecules like mAbs (18) and does therefore not give high enough resolution to separate the 

different species obtained after random conjugation. Hence, mathematical fittings were 

executed to determine the distribution of present conjugates. The peak of the native mAb 

was used as reference and fitted with a Lorentz distribution. To analyze the conjugates the 

multiple mass of the ligand was added to the Lorentzian fit of the native mAb (Figure 13).  

  

Figure 13: Left: Lorentzian fit to the single charged MALDI signal of native Bevacizumab; right: 
Lorentzian fit of mAb conjugates with 0 (red), 1 (green) and 2 (blue) DFO added, overlaying the 
single charged MALDI signal of Bevacizumab conjugated with 5 eq. DFO (black). 

Finally the spectra of the conjugates were fitted to identify the percentage of different 

conjugates obtained after random conjugation of either 3, 5 or 10 eq. p-NCS-Bz-DFO or 30, 

40 or 50 eq. TCO-NHS to the two different antibodies Bevacizumab and Trastuzumab 

(Figure 14 and Figure 15, Table 6 and Table 7). 

 

Figure 14: Mathematical fittings of exemplary MALDI spectra of Bevacizumab conjugated with 0, 
3, 5 or 10 eq. DFO (raw data in black) and fitted with Lorentzian distribution for the conjugates with 
0 (red), 1 (blue), 2 (green) and 3 (gold) DFO.  

3 eq. DFO 0 eq. DFO 

5 eq. DFO 10 eq. DFO 
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Figure 15: Mathematical fittings of exemplary MALDI spectra of Bevacizumab conjugated with 0, 
30, 40 or 50 eq. TCO (raw data in black) and fitted with Lorentzian distribution for the conjugates 
with 0 (red), 1 (green), 2 (blue) and 3 (gold) TCO. 

 

Table 6: Results of conjugation efficacy (average DFO/mAb) by MALDI analysis for Bevacizumab 
and Trastuzumab. In bold the average conjugate, below the percentage of mAb with 0, 1, 2 or 3 DFO 
(values are expressed as mean ± standard deviation, n = 2). 

  Bevacizumab Trastuzumab 

Coupling ratio 

mAb:p-NCS-Bz-DFO 
DFO/mAb 

average conjugate and distribution 

DFO/mAb 

1:3 

Ø 

0 

1 

2 

0.50 ± 0.27 

62.09 ± 13.04 % 

25.52 ± 0.48 % 

12.40 ± 13.88 % 

0.25 ± 0.36 

78.71 ± 30.11 % 

17.44 ± 24.66 % 

3.85 ± 5.45 % 

1:5 

Ø 

0 

1 

2 

0.78 ± 0.09 

47.52 ± 7.16 % 

26.95 ± 4.93 % 

25.53 ± 2.23 % 

0.28 ± 0.31 

77.53 ± 27.25 % 

16.85 ± 23.34 % 

5.63 ± 3.91 % 

1:10 

Ø 

0 

1 

2 

3 

0.95 ± 0.59 

41.37 ± 16.33 % 

34.11 ± 9.80 % 

13.13 ± 10.02 % 

11.39 ± 16.11 % 

0.49 ± 0.13 

57.97 ± 3.52 % 

35.03 ± 6.38 % 

7.00 ± 9.90 % 

 

 

  

30 eq. TCO 

40 eq. TCO 50 eq. TCO 

0 eq. TCO 
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Table 7: Results of conjugation efficacy (average TCO/mAb) by MALDI analysis for Bevacizumab 
and Trastuzumab. In bold the average conjugate, below the percentage of mAb with 0, 1, 2 or 3 TCO 
(values are expressed as mean ± standard deviation, n = 2). 

  Bevacizumab Trastuzumab 

Coupling ratio 

mAb:TCO-NHS 
TCO/mAb 

average conjugate and distribution 

TCO/mAb 

1:30 

Ø 

0 

1 

2 

0.65 ± 0.36 

67.64 ± 17.79 % 

- 

32.36 ±17.79 % 

1.20 ± 1.13 

40.11 ± 56.72 % 

- 

59.89 ± 56.72 % 

1:40 

Ø 

0 

1 

2 

3 

1.76 ± 0.13 

- 

45.57 ± 8.39 % 

32.41 ± 4.10 % 

22.02 ± 4.29 % 

2.15 ± 0.41 

- 

19.82 ± 28.03 % 

45.39 ± 14.87 % 

34.79 ± 13.15 % 

1:50 

Ø 

0 

1 

2 

3 

2.45 ± 0.76 

- 

19.80 ± 28.00 % 

15.85 ± 20.31 % 

64.35 ± 48.30 % 

2.04 ± 0.20 

- 

31.14 ± 11.96 % 

33.30 ± 4.37 % 

35.56 ± 7.59 % 

Even though MALDI/TOF MS is a common method to evaluate antibody-drug-conjugates, 

in our hands the results were not optimal. Looking at the values the expected trends can 

mostly be adumbrated (moiety/mAb increases with higher molar ratios in the coupling 

reaction whereas non/low-conjugated mAb decreases). Yet, the high standard deviation 

reveals that the results might be questionable, probably due to the low mass of the attached 

moiety, which makes the fitting process difficult. Comparing the two different mAbs with 

each other, Bevacizumab presents more reasonable values and overall higher conjugation 

yields than Trastuzumab. 

Finally, the second mass analytical method UPLC/ESI-TOF MS was performed. It has 

supposedly higher mass accuracy and resolution than MALDI (18). 

3.3.4 Analysis with UPLC/ESI-TOF MS 

LCMS is a tandem of liquid chromatography (LC) and mass spectrometry (MS) with very 

high sensitivity and selectivity, using LC to separate species in a heterogenic mixture 

combined with MS for mass analysis. Analyzing antibodies leads to a wide range of different 

charged molecules (other than in MALDI where only the single and double charged mAb-

species emerge), which again results in a spectrum showing numerous signals of highly 

charged species (Figure 16, left). Even though the resolution for LCMS is higher than for 

MALDI, a complete separation between the obtained mAb-derivatives after random 

conjugation is challenging or even impossible. Looking at a LCMS spectrum of, for example, 

DFO conjugated mAb, each peak of a charged species does show a signal split into numerous 

ones. Each “shoulder” represents another derivative (Figure 16, right). 
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Figure 16: Left: section of an LCMS spectrum of native Bevacizumab with charged species between 
+49 and +38; right: section of a denoised LCMS spectrum of Bevacizumab conjugated with 5 eq. p-
NCS-Bz-DFO between species charged with +40 and +38. Framed in red, the exemplary chosen 
respectively mAb species for mathematical fittings with charge +39. 

To analyze the spectra of the different conjugates one signal of charge was chosen to apply 

mathematical fittings. First, to improve the spectra, a denoising algorithm was performed. 

Doing so, the spectrum of the native mAb presents not the, at first expected, Gaussian shape 

signal but a signal with many sub-signals, like a flame. This appearance is most likely due to 

glycan variations (21). Interestingly, this phenomenon is also visible in the LCMS of the 

conjugated mAbs, however, only in the respectively first shoulder of each signal/charge 

which corresponds to the percentage of the heterogenic mixture that doesn’t show 

conjugation, hence, is still native mAb (Figure 17). 

 

 

Figure 17: Raw LCMS data (black) of Bevacizumab conjugated with 0, 3, 5 or 10 eq. p-NCS-Bz-
DFO, improved with a denoising algorithm (red). 

Next, to fit the data, bigaussian lineshapes were used (as for this work we weren’t interested 

in the glycans we handled the signal of the native mAb as Gaussian distribution) to identify 

the distribution of the different conjugates obtained after random conjugation of either 3, 5 

or 10 eq. p-NCS-Bz-DFO or 30, 40 or 50 eq. TCO-NHS to the two different antibodies 

Bevacizumab and Trastuzumab. Native mAb was used as reference to force the position of 

5 eq. DFO 

0 eq. DFO 3 eq. DFO 

10 eq. DFO 
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the center. The fitted positions of the conjugates were calculated by the formula: 

𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑒𝑤 = 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑚𝐴𝑏 ∗
150 000+𝑛∗753

150 000
 (Figure 18). 

     

Figure 18: Mathematical fittings of exemplary LCMS spectra for DFO conjugations of Bevacizumab, 
using bigaussian lineshapes (top of the images: denoised data in black, fitted lineshape in red), 
obtaining mAb derivatives (bottom of the images) with 0 (black), 1 (red), 2 (blue) or 3 (green) DFO. 

As mentioned above, the analysis of the obtained mAb derivatives is quite challenging due 

to the small size of the ligands compared to the mAb. This is even more obvious looking at 

TCO, which only contains 1/5th of the mass compared to DFO. Hence, LCMS spectra show 

no separation or shoulders, only a broadening of the signal can be observed (Figure 19). The 

fittings were also performed with bigaussian lineshapes. 

 
Figure 19: Mathematical fittings of exemplary LCMS spectra for TCO conjugations of Bevacizumab, 
using bigaussian lineshapes (top of the images: denoised data in black, fitted lineshape in red), 
obtaining mAb derivatives (bottom of the images) with 0 (black), 1 (red), 2 (blue) or 3 (green) TCO. 

5 eq. DFO 10 eq. DFO 

0 eq. DFO 

0 eq. TCO 30 eq. TCO 

40 eq. TCO 50 eq. TCO 

3 eq. DFO 
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The following two tables (Table 8 and Table 9) show the results of the fittings; represented 

are the values of the average obtained conjugate (moiety/mAb) as well as the determined 

percentage of each species in the obtained mixture of conjugates. 

Table 8: Results of conjugation efficacy (average DFO/mAb) by LCMS analysis for Bevacizumab 
and Trastuzumab. In bold the average conjugate, below the percentage of mAb with 0, 1, 2 or 3 DFO 
(values are expressed as mean ± standard deviation, n = 2). 

  Bevacizumab Trastuzumab 

Coupling ratio 

mAb:p-NCS-Bz-DFO 
DFO/mAb 

average conjugate and distribution 

DFO/mAb 

1:3 

Ø 

0 

1 

2 

3 

0.63 ± 0.11 

51.13 ± 4.54 % 

35.87 ± 0.48 % 

11.75 ± 3.25 % 

1.26 ± 1.78 % 

1.02 ± 0.01 

34.81 ± 1.55 % 

35.74 ± 2.07 % 

21.62 ± 0.11 % 

7.84 ± 0.42 % 

1:5 

Ø 

0 

1 

2 

3 

1.02 ± 0.01 

33.00 ± 1.61 % 

38.42 ± 0.92 % 

22.14 ± 1.77 % 

6.43 ± 1.08 % 

1.21 ± 0.05 

27.14 ± 1.62 % 

35.60 ± 1.21 % 

26.47 ± 2.68 % 

10.78 ± 0.15 % 

1:10 

Ø 

0 

1 

2 

3 

1.48 ± 0.08 

17.06 ± 1.78 % 

34.10 ± 2.85 % 

32.15 ± 2.55 % 

16.69 ± 2.07 % 

1.65 ± 0.15 

15.83 ± 5.47 % 

26.30 ± 1.74 % 

35.10 ± 5.05 % 

22.77 ± 2.17 % 

The results of the LCMS analysis for DFO conjugations (Table 8) show very nicely the 

expected trends that could merely be seen with MALDI. The amount of chelator coupled to 

mAb increases with higher equivalents of DFO during the reaction, from 0.6 and 1.0 DFO 

per mAb with 3 equivalents to 1.5 and 1.7 DFO/mAb after the reaction with 10 eq. p-NCS-

Bz-DFO (Bevacizumab and Trastuzumab, respectively). Also, looking at the distribution of 

species in each conjugate mixture, the amount of non-modified mAb decreases, whereas the 

amount of higher conjugated mAbs increases with higher equivalents of DFO (e.g. from 

1.3 % to 16.7 % for Bevacizumab with 3 DFO). Comparing the two different mAbs with 

each other Bevacizumab presents overall slightly lower conjugation yields than Trastuzumab. 

Looking at the TCO conjugations (Table 9) much higher standard deviations can be 

witnessed, which can be explained by the, as above mentioned, smaller size of the ligand. 

Having such big errors does make it difficult to talk about trends or discuss the results; the 

obtained values should be questioned and the value of the results raised by increasing n. 
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Table 9: Results of conjugation efficacy (average TCO/mAb) by LCMS analysis for Bevacizumab 
and Trastuzumab. In bold the average conjugate, below the percentage of mAb with 0, 1, 2 or 3 TCO 
(values are expressed as mean ± standard deviation, n = 2, *n = 1). 

  Bevacizumab Trastuzumab 

Coupling ratio 

mAb:TCO-NHS 
TCO/mAb 

average conjugate and distribution 

TCO/mAb 

1:30 

Ø 

0 

1 

2 

0.57 ± 0.04 

53.74 ± 9.22 % 

35.55 ± 14.61 % 

10.70 ± 5.39 % 

0.58 ± 0.55 

60.56 ± 28.51 % 

20.52 ± 1.76 % 

18.91 ± 26.75 % 

1:40 

Ø 

0 

1 

2 

3 

0.66 ± 0.01 

57.61 ± 8.64 % 

25.80 ± 5.82 % 

9.30 ± 13.15 % 

7.30 ± 10.32 % 

1.22 ± 0.81 

44.25 ± 39.47 % 

13.49 ± 19.08 % 

18.76 ± 0.53 % 

23.50 ± 20.91 % 

1:50 

Ø 

0 

1 

2 

3 

1.74* 

- 

52.25 % 

21.73 % 

26.02 % 

0.95 ± 0.75 

51.21 ± 35.72 % 

17.68 ± 17.77 % 

16.26 ± 3.04 % 

14.85 ± 21.00 % 

3.3.5 Comparison between the different methods 

If we look at the results obtained after conjugations with the chelator DFO (Table 10), 

correlations can be seen between all three methods for both antibodies. However, MALDI 

deviates the furthest, especially for Trastuzumab, in the average value of DFO/mAb 

compared to the other two methods. The most trustworthy method to analyze DFO 

conjugates, confirmed with the lowest standard deviation, is the LCMS method. One 

question that we wanted to answer by using different analysis methods was if the number of 

ligands per mAb is smaller when using direct methods compared to mass analytic, which 

would reveal that some of the ligands, bound to the mAb, are not actually available due to 

interactions with the mAb. Leaving the ratios obtained by MALDI aside due to its 

questionable results (explained above), we can see slightly higher ratio for DFO conjugations 

for Trastuzumab with the LCMS method compared to the direct method. However, for 

Bevacizumab an opposite trend is visible. Taking into account that the standard deviation 

for the direct method is relatively high, no clear answer can be given. Yet, an increase in n 

could lead to more significant results. 

Table 10: comparison of DFO conjugation efficacy between different analytical methods for 
Bevacizumab (top) and Trastuzumab (bottom) (values are expressed as mean ± standard deviation, 
n = 2). 

Bevacizumab direct LCMS MALDI 

Coupling ratio 

mAb:p-NCS-Bz-DFO 

Resulting average conjugate 

DFO/mAb 

1:3 0.87 ± 0.32 0.63 ± 0.11 0.50 ± 0.27 

1:5 1.26 ± 0.33 1.02 ± 0.01 0.78 ± 0.09 

1:10 1.47 ± 0.30 1.48 ± 0.08 0.95 ± 0.59 
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Trastuzumab direct LCMS MALDI 

Coupling ratio 

mAb:p-NCS-Bz-DFO 

Resulting average conjugate 

DFO/mAb 

1:3 0.13 ± 0.01 1.02 ± 0.01 0.25 ± 0.36 

1:5 0.70 ± 0.35 1.21 ± 0.05 0.28 ± 0.31 

1:10 1.31 ± 0.20 1.65 ± 0.15 0.49 ± 0.13 

Looking at the ligand/mAb ratios after conjugation with the pre-targeting ligand TCO 

(Table 11) correlations are more difficult to observe. The trend, to obtain higher conjugated 

antibodies with increased equivalents of ligand during the conjugation reaction, is visible in 

all methods for Bevacizumab, yet, for Trastuzumab only for the direct method. But high 

standard deviations make the results by MALDI and LCMS questionable. The most 

trustworthy method to analyze TCO conjugates, confirmed with the lowest standard 

deviation, is the direct method. As explained earlier, the small molecular mass of TCO 

compared to the mAb makes mass analysis challenging. Yet again, an increase in n could lead 

to more significant results. 

Table 11: comparison of TCO conjugation efficacy between different analytical methods for 
Bevacizumab (top) and Trastuzumab (bottom) (values are expressed as mean ± standard deviation, 
n(direct) ≥ 2, n(mass) = 2). 

Bevacizumab direct LCMS MALDI 

Coupling ratio 

mAb:TCO-NHS 

Resulting average conjugate 

TCO/mAb 

1:30 1.0 ± 0.1 0.57 ± 0.04 0.65 ± 0.36 

1:40 1.3 ± 0.1 0.66 ± 0.01 1.76 ± 0.13 

1:50 1.9 ± 0.4 1.74 2.45 ± 0.76 

Trastuzumab direct LCMS MALDI 

Coupling ratio 

mAb:TCO-NHS 

Resulting average conjugate 

TCO/mAb 

1:30 1.6 ± 0.1 0.58 ± 0.55 1.20 ± 1.13 

1:40 2.0 ± 0.5 1.22 ± 0.81 2.15 ± 0.41 

1:50 2.1 ± 0.1 0.95 ± 0.75 2.04 ± 0.20 

3.4 Summary and conclusion 

This chapter describes the analysis of two different monoclonal antibodies (Bevacizumab 

and Trastuzumab), randomly conjugated with two different ligands (trans-cyclooctene and a 

desferrioxamine derivative) by three different methods (one direct titration and two mass 

analyses: MALDI and LCMS). The direct method enables the determination of the average 

number of available ligands per mAb via titration, whereas the mass analyses reveal the 

average of the total number of attached moieties and furthermore allow the determination 

of the distribution of conjugates in the obtain heterogenic mixture. 

The direct method of the TCO conjugation, a titration with a tetrazine-fluorophore, shows 

reliable and reproducible results. The low yield of the conjugation (several tenfold molar 

equivalents to the mAb are necessary) can be explained by fast hydrolysis of the TCO-NHS 
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ester. For the DFO conjugation much lower reaction ratios are sufficient as the coupling is 

performed via isothiocyanate. The direct method for DFO, the titration with radioactive 

spiked zirconium oxalate, is somewhat more complex and susceptible, compared to the TCO 

titration, which is documented by higher standard deviations. However, the results show the 

expected trend and correlate with the LCMS analysis.  

Even though, MALDI is a commonly used method to analyze antibody drug conjugates, in 

our hands the results were questionable; high standard deviations and major differences in 

results compared to both other methods were witnessed. 

The analysis of mAb conjugates with such small ligands is clearly challenging. However, 

looking at the LCMS spectra, high mass accuracy and resolution can be observed after DFO 

conjugation. Yet, the analysis of TCO conjugations, with TCO being still 5 times smaller 

compared to DFO, shows much higher standard deviations, hence less accuracy. 

Overall, the two different antibodies showed quite similar trends and values. However, 

Trastuzumab reveals slightly higher conjugation yields. 
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3.5 Experimental part 

3.5.1 Reagents 

All reagents were obtained from Sigma-Aldrich unless otherwise stated. Deionized water 

(18 MΩ) was used in all reactions. p-NCS-Bz-DFO was obtained from CheMatech (cat. No. 

C121). Both antibodies (Bevacizumab and Trastuzumab) were purchased from Roche 

Farma, S.A. España. [89Zr]ZrC2O4 (in 1 M oxalic acid) was produced in house by a (p, n) 

reaction of natural yttrium-89 and isolated with a hydroxamate column following standard 

protocol. 

3.5.2 Instrumentation 

UV-Vis spectra were measured with a Jasco V630BIO Spectrophotometer or with 

NanoDrop® ND-1000 V3.5.2 

Gamma counts were measured using a Wallach Wizard, PerkinElmer (Waltham, MA, USA) 
gamma counter. 

MALDI/TOF MS analyses were performed using a UltrafleXtreme III, Bruker Daltonics 

(frequency-tripled (355 nm) Nd:YAG laser) with positive ion mode / Linear mode m/z 30-

180 kDa laser fluence 90% / Laser frequency 1000 Hz and Laser shots accumulated >5000. 

The samples were measured using the dried droplet method on a polished stainless-steel 

probe (Bruker Daltonics) using 1 µL sample mixed with 1 µL sDHB matrix (10 mg/mL 

super-DHB in 25 % acetonitrile and 75 % TFA (0.1 %) in water). 

UPLC/ESI-TOF MS analyses were performed using an AQUITY UPLC separation module 

coupled to an LCT TOF Premier XE mass spectrometer (Waters, Manchester, UK). An 

Acquity BEH C4 column (150x2.1 mm, 1.7 µm) was used as stationary phase. The elution 

buffers were A (water and 0.1% TFA) and B (Acetonitrile and 0.1% TFA). The column was 

eluted with a gradient: t=0 min, 95% A, 5% B; t=2 min, 95% A, 5% B; t=35 min, 25% A, 

75% B; t=40 min, 25% A, 75% B; t=41 min, 95%A, 5% B; t=45 min, 95%A, 5% B. Total 

run was 45 min, injection volume was 10 µL and the flow rate 200 µL/min with a column 

temperature of 70 °C. The detection was carried out in positive ion mode, monitoring the 

most abundant isotope peaks from the mass spectra (M+H+). 

3.5.3 Chemistry; TCO conjugation 

Conjugation of TCO-NHS to mAb 

The mAb was diluted in PBS (phosphate-buffered saline, pH 7.4) to a concentration of 1.5 

– 3.0 mg/mL. The pH was adjusted to 8.6 – 8.9 with 0.1 M Na2CO3. TCO-NHS (trans-

cyclooctene-NHS-ester, 20 mM in DMSO) was added in different ratios (0, 20, 30, 40, 50, 

55, 100 and 200 molar eq. TCO-NHS per mAb). After incubation (60 min, RT) non-reacted 

TCO-NHS was removed by spin filtration (100 kDa, 12000 rpm) and the conjugated mAb 

washed three times with PBS. After recovering the mAb from the filter with PBS its 

concentration was determined by NanoDrop®. 

TCO conjugation – direct analysis - photometric 

An aliquot of the TCO-conjugated mAb (0.05 mg) was taken and 5 – 10 molar eq. 6-Methyl-

Tetrazine-Sulfo-Cy3 (mTzCy3, 1 mg/mL in DMSO) added. After 5 min incubation at RT 
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the fluorophore-labeled mAb was purified by spin filtration (100 kDa, 12000 rpm) and 

washed four times with PBS. After recovering the mAb from the filter with PBS the 

concentrations of mAb and mTzCy3 were determined by NanoDrop®. The ratio between 

mTzCy3 (which correlates to the available TCO moieties) and mAb was calculated. 

Determination of quantitative reaction between mAb-TCO and mTzCy3 

The mAb was diluted in PBS (phosphate-buffered saline, pH 7.4) to a concentration of 

1.0 mg/mL. The pH was adjusted to 8.7 – 9.0 with 0.1 M Na2CO3. 30 molar eq. TCO-NHS 

(trans-cyclooctene-NHS-ester, 20 mM in DMSO) were added and incubated for 90 min at 

room temperature. Non-reacted TCO-NHS was removed by spin filtration (100 kDa, 

12000 rpm) and the conjugated mAb washed three times with PBS. After recovery from the 

filter the mAb-TCO was split into 6 fractions and 3 each were incubated with 1/6th or 1/3rd 

molar 6-Methyl-Tetrazine-Sulfo-Cy3 (mTzCy3, 1 mg/mL in DMSO) of the initial amount 

of TCO-NHS. After 60 min incubation at RT the fluorophore-labeled mAb was purified by 

spin filtration (100 kDa, 12000 rpm) and washed four times with PBS. After recovering the 

mAb from the filter with PBS the concentrations of mAb and mTzCy3 were determined by 

UV-VIS spectrophotometry. The ratios between mTzCy3 and mAb were calculated and 

compared to each other. 

Kinetic study between mAb-TCO and mTzCy3 

The mAb was diluted in PBS (phosphate-buffered saline, pH 7.4) to a concentration of 

1.0 mg/mL. The pH was adjusted to 8.7 – 9.0 with 0.1 M Na2CO3. 50 molar eq. TCO-NHS 

(trans-cyclooctene-NHS-ester, 20 mM in DMSO) were added and incubated for 60 min at 

room temperature. Non-reacted TCO-NHS was removed by spin filtration (100 kDa, 

12000 rpm) and the conjugated mAb washed three times with PBS. After recovery from the 

filter mAb-TCO was diluted to 2 mL with PBS and 5 eq. (in relative to the mAb) 6-Methyl-

Tetrazine-Sulfo-Cy3 (mTzCy3, 1 mg/mL in DMSO) were added. The mAb-TCO sample 

was split into 7 fractions of 250 µL and each reaction quenched by spin filtration (100 kDa, 

12000 rpm) after 1, 5, 10, 15, 20, 30 and 45 min incubation at room temperature. After 

further washings with PBS the mAb-TCO-mTzCy3 was recovered with PBS from the filter 

and the concentrations of mAb and mTzCy3 determined by UV-VIS spectrophotometry. 

The ratios between mTzCy3 and mAb were calculated and compared to each other. 

3.5.4 Chemistry; DFO conjugation 

Conjugation of Df-Bz-NCS to mAb 

The mAb was diluted in PBS to a concentration of 1.5 – 3.0 mg/mL. The pH was adjusted 

to 8.6 – 9.1 with 0.1 M Na2CO3. p-NCS-Bz-DFO (5 mM in DMSO) was added in different 

ratios (0, 3, 5 and 10 molar eq. per mAb). After incubation (45 min, 37 ºC) non-reacted p-

NCS-Bz-DFO was removed by spin filtration (100 kDa, 12000 rpm) and the conjugated 

mAb washed three times with PBS. After recovering the mAb from the filter with PBS its 

concentration was determined by NanoDrop®. 

Radiolabeling of mAb with 89Zr 

Radiolabeling of mAb-DFO with 89Zr was performed by incubation with [89Zr]ZrC2O4 in a 

1 M oxalic acid solution. Therefore 50 µl of 1 M oxalic acid containing 89Zr (0.6 mCi = 

22.2 MBq) were neutralized with 2 M sodium carbonate, 450 ug mAb was added and the 



_____________________________________________________________________________ 

48 
 

Chapter 3: Conjugation and analysis of monoclonal antibodies 

volume adjusted to 0.5 mL with 0.5 M HEPES buffer. After 1 h incubation at room 

temperature the mAb was purified by sephadex G-25 size exclusion column (NAP5® GE 

Healthcare) and PBS. Incubation and purification were monitored by iTLC (mobile phase: 

20 mM citric acid + 60 mM EDTA 9:1 acetonitrile; Rf(mAb) = 0, Rf(89Zr-EDTA) = 0.6). 

The radiochemical yield was 68 %. 

Production of 90Zr-oxalate solution 

To produce Zirconium oxalate out of ZrCl4 a hydroxamate functionalized resin was prepared 

and activated to work as a column. Therefore 100 mg of the resin was suspended in 4 mL 

saline and transferred into an Alltec® tube (volume 1 mL) with frit. The resin was washed 

with 20 mL acetonitrile, 30 mL saline and 12 mL 2 M HCl and pushed dry with air. 4 mg 

Zirconium chloride was dissolved in 4 M HCl and a trace of 89Zr (0.1 - 0.2 µCi = 3700 – 

7400 Bq) was added. The volume was adjusted to 15 mL with 4 M HCl and transferred to 

the hydroxamate column. For washings 4 times 2.5 mL 2 M HCl were used followed by 2 

times 3 mL MQ-water. Finally, the column was eluted with 6 times 0.5 mL 1 M oxalic acid. 

All fractions were measured in a gamma counter (Wallach Wizard, PerkinElmer, Waltham, 

MA, USA) and the concentration of each calculated. The samples were stored to decay before 

used. 

DFO conjugation – direct analysis - radiometric 

The procedure to analyze DFO conjugated mAb was based on Meares et al. (20). Solutions 

of spiked zirconium oxalate in four different concentrations (0, 1, 2, 3 eq. Zr4+ per mAb with 

0.1 - 0.2 µCi = 3700 - 7400 Bq each) were prepared. The pH was neutralized with 2 M 

Na2CO3, stabilized by HEPES buffer (0.5 M) and the antibody (0.45 mg each) added (final 

volume 500 µL). After one hour incubation at RT the four solutions were purified by 

sephadex G-25 size exclusion column (PD 10® GE Healthcare). The collected zirconium-

labeled mAbs were measured in a gamma counter, the yield of the mAb with zero eq. 

Zirconium normalized to 100 % and the average ratio of p-NCS-Bz-DFO per mAb 

respectively calculated. 
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4.1 Introduction 

This chapter describes the process towards the in vivo evaluation of pre-targeting in the 

application of boron neutron capture therapy (BNCT). As boron delivery agent, small 

spherical gold nanoparticles (AuNPs) were loaded with boron clusters and functionalized 

with tetrazine to enable the click reaction with a trans-cyclooctene (TCO) functionalized 

monoclonal antibody (mAb) for the pre-targeting approach. The process starts with the 

functionalization of a tumor targeting antibody and the subsequent evaluation of its bio-

activity. Afterwards the boron delivery agent had to be synthesized, multifunctionalized and 

characterized for its physical properties as well as its bio-compatibility. After verifying that 

the two components, the mAb-TCO and the tetrazine-AuNPs are able to undergo the click 

reaction with each other, the pre-targeting strategy could be evaluated in vitro and in vivo. 

4.1.1 The antibody 

For this project a tumor targeting antibody was necessary. Trastuzumab is a well-known 

humanized antibody, approved by both the Food and Drug Administration (FDA) and the 

European Medicinal Agency (EMA), and has a high target specificity and binding affinity to 

human epidermal growth factor (HER2) receptors. Those receptors are overexpressed on 

the cell membrane of some breast and gastric tumors, and even though some HER2(+) 

tumor cell lines can build resistance against Trastuzumab as drug, the HER2 expression does 

not decrease (1). Furthermore, several articles are already published using Trastuzumab 

successfully as pre-targeting component (2; 3; 4). However, it is important to keep in mind 

that many mAbs, once bound to their target, tend to internalize (transfer into the cytoplasm). 

That property is known for Trastuzumab and may give issues in the pre-targeting strategy as 

the antibody needs to stay available on the cell membrane long enough for the second pre-

targeting component (in this case the AuNPs) to reach the tumor and click to the antibody. 

Thus, the TCO functionalized Trastuzumab not only needs to be evaluated for its preserved 

binding affinity to HER2 but also for its behavior towards internalization (Figure 1). 

 

Figure 1: Illustration of the antibody’s pathway in pre-targeting on cell level. The functionalized 
antibody (Trastuzumab-TCO) needs to be evaluated for its binding affinity to its target (HER2) as 
well as for its behavior towards internalization. 
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4.1.2 Small AuNPs as boron delivery agents 

AuNPs are very versatile; they can vary in chemical and physical properties as well as in shape 

and size. The increase of popularity over the last decade is also due to their ability of a high 

surface loading, low toxicity, their optical properties and rather easy modifications of their 

chemical properties by surface functionalization. After the evaluation and biodistribution 

studies of different sized and shaped AuNPs, previously conducted in our group (11) (and 

ongoing PhD of Krishna Reddy Pulagam), we chose small (core size 3-5 nm), spherical 

particles. The biodistribution of smaller particles shows an increased accumulation and 

penetration into tumor tissue through the EPR effect and a shift of the elimination can be 

observed towards smaller particles from liver and spleen to kidneys and bladder which means 

faster clearance (5). Their high surface area-to-volume ratio allows a high amount of cargo, 

such as PEG to stabilize the particles and increase their bio-compatibility next to a high 

loading of the boron cluster COSAN (Cobalt bis[dicarbollide], Figure 2, right) to enable the 

delivery of a sufficient amount of Boron-10 into tumor tissue for the application in BNCT. 

Finally, functionalization with a tetrazine moiety was necessary to enable pre-targeting 

(Figure 2, left). 

   

Figure 2: Left: Schematic figure of a small, spherical AuNP, stabilized with PEG and functionalized 
with tetrazine and COSAN, right: the structural details of the boron cluster COSAN. 

4.1.3 Internalization of nanomaterials 

Internalization plays a key role in this work. The TCO-conjugated antibody may not 

internalize too fast to stay available on the cell membrane for the AuNP (the second 

component of the pre-targeting strategy) to attach. On the other hand, a subsequent 

internalization of the mAb-AuNP complex would be appreciated as the efficacy and 

selectivity increases for BNCT agents in case of localization in the cytoplasm, closer to the 

cell nucleus. 

The internalization of nanomaterial depends on many cofactors, such as particle size and 

shape, charge and surface properties as well as the type of cell line. For example, positively 

charged particles have increased nonspecific internalization, whereas negatively charged have 

longer blood circulation time. The main mechanism for cell uptake is the endocytic pathway, 

forming endosomes which convert from early (characterized by lower pH of around 6-6.5) 

to late endosomes and finally into lysosome (Figure 3) (5). The aggressive endosomal or 

lysosomal environment (low pH and hydrolytic enzymes) leads to degradation and 

subsequently to the release of nutrients and particle fractions whereas receptors and other 

cellular structures are recycled to the cell membrane. In tumor cells higher such activity can 

be observed (6).  
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Figure 3: Schematic representation of the endocytic pathway. 

Endocytosis can be further classified in different subsections. The most important ones are 

clathrin-mediated, caveolae-mediated and clathrin/caveolae-independent endocytosis 

(Figure 4). The majority of receptor-mediated internalization of nanoparticles occurs through 

the clathrin-mediated endocytosis. The caveolae-mediated endocytosis on the other hand is 

found in a variety of cellular processes such as cholesterol homeostasis, signal transduction 

and the endocytosis of proteins forming flask-shaped infoldings (60-80 nm), so called 

caveolae, which then convert into caveosomes. The major difference to endosomes is their 

neutral pH, resulting in lower aggressiveness. Also, negative surface charges have been found 

to induce cell uptake predominantly via caveolae (6).  Furthermore, it is shown that the 

caveolin-1 protein is involved in the receptor endocytosis of HER2, which is localized in 

caveolae and target for Trastuzumab. Hence, HER2 degradation occurs through the 

caveolae-mediated endocytosis (7).  

 

Figure 4: Illustration of internalization pathways, such as clathrin- and caveolin-dependent and 
independent endocytosis. 
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4.2 Objectives 

The specific objectives of this work were: 

1. To establish a BT-474 breast cancer xenograft mouse model. 

2. To functionalize the mAb Trastuzumab with TCO. 

3. To evaluate cell binding capacity, in vivo biodistribution and its internalization (both 

in vitro and in vivo) of Trastuzumab-TCO.  

4. To synthesize, characterize and radiolabel AuNPs functionalized with boron-rich 

molecules and tetrazine moieties.  

5. To evaluate the pre-targeting strategy for AuNPs (in vitro and in vivo). 

4.3 Results and discussion 

4.3.1 Establishment of a BT-474 cancer xenograft mouse model 

In order to evaluate the behaviour of the conjugated mAb, the functionalized AuNP and the 

approach of pre-targeting in vivo, a mouse model with human cancer xenografts had to be 

generated. Using the antibody Trastuzumab focused the choice to HER2 overexpressed 

tumors. We established a breast cancer mouse model with the BT-474 cell line on female 

NOD.CB17-Prkdcscid/J mice. With that aim, 5-6 weeks old mice were operated to implant 

a 17β-estradiol pellet subcutaneously at their neck, needed to enable the tumor to grow. 

24 hours after pellet implantation, 10x106 BT-474 tumor cells per animal (in sterile 

PBS:Matrigel 1:1) were subcutaneously inoculated at the flank of the mouse. Prior to each 

inoculation a Lonza Mycoplasma test was carried out to ensure that the cells weren’t 

contaminated. The sizes of the tumors were measured every 2-3 days with a digital caliper 

and volumes calculated (𝑉 =
short diameter2∗ long diameter

2
). At the time the tumour reached 

200-300 mm3 (around 2 weeks after inoculation, Figure 5) in vivo studies could be performed. 

The defined human endpoints were: (i) weight loss greater than 20 % in one week, (ii) one 

or more of the following clinical signs: abdominal distension, dyspnoea, cachexia or stooping, 

(iii) the absence of response to stimuli and lethargy, (iv) a tumor larger than 1500 mm3 in 

volume and (v) ulcerated or necrotic tumors or wounds / aggressions severe infected. 

 

Figure 5: Graphical representation of tumor growth of BT-474 breast cancer xenografts on 
NOD/SCID mice (values are expressed as mean ± standard error mean, n = 10). Inset: percentage 
of survival. 

0

250

500

750

1000

1250

1500

0 5 10 15 20 25 30 35

tu
m

o
r 

vo
lu

m
e

 (
m

m
3 )

Days after inoculation

D a y s  a f t e r  in o c u la t io n

%
 s

u
rv

iv
a

l

0 1 0 2 0 3 0 4 0

0

2 0

4 0

6 0

8 0

1 0 0



_____________________________________________________________________________ 

55 
 

Chapter 4: Pre-targeting gold nanoparticles 

4.3.2 Functionalization of Trastuzumab with TCO 

For the pre-targeting stratgey the antibody Trastuzumab needed to be functionalized with a 

TCO ligand to enable the in vivo click reaction to a tetrazine component. Therefore the 

commercial available TCO-NHS was used and randomly conjugated to freely available 

amines of lysine residues in the antibody (Figure 6). 

 

Figure 6: Illustration of the TCO-NHS conjugation to Trastuzumab. 

TCO-NHS was used in 50-55 eq. excess to the antibody and incubated for 60 min at room 

temperature with a pH between 8.6 and 9.1 and a mAb concentration of 3 mg/mL (see 4.5 

Experimental part for details). Those conditions led to an average conjugate of about two 

TCO per mAb (the determination of achieved TCO moieties per antibody is explained in 

details in Chapter 3 of this thesis). 

4.3.3 Evaluation of Trastuzumab-TCO by cell binding assays 

To ensure that the modification of the antibody by TCO conjugation did not compromise 

its binding ability to the target, binding assays were perfomed. Breast cancer cells (BT-474 

cell line) were used as target which overexpress the cell membrane receptor HER2. One way 

to determine the binding is a radiometric method using an assay developed by Lindmo in 

1984 (9). The modified and radiolabelled mAb is incubated with cell suspensions in different 

concentrations. 

To radioabel the mAb-TCO, conjugation with a DFO-chelator (p-NCS-Bz-DFO) was 

required (Figure 7). The dual conjugation was done in a one pot synthesis at 37 °C for 45 min. 

After purification the antibody was radiolabeled by incubating with 89Zr-oxalate at room 

temperature for one hour, followed by purification with a sephadex size exclusion column 

into PBS. The labeling was monitored by radio-TLC (radio thin-layer chromatography) using 

iTLC-SG chromatography paper (Agilent Technologies) and 20 mM citric acid + 60 mM 

EDTA/acetonitrile solution (9/1 v/v) as the stationary and mobile phases, respectively 

(Figure 8, for details see 4.5 Experimental part). After incubation unbound antibody was 

removed and the immunoreactive fraction plotted (Figure 9). The assay demonstrates that 

the modified mAb was not significantly compromised with preserved binding yields up to 

90 %.

 

Figure 7: Schematic representation of TCO- and DFO-conjugation followed by 89Zr-radiolabeling 
to obtain TCO-Trastuzumab-DFO-89Zr. 
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Figure 8: Chromatograms of radio-TLCs monitoring the radiolabeling of Trastuzumab with 89Zr. 
Left: reaction mixture (72 % labeled), right: after purification with size exclusion column. 

 

Figure 9: Lindmo cell binding plot of [89Zr]-Trastuzumab on BT-474 cells. 

To confirm the obtained results by the Lindmo assay, flow cytometry based on fluorescence-

activated cell sorting (FACS) was performed. Therefore the TCO conjugated Trastuzumab 

was fluorophore-labelled with mTzCy3 (6-Methyl-Tetrazine-Sulfo-Cy3) via the inverse-

electron-demand Diels Alder click reaction between TCO and tetrazine. The studies were 

first performed with different concentrations of mAb (0.01 - 0.1 mg/mL) during 30 min 

incubation (Figure 10 C) followed by a study with different incubation time points (5 – 

30 min), using the concentration that showed the best labeling results (Figure 10 D). The 

experiments showed that with a concentration of 0.1 mg/mL and an incubation time of only 

5 min over 80 % of the cells were labeled with Trastuzumab-TCO-mTzCy3. These results 

confirm that there is no significant decrease in the binding affinity of the modified mAb 

towards it’s target. 
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Figure 10: FACS studies, to monitor cell binding capability of TCO conjugated Trastuzumab; A) 
and B) density dot plots: A) gating for live, non-labeled BT-474 cells, B) gating for singlets allowing 
discrimination of doublets; C) and D) histogram of fluorescent BT-474 population with control (non-
labeled): C) different concentrations of Trastuzumab (30 min incubation), D) different incubation 
times of Trastuzumab (0.1 mg/mL). 

4.3.4 Evaluation of Trastuzumab-TCO by biodistribution studies 

After illustrating that the binding capacity of the TCO conjugated Trastuzumab is preserved, 

biodistribution studies in BT-474 breast cancer xenograft mice were perfomed. On one hand 

to proof tumor uptake in vivo, but also to determine the time point for the injection of the 

second component of the pre-targeting approach. To do so, the time when the mAb 

concentration in tumor is high, but low in blood and other tissue, needed to be found 

(Figure 11). 

 

Figure 11: Fictitious time activity curves representing the concentration of drug in the tumor (blue 
line), blood (red line) and healthy tissue (green line) after intravenous administration. The time 
window in which the concentration in the tumor is high and the concentrations in blood and healthy 
tissue are low is shown. 

In order to perform trackable in vivo studies Trastuzumab was, as above, not only conjugated 

with TCO but also radiolabeled with 89Zr. Doses of about 100 µg TCO-Trastuzumab-DFO-
89Zr were injected intravenously into breast cancer xenograft bearing mice (n = 3). PET-CT 

scans were performed approximately 1 h, 8 h, 24 h, 48 h and 72 h post-injection using an 

eXplore Vista-CT small animal PET-CT system (GE Healthcare, USA) system (Figure 12). 
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Figure 12: Representative coronal PET images (maximum intensity projections) obtained at different 
time points after intravenous administration of [89Zr]-DFO-Trastuzumab-TCO. PET images have 
been co-registered with CT images (maximum intensity projections) for localization of the radioactive 
signal. Positions of the heart, liver, bladder and tumor are indicated. 

 

Figure 13: PET quantification of organ/tissue uptake at 1 h, 8 h, 24 h, 48 h and 72 h post-injection 
(values are expressed as mean ± standard error mean, n = 3) to represent the biodistribution of [89Zr]-
DFO-Trastuzumab-TCO. 

The PET images, confirmed by PET quantification (Figure 13), show increasing tumor 

uptake with its maximum at 48 h (24.5 % ID/cm3). If after 8 h there is still high uptake in 

organs like heart and liver, at 24 h post-injection the background signal is drastically reduced 

and the tumor is clearly visible. At later time points, typical for 89Zr images, using DFO as 

chelator, the bones, like knees, shoulder and backbone, show uptake of 89Zr due to impaired 

stability of the radio-complex in vivo (10). The results were confirmed by ex vivo experiments 

after the last PET scan at 72 h post injection, extracting the organs and analysing via gamma 

counter (Wallach Wizard, PerkinElmer) (Figure 14). 

 
Figure 14: Concentration of radioactivity in different organs/tissues, as determined by gamma 
counting, at t = 72 hours after administration of [89Zr]-DFO-Trastuzumab-TCO (values are 
expressed as mean ± standard error mean, n = 3). 
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4.3.5 Trastuzumab-TCO internalization studies in vitro and ex vivo 

For the pre-targeting strategy the first injected TCO-functionalized mAb needs to stay 

available long enough, that is, on the cell membrane, for the second injection, the tetrazine 

functionalized component, to reach the tumor and “click” to the antibody. However, many 

mAbs, once bound to their target, tend to internalize from the cell membrane into the cell 

cytoplasm. Hence, to obtain insight of the behaviour of Trastuzumab, internalization studies 

were performed. First, in vitro monitoring of TCO-Trastuzumab fluorophore-labeled with 

mTzCy3 (6-Methyl-Tetrazine-Sulfo-Cy3) via the click reaction to TCO was carried out using 

BT-474 cells and fluorescence microscopy (Figure 15). Images were acquired using a 

confocal microscope (Zeiss LSM 880) and analyzed by the ZEN-ZEISS software. 

 

Figure 15: Representative images by confocal fluorescence microscopy of BT-474 cells incubated 
with Trastuzumab-TCO-Cy3 (green) over time. Nucleus stained with Hoechst33342 (blue), 
lysosomes with Lysotracker-deep-red (red). Merged signal of mAb and lysosome in yellow. Top and 
middle: Image taken after 1 h and 24 h incubation time. Bottom: 3D images (Z-stack) after 1 h and 
24 h incuabtion time. 

Looking at early time points, the cell membrane is clearly visible, revealing that Trastuzumab 

bound to the HER2 cell membrane receptors. However, after one hour incubation at 37 °C 

some Cy3 fluorescence is already found in the cytoplasm. It correlates with the red stained 

lysosomes (yellow signal in the merged image) leading to the conclusion that a fraction of 

Trastuzumab-HER2 complexes already internalized. Still, compared to the 24 h incubation 

time point a huge difference can be seen. Over time most mAb internalized resulting in an 

image with spread Cy3 signal over the cytoplasm, correlating with the Lysotracker-deep-red 

signal. The cell membrane is hardly detectable anymore. 
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Yet, the goal is the evaluation of the pre-targeting strategy in vivo. The antibody, other than 

in vitro, first needs to reach the tumor and attach to the membrane before internalization can 

occur. Hence, to find the right time point for the injection of the second pre-targeting 

component internalization studies with radiolabeled Trastuzumab were performed in vivo. To 

do so, we took advantage of the possibility of using two different labeling strategies, either 

using 89Zr- or 131I. After internalizing into the cell plasma, Iodine is cleaved off and released 

from the cell, whereas Zirconium remains there. Hence, for the experiment, one batch of 

Trastuzumab was conjugated with p-NCS-Bz-DFO and, after purification, radiolabeled by 

incubation with 89Zr(C2O4)2 as described above. Another batch of Trastuzumab was 

radiolabeled with 131I (t1/2 = 8.02 days, beta minus decay) using the Iodogen-coated method. 

In brief, a vial was coated with Iodogen, a solution of Trastuzumab in sodium phosphate 

buffer added and incubated for 4 min with [131I]NaI (for radiolabeling details see 4.5 

Experimental part). After purification by sephadex G-25 size exclusion column (PD10® GE 

Healthcare) the different labeled Trastuzumab (131I and 89Zr) were mixed in a 1:1 ratio of 

their activity (Figure 16, left). Four mice were injected intravenously and ex vivo studies were 

executed 24 h (n = 2) and 48 h (n = 2) post injection. The activity of the extracted tumors 

was measured in a gamma counter (Wallach Wizard, PerkinElmer). As the gamma spectra of 

the two nuclides are varying enough (represented with a high resolution gamma spectrum in 

Figure 16, right) signal separation can be achieved. Hence the respective tumor uptake of 

radiolabeled antibody from each species can be obtained (Figure 17). 

 

Figure 16: Left: Illustration of ex vivo internalizing studies. A 1:1 mix of mAb, labeled with either 
Iodine-131 or Zirconium-89, is injected intravenously to a mouse. After defined time points ex vivo 
studies were performed and tumor uptake measured via gamma counter. Right: gamma spectra of 
the mixed radionuclides 131I and 89Zr. 

  

Figure 17: Tumor uptake determined by gamma counting after ex vivo studies at 24 h and 48 h after 
administration of 89Zr-labeled (blue) and 131I-labeled (grey) mAb to evaluate the internalization of 
Trastuzumab in vivo (values are expressed as mean ± standard deviation, n = 2). 
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The determined uptake of Trastuzumab in tumor is significantly different if determined with 

Iodine-131 or Zirconium-89. [89Zr]Trastuzumab reaches 11.2 and 13.7 %ID/g respectively 

at 24 h and 48 h post injection. [131I]Trastuzumab instead shows only uptake of 5.0 and 

4.8 %ID/g, decreasing in-between the time points (Figure 17). This outcome does not only 

confirm the internalization of Trastuzumab but also the increase of internalized fraction over 

time. By setting the uptake of [89Zr]Trastuzumab as 100 % and the uptake of 

[131I]Trastuzumab as the fraction which is not yet internalized (that is 131I not cleaved off and 

released from the cell) the percentage of internalized fraction increases from 55 % at 24 h to 

65 % at 48 h post-injection. This calculation naturally is only estimation, as, among others, 

we don’t take into account the time needed after internalization for cleavage and release of 
131I from the cell; however, it gives insight of the internalization rate of Trastuzumab. 

Importantly, it also confirms that a fraction of the antibody remains on the cell membrane 

and hence pre-targeting is viable.  

Looking at the two experiments, the biodistribution (Figure 13) and internalization of 

Trastuzumab (Figure 15 and Figure 17), the time point for the injection of the second 

component in the pre-targeting strategy was set to 24 h after the mAb injection, balancing 

between tumor uptake, sufficient clearance from blood and healthy tissue and internalization 

of the antibody. 

With the completed evaluation of TCO conjugated Trastuzumab we moved to the second 

component of the pre-targeting approach, the boron delivery agent. Therefore, we 

synthesized and characterized heavily boronated gold nanoparticles (AuNPs), functionalized 

with a tetrazine derivative as counterpart for the in vivo click reaction with TCO of the mAb. 

4.3.6 Synthesis and characterization of gold nanoparticles 

 

Figure 18: Schematic representation of synthesis and functionalization of AuNPs. 

After the evaluation and biodistribution studies of different sized and shaped AuNPs, 

previously conducted in our group (11) (and ongoing PhD of Krishna Reddy Pulagam), the 

particles chosen for the pre-targeting approach were small (core size 3-5 nm), spherical 

particles, synthesized in aqueous medium (12). For the final experiment, the in vivo studies of 

pre-targeted AuNPs, radiolabeled particles were required. The approach was to synthesize 

copper-64 (t1/2 = 12.7 h) alloyed particles to obtain core labeled AuNPs, hence, for the 

characterization of the AuNPs copper alloyed particles were synthesized (Figure 18). 

Therefore, a solution of Chloroauric acid (HAuCl4) and CuCl2 in water was reduced with 

sodium borohydride (NaBH4) and stabilized with thiolated amino-polyethylene glycol (HS-

PEG5000-NH2). A color change could be observed during the addition of NaBH4 from the 
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light yellow of HAuCl4 to a dark red, typical for AuNPs. After the particle settled for 2 h at 

room temperature, purification was performed by spin filtration (30 kDa) with PBS 

washings. To functionalize the particles with tetrazine for the pre-targeting approach, a NHS 

ester of such was used able to bind to free amine groups of the PEG-amine. Therefore, the 

pH of the AuNP suspension was adjusted to 8-9 with 0.1 M NaOH and Tetetrazine-PEG5-

NHS added. After 1 h incubation at room temperature the particles were purified by spin 

filtration and the last step launched. To functionalize in the matter of BNCT with high 

Boron-10 loadings, COSAN, a boron cluster, was attached. Therefore, COSAN was 

previously thiolated at the position of a BH group, which has a high electron density and can 

easily be functionalized. COSAN was reacted with tetrahydropyran to form intermediate [1], 

followed by ring opening with potassium thioacetate into intermediate [2]. To obtain the final 

compound, COSAN-SH, basic hydrolysis with sodium methoxide (NaOMe) was performed 

(Figure 19) (11). The coupling of such to the gold core of the AuNPs via thiol linkage 

occurred during one hour incubation at room temperature. Spin filtration was executed for 

purification, the AuNPs recovered in PBS and analyzed for their UV-VIS absorbance, shape, 

size, charge and composition. 

 

Figure 19: Synthesis of functionalized COSAN-SH; (i) Tetrahydropyran, dimethylsulphate, H2SO4; 
(ii) Potassium thioacetate; (iii) NaOMe, MeOH. 

UV-Vis absorbance is an easy and fast method and can be used to monitor each step of the 

synthesis and functionalization of the particles. If the core of the AuNPs is formed correctly 

the typical plasmon, dependent on shape and size of AuNPs, will be visible. For the particles 

in hand the light absorbance by the plasmon is not very intense, this is due to their small size, 

but still clearly visible between 430 and 630 nm. The functionalization steps can be 

monitored due to the maximum absorbance of tetrazine at around 270 nm, and of COSAN 

at around 315 nm (Figure 20). 

 

Figure 20: UV-VIS spectra of the PEG-amine stabilized AuNP core (light grey), functionalized with 
tetrazine (dark grey, max absorbance at 270 nm) and functionalized with tetrazine and COSAN 
(black, max absorbance at 315 nm). 
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Another analysis method to see if the synthesis and functionalization of the AuNPs was 

successful is by transmission electron microscopy (TEM). An image of the non-

functionalized particles shows the shape and size, as well as if the distribution is 

homogeneous. Furthermore, using a negative staining on the functionalized particles 

confirms the presence of the organic layer (due to COSAN and PEG5-Tetrazine) around the 

cold core in bright grey (Figure 21). 

 

Figure 21: Representative TEM images to visualize shape and size of AuNPs; Left: PEG-amine 
stabilized AuNP, right: tetrazine- and COSAN-functionalized AuNP (with negative staining), 
showing in bright grey an organic layer around the metal core. 

The TEM analysis showed a rather homogeneous distribution of spherical particles with a 

core diameter of 3-5 nm and an increase of the particle size due to the functionalization to 

12-15 nm. 

To determine the hydrodynamic diameter of the particles dynamic light scattering (DLS) was 

performed (Figure 22). It describes the size distribution by volume and showed a clear 

difference between the non-functionalized particles and the COSAN- and tetrazine- 

functionalized ones. The size increased from 27.27 ± 3.99 d.nm to 39.61 ± 0.74 d.nm. 

 

Figure 22: Size distribution ranges as determined by DLS (volume distribution) for small, spherical 
AuNP; Black: non-functionalized, PEG-amine stabilized AuNPs, grey: tetrazine- and COSAN-
functionalized AuNPs. 

The particles are stabilized with PEG-amine, leaving free amine groups on the surface of the 

AuNPs. Measuring the zeta potential (ζ-potential) leads therefore to a positive value (7.87 ± 

9.36 mV). However, after coupling tetrazine, which reduces the amount of free amine 

groups, and after attaching COSAN, a single negatively charged molecule, brings the zeta 

potential of the functionalized AuNPs to a negative value (-33.60 ± 3.82 mV) (Figure 23). 
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Figure 23: Zeta-potential values measured for non-functionalized, PEG-amine stabilized and 
tetrazine- and COSAN-functionalized AuNPs. 

Finally, the composition of the AuNPs was investigated by ICP-MS analysis (Inductively 

Coupled Plasma Mass Spectrometry), determining the concentrations of gold, boron and 

cobalt. In order to assure that stable COSAN is present on the surface of the particles, a 

molar ratio of boron to cobalt of 18:1 should be determined (see schematic structure of 

COSAN in Figure 24). With an obtained ratio of 18.2 the stability of COSAN attached to 

the AuNPs was confirmed. Furthermore, the boron loading of the particles was identified 

by determining the amount of boron to be 195 µg per mg gold, showing high boron loadings 

of the particles. 

          

Figure 24: Schematic structures of COSAN, showing the ratio of boron to cobalt with 18:1. 

To evaluate bio-compatibility of the multifunctionalized AuNPs, cytotoxicity studies on BT-

474 breast cancer cells were performed. The cells were treated with 5, 10, 20, 60, 80 and 

120 µM (gold concentration) of AuNPs for up to 72 h. Analysis by standard MTT assay 

showed, with overall cell survivals over 90 %, no induced cell death due to the particles in 

BT-474 cells, indicating negligible cytotoxicity (Figure 25). 

 

Figure 25: Cell viability in the presence of multifunctionalized AuNPs for 24 h, 48 h and 72 h on 
BT-474 breast cancer cell line; cells were incubated with increasing concentrations of AuNPs and cell 
viability was determined by MTT assay (values are expressed as mean ± standard error mean, n = 6). 

7,87

-33,60-40

-20

0

20

40

P
o

te
n

ti
al

 (
m

V
)

0

25

50

75

100

125

150

175

0 5 10 20 60 80 120

C
e

ll 
su

rv
iv

al
 (

%
)

[Au] (µM)

24 h
48 h
72 h



_____________________________________________________________________________ 

65 
 

Chapter 4: Pre-targeting gold nanoparticles 

For further studies on the BT-474 cell population fluorescence microscope experiments were 

performed. For most drug delivery agents in cancer therapy the ideal situation is 

internalization of such into the cancer cell cytoplasm before releasing the drug. It leads to 

higher efficacy and selectivity. This also includes the case of BNCT and its boron delivery 

agents. The neutron capture and the subsequent release of alpha particles and lithium ions 

has highest efficacy with boron close to the cell nucleus, due to the short path length of the 

emitted particles. In the case of pre-targeting the ideal situation would be for the AuNPs (the 

boron delivery agent) to “click” to the mAb, followed by internalization of the mAb-AuNP 

complex. To evaluate the internalization of the multifunctionalized AuNPs as such, a 

fluorophore-label was attached with TCO-Cy3, undergoing the click reaction with tetrazine 

and incubated overnight with BT-474 cells. To visualize co-localization between the AuNPs 

and the lysosomes, the location where internalized particles will be found, the lysosomes 

were stained with Lysotracker-deep-red. Images were taken using a live cell Axio Observer 

fluorescence microscope (Zeiss) and analyzed by the ZEN-ZEISS software, showing a clear 

co-localization between the AuNPs and the Lysosomes and therefore internalization of such 

after overnight incubation (Figure 26). As mentioned, cell uptake is a desired property for 

boron delivery agents, as for the pre-targeting strategy a co-internalization of the antibody-

AuNP complex is favored. Yet, it can be expected, that the click reaction between the mAb 

and the AuNP is faster than the cell uptake of the particles alone, hence no restrictions were 

expected for pre-targeting due to the ability of the particles to internalize. Additionally, the 

internalization of the AuNPs without interacting with the antibody should neither result in 

decreased efficacy, and can be considered as a parallel uptake mechanism that contributes to 

accumulation of the boron atoms in the interior of the cells. 

 

Figure 26: Representative images by live cell fluorescence microscopy of multifunctionalized AuNPs 
after overnight incubation. In green: AuNPs, fluorophore-labeled with TCO-Cy3, in red: Lysosomes, 
stained with Lysotracker-deep-red, in blue: nucleus, stained with Hoechst33342. Merged signals of 
AuNPs colocalizing with lysosomes appear in yellow. 

After the successful synthesis and functionalization of the AuNPs, including a complete 

characterization and with confirmed bio-compatibility, we could move to the evaluation of 

pre-targeting. To do so, at first, proof was needed for the click reaction to occur between the 

TCO functionalized Trastuzumab and the tetrazine functionalized AuNPs. Therefore, an 

agarose gel electrophoresis with a mixture of the two pre-targeting components and 
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respective controls was executed. The AuNPs derivatives were visible on the gel due to their 

red color. To visualize the mAb species after the electrophoresis a staining of the gel with 

coomassie blue was performed. As control each component was applied sole to the gel 

(Figure 27, line 1+2: Trastuzumab without and with TCO, line 6+7: AuNPs with and without 

tetrazine). Furthermore, a mix between either non-functionalized Trastuzumab and 

multifunctionalized AuNPs (Figure 27, line 3) or functionalized Trastuzumab and AuNPs 

without tetrazine functionalization (Figure 27, line 5) was applied; separations could be 

obtained. When applying the mixture of Trastuzumab-TCO and fully functionalized AuNPs 

(Figure 27, line 4) a merged signal appears showing combined signal of red AuNPs and blue 

antibody, confirming that the click reaction took place. 

 

Figure 27: Agarose gel electrophoresis, stained with coomassie blue, to demonstrate occurance of 
click reaction between Trastuzumab-TCO (mAb-TCO) and multifunctionalized AuNPs (AuNP-Tz) 
(line 4). Including controls with non-functionalized Trastuzumab (mAb) and AuNPs without 
tetrazine functionalization (AuNP). 

4.3.7 Radiolabelling of gold nanoparticles  

To be able to track the AuNPs in vivo, a positron emitting radionuclide was inserted. The 

possibility to synthesize copper alloyed AuNPs allows the incorporation of the radionuclide 

copper-64 in the core (12). The synthesis of the radiolabeled particles was carried out 

following the procedure described above; however, CuCl2 was spiked with radioactive 

[64Cu]CuCl2. This radionuclide is produced as a solution in 0.1 M HCl. Therefore, before 

tackling the preparation of the NPs, this solution was neutralized by adding an equivalent 

volume of a 0.1 M NaOH solution. To purify the AuNPs after the labeling by spin filtration, 

a 1 mM EDTA (Ethylenediaminetetraacetic acid) solution was used to remove all loosely 

bound 64Cu. The labeling was monitored by radio-TLC using iTLC-SG chromatography 

paper (Agilent Technologies) and 20 mM citric acid + 60 mM EDTA solution as the 

stationary and mobile phases, respectively. The functionalization of the particles was 

performed as described above. 
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The radiochemical yield was low with only 5-10 %. However, competitive stability tests 

showed after 46 h at 37 °C in a 1 mM EDTA solution 98 % of 64Cu were still bound to the 

AuNPs determined by iTLC (Figure 28). 

 

Figure 28: Chromatograms of radio-TLCs monitoring the radiolabeling of AuNPs with 64Cu. Left: 

reaction mixture (7.4 % labeled), right: after purification with spin filtration, followed by verification 

of stability by incubation for 46 h in 1 mM EDTA solution at 37 °C (98 % labeled). 

4.3.8 Pre-targeting gold nanoparticles in vitro 

In vitro experiments were conducted to evaluate the pre-targeting strategy between TCO-

Trastuzumab and multifunctionalized AuNPs. Therefore, the AuNPs were fluorophore-

labeled with Cy3-NHS ester which binds to the PEG-amines of the particles. BT-474 cells 

were seeded in an ibidi µ-slide 8-well-plate (30 000 cells/well) and incubated overnight to 

adhere. Three different experimental groups were chosen and studied in parallel to enable 

comparison. 

(i) Pre-targeting: Trastuzumab-TCO + fully functionalized, Cy3-fluorophore 

labeled AuNPs 

(ii) Control 1: Trastuzumab non-functionalized + fully functionalized, Cy3-

fluorophore labeled AuNPs 

(iii) Control 2: fully functionalized, Cy3-fluorophore labeled AuNPs 

BT-474 cells were primarily stained with Hoechst33342 and Lysotracker-deep-red to 

visualize the nucleus and the lysosomes. The mAb for group (i) and (ii) was incubated for 30 

min at 37 °C. The media with unbound mAb was removed, the Cy3-fluorophore labeled 

AuNPs added to all groups and incubated for 10 or 30 min (Figure 29 for experimental set-

up). Images were taken using a live cell Axio Observer (Zeiss) fluorescence microscope. 

However, when analyzing the images with the ZEN-ZEISS software no difference could be 

witnessed between the three different experimental groups (Figure 30). 

 

Figure 29: Ibidi 8-well-plate with experimental set-up for the evaluation of pre-targeting AuNPs on 
BT-474 cells by fluorescence microscopy. 

Incubation 
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Figure 30: Representative images by fluorescence microscopy evaluating pre-targeting AuNPs on 
BT-474 cells. As control incubation of AuNP alone (iii) and with non-functionalized Trastzumab (ii) 
were performed. After 30 min incubation of mAb incubation of AuNPs followed for either 10 min 
(top) or 30 min (bottom). Nucleus stained with Hoechst33342 (blue), AuNPs with Cy3-NHS (green), 
lysosomes with Lysotracker-deep-red (red). Merged signal of AuNPs and lysosome in yellow. 

The images of the different experimental groups showed very similar cell uptake of the 

fluorophore labeled AuNPs but with an increased signal after 30 min incubation compared 

to the 10 min incubation. We expected significant differences in the pre-targeting experiment 

after 10 min incubation of the AuNPs. If the TCO functionalized Trastuzumab was available 

on the cell membrane and if the click reaction occurred, an intense signal on the cell 

membrane should have been visible, which should decrease with longer incubation time due 

to internalization of the receptor-mAb-AuNP complex (2). However, after 10 min 

incubation of the AuNPs the fluorophore signal was low in all three cases and spread over 

the cell, co-localizing with the lysosomes, suggesting that internalization of the AuNP took 

already place. About the outcome of the experiments can be speculated; most likely 

Trastuzumab internalized too fast and wasn’t available anymore for the click reaction with 

the AuNPs. A possibility to get more insight could be to execute the incubation of the mAb 
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at room temperature or at 4 °C to reduce internalization. Yet, the fast cell uptake in all three 

groups was not expected after the internalization studies done before. Yet, recalling the ex 

vivo internalization studies of Trastuzumab (see paragraph 4.3.5 Trastuzumab-TCO 

internalization studies in vitro and ex vivo) which confirms the presence of a fraction of 

Trastuzumab on the cell membrane even after 48 h, we expected a different outcome for the 

pre-targeting evaluation in vivo. 

4.3.9 Pre-targeting gold nanoparticles in vivo 

As the last step in the evaluation of our pre-targeting approach for multifunctionalized 

AuNPs as boron delivery agent in the application of BNCT, in vivo studies were performed. 

With that aim, three groups were formed out of female, BT-474 breast cancer xenograft 

bearing NOD/SCID mice. For all experiments fully functionalized and 64Cu-radiolabeled 

AuNP were used (approximately 190 µg gold with 30-50 µCi (1-2 MBq) per mouse). In case 

of the pre-targeting group (G1, n = 4) 100 µg Trastuzumab-TCO per mouse was injected 

intravenously 24 h before the AuNPs. As control group (G2, n = 3) Trastuzumab without 

TCO conjugation was injected intravenously 24 h before the AuNPs. The last group, also 

used as control, received only AuNPs (G3, n = 4) (Figure 31). 

G1 – pre-targeting G2 - control G3 - AuNP 

   

Figure 31: Experimental set up with three experimental groups for in vivo evaluation of pre-targeting 

multifunctionalized AuNPs. G1, the pre-targeting group, was injected with Trastuzumab-TCO 

followed by multifunctionalized AuNPs after 24 h. The control group G2 was injected with non-

functionalized Trastuzumab followed by multifunctionalized AuNPs after 24 h. The third group (G3) 

received only multifunctionalized AuNPs. 

PET-CT scans were performed approximately 1 h, 6 h, 24 h and 48 h post injection using 

the β- and X-cube micro system of Molecubes. All experiments were confirmed by ex vivo 

studies after the last PET scan. We first analyzed the third group, using PMOD software, to 

evaluate the biodistribution and tumor uptake of the AuNPs alone. The particles show a 

rather typical distribution for spherical gold nanoparticles (Figure 32 and Figure 34 top), 

however with higher liver and spleen uptake to what was expected for particles of such small 

size (core size 3-5 nm) (maximum at 6 h post injection with 31.4 ± 17.3 %ID/cm3, 

respectively at 24 h with 13.5 ± 10.6 %ID/cm3). Yet, in organs such as heart, lung and 

kidneys a steady decrease can be observed over time reaching around 5 %ID/cm3 24 h post 

injection. The uptake in muscle, commonly used as reference for “healthy tissue”, stays below 

1 %ID/cm3 over time.  
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Figure 32: Accumulation of multifunctionalized [64Cu]AuNP in different organs at different time 
points after intravenous administration, analyzed by PET imaging (values are expressed as mean ± 
standard error mean, n = 4). 

A closer look to the tumor uptake revealed its maximum at 24 h post-injection with 

4.8 ± 1.9 %ID/cm3 followed by a slow clearance (Figure 33 and Figure 34, bottom). This 

result gives reason to believe that these nanoparticles follow the passive targeting by the EPR 

effect. 

 

Figure 33: Tumor uptake of multifunctionalized [64Cu]AuNP at different time points after 
intravenous administration, analyzed by PET imaging (values are expressed as mean ± standard error 
mean, n = 4). 

 

Figure 34: Representative PET images obtained at different time points after intravenous 
administration of [64Cu]AuNPs. Top: coronal PET images (maximum intensity projections), bottom: 
representative axial PET images (average of 10 slices), positions of the tumor indicated. All images 
have been co-registered with representative CT slices for localization of the radioactive signal. 
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The control group G3, with solely AuNPs, showed slow elimination of the particles from 

the tumor at t > 24 hours, hence, we anticipated that the pre-targeting strategy may increase 

tumor accumulation by improving retention. Yet, a faster clearance from major organs and 

blood would be desirable for optimal pre-targeting results. 

The analysis of the control (G2) and the pre-targeting (G1) group showed very similar 

biodistribution to the AuNP-group (G3). Analyzing the tumor uptake, a different pattern 

was expected for the pre-targeting group with a prolonged stay of the particles in tumor 

tissue, however, no significant difference could be observed between each group at any time 

point (Figure 35, left). After the 48 h PET-CT scan ex vivo studies were performed, 

confirming the obtained results from PET quantification by extracting the organs and 

analysing via gamma counter (Wallach Wizard, PerkinElmer) (Figure 35, right). 

  

Figure 35: Tumor uptake of [64Cu]AuNP in different experimental groups (purple: pre-targeting, 
green: control with non-TCO-functionalized mAb, blue: solely AuNP). Left: analyzed by PET 
imaging at different time points after intravenous administration. Right: analyzed by gamma counting 
48 h after administration. (Values are expressed as mean ± standard error mean, G1 and G3: n = 4, 
G2: n = 3). 

Furthermore ICP-MS analyses were performed after the radioactivity of the extracted organs 

was decayed. Liver, spleen and tumor were digested to determine their content of gold and 

boron. To not falsify the results of the boron determination no glass was used in any step 

during the process. Organs were digested in aqua regia overnight at 70 °C. The samples were 

filtered through cotton and diluted with 2 % HNO3 to enable ICP-MS analysis. Good 

correlation between the ICP-MS and ex vivo data was achieved which leads to the conclusion 

that the functionalized AuNPs are stabile in vivo (Figure 36). 

 

Figure 36: Amount of gold and boron in tumor at 48 hours after intravenous administration of pre-
targeted [64Cu]AuNP, as determined by gamma counting (dark purple) and ICP-MS (light purple). 
Values for gamma counting are obtained by multiplying the %ID/cm3 (values from Figure 35) by the 
relative load of boron and gold in the nanosystems. (Values are expressed as mean ± standard error 
mean, n = 2). 
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4.4 Summary and conclusion 

This chapter described the process towards the in vivo evaluation of pre-targeting in the 

application of BNCT. We sucessfully functionalized the tumor targeting antibody 

Trastuzumab for the pre-targeting approach obtaining a conjugate with an avergae of two 

TCO per mAb. Bio-acitivity of such didn’t show significant impairment due to the 

modification acertained by cell binding assays. To enable in vivo studies, a BT-474 breast 

cancer xenograft mouse model on NOD/SCID mice was established and biodistribution 

studies of the functionalized Trastuzumab executed. Highest tumor uptake was reached at 

48 h after intravenously injection with close to 25 %ID/cm3. Cell internalizing studies by 

fluorescence microscopy of the TCO conjugated and Cy3-flourophore labeled mAb revealed 

cell uptake already within the first hour at 37 °C, reaching substantially complete uptake 

within 24 h. Also in vivo studies were performed to determine Trastuzumab internalization 

using a mixture of 89Zr- and 131I-radiolabelled Trastuzumab, showing significant difference 

between tumor uptake of each species. Hence, partial internalization of Trastuzumab in vivo 

was confirmed. Looking at the two experiments, the biodistribution and internalization of 

Trastuzumab, the time point for the injection of the second component in the pre-targeting 

strategy was set to 24 h after mAb injection, balancing between tumor uptake, sufficient 

clearance from blood and healthy tissue and internalization of the antibody. 

As boron delivery agent small spherical gold nanoparticles (AuNPs) were loaded with the 

boron cluster COSAN and functionalized with tetrazine to enable the click reaction with 

TCO-Trastuzumab for the pre-targeting approach. The AuNPs were successfully 

synthesized, multifunctionalized and characterized for its physical properties (UV-VIS, 

TEM, DLS, Z-potential, ICP-MS) as well as its bio-compatibility (cytotoxicity, cell 

internalization). Incorporation of the positron emitter 64Cu was executed by synthesizing a 

copper alloyed gold core, enabling in vivo tracking of the AuNPs. 

Finally, it was verified by agarose gel electrophoresis that the two components, the 

Trastuzumab-TCO and the tetrazine-AuNPs, are able to undergo the click reaction with each 

other and the pre-targeting approach could be evaluated. Therefore in vitro and in vivo studies 

were performed, using fluorescence microscopy on BT-474 cells and PET-CT analysis on a 

BT-474 breast cancer xenograft mouse model, respectively. For both experimental set-ups 

control groups were generated by using non-functionalized Trastuzumab as well as AuNPs 

alone. However, no significant differences could be observed in vitro or in vivo between the 

three groups. Cell and tumor uptake respectively were similar for all cases. 

For the work of this PhD thesis the aim was to use nanoparticles with fast clearance to 

prevent toxicity to non-tumor tissue but present the possibility to carry a high amount of 

boron next to the functionalization with tetrazine to enable pre-targeting. Looking at the 

biodistribution of the AuNPs in hand the high liver uptake and rather slow clearance from 

other organs such as kidneys and lung as well as the tumor showed that these particles do 

not possess the desired properties for pre-targeting. Yet, high boron loading was achieved 

and tumor uptake due to the EPR effect could be witnessed. Hence, investigation in the 

particles as boron delivery agents should be continued; however, pre-targeting could not 

bring the desired improvement.  
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4.5 Experimental part 

4.5.1 Reagents 

All reagents were obtained from Sigma-Aldrich unless otherwise stated. Milli-Q water 

(resistivity 18.2 MΩ·cm at 25 °C) was used in all experiments. p-NCS-Bz-DFO was obtained 

from CheMatech, Cy3-NHS was purchased from BroadPharm, mTzCy3 from Jena 

Biosciense and Cy3-TCO from AAT Bioquest. The antibody Trastuzumab was purchased 

from Roche Farma, S.A. España. [89Zr]ZrC2O4 (in 1 M oxalic acid) was produced in house 

with an IBA Cyclone 18/9 cyclotron using a (p, n) reaction on natural yttrium-89 and isolated 

with a hydroxamate column following standard protocol. [64Cu]CuCl2 (in 0.1 M HCl) was 

produced in house with an IBA Cyclone 18/9 cyclotron using a (p, n) reaction on a gold 

disk, electroplated with enriched nickel-64 and isolated with an ion exchange column 

following standard protocol. [131I]INa (in 0.1 M NaOH) was purchased from PerkinElmer. 

A stock of BT-474 cells was kindly donated from biodonostia (San Sebastián, Spain). Animals 

were purchased from Charles River Laboratories France. 

4.5.2 Instrumentation 

UV-Vis spectra were measured in a Jasco V630BIO Spectrophotometer or in NanoDrop® 

ND-1000 V3.5.2 

Flow cytometry based on fluorescence-activated cell sorting (FACS) studies were performed 

using a BD FACS Canto II Flow Cytometer and analyzed by FlowJo V7.6.5. 

Cell observer microscopy experiments were carried out using a Zeiss Axio Observer 

Fluorescence microscope using Ibidi clear bottomed µ-slide 8-well microscopy plates and 

analyzed by ZEN2012-ZEISS. 

Confocal cell microscopy experiments were carried out using a Zeiss 880 Confocal 

Fluorescence microscope using Ibidi clear bottomed µ-slide 8-well microscopy plates and 

analyzed by ZEN2012-ZEISS. 

Transmission electron microscopy (TEM) was performed using a JEOL JEM-1400 plus 

microscope (Jeol, Tokyo, Japan) working at 120 kV. The carbon film of copper grids (CF400-

Cu) was treated under air plasma in a glow discharge system (K100X, Emitech, Kent, UK, 

40 mA during 2 min) just before sample preparation. For TEM examinations, a single drop 

(1μL) of the NPs solution was placed onto a copper grid coated with a carbon film (Electron 

Microscopy Sciences, Hatfieled, PA, USA). After 1 min, the drop was removed with filter 

paper and the sample was incubated with 3 µL of uranyl acetate 0.5% (3 min). 

ICP-MS measurements were performed on a Thermo iCAP Q ICP-MS (Thermo Fisher 

ScientificGmbH, Bremen, Germany). An ASX-560 autosampler was coupled to the ICP-MS 

(CETAC Tech, Omaha, NE, USA). 

DLS and ζ-potential measurements were performed using a Malvern Zetasizer Nano ZS 

system (Malvern Instruments, Malvern, UK). The particle size measurement settings were: 

3 measurements/14 runs/10s in scattered mode at 173° angle. Measurements were 

conducted at T = 25 °C and neutral pH. 
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Gamma counts were measured using a Wallach Wizard, PerkinElmer (Waltham, MA, USA) 

gamma counter. 

Radio-thin layer chromatography (radio-TLC) was performed using iTLC-SG 

chromatography paper (Agilent Technologies, CA, USA) and 20 mM citric acid + 60 mM 

EDTA/acetonitrile solution (9/1 v/v) as the stationary and mobile phases, respectively. TLC 

plates were analyzed using a TLC-reader (MiniGITA, Raytest). 

PET experiments were performed using an eXploreVista-CT small animal PET-CT system 

(GE Healthcare) or the β- and X-cube micro system of Molecubes. Anesthesia was induced 

with 3-5 % isoflurane and maintained by 1.5-2 % of isoflurane in 100% O2. 

4.5.3 Tumor growth 

Cells 

BT-474 cells were cultured in DMEM medium (100X, 10378-016 Gibco; 10 % fetal bovine 

serum, 1 % penicillin-streptomycin) at 37 °C with 5% CO2 in a humid atmosphere. Cells 

were confirmed to be free of mycoplasma contamination. 

Animals 

All animal experiments were performed in accordance with the Spanish policy for animal 

protection (RD53/2013), which meets the requirements of the European Union directive 

2010/63/UE regarding the protection of animals used in experimental procedures. All 

experimental procedures were approved by the Ethical Committee of CIC biomaGUNE and 

authorized by the local authorities. All animals were housed in ventilated cages and fed on a 

standard diet ad libitum. The studies were performed on female NOD.CB17-Prkdcscid/J 

mice. 

Tumor growth 

To grow BT-474 cell line breast cancer xenografts on female NOD.CB17-Prkdcscid/J mice 

5-6 weeks old mice were operated to implant a 17β-estradiol pellet (belma technologies) 

subcutaneously at their neck. The next day 10*106 BT-474 tumor cells were inoculated per 

animal subcutaneously at the flank of the mouse. Prior to each inoculation a Lonza 

Mycoplasma test was carried out to ensure that the cells weren’t contaminated, finally cells 

were diluted in sterile PBS:Matrigel (1:1). The sizes of the tumors were measured every 2-3 

days with a digital calliper and volumes calculated (𝑉 =
short diameter2∗ long diameter

2
). At the 

time the tumour reached 200-300 mm3 (around 2 weeks after inoculation in vivo studies could 

be performed. The defined human endpoints were: (i) weight loss greater than 20 % in one 

week, (ii) one or more of the following clinical signs: abdominal distension, dyspnoea, 

cachexia or stooping, (iii) the absence of response to stimuli and lethargy, (iv) a tumor larger 

than 1.5 cm in average diameter and (v) ulcerated or necrotic tumors or wounds / aggressions 

severe infected.  
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4.5.4 Chemistry and Radiochemistry - Trastuzumab 

Conjugation of TCO-NHS to Trastuzumab 

The mAb was diluted in PBS (phosphate-buffered saline, pH 7.4) to a concentration of 

3.0 mg/mL. The pH was adjusted to 8.6 – 9.1 with 0.1 M Na2CO3. 50-55 moles eq. TCO-

NHS (20 mM in DMSO) was added. After incubation (60 min, RT) non-reacted TCO-NHS 

was removed by spin filtration (100 kDa, 12000 rpm) and the conjugated mAb washed three 

times with PBS. After recovering the mAb from the filter with PBS its concentration was 

determined by NanoDrop®. 

Conjugation of TCO-NHS and Df-Bz-NCS to Trastuzumab 

The mAb was diluted in PBS to a concentration of 1.5 – 3.0 mg/mL. The pH was adjusted 

to 8.6 – 9.1 with 0.1 M Na2CO3. TCO-NHS (20 mM in DMSO, 55 eq.) and p-NCS-Bz-DFO 

(5 mM in DMSO, 5 eq.) was added. After incubation (45 min at 37 ºC) purification was 

performed by spin filtration (100 kDa, 12000 rpm) and the conjugated mAb washed three 

times with PBS. After recovering the mAb from the filter with PBS its concentration was 

determined by NanoDrop®. 

Conjugation of Df-Bz-NCS to Trastuzumab 

The mAb was diluted in PBS to a concentration of 1.5 – 3.0 mg/mL. The pH was adjusted 

to 8.6 – 9.1 with 0.1 M Na2CO3. p-NCS-Bz-DFO (5 mM in DMSO, 5 eq.) was added and 

incubated for 45 min at 37 ºC. Purification was performed by spin filtration (100 kDa, 12000 

rpm) and the conjugated mAb washed three times with PBS. After recovering the mAb from 

the filter with PBS its concentration was determined by NanoDrop®. 

Radiolabeling of Trastuzumab with 89Zr 

Radiolabeling of the DFO conjugated mAb with 89Zr was performed by incubation with 

[89Zr]ZrC2O4 in a 1 M oxalic acid solution. Therefore 50 µl of 1 M oxalic acid containing 89Zr 

(0.6 mCi = 22.2 MBq) were neutralized with 2 M sodium carbonate, 450 ug mAb was added 

and the volume adjusted to 0.5 mL with 0.5 M HEPES buffer. After 1 h incubation at room 

temperature the mAb was purified by sephadex G-25 size exclusion column (NAP5® GE 

Healthcare) and PBS. The incubation and purification was monitored by iTLC (mobile phase: 

20 mM citric acid + 60 mM EDTA 9:1 acetonitrile). Radiochemical yield of the purified 89Zr-

Trastuzumab was 64.2 ± 21.6 % (n = 5). 

Radiolabeling of Trastuzumab with 131I 

An Eppendorf tube was coated with 75 µg Iodogen (1,3,4,6-tetrachloro-3α,6α-diphenyl 

glycoluril). 50 µL 0,5 M sodium phosphate buffer, 427 µL 0,1 M sodium phosphate buffer 

and 19 µL (0,4 mg) Trastuzumab (21 mg/mL) were added. Finally 4 µL of [131I]INa (200 µCi 

= 7.4 MBq in 0.1 M NaOH). After 4 min incubation at room temperature the reaction was 

quenched with 100 µL VitaminC solution (25 mg/mL milliQ water, pH = 5). Labeling was 

monitored by iTLC (mobile phase: 20 mM citric acid + 60 mM EDTA). The radiolabeled 

mAb was purified using sephadex G-25 size exclusion column (PD10® GE Healthcare) and 

VitaminC solution (5 mg/mL saline, pH ≈ 5). Radiochemical yield of the purified 131I-

Trastuzumab was 72.4 %. Lindmo assay was performed to assure bioactivity of the mAb was 

not impaired. 
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Fluorophore-labeling of Trastuzumab-TCO with mTzCy3 

To a solution of Trastuzumab-TCO in PBS (1.5 - 3.0 mg/mL) 5 eq. mTzCy3 (6-Methyl-

Tetrazine-Sulfo-Cy3, 1 mg/mL in DMSO) was added and incubated for 5 min at room 

temperature. The fluorophore-labeled mAb was purified by spin filtration (100 kDa, 12000 

rpm) and washed four times with PBS. After recovering the mAb with PBS from the filter 

the concentrations of mAb and mTzCy3 were determined by NanoDrop®. 

4.5.5 Chemistry and Radiochemistry - AuNP  

Synthesis of AuNPs 

For the synthesis of AuNPs the protocol of Yongfeng Zhao et al. was used as base (12). In 

a 10 mL glass vial 0.9 mL MQ water were mixed with 10 µL HAuCl4 (100 mM in MQ, 0.4 mg, 

1 eq), 10 µL CuCl2 (10 mM in MQ, 0.1 mg, 1 eq) and 25 µL NH2-PEG5k-SH (10 mM in MQ, 

2.5 mg, 0.25 eq). Under vigorous stirring 100 µL NaBH4 (40 mM in MQ, 0.2 mg, 4 eq; freshly 

prepared) were added drop wise. After 2 min the stirring was stopped and the particles were 

allowed to settle for 2 h at room temperature. Purification was performed by spin filtration 

(30 kDa, 12 000 rpm) including 3 washings with PBS (phosphate buffered saline, pH 7.4) 

and the particles were recovered from the filter in 400 µL PBS. 13 µL COSAN-SH (20 mM 

in EtOH, 0.1 mg, 0.25 eq) were added and incubated for 1 h at room temperature. After 

purification via spin filter as described above the pH of the AuNP suspension was adjusted 

to 8 - 9 with 0.1 M NaOH and 25 µL Tz-PEG5-NHS (20 mM in DMSO, 0.3 mg, 0.5 eq) 

were added. After 1 h incubation at room temperature the particles were purified by spin 

filtration and recovered in 400 µL PBS. The AuNPs were analyzed by UV-Vis, DLS, Z-

potential, ICP-MS and TEM. 

Fluorophore-labeling of AuNP with TCO-Cy3 

The multifunctionalized AuNPs (450 µL in PBS, 0.2 mg/mL) were incubated with 3 µL 

TCO-Cy3 (10 mM in DMSO) for 5 min at room temperature. The particles were purified by 

spin filtration (30 kDa) and recovered in PBS. The labeling was confirmed by UV-VIS 

spectra. 

Fluorophore-labeling of AuNP with Cy3-NHS 

The multifunctionalized AuNPs (450 µL in PBS, 0,2 mg/mL) were adjusted in pH to 8.6-8.9 

and 5 µL Cy3-NHS (1 mg/mL in DMSO) were added. After 1 h incubation at room 

temperature particles were purified by spin filtration (30 kDa) and recovered in PBS. The 

labeling was confirmed by UV-VIS spectra. 

Agarose (1.5 %) gel electrophoresis  

A 1.5 % agarose gel was prepared following standard protocol. In brief 1.5 g agarose were 

suspended in 100 mL Tris-Borate-EDTA (TBE) buffer and heated until it almost reached its 

boiling point. The solution was poured in a gel chamber, the comb placed and let settle to 

polymerize. Samples were prepared in 20 µL aqueous batches, including 5 µL loading buffer. 

10 µL were loaded on the gel and run for approximately 1 h at 100 V. To visualize the 

antibody on the gel it was incubated 1 hour in coomassie blue, followed by 2 days in 

destaining solution to reduce the background staining. 
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Radiosynthesis of AuNPs 

For the synthesis of 64Cu labeled AuNPs the protocol of Yongfeng Zhao et al. was used as 

base (12). In a 10 mL glass vial 0.9 mL MQ water were mixed with 10 µL HAuCl4 (100 mM 

in MQ, 0.4 mg, 1 eq), 64CuCl2 (in 0.1 M HCl, 2.5 mCi = 92.5 MBq), neutralized with NaOH 

(0.1 M) and 25 µL NH2-PEG5k-SH (10 mM in MQ, 2.5 mg, 0.25 eq). Under vigorous stirring 

100 µL NaBH4 (40 mM in MQ, 0.2 mg, 4 eq; freshly prepared) were added drop wise. After 

2 min the stirring was stopped and the particles were allowed to settle for 2 h at room 

temperature. Purification was performed by spin filtration (30 kDa, 12 000 rpm) including 3 

washings with 1 mM EDTA and the particles were recovered from the filter in 400 µL PBS. 

The radiolabeling and purification was monitored by iTLC (mobile phase: 20 mM citric acid 

+ 60 mM EDTA, Rf(AuNP) = 0, Rf(64Cu-EDTA) = 0.5). 13 µL COSAN-SH (20 mM in 

EtOH, 0.1 mg, 0.25 eq) were added and incubated for 1 h at room temperature. After 

purification via spin filter as described above the pH of the AuNP suspension was adjusted 

to 7.8 – 8.8 with 0.1 M NaOH and 25 µL Tz-PEG5-NHS (20 mM in DMSO, 0.3 mg, 0.5 eq) 

were added. After 1 h incubation at room temperature the particles were purified by spin 

filtration and recovered in 400 µL PBS. The radiochemical yield was 6.5 %. 

4.5.6 in vitro studies 

Lindmo assay  

The assay was perfomed using the protocol of Lindmo as base (9). The binding assay for 

Trastuzumab was set up using one concentration of mAb (10-15 ng/mL) and different 

dilutions of 0.5 mL BT-474 cells in PBS/1%BSA (2.8 - 0.2*106 cells/mL) in triplicates. The 

lowest concentration was prepared twice, the second set serving as non-specific binding 

(NSB) control (containing 2 µL of 5 mg/mL non-labelled mAb). To each cell dilution 0.5 mL 

of modified and radiolabelled Trastuzumab was added and incubated in a head over head 

rotator at 4 °C over night. The cell suspensions were centrifuged, 500 uL of the supernatant 

seperated and all samples (pellets and supernatans) meassured in a gamma-counter. The 

activity meassured from the supernatants was substratced from the pellet activity and the 

immunoreactive fraction calculated. 

FACS study with Trastuzumab-TCO-mTzCy3 

BT-474 cells were seeded in a 24-well-plate (500 000 cells/well) and incubate overnight to 

adhere (37 °C, 5% CO2). The media was removed and 0.5 mL fresh media added to the 

control wells of non-labeled and viability. To the other wells 0.5 mL of Cy3-fluorophore-

labled Trastuzumab (0.1, 0.05 or 0.01 mg/mL) were added. The incubation (5, 10, 15, 20 and 

30 min) at room temperature was stopped by removing the media and detach cells with 

trypsin. The suspensions were transferred into FACS tubes, centrifuged, the supernatant 

removed and resuspend in 0.5 mL PBS. 0.1 mL viability (Zombie) control was added to all 

samples (except non-labeled control) and incubated for 13-30 min at room temperature. The 

samples were washed with FACS-buffer (10 mM PBS/1%BSA) via centrifuge and resuspend 

in 0.2 mL for FACS measurements. 

In vitro internalizing studies of Trastuzumab-TCO-mTzCy3 

BT-474 cells were seeded in a poly-L-Lysine treated ‘Ibidi’ µ-slide 8-well-plate 

(30 000 cells/well in 0.3 mL) and incubate overnight to adhere (37 °C, 5% CO2, humid 
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atmosphere). The media was removed and 0.1 mL Hoechst 33342 (1 µg/mL) added to stain 

the nucleus. After 10 min incubation (37 °C, 5% CO2, humid atmosphere) 0.1 mL 

Lysotracker-deep-red (1 µg/mL) was added to stain the lysosomes. After 20 min incubation 

(37 °C, 5% CO2, humid atmosphere) media was removed and 0.3 mL of Cy3-labeled 

Trastuzumab (10 µg/mL in media) added. After 1 h incubation (37 °C, 5% CO2, humid 

atmosphere) the media was removed and replaced with fresh media. The images were taken 

at different time points with a fluorescence confocal microscope (Zeiss LSM 880). Controls 

of single staining for each fluorophore were included. Images were analyzed by ZEN-ZEISS 

software. 

Cytotoxicity studies of AuNPs 

To determine cell viability, BT-474 human breast cancer cells were incubated with 

multifunctionalized AuNPs over 24 h, 48 h and 72 h. Cells were seeded (3×104 cells/well, 

100 µL/well, 96-well plate), allowed to adhere overnight in complete media and maintained 

in a humid atmosphere at 37 °C and 5 % CO2. Then, media was removed and cells were left 

untreated (control) or incubated with the AuNP-containing formulations, diluted accordingly 

in media. The experiments were performed in triplicates. After the desired time, cell 

supernatant was removed and 100 µL/well of MTT reagent (Roche), diluted in the 

corresponding media to the final concentration of 0.25 mg/mL, was added. After 1 hour 

incubation at 37 °C and 5 % CO2, the excess reagent was removed and formazan crystals 

were solubilized by adding 200 µL of DMSO per well. The optical density of each well was 

measured in a TECAN Genios Pro 96/384 microplate reader at 550 nm. Data was 

represented as the percentage of cell survival compared to control wells. 

In vitro internalizing studies of AuNP-Tz-TCOCy3 

BT-474 cells (ps. 17) were seeded in a poly-L-Lysine treated ‘Ibidi’ µ-slide 8-well-plate 

(30 000 cells/well in 0.3 mL) and incubate overnight to adhere (37 °C, 5% CO2, humid 

atmosphere). The media was removed and 0.1 mL Hoechst 33342 (1 µg/mL in media) added 

to stain the nucleus. After 10 min incubation (37 °C, 5% CO2, humid atmosphere) 0.1 mL 

Lysotracker-deep-red (1 µg/mL in media) was added to stain the lysosomes. After 20 min 

incubation (37 °C, 5% CO2, humid atmosphere) media was removed and 0.3 mL of Cy3-

labeled AuNP (20 µg/mL in medium) added. After 2 h incubation (37 °C, 5% CO2, humid 

atmosphere) the media was removed and replaced with fresh media. The images were taken 

with a Cell Axio Observer Fluorescence Microscope. Controls of single staining for each 

fluorophore were included. Images were analyzed by ZEN-ZEISS software. 

In vitro pre-targeting studies of Trastuzumab-TCO and Cy3-AuNP-Tz 

BT-474 cells (ps. 17) were seeded in a poly-L-Lysine treated ‘Ibidi’ µ-slide 8-well-plate 

(30 000 cells/well in 0.3 mL) and incubate overnight to adhere (37 °C, 5% CO2, humid 

atmosphere). The media was removed and 0.1 mL Hoechst 33342 (1 µg/mL in media) added 

to stain the nucleus. After 10 min incubation (37 °C, 5% CO2, humid atmosphere) 0.1 mL 

Lysotracker-deep-red (1 µg/mL in media) was added to stain the lysosomes. After 20 min 

incubation (37 °C, 5% CO2, humid atmosphere) media was removed and 0.1 mL 

Trastuzumab-TCO (1.0 µM) added. After 30 min incubation (37 °C, 5% CO2, humid 

atmosphere) the media was removed and 0.3 mL of Cy3-labeled AuNP (20 µg/mL in 

medium) added. Incubation was done for 10 min or 30 min (37 °C, 5% CO2, humid 
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atmosphere), the media removed and replaced with fresh media. The images were taken with 

a Cell Axio Observer Fluorescence Microscope. Controls of single staining for each 

fluorophore were included. Images were analyzed by ZEN-ZEISS software. 

4.5.7 in vivo studies 

Ex vivo studies to explore Trastuzumab internalization in vivo 

Trastuzumab was labeled in two batches, one with 89Zr, the other one with 131I. A mixture 

out of the two was created to obtain a 1:1 ratio of their activity (e.g. per mouse 5 µCi = 

0.185 MBq each). Four mice were selected out of female, BT-474 breast cancer xenograft 

bearing NOD/SCID mice and injected intravenously, each with about 100 µg Trastuzumab. 

Ex vivo studies were performed 24 h (n = 2) and 48 h (n = 2) post injection. Extracted 

organs were measured in a gamma counter (Wallach Wizard, PerkinElmer, Waltham, MA, 

USA) using a dual method enabling separate determination of 89Zr and 131I counts. The 

percentage of injected dose per gram (%ID/g) was calculated for the tumor uptake at both 

time points and for each radionuclide. 

In vivo PET imaging studies 

Biodistribution of Trastuzumab: Three animals were selected out of female, BT-474 breast 

cancer xenograft bearing NOD/SCID mice. In those experiments aimed at determining the 

biodistribution of the mAb, [89Zr]Trastuzumab (100 µg, 100 µL, 2.4-2.6 MBq) was injected 

via tail vein. Imaging studies were conducted using positron emission tomography (PET) in 

combination with computerized tomography (CT), using an eXplore Vista-CT small animal 

PET-CT system (GE Healthcare). Static whole-body images (2 beds) were acquired at 1, 8, 

24, 48 and 72 h after administration. PET images were analysed using PMOD image analysis 

software (PMOD Technologies Ltd, Zürich, Switzerland). 

Pre-targeting evaluation: Three groups of animals (G1 and G3: n = 4, G2: n = 3) were 

selected out of female, BT-474 breast cancer xenograft bearing NOD/SCID mice. 

Approximately 100 µg per mouse of TCO functionalized Trastuzumab (~2 TCO/mAb) 

were injected intravenously via tail vein for the pre-targeting group. The same amount 

respectively of non-functionalized Trastuzumab for the control group. 24 h post injection 

the multifunctionalized and 64Cu-radiolabeled AuNPs (200 µg gold in 100 µL PBS with 30-

50 µCi (1.1-1.9 MBq) per mouse) were injected intravenously. The same amount was injected 

to the third group which did not receive Trastuzumab beforehand. Imaging studies were 

conducted using positron emission tomography (PET) in combination with computerized 

tomography (CT), using the β- and X-cube micro system of Molecubes. Static whole-body 

images (1 bed) were acquired in a 511 keV ± 30 % energetic window at 1 h, 6 h, 24 h and 48 

h post injection (acquisition time 20 min for 1 h and 6 h, 45 min for 24 h and 60 min for 48 

h). PET images were analyzed using PMOD image analysis software (PMOD Technologies 

Ltd, Zürich, Switzerland). 

Digestion of organs for ICP-MS analysis 

ICP-MS analysis was performed for gold, boron and cobalt. The organs/tissue liver, spleen 

and tumor were digested from one animal per group. No glass could be used in any way 

during the process, as it would lead to falsify the results of the boron determination. Organs 
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were dissolved in aqua regia overnight at 70 °C. To each sample 0.5 mL H2O2 was added, 

the samples filtered through cotton and the volume adjusted to 15 mL with 2 % HNO3. 

 

4.6 References 

1. Trastuzumab Emtansine (T-DM1): A Novel Agent for Targeting HER2 Breast Cancer. Howard A. 

Burris III, Jay Tibbitts, Scott N. Holden, Mark X. Sliwkowski, Gail D. Lewis Phillips. 5, 

s.l. : Elsevier Inc, 2011, Clinical Breast Cancer, Vol. 11, pp. 275-82. 

2. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models. Sudath 

Hapuarachchige, Yoshinori Kato & Dmitri Artemov. 2016, Scientific Reports, Vol. 6. 

3. Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Jered B. 

Haun, Neal K. Devaraj, Scott A. Hilderbrand, Hakho Lee and Ralph Weissleder. s.l. : 

Macmillan Publishers Limited., 2010, NATURE NANOTECHNOLOGY, Vol. 5, p. 660. 

4. In Vivo Pretargeted Imaging of HER2 and TAG-72 Expression Using the HaloTag Enzyme. James C. 

Knight, Michael Mosley, H. Tetsuo Uyeda, Mei Cong, Frank Fan, Stephen Faulkner and 

Bart Cornelissen. s.l. : American Chemical Society, 2017, Mol. Pharmaceutics, Vol. 14, p. 

2307−2313. 

5. The new era of nanotechnology, an alternative to change cancer treatment. Ancuta Jurj, Cornelia Braicu, 

Laura-Ancuta Pop, Ciprian Tomuleasa, Claudia Diana Gherman, Ioana Berindan-Neagoe. 

s.l. : Dovepress, 2017, Drug Design, Development and Therapy, Vol. 11, pp. 2871–2890. 

6. Insight into nanoparticle cellular uptake and intracellular targeting. Basit Yameen, Won Il Choi, 

Cristian Vilos, Archana Swami, Jinjun Shi, Omid C. Farokhzad. s.l. : Elsevier B.V., 2014, 

Journal of Controlled Release, Vol. 190, pp. 485–499. 

7. Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy. 

Patrícia M.R. Pereira, Sai Kiran Sharma, Lukas M. Carter, Kimberly J. Edwards, Jacob 

Pourat, Ashwin Ragupathi, Yelena Y. Janjigian, Jeremy C. Durack & Jason S. Lewis. s.l. : 

Springer Nature, 2018, NATURE COMMUNICATIONS, Vol. 9, p. 5137. 

8. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Boucrot, Harvey T. 

McMahon and Emmanuel. s.l. : Macmillan Publishers Limited, 2011, NATURE REVIEWS | 

MOLECULAR CELL BIOLOGY, Vol. 12, p. 517. 

9. Determination of the Immunoreactive Fraction of Radiolabeled Monoclonal Antibodies by Linear Extrapolation 

to Binding at Infinite Antigen Excess . T. Lindmo, E. Boven, F. Cuttitta, J. Fedorko and P.A. 

Bunn, Jr. s.l. : Elsevier Science Publishers B.V. , 1984, Journal of lmmunological Methods, Vol. 72, 

pp. 77-89 . 

10. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate 

bifunctional chelator DFO-pPhe-NCS for 89Zr-immuno-PET. Danielle J. Vugts, Chris Klaver, Claudia 

Sewing, Alex J. Poot, Kevin Adamzek, Seraina Huegli, Cristina Mari, Gerard W. M. Visser, 

Ibai E. Valverde, Gilles Gasser, Thomas L. Mindt & Guus A. M. S. van Dongen. s.l. : 

Springer, 2017, Eur J Nucl Med Mol Imaging, Vol. 44, pp. 286–295. 

11. Gold Nanoparticles as Boron Carriers for Boron Neutron Capture Therapy: Synthesis, Radiolabelling and In 

Vivo Evaluation. Krishna R. Pulagam, Kiran B. Gona, Vanessa Gómez-Vallejo, Jan Meijer, 



_____________________________________________________________________________ 

81 
 

Chapter 4: Pre-targeting gold nanoparticles 

Carolin Zilberfain, Irina Estrela-Lopis, Zuriñe Baz, Unai Cossío and Jordi Llop. 2019, 

Molecules, Vol. 24, p. 3609. 

12. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer 

imaging of 64Cu–Au alloy nanoclusters. Yongfeng Zhao, Deborah Sultan, Lisa Detering, Hannah 

Luehmann and Yongjian Liu. s.l. : The Royal Society of Chemistry, 2014, Nanoscale, Vol. 6, pp. 

13501–13509. 

  



_____________________________________________________________________________ 

82 
 

Chapter 5: Pre-targeting boron carbon dots 

Chapter 5: Pre-targeting boron carbon dots 

5.1 Introduction 

Carbon dots (CDs) are used in a broad field of applications such as sensing for metals, 

chemicals and biologicals, improvement of solar cells and biological approaches like bio 

imaging and drug delivery (1; 2). Having a closer look to boron doped carbon dots (B-CDs) 

and their use in biological approaches, metal- and chemo-sensing combined with bioimaging 

are the most common applications. Existing B-CDs are developed to detect among others 

blood sugar (3), H2O2 (4), dopamine (5) and a variety of metals, like Cr(VI) (5), Hg(II) (6), 

Al(III) (7), Cu(II) and Fe(III) (8). 

The presence of boron atoms in B-CDs, together with the high biocompatibility, low 

cytotoxicity and rather fast and inexpensive synthesis, suggests their potential application as 

boron-10 delivery agents in the context of Boron Nature Capture Therapy (BNCT). Yet, to 

the best of our knowledge, B-CDs have never before been investigated for BNCT. 

In this work we prepared and characterized boron doped carbon dots, functionalized with a 

tetrazine moiety to enable pre-targeting. To evaluate the approach in vivo, the same tumor-

mouse-model was used as in Chapter 4 for the pre-targeting of AuNPs. Hence, as targeting 

counterpart TCO-functionalized Trastuzumab was used. To enable Positron Emission 

Tomography (PET) imaging of B-CDs, these were radiolabeled with the positron emitter 

fluorine-18, and PET studies were carried out to determine tumor accumulation of the B-

CDs (see Figure 1 for schematic representation of the work included in this chapter). 

 

Figure 1: Schematic representation of the pre-targeting strategy using tetrazine functionalized and 
18F-radiolabeled B-CDs. 

5.2 Objectives 

The specific objectives of this work were: 

1. To synthesize and characterize tetrazine-functionalized boron carbon dots (B-CDs) 

2. To develop a radiolabeling strategy for the incorporation of the positron emitter 

fluorine-18 to tetrazine-functionalized B-CDs (B-CDs-Tz). 

3. To evaluate the capacity of B-CDs-Tz to accumulate in the tumor, using a mouse 

tumor model of breast cancer and a pre-targeting strategy.  
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5.3 Results and discussion 

5.3.1 Synthesis, functionalization and characterization of B-CDs 

The strategy of pre-targeting relies in the fact that the second component, administered after 

the administration of the functionalized antibody, presents a fast clearance. In imaging 

experiments, this minimizes background signal and radiation dose on healthy organs. In 

therapy, a fast clearance guarantees fast elimination of the drug, thus minimizing off-target 

side effects. Noteworthy, circulation time should be sufficient to enable the click reaction to 

occur in the site of action, in our case the tumor.  

We decided to synthesize small-sized, hydrophilic, boron doped carbon dots. With that aim, 

a microwave vessel was loaded with citric acid (1 eq.), ethylenediamine (10 eq.), sodium 

tetraborate (borax, 3 eq.) and water. The synthesis was carried out in 5 min under microwave 

heating at 220 °C, 200 W and 370 PSI (Figure 2). Purification was performed by sephadex 

size exclusion column (NAP5® GE Healthcare), and the collected fractions were lyophilized 

to obtain a beige solid (Figure 3, left) which was analyzed in terms of chemical composition, 

size, shape and fluorescence properties. 

 

Figure 2: Schematic representation of the synthesis of hydrophilic B-CDs under microwave heating. 

A typical characteristic, which can be used as first indication of a successful synthesis of B-

CDs, is their intense fluorescence (Figure 3, right). 

  

Figure 3: B-CDs after synthesis and lyophilization (left), under UV light (365 nm, right). 

To determine if the obtained particles were homogeneous and to analyze their shape and 

size, Atomic Force Microscopy (AFM) analysis was performed. Images show spherical 

particles with a size distribution in diameter between 3 and 10 nm with an average of 6.7 ± 

1.8 nm (Figure 4). 
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Figure 4: Representative AFM images to visualize shape and size of B-CDs with height profiles 
corresponding to lines shown in the images.  

One critical aspect in BNCT is the amount of boron of the compound, which should be as 

high as possible to guarantee therapeutic efficacy. To analyze the content of the B-CDs, X-

ray Photoelectron Spectroscopy (XPS) analysis was performed and the relative atomic 

percentage of the B-CDs was determined (Table 1). Carbon had with 44 at% the highest 

representation, followed by oxygen with 33 at%. The content of boron was 13 at%. 

Table 1: Relative elemental composition of B-CDs in relative atomic percentage (at%). 

C 

(at. %) 

O 

(at. %) 

N 

(at. %) 

B 

(at. %) 

44.0 33.1 9.9 13.0 

 

Furthermore, XPS analysis of the B-CDs showed five peaks in the C-1s spectrum at 284.8, 

286.0, 287.9, 288.8 and 282.8 eV which are attributed to the bonds of CC/CH, CO/CN, 

C=O, OC=C and CB, respectively. In the B-1s spectrum a peak at 192.1 eV, corresponding 

to BCO2/BO bonds, and peaks at 188.1 and 189.8 eV, corresponding to BC and BN bonds, 

respectively, could be detected (Figure 5) (9; 10; 11). These results confirmed the presence 

of boron in the B-CDs. 

 

Figure 5: XPS high-resolution spectra of the survey, C-1s and B-1s of B-CDs. 
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Pre-targeting strategies require the presence of a moiety capable to undergo bioorthogonal 

reactions on both components. In our case, because the antibody (Trastuzumab) was 

functionalized with a TCO moiety (see chapter 4), we tackled the incorporation of a tetrazine 

moiety on the newly developed B-CDs. With that aim, a NHS ester of tetrazine (tetrazine-

PEG5-NHS) was used, allowing a coupling reaction to free existing amine groups on the B-

CDs (Figure 6). The polyethylene glycol (PEG) linkage was chosen to increase the bio-

compatibility, and to increase the size of the particles aiming at prolonging the blood 

circulation time (2). 

 

Figure 6: Schematic representation of the functionalization of B-CDs with tetrazine, enabling the 
pre-targeting approach. 

To achieve functionalization, a solution of B-CDs in PBS (phosphate buffered saline, pH 

7.4) was prepared. The obtained pH was around 9 and Tz-PEG5-NHS was added without 

further adjustment of the pH. After incubation for a minimum of 1h, purification was 

performed by sephadex size exclusion column (NAP5® G-25 GE Healthcare) and the 

collected fractions lyophilized. However, the purification of the tetrazine functionalized B-

CDs was challenging. The purification by NAP5® column was limited to very few fractions 

as the majority of the dots co-eluted with the excess of unbound Tz-PEG5-NHS, as 

determined by high-performance liquid chromatography (HPLC, see below). A yield of only 

around 10 % pure B-CDs-Tz could be achieved. 

An alternative method commonly used in the synthesis of CDs is dialysis. However, by using 

Float-a-Lyzer®G2 (MWCO: 500-1000 Da) only incomplete purification after 3 days in MQ 

water could be achieved. In view of these results, we settled with the low yield but high purity 

obtained after NAP5® column.  

As mentioned above, to monitor the purification of tetrazine functionalized B-CDs (B-CDs-

Tz) after the tetrazine coupling, HPLC was performed. Therefore, a size exclusion column 

(TSKgel SuperOligo PW, 150x6 mm, 3 µm) was used as stationary phase and eluted with 0.1 

M ammonium formate (AMF, pH = 6) as the mobile phase (UV detection at 280 nm). 

Injection of naked B-CDs resulted in a broad signal including several peaks, with a main 

signal between 4.8 and 7 min (Figure 7 A). The little defined signal can be explained by the 

disparity of the B-CDs, containing different sized particles as shown by AFM. Moving to the 

functionalized B-CDs-Tz the main signal shifted towards 10 to 12 min. This result is quite 

surprising, as one may expect that attachment of the tetrazine moieties results in an increase 

in the particle size. This unexpected result could be explained because the attachment of the 

tetrazine moieties on the surface of the B-CDs not only induces a change in size (which is 

not expected to be very significant), but also a modification in the hydrophobicity of the 

particles. Hence, the longer retention of the functionalized B-CDs in the column could be 

explained by stronger interactions with the stationary phase, which result in a counter-
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intuitive elution profile. Noteworthy, the presence of peaks with retention times in the range 

5-9 min suggest that a fraction of the B-CDs remain non-functionalized (Figure 7 B), or 

present a low degree of functionalization. 

 

Figure 7: HPLC chromatograms representing naked B-CDs (A) and B-CDs-Tz after 
functionalization and purification (B). 

The characterization of the fluorescent properties of the B-CDs was next tackled. The 

fluorescence spectra at various excitations were obtained for both B-CDs and B-CDs-Tz. 

The highest fluorescence intensity for the naked B-CDs was achieved with the excitation 

wavelength of 350 nm, while for B-CDs-Tz was achieved at 360 nm. Even though the shift 

for optimal excitation is small, an immense reduction of fluorescence to about 1/10th could 

be observed as a result of the functionalization (Figure 8). 

  

Figure 8: Emission spectra at different excitation wavelengths (310-410 nm) of B-CDs (left) and B-
CDs-Tz (right). 

To further analyze the impact of tetrazine functionalization on fluorescence properties, 

agarose gel electrophoresis was performed and analyzed using the Gel DocTM EZ Imager 

(BIO-RAD) in UV mode. The reduced fluorescence after tetrazine attachment could be 

observed (Figure 9). Furthermore, when coupling a fluorophore (Cy3-TCO) via click 
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reaction to tetrazine, an increase in fluorescence proved the availability of tetrazine on the 

surface of B-CDs-Tz and its capacity to react with TCO moieties (Figure 9). The drawn-out 

distribution of the dots on the gel represents the variety of size which was already visible 

after AFM analysis (Figure 4). 

 

Figure 9: Agarose gel electrophoresis of B-CDs, B-CDs-Tz and B-CDs-Tz coupled to the 
fluorophore TCO-Cy3 and imaged using the Gel DocTM imager in UV mode. 

Finally, the bio-compatibility of the B-CDs-Tz was evaluated by cytotoxicity studies on BT-

474 breast cancer cells. The cells were incubated with B-CDs-Tz of up to 160 µg/mL and to 

72 h. Analysis by standard MTT assay showed, with cell survivals over 90 %, no induced cell 

death due to the particles in BT-474 cells, indicating negligible cytotoxicity (Figure 10). 

  

Figure 10: Cell viability in the presence of B-CDs-Tz for 48 h and 72 h on BT-474 breast cancer cell 
line; cells were incubated with increasing concentrations of the B-CDs-Tz and cell viability was 
determined by MTT assay (values are expressed as mean ± standard error mean, n = 3). 

To evaluate the behavior of B-CDs-Tz with BT-474 breast cancer cells in terms of 

internalization, fluorescence microscopy studies were carried out. As the dots are 

fluorescence by themselves, a first trial was carried out without additional labeling. However, 

due to the reduced fluorophore-intensity after tetrazine attachment, the fluorescence wasn’t 

sufficient for the studies. Hence, further trials were conducted by attaching Cy3-TCO via 

click reaction to tetrazine of the B-CDs-Tz. The cells themselves were stained for the nucleus 

and lysosomes with Hoechst33342 and Lysotracker-deep-red, respectively. Images were 

taken using a live cell Axio Observer fluorescence microscope (Zeiss) and analyzed by the 
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ZEN-ZEISS software. After 2 h incubation at 37 °C, co-localization between the dots and 

the lysosomes was observed, confirming internalization of B-CDs-Tz (Figure 11). 

 

Figure 11: Representative images by live cell fluorescence microscopy of functionalized B-CDs-Tz 
after 2 h incubation. In green: B-CDs-Tz, fluorophore-labeled with TCO-Cy3; in red: Lysosomes, 
stained with Lysotracker-deep-red; in blue: nucleus, stained with Hoechst33342. Merged signals of 
B-CDs-Tz colocalizing with lysosomes appear in yellow. 

Cell uptake is a desired property for boron delivery agents, as the efficacy and selectivity of 

the treatment improves in case of proximity of boron to the nucleus. For the pre-targeting 

strategy, a co-internalization of the antibody-dots complex is favored. Yet, it can be expected 

that the click reaction between the mAb-TCO and the B-CDs-Tz is faster than the cell uptake 

of the particles alone, hence no restrictions were expected for pre-targeting due to the ability 

of the dots to internalize. Additionally, internalization of the dots without interacting with 

the antibody should also not result in decreased efficacy, and can be considered as a parallel 

uptake mechanism that contributes to accumulation of the boron atoms in the interior of the 

cells.   

To proof the occurrence of the click reaction between TCO-functionalized Trastuzumab 

and the B-CDs-Tz, HPLC analysis was performed. The same conditions as described above 

were used, with 0.1 M ammonium formate (pH = 6) as mobile phase on a size exclusion 

column (TSKgel SuperOligo PW, 150x6 mm, 3 µm). Chromatograms of mixtures in 

different ratios of the two pre-targeting components and respective controls were executed. 

As control, each component was injected alone (Figure 12, A-C: Trastuzumab without and 

with TCO and B-CDs-Tz). Furthermore a mix between non-functionalized Trastuzumab 

and B-CDs-Tz (Figure 12, D) was also injected as control; an almost separation could be 

achieved. When applying the mixture of Trastuzumab-TCO and B-CDs-Tz (Figure 12, E-

G) a shift of the signal corresponding to the dots towards the mAb could be observed, this 

signal increasing with higher mAb-TCO/B-CDs-Tz ratios. These results confirm that the 

click reaction takes place. The fact that the signal of the B-CDs-Tz between 5 - 9 min is still 

visible with the high ratio of 50:1 (Figure 12, G), whereas the signal at min 9 - 12 disappeared, 

correlates with the assumption made above, that the dots eluted in this area are non-

functionalized or only with low degrees (Figure 7). 
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Figure 12: HPLC chromatograms to demonstrate occurance of click reaction between Trastuzumab-
TCO and B-CDs-Tz including control chromatograms. (A) Trastuzumab, (B) Trastuzumab-TCO, 
(C) B-CDs-Tz, (D) control of non-functionalized Trastuzumab and B-CDs-Tz in a ratio of 2:1, (E-
G) Trastuzumab-TCO and B-CDs-Tz in a ratio of (E) 2:1, (F) 20:1, (G) 50:1. 
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After the successful synthesis and functionalization of the B-CDs-Tz, including their 

characterization and confirmation of bio-compatibility and successful click reaction between 

the two pre-targeting components, we moved to the in vivo evaluation of pre-targeting. 

Hence, radiolabeling of the B-CDs-Tz with a positron emitting nuclide was necessary to be 

able to follow the dots after administration to mice by positron emission tomography (PET) 

imaging. 

5.3.2 Radiolabeling of B-CDs-Tz with [18F]FPyTFP 

 

Figure 13: Schematic representation of radiolabeling B-CD-Tz with [18F]FPyTFP. 

To radiolabel the dots, the radionuclide fluorine-18 (t1/2 = 109.77 min) was chosen, as 

relatively fast clearance was expected due to their small size. An easy and mild route to label 

biomolecules or nanoparticles with 18F is by using a prosthetic group, which is a small 

molecule that incorporates the radionuclide and has a functional group for fast and easy 

coupling to the (usually) bigger component. With free available amine groups on the surface 

of the B-CDs-Tz and with an automatized system for its production in hand, the prosthetic 

group [18F]FPyTFP (12) was chosen (see Error! Reference source not found. for synthesis 

of [18F]FPyTFP precursor and Radiosynthesis of [18F]FPyTFP). Therefore B-CDs-Tz were 

dissolved in PBS, the prosthetic group added and incubated for 10 min at 70 °C. The labeling 

was monitored by: (i) radio-TLC using silica gel coated aluminum sheets and 

methanol/dichloromethane 3:7 as the stationary and mobile phases, respectively (Figure 14); 

and (ii) by radio-HPLC using the size exclusion column (TSKgel SuperOligo PW, 150x6 mm, 

3 µm) as stationary phase, and 80 % 0.1 M ammonium formate (AMF, pH = 6) and 20 % 

acetonitrile, to enable elution of the prosthetic group, as the mobile phase (UV detection at 

365 nm) (Figure 15). Both methods confirmed quantitative labeling of the dots. 

 

Figure 14: Chromatograms of radio-TLCs monitoring of the radiolabeling reaction of B-CDs-Tz 
with [18F]FPyTFP. Left: [18F]FPyTFP as control, right: [18F]B-CDs-Tz after labeling was complete. 
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Figure 15: Radio-HPLC chromatogram of [18F]B-CDs-Tz. Top: UV detection, bottom: radiometric 
detection. 

5.3.3 Pre-targeting B-CDs in vivo 

For the evaluation of pre-targeting B-CDs in vivo, BT-474 breast cancer xenograft bearing 

NOD/SCID mice were used (for details about tumor growth see Chapter 4). Two 

experimental groups were evaluated; the pre-targeting group (G1), in which TCO-

functionalized Trastuzumab was injected intravenously 24 h prior to the intravenous 

administration of [18F]B-CDs-Tz and a control group (G2) in which solely [18F]B-CDs-Tz 

were injected intravenously (Figure 16). Each group consisted of 3 animals. The amount of 

injected mAb per mouse was of 100 µg. For both groups 200-300 µCi (7.5 - 11.0 MBq) 

[18F]B-CDs-Tz were injected per mouse, corresponding to about 150-250 µg. Dynamic PET-

CT scans were performed immediately after injection of the B-CDs for 45 min using an 

eXploreVista-CT small animal PET-CT system (GE Healthcare). 

G1 pre-targeting G2 B-CDs-Tz 

 
 

Figure 16: Experimental set up with two experimental groups for in vivo evaluation of pre-targeting 
B-CDs. The pre-targeting group (G1) was injected with Trastuzumab-TCO followed by [18F]B-CDs-
Tz after 24 h; the second group (G2) received only [18F]B-CDs-Tz. 

To visualize the results after PET quantification with PMOD software the 45 min scans were 

averaged in 5 timeframes. First, we looked at the biodistribution profile and plotted the 

uptake in major organs. A fast clearance by elimination through kidneys and bladder could 

be observed, which was very similar for both groups (Figure 17 and Figure 18). 
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Figure 17: Representative coronal PET images for each time frame (average of each timeframe) after 
intravenous administration of [18F]B-CDs-Tz. PET images have been co-registered with CT images 
(representative slice) for localization of the radioactive signal. 

 

Figure 18: Accumulation of [18F]B-CDs-Tz in different organs at 5 timeframes up to 45 min after 
intravenous administration, analyzed by PET imaging, obtained for the pre-targeting and control 
group (values are expressed as mean ± standard error mean, n = 3). 

However, a closer look to the tumor uptake revealed clear differences. In G2 the [18F]B-CDs-

Tz are washed out from the tumor, whereas the amount of dots in the pre-targeted tumors 

seems to be stable which lead to the conclusion that the desired retention of the dots was 

achieved. Further verification was given by the significant difference in the time frame 25–

45 min (P = 0.0005) (Figure 19). 

   

Figure 19: Left: Accumulation of [18F]B-CDs-Tz in the tumor, analyzed by PET imaging, at different 
timeframes after intravenous administration for the pre-targeting and control group (values are 
expressed as mean ± standard error mean, n = 3). Significant differences are found in the time frame 
25–45 min (P = 0.0005). Right: representative axial slices in the region of the tumor corresponding 
to PET-CT images obtained after administration of [18F]B-CDs-Tz in the time frame 25-45 min for 
the pre-targeting and control group. 
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The results obtained confirm the effect of the pre-targeting strategy in terms of tumor 

retention. However, higher accumulation in the tumor would be desirable. This could be 

achieved by using a slower- or non-internalizing mAb which results in higher availability of 

the mAb at tumor site. Furthermore, it would allow a later administration of the B-CDs to 

achieve enhanced clearing of the mAb from non-targeted tissue. Finally, an increase of the 

circulation time of the CDs could enhance tumor accumulation. 

5.4 Summary and conclusion 

This chapter describes the successful approach of pre-targeting boron carbon dots (B-CDs) 

for the application in BCNT. The particles were successfully synthesized using a one-step 

microwave method, characterized among other by AFM, XPS and for their fluorescence, 

functionalized with tetrazine and radiolabeled with the prosthetic group [18F]FPyTFP which 

finally resulted in their evaluation in vivo in BT-474 breast cancer xenograft bearing 

NOD/SCID mice. Bio-compatibility was confirmed prior performing an MTT cytotoxicity 

test. 

The biodistribution of the B-CDs showed a rapid clearance over kidneys and bladder from 

blood, organs and tissue, including the tumor. However, in pre-targeted tumors a clear 

retention of the dots could be found, hence, the B-CDs-Tz clicked to the TCO-

functionalized mAb in tumor tissue, preventing the wash out as seen in the control group.  

Yet, low accumulation in tumor of, in average, only 2.8 ± 0.2 %ID/cm3 (which maintained 

almost the same over the 45 min PET scan) was observed. To obtain a higher tumor uptake 

and therefore higher boron concentrations in the tumor, necessary for a successful BNCT 

approach, a slow- or non-internalizing mAb should be used. It would allow a longer mAb 

clearing time before the injection of the B-CDs (e.g. from 24 h to 48 h) as well as an increase 

of available mAb on the cell membrane at tumor site. 

Nevertheless, the results of this chapter clearly show the desired retention of the boron 

delivery agent, the B-CDs, due to pre-targeting. Hence, B-CDs, combined with a pre-

targeting strategy, are promising new BCNT agents!  
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5.5 Experimental part 

5.5.1 Reagents 

All reagents were obtained from Sigma-Aldrich unless otherwise stated. Milli-Q water 

(resistivity 18.2 MΩ·cm at 25 °C) was used in all experiments. NHS-Cy3 was purchased from 

BroadPharm. The antibody Trastuzumab was purchased from Roche Farma, S.A. España. 

A stock of BT-474 cells was kindly donated by Instituto de Investigación Sanitaria 

Biodonostia (San Sebastián, Spain). Animals were purchased from Charles River 

Laboratories France.  

[18F] was generated in an IBA Cyclone 18/9 cyclotron by irradiation of [18O]H2O with high 

energy (18 MeV) protons via (p, n) reaction, and trapped on a QMA cartridge and the activity 

eluted with aqueous K2CO3. 

5.5.2 Instrumentation 

The synthesis of B-CDs was performed using a CEM Focused Microwave™ Synthesis 

System, Discover® SP. 

Atomic force microscopy (AFM) studies were performed using a Veeco Multimode AFM 

attached to a Nanoscope V controller. The sample was imaged in tapping mode in air, using 

TESPA-V2 doped silicon probe with k = 42 N/m. A drop of a diluted solution of the 

particles was placed on a glass substrate, the sample left to evaporate at room temperature 

and afterwards imaged. 

X-ray Photoelectron Spectroscopy (XPS) experiments were performed in a SPECS Sage HR 

100 spectrometer (Berlin, Germany) with a non-monochromatic X ray source (aluminum 

Kαline of 1486.6 eV energy and 252 W), placed perpendicular to the analyzer axis and 

calibrated using the 3d5/2 line of Ag with a full width at half maximum (FWHM) of 1.1 eV. 

The selected resolution for the spectra was 15 eV of Pass Energy and 0.15 eV/step. All 

measurements were made in an ultra-high vacuum (UHV) chamber at a pressure around 

6×10−8 mbar. An electron flood gun was used for charge neutralization. Gaussian Lorentzian 

functions were used for fittings (after a Shirley background correction) where the FWHM of 

all the peaks were constrained while the peak positions and areas were set free. Main C1s 

peak was used for charge reference and set at 284.8 eV. 

HPLC analysis was carried out using an Agilent 1200 series HPLC equipped with a 

quaternary pump, a multiple wavelength detector and a radiometric detector (Gabi, Raytest). 

A size exclusion column (TSKgel SuperOligo PW, 150x6 mm, 3 µm) was used as stationary 

phase with 100 % 0.1 M ammonium formate (AMF, pH = 6) or for radio-HPLC with 80 % 

0.1 M AMF and 20 % acetonitrile as mobile phase at a flow rate of 0.4 mL/min. UV detection 

at λ = 280 nm or, for radio-HPLC at 365 nm. Injection volume was 20 µL. 

Fluorescence spectra were measured at room temperature using a Perkin Elmer (LS 55) 

Fluorimeter. Excitation source: Pulsed Xenon lamp 8 W, Detector: PMT (200-650 nm), 

Polarizers anisotropy / polarisation measurements, Emission monochromator cut off filter 

set: 290, 350, 390, 430 y 515 nm, attenuator 1% T, FL-WinLab software for data acquisition 

and analysis. 
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Cell observer microscopy experiments were carried out using a Zeiss Axio Observer 

Fluorescence microscope using Ibidi clear bottomed µ-slide 8-well microscopy plates and 

analyzed by ZEN2012-ZEISS. 

Successful preparation of synthetic products was confirmed by NMR spectroscopy. NMR 

spectra of CDCl3 or acetonitrile-d3 solutions were recorded on Bruker Avance III 500 MHz 

spectrometer at 302 K. The chemical shifts (δ) are reported in parts per million (ppm) and are 

referenced to the deuterated solvent used. The coupling constants (J) are reported in Hz, and 

the splitting patterns are indicated as s (singlet), d (doublet), dd (doublet of doublets), t 

(triplet), and tt (triplet of triplets). 

Radio-thin layer chromatography (radio-TLC) was performed using silica gel coated 

aluminum sheets and methanol/dichloromethane 3:7 as the stationary and mobile phases, 

respectively. TLC plates were analyzed using a TLC-reader (MiniGITA, Raytest). 

PET experiments were performed using an eXploreVista-CT small animal PET-CT system 

(GE Healthcare). Anesthesia was induced with 3-5 % isoflurane and maintained by 1.5-2 % 

of isoflurane in 100% O2. 

5.5.3 Tumor growth 

Cells 

BT-474 cells were cultured in DMEM medium (100X, 10378-016 Gibco; 10 % fetal bovine 

serum, 1 % penicillin-streptomycin) at 37 °C with 5% CO2 in a humid atmosphere. Cells 

were confirmed, using a Lonza Mycoplasma test, to be free of mycoplasma contamination. 

Animals 

All animal experiments were performed in accordance with the Spanish policy for animal 

protection (RD53/2013), which meets the requirements of the European Union directive 

2010/63/UE regarding the protection of animals used in experimental procedures. All 

experimental procedures were approved by the Ethical Committee of CIC biomaGUNE and 

authorized by the local authorities. All animals were housed in ventilated cages and fed on a 

standard diet ad libitum. The studies were performed on female NOD.CB17-Prkdcscid/J 

mice. 

Tumor growth 

To grow BT-474 cell line breast cancer xenografts on female NOD.CB17-Prkdcscid/J mice 

5-6 weeks old mice were operated to implant a 17β-estradiol pellet (belma technologies) 

subcutaneously at their neck. The next day 10*106 BT-474 tumor cells were inoculated per 

animal subcutaneously at the flank of the mouse. Prior to each inoculation cells were diluted 

in sterile PBS:Matrigel (1:1). The sizes of the tumors were measured every 2-3 days with a 

digital calliper and volumes calculated (𝑉 =
short diameter2∗ long diameter

2
). At the time the 

tumour reached 200-300 mm3 (around 2 weeks after inoculation) in vivo studies could be 

performed. The defined human endpoints were: (i) weight loss greater than 20 % in one 

week, (ii) one or more of the following clinical signs: abdominal distension, dyspnoea, 

cachexia or stooping, (iii) the absence of response to stimuli and lethargy, (iv) a tumor larger 
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than 1.5 cm in average diameter and (v) ulcerated or necrotic tumors or wounds / aggressions 

severe infected.  

5.5.4 Chemistry and Radiochemistry 

Conjugation of TCO-NHS to Trastuzumab 

The antibody Trastuzumab was diluted in PBS (phosphate-buffered saline, pH 7.4) to a 

concentration of 3.0 mg/mL. The pH was adjusted to 8.6 – 9.1 with 0.1 M Na2CO3. 50-

55 moles eq. TCO-NHS (20 mM in DMSO) was added. After incubation (120 min, RT) non-

reacted TCO-NHS was removed by spin filtration (100 kDa, 12000 rpm) and the conjugated 

mAb washed three times with PBS. After recovering the mAb from the filter with PBS its 

concentration was determined by NanoDrop®. 

Synthesis of B-CDs and functionalization with tetrazine 

To a 10 mL microwave vessel were added citric acid monohydrate (1 eq., 18.0 mg), 

ethylendiamine (10 eq., 57.0 µL), sodium tetraborate (3 eq., 51.7 mg) and 300 µL MQ water. 

The vial was capped and introduced into the microwave. The reaction was performed in 5 

min with stirring at 220 °C, 200 W, 370 PSI and with 2 min ramp time. Purification was 

performed by sephadex size exclusion column (NAP5® GE Healthcare) and the collected 

fractions lyophilized. To attach tetrazine 6 mg B-CDs were dissolved in 500 µL PBS. The 

solution had a pH around 9 and Tz-PEG5-NHS (1.6 mg in 30 µL DMSO, 110 mM) was 

added without further adjustment of the pH. After incubation overnight purification was 

performed by sephadex size exclusion column (NAP5® GE Healthcare) and the collected 

fractions lyophilized. A yield of 12.4 % of pure B-CDs-Tz could be achieved. 

Agarose (1.5 %) gel electrophoresis  

A 1.5 % agarose gel was prepared following standard protocol. In brief 1.5 g agarose were 

suspended in 100 mL Tris-Borate-EDTA (TBE) buffer and heated until it almost reached its 

boiling point. The solution was poured in a gel chamber, the comb placed and let settle to 

polymerize. Samples were prepared in 20 µL aqueous batches, including 5 µL loading buffer. 

10 µL were loaded on the gel and run for approximately 1 h at 100 V. 

Proof of click reaction using SE-HPLC 

To proof the occurrence of the click reaction between TCO-functionalized Trastuzumab 

and the B-CDs-Tz, SE-HPLC analysis was performed. Therefore, a size exclusion column 

(TSKgel SuperOligo PW, 150x6 mm, 3 µm) was used as stationary phase with an isocratic 

mobile phase of 0.1 M ammonium formate (pH = 6). Chromatograms were first executed 

for controls of each component alone (non-functionalized Trastuzumab (2 mg/mL), TCO-

functionalized Trastuzumab (2 mg/mL) and B-CDs-Tz (1 mg/mL)) as well as a mix of non-

functionalized Trastuzumab (1 mg/mL) and B-CDs-Tz (1 mg/mL) in a ratio of 2:1. Finally, 

chromatograms of the two pre-targeting components combined in different ratios were 

executed (functionalized Trastuzumab (1 mg/mL) and B-CDs-Tz (1 mg/mL) in ratios of 

2:1, 20:1, 50:1). 

Synthesis of [18F]FPyTFP precursor 4 

The precursor for the preparation of [18F]FPyTFP was synthesized in a 3-step sequence as 

described previously (12). In brief, a solution of 6-chloronicotinic acid (900 mg, 5.7 mmol), 
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2,3,5,6-tetrafluorophenol (750 mg, 4.5 mmol) and N,N’-dicyclohexylcarbodiimide (1.9 g, 

9 mmol) in dioxane (40 mL) was stirred at room temperature for 2 h. The mixture was 

filtered, the solvent evaporated, and the crude crystallized from hot hexane (25 mL), to give 

6-chloronicotinic acid 2,3,5,6-tetrafluorophenyl ester (945 mg, 3.1 mmol; 69 %) as a white 

solid. 
1H NMR (500 MHz, Chloroform-d) δ 9.21 (dd, J = 2.4, 0.8 Hz, 1H), 8.42 (dd, J = 8.4, 2.4 Hz, 

1H), 7.57 (dd, J = 8.4, 0.8 Hz, 1H), 7.11 (tt, J = 9.8, 7.0 Hz, 1H) (matches the literature data). 

Nicotinic ester (760 mg, 2.5 mmol) was dissolved in trimethylamine solution in 

tetrahydrofurane (1 M, 20 mL) and stirred at room temperature for 5 h. The white precipitate 

was collected by vacuum filtration and washed with diethyl ether (2 × 5 mL) to obtain 

N,N,N-trimethyl-5-((2,3,5,6-tetrafluorophenoxy)carbonyl)pyridin-2-aminium chloride 

(605 mg, 1.7 mmol; 68 %) as an off-white solid. This was suspended in trimethylsilyl triflate 

solution in dichloromethane (2 % w/w, 25 mL). The mixture was exposed to ultrasound for 

10 min, the solvent was evaporated and the crude washed with diethyl ether (2 × 10 mL) to 

give N,N,N-trimethyl-5-((2,3,5,6-tetrafluorophenoxy)carbonyl)pyridin-2-aminium trifluoro-

methanesulfonate (792 mg, 1.7 mmol; 100 %) as an off-white solid. 
1H NMR (500 MHz, Acetonitrile-d3) δ 9.28 (d, J = 2.3 Hz, 1H), 8.79 (dd, J = 8.7, 2.3 Hz, 

1H), 8.01 (d, J = 8.8 Hz, 1H), 7.37 (tt, J = 10.5, 7.3 Hz, 1H), 3.54 (s, 9H) (matches the 

literature data). 

Radiosynthesis of [18F]FPyTFP 

The synthesis of [18F]FPyTFP was performed using a TRACERlab FXFN synthesis module 

(GE Healthcare) by 18F-fluorination of the trifluoromethanesulfonate precursor, inspired by 

previously described procedure (12). The radiosynthesis was carried out in a fully automated 

manner and included HPLC purification and reformulation. 

Fluorine-18 (18F) was generated in an IBA Cyclone 18/9 cyclotron by irradiation (target 

current = 44 µA) of 18O-enriched water with high energy (18 MeV) protons via 18O(p, n)18F 

reaction. [18F]F– was trapped on a pre-conditioned Sep-Pak® Accell Plus QMA Light 

cartridge (Waters, Milford, MA, USA), and then eluted with a solution of Kryptofix 

K2.2.2/K2CO3 in a mixture of water and acetonitrile. After complete elimination of the 

solvent by azeotropic evaporation, a solution containing the precursor (10 mg) in a mixture 

of t-butanol and acetonitrile (4/1, v/v; 0.5 mL) was added and the mixture was kept at 40 °C 

for 15 min. The crude was diluted with acetonitrile/water (1/1, v/v; 2 mL) and purified by 

HPLC using RP Mediterranea Sea18 (10 × 250 mm, 5 µm particle size; Teknokroma, Spain) 

as a stationary phase and acetonitrile/0.1% TFA in milliQ water (80/20, v/v) as a mobile 

phase at a flow rate of 3 mL/min. The desired fraction (tR = 29–30 min) was collected, 

diluted with water (25 mL), and the radiotracer was retained on a C-18 cartridge (Sep-Pak® 

Light, Waters, Milford, MA, USA). The cartridge was washed with water (5 mL) and the 

radiotracer eluted with acetonitrile (1 mL). Chemical and radiochemical purity were 

determined by HPLC using a Mediterranean C18 column (4.6 x 150 mm, 5 µm) as stationary 

phase and 0.1% TFA/acetonitrile (0-1 min 25% acetonitrile; 9-12 min 90% acetonitrile; 13-

15 min 25% acetonitrile) as the mobile phase at a flow rate of 1.5 mL/min (retention time 

= 23 min). 
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HPLC analysis confirmed high radiochemical purity (> 99 %) of [18F]FPyTFP, obtained in 

14 % non-decay corrected yield. For the purpose of further use of the radiolabeled prosthetic 

group, [18F]FPyTFP was used dissolved in acetonitrile as obtained after elution from the 

cartridge. 

Radiolabeling of B-CDs-Tz with [18F]FPyTFP 

To radiolabel B-CDs-Tz 1.2 mg were dissolved in 100 µL PBS (phosphate buffered saline, 

pH 7.4) and 8 mCi (300 MBq) [18F]FPyTFP in acetonitrile added. After 10 min incubation at 

70 ºC the labeling was complete as monitored by radio-TLC (silica gel 60 F254 on aluminum 

sheets (Merck), methanol/dichloromethane 3:7) and radio-HPLC (TSKgel SuperOligo PW 

column, 150x6 mm, 3 µm, 0.1 M AFM/acetonitrile 80:20). 

5.5.5 in vitro studies 

Cytotoxicity studies 

To determine cell viability, BT-474 human breast cancer cells were incubated with 

functionalized B-CDs over 48 h and 72 h. Cells were seeded (3×104 cells/well, 100 µL/well, 

96-well plate), allowed to adhere overnight in complete media and maintained in a humid 

atmosphere at 37 °C and 5 % CO2. Then, media was removed and cells were left untreated 

(control) or incubated with the B-CDs-containing formulations, diluted accordingly in media. 

The experiments were performed in triplicates. After the desired time, cell supernatant was 

removed and 100 µL/well of MTT reagent (Roche), diluted in the corresponding media to 

the final concentration of 0.25 mg/mL, was added. After 1 h incubation at 37 °C and 5 % 

CO2, the excess reagent was removed and formazan crystals were solubilized by adding 

200 µL of DMSO per well. The optical density of each well was measured in a TECAN 

Genios Pro 96/384 microplate reader at 550 nm. Data was represented as the percentage of 

cell survival compared to control wells. 

In vitro internalizing studies of B-CDs-Tz-Cy3 

B-CDs-Tz were fluorophore-labelled with TCO-Cy3, using the click-coupling reaction and 

purified by sephadex size exclusion column (NAP5® GE Healthcare). BT-474 cells (ps. 17) 

were seeded in a poly-L-Lysine treated ‘Ibidi’ µ-slide 8-well-plate (30 000 cells/well in 0.3 

mL) and incubated overnight to adhere (37 °C, 5% CO2, humid atmosphere). The media was 

removed and 0.1 mL Hoechst 33342 (1 µg/mL medium) added to stain the nucleus. After 

10 min incubation (37 °C, 5% CO2, humid atmosphere) 0.1 mL LysoTracker deep red (1 

µg/mL in media) was added to stain the lysosomes. After 20 min incubation (37 °C, 5% CO2, 

humid atmosphere) media was removed and 0.3 mL of Cy3-labeled B-CDs (75 µg/mL 

medium) added. After 2 h incubation (37 °C, 5% CO2, humid atmosphere) the media was 

removed and replaced with fresh media. The images were taken with a Cell Axio Observer 

Fluorescence Microscope. Controls of single staining for each fluorophore were included. 

Images were analyzed by ZEN-ZEISS software. 

5.5.6 in vivo studies 

In vivo PET imaging studies 

Two groups of animals (n = 3) were selected out of female, BT-474 breast cancer xenograft 

bearing NOD/SCID mice. For the pre-targeting group approximately 100 µg of TCO 



_____________________________________________________________________________ 

99 
 

Chapter 5: Pre-targeting boron carbon dots 

functionalized Trastuzumab (~2 TCO/mAb, determined by the direct method described in 

chapter 3) per mouse were injected intravenously via tail vein. 24 h post injection the [18F]B-

CDs-Tz (150-250 µg B-CDs-Tz in 100 µL PBS with 200-300 µCi (7.4-11.1 MBq) per mouse) 

were injected intravenously. The same amount of [18F]B-CDs-Tz was injected to the second 

group which did not receive Trastuzumab beforehand. Imaging studies were conducted using 

positron emission tomography (PET) in combination with computerized tomography (CT), 

using an eXploreVista-CT small animal PET-CT system (GE Healthcare). Dynamic whole-

body images (2 beds) were acquired immediately after injection for 45 min. PET images were 

analyzed using PMOD image analysis software (PMOD Technologies Ltd, Zürich, 

Switzerland). 
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Chapter 6: General conclusion and future perspective 

6.1 General conclusion 

1. The analysis of antibodies for their number of moieties per mAb, conjugated with 

small ligands, can be carried out using different techniques, including direct titration, 

MALDI/TOF MS (Matrix-Assisted Laser Desorption-Ionization / Time Of Flight 

Mass Spectrometry) and UPLC/ESI-TOF MS (Ultra High Performance Liquid 

Chromatography / Electrospray ionization - Time Of Flight Mass Spectrometry). 

 

2. The different analytical techniques show overall similar trends and values, although 

UPLC/ESI-TOF MS offers reliable quantitative information about the different 

species present when functionalization with the desferrioxamine derivative p-NCS-

Bz-DFO is carried out.  

 

3. TCO conjugation of Trastuzumab did not compromise its binding ability to the 

target. However, the characteristic to internalize after binding to its receptor was a 

potential problem. Yet, in vivo internalization studies showed remaining mAb (about 

55 %) on the cell membrane 24 h postinjection. 

 

4. Small, spherical AuNPs (core size 3-5 nm) functionalised with polyethyleneglycol and 

cobalt-bis-dicarbollide (COSAN), show slow elimination and high uptake in organs 

of the mononuclear phagocytic system, such as the spleen and the liver. Hence, they 

didn’t follow the desired properties for pre-targeting. 

 

5. Nontheless, high boron loading was achieved and tumor uptake due to the EPR 

effect could be witnessed in a xenograft mouse model of breast cancer.  

 

6. Boron doped carbon dots show rapid elimination via kidneys and bladder, and 

therefore promising properties for pre-targeting. The use of a pretargeting strategy 

significantly increases retention of the boron-rich carbon dots in the tumour, as 

demonstrated using a xenograft mouse model of breast cancer. 

 

6.2 Future perspective 

Future studies should address the low tumor accumulation of the B-CDs in tumor tissue. 

Therefore several strategies can be followed. Using a non-internalizing mAb would lead to 

an increase of available mAb on the cell membrane at tumor site. Therefore, more dots could 

attach and be retained. Furthermore, a later administration of the B-CDs-Tz, that is, moving 

from 24 h to e.g. 48 h after the mAb injection, would enable enhanced clearing of the mAb 

from non-targeted tissue, hence, preventing the click reation with the dots to occur at other 

sites and increase their bioavailablity. Another way to enhance tumor accumulation could be 

to prolong the blood circulation time of the dots, which could, for example, be achieved by 

additional PEG liagnds, increasing size and biocompatibilty of the particles. It could increase 

the accumulation in tumor tissue, however, it is non-selective and could enhance uptake also 
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in non targeted tissues. Finally, the way of administration could be addressed. An alternative 

of giving a one time high dose could be a continus infusion which would allow more B-CDs 

to pass through the tumor and attach to the pre-injected antibodies, hence higher overall 

accumulation in tumor could be achieved. 

 




