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Human activity recognition and neural activity analysis are the basis for human computational neure-
oethology research dealing with the simultaneous analysis of behavioral ethogram descriptions and neural
activity measurements. Wireless electroencephalography (EEG) and wireless inertial measurement units
(IMU) allow the realization of experimental data recording with improved ecological validity where the
subjects can be carrying out natural activities while data recording is minimally invasive. Specifically,
we aim to show that EEG and IMU data fusion allows improved human activity recognition in a natural
setting. We have defined an experimental protocol composed of natural sitting, standing and walking
activities, and we have recruited subjects in two sites: in-house (N = 4) and out-house (N = 12) popu-
lations with different demographics. Experimental protocol data capture was carried out with validated
commercial systems. Classifier model training and validation were carried out with scikit-learn open
source machine learning python package. EEG features consist of the amplitude of the standard EEG
frequency bands. Inertial features were the instantaneous position of the body tracked points after a
moving average smoothing to remove noise. We carry out three validation processes: a 10-fold cross-
validation process per experimental protocol repetition, (b) the inference of the ethograms, and (c) the
transfer learning from each experimental protocol repetition to the remaining repetitions. The in-house
accuracy results were lower and much more variable than the out-house sessions results. In general, ran-
dom forest was the best performing classifier model. Best cross-validation results, ethogram accuracy,
and transfer learning were achieved from the fusion of EEG and IMUs data. Transfer learning behaved
poorly compared to classification on the same protocol repetition, but it has accuracy still greater than
0.75 on average for the out-house data sessions. Transfer leaning accuracy among repetitions of the same
subject was above 0.88 on average. Ethogram prediction accuracy was above 0.96 on average. Therefore,
we conclude that wireless EEG and IMUs allow for the definition of natural experimental designs with
high ecological validity toward human computational neuroethology research. The fusion of both EEG
and IMUs signals improves activity and ethogram recognition.
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1. Introduction

There is a plethora of approaches for human activity
measurement and recognition using diverse sensors.
Computer vision techniques based on conventional
video1 and depth cameras2,3 have been extensively
applied. Machine learning techniques4 over data
from wearable motion tracking devices based on
inertial measurement units (IMUs)5–9 are another
major research line, including their use for medi-
cal purposes.10 Diverse feature extraction methods
have been proposed, such as the fractal dimension11

for the characterization of walking path tortuos-
ity of aging person, space-time representations of
actions,12 or the application of conditional random
fields13 for human motion recognition. Information
fusion for human activity recognition14–16 has tar-
geted the combination of same kind sensors. We have
not found works using the fusion of neural and body
motion sensors along the lines of the work that we
are reporting in this paper.

Human activity recognition is arguably the
human equivalent of computational ethology,17

defined as the extensive use of computers and dig-
italized sensors for animal behavior observation,
quantification, and analysis. A central tool in com-
putational ethology is the ethogram, which is a
quantitative representation of the measured behav-
ior that can be used for the supervised or unsuper-
vised classification of behaviors, quantitative com-
parisons, and detection of anomalies. Ethograms take
the form of time plots of the observed activity identi-
fiers inferred from sensor data. Computational ethol-
ogy has made extensive use of image processing and
computer vision techniques18 for remote identifica-
tion and tracking19,20 of individuals in isolated21 or
social contexts.22,23 The field is mature to the point
of commercial software/hardware bundles for spe-
cific applications.24,25 Besides, computational ethol-
ogy uses a wide variety of sensors, such as struc-
tured light,20 X-ray imaging for animals embedded in
the soil, thermal imaging for video shooting in dark-
ness,26 sonar signals for underwater monitoring, sen-
sitive pressure sensors for micro-motion detection,27

catwalk systems for animal gait analysis,28 as well
as innovative machine learning for automated con-
struction of ethograms, such as the convolutional
neural networks (CNN),29–31 spatiotemporal bags of
words,26 and data compression.32

Electroencephalography (EEG) is an electrophys-
iological measurement that allows to infer mea-
surements of the activity in the brain33 used in
many neuroscience and cognitive psychological stud-
ies.33–38 Often, cognitive experiments impose very
stringent conditions (sitting very quietly while car-
rying a repetitive task) on the subject that diminish
the ecological validity of the study. In psychology,
the ecological validity39 of a study relates to how
the materials and setting of the study mirror the
real-world effects are targeted by the study. Wireless
EEG devices40,41 with high reliability42 allow new
experimental designs where the subject is allowed
some freedom of movement. Some animal models are
successful demonstrators of the wireless EEG tech-
nology.43,44 Also, it has been proposed for clinical
trials45 with applications in epilepsy diagnosis and
follow up. Monitoring neural activity while wander-
ing in an art museum has been reported.46 Moreover,
robust and sensitive dry electrodes41,47 are easier to
deploy on inexperienced subjects. We benefit from
these resources in order to improve the ecological
validity of our activity recognition experiments based
on EEG and IMUs recordings.

Neuroethology deals with the study of animal
behavior and the latent nervous system mechanisms
controlling it, emphasizing the evolutive and compar-
ative aspects in natural settings.48 On some lower
animals, empirical computational neuroethological
experiments are based on the ability to manipulate
their neural pathways and the detailed observation of
the ensuing behavior.49 On higher animals, objective
measurement of behavior carried by computational
ethology means can be correlated to brain circuits via
postmortem histology, or via in vivo measurement
of neural activity by EEG using electrode implants
or functional Magnetic Resonance Imaging (fMRI).
Some recent higher animal study examples are the
compression of the spinal cord,50 hypoxia-ischemia
in newborns,51 and fear.52 There are also exam-
ples of human neuroethology using fMRI for neu-
ral activity reading synchronized with the behav-
ioral responses, such as a human fear model,52 and
the highly abstract simulation of foraging behav-
iors in Ref. 53. However, ecological validity of fMRI
studies is rather poor. Some works use physiolog-
ical sensors to infer internal states of the human
subject, such as stress level,54 however EEG pro-
vides much more direct evidence.55,56 Wireless EEG
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devices allow much more natural experiences such
as joint recording of body motion and the EEG of
piano player while performing a simple tune.57 We
postulate that the experimental works reported in
this paper fall near the domain of human computa-
tional neuroethology.

Our main working hypothesis is that fusing the
information body motion tracking devices and EEG
would allow improved recognition of the instanta-
neous subject state in an experimental protocol, and
of the overall ethogram. We translate this hypothe-
sis into a classification problem: the fusion of neu-
ral activity and body motion data will improve
activity recognition by trained classifiers. In this
paper, we define an experimental protocol carried
out by recruited subjects in two experimental sites.
We use wireless EEG recording and IMUs body
points trajectory tracking at each data capture ses-
sion. We extract behavioral and neural activity fea-
tures for instantaneous classification and inference of
the subject ethogram corresponding to the protocol
repetition data capture. In this regard,58 the pro-
vided preliminary evidence shows that the combined
neural and behavioral information improve activity
recognition results on a simple protocol. This paper
improves over these results on a larger population
carrying out a more complex activity experimental
protocol. We use off-the-shelf recording equipment
and open source machine learning implementations
in order to capture the data and process it. Results
show improved ethogram prediction from the fusion
of the inertial and neural activity data.

2. Materials and Methods

2.1. Experimental populations

We have carried out two batches of experimental
data capture with the software published in [59].
The first experimental capture batch, that we call
in-house experiment, was carried out in a semi-
nar room of the Computer Science School, mostly
devoid of running computational equipment. The five
enrolled subjects were senior researchers. The sec-
ond, the out-house experiment, was realized with
the collaboration of a Local Technological School
(Instituto de Maquina Herramienta IMH) involved
in a locally funded research project referred below,
were we were able to engage 12 subjects to carry
out data collection sessions. All subjects signed an

informed consent. The data capture process was
supervised and approved by the IMH teaching staff.
After data collection, some of the protocol repeti-
tions were rejected. Causes of rejection were exces-
sive drift of the IMUs measurements (above 5% in all
sensors), and low quality signal for more than 10%
of the protocol duration of the EEG sensor readings.
At the end of the day, we got 25 protocol repetitions
for analysis and report.

2.2. Data sources

2.2.1. Body motion capture

For the quantitative observation of the subject’s
behavior, we use the rokoko motion capture suit.a

Figure 1 shows the schema of the central hub col-
lecting the information from the nine degrees of free-
dom IMUs, and forwarding it via wifi connection to
the host computer, and the placement of the IMUs
on the body. The IMUs are embedded in the textile
suit, which can be tightly adjusted to minimize noisy
readings from involuntary random motions because
of that, the suit does not need any anatomical cal-
ibration. The suit calibration for a data recording

Fig. 1. (Color online) Rokoko elements. The placement
of the sensors in the suit. Blue circles correspond to sen-
sors placed at the front of the suit. Red circles correspond
to sensors placed at the back of the suit.

ahttps://www.rokoko.com/.
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session requires the subject to be still for a few sec-
onds. The sampling frequency is 100Hz. The rokoko
suit suffers from drifting effects in laboratory condi-
tions where there are many electromagnetic sources
affecting the IMU sensors. For this reason, the data
capture experiments have been carried out in rooms
devoid of working active electrical devices. The suit
contains 19 IMUs whose readings allow to compute
the 3D coordinates and orientation of 25 points dis-
tribute over the body, head, and arms.

2.2.2. Neural activity capture

The second data source is the neural activity mea-
surement by a wireless EEG sensor, namely, the 8
electrode enobio (Neuroelectrics,b Cambridge, MA).
The wireless connection allows natural activities, so
subjects can move around, sit down and make other
natural movements. Figure 2(a) shows the actual cap
with the wearable box containing the signal concen-
trator, and the wireless emitter for communication
with host computer. Figure 2(b) shows the actual
location of the electrodes in the standard map of
EEG channels. We placed them over the occipital,
temporal, and frontal lobes in order to try to capture
the differences among the diverse activities described
below. Temporal (T7, T8) and occipital (O1, O2)
electrodes would allow to discriminate auditory and
visual tasks. The prefrontal electrode (FPz) and the
frontal electrodes (F3, Fz, F4) would allow to dis-
criminate passive tasks from tasks involving planning
and decision making, as well as some kind of motor
planning and coordination. We have used the dry
electrodes shown in Fig. 2(c) that do not need any
kind of gel or saline solution. Dry electrodes are very
convenient for subjects not accustomed to EEG ses-
sions, increasing the ecological validity of the study.
The enobio control and data capture program allow
visualization of the signal in real time. We have used
its event scheduling for the accurate scheduling of the
activities carried out by the subjects. The quality of
the signal is monitored online and some well-known
artifacts, e.g. blinking, are removed automatically
by the signal capture software. The sampling rate is
500Hz. We apply a bandpass filter at 0.1–50Hz (FIR,
Hamming, 60 db) ensuring that the most important
neural frequency bands from alpha to gamma are

bwww.neuroelectrics.com.

(a)

(b)

(c)

Fig. 2. The enobio wireless EEG sensor. (a) The cap
with the electrode signal concentrator and the wire-
less emitter, (b) the location of the channels recorded
for our experiment, (c) the dry electrodes used in the
experiment.
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Fig. 3. Plots of the raw signal of the enobio EEG chan-
nels for one repetition of the experimental protocol by
one of the participants.

preserved. Finally, the signal is subsampled at 100Hz
fulfilling the conditions of the Nyquist–Shannon sam-
pling theorem. Figure 3 shows the multiple plots of
the EEG channel signals on their relative head loca-
tion. The signal values have been normalized to the
overall signal mean over all channels.

2.3. Experimental protocol

The experimental protocol is carried out twice by
each subject. Its timing is controlled by enobio base
software. Figure 4 illustrates the spatial configura-
tion of the protocol. Circles with numbers correspond
to the protocol steps described below, their position
corresponds to the relative motions of the subject.

Fig. 4. Experimental protocol activity flow. Circles with
numbers corresponds to the steps of the protocol steps
described in the text.

Before each protocol repetition, the subject is asked
to remain standing still for several seconds in order
to calibrate the rokoko suit. The protocol steps and
durations are as follows:

(1) Subject seated relaxed in front of a table —
20 s.

(2) Visual task: An abstract colorful painting is
shown in front of he subject’s face at eye level —
20 s.

(3) Auditive task (eyes closed are recommended):
Listening to Mozart’s Piano Concerto N. 21 in
C Major — 20 s.

(4) Moving around and organizing the objects
(books) on the top of the table — 20 s.

(5) Standing up and waiting — 10 s.
(6) Subject makes waving and salute motions with

the right hand — 20 s.
(7) Clapping — 20 s.
(8) Pushing ahead with arms and hands — 20 s.
(9) Walking in straight line forward and back-

ward — 20 s.
(10) Sitting down and standing all movement —

10 s.

The experimental protocol involves all the selected
brain regions, and the IMU readings along the body.
It includes some resting states, namely steps 1, 5,
and 10. However, they have different body kinemat-
ics and dynamics. Step 1 is the baseline resting state
without motion while seated; step 5 corresponds
to the motion reaching a standing position which
involves some equilibrium control; step 10 involves
reaching the chair, sitting down, and relaxing to
achieve the resting state. Steps 2 and 3 involve
sensory processing of different kinds which would
activate different brain areas (temporal and occip-
ital) that should be easily discriminated. Step 4
involves planning and decision making while mov-
ing the arms, so the frontal lobe will be more active.
Steps 6–8 involve different arm motions while stand-
ing, deciding how to perform the motions as well
as the motor control will activate the frontal lobe
in a different way. Finally, step 9 involves full body
motion and planning of this motion.

2.4. Feature extraction

Both IMU and EEG sensor data are sampled at
100Hz. Data capture synchronization is achieved by
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simultaneous recording start pressing a key. Hence,
we assume that the time stamps of samples from
both sensors are in the same time frame. Each time
instant is labeled with the number of the activity
the subject is engaged in, i.e. Yi = {yt}T

t=0, where
i ∈ {1, . . . , N} is the trial number, T is the duration
of the protocol trial in seconds, and yt ∈ {1, . . . , 10}.
The nominal duration of the protocol repetitions
is T = 180 s. The actual duration of the protocol
steps has small variations due to subject variability
between repetitions, introducing label errors at the
time limits of the protocol steps. The EEG signals are
centered by subtracting the mean of all EEG signals.
We do not decompose the EEG signal into epochs.
We apply bandpass filters (FIR, Hamming, 60 db) to
obtain the amplitude at the Delta (0.1–4Hz), Theta
(4–7Hz), Alpha (8–15Hz), Beta (16–31Hz), Gamma
(30–50Hz) bands. Therefore, the EEG trial data is
denoted by XE

i = {xE
i,t}T

t=0, where xE
i,t ∈ R

40.
The inertial sensors provide the 3D position esti-

mation of 25 points over the body. To smooth the
inertial recordings, we compute a moving average of
the body point trajectories over a window spanning
0.1 s. The extracted features consist in the first-order
time differences of the smoothed signal, denoted
XI

i = {xI
i,t}T

t=0, where xI
i,t ∈ R

75.
We consider three kinds of feature datasets for

training and validation: (a) only the EEG data XE
i ,

(b) only the inertial data XI
i , and (c) the fusion

of both denoted by XE+I
i = {[xE

i,t,x
I
i,t]}T

t=0, i.e.
when the feature vectors are the composition of the
data vectors of both modalities. Finally, the sig-
nals are downsampled at 10Hz to build up the
feature datasets for training and validation of the
classifiers.

2.5. Classification models

Our main working hypothesis is that the combined
use of body motion tracking and neural activity
would allow improved recognition of the subject’s
actual activity. We translate this hypothesis into
a classification problem: Does the fusion of neu-
ral activity and body motion data improve activ-
ity recognition?. Therefore, we have used a machine
learning approach testing several classifiers available
from the scikit-learn python package.c We used the

chttps://scikit-learn.org/.

following well-known classifier building models:

• Gaussian Naive Bayes (NB)60 assumes the sta-
tistical independence of the features, so that the
overall classifier is built as the aggregation of the
scalar independent classifiers defined for each fea-
ture. Each classifier is modeled by a mixture of
Gaussians.

• K-Nearest Neighbors (Knn) Classifier60 (K = 5).
The class is assigned as the majority class of the
K training samples which are closest to the input
feature vector according to the Euclidean distance.

• Decision Tree (DT) is the classical nonparametric
supervised training technique61 which proceeds by
a sequence of decisions, each one of them defined
as the optimal split of the data according to some
information theoretic criterion, e.g. the Gini index.

• Random forest (RF)62 (#trees =1000) is an
ensemble of DT classifiers where each split is com-
puted on randomized selections of the features.

• Gradient Boosting (GB)63 (#boosting stages=
1000) is an additive ensemble built incrementally
following a greedy strategy to minimize the loss,
at each stage a regression tree is fit to the negative
gradient of the loss function.

The rationale for the choice of the classifier models is
as follows: we want to show that the fusion of neural
and motion information leads to improved recogni-
tion of the activity the subject is engaged in. We
are interested in assessing whether this improvement
happens for various classifiers. On the one hand, we
have selected the RF, which is recognized as a top
performing classifier building approach,64,65 and GB
which has also achieved top performance in neu-
rorobotics tasks.66 On the other hand, we selected
Knn and NB as simple classifiers that are often
reported as the baseline classifiers.67 We have applied
the default setting of parameters for each classifier
because exhaustive classifier behavior analysis is not
the aim of the work.

2.6. Validation processes

We have carried out the following validation pro-
cesses:

• First, we consider each trial by a subject as an
independent dataset. We consider for compari-
son the three kinds of feature vectors defined
above, i.e. the feature datasets are {XE

i , Yi},
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{XI
i , Yi}, and {XE+I

i , Yi}, where i ∈ {1, . . . , N}
is the protocol repetition number. For each fea-
ture dataset {X∗

i , Yi}, where ∗ can be I, E, or
E + I, we carry out a 10-fold cross-validation
experiment as follows: We partition the feature
dataset into 10 folds {X∗

i,k, Yi,k}10
k=1 obtained by

stratified sampling without replacement, therefore
folds do not preserve the time stamp order of
the samples. Then we alternatively use each fold
{X∗

i,w, Yi,w}; w = 1, . . . , 10 as the test data to
validate a classifier φ∗

i,w built using the remain-
ing folds {X∗

i,k, Yi,k}k �=w as the training data.
For each protocol repetition, we report the aver-
age performance measure achieved by the classi-
fiers {φ∗

i,w}10
w=1. The reported performance mea-

sure is the accuracy computed as the ratio of
the correct predictions to the dataset size, i.e.
A∗

i,w = |{Yi,w}|−1
∑

t∈Tw
δ(yt − φ∗

i,w(x∗
i,t)), where

Tw denotes the time stamps of samples in the kth
fold, δ() is the delta function defined as δ(0) =
1; δ(x �= 0) = 0, and |Y | denotes the size of set Y .

• Second, we treat the data sequentially, predict-
ing the ethogram of each protocol trial from each
of the feature vectors considered. The classifier
applied to the computation of the ethogram is the
best one found in the cross-validation experiment
for each trial, i.e. we use φ∗

i,w′ ; w′ = argmax
w

A∗
i,w.

We do not use temporal dependencies in the clas-
sification, neither we apply any post-processing
on the classification responses. In other words, we
compute Ŷ ∗

i = {ŷt = φ∗
i,w′(x∗

i,t)}T
t=0. Ethogram

accuracy is defined similarly as above.
• Third, we consider the problem of direct trans-

fer learning using all the features, i.e. the appli-
cation of the best classifier φE+I

i,w′ trained over
{XE+I

i , Yi} to the remaining protocol repetitions
{XE+I

j , Yj}; j �= i. We want to assess to what
extent it is possible to generalize the action recog-
nition classifier learnt from one protocol repeti-
tions. We apply a post-processing correction con-
sisting in selecting the majority activity label over
a time window of 0.1 s of size centered at each
instant. Denoting Ŷ i

j the ethogram of the jth pro-
tocol repetition obtained by applying the classifier
trained on the ith protocol repetition, the corre-
sponding transfer learning accuracy is defined as
Ai

j = |{Y }|−1
∑

t δ(yt − φE+I
i,w′ (xE+I

j,t )).

3. Results and Discussion

3.1. In-house trials experimental
results

Figure 5 presents the summary accuracy results
of the cross-validation processes computed indepen-
dently over each protocol repetition data. Figure 5(a)
plots the mean accuracy achieved by the selected
classifiers over all repetitions for the different defini-
tions of feature vectors: IMUs, EEG, and the fusion
of both. Figure 5(b) plots the variance of the accu-
racy. The use of the sensor data fusion features
results in a great reduction of variance in accuracy
performance. First conclusion is that the fusion of
IMUs and EEG features achieves the best results.
(F test, p < 0.01, one-sided t-tests AE+I > AI

p < 0.01, and AE+I > AE p < 0.01). Figure 5(d)
shows the differences in average accuracies for the
feature selection AE+I −AI , and AE+I −AE , which
confirms this conclusion. The classifiers that achieve
best average accuracy are the RF and the GB (F
test, p < 0.01, one-sided t-tests comparing classifiers
p < 0.01 when comparing RF or GB against Knn,
DT, or NB, two-sided t-test comparing RF and GB
p > 0.1). Figure 5(c) plots the average accuracies
over the classifiers per protocol repetition. It is pos-
sible to assess the great variability of the results over
the protocol repetitions. Missing plots correspond to
discarded protocol repetitions.

Figure 6 shows the ethograms inferred from each
protocol repetition data. Real ethograms have a
staircase shape because the subject advances linearly
on the protocol steps. Confusions can be identified
as the red dots that appear outside the staircase.
Figure 6(a) shows the ethograms inferred from the
EEG data. It can be appreciated that confusions are
greater in the last part of the protocol, where the
subject is moving. These confusions are greatly sub-
ject dependent, apparently because of diverse motion
patterns among individuals. Figure 6(b) corresponds
to the inertial measurements, where we find that
most of the confusion happens during the first steps
of the protocol, which are mostly static activities.
The ethograms inferred from the fusion of the inertial
and EEG data are shown in Fig. 6(c). The improve-
ment achieved in activity prediction is clear. Sen-
sor data fusion allows to correct great percentage
of confusions. These ethograms are shown without
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(a) (b)

(c) (d)

Fig. 5. Summary results of the in-house trials cross-validation experiments. (a) Average accuracy achieved by the clas-
sifiers over either the EEG (enobio), inertial (rokoko), or the fusion of both modalities (enobio+rokoko), (b) variance of
the accuracy results per classifier, (c) average accuracy achieved per repetition of the experimental protocol (repetitions
are denoted Tx-y, where x subject id, y repetition number). (d) accuracy improvement achieved by data fusion relative
to either the EEG or the inertial data. (RF = random forest, Knn = K nearest neighbors, GB = gradient boosting,
DT = decision tree, NB = Naive Bayes).

temporal post-processing. The accuracy of ethogram
prediction after temporal post-processing correction
is presented in the diagonal of Table 1, which reports
transfer learning results for the in-house experiment.
Note that the table is not symmetric because classi-
fiers from symmetric entries may behave differently
on their respective symmetric dataset. The diagonal
corresponds to the ethogram inference on the same
dataset, its mean accuracy is 0.90, and its standard
deviation is 0.07, a rather large value that reflects
the accuracy results of diagonal correspond to the
transfer learning, which is significantly lower (mean
= 0.74) than the nontransfer accuracy (two sample
t-test, p < 0.0001).

3.2. Out-house experimental results

The accuracy performance results of the 10-fold
cross-validation over the data from the out-house
experiment realized at the IMH are summarized in
Fig. 7. Figure 7(a) plots the mean accuracy achieved
by the selected classifiers over all repetitions for the

different definitions of feature vectors: IMUs, EEG,
and the fusion of both. Figure 7(b) plots the vari-
ance of the accuracy estimation. The use of the IMUs
and EEG sensor fusion features results in a great
reduction of variance in accuracy performance for all
classifiers except NB. Sensor fusion features achieve
the highest accuracy results. (F test, p < 0.01, one-
sided t-tests AE+I > AI , p < 0.01, and AE+I > AE ,
p < 0.01). Figure 7(d) shows the differences in aver-
age accuracies AE+I − AI , and AE+I − AE , which
confirms the previous conclusion. The classifiers that
achieve best average accuracy are the RF and the GB
(F test, p < 0.01, one-sided t-tests comparing clas-
sifiers p < 0.01 when comparing RF or GB against
Knn, DT, or NB, two-sided t-test comparing RF and
GB result p > 0.1). Figure 7(c) plots the average
accuracies over the classifiers per protocol repetition.
It is possible to assess the variability of the results
over the protocol repetitions, though it is less that in
the in-house case. The inertial measurement results
in greater variability than EEG and sensor fusion
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(a) (b) (c)

Fig. 6. Ethogram prediction from the in-house trials based on (a) EEG (enobio) data, (b) inertial (rokoko) data, (c) fusion
of EEG and inertial data. No post-processing correction was applied.
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Table 1. Transfer learning results for the in-house
protocol repetitions. Each row corresponds to the
accuracy achieved applying the best classifier trained
on the data of the trial to the remaining trials. Trials
are denoted Tx-y, x = subject id, y = trial number.
Post-processing correction was applied.

T0-0 T0-1 T1-1 T2-0 T2-1 T4-0 T4-1

T0-0 0.97 0.84 0.73 0.71 0.72 0.69 0.69
T0-1 0.82 0.89 0.75 0.70 0.72 0.70 0.70
T1-1 0.72 0.73 0.90 0.77 0.75 0.71 0.69
T2-0 0.7 0.71 0.79 0.82 0.80 0.77 0.78
T2-1 0.69 0.68 0.75 0.83 0.88 0.79 0.80
T4-0 0.7 0.71 0.72 0.79 0.80 0.95 0.91
T4-1 0.73 0.73 0.70 0.78 0.79 0.90 0.93

features. We note that DT, NB, and Knn classi-
fiers did not show any improvement of the accuracy
between the EEG data and the sensor fusion data
(two-sided t-test p > 0.1). All classifiers show signifi-
cant accuracy improvement of the sensor fusion over
the inertial measurements only (F test, p < 0.01,
pairwise comparisons with one-sided t-test p < 0.01).

Exhaustive plotting of the ethograms of the IMH
protocol repetitions, such as in Fig. 6, is unwieldy,
therefore we provide in Fig. 8 a summary visual-
ization of the results. Figure 8(a) plots the num-
ber of correct hits (correct predictions) per protocol
activity. The lower number of hits achieved in pro-
tocol activities #5 and #10 might be due to their
shorter time duration. The number of hits on sit-
ting activities (#1–#4) is lower for the inertial data
than for the EEG and sensor fusion features. How-
ever, inertial data slightly improve over EEG data
on the moving around activities (#6–#9). On all
activities, the sensor fusion data provide the upper
number of hits. Figures 8(b)–8(d) visualize the aver-
age confusion matrices obtained from the inertial,
EEG, and sensor fusion features, respectively. Sen-
sor fusion features produce lower confusion matrices
(pairwise one-sided t-tests among confusion matrices
p < 0.01).

Transfer learning results for the out-house pro-
tocol repetitions are reported in Table 2. The table
is not symmetric. The diagonal values correspond to

(a) (b)

(c) (d)

Fig. 7. Out-house data capture experiment summary classification results. (a) Average accuracy achieved by the classifiers
on the EEG (enobio), inertial (rokoko), and sensor fusion data, (b) variance of the accuracy results per classifier, (c)
average accuracy achieved per repetition of the experimental protocol (denoted Tx-y, x subject id, y repetition number),
(d) improvement achieved by data fusion relative to either the EEG or the inertial data. (RF = random forest, Knn =
K-nearest neighbors, GB = gradient boosting, DT = decision tree, NB = Naive Bayes).
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(a) (b)

(c) (d)

Fig. 8. Summary of the ethogram computation on the out-house experiment data. (a) Correct predictions per activity,
(b) confusion matrix on the inertial (rokoko) data, (c) confusion matrix on the EEG (enobio) data, and (d) confusion
matrix on the sensor fusion data.

the accuracy of ethogram inference on the same set,
they are significantly higher and less variable than
in the in-house case (mean =0.968, std. dev.= 0.018,
two sample t-test p < 0.001). This improvement may
be due to the enhanced experimental deployment as
the research team experience increases. The off diag-
onal values correspond to the transfer learning accu-
racy, they are significantly lower (mean =0.76, std.
dev.= 0.03) than the accuracy values on the diago-
nal (two sample t-test, p < 1e − 10). We note that
the degradation of the transfer learning accuracy is
smaller when the transfer is to the other repetition
of the same subject (mean =0.88, std. dev. =0.01).
This difference is statistically significant (one side t-
test, p < 1e − 5).

4. Discussion

Our work touches quite different emerging fields, on
the one hand, the human activity recognition field,
and on the other hand, the mobile brain imaging
(MBI) field. Human activity recognition has been
developed mostly using computer vision techniques
over optical sensors data,1,68 however there is a grow-
ing body of research based on wearable sensors.69,70

Data fusion for human activity recognition often
refers to same kind of sensors, e.g. the fusion of IMUs
tracking data in Ref. 70. To our knowledge, there has
not been any previous attempt to apply the fusion of
EEG and other sensor data. In this paper, we have
achieved the recognition of a sequence of activities
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Table 2. Transfer learning results for the out-house protocol repetitions. Each row corresponds to the accuracy
achieved applying the best classifier trained on the data of a protocol repetition to the remaining repetitions. Repetitions
are denoted Tx-y, x = subject id, y = repetition number. Post-processing time correction was applied.

T0-0 T0-1 T2-0 T2-1 T3-0 T3-1 T4-0 T4-1 T5-0 T6-0 T6-1 T7-0 T7-1 T9-1 T10-0 T10-1 T11-0 T11-1

T0-0 0.98 0.90 0.77 0.79 0.78 0.79 0.77 0.76 0.75 0.76 0.74 0.77 0.75 0.77 0.76 0.75 0.77 0.76
T0-1 0.90 0.97 0.76 0.78 0.79 0.77 0.75 0.77 0.75 0.74 0.73 0.77 0.76 0.78 0.77 0.73 0.78 0.79
T2-0 0.78 0.77 0.97 0.89 0.75 0.77 0.73 0.73 0.76 0.75 0.8 0.77 0.78 0.77 0.75 0.74 0.72 0.72
T2-1 0.80 0.79 0.89 0.98 0.80 0.79 0.75 0.74 0.77 0.79 0.79 0.76 0.77 0.75 0.74 0.72 0.72 0.72
T3-0 0.77 0.78 0.77 0.79 0.98 0.90 0.77 0.73 0.77 0.78 0.77 0.75 0.79 0.74 0.74 0.73 0.73 0.74
T3-1 0.78 0.76 0.78 0.79 0.89 0.98 0.71 0.76 0.75 0.74 0.73 0.75 0.77 0.75 0.73 0.78 0.77 0.77
T4-0 0.79 0.77 0.72 0.75 0.72 0.76 0.97 0.88 0.84 0.75 0.78 0.74 0.76 0.76 0.78 0.78 0.73 0.73
T4-1 0.75 0.74 0.72 0.75 0.76 0.78 0.89 0.97 0.84 0.74 0.75 0.76 0.74 0.77 0.77 0.77 0.74 0.74
T5-0 0.77 0.75 0.76 0.76 0.75 0.74 0.85 0.85 0.98 0.75 0.73 0.75 0.71 0.75 0.76 0.74 0.73 0.72
T6-0 0.76 0.75 0.76 0.78 0.73 0.75 0.75 0.73 0.75 0.99 0.89 0.77 0.77 0.75 0.77 0.78 0.77 0.76
T6-1 0.77 0.76 0.79 0.77 0.72 0.78 0.73 0.74 0.75 0.90 0.98 0.77 0.78 0.76 0.78 0.78 0.78 0.79
T7-0 0.75 0.76 0.75 0.77 0.75 0.75 0.75 0.77 0.77 0.78 0.77 0.96 0.88 0.76 0.74 0.74 0.75 0.75
T7-1 0.74 0.74 0.77 0.78 0.73 0.77 0.74 0.76 0.77 0.77 0.77 0.86 0.91 0.76 0.75 0.75 0.75 0.75
T9-1 0.77 0.77 0.79 0.79 0.75 0.76 0.75 0.76 0.75 0.76 0.77 0.76 0.75 0.95 0.73 0.72 0.72 0.73
T10-0 0.77 0.78 0.76 0.72 0.78 0.79 0.77 0.77 0.77 0.78 0.78 0.75 0.74 0.72 0.96 0.87 0.73 0.72
T10-1 0.76 0.76 0.77 0.72 0.73 0.76 0.77 0.75 0.76 0.78 0.78 0.75 0.74 0.72 0.86 0.96 0.73 0.73
T11-0 0.77 0.76 0.73 0.74 0.74 0.71 0.75 0.75 0.75 0.79 0.79 0.74 0.75 0.72 0.73 0.73 0.99 0.89
T11-1 0.75 0.75 0.74 0.75 0.75 0.71 0.75 0.75 0.74 0.79 0.79 0.75 0.74 0.72 0.73 0.73 0.90 0.96

mixing cognitive and motor tasks, where the EEG
data play a complementary role to the IMUs data.

The dominant paradigm in EEG-based cogni-
tive research is defined by the event-related poten-
tial (ERP) techniques,71 where short EEG signal
intervals following a controlled event are filtered and
averaged looking for specific signal patterns corre-
sponding to stereotypic electrophysiological response
of the brain to an stimulus. Analysis of the ERP
structure (peaks and valleys) allows to infer the
underlying brain function. The work reported in this
paper does not fit in this paradigm as long as we do
not have specific stimuli applied to the subject and
we do not extract and average small chunks of the
EEG signal. Instead, we filter the entire signals, and
use their instantaneous values as features for activity
recognition in a sequential protocol.

The advent of wireless EEG devices has set the
stage for the mobile brain imaging (MBI) field,
which has a very broad definition as a meeting point
of neuroscience, arts, and human computer inter-
action.72 In more concrete terms, MBI research is
aiming to greater ecological validity allowing for
less constrained experimental environments, where
the subjects can be doing some natural movements
like walking or pedaling. Recent MBI research has
focused on the reproducibility of ERPs while the

subject is moving, comparing static and moving sig-
nal analysis results. Some works study the audi-
tive odd-ball task ERPs while sitting versus ped-
aling.73,74 In an other study,75 subjects carry out
an inhibitory task while walking versus sitting.
Other studies include the analysis of pianists EEG
ERPs and power spectrum while performing a sim-
ple tune,57 the prediction of braking intention from
ERPs,76 and the effect of rhythmic auditory stimu-
lation on auditory motor synchronization on Parkin-
son’s disease patients.77 New datasets are being pub-
lished in order to stimulate computational research
in this exciting new area.78 However, these studies do
not try to analyze neural activity and behavior mea-
surements together, as a wholistic measurement. Our
fused inertial plus EEG signal classification results
show that using the joint information improves over
the separate sources of information, achieving activ-
ity recognition accuracies over 0.9, which are much
higher than the accuracies achieved in ERP classi-
fication for brain computer interaction.72 Besides,
our focus is the wholistic recognition of the neu-
roethogram (the ethogram inferred from neural and
behavioral measurements) instead of the reaction
to specific atomic events following neuroethologi-
cal approaches already studied on animal models.49

In this regard, future work will be devoted to the
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recognition of neuroethogram patterns, and charac-
terization of deviations related with neural disorders
or diseases. We are interested in the development of
tools for the study of how some treatments affect sub-
jects with some form or another of neural diseases,79

elderly,80 or children with special needs.81 Many of
these conditions show typical external behavioral
traits that can be objectively measured by means of
motion capture devices, allowing to measure changes
in behavior due to treatment with great accuracy. For
instance, children with autism spectrum condition
(ASC) often show stereotypical behaviors82 whose
neural correlates are far from understood. We think
that the analysis of the neuroethograms will be a
fruitful avenue of research on these issues.

Limitations. The data sample size is small so the
study does not allow general conclusions. However,
our sample is greater than those of recently published
works on mobile EEG.73,74,76 The gender represen-
tation is quite imbalanced, hence it is not possible
to carry out any gender-related contrast analysis.
We have carried out the data capture sessions inside
rooms without working electrical equipment, but we
have not ensured total electromagnetic isolation, i.e.
by carrying out the experiment inside a Faraday
cage. Cognitive EEG experiments are composed of
a large number of repetitions of very short experi-
ments, i.e. with durations in the order of seconds,
whose neural patterns are averaged to remove noise
and obtain the evoked potentials for further analysis.
Our data capture sessions did not follow this pattern,
we have long unique trial recordings with rough syn-
chronization among them, which cannot be treated
as ERPs. Finally, results might improve when larger
populations are recruited for data capture.

5. Conclusions and Future Work

In this paper, we have introduced a system com-
posed of IMUs and EEG recording, both wirelessly
connected, which allows subjects to carry out natu-
ral activities while being recorded. We demonstrate
on an experimental data capture protocol that the
fusion of inertial motion and neural activity informa-
tion provides improved activity classification capa-
bilities, opening another door for neuroethological
research works at the human level. Future works
will be aiming to adapt the system to experimen-
tal settings that can be used for actual evaluation of

treatments on patients with neurological affections
through the wholistic analysis of the neuroethograms
computed from the fusion of EEG and IMU data.

Acknowledgments

This work has been partially supported by FEDER
funds through MINECO Project TIN2017-85827-P.
Special thanks to Naiara Vidal from IMH who con-
ducted the recruitment process in the framework of
Langileok project funded by the Elkartek program.
This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant
agreement No. 777720.

References

1. M. Vrigkas, C. Nikou and I. A. Kakadiaris, A review
of human activity recognition methods, Front. Robot.
AI 2 (2015) 28.

2. J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp,
M. Finocchio, R. Moore, A. Kipman and A. Blake,
Real-time human pose recognition in parts from sin-
gle depth images, in Machine Learning for Com-
puter Vision, eds. R. Cipolla, S. Battiato and
G. M. Farinella (Springer, Berlin, Heidelberg, 2013),
pp. 119–135.

3. E. E. Stone and M. Skubic, Unobtrusive, continu-
ous, in-home gait measurement using the microsoft
kinect, IEEE Trans. Biomed. Eng. 60 (2013) 2925–
2932.

4. A. Mannini and A. M. Sabatini, Machine learning
methods for classifying human physical activity from
on-body accelerometers, Sensors 10(2) (2010) 1154–
1175.

5. S. Obdrzalek, G. Kurillo, F. Ofli, R. Bajcsy, E. Seto,
H. Jimison and M. Pavel, Accuracy and robustness
of kinect pose estimation in the context of coach-
ing of elderly population, in Annual Int. Conf. IEEE
Engineering in Medicine and Biology Society (IEEE,
2012), pp. 1188–1193.

6. J.-Y. Yang, J.-S. Wang and Y.-P. Chen, Using accel-
eration measurements for activity recognition: An
effective learning algorithm for constructing neural
classifiers, Pattern Recogn. Lett. 29(16) (2008) 2213–
2220.

7. H. Zeng and Y. Zhao, Sensing movement: Microsen-
sors for body motion measurement, Sensors 11(1)
(2011) 638–660.

8. M. Airaksinen, O. Räsänen, E. Ilén, T. Häyrinen,
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