
ORIGINAL RESEARCH
published: 29 January 021

doi: 10.3389/fnhum.2021.610347

Edited by:

Jerwen Jou,
The University of Texas Rio Grande

Valley, United States

Reviewed by:
Steven Haase,

Shippensburg University,
United States
Ulla Martens,

University of Osnabrück, Germany
Yu-Cheng Lin,

The University of Texas Rio Grande
Valley, United States

*Correspondence:
Lasse Güldener

lasse.gueldener@gmail.com

Specialty section:
This article was submitted

to Cognitive Neuroscience,
a section of the journal

Frontiers in Human Neuroscience

Received: 25 September 2020
Accepted: 04 January 2021
Published: 29 January 2021

Citation:
Güldener L, Jüllig A, Soto D and

Pollmann S (2021) Feature-Based
Attentional Weighting and

Re-weighting in the Absence
of Visual Awareness.

Front. Hum. Neurosci. 15:610347.
doi: 10.3389/fnhum.2021.610347

Feature-Based Attentional Weighting
and Re-weighting in the Absence of
Visual Awareness
Lasse Güldener1*, Antonia Jüllig1, David Soto2 and Stefan Pollmann1,3,4

1Department of Experimental Psychology, Otto-von-Guericke-University, Magdeburg, Germany, 2Ikerbasque, Basque
Foundation for Science, Basque Center on Cognition, Brain, and Language (BCBL), San Sebastian, Spain, 3Department of
Experimental Psychology and Center of Behavioral Brain Science, Otto-von-Guericke-University, Magdeburg, Germany,
4Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China

Visual attention evolved as an adaptive mechanism allowing us to cope with a rapidly
changing environment. It enables the facilitated processing of relevant information, often
automatically and governed by implicit motives. However, despite recent advances
in understanding the relationship between consciousness and visual attention, the
functional scope of unconscious attentional control is still under debate. Here, we
present a novel masking paradigm in which volunteers were to distinguish between
varying orientations of a briefly presented, masked grating stimulus. Combining signal
detection theory and subjective measures of awareness, we show that performance on
unaware trials was consistent with visual selection being weighted towards repeated
orientations of Gabor patches and reallocated in response to a novel unconsciously
processed orientation. This was particularly present in trials in which the prior feature was
strongly weighted and only if the novel feature was invisible. Thus, our results provide
evidence that invisible orientation stimuli can trigger the reallocation of history-guided
visual selection weights.

Keywords: feature-based attention, attentional weighting, visual selection, cognitive control, unconscious

INTRODUCTION

For survival in an unstable and uncertain world, it is crucial to detect contextual regularities, but
also to adapt quickly when they change. Since such contextual changes may be complex and occur
very rapidly, the question arises as to whether attention shifts in response to environmental changes
are contingent on visual awareness. Previous studies examined the effect of exogenous invisible
cues on the deployment of external visual selective attention, suggesting that subliminal spatial
cues can capture attention and facilitate task performance at the cued location (McCormick, 1997;
Mulckhuyse et al., 2007; for a review see Mulckhuyse and Theeuwes, 2010), that the association
between a subliminal cue and a visible target can be learned implicitly (Lambert et al., 1999) and
that subliminal stimulus can even induce cognitive control processes like response inhibition or
task-switching effects (Lau and Passingham, 2007; Van Gaal et al., 2008, 2010; Farooqui andManly,
2015). This notion is further supported by evidence from clinical studies in ‘‘blindsight’’ patients,
which indicate that visual cues presented in the patient’s blind field are still capable of directing
spatial attention (Kentridge et al., 1999).
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It is, however, less clear whether feature-based attention can
be redirected towards a novel feature (feature-based attentional
re-weighting) in response to changes in unconsciously processed
targets: according to Bundesen’s theory of visual attention (TVA,
Bundesen, 1990), the attentional selection is a mechanism that
operates in the service of perceptual categorization, i.e., by aiding
the selection of a potential target item within a distractor display
(‘‘filtering’’), or the discrimination of features in single items
(selection of categories, ‘‘pigeonholing’’). The processing speed
for this visual selection depends on both the attentional weight
and the perceptual decision bias. In theory, the attentional weight
relies on the sensory evidence indicating the category a certain
stimulus belongs to (‘‘bottom-up’’), and the goal-relevance of that
category i.e. the importance of attending to a certain stimulus
category (‘‘top-down’’; Bundesen, 1990). Thus, the weaker the
sensory evidence is, the more the attentional weighting should
rely on the ‘‘top-down’’ mechanism (the importance to attend
to this category). Based on the TVA’s assumption a ‘‘top-
down’’ driven attentional bias (i.e., the goal-relevance) on
selection is predicted especially for invisible non-consciously
processed visual stimuli because the sensory evidence that
could support visual selection in a bottom-up fashion (i.e., the
saliency of the stimulus) is very limited if the stimulus is only
unconsciously perceived. Importantly, evidence is still missing
as to whether such a feature-based selection bias can be elicited
for subliminal, unconsciously processed stimuli and whether it
can be reweighted flexibly in response to feature changes of the
unconsciously processed stimulus.

Later accounts of visual attention criticize the dichotomy of
bottom-up vs. top-down attentional weighting and propose to
include a history-driven weighting of attentional selection (e.g.,
Awh et al., 2012; Theeuwes, 2018, 2019) to better incorporate
empirical evidence showing that not only can stimulus saliency
and internal goals (volitional control) bias attentional selection
but the ‘‘history’’ of former attention deployments driven by
e.g., reward, intertrial priming, or statistical learning (Awh et al.,
2012) can also have an influence. For consciously perceived
visual stimuli, such history-driven attention weighting effects
have been observed in singleton search tasks. For instance,
repeated presentation of the same target-defining dimension
leads to response time benefits and associated activation changes
in dimension-specific visual processing areas (Pollmann et al.,
2006) that were interpreted as evidence for an attentional
weighting of the target-defining dimension (Müller et al., 1995;
Liesefeld et al., 2018). In contrast, when the target-defining
dimension changes, e.g., when the target was defined by a
singleton color in recent trials and then is defined by a singleton
motion direction, response time costs are observed, as would
be expected when attention needs to be reweighted to the
new target-defining dimension. These reweighting processes
occur incidentally, in the absence of an explicit instruction
to attend to the new target-defining dimension (Müller et al.,
2004). Furthermore, a comparable spatial attention weighting
pattern is observed when implicitly learned target-distractor
configurations change in the contextual cueing paradigm
(Manginelli and Pollmann, 2009; Pollmann and Manginelli,
2009). When attention-weighting processes occur in the absence

of explicit task demand and even after changes of implicitly
learned configurations, the next question would be whether
attentional reweighting can also occur as an adaptive adjustment
to unconsciously perceived stimulus changes.

Therefore, this study addressed two key questions. First, we
asked whether the repeated presentation of an invisible target
feature can lead to a temporally persisting attentional selection
bias. The second question was how flexible this attentional bias
is, i.e., whether a novel invisible target can trigger the reweighting
of visual attention to the new target feature in the absence of
awareness. Peremen et al. (2013) studied the relation of intertrial
feature priming and visual awareness during a letter search task.
They reported that the repetition of the target shape speeded
visual search only when the target in the prime display had
been consciously perceived. Yet, it remains unknown whether
unconscious reweighting of visual selection can occur for simpler
orientation stimuli such as Gabor patches (Rajimehr, 2004). We
also considered a different task setting in which the selection task
occurred at a fixed attended location throughout the trials. In all
previous studies, attention-weighting effects were examined in
multi-item displays and search tasks for a singleton target. Our
paradigm does not involve spatial shifts of attention but rather a
process of visual selection in which the same spatial location is
always attended.

Specifically, our paradigm involved an orientation
discrimination task based on a central masked bar stimulus.
Volunteers were instructed to discriminate whether the target
stimulus was vertical or tilted irrespective of the specific direction
of tilt. They had to make no further distinction between the two
tilted orientations. Yet, to introduce the tilt-based attentional
selection bias, we manipulated the likelihood of the two
non-vertical gratings (left vs. right) so that one tilt would occur
twice as often as the other. Consistent with the proportion
congruency effect during priming (Bodner and Lee, 2014; Blais
et al., 2016), and feature-based statistical learning (Turk-Browne
et al., 2009; Chetverikov et al., 2017), an increase of the frequency
at which a right or left-tilted grating appeared should result in
a high selection weight for the frequent orientation indicating
the importance to attend to this category. This prediction is
based on the idea that the relevant feature information (e.g., the
spatial orientation) of the most likely target gets represented in
a form of a short-term description—the attentional template
(Desimone and Duncan, 1995), to control the sensory processing
so that stimuli matching the description are favored, i.e., are
more readily processed in the visual system. The degree to
which a stimulus matches the attentional template defines its
attentional weight. Thus, Gabor patches that fit the information
stored in the template receive a high selection weight, e.g., 1,
while mismatching Gabor patches (infrequent and vertical)
have reduced selection weights as the whole weight is thought
to be a constant value: if the weight increases for one feature
it decreases for another (Duncan and Humphreys, 1989).
Now, concerning behavior a switch from the heavily weighted
orientation to a target with a vertical or the infrequent spatial
orientation should require a shift of selection weights due to
the mismatch between the sensory input and the attentional
template. This shift of attentional selection weights was expected
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to lead to slowing stimulus processing and response initiation
eventually resulting in increased response latencies in such
switch trials. The higher the selection bias for the Gabor patch’s
orientation in the preceding trial, the more reweighting should
be necessary to process and respond to a novel grating in the
subsequent trial. Thus, particularly switch trials in which the
prior orientation was the highly frequent tilt should show
prolonged response latencies on the behavioral level, given that
the increased likelihood of one orientation over the others was
sufficient to induce a prior selection bias (e.g., Leber et al., 2009;
Chetverikov et al., 2017). Importantly, a combination of signal
detection theoretic measures (Stanislaw and Todorov, 1999) and
subjective perceptual ratings (Ramsøy and Overgaard, 2004)
was used to assess participants’ awareness of the stimulus to
avoid potential confounds due to criterion biases in reporting
(un)awareness, e.g., reports of no experience for the knowledge
held with low confidence (Wiens, 2007; Soto et al., 2019).
Therefore the unconscious reweighting of selection hypothesis
was eventually tested by maintaining a clear separation between
the measures of selective attention weighting, inferred by the
pattern of response latencies, and the measures that we used
to probe (un)awareness of the stimulus (objective orientation
discrimination task and subjective reports). We predicted
decision reaction time (RT) costs due to a change of the tilt
direction. Costs should be highest if the prior orientation was
the highly biased tilt, i.e., a switch from the frequent to the
infrequent tilt or a vertical target, and they should occur even if
the novel target is non-consciously perceived.

MATERIALS AND METHODS

Participants
In total 21 native German students (three male) from
the University of Magdeburg, Germany took part in the
experiment. All volunteers were between 19 and 34 years old
(M = 24.90 years), right-handed by self-report except for one
participant, and had a normal or corrected-to-normal vision.
They provided written consent and were either monetarily
reimbursed (8 euros per hour) or received course credits for the
2 h of participation. In two sessions an error in the response
collection occurred and the respective participants were removed
from the analysis. Another volunteer interrupted the session at
an early stage and was thus excluded. During data analysis, five
other participants were identified to have more than 40%missing
responses during the 1.5 s response deadline (see below) andwere
thus excluded from RT analysis.

Apparatus and Stimuli
The stimulus display and responses were controlled with
the Python toolbox ‘‘Psychopy’’ (Peirce, 2007; Peirce et al.,
2019). The stimuli were presented on a 24′′ Samsung monitor
(1,920:1,080 resolution, 60 Hz refresh rate). All participants were
placed 50 cm away from the screen. Stimuli were Gabor gratings
with an individually calibrated contrast (see ‘‘Experimental
Task and Procedures’’ section) centrally presented on a gray
background subtending 3.4◦ visual angle. Its spatial frequency
was 3.7◦ cycles per degree. The patch’s orientation was either

vertical (180◦), 165◦, 150◦, or 135◦ if it was a left-tilted,
non-vertical Gabor patch, and 195◦, 210◦, or 225◦ if it was
a non-vertical patch tilted to the right. To further reduce the
visibility of the Gabor patch we used a circular backward mask
of black and white random dots (3.4◦ visual angle).

Experimental Task and Procedures
Threshold Determination
A session started with a staircase procedure to calibrate the
stimulus’s luminance contrast rendering its orientation invisible.
Gabor patches occurred centrally on the screen for 33.33 ms
(i.e., the grating was presented for two frames, each of which had
a minimal presentation duration of 1/60 ms) and were directly
followed by the mask for 350 ms. If participants saw the grating’s
orientations, they were to respond by pressing the ‘‘up’’-key,
while the ‘‘down’’-key was to be pressed if they did not see the
orientation. In the main experiment volunteers were to rate their
subjective visibility of the target at the end of each trial using
the four-point perceptual awareness scale (PAS): (1) ‘‘did not
see anything at all,’’ (2) ‘‘saw a brief glimpse without seeing the
orientation,’’ (3) ‘‘had an almost clear image of the stimulus,’’
and (4) ‘‘saw the stimulus and its orientation’’ (Ramsøy and
Overgaard, 2004). During initial calibration, participants were
thus instructed to report no experience of the stimulus only
if they did not see anything at all which corresponded to the
first point of the PAS. Conversely, they were asked to indicate
an aware response in trials where a brief glimpse or a more
stable percept of the Gabor was experienced corresponding
to the remaining three points of the PAS. The stimulus’
luminance contrast was decreased following an aware response
and increased following an unaware response. All participants
did 90 trials (30 trials for each of the three orientations). The final
threshold luminance was defined as themean luminance contrast
across the last 10 trials of the staircase.

Next, participants performed one block of training under
experimental conditions consisting of 36 practice trials. Here the
luminance contrast obtained after the first staircase procedure
was used for the contrast value of the training stimuli. The
practice unit was followed by a second calibration conducted
according to the same protocol as the first staircase procedure.
Eventually, the second recalibration provided the threshold value
for the luminance contrast used in the main task.

Task
In the main experiment, volunteers were asked to perform an
orientation discrimination task based on masked Gabor patches.
The start of a new trial was signaled by a central fixation
remaining 500 ms on the display followed by a blank screen
for another 500 ms duration. Then the target Gabor patch
occurred at the screen center for 33.33 ms. A pattern backward
mask (Breitmeyer and Ogmen, 2000) followed immediately for
350 ms. In the following 1.5 s participants were to give their
discrimination response. At the trial’s end, they were eventually
prompted to rate the visibility of the Gabor patch using the
keys 1–4 within the next two 2 s. All trials were separated
by inter-trial-intervals (ITI) with varying durations (1.5–3.5 s)
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FIGURE 1 | Example of a trial sequence. The box at the top shows an example of the repeat condition (left): a vertical target grating in the first trial is followed by
another vertical grating in the second trial. On the right it shows an example for the switch condition: the left-tilted target grating is followed by a right-tilted grating in
the next trial.

following a logarithmic distribution. Figure 1 depicts a detailed
trial sequence.

Design
To facilitate the occurrence of a tilt-based attentional selection
bias, we introduced uneven proportions of the two non-vertical
gratings (left vs. right). Consistent with feature-based statistical
learning (e.g., Turk-Browne et al., 2009; Chetverikov et al.,
2017), the relative increase of the frequency at which a right
or left-tilted grating appeared was expected to strongly weight
attentional selection for this orientation. Its higher likelihood
should increase the importance of attending to this feature,
resulting in a high selection weight. At the same time, the
selection weight for the other two orientations (vertical and the
infrequent tilt) should be reduced (Bundesen, 1990). Eventually,
switches away from the heavily weighted tilt were expected to
result in a significant increase in volunteers’ response times.
Therefore, for a block of 36 trials, we chose 12 vertical targets
(∼33%), and used uneven proportions of the two tilts, with

18 trials (50%) and six trials (∼16%), respectively. This way, each
block was either left—(75% of all non-vertical trials were left-
tilted) or right—weighted (75% of all tilt trials were right-tilted).
The actual presentation of the three orientations was randomized
within a single block.

The first 11 participants performed 14 blocks in the
main experiment (504 trials). The eighth subject, however,
interrupted the session after 12 blocks were completed. Subjects
12–21 completed 10 blocks (360 trials) as this amount of trials
turned out to be sufficient to obtain enough trials for each
awareness level (AL) while avoiding growing weariness that was
reported by subjects completing 14 blocks.

Statistical Analysis
Sensitivity and response bias measures were calculated using
custom-made Python code (Version 2.7). All statistical analyses
were carried out with R (Version 3.5, R Core Team, 2014). For
the Bayes factor (BF) analysis (Rouder et al., 2009) we used JASP
(JASP Team, 2019).
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Subjective Awareness
For each participant, the number of trials for each subjective AL
was counted using the trial-by-trial PAS-rating.

Discrimination Performance
To examine whether the participant’s ability to correctly
discriminate between vertical and non-vertical gratings depends
on the level of subjective awareness, we firstly determined
individual response bias and perceptual sensitivities using signal
detection theory (Stanislaw and Todorov, 1999; Macmillan and
Creelman, 2004). Group-effects were subsequently assessed for
each level of subjective awareness using BFs since it was required
to prove the absence of sensitivity (H0; Gallistel, 2009; Dienes
and Mclatchie, 2018). A BF(10) provides moderate evidence
for H0 (e.g., A’ = 0.5) if it stands between 0 and 0.33,
anecdotal evidence if it stands between 1/3 and 1, and evidence
for H1 (A’ > 0.5) if it exceeds 1 (Dienes and Mclatchie,
2018), with a BF(10) between 1 and 3, 3 and 10, 10 and
30, 30 and 100 and >100 providing anecdotal, moderate,
strong, very strong, and extreme evidence, respectively, for H1
(Jeffreys, 1998; Quintana and Williams, 2018).

Under Yes/No-conditions A’ and the criterion location (C)
were calculated to determine perceptual sensitivity and bias:
we calculated false-positive rates [FPR = False alarms/(False
Alarms + Correct Rejections)] and hit rates [TPR = Hits/(Hits
+ Misses)] defining a hit as the correct report of a non-vertical
orientation when the Gabor’s orientation truly was tilted; false
alarmswere defined as tilt response for vertical gratings.We used
the following formulas to calculate the non-parametric response
bias and sensitivity (Stanislaw and Todorov, 1999):

C = −[Z(TPR)+ Z(FPR)]/2
A′ = 0.5 + |sign(TPR− FPR; (TPR− FPR)2+

|TPR− FPR|/(4max(TPR, FPR)− 4∗TPR∗FPR))|

Values of C around 0 indicate unbiased discrimination
performance. A liberal decision criterion favoring yes-responses
(i.e., reporting a non-vertical grating) leads to values of C < 0,
while positive values occur if participants are biased to report
a vertical target. If volunteers possess perfect sensitivity at
discriminating the target orientations, A’ appears to be equal to
1 and it decreases to 0.5 if the sensitivity diminishes (Stanislaw
and Todorov, 1999).

Analysis of RT Data
We used the packages lme4 (Bates et al., 2015) as well as lmerTest
to make use of a linear mixed model (LMM) analysis. As the data
was unbalanced due to the variations in the subjective awareness
ratings (PAS) that lead to uneven numbers of trials across the
four levels of visual awareness, LMMs were chosen over custom
repeated measures ANOVAs to analyze the RT (e.g., Avneon
and Lamy, 2018). Since all cases with missing data would be
excluded in a repeated-measures ANOVA, the LMM approach is
the better means to make use of all available data in the face of an
unbalanced design (Magezi, 2015). Only RTs of trials with correct
responses entered the analysis after each participant’s individual
outliers (mean RTs± 3 SD) were removed.

Before assessing the significance of the fixed effects, we
determined the random effect structure of the final model with
likelihood ratio tests (i.e., comparisons of models differing in
their random effect structure). Importantly, we did not use
likelihood ratio tests to compare models with differences in
their fixed effects as these were already determined by the
design (see below). Once the final model for analysis was fully
defined, we fitted this model with the RT data using a restricted
maximum likelihood estimation (REML) and tested the statistical
significance of the fixed effect predictors with a type III ANOVA
with F-statistics as implemented in the lmer function of the
lme4 package (Version 1.1–23; Richardson and Welsh, 1995;
Bolker et al., 2009; Luke, 2017; McNeish, 2017). The p-values
were calculated using Satterthwaite approximations to degrees
of freedom with the ANOVA function of the package lmerTest
(Version 3.1-2, Kuznetsova et al., 2017). We chose the ANOVA
approach to test the statistical significance of the fixed effects
as this approximation is thought to be producing acceptable
Type 1 error rates even for small samples while the use of
model comparisons (likelihood ratio tests) is not recommended
to test fixed effects because they appear to be anti-conservative
(Pinheiro and Bates, 2000; Bolker et al., 2009; Luke, 2017). Post
hoc tests (least squared means of the contrasts with Bonferroni
correction) were performed using the R package emmeans
(Version 1.4.7). Finally, we used the R function r.squaredGLMM
as implemented in the R package MuMin to calculate the
marginal R squared (R2

m) and conditional R squared (R2
c ) to

obtain standardized effect sizes. R2
m is interpreted as the variance

explained by the fixed effects of awareness and switch and R2
c

gives the variance explained by all fixed and random effects
(Johnson, 2014).

The main goal we pursued in the study was the examination
of whether a changing orientation from one trial to another
(switch) affected participants’ responses: we predicted a switch-
related slowing of RTs compared to trials in which the orientation
remained unchanged (repeat). Thus, the switch of orientations
(switch vs. repeat) constituted the first fixed effect predictor in
the LMM. RTs were also expected to decrease with increasing
visual awareness: the more the participants saw, and the more
confidently they should perform at categorizing the stimulus
orientation, the faster they should be at responding to the
grating’s orientation. Therefore, visual awareness was defined
as the second fixed effect predictor of the basic model. Finally,
to make allowance for a possible interaction between the
two fixed effects we included the interaction term of switch
and awareness into the final LMM. Regarding interindividual
baseline differences in response latencies, we also defined a
by-subject random intercept accounting for non-independency
of single subjects’ data. Thus, the basic model was formalized as
RT∼ switch + awareness + switch:awareness (1 | subject).

In this model, however, the full random effect structure
still needed to be determined. Therefore, we next used model
comparisons based on likelihood ratio tests (χ2) with the
ANOVA function of the lme4 package (Baayen et al., 2008)
to assign the full random effect structure (Barr et al., 2013)
of this basic model. Defining the random effect structure is
important to balance between the type I error rate that inflates
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if the random effect structure of an LMM is underspecified
(Barr et al., 2013), and the model power that suffers if the
random effect structure is more complex than the given data
(Matuschek et al., 2017). The method of model comparisons
based on likelihood ratio tests compares to the procedure
of a hierarchical regression in which relevant predictors are
added to the regression model and kept if they significantly
improve the model fit (changes in R2). Likelihood ratio
tests are deemed to be appropriate to formally define the
random effect structure of an LMM even if the sample size
is small (Baayen et al., 2008; Bolker et al., 2009). Using this
method, we tested the basic model containing only a by-subject
intercept against alternative models containing an additional
by-subject random slope for awareness and/or a by-subject
random slope for the switch. The details of this analysis
are reported in the Supplementary Material. Importantly, we
used the likelihood ratio tests only to determine the random
effect structure of the final model that we used to fit the RT
data with, while the significance of the fixed effects (i.e., the
hypotheses testing) was assessed using the type III ANOVA
with Satterthwaite approximations to degrees of freedom (Luke,
2017). Based on the model comparisons we included a by-subject
random slope for awareness to model potential by-subject
heteroscedasticity concerning awareness [i.e., allowing uneven
variances across the levels of the fixed effect awareness (Baayen
et al., 2008)]. Eventually, the final model for significance testing
was defined as RT ∼ switch + awareness + switch:awareness (1 +
awareness | subject).

The final LMM with the structure outlined above was applied
in two RT models: In the first model (average RT model) we
included all possible orientation changes in the switch condition.
In the second model (weighted RT model) the switch condition
contained only those switch trials in which we expected the
highest RT costs to occur: the frequency differences between the
three orientations were expected to boost the selection weight
for the highly frequent non-vertical orientation (either left or
right). Consequently, re-weighting to the infrequent non-vertical
orientation should be associated with more pronounced switch
costs than vice versa. The same was predicted for changes away
from the heavily weighted to the vertical orientation requiring
stronger attentional re-weighting. However, switches away from
the low-frequent tilted orientation to vertical should lead to less
prominent RT costs because the attentional selection weight for
this tilted orientation is weaker, facilitating the shift of attentional
resources towards the novel target orientation. Hence, these trials
were not included in the weighted RT model. We separately
report the results for the LMM analyses for the average and the
weighted RT model.

RESULTS

Subjective Awareness
In the majority of trials, participants’ subjective awareness of
the to-be-discriminated orientation was low (AL2, 25.94%), or
reported experience was fully absent (AL1, 37.70%). In about
26.80% of all trials, subjects reported an almost clear perception
of the grating (AL3) and its orientation. In only 9.54% of all trials

did they clearly see the grating and its orientation (AL4). Due to
the low number of these AL4 trials, we excluded them from the
following analyses. A detailed summary of the number of trials
for switch and repeat trials for each level of subjective awareness
is reported in the Supplementary Material.

After the experimental session, each volunteer was asked to
report whether any differences in the frequencies of the stimulus
orientation had been noticed. The majority of subjects reported
that more tilted than vertical orientations had been presented
but none of the participants noticed the block-wise changing
frequency difference for the tilted orientations (left vs. right).

Objective Discrimination Ability and
Subjective Awareness Concordantly
Diminish
Signal detection analyses revealed that on trials with almost
full (AL3) and partial awareness (AL2) participants’ perceptual
sensitivity was significantly above chance. Bayes-factors provided
extreme evidence that sensitivity (A’) was greater than 0.5 in AL3,
BF(10) > 100, 95% CI (0.733, 0.845), and AL2 trials, BF(10) > 100,
95% CI (0.672, 0.750) (Quintana and Williams, 2018). The mean
A’ of 0.789 ± 0.026 (SE) in AL3 trials was 7.6 times more likely
to be greater than the mean A’ of 0.711 ± 0.018 in AL2 trials,
BF(10) AL3 > AL2 = 7.608 (Quintana and Williams, 2018).
On unaware trials (AL1), however, we observed a mean A’ of
0.516 ± 0.030 that was more likely to be equal to 0.5 with
moderate evidence for the H0, BF(10) = 0.317, 95% CI (0.451,
0.582) (Quintana and Williams, 2018), indicating the absence of
perceptual discriminability of the gratings’ orientation.

In contrast to the perceptual sensitivity analyses, individual
response biases remained unaffected by changes in subjective
awareness. In none of the four ALs did we find clear evidence for
a more liberal or more conservative response criterion to report
a non-vertical orientation, than a C around 0. BFs were rather
in favor of the null hypothesis indicating that the mean C of
−0.188 ± 0.173 in AL1 trials was more likely not different from
zero, yet with only anecdotal evidence for the H0, BF(10) = 0.457,
95% CI (−0.560, 0.188) (Quintana and Williams, 2018). The
same was true for the mean C of −0.073 ± 0.106 in AL2 trials,
BF(10) = 0.342, 95% CI (−0.303, 0.157), and for a mean C of
0.089 ± 0.123 in AL3 trials, BF(10) = 0.349, 95% CI (−0.179,
0.357) (Quintana and Williams, 2018).

To examine variations in the response criterion location
(C) across the three levels of subjective visual awareness, we
made use of LMM to optimally deal with the unbalanced data
set (Magezi, 2015). Since we aimed to assess the absence of
variations in C across the three levels of subjective awareness, we
conducted a Bayesian-based LMM analysis using the R package
BayesFactor to obtain a Bayes factor (BF(10)) directly proving the
null hypothesis (Morey and Rouder, 2018): first we constructed
a null model in which only a by-subject random intercept was
included assuming that variations in C relied on interindividual
differences only [C ∼ 0 + (1| subject)]. Next, we constructed
an alternative model in which the subjective awareness reports
(awareness ratings 1–3) served as a single fixed effect explaining
variance in C in addition to the by-subject random intercept [C
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∼ awareness + (1 | subject)]. Using the lmBF function we then
calculated BFs for each model and compared the two models
by dividing the BF of the model that included awareness as a
fixed effect by the BF of the null model. The analysis resulted
in an inconclusive BF(10) of 0.58 providing weak evidence for
the absence of variation in C across the three levels of subjective
awareness (Quintana and Williams, 2018).

Descriptive data of sensitivity and bias measures are reported
in Table 1. The data showed that the performance of at least two
subjects was highly biased in trials rated as fully unaware with a
shift in C of +1 SD and−1 SD, respectively. A graphic illustration
of the relation between the objective measures of awareness and
the subjective measure is shown in Figure 2 depicting violin
plots of A’ and C for each level of subjective awareness. In sum,
these results show that the ability to distinguish the two types of
orientation (non-vertical vs. vertical) strongly depended on the
subjective visibility and fully diminished on subjectively unaware
trials. In contrast, there was no clear evidence of a response bias,
regardless of the level of subjective awareness. Importantly the
absence of variation in volunteers’ response bias likely suggested
that perceptual decision criteria were not dependent on the
awareness reports and that variations in participants’ perceptual
sensitivity regarding the stimulus orientation could thus not be
caused by variations in the response bias.

In the signal detection analysis outlined above, we assumed
a binary yes/no task setup. However, as we deployed left and
right-tilted gratings next to vertical ones, subjects were to sort
three possible stimulus types into two categories. Moreover,
we presented left- and right-tilted Gabors with varying angles
so that subjects needed to map different stimuli to the same
response. Hence, a classification scenario may better fit the
scenario (Snodgrass et al., 2004). Importantly, such a setup
requires the implementation of two rather than one decision
criterion increasing the decision uncertainty, and the proportion
of correct responses [i.e., proportion correct, p(c)] is then used
to measure volunteers’ classification sensitivity (Macmillan and
Creelman, 2004, p. 190–191). Hence, our sensitivity measuremay
not be exhaustive of all the information that the subject could
hold, meaning that actual sensitivity on unaware trials could be
higher than we measured.

Thus, we additionally calculated p(c) for each level of
subjective awareness (AL1–AL3): p(c) can be defined as the
prior probability of a positive stimulus (i.e., non-vertical grating)
times the conditional probability of a positive response given a
positive stimulus (i.e., a non-vertical response for a non-vertical
target) added to the product of the prior probability of the
negative stimulus (i.e., vertical) times the conditional probability
of a negative response given a negative stimulus (Swets, 2014,

TABLE 1 | Average sensitivity (A’) and criterion location (bias, C) for the
orientation discrimination task for each level of subjective awareness.

Awareness

Level 1 Level 2 Level 3

A’ C A’ C A’ C

M 0.515 0.048 0.670 −0.093 0.723 −0.152
SD 0.091 0.438 0.110 0.402 0.135 0.527

p. 4). In other words, p(c) is found by using the presentation
probability of the two non-vertical targets as weights for the hit
rate and adding this to the product of the 1-False alarm rate
(i.e., correct rejection rate) and the presentation probability of the
vertical target [i.e., p(c) = (8/36)∗H + (16/36)∗H + (12/36)∗(1-F);
Macmillan and Creelman, 2004, p. 89].

Using this formula, we observed a mean p(c) of 54 ± 4.2%
(SE) in trials rated as fully unaware. Here the BF was
rather inconclusive as to whether p(c) was different from the
50% chance level with only anecdotal evidence for the H0,
BF(10) = 0.409, 95% CI (44.9, 63.1) (Quintana and Williams,
2018). In AL2 trials the mean p(c) on group level was 77.1 ± 2%
associated with a BF providing extreme evidence that p(c) was
truly above chance, BF(10) > 100, 95% CI (72.6, 81.5) (Quintana
and Williams, 2018). In trials rated as almost fully aware (AL3)
we observed a mean p(c) of 85.4 ± 3.2%. Here the BF again
provided extreme evidence for p(c) to be greater than 50%,
BF(10) > 100, 95% CI (78.4, 92.4) (Quintana and Williams,
2018). Violin plots show the observed p(c) as a function of
subjective awareness in Figure 3. For more transparency, we
additionally included accuracy data obtained in the experimental
task, as well as the average rates of hits (H), false alarms
(FA), correct rejections (CR), and misses (M), and the mean
number of hit, false alarm, miss, correct rejection trials in the
Supplementary Material.

Taken together, using p(c) as a measure of volunteers’
perceptual sensitivity did not change the conclusion that
participants’ classification ability was at chance in trials rated
as subjectively fully unaware, while they showed considerable
classification sensitivity in trials with residual and almost full
subjective awareness. Importantly, the above measures are
representative and exhaustive of the critical target feature that
is relevant for the task (i.e., orientation; Snodgrass et al.,
2004). However, additional experimentation could be performed
employing an even more stringent detection threshold in which
one’s sensitivity to detect the presence of any grating is null.

RT Data
We analyzed volunteers’ RT data to test whether the latency
of the manual responses slowed down during (unconscious)
changes in the target orientation compared to repeating target
orientations which would suggest a reweighting of attentional
selection weights. Individual outliers (M ± 3 SD) were removed
before the LMM analysis. We conducted the same LMM analysis
for two RT models. While in the first average RT model the
switch condition comprised all possible orientation changes,
the second weighted RT model included only switch trials in
which the prior target orientation was associated with a high
selection weight (i.e., changes away from the most frequent
tilt). Descriptive mean RTs and SEs of both models for switch
vs. repeat trials for each level of awareness are summarized in
Table 2.

To begin, we conducted the LMM analysis for the average
RT model in which the mean of the switch condition included
all possible switch trials. Visual inspection of residual plots did
not reveal any obvious deviations from homoscedasticity nor
normality. Estimated RTs appeared to be sensitive to changes in
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FIGURE 2 | Violin plots of group distributions of sensitivity A’ (left) and the criterion location (response bias; right) for each level of subjective awareness [perceptual
awareness scale (PAS) ratings AL1–AL3]. Left: the agreement of the objective and subjective measure of visual awareness is indicated by moderate evidence for the
absence of sensitivity on trials rated as subjectively unaware; BF(10) < 0.33. Black asterisks = BF(10) > 100 indicating extreme evidence for A’ being truly > 0.5.
Violin plots use density curves to depict distributions of numeric data. The width corresponds with the approximate frequency of data points in each region. The
lower and upper limits of each plot are determined by the minimum and maximum values.

FIGURE 3 | Violin plots show the observed proportions of correct responses
[p(c)] as a function of subjective awareness (AL1–AL3). Black asterisks
indicate that testing p(c) on group level against a theoretical chance level of
0.5 (dotted line) resulted in a Bayes factor (BF) providing extreme evidence for
p(c) being greater than 0.5 (BF(10) > 100). Violin plots use density curves to
depict distributions of numeric data. The width corresponds with the
approximate frequency of data points in each region. The lower and upper
limits of each plot are determined by the minimum and maximum values.

the level of visual awareness indicated by the significant fixed
effect of awareness, F(2,11.055) = 9.6740, p = 0.0037. In line with
our predictions, the post hoc tests showed that RTs (averaged
across the conditions switch and repeat) in AL1 trials were
157.6 ± 41.6 ms slower compared to AL2 trials, t(12.00) = 3.783,
p = 0.0078, 95% CI (41.8, 273.5), and 225.6 ± 54 ms slower

compared to AL3 trials, t(11.87) = 4.177, p = 0.0039, 95% CI (75.2,
376.1). RTs in AL2 and AL3 trials did not differ significantly,
p = 0.3678, 95% CI (−46.0, 182.0). Thus, RTs of the average RT
model was indeed sensitive to changes in visual awareness and
decreased with increasing stimulus visibility.

There was, however, no significant main effect of switch,
F(1,35) = 3.1709, p = 0.0836, nor a significant interaction
F(2,35) = 0.1411, p = 0.8689 showing that RTs appeared to be
unaffected by changing stimulus orientations in this RT model.
About 20% of the total variance was explained by the model’s
fixed effects, R2

m = 0.1989, and 88% by the model’s fixed and
random effects, R2

c = 0.8843.
Next, we used the same LMM to analyze the weighted RT

model in which the switch condition comprised only switch trials
where the prior orientation was the heavily weighted one. Again,
visual inspection of residual plots did not reveal any obvious
deviations from homoscedasticity nor normality. The LMM
analysis showed, also in this model, that estimated RTs increased
with decreasing visual awareness, F(2,10.93) = 10.9895, p = 0.0024.
The post hoc tests with Bonferroni correction indicated that mean
RTs across both switch and repeat trials were on average about
190.5 ± 45.6 ms significantly slower in AL1 trials compared
to AL2, t(12) = 4.177, p = 0.0039, 95% CI (63.7, 317.3) and
on average 263.1 ± 58.7 ms slower compared to AL3 trials
t(11.92) = 4.482, p = 0.0023, 95% CI (99.7, 426.4). Mean RTs in
AL2 and AL3 trials did not differ significantly, p = 0.3007, 95%
CI (−40.8, 185.9).

Importantly, now also a switch of the target orientation
affected RTs: the analysis revealed a significant fixed effect
predictor switch, F(1,35.00) = 6.0303, p = 0.019. Here the post hoc
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TABLE 2 | Mean (M) reaction times (RTs) and standard deviations (SD) for the switch and repeat trials for each level of subjective awareness summarized of (A) the
average RT model comprising the mean of all switch trials and (B) the weighted RT model including only weighted switch trials.

Awareness

Level 1 Level 2 Level 3

Switch Repeat Switch Repeat Switch Repeat

(A) Average switch
M 1.110 1.068 0.945 0.917 0.889 0.869
SD 0.225 0.231 0.182 0.212 0.130 0.128

(B) Weighted switch
M 1.177 1.068 0.947 0.917 0.879 0.869
SD 0.242 0.231 0.194 0.212 0.129 0.128

tests suggested that only in unaware trials (AL1) were RTs in
response to a novel orientations on average 109.5 ± 34.5 ms
significantly slower compared to trials in which the orientation
was repeated, t(35) = −3.171, p = 0.0029, 95% CI (−179.7,
−39.4). In trials with higher levels of visual awareness, switch
costs were not significant, AL2, p = 0.4033, 95% CI (−99.4,
40.9); AL3, p = 0.7789, 95% CI (−83.1, 62.8). Yet, there
was no significant interaction between the two fixed-effect
predictors awareness and switch, F(2,35.00) = 2.2800, p = 0.1172.
Together, about 26% of the total variance was explained by
the two fixed effects awareness and switch, R2

m = 0.2568, and
about 85% was explained by all fixed and random effects,
R2
c = 0.8532.
RTs for both switch and repeat trials as a function of visual

awareness for the weighted and the exhaustive RT model are
plotted in Figures 4A,B. The LMM solutions for the fixed and
random effects for the two RT models are given in Tables 3A,B.

In sum, the LMM analysis suggests that not only were
RTs sensitive to decreasing visual awareness but also changes
in the stimulus orientation. However, RT costs due to such
changes were observed only in the weighted RT model which
included only those switch trials in which the novel orientation
changed away from the highly biased orientation (highly frequent
tilt) fostering the conclusion that the prior visual selection
bias had boosted behavioral switch costs in response to a
change in the target orientation. As significant switch costs
were observed in unaware trials only, the impact of the prior
selection bias boosting behavioral switch costs during attentional
re-selection appeared to be most prominent in the full absence of
visual awareness.

Given that under unconscious conditions we had fewer trials
included in the analysis, outliers could have a stronger effect
on the results. Since 3 SD is not a rigid cutoff for outliers,
we, therefore, repeated the analysis with a 2 SD, and 2.5 SD
cutoff but the results did not change in terms of significant
fixed effects. Most relevant to our research question, we found
a significant switch effect for the weighted RT data model in
AL1 but neither in AL2 nor in AL3 trials for all three cutoffs.
We conducted further control analyses that are reported in the
Supplementary Material in which we matched the number of
trials between AL1, AL2, and AL3 trials by random sampling to
prove that the low amount of AL1 trials could not account for the
observed switch effect, and used the numbers of trials obtained
for the weighted switch trials rated as fully unaware (AL1) to

do a Bayesian-based prediction to show that the switch costs
in the weighted RT model were not associated with individual
trial numbers.

Finally, to rule out the possibility that intertrial response
priming instead of attentional weighting could account for the
observed switch effect, we repeated the LMM analysis for the
weighted switch model after removing all weighted switch trials
preceded by trials in which the orientation had been perceived
consciously to some extent (i.e., AL2, and AL3 ‘‘pretarget’’ trials).
This we did because intertrial response priming is thought to
necessitate awareness of the stimulus in the preceding trial
(e.g., Peremen et al., 2013). Using the same LMM we found
only a marginal switch effect, F(1,42.301) = 4.0112, p = 0.0516, a
significant fixed effect of visual awareness, F(2,14.399) = 17.5605,
p < 0.001, and a significant interaction of the two fixed effects
switch and awareness, F(2,42.198) = 4.7763, p = 0.0134. The fixed
and random effect solutions of this analysis are given in Table 4.
Importantly, paired comparisons replicated our previous finding
showing that unaware weighted switch trials were significantly
slower compared to unaware repeat trial, t(33.24) = −2.954,
p = 0.0057, 95% CI (−360.5, −66.4), while there were no
differences between switch and repeat trials for AL2, p = 0.1157,
nor for AL3, p = 0.2304.

DISCUSSION

When volunteers engaged in our discrimination task of masked
gratings, RTs were sensitive to orientation changes. However,
significant switch costs were obtained only if the selection weight
for the prior orientation was high (i.e., the highly frequent
tilt) and if the novel orientation was unconsciously perceived.
Importantly, our criteria for lack of awareness were based on
the combination of subjective and objective measures, i.e., no
experience reports and no ability to discriminate the relevant
target features in a forced-choice test. To the best of our
knowledge, this, therefore, is the first study investigating the
effects of unaware targets on feature-based attention weighting
by using a combination of objective sensitivity measures and
subjective measures of visual (un-)awareness collected during
the experimental task. This is a very important advantage for
two reasons: first, to account for fluctuations of the perceptual
threshold before, during, and after the actual experimental task
it is extremely important to use an ‘‘online’’ measure of visual
awareness during the task performance. This way, one ensures
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FIGURE 4 | Group mean RTs (in seconds) for a switch (blue) and repeat trials (red) as a function of visual awareness (AL1–AL3); on the left (A) RTs of the weighted
switch model, on the right (B) RTs of the average switch model is shown. Dots and triangles indicate individual participant data points. Vertical lines show the range
of 1SD ± the mean. In both reaction time (RT) models post hoc tests with Bonferroni correction revealed that RTs speeded up with increasing visual awareness
(AL2–AL1: p < 0.01, AL3–AL1: p < 0.01). A significant slowing of RTs in switch compared to repeat trials was observed only for the weighted model in unconscious
trials (AL1); **p < 0.01 (Post hoc tests with Bonferroni correction).

that the stimulus perception and the effect of the stimulus
are measured in the same context (e.g., Avneon and Lamy,
2018). Second, studies that define unconscious processing only
employing subjective awareness measures (e.g., Cheesman and
Merikle, 1986) suffer from the criterion problem that arises when
conscious knowledge is held with low confidence, hence objective
measures that can ensure a clear absence of visual awareness
(i.e., if d’ = 0) are critical to studying unconscious information
processing, which would then be pinpointed by information-
based analyses of neural measures (Soto et al., 2019). Yet, to come
up with an exhaustive means that measures visual awareness and
unawareness equally well, the joint use of both the objective and
subjective measures seems optimal (e.g., Wiens, 2007).

Taken together, our results indicate that prior feature
likelihood differences modulated attentional weighting by
introducing a competitive bias favoring (i.e., increasing the
selection weight for) the most likely event (i.e., frequent tilt).
Only when the orientation associated with a high selection weight
was present in the prior trial did attentional re-selection towards
a novel target orientation result in behavioral switch costs. This
was indicated by significant RT differences between stay and
switch trials in the weighted model. Switch costs due to changing
features within a single feature dimension may be relatively small
compared to cross-dimensional switch costs (see Müller et al.,
1995), which could explain why there was no switch effect in the
averaged model in any level of awareness. Thus, the putatively
smaller effect of within-dimensional switches may require a
strong prior feature weighting to emerge.

Remarkably, the behavioral switch costs were observed only
in trials reported as fully unaware, in which subjects had zero

sensitivity for the stimulus orientation. According to Bundesen’s
(1990) TVA, the influence on sensory processing given by
an attentional template that contains goal-relevant information
(i.e., history-guided) becomes particularly strong if the sensory
evidence of the to-be-processed stimulus is low. In such a
case there is little stimulus information that could form the
selection weight in a ‘‘bottom-up’’ fashion so that knowledge
about the importance of attending to a certain stimulus category
(e.g., because this category is more likely to occur) gains influence
on stimulus processing. Hence, one could predict that the
behavioral effect due to attentional weighting and re-weighting
should be most pronounced in unaware trials in which decision
making may especially rely on implicit knowledge (i.e., prior
beliefs about likelihoods, Bohil and Wismer, 2015) maintained
in the form of an attentional template because the weak sensory
evidence given by the unconscious stimulus does not suffice to
strongly bias its selection.

Importantly, this conclusion does not imply that the
information (i.e., prior beliefs about likelihoods) upon which the
trial history-guided attentional selection is built is derived from
invisible stimuli. Certainly, in our paradigm, a significant amount
of targets were perceived partially and almost fully consciously.
Thus, even if the subjects’ reports suggest that the knowledge
about the likelihood differences was rather implicit, it was likely
to be derived from visible stimuli. Still, a shift of attentional
selection weights against a prior bias was elicited by an invisible
novel target. This clearly shows that invisible feature changes can
indeed trigger a shift of visual attention. Peremen et al. (2013)
reported the opposite pattern of results: strong intertrial feature
priming if primes and probes were consciously perceived but no
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TABLE 3 | Fixed and random effects solutions of the linear mixed model (LMM) for the average RT model (A) and the weighted RT model (B).

Fixed effects Estimate (in seconds) SE t-value p-value

(A) Average switch
Awareness
AL1: 1.06823 0.05965 17.203 1.62e-10∗∗∗

AL1–AL2 −0.15035 0.04457 −3.241 0.00452**
AL1–AL3 −0.21491 0.05536 −3.726 0.00254**
Switch (Intercept) 0.04209 0.02766 1.460 0.15309
AL2:
Switch—Repeat −0.01465 0.03912 −0.359 0.72144
AL3:
Switch—Repeat −0.02151 0.03992 −0.539 0.60840
Random effects Variance SD
Subject 0.044852 0.21148
AL1–AL2 0.017186 0.13109
AL1–AL3 0.031373 0.17712
Residual 0.005399 0.07348

(B) Weighted switch
Awareness
AL1 (Intercept) 1.06823 0.06362 16.792 1.19e-10∗∗∗

AL1–AL2 −0.15035 0.04970 −2.905 0.00896**
AL1–AL3 −0.21338 0.06106 −3.354 0.00451**
Switch (Intercept) 0.10959 0.03316 3.171 0.00315**
AL2:
Repeat—Switch −0.08035 0.04690 −1.644 0.10905
AL3:
Repeat—Switch −0.09941 0.04786 −2.077 0.05408
Random effects Variance SD
Subject 0.044852 0.21178
AL1–AL2 0.017821 0.13889
AL1–AL3 0.035990 0.18971
Residual 0.007761 0.08809

Note: significance codes: ∗∗∗p < 0.001; **p < 0.01. (A) Average RT model: fixed effect predictor switch includes all types of orientation changes. (B) Weighted RT model: fixed effect
predictor switch comprises only the changes away from the heavily weighted orientation. P-values indicate the difference between each factor level compared to baseline (intercept).
For both models: intercept switch equals the estimated mean difference of switch trials compared to repeat trials across all three levels of awareness, intercept AL1 equals the mean of
all switch and repeat trials rated as subjectively unaware. Random effects AL1–AL2, and AL1–AL3 indicate the amount of variation in the fixed effect switch between the two AL1 and
AL2, and AL1 and AL3, respectively.

TABLE 4 | Mixed and random effect solution after removing those trials preceding a weighted switch in which the stimulus was consciously perceived.

Weighted switch RT model with unconscious pretarget trials only

Fixed effects Estimate (in seconds) SE t-value p-value

Awareness
AL1 1.09469 0.07955 13.761 4.01e-10∗∗∗

AL1–AL2 −0.17603 0.07667 −2.296 0.03137*
AL1–AL3 −0.24179 0.07637 −3.166 0.00447**
Switch (Intercept) 0.21353 0.07067 3.022 0.00414**
AL2:
Switch—Repeat −0.114745 0.09333 −1.229 0.22556
AL3:
Switch—Repeat −0.29642 0.09740 −3.043 0.00398**

Random effects Variance SD
Subject 0.05811 0.2411
AL1–AL2 0.02811 0.1677
AL1–AL3 0.02536 0.1592
Residual 0.02416 0.1554

Note: significance codes: ∗∗∗p < 0.001; **p < 0.01; *p < 0.05. P-values indicate the difference between each factor level compared to baseline (intercept). The intercept of switch type
equals the estimated mean difference of weighted switch trials compared to repeat trials across all three levels of awareness, intercept AL1 equals the mean of all weighted switch
and repeat trials rated as subjectively unaware. Random effects AL1–AL2, and AL1–AL3 indicate the amount of variation in the fixed effect switch between the two AL1 and AL2, and
AL1 and AL3, respectively.

such repetition effects under masking conditions. However, by
using prior likelihood differences of the three orientations, we
introduced a feature weighting that evidently boosted the switch

effect, deliberately chose simple Gabor patches that are known to
be readily processed, even if unconsciously (e.g., Rajimehr, 2004;
see also Soto et al., 2011; King et al., 2016), and tested participants
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in a simple discrimination task in which the focus of spatial
attention was always directed to the relevant location, instead of
using a visual search paradigm. Importantly, the prior attention
bias was essential to induce prior attentional weighting impeding
consequent attentional re-weighting in response to a novel target.
In conclusion, this suggests that a prior likelihood weighting
indeed can induce an attentional selection bias for a feature
even if the respective target is invisible and that a novel target
can trigger the re-shifting of attentional resources even if the
novel stimulus is invisible. Thus, our findings support the view
that attentional selection and consciousness can be dissociated
(e.g., Lamme, 2003; Koch and Tsuchiya, 2007; Van Gaal and
Lamme, 2012). They also show that the covert reallocation of
feature-based attention can be studied by presenting a series
of invisible targets at least if a prior selection bias had been
introduced (i.e., likelihood weighting) to boost the intertrial
facilitation. Therefore, our study puts forward a parsimonious
methodological approach using single-item displays withmasked
targets and a discrimination task to examine the effects of
attentional feature weighting in the absence of visual awareness.
Importantly, we used volunteers’ discrimination ability to
measure visual consciousness objectively but examined the
effects of visual attention using discrimination response times,
thereby guaranteeing a clear methodological separation between
consciousness and attention.

The observed switch effect for the weighted RT model could
in theory be explained by intertrial response priming. That
is, the orientation perceived in the recent past (trial n − 1)
could have primed the response to the current target (in
trial n) so that responses speed up following repeated target
orientations and slow down once a novel target is presented.
This prediction is in line with our observation and challenges the
attentional weighting account that we proposed to explain the
effect. However, if intertrial response priming was responsible
for the effect, one would expect a significant slowing of
responses following a novel orientation to occur independently
of the feature weighting. In other words, significant switch
costs should have been observed also in the average RT
model which was not the case. Intertrial response priming
is contingent on awareness of the ‘‘pretarget’’ stimulus (e.g.,
Peremen et al., 2013). Accordingly, the observed switch effect
should rely on pretarget AL2 and AL3 trials but not on
fully unconscious pretarget trials if response priming was the
underlying mechanism. To test this account, we reanalyzed the
RT data using the same mixed model approach after removing
those switch trials that were preceded by AL2 and AL3 pretarget
trials. Importantly, the switch effect was preserved for the
weighted RT model even when this time only fully unconscious
trials preceded an orientation change. This finding, together with
the fact that the switch effect was missing in the average RT
model, makes it rather unlikely that response priming could
alternatively explain the effect we observed.

CONCLUSION

We demonstrated that unconscious feature changes of invisible
targets can induce attentional reweighting against a prior

attentional selection bias, suggesting that the shifting of
attentional selection weights during the behavioral performance
does not necessitate visual awareness. This finding supports
previous studies stressing the dissociation of attention and
visual consciousness (e.g., McCormick, 1997), however, prior
studies predominantly report how unconsciously perceived
cues affect shifts in spatial attention (e.g., Mulckhuyse et al.,
2007). To our knowledge, this is the first study to investigate
the effect of unconsciously perceived feature changes on
visual attention. Importantly, the methodological advantage of
combining subjective and objective measures of visual awareness
helps to ensure that the target stimuli were truly unconsciously
processed. In the next step, it will be important to shed light
on the neural underpinnings supporting attentional feature-
based re-weighting in the absence of visual awareness. Here,
particularly the role of the frontopolar cortex (FPC) should be
examined as previous findings consistently have linked it to
exploratory attention shifts (for an extensive review seeMansouri
et al., 2017), yet evidence showing that FPC supports attentional
reallocation in the full absence of visual awareness is still missing.
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