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Within the multi-disciplinary University of Pau and Pays de l’Adour (UPPA), the Ministry recognized for 

the period 2016-2021 three research federations. Among those, the “Research Federation on Aquatic 

Environment and Resources (MIRA)” (FED 4155), created in 2011, aiming to study anthropogenic 

pressures and sustainability in the aquatic environment. The Joint Research Unit CNRS/UPPA (UMR 

5254; i.e. the Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials 

(IPREM)), is one of the seven units within the Federation.  

Among research projects launched up to 2019, the MICROPOLIT project is supported by the MIRA 

federation. It was initiated in 2016 by Mathilde Monperrus (lecturer/associate professor from the 

IPREM laboratory). It was implemented with the goal of studying the state and the evolution of 

environmental quality along the Southern New-Aquitanian coast on 3 workshop areas (the Adour 

estuary, the rocky Basque coast and the Capbreton canyon). More precisely, it focused on 

micropollutants along this coast to improve knowledge about their source, reactivity and fate as well 

as their concentrations in organisms to assess their ecological/biological state. At its founding, the 

project set several “Actions”, described below (Fig. 1). The research work presented in this thesis was 

carried out on the ‘rocky Basque coast’ workshop area and was an integral part of Action 2, which was 

a dual-track approach between biology and chemistry.  

 

Fig. 1: The six actions around which the MICROPOLIT project is structured.  
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Glossary 

ACE: Angiotensin Converting Enzyme 

ADBI: Celestolide 

AFB: Agence Française pour la Biodiversité 
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AHMI: Phantolide 

AHTN: Tonalide 

AMBI: AZTI Marine Biotic Index 

ANDRA: the National Agency for Radioactive Waste Management 

ANOVA: ANalysis Of VAriance 

ANSES: Agence Nationale de SEcurité Sanitaire de l'alimentation, de l'environnement et du travail 

AP: Alkylphenol 

As: Arsenic 

ATII: Traseolide 

BAF: BioAccumulation factor 

BC: Benzylidene camphor 

BC: Biotic Coefficient 

BCF: BioConcentration Factor 

BHC: Hexachlorocyclohexane 

BMF: BioMagnification Factor 

BRGM: Bureau de Recherches Géologiques et Minières 

CaCO3: Calcium carbonate 

CCO: Cover Characteristic – Opportunistic species 

Cd: Cadmium 

CEC: Contaminants of emerging concern  

CEDEF: CEntre de Documentation Économie-Finances 

CEMP: Coordinated Environmental Monitoring Program 

CESER: Conseil Economique, Social et Environnemental Régional 

CMB: Centre de la Mer de Biarritz 

CNRS: Centre National de la Recherche Scientifique 

Cr: Chromium 

Cu: Copper 

DL: Detection limit 

DOC: Dissolved Organic Carbon 
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EC: European Regulation 

EEC: European Communities adopted Council Regulation  

E1: Estrone 

E2: 17-beta oestradiol 

ECOBIOP: Ecologie COmportementale et bIOlogie des populations de Poissons 

EE2: 17-alpha ethinylestradiol 

e.g.: for example (from the Latin « exempli gratia ») 

EG: Ecological Group 

EHMC: Ethylhexyl methoxycinnam 

EQS: Environmental Quality Standard 

EQSD: the European Quality Standards Directive 

ESG: Ecological Status Group 

EU: EUropean, European Union   

FEDER: Fonds Européen de DEveloppement Régional 

GC-MS: Gas Chromatrograph coupled with Mass Spectrometer 

GC-ICP-MS: Gas Chromatrograph coupled to an Inductively Coupled Plasma Mass Spectrometer  

GEQ: Good Ecological Quality 

GES: Good Ecological Status 

HCl: Hydrochloric Acid 

HHCB: Galaxolide 

HHCB-lactone: Galaxolidone 

HNO3: Nitric Acid 

ICP-MS: Inductively Coupled Plasma Mass Spectrometer 

IFREMER: Institut Français de Recherche pour l'Exploitation de la MER 

IE (or i.e.): Inhabitant Equivalent 

i.e.: that is (from the Latin « id est ») 

IHg: Inorganic mercury 

IMA: Institut des Milieux Aquatiques 

INEE: INstitut Ecologie et Environnement du CNRS 

INRA: Institut National de la Recherche Agronomique 

IPRA: Institut Pluridisciplinaire de Recherche Appliquée 

IPREM: Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux 

LAPHY: Laboratoire d'Analyses de Prélèvements HYdrobiologiques 

LC-MS-MS: Liquid Chromatograph-tandem Mass Spectrometer 

LER: Laboratoire Environnement Ressources 
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LMAP: Laboratoire de Mathématiques et de leurs Applications 

LIUPPA: Laboratoire d’Information de l’Univeristé de Pau et des Pays de l’Adour 

MA: Musk Ambrette 

MAC-EQS: Maximum Allowed filtered Concentration-Environmental Quality Standard 

M-AMBI: Multivariate AZTI Marine Biotic Index 

MBC: Methylbenzylidene Camphor 

MDS: Multi-Dimensional Scaling 

MEA: Millennium Ecosystem Assessment 

MFG: Morphological Functional Groups 

MgSO4: Magnesium sulfate 

MICROPOLIT: MICROPOllutants le long du LITtoral sud Aquitain 

MIRA: Federation on Aquatic Environment and Resources  

MK: Musk Ketone 

MLWS: Mean Low Water Springs 

MNHN: National Museum of Natural History  

MM: Musk Moskene 

MMHg: Monomethylmercury 

Mo: Molybdenum 

MSFD: Marine Strategy Framework Directive 

MTR: Mean Taxonomic Richness 

MX: Musk Xylene 

NaBEt4: Sodium tetraethylborate 

NaCl: Sodium chloride 

N: North 

Ni: Nickel 

nMDS: Non-metric Multi-Dimensional Scaling 

NP: Nonylphenol 

NPE01: Nonylphenol monoethoxilated 

NPE02: Nonylphenol diethoxilathed 

NSAIDS: Nonsteroidal anti-inflammatory drugs 

NUMEA: NUtrition MEtabolisme Aquaculture 

NW: North-West 

OC: Octocrylene 

OCP: Pesticide 

OD-BAPA: Octyl-dimethyl-PABA 
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OS: Other Substance 

OSPAR: OSlo-PARis convention  

OTs: Organotins 

PE (or p.e.): Population Equivalent 

POC: Particulate Organic Carbon 

ROCCH: Réseau d’Observation de la Contamination Chimique 

PAH: Polycyclic Aromatic Hydrocarbon 

PAMM: Action Plan for Marine environment 

Pb: Lead 

PCA: Principal Component Analysis 

PCB: Polychlorinated biphenyl 

PCDD: PolyChlorinated Dibenzo-p-Dioxins 

PCDF: PolyChlorinated DibenzoFurans 

PE: Population Equivalent 

PET: Polyethylene Terephthalate 

PERMANOVA: Permutational Multivariate Analysis of Variance 

pH: Potentiel Hydrogène 

PHs: Pharmaceuticals 

PHS: Priority Hazardous Substance 

PS: Priority Substance 

QI: Quality Index 

QL: Quantification Limit 

QuEChERS: Quick, Easy, Cheap, Efficient, Rugged and Safe 

SAGE: Water Development and Management Pan 

Sb: Antimony  

SDAGE: Water Development and Management Master Plan 

SG: Sensitivity Group 

SHOM: Service Hydrographique et Océanographique de la Marine 

SIAME: Laboratoire des Sciences pour l'Ingénieur Appliquées à la Mécanique et au génie Electrique 

SIMPER: SIMilarity PERcentage 

SM: Suspended Matter 

Sn: Tin 

SPE: Solid Phase Extraction 

TC: Total Carbon 

TN: Total Nitrogen 
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TS: Taxa Sensitivity 

UMR: Unité Mixte de Recherche 

UPPA: University of Pau and Pays Adour 

UV: Ultraviolet 

V: Vanadium 

VOC: Volatile Organic Compound 

WFD: Water Framework Directive 

WWTP: WasteWater Treatment Plant 

4nOP: 4-nitro-O-phenylenediamine 

4tOP: Para-tert-octylphenol 

4,4’-DDD: 4,4’-Dichlorodiphenyldichloroethane 

4,4’-DDE: 4,4’-Dichlorodiphenyldichloroethylene 

4,4’-DDT: 4,4’-Dichlorodiphenyltrichloroethane 
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400 million tons = Worldwide production of chemical substances 
50% = % of the world’s population living in coastal areas 
> 20 000 = French WWTPs = 77 000 000 PE
> 2 000 = Spanish WWTPs* = 61 860 028 PE

* Urban wastewater agglomerations > 2 000 PE

• Protect aquatic environment from WWTP discharges
• Good Ecological Quality of European waters by 2020
• 45 priority substances  Regulated + EQS
• Emerging substances  Not regulated

The European Urban 
Waste Water  

Treatment Directive

1991 2000

The European Water 
Framework Directive 

1991 2000

The European Marine 
Strategy Framework 

Directive 

2008

The European Quality 
Standards Directive

2013

The European Directive 
on priority substances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter I - Introduction:  

Environmental and Regulatory Frameworks  

Chapter structure: 

1. Environmental Context and Associated Pressures 

2. Regulatory Context 

3. The Purpose of the Thesis Research 

Fig. 1: Graphical abstract of the Chapter I 
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1. Environmental context and associated pressures 

1.1 The rocky shore 

Rocky shore habitats constitute one of the most common environments in coastal areas, i.e. more than 

80% of the coastline worldwide (Coutinho et al., 2016; Emery and Kuhn, 1982; Granja, 2004). They may 

be composed by platforms, boulder fields, cobbles, mixed substrata, pools, cliffs and crevices which 

constitute a heterogeneous mosaic of habitats and microhabitats (Coutinho et al., 2016; Le Gal and 

Derrien-Courtel, 2015; Murray et al., 2006). This induce a high valuable habitat in terms of biodiversity 

and productivity which is used by many organisms for feeding, growth and reproduction (Coutinho et 

al., 2016).  

The intertidal zone (or stage), located at the boundary between land and ocean, represents the area 

between the low tide and the high tide limits. It constitutes an Important part of the coastal ecosystem 

and provides many services in terms of primary productivity, fisheries and tourism (Seitz et al., 2013). 

This zone is mainly governed by tide cycles leading a zonation of this area (Murray et al., 2006). The 

three zones which constitute it are the supralittoral fringe, the midlittoral zone, itself divided into three 

parts (upper, middle and lower midlittoral zones) and the infralittoral fringe (Fig. 2). The supralittoral 

is seldom immerged explaining the low diversity living there (mainly orange-grey and black lichens) 

(Borja and Collins, 2004). It is mainly exposed to winds, sea sprays and sun. The only period during 

which it is underwater may be throughout high equinoctial spring tides. The midlittoral zone is 

alternatively immerged and emerged making it a more stable environment (Borja and Collins, 2004). 

The upper and middle midlittoral zones are both characterized by Chthamalus stellatus (barnacles) 

with a higher macrofauna diversity in the second one. It is also colonized by crustose (Ralfsia verrucosa) 

and caespitose (Caulacanthus ustulatus) macroalgae. The lower midlittoral zone shows wider diversity 

than the two others (including dominant algae as Lithophyllum inscrustans and Ellisolandia elongata 

and macrofauna such as molluscs, cnidarian, polychaetes, amphipods and isopods). By contrast, 

infralittoral fringe is only emerged during spring tides. Gelidium corneum, Lithophyllum incrustans, 

Ellisolandia elongata and Patella aspera make up the major characterized species (Borja and Collins, 

2004).  
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Fig. 2: Zonation scheme of the intertidal zone according to Borja and Collins (2004) (data from 

Ibanez and Iribar, 1979, following the terminology of Lewis, 1964).  

In contrast, subtidal rocky areas are always submerged and are governed by pressure variations, 

currents, waves, oxygen layer, thermocline and sediment resuspension caused by wind (Falcão and 

Vale, 1998). These various features, associated to incident light attenuation, induce a vertical zonation 

of communities (Witman et al., 1993) (Fig. 3). Indeed, the intensity of light reaching the seabed directly 

induces the depth at which the subtidal zones begin (https://inpn.mnhn.fr). For example, “in highly 

turbid conditions, the circalittoral zone may begin just below water level at mean low water springs 

(MLWS)” (https://inpn.mnhn.fr). Shallow subtidal areas such as the infralittoral zone are dominated 

by large brown macroalgae (apart from the southern Bay of Biscay which is dominated by red algae) 

(Ojeda, 1989). They constitute a canopy divided in two sub-zones (upper and lower) and characterized 

by a total density of structuring macroalgae (Laminaria digitata, Laminaria hyperborea, Laminaria 

ochroleuca, Saccharina latissima, Saccorhiza polyshides, Cystoseira baccata, Cystoseira tamariscifolia, 

Halydris siliquosa and Sargassum muticum, depending of latitude and region), higher or lower than 3 

individuals (feet) per m² respectively (de Casamajor et al., 2017; Le Gal and Derrien-Courtel, 2015). At 

deeper depths, where light and thus primary productivity become limiting for erected macroalgae (i.e. 

in the circalittoral zone), invertebrates progressively replace macroalgae (Britton-Simmons et al., 2009; 

https://inpn.mnhn.fr). This latter zone is divided into the upper circalittoral zone, characterized by an 

absence of structuring macroalgae and rather associated to foliose red algae (but not dominant) and 

the lower circalittoral zone where only encrusting macroalgae remain (Le Gal and Derrien-Courtel, 

2015; https://inpn.mnhn.fr).  

Along the Basque coast, studied locations were at 20 m depth. Only “red” and “orange” wavelengths 

were attenuated at this depth. Therefore, macroalgae were still present and benthic communities 
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were as such more impacted by other factors as swell, climate conditions (e.g. rain and storms), river 

discharges, etc.  

 

Fig. 3: Zonation scheme of the subtidal zone. 

1.2 Pressures impacting these zones 

Marine coastal ecosystems are governed by environmental and anthropogenic factors responsible for 

stressful physical conditions (Ghilardi et al., 2008). Indeed, they may be modified by many biotic and 

abiotic factors, such as biological interactions (e.g. settlement, recruitment, predation, and 

competition), physical actions (e.g. wave action/hydrodynamics, temperature gradients, tides, 

irradiance, salinity, topography, shore’s slope, coastline’s profile and coast orientation) and 

anthropogenic pressures (overexploitation, invasive species introduction, habitat fragmentation and 

destruction and direct or indirect introduction of chemicals) (Borja and Collins, 2004; Ghilardi et al., 

2008; Macdonald et al., 2003; Rial et al., 2017; Vinagre, 2017).  

Anthropogenic disturbances are partly due to the growing urban development (Becherucci et al., 2016; 

Crain et al., 2008; de-la-Ossa-Carretero et al., 2016). Indeed nowadays, half of the world’s population 

lives in coastal areas (less than 60 km from the shoreline) especially for goods and services that provide 

marine ecosystems (Halpern et al., 2008; Le Gal and Derrien-Courtel, 2015). Disturbances caused by 

humans may come from a variety of sources such as industries, hospitals, agriculture, WWTP or septic 

tanks, mining, transport and waste disposal (Fig. 4) (European Environment Agency, 2018a). They may 

be punctual (e.g. accidental effluents which are easy to identify) or diffuse (less identifiable due to the 

geographical scope) (Berlioz-Barbier, 2015; Bernard, 2012; European Environment Agency, 2018a). 

They may be introduced directly into the environment through pipelines or indirectly by riverine inputs, 
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surface runoff, atmospheric deposition, etc. (Rial et al., 2017). Marine coastal areas are thus constantly 

impacted by a mixture of disturbances and pollutants (Benali et al., 2017). 

All factors that mediate marine coastal ecosystems are summarized in the below diagram Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Example of water pollution sources. 
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ecosystem into smaller isolated
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Human activities
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Fig. 5: Pressures that may affect coastal zones. 
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1.2.1 Wastewater treatment plants (WWTPs) 

To deal with coastal urban sprawl and thus to inputs of untreated urban or industrial wastewaters, 

many pipeline systems releasing via outfalls were built during the XXth century to reject urban sewage 

effluents into coastal areas (e.g. intertidal and shallow subtidal habitats) or further out to sea (Augier, 

2014; Becherucci et al., 2018; Bernard, 2012; Borja and Collins, 2004; Cabral-Oliveira and Pardal, 2016; 

Cearreta et al., 2004; Chust et al., 2009; Koop and Hutchings, 1996; Le Treut, 2013a). In addition, since 

1991, the European Union Regulations has imposed on all member states to treat urban wastewaters 

prior to reject them into riverbanks, lakes and seas (Barreales-Suárez et al., 2018; EEC, 1991). 

Wastewater treatment plants were thus built to reach required discharge standards (Von Sperling, 

2007). In France in 2017, 21 631 WWTPs were reported for a total load of 77 000 000 equivalent 

habitants (purification capacity equal to 104 million inhabitant/population equivalent (i.e/IE or 

p.e./PE)  (www.assainissement.developpement-durable.gouv.fr) and 2 063 urban wastewater 

agglomerations* of more than 2 000 were identified in Spain in 2014, for a total load of 61 860 028 

p.e. (www.uwwtd.eu).  Wastewater treatment plant discharges are still considered as the most-

effective technique to get rid of sewages  (coming from agricultural, industrial, domestic and municipal 

activities) (Islam and Tanaka, 2004; Little and Kitching, 1996) owing to the dilution rate of the ocean 

(Elías et al., 2005) and constitute thus a common source of disturbances, the oldest form of marine 

pollution (Fraschetti et al., 2006; Pearson and Rosenberg, 1978; Benali, 2017). In France, the Article 10 

of June 22th 2007 (and thereafter the Article 8 of July 21th 2015 Decision; Decision, 2015), requires that 

all discharges occurring in the public maritime domain have to be located below the low tide level 

(Decision, 2007). 

 

 

 

 

 

 

 

 

* The term agglomeration refers in the first place to a sufficiently concentrated area for urban wastewater to be 
collected and conducted to an urban wastewater treatment plant (Directive; 91/271/EEC; ec.europa.eu).  
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1.2.2 General functioning of Wastewater treatment plants (WWTPs) 

Once rejected by private households or industries, effluents are brought to the WWTP by sewer 

systems. They may be either combined (rainwater, domestic wastewater and industrial waters are 

mixed into the same sewer) or separate (system or rainwater is separated from domestic and industrial 

sources).  

All treatments carried out on wastewaters are characterized by predominant treatment mechanisms 

composed by unit operations and processes (Metcalf and Eddy, 1991; Von Sperling, 2007):  

- Physical unit operations: dominance of physical forces (e.g. screening, mixing, flocculation, 

sedimentation, flotation, filtration), 

- Chemical unit processes: contaminants removal or conversion due to the addition of chemical 

products or to chemical reactions (e.g. precipitation, adsorption, disinfection), 

- Biological unit processes: contaminants removal as a result of biological process (e.g. 

carbonaceous, organic matter removal, nitrification, denitrification).  

They are usually classified into several treatment levels (Fig. 6): (1) preliminary treatment, (2) primary 

treatment (physico-chemical), (3) secondary treatment (biological) and (4) tertiary treatment (rare in 

developing countries) (Berlioz-Barbier, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Treatment levels and their characteristics usually employed within a WWTP (from Berlioz-

Barbier, 2015; Von Sperling, 2007). 
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1.2.3 Micropollutants 

The current worldwide production of chemical substances is estimated at 400 million tons compared 

to around 1 million tons in 1930 (CEDEF, 2006). In the 1970’s/1980’s, micropollutants were associated 

with industry and urban discharge (Briand et al., 2018) whereas since 1990’s, they are mainly linked to 

agricultural (i.e. pesticides) and daily consumer products (Fig. 7).   

 

Fig. 7: Micropollutant sources since 1970 according to Briand et al. (2018) and Moilleron (2016). 

Micropollutants are potentially toxic, natural or synthetic, inorganic or organic substances. They are 

persistent and bioaccumulative in the environment at low concentrations (in the range of ng/L to µg/L) 

(Sousa et al., 2019). Their introduction into the aquatic environment at any point of their life cycle and 

in different steps of the water cycle (European Environment Agency, 2018a; Le Treut, 2013b) is a result 

of continuous and/or uncontrolled release and their resistance to degradation (Cruzeiro et al., 2016; 

Radović et al., 2015). Indeed, many factors such as compound specificity and the treatment used, 

influence their efficient removal in WWTP, which were not originally designed to eliminate this type 

of pollutants (Sousa et al., 2019). This was confirmed by concentrations reported in the litterature in 

Table 1. These information originated from seventy-four publications, published between 1995 and 

2018. The aim of this data base was not only to compare ranges of analyte concentrations reported in 

the literature with those found in the present study but also to know the maximum amount the studied 

analytes could reach in WWTP effluents. Plant size, treatment processes and analytical methods were 

not included as selection criteria because of the wide number of used technics and, sometimes, the 

paucity of information about them. In addition, only concentrations of each analyte were 

1970 1980 1990 2000 2010
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Cities Food

Plastics

Pharmaceuticals
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independently reported instead of concentrations of the whole analytical group due to the varying 

number of analytes considered into each group in studies. Generally, a large number of publications 

was achieved on metal, alkylphenol, musk and pharmaceutical analyses (Table 1). The interest of the 

scientific community in studying these specific molecules may be linked to their important probability 

of occurrence and great concentrations already detected in urban discharges which allow to ensure 

their detection despite the cost and the time these analyses required. By contrast, studies on PCBs and 

OCPs were scarce (Deblonde et al., 2011; Miège et al., 2009).  

Table 1: Comparison of analyte concentrations (expressed as ng.L-1) detected in treated effluents 

reported in the literature. Analytes were ordered in alphabetic order. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substance families Analytical Groups Analytes Range of concentrations (ng.L-1) References

Metal Antimony (Sb) / /

Metal Arsenic (As) 500 - 9 200 5

Metal Cadmium (Cd) 20 - 170 000 4, 5, 8, 11, 43, 47, 48

Metal Copper (Cu) 690 - 190 000 4, 5, 11, 43, 47, 48

Metal Chromium (Cr) 400 - 5 600 000 4, 5

Metal Lead (Pb) 40 - 160 000 4, 5, 8, 11

Metal Molybdenum (Mo) / /

Metal Nickel (Ni) 330 - 620 000 4, 5, 11, 43, 46, 47, 48

Metal Silver (Ag) 600 - 12 200 5, 11

Metal Tin (Sn) <LOQ 11

Metal Vanadium (V) 500 - 2 200 5

Metal Mercury (Hg) 100 - 9 500 5, 8, 11

Organic PAH Acenaphthene 156 - 164 3, 71

Organic PAH Acenaphthylene <DL - 336 3, 71

Organic PAH Anthracene 13 - 151 3, 32, 71

Organic PAH Benzo[a]anthracene 0.9 - 213 3, 32, 71

Organic PAH Benzo[a]pyrene 0.7 - 3.0 3, 32

Organic PAH Benzo[b]fluoranthene 1.5 - 4.2 3, 32

Organic PAH Benzo[g,h,i]perylene 0 - 2.3 3, 32

Organic PAH Benzo[k]fluoranthene 0.5 - 2.5 3, 32

Organic PAH Chrysene 0.7 - 285 3, 32, 71

Organic PAH Dibenzo[a,h]anthracene 0 - 3.3 3, 32

Organic PAH Fluoranthene 2.4 - 210 3, 32, 71

Organic PAH Fluorene 2.6 - 200 3, 32, 71

Organic PAH Indeno[1,2,3-cd]pyrene 0.8 - 3.3 3, 32

Organic PAH Naphthalene 101 - 3 490 3, 71

Organic PAH Phenanthrene 10.2 - 169 3, 32, 71

Organic PAH Pyrene 1.4 - 201 3, 32, 71

Organic PCB PCB 18 / /

Organic PCB PCB 28+31 / /

Organic PCB PCB 44 / /

Organic PCB PCB 52 0 3

Organic PCB PCB 101 0 3

Organic PCB PCB 118 0 3

Organic PCB PCB 138 0 3

Organic PCB PCB 149 / /

Organic PCB PCB 153 0 3

Organic PCB PCB 180 / /

Organic PCB PCB 194 / /

Organic AP NP <30 - 37 000 3, 14, 17, 20, 21, 22, 27, 28, 32, 33, 37, 38, 43, 47, 48, 49

Organic AP NPEO1 6 - 47 700 3, 33, 71

Organic AP NPEO2 631 - 12 600 3, 71

Organic AP 4tOP 2 - 1 700 14, 17, 18, 20, 21, 22, 28, 32, 33, 37, 38

Organic AP 4nOP <LQ - 74 33

Organic OCP Aldrin ND - 0.048 51

Organic OCP Alpha BHC 0.630 - 3.55 51

Organic OCP Alpha Endosulfan / /

Organic OCP Beta BHC 0.168 - 1.44 51

Organic OCP Bêta Endosulfan / /

Organic OCP Delta BHC / /

Organic OCP Dieldrine ND - 0.0250 51

Organic OCP Endosulfan Sulfate / /

Organic OCP Endrin / /

Organic OCP Endrin Aldehyde / /

Organic OCP Endrin Ketone / /

Organic OCP Gamma BHC 0.241 - 212 51, 71

Organic OCP Heptachlor ND - 0.001 51

Organic OCP Heptachlor Epoxide ND - 1.24 51

Organic OCP Methoxychlor / /

Organic OCP 4,4'-DDD ND 51

Organic OCP 4,4'-DDE 0.028 - 0.161 51

Organic OCP 4,4'-DDT / /

Priority substances
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Substance families Analytical Groups Analytes Range of concentrations (ng.L-1) References

Organic Musk ADBI 14 - 129 40, 41, 72

Organic Musk AHMI 5 - 13 72

Organic Musk AHTN 24 - 2 080 23, 28, 36, 40, 41, 42, 43, 45, 70, 72

Organic Musk ATII 8 - 203 40, 72

Organic Musk HHCB 10 - 7 030 23, 28, 36, 40, 41, 42, 45, 70, 72

Organic Musk HHCB-lactone 66 - 4 000 36, 45

Organic Musk MA / /

Organic Musk MK 13 - 177 41, 70, 72

Organic Musk MM / /

Organic Musk MX 1.4 - 16.1 70, 72

Organic Sunscreen Benzophenone 3 <79 - 230 13, 23

Organic Sunscreen EHMC 126 - 347 57

Organic Sunscreen OC 0 - <60 57, 73, 74

Organic Sunscreen OD-PABA 56 57

Organic Sunscreen 3-BC / /

Organic Sunscreen 4-MBC 43 57

Organic Pharmaceutical (Pain killer) Acetaminophen 3 - 6 000 6, 13, 15, 16, 28, 54, 62

Organic Pharmaceutical (Glaucoma) Acetazolamide / /

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid 0.1 - 3 170 2, 6

Organic Pharmaceutical (Antiarrhythmic) Amiodarone / /

Organic Pharmaceutical (Antibiotics) Amoxicillin 4.7 - 66 7, 52, 64

Organic Pharmaceutical (Antibiotics) Ampicilline ND - 498 53

Organic Pharmaceutical (Antihypertensive) Atenolol 2 - 7 600 7, 12, 13, 18, 23, 28, 32, 54, 64

Organic Pharmaceutical (Antibiotics) Azithromycin <LOQ 11

Organic Pharmaceutical (Psychotropic) Caffeine 60 - 34 198.3 1, 2, 13, 15, 19, 23, 65

Organic Pharmaceutical (Anticonvulsant) Carbamazepine 1 - 7 570 2, 6, 12, 13, 18, 19, 23, 28, 32, 33, 50, 54, 55, 60, 61, 64

Organic Pharmaceutical (Antibiotics) Ciprofloxacin 51 - 5 600 1, 7, 9, 11, 19, 32, 33, 54

Organic Pharmaceutical (Antibiotics) Clarithromycin 18.1 - 536 7, 9, 11

Organic Pharmaceutical (Anticancer) Cyclophosphamide 20 6

Organic Pharmaceutical (Anti-inflammatory) Diclofenac <1 - 2 830 2, 6, 10, 13, 16, 18, 19, 23, 25, 26, 28, 30, 31, 32, 33, 34, 35, 40, 53, 60, 63, 64, 66, 67 

Organic Pharmaceutical (Antibiotics) Doxycycline 46 9

Organic Pharmaceutical (Hormones) E1 0.15 - 80 2, 17, 21, 31, 32, 40, 60, 63, 68

Organic Pharmaceutical (Hormones) E2 0.1 - 16 2, 13, 17, 21, 31, 33, 39, 60, 63, 68

Organic Pharmaceutical (Hormones) EE2 0.2 - 180 2, 6, 17, 21, 31, 33, 60, 63, 68

Organic Pharmaceutical (Antibiotics) Erythromycin A 1.3 - 2 840 9, 10, 11, 16, 18, 23, 28, 29, 32, 33, 35, 58, 63, 64, 66, 67

Organic Pharmaceutical (Antibiotics) Flumequine 257 19

Organic Pharmaceutical (Glycemia) Gemfibrozil <2.5 - 5 240 2, 6, 13, 16, 19, 23, 26, 28, 40, 54

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide 439.1 - 2 800 7, 54

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide / /

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen 0.42 - 8 200 2, 6, 7, 10, 13, 16, 18, 19, 23, 25, 28, 29, 31, 32, 33, 35, 40, 54, 56, 60, 61, 63, 64, 66, 67

Organic Pharmaceutical (Antibiotics) Josamycin / /

Organic Pharmaceutical (Pain killer) Ketoprofen <3 - 3 920 2, 6, 13, 16, 18, 19, 24, 28, 30, 32, 33, 40, 64

Organic Pharmaceutical (Anxiolytics) Lorazepam <LQ - 23 32, 33

Organic Pharmaceutical (Antihypertensive) Losartan / /

Organic Pharmaceutical (Antiarrhythmic) Metoprolol 3 - 2 200 6, 12, 13, 16, 18, 23, 64

Organic Pharmaceutical (Antibiotics) Metronidazole 29 - 373 11, 18, 32, 64

Organic Pharmaceutical (Pain killer) Niflumic acid / /

Organic Pharmaceutical (Anxiolytics) Nordazepam / /

Organic Pharmaceutical (Antibiotics) Norfloxacin 29 - 364 9, 32, 52

Organic Pharmaceutical (Antibiotics) Ofloxacin 10 - 980 7, 9, 11, 32, 33, 52, 54, 63

Organic Pharmaceutical (Anxiolytics) Oxazepam 5 - 1 766 19, 32, 33, 64, 69

Organic Pharmaceutical (Antibiotics) Oxolinic acid / /

Organic Pharmaceutical (Pain killer) Phenazone 410 6

Organic Pharmaceutical (Antibiotics) Piperacillin / /

Organic Pharmaceutical (Antibiotics) Roxithromycine 18 - 155 9, 32, 33, 52

Organic Pharmaceutical (Antibiotics) Rifampicin / /

Organic Pharmaceutical (Antibiotics) Spiramycin / /

Organic Pharmaceutical (Antibiotics) Sulfadiazine 8 - 105 9, 19, 32

Organic Pharmaceutical (Antibiotics) Sulfamethazine 12 - 363 9, 52, 54

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole <3 - 10 800 1, 2, 7, 9, 13, 15, 16, 18, 19, 20, 23, 25, 32, 33, 50, 54, 59, 64

Organic Pharmaceutical (Antibiotics) Tetracycline 34 - 977 1, 9, 11, 33, 52

Organic Pharmaceutical (Antibiotics) Trimethoprim 9 - 3 050 1, 2, 11, 13, 15, 16, 18, 19, 23, 28, 30, 32, 35, 52, 54, 64, 66, 67

Organic Pharmaceutical (Antibiotics) Tylosine / /

Organic Pharmaceutical (Contraceptif) 19-Norethindrone / /

Emerging substances

Table 1: (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1, Batt et al., 2006; 2, Martín et al., 2012; 3, Sánchez-Avila et al., 2009; 4, Singh et al., 2004; 5, Busetti et al., 2005; 6, Ternes, 1998; 7, Zuccato et al., 2005; 8, 

Raach et al., 1999; 9, Miao et al., 2004; 10, Kay et al., 2017; 11, Östman et al., 2017; 12, Alder et al., 2010; 13, Behera et al., 2011; 14, Cespedes et al., 2008; 15, 

Choi et al., 2008; 16, Gracia-Lor et al., 2012; 17, Janex-Habibi et al., 2009; 18, Kasprzyk-Hordern et al., 2009; 19, Loos et al., 2013; 20, Martin Ruel et al., 2010; 21, 
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66, Roberts and Thomas, 2006; 67, Ashton et al., 2004; 68, Koh et al., 2009; 69, Baker and Kasprzyk-Hordern, 2011; 70, Gatermann et al., 2002; 71, Sánchez-Avila 

et al., 2011; 72, Lee et al., 2003; 73, Bueno et al., 2012 ; 74 , Rodil et al., 2012. 



37 

Once in the aquatic environment, they can cause various (biochemically and physiologically) harmful 

effects on organisms: endocrine disruption, behavioral changes, energy metabolism disturbances and 

genetic responses (Patisaul and Adewale, 2009; Vajda et al., 2011, 2008; Wilkinson et al., 2018). 

Therefore, over the past two decades, particular and increasing attention is paid to micropollutants 

due to their negative impacts on the environment (Carey and McNamara, 2015; Sousa et al., 2019). 

Even though some substances are monitored and regulated (i.e. 45 priority substances through 

environmental quality standards) within European Directives (EC, 2013, 2000), many of them are still 

not regulated (i.e. contaminants of emerging concern, CECs; Hermes et al., 2018). They were thus 

identified as relevant environmental contaminants and became a major concern (Mezzelani et al., 

2018). These two types of chemical substances belong to three main groups: (1) metals (e.g. Cadmium, 

Mercury, Nickel, Lead, Silver, Chromium, Zinc, etc.); (2) organometals (e.g. inorganic mercury, 

monomethylmercury, dibutyltin, tributyltin, organotins, etc.); and (3) organics (e.g. polycyclic aromatic 

hydrocarbons, polychlorinated biphenyls, alkylphenols, pesticides, pharmaceuticals). 

(1) Metals may be naturally present in the environment (through dissolution of reservoir rocks for 

example) or introduced by human (through anthropogenic activities). Their concentration may widely 

vary due to physical-chemical conditions (e.g. temperature, salinity, pH, etc.) (Deycard et al., 2014).  

(2) Organometals are generally compounds with at least one metal-carbon polarized bond (Cruz et al., 

2017). They may be formed by arsenic, mercury, tin and lead, may occur naturally or associated to 

anthropogenic inputs (used in different industrial processes, as a component of antifouling paints, etc.) 

(Gadd, 1993; Hoch, 2001). Due to their biocidal properties and their wide use (e.g. worldwide 

production estimated at 50 000 tons only for organotins) they constitute an environmental threat, 

especially for aquatic ecosystems (Ayanda et al., 2012; Cruz et al., 2017; Deycard et al., 2014).  

(3) Organics may be the result of natural sources and/or human activities. For example, PAHs 

(Polycyclic aromatic hydrocarbons) come from either natural sources or anthropogenic activities 

(partial oil burning, tarmac manufacture, etc.), from benzene cycle fusion (Borja and Collins, 2004).  

They are sparingly soluble in water explaining their adsorption and concentration on suspended 

matter, sediments or fish lipids. Among other organic substances, PCBs (Polychlorobyphenyls) are 

organochlorine aromatic compounds derived from biphenyl, so they constitute chlorine synthetic 

substances not naturally present in the environment. Some of them havebeen identified as priority 

hazardous substances by the WFD due to their low biodegradability. Alkylphenols are anionic 

surfactants present in soaps, paint, cosmetics, etc. No specific treatment is used in WWTP to eliminate 

these substances. As such, they are found in sediments and other soil types due to their highly lipophilic 

nature and persistence features. They were also identified as endocrine disruptors for human and 
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animals (Bolong et al., 2009; Daughton and Ternes, 1999). Moreover, thousands tons of 

pharmaceuticals are also now widely used worldwide for human (3 000 molecules) and veterinary uses 

(300 molecules) to prevent, cure and treat diseases (Ali et al., 2018; Berlioz-Barbier, 2015; Puckowski 

et al., 2016). Even given the high dilution rate of the ocean, their concentrations in the marine 

environment may vary from few ng/L to hundreds of μg/L (Mezzelani et al., 2018). Pharmaceutical 

molecules can be distinguished in pharmacotherapeutic classes (Brandao et al., 2013; Fent et al., 2006) 

according to their medical function such as: (A) antibiotics, (B) steroid hormones, (C) antihypertensive 

drugs, (D) neuroactive drugs and (E) analgesic and anti-inflammatory drugs (Puckowski et al., 2016).  

(A) Antibiotics refer to any (natural or synthetic) drug, agent or substance, that has toxic actions 

on microorganism growth (e.g. bacteria, fungi, protozoa) (Puckowski et al., 2016). They are 

widely used in human medicine (the third most frequently prescribed group of 

pharmaceuticals), veterinary medicine (more than 70% of all consumed pharmaceuticals) and 

in aquaculture around the world to treat microbial infectious diseases, with an annual 

estimation around hundreds of thousands of tons with a maximum in China (Binh et al., 2018; 

Kümmerer, 2009a; Liu et al., 2018; Puckowski et al., 2016). Once in the environment, several 

factors (e.g. physical-chemical properties, climatic conditions, pH, soil type) may influence the 

fate and effects of these substances (Puckowski et al., 2016; Sarmah et al., 2006). The 

consequence of their introduction (even at low concentrations) may be the formation of 

antibiotic resistant bacteria which could constitute a potential threat to environment and 

human health (Binh et al., 2018; Kümmerer, 2009b; Liu et al., 2018). 

(B) Steroids are organic compounds having many functions, both in human and animal organisms 

and belonging to the lipid molecules family (Puckowski et al., 2016). They can be divided into 

three groups: cholesterol, bile salts and steroid hormones (a steroid that acts as a hormone) 

(Puckowski et al., 2016). The latter is itself divided into glucocorticoids, mineralocorticoids, 

androgens, estrogens and progestogens (Puckowski et al., 2016). In the case of estrogens, even 

if they are partially eliminated by WWTP (with still a significant level after treatment, ng.L-1), 

the main source in aquatic environment are anyway the WWTP (Tan et al., 2007; Ternes et al., 

1999). Once in the aquatic environment, they may have negative effects on the hormonal 

functions of humans and animals as the decrease of fertility or the emergence of problems in 

development and growth which may cause losses of habitats and biodiversity (Jauković et al., 

2017; Liu et al., 2009; Naldi et al., 2016).. 

(C) Antihypertensive drugs (calcium channel blockers, beta-blockers, angiotensin converting 

enzyme, ACE, inhibitors and angiotensin II receptor antagonists, sartans) are used in human 

medicine to lower or moderate the high blood pressure (Hanselin et al., 2011; Puckowski et 
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al., 2016). Cardiovascular diseases constitute a current and growing problem around the world 

which are therefore accompanied by a high consumption of associated medications (Bayer et 

al., 2014; Godoy et al., 2015; Gu et al., 2012).  

(D) Neuroactive drugs are a group of medications (anti-epileptics and antidepressants) that treat 

epilepsy, depression, eating disorders and personality disorders (Brooks et al., 2003). Their 

consumption has drastically increased (by 60%) over the past decade worldwide (Silva et al., 

2015). The most common are paroxetine, carbamazepine, fluoxetine and sertraline (Puckowski 

et al., 2016). As above substances, they are discharged in aquatic environment even after their 

treatment by WWTP. Once in the aquatic environment, neuroactive compounds (e.g. 

antiepilectics, antidepressants) can alter and modulate nervous system functions of organisms 

and behavioral parameters (e.g. inhibition of reproduction and physiological development, 

stress responses, scototaxis, thigmotaxis, shoal cohesion, predator avoidance, feeding 

behaviour, locomotion of fish and invertebrates (e.g. swimming performance) and 

consequently, growth (Brandao et al., 2013; Puckowski et al., 2016). 

(E) Anti-inflammatory drugs are nonsteroidal drugs (NSAIDS) including analgesics. They are used 

as painkillers in both human and veterinary medicines (Puckowski et al., 2016). “They are one 

of the most important groups of pharmaceuticals in the world” (Cleuvers, 2004) and their 

production is estimated at several kilotons annually (Cleuvers, 2004). The most common are 

ibuprofen, naproxen, diclofenac and ketoprofen (Kosjek et al., 2005).  

1.3 Communities’ response  

Even if treatment plants aim to remove coarse solids (i.e., primary treatment), organic matter (i.e., 

secondary treatment), and to ensure the reduction of nutrient (such as N and P) and bacteria to prevent 

eutrophication (i.e., tertiary treatment), they do not treat contaminants which may have toxic effects 

on aquatic organisms (Cabral-Oliveira and Pardal, 2016; Stark et al., 2016). Sewage discharges are thus 

responsible for nutrient and organic enrichment, increased sedimentation and turbidity, decreased 

salinity (Azzurro et al., 2010; Terlizzi et al., 2005) and contamination (by heavy metals, priority and 

emerging contaminants, fecal sterols and bacteria) (Costanzo et al., 2001; Millennium Ecosystem 

Assessment -MEA, 2005). Therefore, sewage discharges constitute an important stressor for marine 

communities in many intertidal and subtidal systems around the world (Andral et al., 2011; Arévalo et 

al., 2007; Becherucci et al., 2016; Borowitzka, 1972; Littler and Murray, 1975; Liu et al., 2007; O’Connor, 

2013; Vinagre et al., 2016a). Depending on their type, source and level, sewage discharges may have 

direct or indirect effects (biological, chemical or physical) on the environment (Borja et al., 2011a; Del-

Pilar-Ruso et al., 2010) which may varies from little or no impact to major changes (Pastorok and 

Bilyard, 1985). 
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In the marine environment, organisms can be thus used to give the fraction of the bioavailable 

environmental pollution (Gust et al., 2010), to monitor the level of sea water pollution (Borja and 

Collins, 2004; Claisse, 1991), evaluate its transfer (bioavailability and bioaccumulation) and inform of 

associated effects (Bergé and Vulliet, 2015). Indeed, they are known to have the ability to accumulate 

contaminants present in the water. Different terms are used to define the process about the fate of 

contaminants in different environment compartments (biological or physical): (1) Bioconcentration, 

(2) Bioaccumulation and (3) Biomagnification  and may be calculated through three bio-uptake factors 

(Bodin, 2005; Casas, 2005; Mackay et al., 2018; Puckowski et al., 2016; Zenker et al., 2014): 

(1) Bioconcentration is the accumulation of a dissolved substance by an aquatic organism with no 

dietary intake. It means that the concentration of test chemical substance in organism or tissue 

is higher than those in its environment (e.g. sediment or water). The bioconcentration factor 

(BCF) (in L.kg-1) is the ratio between the concentration of the substance of interest in the biota 

sample and the concentration in the surrounding environment. 

(2) Bioaccumulation is the accumulation of a substance, dissolved in water, by an aquatic 

organism with dietary intake (i.e. absorption through direct contact with water and food 

ingestion). The organism absorbs faster than it secretes a substance presents in its 

environment. The bioaccumulation factor (BAF) (in L.kg-1) is the ratio between the 

concentration of a substance in the organism and the concentration of the substance in the 

surrounding medium. It highly depends on the compound bioavailability in the environment 

which may vary with the water physico-chemical features (pH, salinity, oxygen, etc.). 

(3) Biomagnification is when the concentration of a test substance in a predator is higher than in 

its food, the predator’s prey. This means that contaminant concentrations increase as it passes 

up the food chain through two or more trophic levels. The biomagnification factor (BMF) (in 

kg.g−1) is the ratio of organism to diet concentrations (i.e. between the concentration of a 

substance in the predator and this same concentration in the prey).  

Thanks to the improvement of analytical methodologies, especially on the detection of low 

concentrations, the chemical substances are increasingly detected in a variety of biological samples 

(Puckowski et al., 2016). But, until now, few studies have been undertaken to assess pharmaceuticals 

in wild biota leading to a knowledge gap in the extent and route of exposure these organisms 

encounter (Miller et al., 2018). Indeed, the database achieved to identify concentrations already 

reported in marine organisms support this information (Table 2). One hundred and forty-three 

publications, published between 1963 and 2019, were listed in the latter. As studies achieved on 

wastewaters, metals were the compounds identified in the highest concentrations even though no 
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Substance families Analytical Groups Analytes Species Range of concentrations (ng.g - 1) References

Metal Antimony (Sb) / /

Metal Arsenic (As) Sea cucumbers 120 - 33 300 15, 19

Other algae 180 - 1 441 000 15, 39, 58, 97

Cystoseira  spp. 4 200 - 131 00 39

Ulva spp. 2 060 - 85 500 39, 50, 97

Other mollusca 920 - 17 200 15, 97

Mussels 2 600 - 58 400 78, 97, 107, 108, 132

Sponges 320 - 1 090 139

Metal Cadmium (Cd) Sea cucumbers 40 - 128 930 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19

Other algae <20 - 28 000 15, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 44, 49, 56, 57, 97

Cystoseira  spp. <20 - 2 340 38, 39, 40, 56

Ulva spp. 0 - 179 600 38, 39, 42, 43, 44, 45, 46, 48, 50, 97

Gelidium  spp. 210 - 450 56

Other mollusca <80 - 299 000 15, 60, 61, 81, 97

Limpets 23 - 78 300 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 92, 96, 97

Mussels 400 - <10 000 76, 78, 97, 107, 108, 132

Sponges 40 - 79 900 81, 139, 141, 143

Metal Chromium (Cr) Sea cucumbers <4 - 9 310 1, 15, 18, 19

Other algae <60 - 110 700 15, 24, 27, 28, 29, 31, 32, 33, 34, 35, 38, 39, 44, 49, 57

Cystoseira  spp. <60 - 775 000 36, 38, 39

Ulva spp. <60 - 45 700 38, 39, 43, 44, 50

Other mollusca 420 - 12 200 15, 60, 81

Limpets 200 - 23 200 64, 68, 70, 71, 72, 73, 92

Mussels <500 - 24 000 76, 78, 107, 108, 132

Sponges 2 800 - 12 300 81, 139

Metal Copper (Cu) Sea cucumbers 20 - 100 450 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19

Other algae <30 - 302 000 15, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 44, 49, 56, 57, 97

Cystoseira  spp. 1 700 - 8 780 38, 39, 56

Ulva spp. 1 820 - 750 000 38, 39, 42, 44, 48, 50, 97, 100

Gelidium  spp. 1 340 - 6 600 56

Other mollusca 3 100 - 1 876 000 15, 60, 61, 81, 97

Limpets 600 - 45 900 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 92, 96, 97

Mussels 2 000 - 17 300 76, 78, 97, 107, 108, 132

Sponges 350 - 299 300 81, 139, 140, 143

Metal Lead (Pb) Sea cucumbers 26 - 97 520 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

Other algae <100 - 250 000 15, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 44, 49, 56, 57

Cystoseira  spp. 0 - 28 600 36, 38, 39, 40, 56

Ulva spp. 0 - 54 000 38, 39, 42, 43, 44, 45, 46, 48, 50

Gelidium  spp. 90 - 83 56

Other mollusca 100 - 184 000 15, 60, 81

Limpets 300 - 95 600 64, 65, 66, 67, 69, 70, 71, 73, 92, 96

Mussels 370 - 25 000 76, 78, 107, 108, 132

Sponges <200 - 32 500 81, 140, 143

Metal Molybdenum (Mo) Other mollusca 200 81

Mussels 100 - 1 000 76

Sponges 200 - 1 200 81

Metal Nickel (Ni) Sea cucumbers <130 - 35 500 1, 4, 8, 9, 12, 15

Other algae <100 - 70 600 15, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38, 56, 57

Cystoseira  spp. <100 - 9 100 38, 56

Ulva spp. <100 - 225 800 38, 42, 46, 48, 50

Gelidium  spp. 4 450 - 15 050 56

Other mollusca 700 - 48 400 15, 81

Limpets 600 - 83 700 64, 65, 66, 67, 68, 70, 71, 72, 92, 96

Mussels 800 - 17 000 76, 78, 107, 108, 132

Sponges 1 260 - 9 130 81, 139

Metal Silver (Ag) Sea cucumbers <70 - <250 15

Other algae <70 - 510 15

Other mollusca <140 - 24 100 15

Mussels 100 - 300 76

Metal Tin (Sn) / /

Metal Vanadium (V) Ulva spp. 6 970 - 9 240 50

Mussels 1 970 - 8 000 76, 78

Metal Mercury (Hg) Sea cucumbers 540 - 445 690 15, 18

Other algae <5 - 10 200 15, 56

Cystoseira  spp. <5 - 10 56

Gelidium  spp. 10 56

Other mollusca 8 220 - 111 000 15

Limpets ND - 90 73

Mussels 39 - 5 000 107, 108

Priority substances

specific species was highlighted as the main accumulator of these compounds. By contrast, much less 

works were done on the study of pharmaceutical compounds in benthic organisms.  

Table 2: Comparison of analyte concentrations (metals expressed as mg.kg-1 and organic compounds 

as ng.g-1 on a dry weight basis) detected in different marine organisms reported in the literature. 

Asterisk (*) indicates results expressed on a wet weight basis. Analytes were ordered in alphabetic 

order. 
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Substance families Analytical Groups Analytes Species Range of concentrations (ng.g - 1) References

Organic PAH Acenaphthene Sea cucumbers 0.85 - 57.81 21

Other mollusca 0 - 1.0 81, 115

Limpets 12.40 - 43.47 135

Mussels 0 - 287* 80, 106, 108, 111 112*, 113*, 114

Sponges 1.0 - 4.8 80, 81

Organic PAH Acenaphthylene Sea cucumbers 0.15 - 49.01 21

Other mollusca 0 - 1.0 81, 115

Limpets 15.06 - 440.2 135

Mussels <0.063* - 718.0* 80, 108 112*, 113*

Sponges 0.1 - .8.3 80, 81

Organic PAH Anthracene Sea cucumbers 0.28 - 39.95 21

Other mollusca 3.0* - 47.9 22*, 81, 115

Limpets 2.1* - 72.92 133*, 135

Mussels 0 - 287.0* 79, 80, 87*, 91*, 106, 107, 108, 110, 111 112*, 113*, 114

Sponges 3.0 - 141.0 22*, 80, 81

Other marine organisms 0.98 - 7.15 22*, 79

Organic PAH Benzo[a]anthracene Sea cucumbers 0.33 - 36.73 21, 22*

Other mollusca 1.0* - 28.4 22*, 81, 115 

Limpets 0.02 - 80.50 135, 136

Mussels 0 - 2214.0* 79, 80, 87*, 91*, 106, 107, 108, 110, 111 112*, 113*, 114

Sponges 1.0* - 85.6 22*, 80, 81

Other marine organisms 0.11 - 2.95 79

Organic PAH Benzo[a]pyrene Sea cucumbers 0.02 - 58.0* 21, 22*

Other algae 2.0 - 64.0 22*, 51, 59, 60

Other mollusca 3.4 - 540.0 22*, 51, 81, 115 

Limpets 0.01 - 70.30 132, 51, 133*, 135, 136

Mussels 00.019* - 3339.0* 51, 79, 80, 87*, 106, 107, 108, 111 112*, 113*, 114, 132

Sponges <0.01 - 89.8 22*, 51, 80, 81, 142

Other marine organisms 0.5 - 3.34 79

Organic PAH Benzo[b]fluoranthene Sea cucumbers 1.69 - 7.64 21

Other algae 10.0* 22*

Other mollusca 7.0* - 33.1 22*, 81 

Limpets 0.02 - 61.11 135, 136

Mussels 0 - 242.0 79, 80, 87*, 106, 110, 111, 114

Sponges 7.0* - 138.0 22*, 80, 81

Other marine organisms 0.3 - 1.53 79

Organic PAH Benzo[g,h,i]perylene Sea cucumbers 1.36 - 1.83 21

Other mollusca 0 - 47.0* 22*, 81, 115

Limpets 0.04 - 1.19 132, 136

Mussels 0 - 659.0 79, 80, 87*, 106, 107, 108, 110, 111 112*, 113*, 114, 132

Sponges 1.0 - 165.0* 22*, 80, 81

Other marine organisms 1.02 - 2 79

Organic PAH Benzo[k]fluoranthene Sea cucumbers 0.18 - 32.98 21

Other mollusca 7.0* - 71.0* 22*, 81 

Limpets 0.01 - 1.03 132, 136

Mussels 0 - 178.46 79, 80, 87*, 91*, 106, 110, 111, 114, 132

Sponges 5.4 - 48.0 22*, 80, 81

Other marine organisms 0.13 - 9.0* 22*, 79

Organic PAH Chrysene Sea cucumbers 0.09 - 22.99 21, 22*

Other algae 5.0* 22*

Other mollusca 3.0* - 86.2 22*, 81, 115 

Limpets 0.07 - 791.7 133*, 135, 136

Mussels 0 - 6372.0* 79, 80, 87*, 91*, 106, 107, 110, 111 112*, 113*, 114

Sponges 2.5 - 546.0* 22*, 80, 81

Other marine organisms 0.83 - 5.3 79

Organic PAH Dibenzo[a,h]anthracene Sea cucumbers 0.08 - 0.059* 21, 22*

Other algae 36.0* 22*

Other mollusca 0 - 73.0* 22*, 81, 115

Limpets 0.01 - 1512 135, 136

Mussels 0 - 405.0* 79, 80, 106, 107, 108, 110, 111 112*, 113*, 114

Sponges 1.0 - 449.0* 22*, 80, 81

Organic PAH Fluoranthene Sea cucumbers 0.33 - 37.91 21, 22*

Other algae 16.0* 22*

Other mollusca 5.0* - 430.0* 22*, 81, 115

Limpets 0.08 - 74.67 132, 133*, 135, 136

Mussels 0 - 979.0 79, 80, 87*, 91*, 106, 107, 108, 110, 111 112*, 113*, 114, 132

Sponges 0.26 - 121.8 22*, 80, 81, 142

Other marine organisms 0.35 - 2.9 79

Organic PAH Fluorene Sea cucumbers 0.5 - 28.89 21

Other mollusca 0 - 22.0* 22*, 81, 115

Limpets 0.03 - 15.78 133*, 135, 136

Mussels <0.014* - 115.0* 87*, 91*, 106, 108, 110, 111 112*, 113*, 114

Sponges 8.8 - 28.9 81

Table 2: (continued) 
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Table 2: (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substance families Analytical Groups Analytes Species Range of concentrations (ng.g - 1) References

Organic PAH Indeno[1,2,3-cd]pyrene Sea cucumbers 2.75 - 3.1 21

Other mollusca 0 - 13.0 81, 115

Limpets 0.01 - 0.02 136

Mussels 0 - 747.0 79, 80, 106, 107, 108, 110, 111 112*, 113*, 114

Sponges 1 - 109.0 22*, 80, 81

Other marine organisms 1.6 79

Organic PAH Naphthalene Sea cucumbers 1.11 - 8.93 21

Other mollusca 2.9 - 111.9 81, 115

Limpets 308.4 - 451.0 135

Mussels <0.028* - 1286.0* 80, 106, 108, 110, 111, 112*, 113*

Sponges 3.7 - 335 80, 81

Organic PAH Phenanthrene Sea cucumbers 1.04 - 87.17 21, 22*

Other mollusca 0 - 259.0* 22*, 81, 115

Limpets 0.23 - 17.18 132, 133*, 135, 136

Mussels 0 - 319* 79, 80, 87*, 91*, 106, 107, 108, 110, 111 112*, 113*, 114, 132

Sponges 1 - 53.2 22*, 80, 81

Other marine organisms 1.75 - 13.3 79

Organic PAH Pyrene Sea cucumbers 0.30 - 73.23 21, 22*

Other mollusca 3.0* - 58.3 22*, 81, 115 

Limpets 0.25 - 81.41 133*, 135, 136

Mussels 0 - 309.0 79, 80, 87*, 106, 107, 108, 110, 111 112*, 113*, 114

Sponges 3.0* - 127.1 22*, 80, 81

Other marine organisms 0.90 - 3.40 79

Organic PAH Total PAHs Other algae 30.0* - 4665.0 22*, 41, 51

Cystoseira  spp. 1.3 - 27.3 41

Ulva spp. 1.0 - 56.4 41, 98

Sea cucumbers 8.08 - 505.44 21, 22*

Other mollusca 4.1* - 1135.0 22*, 51, 82*, 90

Limpets 3.1* - 142925.0 51, 132, 133*, 134

Mussels 14.6 - 101.76 51, 79, 106, 107, 108, 109, 110, 111, 112*, 115, 121, 132

Sponges 4.74* - 769.0 22*, 51, 94*

Other marine organisms 12.0* - 32.63 22*, 51, 79, 99*

Organic PCB PCB 18 Other algae <0.1 - 0.31 23*, 47

Sponges 0.11* - 367.0* 23*, 93

Organic PCB PCB 28+31 Other mollusca 2.25* 23*

Organic PCB PCB 44 Sea cucumbers 0.20* - 6.06* 23*

Other algae <0.07 - 0.3 47

Other mollusca 0.35* - 1.14* 23*

Sponges 0.12* - 258.0* 23*, 93

Organic PCB PCB 52 Sea cucumbers 0.39* - 19.1* 23*

Other algae 0.11 - 2.16 23*, 47, 53

Ulva spp. 0.52 - 7.53 53

Other mollusca 0.09* - 3.16* 23*, 81

Mussels 0.06* - 50.0 87*, 107, 108, 124*, 126*

Sponges 0.21* - 1839.0* 23*, 81, 93

Organic PCB PCB 101 Sea cucumbers 0.11* - 45.0* 23*

Other algae <0.06 - 1.21 23*, 47, 53

Ulva spp. 0.31 - 2.45 53

Other mollusca 0.06* - 4.81* 23*, 81

Mussels 0.08* - 136.0 87*, 108, 124*, 126*

Sponges 0.13* - 1848.0* 23*, 81

Other marine organisms 0.16* - 0.41* 23*

Organic PCB PCB 118 Sea cucumbers 0.05* - 591.0* 23*

Other algae <0.05 - 2.84 23*,47, 53

Ulva spp. 0.2 - 0.55 53

Other mollusca 0.07* - 4.5 23*, 81

Mussels 0.15* - 78.0 87*, 107, 108, 124*, 126*

Sponges 0.11* - 1278* 23*, 81, 93

Other marine organisms 0.18* - 0.47* 23*

Organic PCB PCB 138 Sea cucumbers 0.09* - 22.9* 23*

Other algae 0.06* - 0.55 23*,47

Ulva spp. 2.6 53

Other mollusca 0.06* - 7.24* 23*, 81

Mussels 0.15* - 133.0 87*, 108, 124*, 126*

Sponges 0.18* - 1281.0* 23*, 81, 93

Other marine organisms 0.17* - 0.32* 23*
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Substance families Analytical Groups Analytes Species Range of concentrations (ng.g - 1) References

Organic PCB PCB 149 Sponges 22.92 - 610.85 93

Organic PCB PCB 153 Sea cucumbers 0.05* - 570* 23*

Other algae <0.10 - 0.68 23*,47

Other mollusca 0.017* - 21.0* 23*, 81

Mussels 0.2* - 176.0 87*, 107, 108, 124*, 126*

Sponges 0.13* - 1281.0* 23*, 81, 93

Other marine organisms 0.07* - 0.69* 23*

Organic PCB PCB 180 Sea cucumbers 0.03* - 0.74* 23*

Other algae <0.05 - 4.54 23*,47, 53

Ulva spp. 3.1 - 12.23 53

Other mollusca 0.02* - 5.01* 23*, 81

Mussels 0.05* - 41.0 87*, 107, 108, 124*, 126*

Sponges 0.15* - 1037.0* 23*, 81, 93

Other marine organisms 0.03* - 0.50* 23*

Organic PCB PCB 194 Sponges 12.56 - 25.53 93

Organic PCB Total PCBs Sea cucumbers 0.03* - 1279.0* 23*

Other algae 0.39* - 20.0 23*,41, 55

Cystoseira  spp. 0.4 - 4.2 41

Ulva spp. 0.1 - 25.0 41, 54

Other mollusca 0.029* - 8836.0 23*,77, 82*, 116

Limpets 0.064* - 39.0* 132*, 137, 138*

Mussels 0.55* - 591.0 107, 108, 116, 124*, 126*, 132

Other marine organisms 0.10* - 3.0* 23*

Sponges 0.65* - 9740.0* 23*

Organic AP NP Sea cucumbers 194.7 - 358.1 20, 101

Ulva spp. 7.5 - 50.4 101

Other mollusca 35.5 - 538.6 101

Mussels 2.0 - 3.0 104, 105, 117, 118, 119, 120, 121, 122, 123

Organic AP NPEO1 Sea cucumbers 14.5 - 29.3 20

Mussels 6.3 - 300.0 87*, 104, 105

Organic AP NPEO2 Sea cucumbers 1.83 - 3.87 20

Organic AP 4nOP Mussels <1.7 117

Organic AP 4tOP Mussels 0.3 - 54.4 117, 118, 123

Mussels 0 - 823.0 104, 105, 125

Organic OCP Aldrin Other algae Not detectable 37

Cystoseira  spp. Not detectable 36

Mussels 0.04 - 40.3* 110, 124*, 126*

Organic OCP Alpha BHC Other algae Not detectable 37

Cystoseira  spp. Not detectable 36

Mussels 3.0* - 47.6* 126*

Organic OCP Alpha Endosulfan / /

Organic OCP Beta BHC Other algae Not detectable 37

Cystoseira  spp. Not detectable 36

Mussels 0.02 - 102.2* 110, 126*

Organic OCP Bêta Endosulfan / /

Organic OCP Delta BHC Other algae 12.2 37

Cystoseira  spp. Not detectable 36

Organic OCP Dieldrine Other algae Not detectable 37

Cystoseira  spp. Not detectable 36

Mussels 0.066 - 58.7* 124*, 126*

Organic OCP Endosulfan Sulfate / /

Organic OCP Endrin Other algae Not detectable 37

Cystoseira  spp. Not detectable 36

Mussels 0.170 - 0.257 124*

Organic OCP Endrin Aldehyde Mussels 0.01 - 4.5 110

Organic OCP Endrin Ketone / /

Organic OCP Gamma BHC Other algae 27.6 37

Cystoseira  spp. 22.28 36

Other mollusca <0.028 - 232.0 77

Mussels 0 - 33.6* 104, 108, 110, 124*, 126*

Organic OCP Heptachlor Other algae Not detectable 37

Cystoseira  spp. Not detectable 36

Mussels 0.02 - 21.6* 110, 126*

Organic OCP Heptachlor Epoxide Mussels 0.03 - 83.9* 110, 126*

Organic OCP Methoxychlor / /

Organic OCP 4,4'-DDD Other algae 0.2 - 3.5 54

Cystoseira  spp. 0.1 - 3.2 54

Ulva spp. 0.1 - 1.3 54

Other mollusca <0.018 - 77.0 77

Mussels 0.08* - 29.0 87*, 124*, 126*, 127

Organic OCP 4,4'-DDE Other algae 0.1 - 1.8 54

Cystoseira  spp. 0.1 - 0.9 54

Ulva spp. 0.1 - 4.2 54

Other mollusca 0.7 - 483.0 77

Limpets <0.01* - 4.0* 132*, 138*

Mussels 0.04* - 135.1* 87*, 124*, 126*, 127, 132

Organic OCP 4,4'-DDT Other algae 0.7 - 15.7 54

Cystoseira  spp. 1.0 - 16.4 54

Ulva spp. 1.6 - 18.9 54

Other mollusca <0.013 77

Limpets 2.0* - 7.0* 138*

Mussels 0.09* - 629.8* 110, 124*, 126*, 127

Organic OCP Total pesticides Other algae 0.4 - 2.8 41

Cystoseira  spp. 0.4 - 4.9 41

Ulva spp. 0.2 - 1.7 41
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Substance families Analytical Groups Analytes Species Range of concentrations (ng.g - 1) References

Organic Musk ADBI Mussels Not detected - 14.5 128, 129

Organic Musk AHMI Mussels Not detected 129

Organic Musk AHTN Mussels 6.98 - 31.7 128, 129

Organic Musk ATII Mussels Not detected 129

Organic Musk HHCB Mussels 8.68 - 159.4 86, 128, 129

Organic Musk HHCB-lactone Mussels Not detected - 63.51 129

Organic Musk MA / /

Organic Musk MK Mussels Not - detected - <50.0 86, 128

Organic Musk MM Mussels 10.5 - 15.2 128

Organic Musk MX Mussels Not detected - 18.4 128

Organic Sunscreen Benzophenone 3 Sea cucumbers 1.66 - 53.9 20

Mussels 51.2 - 622.1 128

Organic Sunscreen EHMC Mussels <2.0 - 1765.0 74, 75, 86, 128

Organic Sunscreen OC Mussels 2.0 - 7112.0 74, 86

Organic Sunscreen OD-PABA Mussels 0 - 833.0 74, 86

Organic Sunscreen 3-BC / /

Organic Sunscreen 4-MBC Mussels 74.6 - 88.3 128

Organic Pharmaceutical (Pain killer) Acetaminophen Mussels 65.0 - 115.0 130

Organic Pharmaceutical (Glaucoma) Acetazolamide / /

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid / /

Organic Pharmaceutical (Antiarrhythmic) Amiodarone / /

Organic Pharmaceutical (Antibiotics) Amoxicillin / /

Organic Pharmaceutical (Antibiotics) Ampicilline / /

Organic Pharmaceutical (Antihypertensive) Atenolol Other algae Not detected 52

Other mollusca <1.0* - 0.3* 83*

Mussels 0 - 13.0 104

Other marine organisms 1.3 - 8.1 95

Organic Pharmaceutical (Antibiotics) Azithromycin Mussels 2.9 131

Organic Pharmaceutical (Psychotropic) Caffeine Other algae Not detected - 41.3 52

Mussels 0 - 140.0 104, 105

Other marine organisms Not detected 95

Organic Pharmaceutical (Anticonvulsant) Carbamazepine Other algae Not detected - 1.7 52

Other mollusca 1.3* - 5.3* 83*

Mussels <0.4 - 11.0 84*, 85, 130

Other marine organisms Not detected - 5.5 95

Organic Pharmaceutical (Antibiotics) Ciprofloxacin Sea cucumbers 8 102

Organic Pharmaceutical (Antibiotics) Clarithromycin / /

Organic Pharmaceutical (Anticancer) Cyclophosphamide / /

Organic Pharmaceutical (Anti-inflammatory) Diclofenac Mussels ND - 0.24 85

Organic Pharmaceutical (Antibiotics) Doxycycline / /

Organic Pharmaceutical (Hormones) E1 Sea cucumbers <LOD 20

Organic Pharmaceutical (Hormones) E2 Sea cucumbers <LOD 20

Organic Pharmaceutical (Hormones) EE2 Sea cucumbers <LOD 20

Organic Pharmaceutical (Antibiotics) Erythromycin A Mussels 0 - 2.0 104

Organic Pharmaceutical (Antibiotics) Flumequine / /

Organic Pharmaceutical (Glycemia) Gemfibrozil / /

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide / /

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide / /

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen Other algae Not detected 52

Other marine organisms Not detected 95

Organic Pharmaceutical (Antibiotics) Josamycin / /

Organic Pharmaceutical (Pain killer) Ketoprofen / /

Organic Pharmaceutical (Anxiolytics) Lorazepam / /

Organic Pharmaceutical (Antihypertensive) Losartan / /

Organic Pharmaceutical (Antiarrhythmic) Metoprolol / /

Organic Pharmaceutical (Antibiotics) Metronidazole / /

Organic Pharmaceutical (Pain killer) Niflumic acid / /

Organic Pharmaceutical (Anxiolytics) Nordazepam / /

Organic Pharmaceutical (Antibiotics) Norfloxacin Sea cucumbers Not detected 102

Organic Pharmaceutical (Anxiolytics) Oxazepam / /

Organic Pharmaceutical (Antibiotics) Ofloxacin Sea cucumbers Not detected - 15.7 103

Mussels 0 - 65.0 104, 105, 130

Organic Pharmaceutical (Antibiotics) Oxolinic acid / /

Organic Pharmaceutical (Pain killer) Phenazone / /

Organic Pharmaceutical (Antibiotics) Piperacillin / /

Organic Pharmaceutical (Antibiotics) Rifampicin / /

Organic Pharmaceutical (Antibiotics) Roxithromycine / /

Organic Pharmaceutical (Antibiotics) Spiramycin / /

Organic Pharmaceutical (Antibiotics) Sulfadiazine Sea cucumbers Not detected - 17.7 103

Organic Pharmaceutical (Antibiotics) Sulfamethazine Sea cucumbers 11.6 102

Mussels 0 - 430.0 104, 105

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole Sea cucumbers 5.6 - 11.0 102, 103

Other algae Not detected 52

Other marine organisms Not detected - 13.1 95

Organic Pharmaceutical (Antibiotics) Tetracycline / /

Organic Pharmaceutical (Antibiotics) Trimethoprim Sea cucumbers 8.0 - 15.2 102, 103

Other algae Not detected 52

Mussels <0.87 - <4.0 85

Other marine organisms 0.84 - 1.5 95

Organic Pharmaceutical (Antibiotics) Tylosine / /

Organic Pharmaceutical (Contraceptif) 19-Norethindrone / /

Emerging substances
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1, Bechtel et al., 2013; 2, Chang-Lee et al., 1989; 3, Xing and Chia, 1997; 4, Culha et al., 2016; 5, Sicuro et al., 2012; 6, Warnau et al., 2006; 7, Medina et al., 2004; 

8, Denton et al., 2006a; 9, Mageswaran and Balakrishnan, 1985; 10, Matsumoto et al., 1964; 11, Noël et al., 2011; 12, Denton and Morrison, 2009; 13, Jinadasa 

et al., 2014; 14, González et al., 2004; 15, Denton et al., 2009; 16, Givianrad et al., 2014; 17, Mohammadizadeh et al., 2016; 18, Jinadasa et al., 2014; 19, Sicuro 

et al., 2012; 20, Martín et al., 2017; 21, Khazaali et al., 2016; 22, Denton et al., 2006b; 23, Denton et al., 2006c; 24, Miramand and Bentley, 1992; 25, Preston et 

al., 1972; 26, Fuge and James, 1974; 27, Foster, 1976; 28, Bryan and Hummerstone, 1977; 29, Bryan and Uysal, 1978; 30, Melhuus et al., 1978; 31, Bryan, 1983; 

32, Bryan et al., 1983; 33, Langston, 1986; 34, Söderlund et al., 1988; 35, Söderlund et al., 1988; 36, Benfares et al., 2015; 37, Lupsor et al., 2009; 38, Topcuoglu 

et al., 2003; 39, Al-Masri et al., 2003; 40, Lozano et al., 2003; 41, Pavoni et al., 2003; 42, Ho, 1990; 43, Kamala-Kannan et al., 2008; 44, Laib and Leghouchi, 2012; 

45, Muse et al., 2006; 46, Rybak et al., 2012; 47, Montone et al., 2001; 48, Żbikowski et al., 2006; 49, Conti et al., 2015; 50, Diop et al., 2016; 51, Knutzen and 

Sortland, 1982; 52, Ali et al., 2018; 53, Fytianos et al., 1997; 54, Amico et al., 1979; 55, Maroli et al., 1993; 56, Wallenstein et al., 2009; 57, Denton et al., 1980; 

58, Dight and Gladstone, 1993; 59, Mallet et al., 1963; 60, Ahn et al., 2002; Boucart and Mallet, 1965; 61, De Moreno et al., 1997; 62, Noel-Lambot et al., 1980; 

63, Bergasa et al., 2007; 64, Miramand and Bentley, 1992; 65, Segar et al., 1971; 66, Preston et al., 1972; 67, Dutton et al., 1973; 68, Navrot et al., 1974; 69, 

Stenner and Nickless, 1975; 70, Bryan et al., 1977; 71, Bryan and Hummerstone, 1977; 72, Lande, 1977; 73, Storelli and Marcotrigiano, 2005; 74, Bachelot et al., 

2012; 75, Fent et al., 2010; 76, Brooks and Rumsby, 1965; 77, Mondon et al., 2001; 78, Diop et al., 2016; 79, Soclo et al., 2008; 80, Batista et al., 2013; 81, Gentric 

et al., 2016; 82, Tornero and d’Alcala, 2014; 83, Klosterhaus et al., 2013; 84, Bueno et al., 2013; 85, McEneff et al., 2014; 86, Groz et al., 2014; 87, Sánchez-Avila 

et al., 2011; 88, Boucart and Mallet, 1965; 89, Mallet et al., 1963; 90, Tolosa et al., 2005; 91, Perugini et al., 2007; 92, Ramelow, 1985; 93, Perez et al., 2003; 94, 

Webster et al., 2018; 95, Ali et al., 2018; 96, Shiber and Shatila, 1978; 97, Klumpp and Peterson, 1979; 98, DiSalvo et al., 1976; 99, Sun et al., 2016; 100, Ratkevicius 

et al., 2003; 101, Xu et al., 2015; 102, Zhu et al., 2018b; 103, Zhu et al., 2018a; 104, Dodder et al., 2014; 105, Maruya et al., 2014; 106, Barhoumi et al., 2016; 107, 

Bodin et al., 2004; 108, Rocher et al., 2006; 109, Francioni et al., 2007; 110, Toro et al., 2004; 111, Waszak et al., 2019; 112, Balcıoğlu, 2016; 113, Balcioğlu et al., 

2017; 114, Mercogliano et al., 2016; 115, Solaun et al., 2015; 116, Carro et al., 2016; 117, Salgueiro-González et al., 2016; 118, Staniszewska et al., 2014; 119, Li 

et al., 2008; 120, Pojana et al., 2007; 121, Isobe et al., 2007; 122, Wang et al., 2007; 123, Wenzel et al., 2004; 124, Campillo et al., 2017; 125, Cathum and Sabik, 

2001; 126, Khaled et al., 2004; 127, Bayen et al., 2004; 128, Castro et al., 2018; 129, Cunha et al., 2015; 130, Wille et al., 2011; 131, Álvarez-Muñoz et al., 2015; 

132, Pérez et al., 2019; 133, Koyama et al., 2004; 134, Næs et al., 1998; 135, Peña-Méndez et al., 1999, p.; 136, Delgado et al., 1999; 137, Tena and Montelongo, 

1999; 138, Bastürk et al., 1980; 139, Rao et al., 2009; 140, Cebrian et al., 2007; 141, Bargagli et al., 1996; 142, Sieben et al., 1983; 143 Negri et al., 2006. 

 

In addition to processes previously described, irreversible negative effects may also be observed under 

pollution stress such as the alteration of benthic composition and abundance patterns (Guidetti et al., 

2003; Nicolodi et al., 2009; Terlizzi et al., 2005, 2002). The consequences are diverse, for example, a 

biotic homogenization with a simplification of community structure (Amaral et al., 2018) through a 

decline in diversity (Borowitzka, 1972; Díez et al., 2010, 1999; Littler and Murray, 1975) and a decrease 

of pollution-sensitive species (e.g. perennial, stable benthic algae) (Scherner et al., 2013). In contrast, 

an increase of pollution/stress-tolerant opportunistic species (i.e., ephemeral algae) occurs due to 

their high reproductive capability, an increase of food availability (organic enrichment) and lower 

competition for space and food (Amaral et al., 2018; Cabral-Oliveira and Pardal, 2016; Dauer and 

Conner, 1980; Elías et al., 2006; Gorostiaga and Diez, 1996). A shift from algal-dominated assemblages 

to invertebrate-dominated assemblages may also happen (e.g. crustacean and bivalve filter-feeders) 

(Díez et al., 2012a; López-Gappa et al., 1993; Pinedo et al., 2007). Finally, contaminants released into 

the environment may also be accumulated in biological tissues or cause harmful effects such as 

endocrine disruption, behavioral changes, energy metabolism disturbances and genetic responses 

(Macdonald et al., 2003). Therefore, different responses may be observed depending on the type of 

analysis used and the response variables considered (Fraschetti et al., 2006). Fortunately, these 

anthropogenic impacts may be mitigated thanks to high dilution and mixing rates of coastal waters 

(Borja and Collins, 2004).  

The study of environmental pollution through benthic assemblages (i.e., invertebrates and macroalgae) 

is considered as a powerful tool to assess environmental quality and has become of major importance 

due to several advantages. Indeed, benthic organisms may give precise information of deleterious 
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effects of contaminants especially in assessing local effects (Belan, 2003; Borja et al., 2011a), they are 

mainly sedentary and have long lives, show marked responses to stress, play a critical role in cycling 

nutrients and materials, reflect both previous and present conditions to which communities have been 

exposed (Reish, 1987), are easy to sample even without using destructive sampling methods (Roberts 

et al., 1994) and have already been studied worldwide (Ar Gall and Le Duff, 2014; Becherucci et al., 

2018; Borja and Dauer, 2008; de-la-Ossa-Carretero et al., 2016; Derrien-Courtel, 2010; Díez et al., 

2012a; Le Gal and Derrien-Courtel, 2015; Zubikarai et al., 2014). Macroalgae are primary food chain 

producers and the dominant group on rocky shores (Amaral et al., 2018). Because of their sedentary 

nature and the sensitivity of their components, they are known to be accurate bioindicators (e.g., 

biochemical and physiological) of environmental changes (e.g. water quality of coastal waters for the 

WFD (Ar Gall et al., 2016; Borja et al., 2013a; Gorostiaga and Diez, 1996). Their assessment is 

fundamental because their modification can also alter the trophic structures of other communities (e.g. 

grazers, carnivorous, scavengers) (Airoldi et al., 2008; Scherner et al., 2013; Schramm, 1999; Viaroli et 

al., 2008). Macrofauna also must to be considered, as requested by the MSFD (2008/56/CE; EC, 2008). 

The use of mobile macrofauna as an indicator constitutes a “snapshot in space and time” because their 

community structure respond with short-term variability to environmental changes (Davidson et al., 

2004; de Casamajor and Lalanne, 2016; Mieszkowska, 2015; Takada, 1999). Moreover, sessile species 

or slightly mobile species cannot redistribute themselves when faced with disturbances. They are thus 

highly sensitive and constitute the first biological compartment impacted by environmental stressors 

(Maughan, 2001; Mieszkowska, 2015; Murray et al., 2006; Roberts et al., 1998). So, dispersion patterns 

of sessile macrofauna constitute more precise descriptors of population dynamics (e.g. recruitment 

and mortality), community structure, individual performance (e.g. physiology, morphology and 

behavior changes) in response to environmental changes (Mieszkowska, 2015).  

Over the last decades, large investigations and survey methods have been developed to study benthic 

communities of intertidal rocky shores (e.g. Huguenin et al., 2018; Le Hir and Hily, 2005; Vinagre et al., 

2016b, 2016a; Wells et al., 2007; Zhao et al., 2016) in different contexts such as global climate change 

prospects (Barange, 2003; Thompson et al., 2002) or ecological status assessment of water bodies (e.g., 

WFD) (Borja et al., 2013a; Guinda et al., 2014). In addition, effects of sewage discharges have been 

studied on different environmental compartments (e.g. sediments, water body, trophic web, benthic 

and pelagic communities) (Bothner et al., 2002; Echavarri-Erasun et al., 2007; Mearns et al., 2015) and 

their impact on benthic communities have been widely documented in the intertidal zone (e.g. 

Becherucci et al., 2016; Bishop et al., 2002; Cabral-Oliveira et al., 2014; Cabral-Oliveira and Pardal, 

2016; Díez et al., 2013; Guinda et al., 2014; Huguenin et al., 2019; Liu et al., 2007; O’Connor, 2013; 

Vinagre et al., 2016b). However, most studies are focused either on macroalgae or macrofauna 
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assemblages independently (Anderlini and Wear, 1992; Cabral-Oliveira et al., 2014; Díez et al., 1999; 

Souza et al., 2013) and rarely together (Bishop et al., 2002; Echavarri-Erasun et al., 2007; Littler and 

Murray, 1975; López-Gappa and Tablado, 1990; O’Connor, 2013; Terlizzi et al., 2002; Vinagre et al., 

2016a). Some research also described their impact on subtidal rocky and soft bottoms but, similar to 

the intertidal zone, they were often carried out on either macroalgae or macrofauna assemblages (de-

la-Ossa-Carretero et al., 2016; Díez et al., 2014; Elías et al., 2005; Fraschetti et al., 2006; Souza et al., 

2016, 2013; Stark et al., 2016) but rarely together, especially in rocky habitats (Terlizzi et al., 2002; 

Underwood, 1996; Vinagre et al., 2016a; Zubikarai et al., 2014).  

2. Regulatory context 

Ecosystems functioning and European waters are impacted by a wide range of human activities, which 

usually act at the same time (European Environment Agency, 2018a). Water policy and associated 

monitoring programs aim to ensure good water quality for both human needs and the environment 

(European Environment Agency, 2018a). Indeed, environment protection, user protection and the 

reduction of pollution, by means of effective and coherent water policy, is a major issue around the 

word. Major Directives, Conventions and French laws are summarized below in chronological order 

(Fig. 8). In addition, the two main European Directives (Table 3) implemented to assess, protect and 

manage the health of coastal and marine environments (Water Framework Directive - WFD and Marine 

Strategy Framework Directive - MSFD) and the European Directive about Urban Waste Water 

Treatment are developed thereafter.  

 

Table 3: Summary of Water Framework Directive (WFD) and Marine Strategy Framework Directive 

(MSFD) features (inspired from CESER Nouvelle-Aquitaine, 2017). 

 

 

Water Framework Directive 

(WFD)

Marine Strategy Framework Directive 

(MSFD)

Creation October 2000 June 2008

Due date 2015 2021

Study are River basin districts Marine sub-regions

Consultative body Basin committee Maritime coastline council 

Planning document SDAGE PAMM
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Fig. 8: Chronology of major Conventions, European Directives and French laws about water, aquatic environment and chemical substances impacting 

them. Details of each of those key dates are presented in Annex 1. 
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2.1 The Water Framework Directive (WFD; 2000/60/EC)  

This European Directive was created in October 23th 2000 to standardize policies and implement a 

framework for the assessment, management, protection and improvement of the quality of water 

resources and aquatic environment at the European scale (EC, 2000; European Environment Agency, 

2018a). Member States needed to evaluate (through the assessment of the chemical and ecological 

status of surface and groundwater (Fig. 9), take measures to improve (i.e. meeting certain standards 

for ecology, chemistry and quantity of waters) and reduce pressures on water resources (e.g. 

hydromorphological pressures which may cause damages on morphology and hydrology of water 

bodies) (European Environment Agency, 2018a). In France, the WFD was established at the fourteen 

river basin district scale (nine in France, gathered in six areas governed by the six water Agencies and 

five in French Overseas Territories). The district concerned by this study is the “Adour-Garonne”.  

The GEQ of European surface waters (rivers, lakes, transitional waters - estuaries and coastal waters) 

and groundwater had to be then reached or maintained by Member States by 2020 (initially fixed in 

2015). “Good” quality is considered as such when only slight changes are detected compared to those 

that would be expected under undisturbed conditions (i.e. under low human impact) (European 

Environment Agency, 2018a). Until now, around 40% of surface waters are in good ecological status or 

potential, and only 38% are in good chemical status (European Environment Agency, 2018a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Existing approach to the assessment of chemical and ecological status under the WFD 

(according to European Environment Agency, 2018  and European Environment Agency, 2018b). 
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River Basin-Specific
Pollutants (RBSPs)

ExceedanceExceedance

 Assessment of ecosystem health through the evaluation of
the quality of the structure and functioning of water
ecosystems (e.g. assessment of the deviation of benthic flora
and fauna composition and abundance between the
observed and reference conditions (undisturbed or nearly so)
(European Environment Agency, 2018a; Sartoretto et al.,
2017; Le Gal & Derrien-Courtel, 2015))

 Assessment of the concentration of certain pollutants
(priority substances) in the environment defined by limits
(Environmental Quality Standards (EQS) fixed by the WFD
(reviewed every 4 years) (European Environment Agency,
2018a).

 Other substances, qualified as “emerging”, concern chemical
or biological contaminants that present potential risks or
negative impact for the environment and human health and
not necessarily monitored within this Directive
(pharmaceuticals, pesticides, personal care products, metals,
industrial additives and solvents, household and industrial
chemicals, surfactants)

Monitoring sites: 36 221
Monitored water bodies: 26 481 

Monitoring sites: 92 234
Monitored water bodies: 51 762

Coastal waters
Member States: 20
Number of water bodies: 2 835
Total length or area: 290 000 km²
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This Directive also established provisions for a list of priority substances. In 2001, the European 

Decision (Decision; No 2455/2001/EC) amended the latter Directive and established the first list of 33 

priority substances or groups of substances, identified as action priorities at the Community level. 

Among them, some were identified as “priority hazardous substances” and others as “priority 

substances”. The aim was to stop or remove their discharge, emission and loss within 20 years (EC, 

2001). In 2008, a successor of the WFD, the European Quality Standards Directive (EQSD; 

2008/105/CE), amended previous Directives and fixed Environmental Quality Standards (EQS) for 

these 33 substances and 8 other pollutants (EC, 2008b). Finally, a second successor WFD, the European 

Directive on priority substances of 2013 (Directive; 2013/39/EC), modified it and added 12 additional 

priority substances (EC, 2013). In this context and with the aim of preventing and reducing water 

pollution, pollutant concentrations found in the environment are compared to an EQS (i.e. a 

concentration of a pollutant or a group of pollutants in water, sediment or biota that has not to be 

exceeded). These standards, established following a European methodology (Technical Guidance for 

Deriving EQS) and revised every four years, are used to assess the chemical status (Fig. 9). An extract 

of the last Directive with the whole priority substances list associated to EQS is available in Annex 2.  

2.2 The European Marine Strategy Framework Directive (MSFD; 2008/56/EC)  

The European Marine Strategy Framework Directive has been enacted in June 2008 (EC, 2008a). It 

constitutes an extension of the WFD to all marine ecosystems (at local to national to regional seas 

scales) (O’Connor, 2013). The aim is to achieve/maintain/gain a healthy and productive state 

(sustainably manage human activities at all scales), called the Good Ecological Quality (GEQ) (GES, GES, 

(Borja et al., 2013a), of the European marine waters by 2021. The MSFD proposed 11 environmental 

qualitative descriptors (as biological diversity, invasive species, eutrophication, etc.) to determine the 

environmental status (Borja et al., 2011a; Danovaro et al., 2016; Patrício et al., 2016) (Table 4).  

 

 

 

 

 

 

 

 

 



52 

 

N° Qualitative descriptors Description References French organisations 

1 Biological diversity 
Biological diversity is maintained and the quality and occurrence of habitats and 
the distribution and abundance of species are in line with prevailing physiographic, 
geographic and climatic conditions 

Cochrane et al. (2010) MNHN / AFB 

2 Invasive species 
Non-indigenous species introduced by human activities are at levels that do not 
adversely alter the ecosystems 

Olenin et al. (2010) MNHN / AFB 

3 Exploited species 
Populations of exploited fish and shellfish are within safe biological limits, 
exhibiting a population age and size distribution indicative of a healthy stock 

Piet et al. (2010) IFREMER 

4 Food webs 
All elements of the marine food webs occur at normal abundance and diversity 
and levels capable of ensuring the long-term abundance of the species 

Rogers et al. (2010) CNRS – INEE 

5 Eutrophication Human-induced eutrophication is minimised, especially adverse effects Ferreira et al. (2010) IFREMER 

6 Seafloor integrity 
Seafloor integrity is at a level that ensures that the structure and functions of the 
ecosystems are safeguarded and benthic ecosystems are not adversely affected 

Rice et al. (2010) BRGM 

7 Hydrographical conditions 
Permanent alteration of hydrographical conditions does not adversely affect 
marine ecosystems 

 SHOM 

8 Contaminants in the environment Concentrations of contaminants are at levels not giving rise to pollution effects Law et al. (2010) IFREMER 

9 Contaminants in seafood 
Contaminants in fish and other seafood for human consumption do not exceed 
levels established by legislation or other standards 

Swartenbroux et al. (2010) ANSES 

10 Marine litter 
Properties and quantities of marine litter do not cause harm to the coastal and 
marine environment 

Galgani et al. (2010) IFREMER 

11 Introduction of energy 
Introduction of energy, including underwater noise, is at levels that do not 
adversely affect the marine environment 

Tasker et al. (2010) SHOM / IFREMER 

Table 4: Qualitative descriptors needed to assess the environmental status, within the MSFD 

adapted from Borja et al., 2011a; The references indicate the reports published by each descriptor 

Task Group). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Directive incites European Member States to take suitable measures to manage human activities 

and decrease their impact. It is carried out by the development of Plans of Action of the Marine 

environment (PAMM) and is adapted to each marine sub-region to take into account their specificities 

(Patrício et al., 2016). In France, there are four marine sub-regions including the Bay of Biscay (Fig. 10). 

Assessment and monitoring programs carried out under the MSFD must meet several requirements 

such as: (i) the coordination of monitoring between EU Member States, (ii) compatibility of monitoring 

with the EU WFD, Habitats Directive (92/43/EEC; EEC, 1992), Birds Directive (2009/147/EC; EC, 2009), 

and international agreements, and (iii) the incorporation of physical, chemical and biological 

components in monitoring (Patrício et al., 2016). 

However, this Directive emphasized significant inadequacies (Berg et al., 2015; Heiskanen et al., 2016; 

Queirós et al., 2016; Teixeira et al., 2014) in particular on Basque Country’s biocenosis (southern sub-

region of the Bay of Biscay) (Borja et al., 2011; Derrien-Courtel and Le Gal, 2011), on responses of 

biological indicators to various pressures and on the integration of fauna in assessment studies to 

better understand the environment functionality (Queirós et al., 2016; Teixeira et al., 2014). 

Furthermore, both European Directives (WFD and MSFD) (Table 3) concern overlapping common 
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marine areas. Consequently, they have to take into account various common features (e.g. physical, 

chemical, geomorphologic) and then to elaborate adapted and consistent tools and documents.  

  
Fig. 10: The perimeter of the four French marine sub-regions of the MSFD   

 

2.3 The European Directive for maritime spatial planning (2014/89/EU) 

The European Directive of July 2014 has been enacted to establishe a framework for maritime spatial 

planning (i.e. of marine activities and integrated management of European coastal zones) (EC, 2014). 

Member States have thus to ensure the coordination of human activities and habits at sea to attain 

different goals such as ecological, economic and social. They have to develop by 2021 a maritime 

spatial planning which identify (current and future) spatial and temporal distribution of relevant 

activities and usages. This Directive was translated by all Member States at the National scale (e.g. in 

France, through one “Document Stratégique de Façade (DSF)” for each coastline which represent a 

tool for implementation). The establishment of this Directive has several advantages such as the 

reduction of conflicts between sectors, the creation of synergies between activities, the 

encouragement of investements, the increase of cross-boder cooperation between European 

countries and the proctection of the environment.   
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2.4 The European Urban Waste Water Treatment Directive (Directive; 

91/271/EEC) and the 2007 and 2015 French Decisions  

Sanitation aims to protect human health and the environment from hazards caused by rainwater and 

sewage discharges (www.assainissement.developpement-durable.gouv.fr). National regulations are 

now tightly supervised at the European scale, especially through the Urban Waste Water Treatment 

Directive from May 21th 1991 which set minimal European requirements for collective sanitation of 

household wastewaters. It imposed the collect and treatment of urban wastewaters of all Member 

states (of towns and cities with a population equivalent of more than 15 000 inhabitants) prior to their 

discharge into the environment. It also ensures that total quantities of toxic, persistent or 

bioaccumulative substances of WWTP sludge must be subject to authorization and progressively 

reduced (EEC, 1991). This Directive is transposed into the French law through the General Code of the 

Territorial Authorities and the Decision of June 22th 2007 concerning the collection, transport and 

wastewater treatments of city sanitation (Decision, 2007). It includes all technical prescriptions for 

sanitation systems (design, dimension, exploitation, purification performance, self-monitoring, 

control) and concerns all collective sanitations and wastewater treatment plants as well as all un-

collective systems receiving a DBO5 concentration higher than 1.2 kg/day 

(www.assainissement.developpement-durable.gouv.fr). The Article 10 of the present Decision also 

requires that all discharges occurring in the public maritime domain must be located below the low 

tide level (Decision, 2007).This Decision was replaced by the one of July 21th 2015. For sanitation 

agglomerations with a DBO5 concentration lower than 600 kg/day, the project owner establishes a 

diagnosis of the sanitation system (with a frequency not exceeding 10 years) which aims to:  

- Identify and localize all outfalls as well as overflow outfalls,  

- Quantify frequency, annual discharges, pollutant flows discharged into the environment, 

- Check connections conformity, 

- Estimate quantity of clear parasite waters in the system and found their origins,  

- Collect information about structural and functional conditions of the sanitation system,  

- Identify rainwater management systems that limit rainwater in the collection system. 

For those with a DBO5 concentration higher or equal to 600 kg/day, the project owner establishes and 

updates a continuous diagnosis of the sanitation system, which aims to: 

- Know, continuously, the functioning and structural states of the sanitation system,  

- Prevent and identify as soon as possible sanitation system dysfunctions,  

- Follow and assess preventive or rectifier action efficiency,  

- Manage the sanitation system to improve it continuously.  

 
All WWTP self-monitoring features, conditions and performances are detailed in three Annexes of the 

present Decision (available in Annexes 3). 
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3. The purpose of the thesis research 

In compliance with the European Union (EU) Directives (I.e. the WFD, the MSFD and the Habitats 

Directive), the good environmental status of European coastal and marine waters has to be achieved 

by 2021. For this purpose, monitoring programs were implemented and a certain number of priority 

substances are followed and regulated to be reduced or eliminated in order to achieve the good 

ecological and chemical status (Carey and McNamara, 2015). These Directives (especially MSFD) also 

emphasized significant deficiencies on how biological indicators respond to each anthropogenic 

pressure, in particular to WWTP and untreated urban discharges. For example, coastal areas generally 

combine a high biodiversity with a high anthropogenic pressure leading to include monitoring of 

micropollutants and their potential effects on the environment.  

In this context, benthic communities are often used to assess marine pollution because they reflect 

both previous and present conditions to which communities have been exposed (Reish, 1987). Up to 

now, monitoring programs were mainly focused on benthic macroalgae, the dominant group on hard 

substrata (especially of rocky platforms) which is known to include accurate bioindicators of 

environmental changes (WFD; 2000/60/EC; EC, 2000). Even if macrofauna of soft bottoms and pelagic 

fauna are already integrated and monitored, the MSFD (2008/56/CE; EC, 2008) requested that 

macrofauna of rocky substrata also has to be considered because it may also respond with short-term 

variability to environmental changes and allow to better reflect the complexity of the whole 

ecosystem. This is also important for the assessment of the conservation status of habitats and species 

as requested by the European Habitats Directive (Directive; 92/43/EEC; EEC, 1992). Furthermore, this 

must be implemented at the biogeographical scale to understand and assess the ecological condition 

of the area including local specificities. For instance, inadequate knowledge of biocenosis were 

highlighted in the southeastern Bay of Biscay, especially due to particular environmental conditions 

inducing a lack of canopy-forming macroalgae (i.e. presence of small macroalgae specimens and few 

macrofauna organisms). 

In addition to the ecological assessment and the chemical assessment of priority substances, there are 

other substances named emerging pollutants (household products, cosmetics, pharmaceuticals) which 

are continuously release into the environment. Indeed, most of them are not efficiently eliminated by 

WWTP, and even at low concentrations they may have toxic effects on aquatic organisms (e.g. 

endocrine disruption, behavioral changes, energy metabolism disturbances and genetic responses). 

Up to now, these latter substances were not considered as action priorities at the Community level 

and were thus not regulated within European Directives. That is why, it would be interesting to identify 
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their occurrence in the environment to highlight the importance to follow them and maybe to include 

them in future monitoring.  

In the present work, two main problematics are studied:  

- Do WWTP discharges constitute a source of micropollutants along the Basque coast?   

- How benthic communities (macrofauna and macroalgae) from rocky substrata respond to this 

pressure?  

Therefore, the occurrence and concentrations of priority and emerging substances in WWTP 

discharges are firstly studied. Then, benthic communities are studied from a chemical point of view to 

know if these micropollutants are also detected in some benthic organisms and if the latter may 

constitute good bioaccumuators of micropollutants. Finally, the impact of this pressure on benthic 

organisms is also studied from an ecological point of view to know if benthic assemblages are impacted 

by WWTP discharges and if these organisms may constitute good bioindicators of this disturbance. This 

is achieved trough the analysis of community structure in both impacted and control intertidal and 

subtidal locations (Fig. 11). The originality of the present work is that both macrofauna and macroalgae 

are considered together. Indeed, up to now, most studies were focused either on macroalgae or 

macrofauna assemblages independently and rarely together especially in rocky habitats.  
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Fig. 11: Summary of deficiencies highlighted within the current context and of present thesis 

objectives 

Anthropogenic impact:
WWTP discharges

WFD
Establishes, since 2000, a framework for the protection of coastal

and transitional water bodies

• Intertidal & subtidal macroalgae monitoring programs for 
rocky seabed (Ecological Quality Status)

• Priority substances (n=45) (EcologicalQuality Standards)

MSFD
Establishes, since 2008, eleven descriptors to achieve a healthy and 

productive state of the European marine waters

• "Biological diversity" and "Contaminants in the environment" 
descriptors

• Requirement: consider macrofauna in future monitoring to 
reflect the whole ecosystem and its complexity

Chemical assessmentEcological assessment

Do WWTP discharges constitute a source of micropollutants into the Ocean along the Basque coast and do they impact 
rocky benthic communities?

 Multimicropollutant approach: Identify and quantify micropollutants (127 priority and emerging substances) that are 
discharged along the Basque coast by 5 WWTPs.

 Offer a broader and integrated view on the potential impact of WWTP discharges on benthic communities (macroalgae 
and macrofauna) in the southeastern Bay of Biscay providing a framework for future monitoring:
 By studying benthic communities’ response in both intertidal and subtidal zones,
 By identifying and quantifying 109 priority and emerging substances in 6 benthic organisms.
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No regulation (limiting regulation, discharge 
guidelines or standards) exist concerning the 

presence of emerging substances in the 
environment while one descriptor of the 

MSFD concerns "Contaminants in the 
environment". Therefore, there is a 

knowledge gap on their occurrence in 
WWTP discharges

 Since recently, particular and increasing attention is paid by consumers, ecologists, managers and 
decision makers to micropollutants due to their negative impacts on the environment

Very little is known about WWTP discharges
along the Basque coast (emissary locations, 

occurrence and annual fluxes of 
micropollutants rejected in the environment

according to the different treatments
employed)

There are not  an integrated view of the 
impact of WWTP discharges on the 

biological compartment (macroalgae and 
macrofauna)

One of the MSFD purpose is to consider
macrofauna in future monitoring, but, up to 

now, few studies are considering them, 
especially in the Southeastern Bay of Biscay

where there is a lack of canopy-forming
macroalgae 

Generally, deficiencies are highlighted on 
biocenosis of the southeastern Bay of Biscay

partly due to local specificities
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Thesis outline 

The present manuscript is structured into 6 sections:  

- A first chapter - Introduction (I) which presents the environmental and regulatory frameworks,  

- A second chapter - Methodology (II) which presents the specific context of the thesis and 

means implemented to achieve the objectives,  

- 3 chapters (III, IV and V) articulated around 3 published/submitted articles (summarized 

below) and, 

- A final chapter (VI) about the main findings highlighted in previous chapters, remarks, 

prospects and improvements. 

In Chapter III, concentrations of priority and emerging micropollutants in wastewater discharges and 

in six benthic organisms were studied. A review was also included to highlight which concentrations 

were already reported in wastewater treatment plant effluents and benthic organisms. 

 

 

 

 

In Chapter IV and V, response of benthic communities (macroalgae and macrofauna) to wastewater 

treatment plant discharges was studied in both intertidal and subtidal zones. The ecological quality of 

studied locations was also assessed using current European Directives indices.  

 

 

 

 

 

 

In the Annex, another rocky habitat (boulder fields) was studied to assess the possibility to monitoring 

macrofauna communities in this type of habitat to meet European Directives requirements. 

 

 

 

Huguenin L., Deborde J., Lalanne Y., de Casamajor M-N., Gorostiaga J-M., Monperrus M. (-) Release 

in coastal environment of priority and emerging pollutants from WWTP effluents and their 

contribution to the contamination of benthic organisms. 

 

Huguenin L, Lalanne Y., de Casamajor M-N., Gorostiaga J-M., Quintano E., Salerno M., Monperrus 

M. (2019) Impact of wastewater treatment plant discharges on macroalgae and macrofauna 

assemblages of the intertidal rocky shore in the southeastern Bay of Biscay. Continental Shelf 

Research, 191, 34-49 (https://doi.org/10.1016/j.csr.2019.04.014). 

Huguenin L, Lalanne Y., de Casamajor M-N., Gorostiaga J-M., Quintano E., Monperrus M. (-) Do 

wastewater discharge drive rocky subtidal community shifts? A case study. Will be submitted to 

Marine Pollution Bulletin. 

Huguenin L., Lalanne Y., Bru N., Lissardy M., D’Amico F., Monperrus M., de Casamajor M-N. (2018) 

Identifying benthic macrofaunal assemblages and indicator taxa of intertidal boulder fields in 

the Bay of Biscay (northern Basque coast). A framework for future monitoring. Regional Studies 

in Marine Science, 20, 13-22 (http://doi.org/10.1016/j.rsma.2018.03.012). 

https://doi.org/10.1016/j.csr.2019.04.014
http://doi.org/10.1016/j.rsma.2018.03.012
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Chapter II - Methodology:  

Specific context of the thesis and means implemented to 

achieve the objectives 

Chapter structure: 

1. Study area: the Basque coast  

2. Sampling processes and analytical methods 

 

 

Fig. 1: Graphical abstract of the Chapter II 

NE Atlantic 

Ocean
France

Spain

Bay of 
Biscay
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1. Study area: the Basque coast  

1.1 Environmental context   

The gulf Bay of Biscay is located in the northeastern Atlantic Ocean bathing their waters the coasts of 

the NW of France (Point Penmarc’h in Brittany is its northernmost limit) and northern Spain (Cape 

Ortegal in Galicia is its westernmost limit). At the southeastern area of the gulf the Aquitanian coast 

(the old region) occupies 270 km of the coastline (Le Treut, 2013). Further south, in the inner part of 

the bay and after a long sandy shoreline, is the Basque coast (Fig. 2). It is located between the Adour 

river (France) and Kobaron (Spain) over a length of 200 km (Borja and Collins, 2004). The French Basque 

coastline is about 50 km long whereas the Spanish Basque coastline is about 150 km long.   

 

 

 

 

 

 

 

 

 

Fig. 2: Location of the Basque Country 

1.1.1 The geomorphology 

In this geographical area, the ocean meets the Pyrenees and the mountains plunge into the depths of 

the Bay of Biscay, resulting in a rocky and jagged coastline. The Basque coast is thus characterized by 

geomorphology organized alternatively by cliffs, rocky shores (platforms and boulder fields) and semi-

enclosed bays with sandy beaches appearing in some places, namely next to small rivers and estuaries. 

In Spain, around 90% of the coastal zone is made up of rocky substrata (Borja and Collins, 2004). In 

France, only 30% of the coastline is rocky (Chust et al., 2009). One of the main characteristic of the 

Basque coast are sedimentary geological formations, named "flysch” and dating back over fifty million 

years. From Biarritz to Bilbao, this marine terrigenous sediment is constituted by a succession of hard 

sandstone layers (Calcium carbonate, CaCO3) and softer “shale” layers (a mix of limestone and clay) 

 

© Zorion 
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(Berger et al., 2015). Depending their orientation (perpendicular or parallel), they are subjected to 

more or less wave action and erosion (Berger et al., 2015). 

1.1.2 Climatic conditions 

Due to its orientation (N and NW) and the proximity to Pyrenees which are an obstacle for oceanic 

disturbances, the Basque coast is subject to moderate climatic conditions (sub-oceanic (MétéoFrance 

data in Peter-Borie et al., 2009) influenced by “the Gulf Stream and the atmospheric westerlies” (Borja 

and Collins, 2004). Even if its location, in the southeastern Bay of Biscay, protects it from strong 

disturbances and ensures a mild and wet climate (Peter-Borie et al., 2009), it is still exposed very 

energetic wave actions and N, NW dominant winds (Abadie et al., 2005; Bajjouk et al., 2015).  Rainfall 

(with over 1 500 mm of precipitation) is unevenly distributed over the year and the annual mean 

temperatures are above 10°C (Borja and Collins, 2004). As such, there is high freshwater inputs to the 

ocean and river systems are usually perennial (Winckel et al., 2004). 

1.1.3 Hydrography  

The river system is relatively dense with 173 km of rivers spread out over the municipalities of the 

French Basque coast (Peter-Borie et al., 2009). The Basque coastline is thus crisscrossed by a set of 

estuaries, “differentiated by the size of the basin and by other hydrological, morphological and dynamic 

features” (Borja and Collins, 2004). They are typically shallow and filled with sandy-clay soils (Peter-

Borie et al., 2009). From the north to the south, rivers in France are the: Adour (Bayonne), Uhabia 

(Bidart), La Nivelle (Saint-Jean-de-Luz), Untxin (Saint-Jean-de-Luz), Bidassoa (Hendaye), and in Spain: 

Oiartzun (Pasaia), Urumea (San Sebastian), Orioko Itsasadarra (Orio), Inurritza (Zarautz), Urola 

(Zumaia), Deba (Deba), Artibai Ibaia (Ondarroa), Lea Ibaia (Lekeitio), Oka (Urdaibai), Bakioko ibaia 

(Bakio), Burton (Plentzia), Nervion (Bilbao), Barbadun (Pobeña) (Augris et al., 2009; Borja and Collins, 

2004). 

1.1.4 Tidal Conditions  

The south of the Bay of Biscay is characterized by mesotidal conditions, with a range between 1.85 and 

3.85 meters (according to water depth), and semidiurnal tides with a period of approximately 12 hours 

(Augris et al., 2009; Borja and Collins, 2004). This means that there are two high and two low tides per 

day. 
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1.1.5 The Rocky Basque Coast  

The rocky Basque coast, considered as marine protected area in compliance with the OSPAR 

convention (Natura 2000 site of the EEC; 1992 named “FR7200813 - Rocky Basque coast and offshore 

extension”), is part of the “Basque coast” water body (FRFC11) according to the WFD classification. 

All features of the water body during the present study are detailed in Annex 4. 

1.2 Wastewater treatment plants along the Basque coast 

The coastal zone represents 12% of the total surface of the Basque country although it holds 60% of 

the population and 33% of industrial activities (Borja and Collins, 2004). Until the end of 20th century, 

the Basque coast was impacted by huge untreated urban or industrial wastewater input, due to the 

lack of wastewater treatment plants. This was aggravated by urban sprawl along the coast and summer 

overcrowding (Bernard, 2012; Borja and Collins, 2004; Cearreta et al., 2004; Chust et al., 2009; Le Treut, 

2013a). To deal with this problem, many outfalls were built to reject urban sewage effluents off the 

coasts (Augier, 2014). Moreover, since 1991, European regulations were established to impose all 

member states to treat urban wastewater prior to its discharge into the environment (Barreales-Suárez 

et al., 2018; EEC, 1991). Since then, a number of WWTP were built to treat and reject urban effluents 

(e.g. more than 20 000 in France). Along the French Basque coast, six direct WWTP exist (from the 

north to the south): Biarritz (69 673 p.e.), Bidart (19 238 p.e.),  Guéthary (10 000 p.e.), Saint-Jean-de-

Luz (Erromardie) (55 000 p.e.), Urrugne (40 000 p.e.) and Hendaye (45 000 p.e.) (Fig. 3) 

(www.assainissement.developpement-durable.gouv.fr). The first two discharge over soft substrata, 

contrary to the four others which discharge over hard substrata, constituted mainly by rocky stable 

platforms. The context is similar along the Spanish Basque coast where more outfalls exist (from the 

East to the West): Irun-Hondarribia (116 581 p.e.), Donostia-San Sebastián (553 000 p.e.), Zarautz-Orio 

(38 500 p.e.), Getaria (4 440 p.e.), Zumaia (17 000 p.e), Deba (7 000 p.e.) and Mutriku (6 962 p.e.) on 

the Gipuzkoa coast, Ondarroa (27 500 p.e.), Lekeitio (20 854 p.e.), Ea (2 228 p.e.), Bermeo (41 000 

p.e.), Bakio (8 645 p.e.) and Gorliz (31 399 p.e.) on the Bizkaia coast (Fig. 3) (uwwtd.eu). In addition to 

these WWTPs, a number of other WWTPs exist in the inner part of rivers or estuaries which may 

present, for some of them, much higher p.e. 

In the present work, only four French WWTPs and one Spanish one were studied due to their 

discharges over hard substrata. General WWTP information and features were summarized in the 

below table (Table 1). 
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Fig. 3: Wastewater treatment plants (WWTPs) in both French (a) and Spanish study areas (b). 

Significance codes and colors: Red boxes corresponds to WWTPs concerned by the present work. For 

French area, different size circles correspond urban wastewater agglomerations of less than 2 000 

p.e., from 2 000 to 10 000, from 10 000 to 100 000, from 100 000 to 1 000 000 or more than 1 000 

000 p.e. Blue circles correspond to WWTPs which are compliant in terms of equipment and 

performance, yellow circles to WWTPs compliant in terms of equipment but not of performance and 

red circle to non-compliant WWTPs (http://assainissement.developpement-durable.gouv.fr/); For 

Spanish area, different size circles correspond to urban wastewater agglomerations of 2 000, 10 000 

or more than 10 000 population equivalent (p.e.) (https://uwwtd.eu/Spain/content/home-page). 
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Table 1: Features of French and Spanish studied WWTPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

City

Country
1

France

2
France

3
France

4
France

5
Spain

Manager SUEZ SUEZ SUEZ SUEZ ACCIONA

WWTP coordinates
43° 25' 20.807" N

1° 37' 4.007" W

43° 24' 15.905" N

1° 39' 2.427" W

43° 22' 40.526" N

1° 42' 25.743" W

43° 22' 37.445" N

1° 45' 24.803" W

43° 19' 53.988" N

2° 25' 44.044" W
Population (INSEE) 

(Bilan annuel sur le système d’assainissement

année 2018)
(Nacional de Estadística, 2018)

*(www.insee.fr, 2015)

1 347 14 561
*9 674

6 447

17 006

1 243

8 397

1 247

In service date ; Rehabilitation

(Manuel autosurveillance du systeme

d’assainissement, 2013)

1995 ; 2004 1984 ; 2003 2009 ; 2014 1980 ; 1992 ; 2013 Unknown

Sewer system

(Manuel autosurveillance du systeme

d’assainissement, 2013)

Separated Combined Separated Combined Unknown

Size of the system (km ; % separated; % 

combined)

(Bilan annuel sur le système
d’assainissement année2018)

97.7 %

2.3 %

87

73 %

27 %

87

99 %

1 %

106

1.1%

98.9%

Unknown

Eq/inhab. (equivalent inhabitant) 

(Bilan annuel sur le système d’assainissement

année 2018)
(www.acciona-agua.com, 2019)

10 000 55 000 40 000 45 000 27 500

Number of  stormwater overflows

(Manuel autosurveillance du systeme

d’assainissement, 2013)

0 19 8 17 Unknown

Connected industries

(Manuel autosurveillance du systeme

d’assainissement, 2013)
(Gutierrez et al., 2019)

/ / /
1 fish canningcompany

(BETIKO)

4 fish canningcompanies

(Conservas Aguirreoa, Heisa, Marmar and 

Conservas Güenaga)

Main treatment

(Rapport de visite courante  de 

l’Aturosurveillance MATEMA 64, 2017)
(www.services.eaufrance.fr, 2018)

Activated sludge 

Membrane bio-reactor

UV

Activated sludge 

extended aeration

(low laod)

Biofiltration

(rotating biological contactor)

Activated sludge 

extended aeration

(medium load)

Biological reactor

UV desinfection

Nominal flow (m3/day) (dry weather ; rainy 

weather) 

(Bilan annuel sur le système d’assainissement
année 2018)

(www.acciona-agua.com, 2019)

1 600

2 000

8 500

10 450

7 000

21 600

7 200

/
5 930

Mean of total annual volumes at the entrance 

from 2012 to 2018 (m3)

(Total annual volumes at the entrance in 2017 ; 
2018)

(Bilan annuel sur le système d’assainissement
année 2018)

410 652

(396 979; 418 468)

1 946 522

(1 880 120 ; 2 111 040)

1 809 849

(1 680 700; 1 885 250)

1 611 333

(1 407 108; 1 592 115)
Unknown

Mean of total annual volumes at the outlet from 

2012 to 2018 (m3)

(Total annual volumes at the outlet in 2017 ; 
2018)

(Bilan annuel sur le système d’assainissement
année 2018)

344 459

(325 539; 366 143) 

1 856 498

(1 803 110; 2 004 040)

1 794 944

(1 789 980; 1 961 710)

1 516 737

(1 455 321; 1 642 139)
Unknown

Mean of total annual overflows from 2012 to 

2018 (m3)

(Mean of total annual overflows in 2017 ; 2018)
(Bilan annuel sur le système d’assainissement

année 2018)

39 303

(12 474; 29 853)

698 863

(730 329; 635 797)

143 836

(75 925; 102 716)

53 223

(23 527; 28 739)
Unknown

Water treatment steps

(Rapport de visite courante  de 

l’Aturosurveillance MATEMA 64, 2017)
(Manuel autosurveillance du systeme

d’assainissement, 2013)
(http://www.agglo-sudpaysbasque.fr, 2016)

- Pre-treatment: 2 rotary sieves (1 mm mesh)

- Anoxic basin (400 m3) 

- Secondary/biological treatment: BiosepTM

basin (i.e. bio-reactor with immerged 
membranes associating a biological aerobic 
treatment (activated sludge) and a filtration 
with immerged membranes)  (1 010 m3) 

- Tertiary treatment (in summer): UV reactor

- Pre-treatment: Screen (6 mm mesh) + 
grit chamber/grease removal (150 m3) 

- Secondary treatment: 2 aeration 
basins (activated sludge) (2 x 1 582 m3) 
+ 2 clarifiers (i.e. decanters) (2 x 1 450 
m3)

- Stripping (i.e. degassing chamber)

- Pre-treatment: 2 screens (6 mm mesh) + 
2 BiolixTM grit chamber/grease removal 
(i.e. aerobic biological treatment for 
grease and oils removal)

- Primary/physico-chemical treatment: 
MultifloTM lamella settlers (i.e. clarifier 
produicing thick and highly concentrated 
mud) 

- Secondary treatment:BiostyrTM

biofiltration (i.e. 4 aerated biological 
filters for simultaneous 
nitrification/denitrification

- Pre-treatment: Automatic screen (1 mm 
mesh) + aerated grit chamber/grease 
removal (100 m3)

- Secondary/biological treatment: Aeration 
basin (activated sludge) (2 300 m3) + clarifier
(i.e. decanter) (1 800 m3)

- Pre-treatment: Sieve + sand/silt 

trapping – grease trapping in 2 

lines

- Primary/physico-chemical 
treatment: Lamellar settler

- Secondary/biological treatment: 

Biological reactor, secondary 
settling in 2 units

- Tertiary treatment: UV 
desinfection

Equipment compliant ; performance compliant

(http://assainissement.developpement-

durable.gouv.fr/)
Yes ; Yes No ; / Yes ; No Yes ; Yes Unknown

Emissary lenght (m)

(Manuel autosurveillance du systeme

d’assainissement, 2013)

240 800-1000 m Unknown 500 Unknown

Receiving environment Subtidal zone Intertidal zone Subtidal zone Intertidal zone Intertidal zone

Emissary depth (m) 1 / 3 / /

Outfall coordinates
43° 25' 22.415" N

1° 37' 14.711" W

43° 24' 19.382" N

1° 39' 5.899" W

43° 23' 20.796" N

1° 42' 45.839" W

43° 23' 2.228" N

1° 45' 7.632" W

43° 19' 54.449" N

2° 25' 40.702" W
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2. Sampling processes and analytical methods 

Different methods were achieved according to matrices (wastewater, seawater, biota) and sampling 

locations (WWTP or offshore, intertidal or subtidal zones) (Table 2).  

(1) Wastewaters from WWTP were sampled just before their release into the environment. The 

aim was to characterize the nature of each discharge by identifying and quantifying organic 

micropollutants, metals, organomercury and other major elements. 

(2) and (4) Benthic organisms were sampled in the intertidal and subtidal zones in both impacted 

and control locations. The aim was to study the impact of discharges on benthic communities 

through the analysis of micropollutants concentration and assemblages structure.  

(3) Seawater was sampled offshore in front of each sampling location. The aim was to characterize 

the receiving environment by doing physic-chemical measures and analysing major elements 

(Annex 4). 

Zones, types of samples, locations, sampling frequencies, pre-analytical and analytical methods and 

objectives of each sampling type were summarized in the below diagram (Table 2).  

Thereafter, chemical and statistical analysis were detailed in different sections through schematic 

layouts in order to facilitate understanding. 
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Table 2: Sampling processes and analytical methods used during the present study for each matrix. For confidentiality reasons, each sampling 

and WWTP were assigned to a code (not homogeneous between chapters).   
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Continental / Coastal Intertidal Off-shoreSubtidal

Wastewater from wastewater
treatment plant discharges

Benthic communities
(macroalgae and macrofauna)

Sea waterBenthic communities
(macroalgae and macrofauna)

Physico-chemical measures:
 pH, O2 saturation, 

conductivity, salinity, 
temperature

180
Quadrats

0.1m²

Major elements: 
 Particulate organic carbon

(POC), Dissolved organic
carbon (DOC), δ13C, δ15N, 
Nutrients (PO4, NO3, NO2, 
SiOH4, NH4)

Organics (by GC-MS, LC-
MS):
 16 PAHs, 11 PCBs, 18 OCPs, 

10 musks, 6 sunscreens, 6 
APs, 48 pharmaceuticals

Metals (by ICP-MS):
 11: V, Cr, Ni, Cu, As, Mo, 

Ag, Cd, Sn, Sb, Pb

Organomercury 
compounds (by GC-ICP-
MS): MMHg, IHg

Statistical analyses 
(using R® software, 
Excel v7®, PRIMER®): 
 Assemblage structure
 Diversity structure
 Functional traits
 Ecological quality index 

(WFD)

Major elements: 
 Particulate organic carbon

(POC), Dissolved organic
carbon (DOC), δ13C, δ15N, 
Nutrients (PO4, NO3, NO2, 
SiOH4, NH4)

2017 2018

March July March July

2017 2018

March JulyMay September
October

2017 2018

May June May June

80
Quadrats

0.25m²

Organics (by GC-MS, LC-
MS):
 16 PAHs, 11 PCBs, 18 OCPs, 

10 musks, 6 sunscreens, 6
pharmaceuticals

Glass Plastic Jerrycan

• Characterize each discharge
• Study potential spatial and temporal variabilities
• Study filtration effect on analyte concentrations
• Estimate annual and daily flows

Study the impact of intertidal discharges on 
benthic commmunities: 

• Know which chemical substances are mainly
detected in 3 benthic organisms

• Analyze assemblage structures between
impacted and control locations

Study the impact of subtidal discharges on 
benthic commmunities: 

• Know which chemical substances are mainly
detected in 3 benthic organisms

• Analyze assemblage structures between
impacted and control locations

Characterize the recieving environment

O
b

je
ct

iv
es

• Upper
midlittoral
• Lower
midlittoral

• Upper
infralittoral
• Upper
circalittoral

Study the impact of wastewater treatment plant discharges on benthic communities along the rocky Basque coast

Organics (by GC-MS, LC-
MS):
 16 PAHs, 11 PCBs, 18 OCPs, 

10 musks, 6 sunscreens, 6
pharmaceuticals

Physico-chemical measures:
 pH, O2 saturation, 

conductivity, salinity, 
temperature

Statistical analyses 
(using R® software, 
Excel v7®, PRIMER®): 
 Assemblage structure
 Diversity structure
 Functional traits
 Ecological quality

indices: WFD + 2 other
macrofauna indices

50 cL Glass Plastic Jerrycan50 cL

2017 2018

August May July December

Nb of operators: 2
Nb of sampling days: 11

Nb of operators: 3-4
Nb of sampling days: 17 (2017) + 12 (2018) 

Nb of operators + pilot + safety: 4
Nb of sampling days: 10 (2017) + 7 (2018)
Nb of dives: 20 (2017) + 14 (2018) 

Nb of operators + pilot: 3
Nb of sampling days: 5

See details in below figures and in Chapter III See details in Chapter IV See details in Chapter V See details in Chapter III
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Which micropollutants (and in what amount) are rejected
into the Ocean through WWTPs?

Are rocky benthic communities affected by WWTP discharges? Are current WFD indices enough sensitive to 
study such a pressure? 

Could benthic communities constitute a good bioindicator/accumulator of such a pressure? 

Do WWTP discharges constitute a source of micropollutants into the Ocean along the Basque coast and do they impact rocky benthic communities?
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2.1 Chemical analyses 

All sample preparations and analytical methods achieved and used during the present study to analyze 

micropollutant concentrations in wastewater samples are summarized in Table 3. In addition, those 

used to analyze biota samples are summarized in Table 4. Each method is detailed in the Chapter III. 

Moreover, a list of all analytes analyzed during this study with their features is available in Annex 5. In 

general, for: 

Wastewater analysis: Specific containers (previously cleaned at the laboratory) were used to sample 

wastewaters for each chemical analysis. During sampling, bottles were rinsed three times with water 

sample before a final sample was collected. After filling them with wastewater, they were transported 

to the laboratory in an icebox. Then, a part of wastewater samples were filtered prior to extraction 

and analyses. After an extraction phase, analyses (except those for pharmaceuticals, only achieved on 

filtered samples) were carried out on the total fraction (dissolved + particulate) and on the filtered 

fraction. Nine analytical groups were selected, accounting for 127 individual substances (i.e. analytes). 

Six analytical methods have thus been used: one for metals (Ag, As, Cd, Cu, Cr, Mo, Ni, Pb, Sb, Sn, V), 

one for organomercury compounds (IHg and MMHg), one for the simultaneous analysis of PAHs 

(n=16), PCBs (n=11) and OCPs (n=18), one for the simultaneous analysis of musks (n=10) and 

sunscreens (n=6), one for APs (n=6) and one for pharmaceuticals (n=48).  

Biological analysis: Similar size organisms were hand-collected by observers or scuba divers with gloves 

and stainless steel knifes at the outlet of each WWTP discharge (in 1-meter square zone around the 

outfall) and also at several control locations (i.e. without WWTP emissary and located more than 2.5 

km from the impacted locations) in the intertidal and subtidal zones. Organisms were rinsed with sea 

water, pooled per location and placed in 23 x 15 m polyethylene sampling bags. They were then 

provided to the laboratory with a cold chain. Then, they were weighed and stored in a freezer (-80°C). 

They were lyophilized during 72h and weighed again. Dry samples were then crushed and 

homogenized using an agate mortar and ceramic scissors. After an extraction and a purification phases 

using QuEChERS biota samples were analyzed for organic micropollutants (priority and emerging ones, 

except APs) accounting for 109 individual substances. 

Metals were analyzed by inductively coupled plasma mass spectrometer (ICP-MS), organometallics by 

gas chromatrograph (GC) coupled to an inductively coupled plasma mass spectrometer (ICP-MS), 

organics by gas chromatrograph-mass spectrometer (GC-MS) and pharmaceuticals by liquid 

chromatograph-tandem mass spectrometer (LC-MS-MS). 
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Table 3: Sampling methods and analytical methods employed according analytical groups analyzed 

in sampled WWTP discharges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metals
(V, Cr, Ni, Cu, As, Mo, Ag, Cd, Sn, Sb, Pb)

Organomercury compounds
(MMHg, IHg)

Organics
(PAHs, PCBs, pesticides, musks, 

sunscreens)

Organics
(Pharmaceuticals)

Su
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ce
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m
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m

p
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g
St

o
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P
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o
n

ce
n
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n

D
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Ex
tr
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ti

o
n

A
n

al
ys

is

50cl polyethylene
terephthalate (PET) bottle

50cl polyethylene
terephthalate (PET) bottle

50cl polyethylene
terephthalate (PET) bottle

2L amber glass bottle

HCl Ultrex (1%)
4°C

HNO3 Instra (1%)
4°C

Fi
lt

ra
ti

o
n

Polysulfone filtration 
system and PVDF filters 

(0.45 µm, 47 mm) 

C
le

an
in

g

Glass filtration
system and cellulose 

acetate membrane filters 
(0.45 µm, 47 mm) 

- HNO3 10% 
- HCl 10%
- Dried in a heat chamber

- HNO3 10% 
- HCl 10%
- Dried in a heat chamber

- Acetone

- Pyrolyzed 4 hours at 450°C

- Acetone

- Pyrolyzed 4 hours at 450°C

Solid phase extraction (SPE: 
Cartridges (Oasis HLB 3cc))

Back extraction in MeOH/pure 
water (25/75)

LC-MS-MSGC-MS

Solid phase extraction (PES: 
1.5 mm long)

NaCl 10g/L

Back extraction in Ethyl 
Acetate (EToAC) 

GC-ICP-MSICP-MS

-20°C/

Ethylation (NaBEt4 5%)

Extraction in Isooctane

Unfiltereted Polysulfone filtration 
system and PVDF filters 

(0.45 µm, 47 mm) 

Unfiltereted Glass filtration
system and cellulose 

acetate membrane filters 
(0.45 µm, 47 mm) 

Unfiltereted

A
n

al
yt

e
s

48

PAHs: 16
PCBs: 11

Musks: 10
Pesticides: 18
Sunscreens: 6

Alkylphenols: 5

211
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Table 4: Sampling methods and analytical methods employed according analytical groups analyzed 

in benthic organisms sampled at the outlet of each WWTP and in control locations. 

 

 

 

 

 

 

 

 

Organics
(PAHs, PCBs, pesticides, musks, 

sunscreens)

Organics
(Pharmaceuticals)
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Polythene bags
-80°C 

Polythene bags 
-80°C

P
re

p
a

ra
ti

o
n

Lyophilization during 72h 
Crushing with an agate 

mortar and ceramic scissors

Lyophilization during 72h 
Crushing with an agate 

mortar and ceramic scissors

QuEChERS extraction (5982-7650)
(4g MgSO4; 1g NaCl; 1g Na3Citrate; 0.5g 

Na2HCitrate)

A
n

a
ly

si
s

LC-MS-MSGC-MS

Ethanol (MeOH)/pure 
water (95/5) 

Dry evaporation

Glass vials
-80°C

QuEChERS purification (55982-5158CH)
(400 mg PSA, 400 mg C18EC, 1200 mg MgSO4)

Evaporation with compressed air till 1 
mL

QuEChERS extraction (5982-7650)
(4g MgSO4; 1g NaCl; 1g Na3Citrate; 0.5g 

Na2HCitrate)

PAHs: 16
PCBs: 11

Musks: 10
Pesticides: 18
Sunscreens: 6

A
n
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yt

es

48
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2.2 Statistical analyses 

All statistical analyses achieved in this study are detailed below (Table 5). Further information 

concerning each of those analyses are available in the following sections (chapters or articles).  

 

Table 5: Summary of data collected during this study and associated analyses (descriptive, 

statistical and ecological quality analyses). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analyte concentrations
per location and 

organism: 
Quantitative continuous 

data

Major elements
concentrations and physico-
chemical measures per off-

shore location:  
Quantitative continuous data

Analyte concentrations per WWTP, per month and per 
filtered and unfiltered sample: 
Quantitative continuous data

Zo
n

es
Sa

m
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le
s

Ty
p

e
 o

f 
d

at
a

Continental / Coastal Intertidal Off-shoreSubtidal

Wastewater from wastewater
treatment plant discharges

Sea water

Abundance of benthic
organisms per location 

(impacted and controls): 
Quantitative discrete

data 

Analyte concentrations
per location and 

organism: 
Quantitative continuous 

data

Abundance of benthic
organisms per location 

(impacted and controls): 
Quantitative discrete

data 

Benthic communities
(macroalgae and macrofauna)

Benthic communities
(macroalgae and macrofauna)

To test differences between sampling campaigns and 
locations:

- two-way ANOVA with 2 fixed factors without 
interaction (R® software; "car" package)

- Tuckey HSD post hoc test (R® software; 
"stats" package)

To test differences between filtered and unfiltered samples
(paired samples):

- Wilcoxon signed rank test (R® software)St
at

is
ti

ca
l t

es
ts

Tr
an

sf
o

rm
at

io
n

/ //

To test differences
between sampling
locations:
- Kruskall Wallis-test 

(R® software; 
"stats" package)

/

To test differences
between sampling
locations:
- Kruskall Wallis-test 

(R® software; 
"stats" package)

Standardisation to analyze
macrofauna and macroalgae 

simultaneously: each couting value, 
for one taxon, was divided by the 
maximum reached by this taxon

To test variations of 
species composition and 
abundance: 
- Permutational 

Multivariate Analysis 
of Variance 
(PERMANOVA) (R® 
software; 
"vegan" package)

To visualize differences in 
benthic assemblages, 
morpho-functional and 
ecological groups and in 
phylum between 
impacted and control 
locations:
- Hierarchical cluster 

analysis (HCA) (R® 
software; "stats" 
package)

To test variations of 
species composition and 
abundance: 
- Permutational 

Multivariate Analysis 
of Variance (PRIMER 
V. 6. PERMANOVA )

To identify the important 
contributors to 
differences:
- SIMilarity PERcentage

(SIMPER) analysis

/

- Pairwise permutational multivariate analysis of 
variance (R® software; 
"RVAideMemoire" package)

To identify the important contributors to differences:
- SIMilarity PERcentage (SIMPER) analysis

Ec
o

lo
gi

ca
lq

u
al

it
y

an
al

ys
e

s

To visualize differences in total concentrations between
sampling locations (WWTPs) and sampling campaigns (per 
analytical group): 

- Balloonplot (R® software; "ggplot2" package)

To visualize differences in mean concentrations between
sampling locations (WWTPs) and between unfiltered and 
filtered samples (per analytical group): 

- Box plot (R® software; "ggplot2" package)

D
es

cr
ip

ti
ve

 a
n

al
ys

es

To know which analytical
group(s) are mainly
detected in which
organism: 
- Principal component 

analysis (PCA) (R® 
software; 
"ade4" package)

To visualize differences in 
total analytical group 
concentrations between
locations (per organism):
- Histograms (Excel v7®)

To know which analytical
group(s) are mainly
detected in which
organism: 
- Principal component 

analysis (PCA) (R® 
software; 
"ade4" package)

To visualize differences in 
total analytical group 
concentrations between
locations (per organism):
- Histograms (Excel v7®)

To explore the structure 
of benthic assemblages 
among locations 
(impacted and control) 
and within locations 
(between sites)
- Non-metric multi-

dimensional scaling
(nMDS) (R® software; 
"vegan" package)

- Hierarchical cluster 
analysis (HCA) (R® 
software; "stats" 
package)

To visualize differences in 
mean abundance, total 
and mean taxonomic
richness between
locations and sites:
- Histograms (Excel v7®)

To visualize differences in 
mean concentrations and 
physico-chemical measures 
between off-shore samples 
and WWTP discharges 
samples:
- Hierarchical cluster 

analysis (HCA) (R® 
software; "stats" package)

/

/
/

To assess the sensitivity
of the Quality index to a 
such pressure:
- The "intertidal 
macroalgae" WFD 
protocol (calculated for 
each location) /

To study the ecological quality of studied 
locations based on macroalgae species: 
- The Ecological Quality Status (EQS) for the 

upper infralittoral 

To study the ecological quality of studied 
locations based on macrofauna species: 
- The Biotic Coefficient (BC) from the AMBI 

index 
- The Taxa Sensitivity (TS) from the INDEX-

COR index

/
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The following chapters (III to V) are structured according to the main parts identified in Table 2 

(“Continental/coastal” – purple column, “Intertidal” – green column and “Subtidal” – light blue 

column):  

- The Chapter III deals with concentrations of priority and emerging micropollutants in 

wastewater discharges and in six benthic organisms, 

- The Chapter IV deals with the response of benthic communities (macroalgae and macrofauna) 

to wastewater treatment plant discharges in the intertidal zone,  

- The Chapter V deals with the response of benthic communities (macroalgae and macrofauna) 

to wastewater treatment plant discharges in the subtidal zone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For confidentiality reasons, each sampling location and WWTP were assigned to different 

codes which are not homogeneous throughout the manuscript. 
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Chapter III:  

Release in coastal environment of priority and emerging 

micropollutants from WWTP effluents and their contribution to 

the contamination of benthic organisms 

Chapter structure: 

- Huguenin L., Deborde J., Lalanne Y., de Casamajor M-N., Gorostiaga J-M., Monperrus M. (-) Release in coastal environment 

of priority and emerging pollutants from WWTP effluents and their contribution to the contamination of benthic 

organisms. 

 

Fig. 1: Graphical abstract of the Chapter III 
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Ulva spp. Gelidium spp. Mytilus spp. Holothuria spp. Patella spp. Porifera

Metals [15 458.9 - 24 557.2] WWTP 3' > 'WWTP 4' > 'WWTP 2' > 'WWTP 1'

Pharmaceuticals [4 231.5 - 15 664.5] WWTP 3' > 'WWTP 4' > 'WWTP 2' > 'WWTP 5' > 'WWTP 1'

Musks [1 523 - 3 144.7] WWTP 1' > 'WWTP 4' > 'WWTP 2' > 'WWTP 5' > 'WWTP 3'

APs [215.1 - 1 489.2] WWTP 5' > 'WWTP 3' > 'WWTP 2' > 'WWTP 4' > 'WWTP 1' 

Sunscreens [30.1 - 746.2] WWTP 3' > 'WWTP 4' > 'WWTP 5' > 'WWTP 2' > 'WWTP 1' 

PAHs [17.8 - 186.0] WWTP 2' > 'WWTP 1' > 'WWTP 5' > 'WWTP 3' > 'WWTP 4' 

PCBs [3.0 - 19.1] WWTP 1' > 'WWTP 3' > 'WWTP 5' > 'WWTP 4' - 'WWTP 2'

OCPs [<DL - 14.8] WWTP 4' > 'WWTP 5' > 'WWTP 1' > 'WWTP 2' > 'WWTP 3' 

Organomercury [0.7 - 9.1] WWTP 3' > 'WWTP 5' > 'WWTP 2' > 'WWTP 4' > 'WWTP 1' 

Total mean concentrations in WWTP effluents (ng.L-1)
(min - max)
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Release in coastal environment of priority and emerging micropollutants from 

WWTP effluents and their contribution to the contamination of benthic 

organisms 

 

Over the last few decades, the occurrence of micropollutants in the aquatic environment has become 

an environmental issue of major concern throughout the world (Luo et al., 2014). They may be natural 

or synthetic and represent active minerals or organic substances potentially toxic, persistent and 

bioaccumulative in the environment in low concentrations (in the range of ng/L to µg/L). Their 

introduction into the aquatic environment at any point of their life cycle and in different steps of the 

water cycle (European Environment Agency, 2018a; Le Treut, 2013b) is a result of their continuous 

and/or uncontrolled release (e.g. via WWTPs) and their resistance to degradation (Cruzeiro et al., 2016; 

Radović et al., 2015). Indeed, WWTPs were not specifically designed to eliminate this type of pollutants 

(Cavalheiro et al., 2017; Sousa et al., 2019) and thus, a large range of micropollutants are found in 

WWTP discharges and then in the environment (Dimpe and Nomngongo, 2016; Loos et al., 2013; 

Mailler et al., 2016, 2015; Miege et al., 2009; Verlicchi et al., 2012). 

Marine organisms are known to have the ability to accumulate contaminants present in the water 

(Arias et al., 2009). Even if biotic samples constitute complex matrices to analyze (demand extensive 

extraction and clean-up procedures), they can be used to give the fraction of the bioavailable 

environmental pollution (Gust et al., 2010), to monitor the level of sea water pollution (Borja et al., 

2004; Claisse, 1991), evaluate its transfer (bioavailability and bioaccumulation) and inform of 

associated effects (Bergé and Vulliet, 2015).  

Even if particular and increasing attention is paid by consumers, ecologists, managers and decision 

makers to micropollutants due to their negative impacts on the environment (Carlsson et al., 2006; 

Sousa et al., 2019) to date, only a small number of micropollutants are monitored and regulated within 

the framework of European Directives (EC, 2013, 2000) and no regulation (e.g. limiting regulation, 

discharge guidelines or standards) exists concerning the presence of emerging micropollutants in the 

environment (Bolong et al., 2009; Luo et al., 2014). 

Problematic:  

 Do WWTP discharges constitute a source of micropollutants in the Ocean along the Basque 

coast?  

 Which micropollutants (and in what amount) are rejected into the Ocean through WWTPs? 
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This chapter/article deals with the study of the occurrence of 127 priority and emerging substances 

(metals, organomercury and organic compounds belonging to several analytical groups such as PAHs, 

PCBs, musks, sunscreens, alkylphenols and pharmaceuticals) in 5 WWTP effluents and of 109 

substances in six specific benthic organisms (Ulva spp., Gelidium spp., Porifera, Holothuria spp., Mytilus 

spp. and Patella spp.) sampled close to emissaries in the southeastern Bay of Biscay.  
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Release in coastal environment of priority and emerging pollutants from WWTP effluents and their 

contribution to the contamination of benthic organisms 
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Abstract 

The aim of this study was to measure the concentrations of 127 priority and emerging substances in 5 

wastewater treatment plant (WWTP) effluents and of 109 substances in 6 marine benthic organisms 

sampled on rocky substrata at the outlet of each emissary. The treatment plants in question, located 

in the southeastern Bay of Biscay, were mainly fed by municipal sources (from 10 000 to 78 217 

inhabitant equivalents). Treatment processes were either activated sludge treatments associated or 

not to membrane filtration, or a biofiltration or a UV treatment. Even though activated sludge 

biological treatment and membrane filtration appeared as the most effective to remove suspended 

matter and associated adsorbed substances, a large amount of micropollutants were anyway released 

into the ocean. Indeed, among the analytes analyzed in effluents, a total of 11 metals (ranging from 

13.2 to 4 884.7 ng.L-1), 2 organomercury compounds (ranging from 0.2 to 2.7 ng.L-1) and 98 organics 

(16 PAHs, 11 PCBs, 5 alkylphenols, 18 OCPs, 10 musks, 4 sunscreens and 34 pharmaceuticals ranging 

from 0.1 to 1 544.7 ng.L-1) were detected and quantified. Spatial and temporal variabilities were 

associated to several factors such as rainfall, summer overcrowding, sewer system, plant capacity, 

treatment process and inefficiency of the current applied treatment. Among the organic substances 

analyzed in biota samples, a total of 51 analytes (9 PAHs, 6 PCBs, 1 OCP, 5 musks, 3 sunscreens and 27 

pharmaceuticals with mean concentrations) ranging from 0.1 to 3 765.2 ng.g-1 were detected and 

quantified. Considering our results and biological and technical drawbacks of each taxa, Gelidium spp. 

was highlighted as the better bio-accumulator and -indicator species for this area. Finally, it seems 

important to consider the concentrations found in the present work with the aim to include in the 

future highlighted substances in the list because up to now no regulatory limits have been set for 

musks, pharmaceuticals, sunscreens and associated metabolite compounds. 

Keywords: Micropollutants; Wastewater treatment plants; Sewage; Macrofauna; Macroalgae; Biota; 

WFD. 
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1. Introduction  

Over the last few decades, the occurrence of micropollutants in the aquatic environment has become 

an environmental issue of major concern throughout the world (Luo et al., 2014). Indeed, the current 

worldwide production of chemical substances is estimated to 400 million tons while it has been around 

1 million tons in 1930 (www.minefe.gouv.fr) and their presence in groundwaters, drinking waters, 

surface waters, plants and wastewaters was already proven by scientists (Janna, 2011). 

Micropollutants may be natural or synthetic and represent active minerals or organic substances 

potentially toxic, persistent and bioaccumulative in the environment in low concentrations (in the 

range of ng/L to µg/L) (Sousa et al., 2019). They may be pharmaceuticals, components of personal care 

products, steroid hormones, pesticides (OCPs), fragrances, sunscreen agents, insect repellents and 

many other emerging compounds (Luo et al., 2014; Trapido et al., 2014).  

Their introduction into the aquatic environment at any point of their life cycle and in different steps of 

the water cycle (European Environment Agency, 2018a; Le Treut, 2013b) is a result of their continuous 

and/or uncontrolled release and their resistance to degradation (Cruzeiro et al., 2016; Radović et al., 

2015). Many factors, such as compound specificity and the treatment employed in wastewater 

treatment plants (WWTP) influence their efficient remove. Generally, treatment plants allowed to 

fulfill European requirements, especially those from the Urban Waste Water Treatment Directive 

established in May 21th 1991. The latter fixed minimal European requirements for collective sanitation 

of household wastewaters and imposed on all Member states to collect and treat urban wastewaters  

(from human activities and industrial discharges) prior to their discharge into the environment (i.e. 

riverbanks, lakes and seas) (EEC, 1991). Even if, treatment plants are still considered as the most-

effective technique to get rid of sewages owing to the dilution rate of the ocean (Elías et al., 2005; 

Islam and Tanaka, 2004; Little and Kitching, 1996)), they were not specifically designed to eliminate 

this type of pollutants (Cavalheiro et al., 2017; Sousa et al., 2019). Indeed, they only allow to remove 

coarse solids, organic matter, and to ensure the reduction of nutrient and bacteria to prevent 

eutrophication (Cabral-Oliveira and Pardal, 2016; Stark et al., 2016). Hydrophobic, volatile and 

biodegradable micropollutants may be also substantially removed but this is not the case of hydrophilic 

and refractory organic compounds (Clara et al., 2007; Loos et al., 2013; Mailler et al., 2015, 2014; Ruel 

et al., 2012). Consequently, a large range of emerging micropollutants are found in WWTP discharges 

and then in the environment (Dimpe and Nomngongo, 2016; Loos et al., 2013; Mailler et al., 2016, 

2015; Miege et al., 2009; Verlicchi et al., 2012).  

Once in the aquatic environment and depending on their type, source and level, sewage discharges 

may have direct or indirect effects (biological, chemical or physical) which may varies from little or no 
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impact to major changes (Borja et al., 2011a; Del-Pilar-Ruso et al., 2010; Pastorok and Bilyard, 1985; 

Puente and Diaz, 2015). Consequences on benthic communities may be diverse such as a biotic 

homogenization (Amaral et al., 2018) through a decline in diversity (Borowitzka, 1972; Díez et al., 2010, 

1999; Littler and Murray, 1975), a decline in pollution-sensitive species (Scherner et al., 2013) and an 

increase of pollution/stress-tolerant species (Amaral et al., 2018; Cabral-Oliveira and Pardal, 2016; 

Gorostiaga and Diez, 1996) which may occur on the intertidal zone (Huguenin et al., 2019) as well as 

on the subtidal zone (see Chapter V). In addition, sewage discharges can cause various (biochemically 

and physiologically) harmful effects on organisms: endocrine disruption, behavioral changes, energy 

metabolism disturbances, antibiotic resistance of microorganisms and genetic responses (Patisaul and 

Adewale, 2009; Vajda et al., 2011, 2008; Wilkinson et al., 2018). Indeed, marine organisms are known 

to have the ability to accumulate contaminants present in the water at different levels depending on 

feeding behaviors, trophic levels and habitats (Arias et al., 2009; de los Ríos et al., 2012). For example, 

macroalgae were already described as one of the most reliable organisms to study heavy metal 

concentration due to their rapid accumulation rate (Phillips, 1977). Marine sponges and bivalve 

molluscs such as mussels were also reported to accumulate these compounds and other emerging 

substances (De los Ríos et al., 2018, 2013; de los Ríos et al., 2012; Gentric et al., 2016) contrary to 

crustaceans that may have the ability to regulate them (Haynes and Johnson, 2000; Rainbow and 

Phillips, 1993). Therefore, marine organisms can be used to give the fraction of the bioavailable 

environmental pollution (Gust et al., 2010), monitoring the level of sea water pollution (Borja et al., 

2004; Claisse, 1991), evaluate its transfer (bioavailability and bioaccumulation) and inform of 

associated effects (Bergé and Vulliet, 2015). Even if biotic samples constitute complex matrices to 

analyze (demand extensive extraction and clean-up procedures), the improvement of analytical 

methodologies, especially on the detection of low concentrations, allows a increasingly detection of 

chemical substances in different biological samples (Puckowski et al., 2016; Wille et al., 2011).  

To date, only a small number of micropollutants are monitored and regulated within the framework of 

European Directives (EC, 2013, 2000) and no regulation (e.g. limiting regulation, discharge guidelines 

or standards) exists concerning the presence of emerging micropollutants in the environment (Bolong 

et al., 2009; Luo et al., 2014). Indeed, the WFD only established in 2000 provision for a list of priority 

substances which are continuously released into the environment and are resistant to degradation (e.g. 

polycyclic hydrocarbons - PAHs, alkylphenols - APs, organotins - OTs, volatile organic compounds - 

VOCs, OCPs and heavy metals; Belgiorno et al., 2007). In 2001, the European Decision (No 

2455/2001/EC) amended the latter Directive and established the first list of 33 priority substances or 

groups of substances (priority or priority hazardous) identified as action priorities at the Community 

level with the aim to stop or remove their discharge, emission and loss within 20 years (EC, 2001). 
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Following the European Quality Standards Directive (the successor of the WFD, EQSD; 2008/105/CE) 

and the European Directive on priority substances (Directive; 2013/39/EC) Environmental Quality 

Standards (EQS) (EC, 2008b) and 12 additional priority substances were added (EC, 2013). Within this 

context and with the aim to prevent and reduce these substances, pollutant concentrations found in 

the environment are since compared to EQS (i.e. concentrations of pollutants or groups of pollutants 

in water, sediment or biota, that have not to be exceeded) to assess the chemical status. Moreover, 

the study of contaminant concentrations in the environment constitutes one of the 11 descriptors of 

the MSFD to assess the environmental status (MSFD; 2008/56/EC).  

Even if particular and increasing attention is paid by consumers, ecologists, managers and decision 

makers to micropollutants due to their negative impacts on the environment (Carlsson et al., 2006; 

Sousa et al., 2019), few studies have been undertaken to assess emerging substances in WWTP 

discharges and in wild biota leading to a knowledge gap in the extent and route of exposure these 

organisms encounter (Cavalheiro et al., 2017; Miller et al., 2018). By contrast, a large number of studies 

already assessed metals in the latter matrices (Busetti et al., 2005; Clara et al., 2012; Culha et al., 2016; 

Givianrad et al., 2014; Mohammadizadeh et al., 2016; Östman et al., 2017; Singh et al., 2004) and 

micropollutants in marine sediments or in soft bottom communities (Azaroff et al., 2018; De los Ríos 

et al., 2016a; Hassan et al., 2018; Ma et al., 2017; Sun et al., 2016). This study therefore aims to 

evaluate the occurrence of 127 priority and emerging substances (metals, organomercury and organic 

compounds belonging to several analytical groups such as PAHs, PCBs, musks, sunscreens, alkylphenols 

and pharmaceuticals) in WWTP effluents and of 109 substances in six specific benthic organisms (Ulva 

spp., Gelidium spp., Porifera, Holothuria spp., Mytilus spp. and Patella spp.) sampled close to WWTP 

discharges in the southeastern Bay of Biscay.  

2. Materials and Methods 

2.1 Field data collection strategy 

The study was conducted in the southeastern Bay of Biscay along the Basque coast. Two matrices were 

studied: effluents from 5 wastewater treatment plants (WWTP) and benthic organisms collected at the 

WWTP outlets in the intertidal and subtidal zones (Fig. 2).  WWTPs included in this study were selected 

due to their outfalls were lying on rocky bottoms (Fig. 2). They received from ~1 600 to ~21 600 m3/day 

(according to dry and rainy weathers) of raw waterwaters from the major neighboring municipalities 

and urban runoff for a population equivalent ranged from 10 000 to 78 217 inhabitants (Table 1). 

Treatment processes included pre-treatment and primary treatments (e.g. screening, gritting, 

oil/grease removal), secondary treatments (e.g. membrane bioreactor, activated sludge or 

biofiltration) and, for two of them, a tertiary treatment (UV treatment). General information and 

features of each WWTP were summarized in Table 1. In addition, weather conditions, flow rates, 
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Bay  of  

Biscay
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FRANCE

'WWTP 1' 'WWTP 2' 'WWTP 3' 'WWTP 4' 'WWTP 5'

Sewer system 
(% separated - % combined)

Separated
(97.7 - 2.3)

Combined 
(73 - 27)

Separated 
(99 - 1)

Combined 
(1.1 - 98.9)

-

Inhabitant equivalent 10 000 78 217 40 000 45 000 -

Main treatment

Activated sludge

Membrane reactor

UV reactor (in summer)

Activated sludge

extended aeration
Biofiltration

Activated sludge

extended aeration

Biological reactor

UV desinfection

Emissary depth (m) 1 - 3 - -

Receiving environment Subtidal zone Intertidal zone Subtidal zone Intertidal zone Intertidal zone

Average of total volumes rejected between 2017 and 2018 (m3) 345 841 1 903 575 1 875 845 1 548 730 -

Daily flow in entry (m3.day-1)

the 5 preceding days + the day after the sampling
(total - mean - min - max)

25 605

6 401
(4 149 - 8 788)

147 150

36 788
(26 860 - 41 070)

120 360

30 090
(19 230 - 38 570)

90 923

22 731
(18 429 - 26 512)

-

Daily flow at the outlet (m3.day-1)

the 5 preceding days + the day after the sampling
(total - mean - min - max)

21 498

5 375
(2 994 - 7 447)

138 500

34 625
(25 710 - 38 880)

127 380

31 845
(23 000 - 37 810)

93 440

23 360
(20 041 - 26 350)

-

pH
(mean - min - max)

7.94
(7.92 - 7.96)

7.08
(6.82 - 7.60)

6.96
(6.26 - 7.54)

7.49
(7.20 - 7.94)

7.82
(6.76 - 8.87)

Oxygen saturation (%)
(mean - min - max)

92.60
(86.40 - 98.80)

61.85
(47.50 - 84.10)

107.80
(90.20 - 120.10)

22.85
(12.00 - 32.40)

63.20
(57.40 - 69.0)

Conductivity (mS.cm-1)
(mean - min - max)

0.66
(0.53 - 0.81)

0.92
(0.54 - 1.67)

1.28
(0.52 - 2.39)

1.54
(0.77 - 2.19)

13.67
(12.21 - 15.13)

Salinity (µg.L-1)
(mean - min - max)

0.34
(0.26 - 0.40)

0.44
(0.26 - 0.79)

0.65
(0.25 - 1.24)

0.78
(0.38 - 1.12)

7.96
(7.04 - 8.87)

Temperature (°C)
(mean - min - max)

19.87
(16.85 - 22.50)

20.73
(17.42 - 23.83)

20.33
(17.12 - 23.08)

20.56
(16.36 - 23.74)

17.80
(16.59 - 19.00)

SM (mg.L-1)
(mean - min - max)

1.14
(0.49 - 3.00)

9.02
(6.58 - 13.71)

29.12
(17.95 - 46.38)

13.53
(4.44 - 29.22)

11.38
(4.94 - 17.20)

TC (%)
(mean - min - max)

38.28
(5.27 - 65.23)

34.53
(29.49 - 38.38)

32.43
(30.95 - 33.47)

37.24
(34.23 - 44.07)

15.17
(12.26 - 18.50)

DOC (mg.L-1)
(mean - min - max)

4.34
(2.37 - 5.73)

6.83
(5.90 - 7.84)

8.70
(6.74 - 10.08)

5.51
(5.01 - 5.84)

6.88
(5.90 - 7.74)

POC (%)
(mean - min - max)

30.50
(8.39 - 51.96)

36.83
(31.79 - 38.93)

31.11
(27.51 - 38.74)

34.24
(33.29 - 36.40)

12.64
(11.83 - 13.16)
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measured physico-chemical parameters and analyzed major elements were reported for each 

sampling campaign and WWTP in SM 1. 

 

 

 

  

 

  

Fig. 2: Study area and sampling locations. Crossed circles correspond to WWTPs where wastewater 

samples were achieved. Squares correspond to locations where biota samples were collected. 

Those in grey are located in the intertidal zone and those in white in the subtidal zone. 

 

Table 1: Summary of general WWTP features. All data (per WWTP and sampling month) are 

available in SM 1. 
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The wastewater sampling was conducted four times from August 2017 to December 2018 (August 

2017, May, July and December 2018). They were collected using automatic 24-h sampling devices 

installed at the each WWTP which allowed to take a constant volume at variable time intervals after a 

certain volume of treated wastewater has passed the sampling point. Different containers were used 

according to envisaged analyses. For organic micropollutant analyses (PAHs, PCBs, OCPs, musks and 

APs), wastewaters were sampled with amber glass bottles. For pharmaceutical, metal and 

organomercury compound analyses, wastewaters were sampled with polyethylene terephthalate 

(PET) bottles. In addition to specific cleanings previously achieved in the laboratory (i.e. acetone for 

organics and HNO3 10% and HCl 10% for metals and organomercury compounds), bottles were rinsed 

with sample three times before a final sample was collected. After filling them with wastewater, they 

were transported to the laboratory in an icebox. 

Biota samples were collected two times (from March to July in 2017; the same in 2018) in the intertidal 

or subtidal zones. Six benthic organisms: Ulva spp., Gelidium spp. (mainly G. corneum), Porifera (mainly 

Clathrina spp. and Pachymatisma areolata), Holothuria spp. (mainly H. tubulosa and H. forskalii), 

Mytilus spp. (mainly M. edulis and M. galloprovincialis) and Patella spp. (mainly P. depressa, P. vulgata 

and P. ulyssiponensis), were chosen due to their presence in most of locations, their relative ease of 

sampling and their sufficient amount of matter. Some of them were anyway absent from some 

locations (intertidal vs. subtidal) or provided insufficient amount of matter (e.g. Mytilus spp.).  

The primary producer Ulva spp., is a foliose non-corticated chlorophyte reported as opportunistic taxa 

along the Basque coast (de Casamajor et al., 2016). The terete corticated rhofophyte Gelidium spp. (G. 

corneum, G. spinosum, G. pusillum) usually grow in different environmental conditions. G. corneum 

form extensive subtidal stands at the Basque coast and it has been considered as characteristic species 

from the Basque coast. This species is being used to assess the ecological status of the whole water 

body, being considered as an indicator of good ecological status (de Casamajor and Lissardy, 2018). 

The Holothuria spp., a sea cucumber from the Echinodermata phylum, is a filter-feeding organism 

reported as a good sentinel for monitoring organic micropollutants due to its ability to take up these 

compounds through its gills and/or digestive tract (Hu et al., 2010; Jiang et al., 2015; Martín et al., 

2017). The mussel, Mytilus spp., is a filter-feeding bibalve. It is widely used for environmental pollution 

monitoring in coastal waters (De los Ríos et al., 2016a; Eertman et al., 1995; Kasiotis et al., 2015). It is 

already known to bioaccumulate contaminants (Gielazyn et al., 2003) and to be tolerant to reduced 

salinity conditions (Wilson et al., 1998) as well as to a wide range of pollutants (Kasiotis et al., 2015). 

The gastropod, Patella spp., is a herbivorous mollusc already reported as a good biomonitor and as 

one of the sentinel organisms used to monitor marine environmental health (Goldberg, 1975; Storelli 

and Marcotrigiano, 2005). This may be partly due to its high aptitude to accumulate very low 
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concentration of metals in seawater (Campanella et al., 2001; Conti et al., 2015, 2010).  Finally, the 

Porifera phylum, is a water filter-feeder which was also already reported as metals and other emerging 

substances accumulator (Gentric et al., 2016).  

Similar size organisms were hand-collected by observers or scuba divers with gloves and stainless steel 

knifes at the outlet of each WWTP discharge (in 1-meter square zone around the outfall) and also at 

several control locations (i.e. without WWTP discharge and located more than 2.5 km from the 

impacted locations) in the intertidal and subtidal zones (‘Control 1’, ‘Control 2’ and ‘Control 3’) (Fig. 2). 

Organisms were pooled by species and a minimum of 10 individuals for Patella spp., 50 for Mytilus 

spp., 2 for Holothuria spp. and enough algae to fill one 23 x 15 m sampling bag were sampled per 

location. Samples were rinsed with sea water and placed in sterile polyethylene sampling bags suitably 

labelled. They were then provided to the laboratory with a cold chain. 

2.2 Sample preparations 

Wastewater samples: Once to the laboratory, a part of wastewater samples were filtered prior to 

extraction and analyses using 0.45 µm/47 mm PVDF filters (for metal and organomercury analyses) 

and 0.45 µm/47 mm cellulose acetate membrane filters (for organic compound analyses). Nitric acid 

(HNO3 Instra 1%) and Hydrochloric acid (HCl Ultrex 1%) were added to samples for metal and 

organomercury compound analyses, respectively. Bulk metal samples were digested at 85°C using a 

DigiPREP Jr block digestion system (SCP science, Canada) and according to the EPA 200.8 Method 

(Creed et al., 1994). Only filtered samples for organomercury compound analyses were derivatized 

using NaBEt4 5% and extracted using isooctane. Samples for organic compound analyses (PAHs, PCBs, 

OCPs, musks, sunscreens) were prepared in triplicate and were extracted using solid phase extraction 

(SPE) and Ethyl acetate. Samples for pharmaceutical analyses were firstly stored in a freezer at -20°C 

and were thereafter extracted using solid phase extraction (SPE) cartridges and 25/75 (v/v) 

methanol/pure water. Analyses (except those for pharmaceuticals, only achieved on filtered samples) 

were carried out on the total fraction (dissolved + particulate) and on the filtered fraction. Metals were 

not analyzed in ‘WWTP 5’ samples due to a too high salinity (between 7 to 8 µg/L) caused by the artisan 

production of canned tuna (Gutierrez et al., 2019). 

Biological samples: Benthic organism samples were weighed and stored in a freezer (-80°C). They were 

lyophilized during 72h and weighed again. Dry samples were crushed and homogenized using an agate 

mortar and ceramic scissors. They were then placed in glass vials and kept at -20°C until organic 

analyses. Two grams (for organic substance analysis) and 200 mg samples (for pharmaceutical analysis) 

were extracted using QuEChERS extraction tubes containing 4 g of magnesium sulfate (MgSO4), 1 g of 

sodium chloride (NaCl), 1 g of trisodium citrate (Na3Citrate) and 0.5 g of disodium citrate (Na2Citrate). 
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The purification stage was achieved using QuEChERS purification for organic analysis and 95/5 (v/v) 

ethanol/pure water for pharmaceuticals according to (Miossec et al., 2018; Saraiva et al., 2016). 

2.3 Analytical methods 

Abbreviations used throughout the article: Metals: (Ag) Silver, (As) Arsenic, (Cd) Cadmium, (Cr) 

Chromium, (Cu) Copper, (Mo) Molybdenum, (Ni) Nickel, (Pb) Lead, (Sb) Antimony, (Sn) Tin, (THg) Total 

mercury; (V) Vanadium; Organomercury compounds: (MMHg) monomethylmercury, (IHg) inorganic 

mercury; Organic compounds: (ADBI) Celestolide, (AHMI) Phantolide, (AHTN) Tonalide, (AP) 

Alkylphenol, (ATII) Traseolide, (BC) Benzylidene camphor, (BHC) Hexachlorocyclohexane, (E1) Estrone, 

(E2) 17-beta oestradiol, (EE2) 17-alpha ethinylestradiol, (EHMC) Ethylhexyl methoxycinnamate, (HHCB) 

Galaxolide, (HHCB-lactone) Galaxolidone, (PAH) Polycyclic aromatic hydrocarbon, (PCB) 

Polychlorinated biphenyl, (MA) Musk Ambrette, (MBC) Methylbenzylidene camphor, (MK) Musk 

Ketone, (MM) Musk Moskene, (MX) Musk Xylene, (NP) Nonylphenol, (NPE01) Nonylphenol 

monoethoxilated, (NPE02) Nonylphenol diethoxilathed, (OC) Octocrylene, (OCPs) Pesticides, (OD-

BAPA) Octyl-dimethyl-PABA, (4,4’-DDD) 4,4’-Dichlorodiphenyldichloroethane, (4,4’-DDE) 4,4’-

Dichlorodiphenyldichloroethylene, (4,4’-DDT) 4,4’-Dichlorodiphenyltrichloroethane, (4nOP) 4-nitro-O-

phenylenediamine, (4tOP) Para-tert-octylphenol; Others: (SM) Suspended matter, (POC) Particulate 

organic carbon, (DOC) Dissolved organic matter. 

Wastewater samples: Nine analytical groups were selected, accounting for 127 individual substances 

(i.e. analytes). Six analytical methods have been used: one for metals (Ag, As, Cd, Cu, Cr, Mo, Ni, Pb, 

Sb, Sn, V), one for organomercury compounds (IHg and MMHg), one for the simultaneous analysis of 

PAHs (n=16), PCBs (n=11) and OCPs (n=18), one for the simultaneous analysis of musks (n=10) and 

sunscreens (n=6), one for APs (n=6) and one for pharmaceuticals (n=48).  

Biological samples: Contrary to wastewater samples, only organic micropollutants (priority and 

emerging ones, except APs) were analyzed in biota samples. Thus, 6 analytical groups were chosen 

(PAHs, PCBs, musks, OCPs, sunscreens and pharmaceuticals), accounting for 109 individual substances. 

The Porifera phylum and the two genus, Ulva spp. and Gelidium spp., were used to analyze the 6 

analytical groups whereas the three others, Holothuria spp., Mytilus spp. and Patella spp., were only 

used to analyze pharmaceuticals. 

Metal analysis: Metals were analyzed by inductively coupled plasma mass spectrometer (ICP-MS, 

Agilent 7500, Agilent Technologies, Waldbronn, Germany) according to the method described in 

Monperrus et al. (2005). Instrument control, data acquisition and data treatment were performed 

using Agilent Chemstation software.  
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Organomercury analysis: Organomercury compounds were analyzed by Gas Chromatrograph (GC; HP 

6850) equipped with a capillary column and coupled to an Inductively Coupled Plasma Mass 

Spectrometer (ICP-MS) via a Silcosteel (Restek) transfer line. The analyses were achieved according to 

the method described in Monperrus et al. (2005). The THg concentrations were calculated from the 

concentrations of IHg and MMHg. 

PAH, PCB, OCP, musk, sunscreen and AP analysis: Organic compounds were analyzed by 7890 Gas 

Chromatrograph coupled with 5975C Mass Spectrometer (GC-MS) with an Electron Ionization source 

using a Large Volume Injection (Agilent Technologies). Methods described in Salem et al. (2016) and 

Saraiva et al. (2016) were followed. Instrument control, data acquisition and data treatment were 

performed using Agilent Chemstation software.  

Pharmaceutical analysis: Pharmaceuticals were analyzed by Liquid Chromatograph-tandem Mass 

Spectrometer (LC-MS-MS) using an Acquity UPLC system connected to a Xevo TQ MS (Triple 

quadrupole) with an electrospray interface (Waters). Analyses were achieved following the method 

described in Miossec et al. (2019). Instrument control, data acquisition and data treatment were 

performed using MassLynx software (Waters).  

2.4 Statistical analyses 

Wastewater samples: Mean and median concentrations, minimum and maximum, and percent 

occurrence of detected metals, organomercury compounds and organics (i.e. PAHs, PCBs, APs, OCPs, 

musks, sunscreens and pharmaceuticals) in wastewater were calculated for the whole sampling 

campaign and for each WWTP. An estimation of the total amount of analyzed analytes released into 

the Ocean by each plant was also calculated by multiplying the concentration of each analytes with 

the total volume rejected by each WWTP the day preceding the sampling. Differences in total and 

mean concentrations between WWTPs, sampling campaigns (per analytical group), and between 

unfiltered and filtered samples were described using Balloon and Box plots. A first Principal Component 

Analysis (PCA) was used to assess  which metals characterized  WWTP samples. Variations on 

concentrations between sampling campaigns and between WWTPs were studied by means of a two-

way ANOVA with two fixed factors without interaction and a Tuckey HSD post hoc test. The usual 

assumptions (normality, homogeneity of variance, residuals) were verified. Variations on 

concentrations between filtered and unfiltered samples were tested using a Wilcoxon signed rank test 

for paired samples. Tests were achieved with an a priori chosen significant level of α= 0.05.  

Biological samples: Mean concentrations of detected organics (i.e. PAHs, PCBs, OCPs, musks, 

sunscreens and pharmaceuticals) in Ulva spp., Gelidium spp. and Porifera were calculated. The same 

was achieved for Mytilus spp., Patella spp. and Holothuria spp. but only for pharmaceutical 
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compounds. A second PCA was performed in order to compare the micropollutant profiles detected in 

benthic organisms, i.e., the relative distribution of analytical group(s) detected in biota samples.  

Tables and statistical analyses were performed with R® software and Excel v.7®. 

3. Results  

3.1 Micropollutant analysis in WWTP effluents 

3.1.1 Occurrence 

Mean concentrations of measured analytes in the five WWTP discharges are detailed in Table 2. 

Among the 127 analytes analyzed in this study, a total of 11 metals (ranging from 13.2 to 4 884.7 ng.L-

1), 2 organomercury compounds (ranging from 0.2 to 2.7 ng.L-1) and 98 organics (ranging from 0.1 to 

1 544.7 ng.L-1) were detected in WWTP effluents. These organic compounds comprise of 16 PAHs, 11 

PCBs, 5 alkylphenols, 18 OCPs, 10 musks, 4 sunscreens and 34 pharmaceuticals. The total mean 

concentrations, summated for all analytes per analytical group, amounted to (in descending order): 

19 021.9 ng.L-1 for metals, 8 937.0 ng.L-1 for pharmaceuticals, 2 274.3 ng.L-1 for musks, 725.7 ng.L-1 for 

alkylphenols, 232.6 ng.L-1 for sunscreens, 62.2 ng.L-1 for PAHs, 7.2 ng.L-1 for OCPs, 6.8 ng.L-1 for PCBs 

and 2.9 ng.L-1 for organomercury compounds. All metals and the THg occurred in all plants and 

samples. Among the organic substance family, NP, HHCB, HHCB-lactone, AHTN, MK were the most 

frequently detected in discharges (occurrence= 100%). The same occurred for Hydrochlorothiazide, 

Oxazepam, Caffeine, Diclofenac, Ketoprofen, Carbamazepine, Atenolol, Losartan, Ciprofloxacin, 

Sulfamethoxazole, Ofloxacin, Clarithromycin and Metoprolol among pharmaceutical compounds. All 

of these major organic analytes had mean concentrations ranging from 70.5 to 1 544.7 ng.L-1. 

Moreover, analytes recorded as having the highest mean concentrations in WWTP discharges (i.e. 

mean analyte concentration ≥ 25% of the total mean concentration of the analytical group, except for 

pharmaceuticals for which a limit of 10% was used, in descending order) were Vanadium (4 884.7 ng.L-

1), Chromium (4 710.3 ng.L-1), Hydrochlorothiazide (1 544.7 ng.L-1), HHCB (1 438.6 ng.L-1), Oxazepam (1 

421.6 ng.L-1), Caffeine (1 224.2 ng.L-1), Diclofenac (917.3 ng.L-1), NP (573.6 ng.L-1), HHCB-lactone (561.4 

ng.L-1), OC (175.6 ng.L-1), Naphthalene (31.5 ng.L-1), IHg (2.7 ng.L-1) and PCB 138 (2.0 ng.L-1). 

To identify the proportion of micropollutants associated to the particulate/dissolved fraction, a part of 

wastewater samples was filtered (except samples used for pharmaceutical analysis which were all 

filtered). Filtered samples presented significant lower micropollutant concentrations than unfiltered 

samples (Wilcoxon, p<0.05) (SM 2). Proportions in the particulate phase varied according to the 

analytical group: from 0 to 97.5% for organomercury compounds, from 0 to 86.9% for organic 

substances and from 48.5 to 73.1% for metals. Therefore, a large part of micropollutants might be 

associated to the particulate phase of WWTP effluents depending on the MES concentration.  
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Table 2: Mean concentrations, median concentrations, minimum and maximum (Min, Max), and 

percent occurrence of detected priority and emerging substances (metals, organomercury 

compounds and organics expressed in ng.L-1) in bulk wastewater samples from the five WWTPs. 

Total daily flux estimations (in mg.day-1) were also calculated considering the four French WWTPs 

(thus, without ‘WWTP 5’). Analyte mean concentrations were ordered from the highest to the lowest 

mean concentrations. Significance codes: Bold analytes are those found at the highest 

concentrations; Underlined analytes are those followed and regulated within European Directives; 

DL: Detection limit; QL: Quantification limit; ‘-‘: corresponds to molecules whose pre-analytical or 

analytical methods were not adapted to their quantification in that sample. In the flux estimation 

column, ‘-‘ means that the estimation was not possible for this molecule. All those concentrations 

and flux estimations per WWTP are available in SM 4. 

   

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Metal Vanadium (V) 4884.7 4573.3 4053.3 7183.3 100 69231.8 70152.1 43881.7 92741.2

Metal Chromium (Cr) 4710.3 4415.5 3749.0 7045.0 100 67561.7 68143.2 43988.7 89971.8

Metal Copper (Cu) 2725.2 1837.7 1253.7 5735.7 100 41609.8 42230.9 21417.1 60560.2

Metal Nickel (Ni) 2530.1 2107.5 1534.0 4476.0 100 36528.1 36829.2 26164.1 46289.8

Metal Arsenic (As) 1748.4 1737.3 1353.8 2420.8 100 23899.7 24604.4 14498.4 31891.6

Metal Antimony (Sb) 1155.8 1079.3 816.3 1893.3 100 16873.6 16487.0 8308.0 26212.3

Metal Lead (Pb) 553.4 558.5 238.5 1243.5 100 9109.9 9104.4 4320.6 13910.0

Metal Molybdenum (Mo) 463.3 316.0 53.0 1075.0 100 7567.7 7125.2 3481.6 12538.7

Metal Tin (Sn) 220.0 201.0 134.0 481.0 100 3087.3 3047.7 2078.8 4174.7

Metal Silver (Ag) 17.4 15.5 1.5 42.5 100 290.1 278.9 138.6 464.1

Metal Cadmium (Cd) 13.2 10.3 2.3 26.3 100 193.5 188.9 98.0 298.2

19021.9 13189.2 31622.2 275953.1 168375.6 379052.8

Organomercury compound IHg 2.7 1.4 0.2 15.8 100.0 50.8 45.2 21.6 85.9

Organomercury compound MMHg 0.2 0.1 <DL 1.7 94 3.8 1.6 0.8 9.0

2.9 0.2 17.5 54.6 22.4 94.8

Organic PAH Naphthalene 31.5 10.0 <DL 147.7 50.0 979.3 979.3 942.3 1016.2

Organic PAH Indeno[1,2,3-cd]pyrene 5.1 <DL <DL 44.1 23.8 82.4 - - 330.2

Organic PAH Dibenzo[a,h]anthracene 3.8 <DL <DL 36.0 23.8 57.4 - - 230.4

Organic PAH Fluorene 3.8 <DL <DL 50.5 47.6 23.3 9.9 - 74.4

Organic PAH Pyrene 3.0 <DL <DL 12.8 38.1 64.2 72.0 - 114.2

Organic PAH Phenanthrene 2.8 <DL <DL 23.2 42.9 19.2 6.3 - 64.5

Organic PAH Acenaphthene 2.2 0.4 <DL 21.2 52.4 45.4 12.1 - 157.6

Organic PAH Benzo[g,h,i]perylene 2.2 <DL <DL 22.8 28.6 28.1 - - 113.0

Organic PAH Benzo[b]fluoranthene 2.0 <DL <DL 17.0 33.3 36.4 7.1 - 133.7

Organic PAH Benzo[a]anthracene 1.7 <DL <DL 27.5 33.3 15.0 2.9 - 55.0

Organic PAH Anthracene 1.1 <DL <DL 18.3 33.3 9.3 - - 36.5

Organic PAH Benzo[a]pyrene 1.0 <DL <DL 10.5 28.6 13.7 - - 55.0

Organic PAH Benzo[k]fluoranthene 1.0 <DL <DL 11.6 23.8 12.1 - - 49.2

Organic PAH Chrysene 0.6 <DL <DL 9.8 14.3 3.6 - - 14.9

Organic PAH Fluoranthene 0.3 <DL <DL 2.1 25.0 3.0 1.3 - 9.3

Organic PAH Acenaphthylene 0.2 <DL <DL 1.2 14.3 1.2 - - 4.8

62.2 <DL 456.3 1393.4 942.3 2459.0

Organic PCB PCB 138 2.0 <DL <DL 18.8 23.8 25.1 1.9 - 97.1

Organic PCB PCB 194 1.4 <DL <DL 22.7 14.3 9.8 - - 42.0

Organic PCB PCB 149 0.9 <DL <DL 5.2 33.3 15.0 5.4 - 50.0

Organic PCB PCB 28+31 0.7 <DL <DL 5.1 28.6 11.1 0.2 - 44.9

Organic PCB PCB 101 0.5 <DL <DL 4.2 23.8 4.6 - - 19.0

Organic PCB PCB 52 0.3 <DL <DL 2.7 28.6 2.5 - - 10.4

Organic PCB PCB 180 0.3 <DL <DL 3.5 23.8 2.5 - - 10.3

Organic PCB PCB 44 0.2 <DL <DL 2.5 23.8 1.9 - - 8.2

Organic PCB PCB 18 0.2 <DL <DL 2.7 14.3 1.4 - - 6.3

Organic PCB PCB 153 0.2 <DL <DL 1.4 14.3 1.0 - - 4.8

Organic PCB PCB 118 0.1 <DL <DL 1.0 33.3 0.9 - - 4.3

6.8 <DL 69.9 75.8 - 297.3

Organic AP NP 573.6 656.8 19.0 1449.4 100 10231.2 8739.4 3312.0 19142.8

Organic AP NPEO1 78.0 5.0 <DL 390.5 50.0 353.9 353.9 338.3 369.5

Organic AP NPEO2 62.5 <DL <DL 1006.3 17.6 83.1 - - 261.7

Organic AP 4tOP 10.4 <DL <DL 104.8 23.5 112.5 74.6 - 330.4

Organic AP 4nOP 1.2 <DL <DL <10.0 11.8 6.2 - - 31.2

725.7 19.0 2961.0 10786.9 3650.3 20135.6

Organic OCP Beta BHC 1.6 <DL <DL 22.8 12.5 17.8 - - 71.3

Organic OCP 4,4'-DDE 1.4 <DL <DL 10.2 23.8 18.4 - - 76.0

Organic OCP Alpha BHC 0.4 <DL <DL 3.6 12.5 2.7 - - 10.9

Organic OCP Methoxychlor 0.4 <DL <DL 2.0 18.2 2.1 - - 6.3

Organic OCP Delta BHC 0.4 <DL <DL 2.4 18.2 2.1 - - 6.2

Organic OCP Endosulfan Sulfate 0.4 <DL <DL <2.0 18.2 2.1 - - 6.2

Organic OCP Gamma BHC 0.4 <DL <DL <2.0 18.2 2.1 - - 6.2

Organic OCP 4,4'-DDT 0.3 <DL <DL <2.0 18.2 2.1 - - 6.2

Organic OCP Bêta Endosulfan 0.3 <DL <DL 2.6 12.5 2.0 - - 8.1

Organic OCP Alpha Endosulfan 0.3 <DL <DL 2.3 12.5 1.8 - - 7.1

Organic OCP Heptachlor 0.2 <DL <DL <2.0 12.5 1.6 - - 6.2

Organic OCP Aldrin 0.2 <DL <DL <2.0 9.5 1.2 - - 6.2

Organic OCP Dieldrine 0.2 <DL <DL <2.0 9.5 1.2 - - 6.2

Organic OCP Endrin Aldehyde 0.2 <DL <DL <2.0 9.5 1.2 - - 6.2

Organic OCP Heptachlor Epoxide 0.2 <DL <DL <2.0 9.5 1.2 - - 6.2

Organic OCP 4,4'-DDD 0.2 <DL <DL <2.0 9.5 1.2 - - 6.2

Organic OCP Endrin Ketone 0.2 <DL <DL <2.0 9.5 1.2 - - 6.0

Organic OCP Endrin 0.1 <DL <DL <2.0 9.5 0.5 - - 2.3

7.2 <DL 67.8 62.6 - 250.1

Priority substances

TOTAL

TOTAL

TOTAL

TOTAL

TOTAL

Concentrations (ng.L-1) Total daily flux estimations (mg.day-1)

TOTAL
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Table 2: (Continued) 

 

 

 

 

 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Organic Musk HHCB 1438.6 1246.9 600.0 2943.7 100 18654.5 16795.1 9970.4 29213.8

Organic Musk HHCB-lactone 561.4 511.0 28.8 960.2 100 6410.6 6677.2 2926.3 9974.8

Organic Musk AHTN 196.9 196.5 24.5 347.4 100 2685.5 2470.6 1419.6 4549.5

Organic Musk MK 70.5 62.5 7.3 203.1 100 679.6 705.6 231.0 1133.7

Organic Musk ADBI 6.0 1.0 <DL 20.4 57.1 82.9 43.1 - 231.7

Organic Musk ATII 0.2 <DL <DL 3.3 9.5 2.1 - - 10.4

Organic Musk AHMI 0.2 <DL <DL 1.5 19.0 3.1 0.5 - 12.1

Organic Musk MX 0.2 <DL <DL 2.4 9.5 33.5 - - 134.4

Organic Musk MA 0.1 <DL <DL <1.0 9.5 0.8 - - 3.7

Organic Musk MM 0.1 <DL <DL <1.0 9.5 0.6 - - 3.1

2274.3 <DL 4483.8 28553.1 14547.2 45267.3

Organic Sunscreen OC 175.6 21.2 <DL 2334.0 94.7 3675.7 1109.4 38.4 12464.2

Organic Sunscreen Benzophenone 3 28.9 15.1 <DL 127.1 73.7 417.9 295.2 32.1 970.4

Organic Sunscreen 4-MBC 27.4 <DL <DL 178.5 42.1 247.5 65.9 - 965.0

Organic Sunscreen EHMC 0.7 0.1 <DL 3.4 57.9 8.0 6.7 - 18.9

Organic Sunscreen 3-BC <DL <DL <DL <DL 0.0 87.7 - - 350.7

Organic Sunscreen OD-PABA <DL <DL <DL <DL 0.0 - - - -

232.6 <DL 2643.0 4436.7 70.5 14769.1

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide 1544.7 1425.8 504.7 3228.4 100 22733.2 19179.6 16001.7 36571.9

Organic Pharmaceutical (Anxiolytics) Oxazepam 1421.6 1446.4 139.6 2911.4 100 24384.7 23446.8 18301.6 32343.6

Organic Pharmaceutical (Psychotropic) Caffeine 1224.2 458.6 26.9 12360.5 100 23997.7 12658.9 4050.1 66623.0

Organic Pharmaceutical (Anti-inflammatory) Diclofenac 917.3 900.4 418.6 2436.2 100 13994.4 11413.2 8220.5 24930.7

Organic Pharmaceutical (Pain killer) Ketoprofen 454.8 227.6 40.5 2472.4 100 8702.4 6695.1 4831.7 16587.5

Organic Pharmaceutical (Anticonvulsant) Carbamazepine 383.8 350.7 17.9 1127.8 100 5759.8 5391.8 2402.8 9852.9

Organic Pharmaceutical (Antihypertensive) Atenolol 333.9 294.1 17.4 731.9 100 6568.9 6040.1 4193.1 10002.4

Organic Pharmaceutical (Antihypertensive) Losartan 292.4 201.7 16.0 1105.5 100 5362.2 4643.4 3151.0 9010.8

Organic Pharmaceutical (Antibiotics) Ciprofloxacin 289.6 221.7 36.2 853.0 100 4057.5 3414.7 1311.3 8089.0

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen 250.6 83.4 <QL 1660.8 63.2 4773.3 3417.9 2299.9 9957.4

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole 216.8 208.3 55.0 559.5 100 3738.0 3624.3 2392.0 5311.3

Organic Pharmaceutical (Antibiotics) Ofloxacin 203.4 124.6 53.7 915.5 100 2551.2 2174.7 1015.5 4839.8

Organic Pharmaceutical (Antibiotics) Azithromycin 201.2 105.0 <QL 750.2 89.5 2384.0 2238.3 662.2 4397.0

Organic Pharmaceutical (Pain killer) Niflumic acid 198.6 158.6 <QL 516.6 94.7 3675.9 3108.5 2368.0 6118.5

Organic Pharmaceutical (Antibiotics) Clarithromycin 118.9 88.2 3.6 351.1 100 1713.0 1865.1 870.0 2251.5

Organic Pharmaceutical (Pain killer) Acetaminophen 108.9 12.5 <QL 951.4 84.2 2090.2 1641.3 119.4 4958.9

Organic Pharmaceutical (Glycemia) Gemfibrozil 98.5 107.6 <QL 255.3 94.7 1817.4 1762.4 1098.1 2646.9

Organic Pharmaceutical (Antiarrhythmic) Metoprolol 87.0 67.0 8.3 417.8 100 1776.7 1249.5 726.0 3881.7

Organic Pharmaceutical (Antibiotics) Erythromycin A 77.9 34.3 <QL 438.3 94.7 1563.7 693.1 228.3 4640.2

Organic Pharmaceutical (Antibiotics) Roxithromycin 77.0 53.5 <QL 292.2 78.9 1452.4 1348.4 500.0 2612.9

Organic Pharmaceutical (Glaucoma) Acetazolamide 76.2 52.1 <QL 231.1 52.6 1497.4 1434.4 0.0 3121.0

Organic Pharmaceutical (Antibiotics) Trimethoprim 67.5 58.9 <QL 159.3 94.7 1139.0 1214.1 624.8 1503.0

Organic Pharmaceutical (Antibiotics) Metronidazole 61.3 67.1 <QL 134.7 94.7 1160.4 1100.6 701.3 1739.2

Organic Pharmaceutical (Antibiotics) Spiramycin 55.8 31.1 <QL 344.4 63.2 841.3 561.7 106.6 2135.2

Organic Pharmaceutical (Antibiotics) Norfloxacin 49.3 <DL <QL 212.8 47.4 801.7 385.7 0.0 2435.4

Organic Pharmaceutical (Anxiolytics) Lorazepam 43.2 28.5 <QL 160.0 94.7 400.3 445.9 189.4 520.2

Organic Pharmaceutical (Antibiotics) Josamycin 22.5 13.6 <QL 83.2 78.9 387.6 328.5 210.4 683.0

Organic Pharmaceutical (Anxiolytics) Nordazepam 15.7 13.1 8.9 36.8 100 182.8 187.9 129.3 226.0

Organic Pharmaceutical (Pain killer) Phenazone 13.4 <DL <QL 137.6 21.1 18.3 - - 73.1

Organic Pharmaceutical (Antibiotics) Piperacillin 9.2 <DL <QL 169.2 15.8 154.2 - - 616.6

Organic Pharmaceutical (Antibiotics) Tetracycline 6.4 <DL <QL 44.6 21.1 67.1 30.8 - 206.8

Organic Pharmaceutical (Anticancer) Cyclophosphamide 5.8 <DL <QL 35.0 26.3 78.7 31.3 - 252.2

Organic Pharmaceutical (Antibiotics) Sulfadiazine 5.4 <DL <QL 16.0 42.1 70.4 46.0 - 189.4

Organic Pharmaceutical (Antibiotics) Flumequine 4.1 <DL <QL 57.8 10.5 81.7 35.4 - 256.1

Organic Pharmaceutical (Antibiotics) Ampicilline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Doxycycline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Oxolinic acid <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Rifampicin <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Sulfamethazine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Tylosine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) EE2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E1 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Contraceptif) 19-Norethindrone <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antiarrhythmic) Amiodarone - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Amoxicillin - - - - - - - - -

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid - - - - - - - - -

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide - - - - - - - - -

8937.0 1347.4 36158.3 149977.4 76705.1 279585.1TOTAL

Emerging substances

Concentrations (ng.L-1) Total daily flux estimations (mg.day-1)

TOTAL

TOTAL
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   3.1.2 Temporal variability 

The present study was conducted on five WWTPs and at four periods during the two years (August 

2017, May, July and December 2018). Statistical analyses conducted on the total concentration of each 

substance family showed significant differences between sampling months (except for organomercury 

compounds where no significant difference was detected) (ANOVA, p<0.05; Fig. 3; SM 3). August 

samples appeared as having the highest total concentrations compared to certain other sampling 

months (Tuckey HSD, p<0.05; Fig. 3; SM 3). For example, the metal total concentration was 

significantly higher in August samples than those of July and December (Tuckey HSD, p<0.05; Fig. 3; 

SM 3). The same occurred for organic and pharmaceutical total concentrations. August samples 

presented higher total concentrations than those of December and July, respectively (Tuckey HSD, 

p<0.05; Fig. 3; SM 3).  

   3.1.3 Spatial variability 

Moreover, significant differences were identified between WWTPs considering total concentrations of 

metals and pharmaceuticals (ANOVA, p<0.05; Fig. 3; SM 3). Indeed, metal total concentrations from 

‘WWTP 3’ samples were always significantly higher than those from other WWTPs (without 

considering ‘WWTP 5’ due to the too high salinity, Gutierrez et al., 2019) (Tuckey HSD, p<0.05; Fig. 3; 

SM 3). Even if the 11 analyzed metals were always detected in the four WWTP  effluents (occurrence= 

100%), ‘WWTP 3’ presented anyway the highest total mean concentration compared to the three 

others (24 557.2 ng.L-1 vs. 19 383.4 ng.L-1, 16 687.9 ng.L-1 and 15 458.9 ng.L-1 for ‘WWTP 4’, ‘WWTP 2’ 

and ‘WWTP 1’, respectively) (SM 4). According to the PCA (SM 5), showing the metal distribution 

between the four WWTPs, Vanadium, Chromium, Copper and Nickel (positively correlated between 

them and characterized by strongly negative coordinates on the first axis) contributed to the definition 

of the first axis and to the position of the ‘WWTP 3’ which appeared to be correlated to this group of 

analytes. Indeed, their mean concentrations were at 5 708.3 and 5 678.3 ng.L-1 (for Vanadium and 

Chromium, respectively) and at 4 641.2 and 3 868.0 ng.L-1 (for Copper and Nickel, respectively) in 

‘WWTP 3’ (SM 4). This contrasts with samples of others WWTPs where their mean concentrations 

varied from 4 339.5 to 5 105.8 ng.L-1 and from 3 881.8 to 5 239.5 ng.L-1 (for Vanadium and Chromium, 

respectively), from 1 589.9 to 2 797.7 ng.L-1 (for Copper) and from 2 034.8 to 2 211.5 ng.L-1 (for Nickel) 

(SM 4). To a lesser extent, Cadmium, Silver and Molybdenum influenced also differences between 

‘WWTP 3’ samples and the others. By contrast, Antimony and Lead (positively correlated) appeared 

higher in ‘WWTP 2’ than the others (1 280.5 and 892.3 ng.L-1 vs. 1 090.3-1 136.0 and 281.3-532.8 ng.L-

1 in other WWTPs) (SM 4 and 5). The same occurred for pharmaceutical compounds, but only between 

‘WWTP 3’ and ‘WWTP 1’ samples (Tuckey HSD, p<0.05; Fig. 3; SM 3). Indeed, whatever the 
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pharmaceutical family, concentrations were always higher in ‘WWTP 3’ samples than in ‘WWTP 1’ ones 

with differences ranging from 446 to 4 496 ng.L-1 (SM 4). The main mean concentration identified in 

‘WWTP 3’ was due to the Caffeine analyte (a psychotropic compound, 4 420.5 ng.L-1) (SM 4). Four other 

analytes were also identified with mean concentrations higher than 1 000 ng.L-1: Hydrochlorothiazide 

(an antihypertensive), Oxazepam (an axiolytic), Ketoprofen (a painkiller) and Diclofenac (an anti-

inflammatory). Among other analytical groups which did not present significant differences between 

WWTPs, musk compounds were highlighted in higher concentration in ‘WWTP 1’ (3 144.7 ng.L-1 vs. 

2 630.2 ng.L-1, 2 037.3 ng.L-1, 1 947.1 ng.L-1 and 1 523.0 ng.L-1 in ‘WWTP 4’, ‘WWTP 2’, ‘WWTP 5’ and 

‘WWTP 3’, respectively) (SM 4). APs were mainly found in ‘WWTP 5’ wastewaters with a total mean 

concentration equal to 1 489.2 ng.L-1 (SM 4) compared to other WWTPs where they ranged from 215.1 

ng.L-1 (in ‘WWTP 1’) to 899.1 ng.L-1 (in ‘WWTP 3’). Sunscreens presented a higher mean concentration 

in ‘WWTP 3’ samples (746.2 ng.L-1) while they were found in much lower concentrations in other 

WWTPs (from 30.1 to 156.8 ng.L-1). The same occurred with PAHs, mainly detected in ‘WWTP 2’ (186.0 

ng.L-1) compared to in other WWTPs (from 17.8 to 50.5 ng.L-1). Other analytical groups, such as PCBs, 

OCPs, and organomercury compounds were identified with mean concentrations lower than 20 ng.L-

1. 

According to total daily volumes rejected and measured by each French WWTP, daily flux estimations 

were calculated for each analytical group and analyte (Table 2; SM 4). Generally, the group rejected in 

highest mean quantity were metals (with a total mean daily flux estimation equal to 275 953.1 mg.day-

1) (Table 2). At the WWTP scale, this mean ranged from 11 923.1 (in ‘WWTP 1’) to 112 390.8 mg.day-1 

(in ‘WWTP 3’) (Fig. 4; SM 4). The second main analytical group rejected by WWTP were 

pharmaceuticals (Table 2; SM 4). Their flux estimations were around two times lower than metals with 

a total mean daily flux equal to 149 977.4 mg.day-1 (Table 2). The minimum occurred in ‘WWTP 1’ 

(3 349.3 mg.day-1) and the maximum in ‘WWTP 3’ (70 430.8 mg.day-1) (Fig. 4; SM 4). Other analytical 

groups, such as musks, APs, Sunscreens and PAHs obtained much lower total flux estimations (between 

1 393.4 to 28 553.1 mg.day-1) (Table 2; Fig. 4).  This was even more the case for PCBs, OCPs and 

organomercury compounds which presented total mean flux estimations between 54.6 to 75.8 

mg.day-1 (Table 2; Fig. 4). 
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Fig. 3: Total concentrations of metals (a), organomercury compounds (b), organics (PAHs, PCBs, 

musks, sunscreens, OCPs, alkylphenols) (c) and pharmaceuticals (d) detected in wastewaters (bulk 

samples) per sampling campaign for each WWTP discharge.  

 

 

(a) (b) 

(c) (d) 
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Fig. 4: Total mean daily flux estimations (mg.day-1) per analytical group (metals, organomercury 

compounds, PAHs, PCBs, APs, OCPs, musks, sunscreens and pharmaceuticals) per WWTP.  

3.2 Micropollutant analysis in benthic organisms 

Concentrations of detected analytes in each benthic organism sampled proximate to WWTP outfalls 

(i.e. in impacted locations) and in control locations are detailed in Tables 3 and 4. Among the 109 

organic substances analyzed in biota samples, a total of 51 analytes (9 PAHs, 6 PCBs, 1 OCP, 5 musks, 

3 sunscreens and 27 pharmaceuticals with mean concentrations ranging from 0.1 to 3 765.2 ng.g-1) 

were detected and quantified.  

A PCA was performed to show the analytical group distribution between the three benthic organisms 

used for all analyses (i.e. Ulva spp., Gelidium spp. and Porifera) (Fig. 5). Pharmaceuticals and musks 

(positively correlated between them and characterized by negative coordinates on the first axis and 

positive coordinates on the second axis; Fig. 5) appeared to contribute to the position of Ulva spp.. 

Indeed, this alga presented the highest number of detected pharmaceuticals and the highest total 

mean concentrations of pharmaceuticals (235.8 ng.g-1 vs. 10.8 ng.g-1 in Porifera and 55.3 ng.g-1 in 

Gelidium spp.) and musk compounds (87.5 ng.g-1 vs. 78.5 ng.g-1 in Porifera and 4.4 ng.g-1 in Gelidium 

spp.) (Tables 3). Main analytes responsible for these high concentrations were Azithromycin (an 
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antibiotic), Metoprolol (an antiarrhythmic), Oxazepam (an anxiolytic) and Ibuprofen (an anti-

inflammatory) with mean concentrations ranging between 26.9 and 62.2 ng.g-1 and HHCB (49.3 ng.g-1) 

and MA (26.9 ng.g-1) (Table 3). At the location scale, total concentrations of these both analytical 

groups (i.e. pharmaceuticals and musks) were always higher in Ulva spp. sampled in impacted locations 

compared to control locations (from 35.7 to 582.5 ng.g-1 in impacted locations vs. 24.4 ng.g-1 in 

locations without outfall for pharmaceuticals and from 20.6 to 220.0 vs. 11.6 ng.g-1, respectively for 

musk compounds) (Tables 3; Fig. 5). Among analytical groups detected in lower concentrations in this 

alga, the same occurred for PAHs (Table 3). Total concentrations of these three analytical groups were 

always higher in Ulva spp. sampled in ‘WWTP 2’ and often lower in those from ‘WWTP 1’ and to a 

lesser extent in those from ‘WWTP 5’. By contrast, the reverse occurred for sunscreens, detected in 

higher concentrations in control locations (Table 3; Fig. 5). Moreover, PCBs and OCPs were found in 

higher concentrations in ‘WWTP 5’ (impacted) and ‘Control 3’ (control) than in ‘WWTP 2’ and ‘WWTP 

1’ (impacted). 

Even if sunscreens did not show strongly positive coordinates, they were anyway associated to 

Gelidium spp. (Fig. 5). The total mean concentration (equal to 1 890.6 ng.g-1) was due to OC found up 

to 3 765.2 ng.g-1 while it was below 111 ng.g-1 in the two other taxa (Table 3). As for pharmaceuticals 

and musk compounds in Ulva spp., sunscreens were always found in higher concentrations in Gelidium 

spp. collected in impacted locations than those sampled in control locations (from 24.2 to 3  809 ng.g-

1 in impacted locations vs. from <DL to 1.3 ng.g-1 in the others). The same occurred for musk 

compounds even if they were detected in lower concentrations. In both cases, these analytical groups 

were found in higher concentrations in Gelidium spp. collected in ‘WWTP 4’ compared to those 

collected in ‘WWTP 3’ (Table 3). By contrast, pharmaceuticals and PAHs, were found in higher 

concentration in algae collected at ‘WWTP 3’ than those from ‘WWTP 4’ and control locations (‘Control 

1’ and ‘Control 3’). Finally, PCBs were always found under the detection limit whatever the location 

(impacted or control). 

Moreover, PAHs and PCBs (characterized by negative coordinates on both axes; Fig. 5) were mainly 

associated to Porifera. Indeed, PAHs and PCBs were found in higher concentrations in this organism 

than in others (PAHs: total maximum equal to 523.7 ng.g-1 in Porifera vs. 257.9 and 26.9 ng.g-1 in Ulva 

spp. and Gelidium spp., respectively; PCBs: 741.3 ng.g-1 vs. 67.5 ng.g-1 and <DL, respectively). The major 

PAHs and PCBs were Naphthalene (426.0 ng.g-1), Dibenzo[a,h]anthracene (385.6 ng.g-1) and PCB 28+31 

(703.8 ng.g-1) while other analytes had mean concentrations below 65 ng.g-1 (Table 3). Contrary to 

preceding analytical groups, PAHs and PCBs were mainly concentrated in Porifera sampled in control 

locations (Fig. 5). By contrast, even if musks, sunscreens and pharmaceuticals were detected in lower 

concentrations in this phylum, they were anyway identified in higher concentrations in Porifera 
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samples from ‘WWTP 3’ (the only one sampled impacted location) than in ‘Control 1’ and ‘Control 2’ 

(Table 3). 

Finally, concentrations of PCBs and OCPs in Ulva spp., PAHs and pharmaceuticals in Gelidium spp. and 

PAHs in Porifera did not show clear concentration distinction between impacted and control locations.  

Among the three other organisms (only analyzed for pharmaceuticals), Mytilus spp. presented the 

highest total mean concentration (41.1 ng.g-1) compared to Holothuria spp. (7.1 ng.g-1) and Patella spp. 

(35.2 ng.g-1) (Table 4). However, these concentrations were from six to 33 times lower than those 

detected in Ulva spp. (235.8 ng.g-1). These compounds anyway appeared in higher concentrations in 

organisms sampled in impacted locations than in those sampled in controls (except Patella spp. 

sampled in ‘WWTP 1’ which appeared lower concentrated than other impacted locations and the two 

controls). Indeed, Mytilus spp. from ‘WWTP 2’ appeared more concentrated than those from ‘Control 

3’ (control). For Patella spp., the highest total concentration was found in ‘WWTP 5’ samples which 

were also more concentrated than those from ‘WWTP 2’ and ‘WWTP 4’ as well as those from two 

controls (‘Control 1’ and ‘Control 3’). But, ‘WWTP 1’ presented the lowest pharmaceutical 

concentrations. Concentrations of pharmaceuticals in Holothuria spp. appeared higher in ‘WWTP 3’ 

than in ‘WWTP 1’ and ‘Control 2’ (Table 4).  
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Table 3: Mean concentrations of detected priority and emerging substances (ng.g-1) in Ulva spp., Gelidium spp. and Porifera sampled at the WWTP effluents 

and at control locations (far from point source of pollution; ‘Control 1’, ‘Control 2’, ‘Control 3’). Analyte mean concentrations were ordered according to 

the wastewater table. Significance codes: Underlined analytes are those followed and regulated within European Directives; DL: Detection limit; QL: 

Quantification limit; ‘-‘: corresponds to molecules whose pre-analytical or analytical methods were not adapted to their quantification in that sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substance families Analytical Groups Analytes Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD

Organic PAH Naphthalene <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - 36.3 4.4 426.0 59.4 9.2 1.0

Organic PAH Indeno[1,2,3-cd]pyrene <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PAH Dibenzo[a,h]anthracene <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - 385.6 116.9 <DL - <DL -

Organic PAH Fluorene <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PAH Pyrene 8.6 0.8 10.7 2.4 8.7 0.3 9.3 1.2 8.2 0.8 <DL - 0.3 0.1 0.1 0.2 <DL - <DL - 4.5 5.0 <DL - 2.7 0.3

Organic PAH Phenanthrene <DL - 48.0 8.4 <DL - 16.0 27.7 30.3 1.1 <DL - <DL - <DL - <DL - <DL - 11.7 5.3 <DL - 5.0 0.9

Organic PAH Acenaphthene 64.2 7.2 69.3 22.4 79.4 4.9 71.0 7.7 52.5 11.1 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PAH Benzo[g,h,i]perylene <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PAH Benzo[b]fluoranthene 45.7 3.5 92.7 17.5 42.5 6.7 60.3 28.1 24.1 12.3 7.8 0.5 2.7 0.6 5.2 3.6 6.9 0.6 7.37 0.6 <DL - 25.8 11.6 <DL -

Organic PAH Benzo[a]anthracene <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - 1.1 0.2

Organic PAH Anthracene <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - 0.2 0.4

Organic PAH Benzo[a]pyrene <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PAH Benzo[k]fluoranthene 4.0 3.2 28.3 5.6 1.8 0.3 11.4 14.8 0.2 0.2 14.8 2.2 6.9 1.1 10.8 5.6 12.2 0.6 12.53 0.5 <DL - 63.4 4.2 <DL -

Organic PAH Chrysene <DL - <DL - 5.9 0.6 2.0 3.4 <DL - 0.9 0.1 <DL - 0.5 0.7 1.3 0.1 1.17 - 8.4 1.0 <DL - 2.8 0.3

Organic PAH Fluoranthene 6.8 0.5 8.9 1.8 5.6 0.6 7.1 1.7 4.7 0.2 3.4 0.3 9.0 0.4 6.2 4.0 1.7 0.2 0.55 0.1 5.1 4.1 8.5 2.2 3.5 0.4

Organic PAH Acenaphtylene <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

129.2 - 257.9 - 143.9 - 177.0 - 119.9 - 26.9 - 18.9 - 22.9 - 22.0 - 21.6 - 451.6 - 523.7 - 24.6 -

Organic PCB PCB 138 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PCB PCB 194 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PCB PCB 149 8.4 0.1 6.5 3.7 8.74 0.27 7.9 1.2 8.6 0.1 <DL - <DL - <DL - <DL - <DL - <DL - 11.7 2.8 <DL -

Organic PCB PCB 28+31 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - 703.8 98.1 <DL -

Organic PCB PCB 101 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PCB PCB 52 13.8 0.2 18.0 1.6 38.39 10.95 23.4 13.2 15.5 0.4 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PCB PCB 180 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - 17.5 5.1 <DL -

Organic PCB PCB 44 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PCB PCB 18 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PCB PCB 153 8.1 0.03 8.3 0.1 8.37 0.26 8.3 0.1 8.4 0.2 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic PCB PCB 118 9.1 0.04 9.5 0.5 11.96 2.59 10.2 1.5 15.5 2.3 <DL - <DL - <DL - <DL - <DL - <DL - 8.4 6.2 0.5 0.4

39.5 - 42.3 - 67.5 - 49.8 - 48.0 - <DL - <DL - <DL - <DL - <DL - <DL - 741.3 - 0.5 -

Organic OCP Beta BHC - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP 4,4'-DDE 13.1 0.1 <DL - 19.5 3.2 10.9 9.9 13.78 0.03 - - - - - - - - - - <DL - <DL - <DL -

Organic OCP Alpha BHC - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP Methoxychlor - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP Delta BHC - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP Endosulfan Sulfate - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP Gamma BHC - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP 4,4'-DDT - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP Bêta Endosulfan <DL - <DL - <DL - <DL - <DL - - - - - - - - - - - - - - - - -

Organic OCP Alpha Endosulfan <DL - <DL - <DL - <DL - <DL - - - - - - - - - - - - - - - - -

Organic OCP Heptachlor - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP Aldrin <DL - <DL - <DL - <DL - <DL - - - - - - - - - - - - - - - - -

Organic OCP Dieldrine - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP Endrin Aldehyde - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP Heptachlor Epoxide - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP 4,4'-DDD - - - - - - - - - - - - - - - - - - - - <DL - <DL - <DL -

Organic OCP Endrin Ketone - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic OCP Endrin - - - - - - - - - - - - - - - - - - - - - - - - - -

13.1 - <DL - 19.5 - 10.9 - 13.8 - - - - - - - - - - - <DL - <DL - <DL -

Priority substances

'Control 2'''WWTP 4' Mean 'Control 1' 'Control 3' 'WWTP 3' 'Control 1''WWTP 1' 'WWTP 2' 'WWTP 5' Mean 'Control 3' 'WWTP 3'

Ulva  spp. Gelidium spp. Porifera
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Substance families Analytical Groups Analytes Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD

Organic Musk HHCB 5.7 0.9 136.8 12.3 5.5 1.5 49.3 75.7 0.1 0.2 0.3 0.3 3.3 0.6 1.8 2.1 0.2 0.2 <DL - 41.0 - 41.2 9.4 5.2 0.0

Organic Musk HHCB-lactone - - - - - - - - - - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Musk AHTN <DL - 25.9 2.3 1.1 0.5 9.0 14.7 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Musk MK <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Musk ADBI <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Musk ATII <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Musk AHMI <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Musk MX 0.4 0.1 6.6 0.2 <DL - 2.3 3.7 0.5 0.2 <DL - <DL - <DL - <DL - <DL - 37.5 - <DL - 6.0 0.0

Organic Musk MA 15.68 1.75 50.8 5.0 14.1 1.0 26.9 20.8 11.0 1.8 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Musk MM <DL - <DL - <DL - <DL - <DL - 0.02 0.04 5.1 0.6 2.6 3.6 <DL - <DL - <DL - <DL - <DL -

21.8 - 220.0 - 20.6 - 87.5 - 11.6 - 0.4 - 8.4 - 4.4 - 0.2 - <DL - 78.5 - 41.2 - 11.1 -

Organic Sunscreen OC 4.9 0.1 25.2 6.4 41.8 16.9 24.0 18.5 110.8 23.6 16.1 6.7 3765.2 1837.1 1890.6 2651.0 <DL - 1.3 1.3 <DL - 52.6 6.0 <DL -

Organic Sunscreen Benzophenone 3 43.2 3.8 17.0 3.7 7.2 0.5 22.5 18.6 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Sunscreen 4-MBC <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Sunscreen EHMC 2.1 0.1 <DL - 40.1 3.4 14.0 22.6 10.3 0.4 8.1 1.7 43.8 12.8 <DL - <DL - 95.8 - <DL - 4.2 -

Organic Sunscreen 3-BC <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Sunscreen OD-PABA <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

50.1 - 42.2 - 89.1 - 60.5 - 121.1 - 24.2 - 3809.0 - 1890.6 - <DL - 1.3 - 95.8 - 52.6 - 4.2 -

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide <DL - 10.5 4.0 <DL - 3.5 6.1 <DL - <DL - <DL - <DL - <DL - <DL - 8.0 2.7 <DL - <DL -

Organic Pharmaceutical (Anxiolytics) Oxazepam <DL - 96.8 3.1 <DL - 32.3 55.9 <DL - <DL - 9.1 0.7 4.5 6.4 <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Psychotropic) Caffeine <DL - <DL - 9.4 1.1 3.1 5.4 <DL - <DL - <DL - <DL - <DL - <DL - 1.1 0.0 <DL - <DL -

Organic Pharmaceutical (Anti-inflammatory) Diclofenac - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Pain killer) Ketoprofen <DL - 60.3 - <DL - 20.1 34.8 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Anticonvulsant) Carbamazepine <DL - 8.8 0.9 <DL - 2.9 5.1 <DL - <DL - 3.5 - 1.7 2.5 <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antihypertensive) Atenolol <DL - 38.4 0.2 2.3 0.01 13.6 21.5 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antihypertensive) Losartan <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Ciprofloxacin <DL - 6.6 3.6 <DL - 2.2 3.8 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen 12.8 - 67.8 - <DL - 26.9 36.0 <DL - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Pharmaceutical (Antibiotics) Ofloxacin 0.2 - 4.6 0.2 1.7 - 2.1 2.2 0.4 - 1.1 - 1.3 - 1.2 0.1 1.0 0.4 1.4 - 1.7 0.0 <DL - 1.1 0.6

Organic Pharmaceutical (Antibiotics) Azithromycin 0.3 - 148.9 9.4 37.3 2.1 62.2 77.3 <DL - 0.2 0.04 1.4 0.4 0.8 0.9 0.6 0.2 <DL - - - - - - -

Organic Pharmaceutical (Pain killer) Niflumic acid <DL - 2.3 1.4 <DL - 0.8 1.3 <DL - <DL - 1.2 - 0.6 0.9 <DL - <DL - - - - - - -

Organic Pharmaceutical (Antibiotics) Clarithromycine <DL - 1.9 0.1 <DL - 0.6 1.1 <DL - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Pharmaceutical (Pain killer) Acetaminophen 1.0 0.2 <DL - 1.3 0.2 0.8 0.7 0.1 0.002 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Glycemia) Gemfibrozil <DL - <DL - <DL - <DL - <DL - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Antiarrhythmic) Metoprolol <DL - 99.6 1.7 <DL - 33.2 57.5 <DL - <DL - 0.5 - 0.3 0.4 <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Erythromycin A <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Pharmaceutical (Antibiotics) Roxithromycine <DL - 0.4 - <DL - 0.1 0.2 <DL - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Pharmaceutical (Glaucoma) Acetazolamide <DL - <DL - 0.5 0.3 0.2 0.3 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Trimethoprim <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Metronidazole <DL - 0.3 0.03 <DL - 0.1 0.2 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Spiramycin <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Pharmaceutical (Antibiotics) Norfloxacin <DL - 5.2 0.9 10.7 - 5.3 5.3 <DL - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Pharmaceutical (Anxiolytics) Lorazepam <DL - 1.6 0.0 <DL - 0.5 0.9 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Josamycin <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Pharmaceutical (Anxiolytics) Nordiazepam <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Pain killer) Phenazone <DL - 11.8 - 7.2 - 6.3 5.9 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Piperacillin <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Tetracycline <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Anticancer) Cyclophosphamide <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Sulfadiazine <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Flumequine <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Ampicilline <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - 8.3 3.1 <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Doxycycline <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Pharmaceutical (Antibiotics) Oxolinic acid <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Rifampicin <DL - <DL - <DL - <DL - <DL - 92.1 - <DL - 46.0 65.1 83.6 30.8 <DL - - - - - - -

Organic Pharmaceutical (Antibiotics) Sulfamethazine <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Tylosine <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - - - - - - -

Organic Pharmaceutical (Hormones) E2 - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Hormones) EE2 - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Hormones) E1 - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Contraceptif) 19-Norethindrone <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antiarrhythmic) Amiodarone 21.3 2.0 16.6 0.7 <DL - 19.0 3.3 24.0 1.9 - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Amoxicillin <DL - <DL - <DL - <DL - <DL - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide - - - - - - - - - - - - - - - - - - - - - - - - - -

35.7 - 582.5 - 70.4 - 235.8 - 24.4 - 93.4 - 17.1 - 55.3 - 93.4 - 1.4 - 10.8 - <DL - 1.1 -

'Control 2''

Emerging substances

'WWTP 4' Mean 'Control 1' 'Control 3' 'WWTP 3' 'Control 1''WWTP 1' 'WWTP 2' 'WWTP 5' Mean 'Control 3' 'WWTP 3'

Ulva  spp. Gelidium spp. Porifera
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Substance families Analytical Groups Analytes Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD Average SD

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide <DL - <DL - <DL - <DL - - - - - <DL - 0.9 0.1 <DL - 1.7 - 0.7 0.8 <DL - <DL -

Organic Pharmaceutical (Anxiolytics) Oxazepam <DL - <DL - <DL - <DL - 16.5 - <DL - <DL - 13.3 1.6 <DL - 0.0 - 3.3 6.7 <DL - <DL -

Organic Pharmaceutical (Psychotropic) Caffeine <DL - 5.2 0.1 2.6 3.7 <DL - <DL - <DL - <DL - <DL - <DL - 46.6 0.7 11.6 23.3 <DL - <DL -

Organic Pharmaceutical (Anti-inflammatory) Diclofenac - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Pain killer) Ketoprofen <DL - <DL - <DL - <DL - <DL - <DL - - - - - - - - - - - - - - -

Organic Pharmaceutical (Anticonvulsant) Carbamazepine <DL - <DL - <DL - <DL - 2.2 - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antihypertensive) Atenolol <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antihypertensive) Losartan <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Ciprofloxacin <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Ofloxacin 0.8 0.8 1.0 - 0.9 0.1 <DL - 2.5 - <DL - <DL - 4.0 - <DL - <DL - 1.0 2.0 <DL - <DL -

Organic Pharmaceutical (Antibiotics) Azithromycin 1.6 1.8 1.8 0.6 1.7 0.1 1.1 1.4 3.1 - 1.1 0.6 0.3 0.1 14.0 1.5 7.7 1.8 10.3 3.1 8.1 5.8 1.8 0.4 0.7 0.3

Organic Pharmaceutical (Pain killer) Niflumic acid 2.2 2.2 1.3 0.7 1.7 0.7 1.0 0.1 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Clarithromycine <DL - <DL - <DL - <DL - 0.6 - <DL - <DL - 2.2 0.6 0.2 0.1 3.1 0.4 1.4 1.5 <DL - <DL -

Organic Pharmaceutical (Pain killer) Acetaminophen <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - 32.1 1.6 8.0 16.1 <DL - <DL -

Organic Pharmaceutical (Glycemia) Gemfibrozil - - - - - - - - - - - - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antiarrhythmic) Metoprolol <DL - <DL - <DL - <DL - <DL - <DL - <DL - 3.6 1.0 <DL - <DL - 0.9 1.8 <DL - <DL -

Organic Pharmaceutical (Antibiotics) Erythromycin A <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Roxithromycine <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Glaucoma) Acetazolamide <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Trimethoprim <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Metronidazole <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Spiramycin <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - 0.8 - <DL - 0.2 0.4 <DL - <DL -

Organic Pharmaceutical (Antibiotics) Norfloxacin <DL - <DL - <DL - <DL - 16.0 - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Anxiolytics) Lorazepam <DL - <DL - <DL - 0.8 0.4 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Josamycin <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Anxiolytics) Nordiazepam <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Pain killer) Phenazone <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Piperacillin <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Tetracycline <DL - <DL - <DL - 1.0 - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Anticancer) Cyclophosphamide <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Sulfadiazine <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Flumequine <DL - 0.4 0.1 0.2 0.3 0.2 0.03 <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Ampicilline <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Doxycycline <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Oxolinic acid <DL - <DL - <DL - 0.5 - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Rifampicin <DL - <DL - <DL - <DL - <DL - <DL - - - - - - - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Sulfamethazine <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antibiotics) Tylosine <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Hormones) E2 - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Hormones) EE2 - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Hormones) E1 - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Contraceptif) 19-Norethindrone <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL - <DL -

Organic Pharmaceutical (Antiarrhythmic) Amiodarone - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Amoxicillin - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid - - - - - - - - - - - - - - - - - - - - - - - - - -

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide - - - - - - - - - - - - - - - - - - - - - - - - - -

4.7 - 9.6 - 7.1 - 4.6 - 41.1 - 1.1 - 0.3 - 38.1 - 8.7 - 93.8 - 35.2 - 1.8 - 0.7 -

'Control 1' 'Control 3'

Emerging substances

'Control 3' 'WWTP 1' 'WWTP 2' 'WWTP 4' 'WWTP 5' Mean'WWTP 1' 'WWTP 3' Mean 'Control 2' 'WWTP 2'

Holothuria  spp. Mytilus  spp. Patella spp.

Table 4: Mean concentrations of detected pharmaceutical compounds (emerging substances) (ng.g-1) in Holothuria spp., Mytilus spp. and Patella spp. 

sampled at the WWTP effluents and at control locations (far from point source of pollution; ‘Control 1’, ‘Control 2’, ‘Control 3’). Analyte mean 

concentrations were ordered according to the wastewater table. Significance codes: DL: Detection limit; QL: Quantification limit; ‘-‘: corresponds to 

molecules whose pre-analytical or analytical methods were not adapted to their quantification in that sample.  
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Fig. 5: Principal component analysis (PCA) showing analytical group distribution between 

marine organisms sampled in both impacted and control locations. PHs: Pharmaceuticals. 

4. Discussion 

4.1 Characterization of WWTP effluents  

 4.1.1 Occurrence of micropollutants in WWTP effluents  

Generally, a large number of publications was achieved on metal, alkylphenol, musk and 

pharmaceutical analyses (see Table 1 in Chapter I). By contrast, studies on PCBs and OCPs were scarce 

as it was already highlighted by other authors (Deblonde et al., 2011; Miège et al., 2009). The interest 

of the scientific community in studying these specific molecules may be linked to their important 

probability of occurrence and great concentrations already detected in urban discharges which allow 

to ensure their detection despite the cost and the time these analyses required.  

Metal compounds 

Among analytes detected in this study, those having the highest mean concentrations in WWTP 

discharges were two metals, Vanadium and Chromium with mean concentrations near 5 000 ng.L-1 
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(Table 2). Generally, these refractory metals are used in alloys of stainless steels to increase hardness 

of steel and impact resistance (Aygün et al., 2019). Their concentrations found in this study go against 

other studies which found these substances in lower concentrations than the other metal compounds 

such as Nickel, Copper and Arsenic (Busetti et al., 2005). For example, Vanadium was found in the 

present study in much higher concentrations than that analyzed in WWTP discharges located close to 

the city of Venice in Italy (4 884.7 ng.L-1 vs. 500-2 200 ng.L-1) (Busetti et al., 2005). This could surprise 

in view of the higher nominal flow from urban and industrial wastes compared to those in the present 

study (100 000 m3.day-1 vs. from 4 149 to 41 070 m3.day-1). By contrast, Chromium was found in similar 

concentrations to those found in this same study even if it was reported in much higher concentrations 

in another case in India (20 000- 370 000 ng.L-1) (Singh et al., 2004) but where the nominal flow was 

between 5 to 80 million liters per day. In the present study, no metal was detected with concentrations 

exceeding legislation limits (EC, 2013) although two priority substances (Nickel and Lead) and two 

priority hazardous substances (Cadmium and Mercury) were identified. 

Generally, heavy metals were already described in the literature as non-biodegradable substances and 

their removal from aqueous solutions as rather challenging (Rajasulochana and Preethy, 2016). Even 

if conventional technologies (e.g. flocculation/coagulation, precipitation, adsorption, activated 

charcoal, ion exchange resins and membrane filtration) are able to remove a great portion of metals 

from influents (Busetti et al., 2005), their performances encounter difficulties especially in case of very 

high concentrations (Rajasulochana and Preethy, 2016; Rezania et al., 2016). Indeed, in the present 

study, metals appeared as the most frequently detected (occurrence=100%) and concentrated 

analytical group (mean concentrations > 2 000 ng.L-1) (Table 2). But, as stated by Busetti et al. (2005), 

variations in metal concentrations may be characteristic of household effluents and their high 

concentrations could be associated to the resuspension of pipe sediments deposited in the sewerage.   

Pharmaceutical substances 

Four pharmaceuticals also highly contributed to the high total mean concentration of pharmaceutical 

group (Hydrochlorothiazide, Oxazepam, Caffeine and Diclofenac) (Table 2).  Their mean concentrations 

were ranged from 917.3 ng.L-1 to 1 544.7 ng.L-1 which corresponds to those found in the literature 

(Table 2; Table 1 in Chapter I).  Indeed, Hydrochlorothiazide was found between 504.7 to 3 228.4 ng.L-

1 in the present study (Table 2), around 439.1 ng.L-1 in another one achieved on nine urban Italian 

WWTPs (Zuccato et al., 2005) and around 2 800 ng.L-1 on 50 plants in US (Kostich et al., 2014). This 

diuretic compound, often associated to other anti-hypertensives for long-term treatments, is 

essentially eliminated from the plasma unchanged in the urine (with a half-life time of 6 to 15h) 

(http://www.vidal.fr). This could thus explain its high concentration in sewages. Theorically, once 
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administrated, pharmaceuticals are metabolized to varying degrees and are excreted as the parent 

compound (in large part) or as metabolites (Deblonde et al., 2011; Lishman et al., 2006; Verlicchi et al., 

2012; Zuccato et al., 2005). In fact, the parent drug is converted into a more polar metabolite on which 

glucuronic acid, sulphuric acid or acetic acid are then added to increase the ability to be excreted 

(Deblonde et al., 2011). But, in the case of Hydrochlorothiazide, this molecule is essentially eliminated 

unchanged and it is thus not surprising to find the original compound in urban discharges.  

Oxazepam had a mean concentration equal to 1 421.6 ng.L-1 (with a range from 139.6 to 2 911.4 ng.L-

1) (Table 2). In a study where 90 WWTPs across Europe were analyzed, the maximum detected 

concentration was 1 766 ng.L-1 while the average was around 162 ng.L-1 (Loos et al., 2013). No 

information was available concerning the plant which present this maximum concentration. Therefore, 

it is only possible to confirm the possibility to find such concentrations in WWTP effluents. 

Furthermore, this substance, prescribed as anxiolytic (Seresta product), is described as being renally 

eliminated at 90% as glucuronide (inactive metabolite) (http://www.vidal.fr). Therefore, only a very 

small percentage of Oxazepam (parent compound) is finally found in the urine.  

Caffeine was detected in this study in mean concentrations ranging from 26.9 to 12 360.5 ng.L-1 (with 

a median at 458.6 ng.L-1) (Table 2). These concentrations are lower (but still included in the range) than 

those found in some other studies (Batt et al., 2006; Loos et al., 2013; Santos et al., 2009), especially 

those from (Baker and Kasprzyk-Hordern, 2013). They found concentration up to 34 198.3 ng.L-1 (with 

a median at 1 744.2 ng.L-1) in samples from seven WWTPs in England (serving a population from 9 967 

to 244 205). By contrast, these concentrations appeared much higher than those found in effluents 

from four WWTPs sited in Seville city (mean concentrations from 80 to 370 ng.L-1 ) while their capacities 

were between 200 000 to 950 000 equivalent inhabitants which is 2 to 10 times higher than those of 

the present study (Martín et al., 2012). Nevertheless, Batt et al. (2006) which detected Caffeine from 

190 to 9 900 ng.L-1 in effluent samples mentioned that these concentrations were similar to those 

previously reported in wastewater effluent which correspond also to those found in the present 

studies. In addition, the substance was reported as readily biodegradable (Gómez et al., 2007; Thomas 

and Foster, 2005) and with a very high removal rate (around 97%) with a final concentration in the 

effluent exceeding not 1 770 ng.L-1 compared to a mean at 56 630 ng.L-1 in the influent (Deblonde et 

al., 2011). Caffeine is supposed to be completely metabolized in the liver after its consumption 

(http://www.vidal.fr).  

Finally, Diclofenac was identified with a mean concentration at 917.3 ng.L-1 (Table 2). This substance 

was already widely documented in WWTP effluents with concentrations ranging from 1.0 to 2 830 ng.L-

1 (see Table 1 in Chapter I). It was described as less hydrophobic compounds compared to some others 
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(triclosan estradiol, estrone, etc.) and highly biodegradable compounds under aerobic conditions but 

persistent in anoxic conditions (Verlicchi et al., 2012). When this substance, is administrated as anti-

inflammatory, less than 1% is eliminated unchanged in the urine and the rest is eliminated through the 

biliary tract as glucuronide conjugate metabolites (http://www.vidal.fr). Therefore, 3 of the 4 

pharmaceuticals detected in this study in high concentrations should not be present as parent 

compounds in discharges considering their elimination process by the human body. Indeed, they 

supposed to be almost completely or totally metabolized. This raises the question to the quantity 

consumed by local people or to the source of these compounds explaining such concentrations in 

urban discharges if it does not come from medical consumption and excretion. For example, this could 

suggest that Caffeine could be widely directly released into the water system even before their 

ingestion. Other sources should thus be investigated to explain and ideally mitigate the discharge into 

the sewer system (and finally in the aquatic environment) of such substances. This is to enhance by 

the fact that, up to now, no regulation exist for these compounds. Moreover, another question may 

arise about the quantity of discharged metabolites in the environment because they would certainly 

found in much higher concentrations than parent compounds. 

Generally, the high concentration of pharmaceuticals in the effluents is align with most articles which 

generally identified these compounds in the µg/L range in such matrices (Deblonde et al., 2011; 

Zuccato et al., 2005). These high amounts may be explained by their high consumption by modern 

society and their continuous introduction in the aquatic environment through WWTP discharges 

considered as important sources of contamination (Bueno et al., 2012; Zuccato et al., 2005). France 

was also reported by the British Government as the third European country (on the 14 studied) 

consuming more drugs (Bueno et al., 2012; Richards, 2010). Mainly due to the great variability of their 

chemical and physical properties (i.e. solubility, volatility, adsorbability, absorbability, 

biodegradability, polarity and stability), pharmaceuticals were reported as not efficiently removed by 

common WWTPs (i.e. only partially eliminated during the secondary treatment) (Bueno et al., 2012; 

Verlicchi et al., 2012) which explains that they appeared as the second highest concentrated analytical 

group (after metals) in the present study (mean concentrations > 2 000 ng.L-1) (Table 2). For all these 

reasons and in addition to their possible effects on wildlife and humans, pharmaceuticals are 

considered as “emerging contaminants” (Bueno et al., 2012).  

Musk compounds 

HHCB and HHCB-lactone (oxidation product of HHCB) were the two polycyclic musks identified in 

highest mean concentrations among other musk compounds (1 438.6 ng.L-1 and 561.4 ng.L-1, 

respectively) (Table 2). Indeed, polycyclic musks are used in many consumer products (Reiner and 
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Kannan, 2006), their production and usage increased the last decade contrary to nitro musks (found in 

lower concentrations in this study) (Gatermann et al., 2002; Sommer, 2004) and 77% of them are 

estimated to go down the drain and then in WWTPs. As in the present study, HHCB was reported as 

predominant polycyclic musks in wastewater explained by its greater production and usage compared 

with AHTN for example (found in lower concentrations) (Horii et al., 2007; HERA, 2004). But, this 

finding runs counter to its removal efficiency identified between 72 and 98% due to its lipophilic nature 

inducing its adsorption to particles captured in sewage sludges (Artola-Garicano et al., 2003; Carballa 

et al., 2004; Horii et al., 2007; Simonich et al., 2002). Consequently, their concentrations were either 

much higher in influents than those found in effluents or their removal was not efficient as the removal 

highly depends on the type of treatment process (J. Reiner et al., 2007). Indeed, even if these 

concentrations correspond to those found in the literature, they widely varied between studies and 

WWTPs (from 10 to 7 030 ng.L-1 for HHCB and from 66 to 4 000 ng.L-1 for HHCB-lactone) (see Table 1 

in Chapter I). Moreover, even though HHCB-lactone was reported as increasing following the 

treatment (by oxidation of HHCB during the activated sludge process), it was anyway identified in the 

present study in lower concentrations than HHCB which is consistent with other studies (Horii et al., 

2007; J. Reiner et al., 2007). Indeed, influents were not identified as direct sources of HHCB-lactone; 

only the oxidation processes within treatment plants were reported as generating this compound, 

explaining thus their presence in effluents (Horii et al., 2007).  

Generally, the musk group was identified as the third group having the highest mean concentrations 

(mean concentrations > 2 000 ng.L-1) (Table 2). Originally, the natural musk substance was contained 

by the exocrine glands of the male musk deer (Moschus moschiferus) (Lee et al., 2003). Now 

endangered, the natural substance was substituted by synthetic musk fragrances (Lee et al., 2003). 

Polycyclic musks (HHCB and its HHCB-lactone metabolite, AHTN, AHMI, ADBI, ATII) and nitro musks 

(MX and MK) constitute nowadays fragrance components widely used in household and personal-care 

products such as detergents, soaps, softeners, shampoos, shaving foams, etc. (Chase et al., 2012; Lee 

et al., 2003). Their high consumption associated to their hydrophobic and lipophilic nature (i.e. low 

water solubility due to logKow ranging from 4.3 to 5.9), explain their high concentrations in WWTP 

discharges at the end of their lifecycle, their tendency to be bioconcentrated and their difficulty to be 

biodegraded (Lee et al., 2003; Lishman et al., 2006). Moreover, it was also described that, sometimes, 

their concentrations could be higher in effluents than in influents (Chase et al., 2012). This 

phenomenon was attributed to the back transformation of metabolites to parent compounds through 

biotic and/or abiotic activities during treatments (Biselli et al., 2004; Chase et al., 2012; Jjemba, 2008; 

Karnjanapiboonwong et al., 2011; J. Reiner et al., 2007; J. L. Reiner et al., 2007; Ternes et al., 1999) 

although the increasing concentration of HHCB-lactone metabolite throughout treatments was 
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anyway described by other authors (J. Reiner et al., 2007; J. L. Reiner et al., 2007). Furthermore, their 

removal by sludge treatments (through adsorption) influenced by their features could explain their 

lower concentrations in effluents that the two previous analytical groups (Lee et al., 2003). But, as 

highlighted by Chase et al. (2012), their ability to be eliminated by plants is highly linked to the size and 

the processes used and the type and origin of wastewater. Up to now, no regulatory limits have been 

set for musks compounds. 

Other main substances detected per analytical group 

Nonylphenol (NP) was found with a mean concentration at 573.6 ng.L-1 and values ranging from 19.0 

to 1 449.4 ng.L-1 (Table 2). Even if this range varied widely among plants, concentrations never 

exceeded the regulation limit  fixed at 2 000 ng.L-1 (MAC-EQS; EC, 2013). This variability and these 

extreme values were already reported in the literature (from <30 to 37 000 ng.L-1; see Table 1 in 

Chapter I) which was attributed to plant designs and their efficiencies (Ying et al., 2002). For example, 

a such range was also found in a unique study achieved in Michigan on four WWTPs (Snyder et al., 

1999). NP is one metabolite (i.e. degradation product) of the Alkylphenol ethoxylate (APEs) which is 

widely used in surfactants in industrial and domestic products (e.g. detergents, OCP formulations, 

foaming agents, wetting agents, dispersants, emulsifiers, solubilizers) (Ying et al., 2002). They were 

identified as ubiquitous in the environment, resistant to biodegradation and common in wastewater 

effluents while conventional biological treatments should normally efficiently treat them (due to their 

hydrophobic nature) (Johnson and Sumpter, 2001; Navarro et al., 2009; Ying et al., 2002). This could 

thus explain their concentrations lower than those of previous analytes. In another study, the 

concentration of phenolic compounds (such as NP) was reported as higher in the effluent than in the 

influent (Nie et al., 2012). Indeed, they identified a notable increase after passing through the aerated 

grit chamber and suggested then that it would probably due to the peeling off of the grit due to 

agitation. Consequently, the presence of NP in WWTP discharges could be either due to inefficient 

treatments for its removal or to its release during the treatment process. Another AP substance was 

stated as priority substance (4tOP) but it never exceed the regulatory limit during this study (EC, 2013).  

OC (a sunscreen) and Naphthalene (a PAH) were found as main analytes in their group but were 

detected in much lower concentrations than those previously described (i.e. from 31.5 to 175.6 ng.L-

1) (Table 2). Compared to concentrations found in the literature, OC was found slightly more 

concentrated (175.6 ng.L-1 vs. from 0 to <60 ng.L-1; see Table 1 in Chapter I). But, it is important to note 

that this substance varied considerably between plants (from <DL to 2 334.0 ng.L-1). Bueno et al. (2012) 

also reported such variations for this compound and mentioned that it would depend on the intensity 

of recreational activities and on season (Giokas et al., 2007). Moreover, OC was describe as one of the 
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most hydrophobic sunscreens (as well as ODBAPA, IAMC and EHMC) (Rodil et al., 2012). Consequently, 

in this same study, they did not found these compounds in wastewater samples likely because they 

are rapidly absorbed on the particulate matter, which could anyway explain that OC had a lower 

median in the present study (21.2 ng.L-1). Up to now, no regulatory limits have been set for sunscreens.  

PAHs were already described as very often picked up by activated sludge treatment which represents 

the treatment employed in three of the five studied WWTPs (those having also the highest inhabitant 

equivalents) (Deblonde et al., 2011). Naphthalene was found in lower concentrations than those 

reported in the literature (31.5 ng.L-1 vs. from 101 to 3 450 ng.L-1; see Table 1 in Chapter I) and than 

the regulation limits fixed at 130 000 ng.L-1 for the MAC-EQS. Indeed, the maximum obtain in the 

present study (147.7 ng.L-1) approximately corresponds to the minimum found in the literature (Table 

2). The reported maximum corresponded to effluents from a WWTP located in a heavily industrialized 

area, receiving thus domestic as well as industrial raw wastewater, for approximately 30 000 m3.day-1 

(Sánchez-Avila et al., 2009), which corresponds to 3 times the maximum nominal flow reported in the 

present study (i.e. at ‘WWTP 2’). Among other PAHs found in lower concentrations, 6 were stated as 

priory hazardous substances (Anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[g, h, 

i]perylene, Benzo[k]fluoranthene and Indeno[1, 2, 3-cd]pyrene) and one as priority substances 

(Fluoranthene). Only Benzo[g,h,i]perylene presented a mean concentration exceeding the MAC-EQS 

(2.2 ng.L-1 vs. 0.82 ng.L-1). The maximum was reached by ‘WWTP 1’ with a mean concentration up to 

22.8 ng.L-1 (SM 4). In addition, the maximum of at least one WWTP (‘WWTP 3’ and ‘WWTP 4’, 

respectively) exceeded the MAC-EQS for Benzo[b]fluoranthene and Beta BHC (fixed at 17 ng.L-1 and 20 

ng.L-1, respectively) (Table 2; SM 4). But, even if their maximum reached or exceeded these limits, their 

means were anyway below the EQS.  

Finally, PCB and OCP substances were found in very low concentrations (mean concentrations <2.0 g.L-

1) (Table 2). Due to their chlorine content which attribute them a low water solubility, they were 

already described as very often picked up by activated sludge treatment which represents the 

treatment employed in three of the five studied WWTPs (those having also the highest inhabitant 

equivalents) (Deblonde et al., 2011; Man et al., 2018; Pham and Proulx, 1997; Sánchez-Avila et al., 

2009). Concentrations were less or equivalent to those found in the literature (see Table 1 in Chapter 

I) which also corroborates with findings of Sánchez-Avila et al. (2009) who did not found PCB even in 

effluents from a heavily industrialized area. Moreover, a decrease of the concentrations of most OCPs 

has also already been demonstrated throughout the treatment processes (Man et al., 2018). Nine OCPs 

were stated as priority hazardous substances (Alpha BHC, Alpha endosulfan, Beta BHC, Bêta 

endosulfan, Delta BHC, Endosulfan sulfate, Gamma BHC, Heptachlor, Heptachlore epoxide) and 6 other 

were only assigned to EQS but not classified in such a category (Aldrin, Dieldrine, Endrin, 4,4’-DDD, 
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4,4’-DDE and 4,4’-DDT) (Table 2). By contrast, up to now no regulation limit exist for PCB in surface 

waters. 

4.1.2 Temporal variability 

Significant differences were highlighted between sampling months (except for organomercury 

compounds), especially between August samples (with the highest total concentrations), and those 

from July and December (Fig. 3; SM 3). Even if some parameters (e.g. temperature, precipitation rate, 

solar radiation, pH) could influence or greatly affect the amount of certain substances in wastewater, 

their variations were not enough important to explain these differences (Table 1; SM 1). Indeed, pH 

was identified as affecting the removal efficiency of some pharmaceuticals, with a higher removal 

efficiency under acidic conditions (at pH 5). At this pH, compounds mainly in their hydrophobic form, 

are more readily adsorb during treatments (Deblonde et al., 2011; Verlicchi et al., 2012). But, in the 

present study, the pH only varied from 6.3 to 8.9 and the minimum occurred in August (Table 1; SM 

1). Other studies also described lower efficiencies during colder seasons (Vieno et al., 2005). But, as 

previously, this runs counter to the present results which presented higher concentrations during 

summer. Therefore, differences were mainly associated to rainfall and flow rates (lower in August than 

in July), suspended matter (higher in August than in other sampling months) and summer 

overcrowding. Indeed, the population along the Basque coast considerably increases during summer. 

No data were found about population of studied cities but, for example, the population varied from 

25 480 in winter to 110 000 in summer in Biarritz (a neighboring city) (https://ville.biarritz.fr). In 

addition, the rainfall was reported as lower in August than in July (99.2 mm vs. 124.9 mm during the 5 

days preceding the sampling; SM 1). Effluents were thus more concentrated in August and more 

diluted in July. This is confirmed by the daily flow in entry which was also lower in August than in July. 

Finally, the concentrations of suspended matter supported also these results because they were much 

more concentrated in August than in other sampling months (20.79 mg.L-1 vs. from 9.17 to 12.08 mg.L-

1) (SM 1). As previously explained, micropollutants seemed to be mainly absorbed on the particulate 

matter due to their hydrophobic nature (differences between unfiltered and filtered samples) (SM 2). 

It is thus not surprising to find higher micropollutants concentrations the month where suspended 

matter values were higher (i.e. in August) (Lee et al., 2003; Lishman et al., 2006; Man et al., 2018; Pham 

and Proulx, 1997; Rodil et al., 2012; Sánchez-Avila et al., 2009; Stackelberg et al., 2007).   

4.1.3 Spatial variability  

Significant differences were identified between WWTPs (Fig. 3; SM 3 and 4). Metals were found in 

higher concentrations in ‘WWTP 3’ effluents than in other WWTPs and pharmaceuticals (especially 

Caffeine) were also found in higher concentrations in ‘WWTP 3’ effluents than in those of ‘WWTP 1’. 

https://ville.biarritz.fr/
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The same occurred for sunscreens and organomercury compounds (more concentrated at ‘WWTP 3’ 

compared to other WWTPs) even if differences between WWTPs were not significant. Even if 

‘WWTP 3’ had a lower capacity than ‘WWTP 4’ and ‘WWTP 2’ (40 000 inhabitant equivalent vs. 45 000 

and 78 217, respectively), it had a separate sewer system (at 99%) (Table 1). Effluents were thus not 

diluted by rainwater which could partly explain the higher concentrations detected in ‘WWTP 3’. 

‘WWTP 1’ also presented a separate system but, compared to ‘WWTP 3’, its capacity was 4 times lower 

than ‘WWTP 3’ (Table 1). In addition, ‘WWTP 1’ possessed a membrane filtration and a tertiary UV 

treatment processes operating mainly in summer (Table 1). These two treatment methods were 

identified as capable to remove suspended solids, organic compounds and inorganic contaminants 

such as heavy metals (Gunatilake, 2015) and as efficient for the removal of some few pharmaceuticals 

such as Ketoprofen and Diclofenac (Kim et al., 2009), respectively. Indeed, these compounds were 

detected in lower concentrations in ‘WWTP 1’ than in other WWTPs, especially than in ‘WWTP 3’ 

where the highest concentrations were found (SM 4). Moreover, ‘WWTP 1’, ‘WWTP 2’ and ‘WWTP 4’ 

presented an activated sludge process contrary to ‘WWTP 3’ (Table 1). This secondary biological 

treatment where microorganisms play a role of breaking down organic material with aeration and 

agitation and then settling solids in the solution, was supported by most of the research on heavy 

metals removal in biological system (Gunatilake, 2015). It was also identified as having the capacity to 

remove some pharmaceuticals such as Caffeine and Diclofenac with a removal rate > 80%, > 70%, 

respectively, Atenolol with a removal rate around 50% and sunscreens (> 86%) (Bueno et al., 2012; 

Wang and Wang, 2016). This is in line with results of the present study where these compounds were 

always found in lower concentrations in samples from WWTPs having such a treatment process (i.e. 

‘WWTP 1’, ‘WWTP 2’ and ‘WWTP 4’) (SM 4). But, these compounds represent anyway the main 

analytes found in the effluents despite this treatment applied. By contrast, according to Deblonde et 

al. (2011), Man et al. (2018), Pham and Proulx (1997), Sánchez-Avila et al. (2009) and Stackelberg et al. 

(2007), Hydrochlorothiazide, PAHs, PCBs and OCPs were also supposed to be efficiently removed by 

this process due to their hydrophobic nature. This runs counter to the present results which identified 

the higher concentrations in plants having a sludge treatment process. The high mean values of 

suspended matter in ‘WWTP 3’ (29.12 mg.L-1 with a maximum at 46.38 mg.L-1 in August) compared to 

the other WWTPs (from 1.14 to 13.53 mg.L-1) may be a sign of treatment process insufficiency (i.e. 

biofiltration) (Table 1). This could be due to sewerage plugging, which may be influenced by water 

inflows getting into the treatment network located before the plant. Indeed, this latter supposition 

could be confirmed by the flow rate which seemed to be influenced by heavy rainfalls while it was 

supposed to be separated at 99% (SM 1).  These high suspended matter values associated to the high 

nutrient concentrations could thus explain the high concentrations of some micropollutants in the 

‘WWTP 3’ effluents. Indeed, it has been found that a large amount of micropollutants were associated 



110 

to the particulate phase (SM 2). This concerns especially hydrophobic substances which have a low 

solubility and thus a high affinity to organic matter (Campbell et al., 2006) such as several compounds 

found in this study: metals (24 557.2 ng.L-1 vs. from 15 458.9 to 19 383.4 ng.L-1), organomercury 

compounds (9.1 ng.L-1 vs. from 0.7 to 2.3 ng.L-1), considered as insoluble 

(https://pubchem.ncbi.nlm.nih.gov) and OC (701.4 ng.L-1 vs. from 9.3 to 78.1 ng.L-1), described as the 

most hydrophobic sunscreens by Rodil et al. (2012) in ‘WWTP 3’ (SM 4). Furthermore, the high 

concentration of metals in ‘WWTP 3’ could finally be associated to the resuspension of pipe sediments 

deposited in the sewerage as it was already supposed in another study to explain high metal 

concentrations (Busetti et al., 2005). By contrast, the high suspended matter values found in ‘WWTP 

3’ did not affect the other analytical groups (musks, APs, PAHs, PCBs and OCPs) which were in found 

higher concentrations at other WWTPs (SM 4). High pharmaceutical concentrations in ‘WWTP 3’ 

cannot be discussed with suspended matter values because samples were all filtered before analyses. 

But, looking at DOC values, those were in higher concentrations in ‘WWTP 3’ (8.70 mg.L-1 vs. from 4.34 

to 6.88 mg.L-1) (Table 1), therefore it is not surprising to find pharmaceuticals (analyzed only in the 

dissolved fraction) in higher concentrations in this WWTP.  The reverse occurred in ‘WWTP 1’ where 

suspended matter, DOC values and pharmaceutical concentrations appeared as the lowest ones 

confirming that the membrane filtration technic was efficient to remove such particles and substances. 

It would be interesting to achieve further investigations on the number of connected hospitals and 

veterinary clinic in ‘WWTP 3’ and neighboring municipalities even though drug residues from hospitals 

could only represented 20% of the total drug load of the whole agglomeration (PILLS, 2012). Indeed, 

the wastewater origin is a fundamental parameter to take into account because some links were 

already observed between sources of wastewater and chemical pollutant concentrations (Deblonde 

et al., 2011). To date, there is not hospital in this area and only one nursing home and two veterinary 

clinics are present. These findings on the high micropollutant concentrations in ‘WWTP 3’ effluents 

(especially of metals and pharmaceuticals) could be thus the result of several factors: a separated 

sewer system in ‘WWTP 3’ contrary to the other WWTPs, a higher capacity (population equivalent) in 

comparison with another similar sewer system (‘WWTP 1’), the absence of an activated sludge 

treatment and/or the inefficiency of the current applied biofiltration treatment (confirmed by high 

suspended matter and nutrient values) probably due to a malfunction of the sewer system before the 

WWTP. Considering the total volume rejected, the total amount of these analytical groups (metals, 

pharmaceuticals, sunscreens and organomercury) were still higher in ‘WWTP 3’ than in other WWTPs 

(Fig. 4; Table 5 and SM 4).  

Even if concentrations of other analytical groups were not identified as significantly different between 

WWTPs, ‘WWTP 1’ presented anyway higher concentrations of musks and PCBs than other WWTPs. 
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By contrast, PAHs appeared in higher concentrations in ‘WWTP 2’ effluents and OCPs as more 

concentrated in ‘WWTP 4’. But, once the total volume rejected considered and the daily flux estimated, 

‘WWTP 1’ unloaded the lowest quantity of musks and PCBs than ‘WWTP 3’ (Fig. 4). Indeed, the concept 

of dilution (dependent to the plant capacity, the water flow and the number of inhabitants connected 

to the sewerage network) is important to consider because effluents can be more or less diluted and 

molecule concentrations may vary accordingly (Deblonde et al., 2011; Karthikeyan and Meyer, 2006). 

By contrast, flux estimations calculated for PAHs and OCPs, were always higher in ‘WWTP 2’ and 

‘WWTP 4’, respectively (Fig. 4).  

Finally, looking at the land use map (www.geoportail.fr), ‘WWTP 3’ and ‘WWTP 5’ areas were mainly 

occupied by agricultural zones or forests compared to those of ‘WWTP 1’ and ‘WWTP 4’, essentially 

occupied by urban zones. Furthermore, half of the ‘WWTP 2’ area was constituted by the urban tissue 

and half other by forests, grasslands and cropping systems. It would have been possible to image that 

municipalities presenting the bigger agricultural zones would present the highest pesticides 

concentrations. The same for other compounds such as musks, pharmaceuticals and sunscreens which 

would be supposed to be more concentrated in urban areas. But, results of the present work were not 

in line with this latter supposition. Indeed, ‘WWTP 4’ presented the highest pesticide concentrations 

(the municipality with the smaller agricultural area) and conversely, ‘WWTP 3’ exhibited the highest 

concentrations of pharmaceuticals and sunscreens while it constituted the municipality with the bigger 

agricultural zone.  

4.2 Micropollutant concentrations in biota   

4.2.1 Micropollutant concentrations in biota impacted by WWTP discharges 

Contrary to studies achieved on wastewaters, much less works were done on the study of 

pharmaceutical compounds in benthic organisms (see Table 2 in Chapter I). In addition to the fact that 

analytical methods for quantifying these substances in such matrices are currently under development, 

this could be also explained by their rather high solubility in water and low lipophilicity contrary to 

metal, PAH, PCB, OCP, some musk and sunscreen compounds (Bueno et al., 2012; Carballa et al., 2004; 

Lee et al., 2003; Lishman et al., 2006; Man et al., 2018; Pham and Proulx, 1997; Rodil et al., 2012; 

Sánchez-Avila et al., 2009; Stackelberg et al., 2007). Indeed, pharmaceutical substances are less likely 

to accumulate in matrices such as sediments, sludges and biota.  However, in the present study, 

pharmaceuticals were sometimes found in higher concentrations than other analytical groups which 

could run counter the latter supposition. In addition, metals and APs were not analyzed in this study. 

But, according to studies reported in the database, metals were the compounds identified in the 
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highest concentrations in organisms even though no specific species was highlighted as the main 

accumulator of these compounds (see Table 2 in Chapter I).  

Among analyzed compounds, pharmaceuticals and musks appeared in higher concentrations in Ulva 

spp. (Fig. 5; Table 3). Their concentrations were always higher in Ulva spp. sampled in the impacted 

locations (i.e. ‘WWTP 2’, ‘WWTP 1’ and ‘WWTP 5’) than in those sampled in the control location 

(‘Control 3’) (Table 5). Among other analytical groups detected in lower concentrations in this species, 

the same occurred for PAHs, found in higher concentrations in the impacted locations than in control 

(Table 5). Concentrations of these latter analytical groups were in line with daily flux estimations (of 

‘WWTP 2’ and ‘WWTP 1’) (Fig. 4) because the highest concentrations were found in Ulva spp. sampled 

proximate to the WWTP having the highest daily flux estimation for corresponding substances (‘WWTP 

2’ > ‘WWTP 1’) (Table 5). However, no comparison was possible between micropollutant 

concentrations found in biota sampled in ‘WWTP 5’ their daily associated flux due to the absence of 

information. Finally, compared to other organisms (Gelidium spp., Patella spp., Mytilus spp., 

Holothuria spp.) sampled in the same location (‘WWTP 2’, ‘WWTP 1’, ‘Control 3’), Ulva spp. presented 

most of the time a higher total concentration of pharmaceuticals (except one time in ‘WWTP 5’ where 

Patella spp. presented a higher pharmaceutical concentration than Ulva spp.) (Table 3, 4 and 5). For 

these reasons, Ulva spp. seemed to constitute a rather good bioaccumulator for musk, pharmaceutical 

and PAH compounds. Unfortunately, no bibliographic comparison was performed because lack of 

studies dealing with the bioaccumulation of these both analytical groups in this alga. In general 

manner, and according to its short life cycle and fast growing, it was anyway a little bit surprising to 

find such concentrations. Indeed, it constitutes an annual species, i.e. growing especially in spring and 

early summer when temperature and solar radiation increase drastically, thus during a short period 

(Cabioc’h et al., 2014). Therefore, its use as a sentinel bioaccumulator organism would be mainly 

focused to its favorable growth period. Ulva spp. is considered as opportunistic (i.e. sign of 

disturbances) (de Casamajor et al., 2016; Juanes et al., 2008), as tolerant to hypoxia and responding to 

nutrient enrichments (Anderson et al., 1996; Simboura and Zenetos, 2002). These features would 

facilitate its use in the evaluation of the impact of treated water discharges at organism level, in 

addition to the fact that its vegetative trait (foliose with all tissue photosynthetic) would favor the 

bioaccumulation of different compounds. 

Sunscreens (especially OC) were mainly detected in Gelidium spp. (Fig. 5). The highest mean 

concentrations were found in the impacted locations (‘WWTP 4’ > ‘WWTP 3’) than in controls (‘Control 

3’ > ‘Control 1’) (Table 3 and 5). Even if these results goes against daily flux estimations (those from 

‘WWTP 3’ were higher than those from ‘WWTP 4’) (Fig. 4), this could anyway be explained by the 

location of the sampling area, located close to the big beach of ‘WWTP 4’. Indeed, it is highly 
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frequented zone during summer compared to ‘WWTP 3’ (located in the subtidal zone at the bottom of 

a cliff and far away from beaches). Among other substances found in lower concentrations in Gelidium 

spp., pharmaceuticals, musks and PAHs seemed anyway be align with concentrations found in the 

different WWTP discharges (‘WWTP 4’ and ‘WWTP 3’) (Table 5). Indeed, lowest concentrations were 

found in specimens collected at the outlet of the WWTP with the least flux estimation, and vice versa. 

In addition, Gelidium spp. was also identified as having a higher bioaccumulation capacity for 

pharmaceutical compounds (after Ulva spp.) than other organisms (Patella spp., Holothuria spp., 

Porifera) sampled in the same location (‘WWTP 3’, ‘Control 1’ and ‘Control 3’) (Table 3 and 4). By 

contrast, it seemed less likely to accumulate other compounds (musks, sunscreens and PAHs) than 

Porifera but the comparison was only possible in ‘WWTP 3’. Finally, it was not surprising not find PCBs 

in Gelidium spp. because they were found in very low concentrations in WWTP discharges compared 

to previous compounds (from 9.3 to 25.3 mg.day-1 vs. from 55.4 to 70 430.8 mg.day-1). Therefore, this 

suggest that Gelidium spp. could constitute a good bioaccumulator for these compounds in addition 

to the fact it constitute a perennial species. Particularly, G. corneum have been found in highest 

abundance in impacted locations and also as the main (together Matacallophyllis laciniata) responsible 

of dissimilarities between impacted and control subtidal locations (see Chapter V). Consequently, this 

species could constitute a good bioaccumulator as well as a good bioindicator from an ecological point 

of view. 

Moreover, PAHs and PCBs were mainly found in Porifera (Fig. 5; Table 3). Contrary to analytical groups 

associated to preceding algae, they were found in higher concentrations in control locations than in 

the impacted one (‘WWTP 3’) even though Porifera from ‘WWTP 3’ presented anyway high PAHs 

concentrations (Table 5).  By contrast, other analytical groups found in lower concentrations in Porifera 

(musks, sunscreens and pharmaceuticals) were anyway present in higher concentrations in the 

impacted location (‘WWTP 3’) than in controls (‘Control 3’ and ‘Control 2’). But, compared to other 

organisms (Gelidium spp., Holothuria spp. and Patella spp.) sampled in same locations (‘WWTP 3’, 

‘Control 1’ and ‘Control 2’), Porifera appeared to less bioaccumulate pharmaceuticals. Only one 

impacted location was sampled for this species, consequently no firm conclusion could be drawn on 

the bioaccumulation potential of this species because no link was possible established with 

concentrations found in different WWTP discharges to confirm this. In the present study, the 

identification of this phylum was not made at the species level because it required additional 

competencies. But, it has been demonstrated that varying concentrations could be detected according 

to the Porifera species which are usually associated to symbiotic micro-organisms (for more than 40 % 

of their tissue) (Perez et al., 2002; Reiswig, 1981). Therefore, using Porifera as bioaccumulator seems 

interesting but rather difficult in view of its several technical drawbacks. 
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Among other sampled benthic organisms (Mytilus spp., Patella spp. and Holothuria spp.) which were 

only analyzed for pharmaceuticals, Holothuria spp. and Patella spp. appeared to follow WWTP flux 

estimations even though the detected concentrations were much lower than those found in the two 

previous algae (Table 4 and 5). Indeed, in a same location (‘WWTP 1’, ‘WWTP 2’, ‘WWTP 3’, ‘WWTP 4’, 

‘Control 1’ and ‘Control 3’) these three species appeared to less bioaccumulate pharmaceuticals than 

Gelidium spp. and Ulva spp. (with one exception in ‘WWTP 5’ where Patella spp. presented a higher 

pharmaceutical concentration than Ulva spp.) (Table 3 and 4). Moreover, Mytilus spp. and Patella spp. 

seemed to similarly bioaccumulate pharmaceutical compounds (in ‘WWTP 2’) while Holothuria spp. 

appeared to more accumulate than Patella spp. (in ‘WWTP 1’). However, it seemed anyway difficult to 

highlight such conclusions given the limited amount of sampled locations, especially for Mytilus spp. 

and Holothuria spp. even if they were already widely described as good bioaccumulators (see Table 2 

in Chapter I). Indeed, looking at the literature, mussels appeared as the main bioaccumulator of 

micropollutants (musks, pharmaceuticals, PAHs, OCPs and sunscreens except PCBs) which confirmed 

that the scientific community was more interested in studying bioaccumulation of chemical substances 

in these organisms. But, in the present study, only pharmaceuticals were analyzed in mussels (i.e. 

Mytilus spp.) which appeared as the third organism accumulating the highest concentration of these 

compounds after Ulva spp. and Gelidium spp. Finally, the main drawback identified for this species was 

its absence (or the presence in too small individuals) in studied sites along the Basque coast. Therefore, 

this wild species seemed not to constitute a good bioaccumulator in this area. 

A list of substances has been made to highlight common compounds in wastewaters and biota sampled 

proximate to outfalls (Table 6). A total of 14 priority substances (9 PAHs, 4 PCBs, 1 OCP) and 31 

emerging substances (5 musks, 3 sunscreens, 23 pharmaceuticals) were highlighted. Among them, few 

were detected in all matrices (i.e. Chrysene, Fluoranthene, Pyrene, HHCB, EHMC and Ofloxacin). 

Moreover, substances detected in highest concentrations in wastewaters were not necessarily those 

detected in highest concentrations in biota samples.  

4.2.2 Comparison with control locations 

Even though organisms sampled in the impacted locations presented various concentrations of 

micropollutants, it has been noticed that, sometimes (for some organisms and analytical groups), 

control locations presented more concentrated organisms than those of impacted locations (Table 3, 

4 and 5). For example, this was the case for sunscreens, found in higher concentrations in Ulva spp. 

from ‘Control 3’ than in those from impacted locations (‘WWTP 5’, ‘WWTP 1’ and ‘WWTP 2’). This high 

concentration could be related to the fact that this location constitutes an appreciated and frequented 

location by local people due to its remote location from populated areas (and thus from WWTP 
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discharges). Furthermore, Ulva spp. from ‘Control 3’ presented also higher concentrations of PCBs and 

OCPs than those from ‘WWTP 1’ and ‘WWTP 2’ (Table 5). The same occurred for pharmaceuticals and 

PAHs in Gelidium spp. (‘Control 1’ > ‘WWTP 4’) and for PAHs and PCBs in Porifera (‘Control 1’ > ‘WWTP 

3’) (Table 5). Consequently, this suggests that control locations were not as much un-impacted as 

supposed and were thus not totally free of pollution.  

4.2.3 Micropollutant concentrations vs. regulatory limits 

According to the regulatory limits, only concentrations of PAHs and PCBs have been compared to 

threshold values (i.e. in Ulva spp., Gelidium spp. and Porifera) because, up to now, no regulatory limits 

have been set for other substances. For OCPs, limits were already fixed but no comparison was possible 

in the present study because analyses were not adapted for the analysis of these substances in such 

matrices. Generally, as it is stated in the Directive, only Benzo[a]pyrene (a priority hazardous PAH) 

needs to be monitored for comparison with the biota EQS because it can be considered as a marker 

for other PAHs (Benzo[b]fluoranthene, Benzo[k]fluoranthene, Benzo[g,h,i]perylene and Indeno[1,2,3-

cd]pyrene) (EC, 2013). But, in the present study, all Benzo[a]pyrene concentrations were below the 

detection limit whereas those of Benzo[k]fluoranthene and Benzo[b]fluoranthene were much higher 

(from 0.2 to 92.7 ng.g-1) and thus often above the limit fixed at 5 ng.g-1 (Table 3). This was the case in 

Ulva spp., Gelidium spp. and Porifera in all sampled locations for Benzo[b]fluoranthene (except in 

Gelidium spp. from ‘WWTP 4’ and Porifera from ‘WWTP 3’ and ‘Control 2’) and in Ulva spp. from 

‘WWTP 2’, Gelidium spp. from ‘WWTP 3’, ‘WWTP 4’, ‘Control 1’ and ‘Control 3’ and Porifera from 

‘Control 1’ for Benzo[k]fluoranthene. By contrast, Fluoranthene, another PAH (identified as hazardous 

substance) having its own limit, was always found below the regulatory limit fixed at 30 ng.g-1. 

Moreover, a regulatory limit was fixed at 0.0065 ng.g-1 for the sum of polychlorinated dibenzo-p-

dioxins (PCDD), polychlorinated dibenzofurans (PCDF) and dioxin-like PCBs which were considered as 

priority hazardous substances. This limit was often exceeded except in Gelidium spp. in all locations 

(impacted and controls) and in Porifera from ‘WWTP 3’.  
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Table 5: Summary of micropollutant concentrations detected in wastewater treatment plant 

discharges and in biota samples from control and impacted locations. A classification of locations 

was made according to concentrations found. 

 

 

Analytical groups

Concentration ranges

of samples from 

control locations

Concentration ranges

of samples from 

impacted locations

Location classification 

according to found concentrations

Fit with flow 

estimations

Metals [24 557.2 - 15 458.9] WWTP 3' > 'WWTP 4' > 'WWTP 2' > 'WWTP 1'

Pharmaceuticals - [4 231.5 - 15 664.5] WWTP 3' > 'WWTP 4' > 'WWTP 2' > 'WWTP 5' > 'WWTP 1' -

Musks - [1 523 - 3 144.7] WWTP 1' > 'WWTP 4' > 'WWTP 2' > 'WWTP 5' > 'WWTP 3' -

Sunscreens - [30.1 - 746.2] WWTP 3' > 'WWTP 4' > 'WWTP 5' > 'WWTP 2' > 'WWTP 1' -

PAHs - [17.8 - 186.0] WWTP 2' > 'WWTP 1' > 'WWTP 5' > 'WWTP 3' > 'WWTP 4' -

PCBs - [3.0 - 19.1] WWTP 1' > 'WWTP 3' > 'WWTP 5' > 'WWTP 4' - 'WWTP 2' -

OCPs - [<DL - 14.8] WWTP 4' > 'WWTP 5' > 'WWTP 1' > 'WWTP 2' > 'WWTP 3' -

Organomercury - [0.7 - 9.1] WWTP 3' > 'WWTP 5' > 'WWTP 2' > 'WWTP 4' > 'WWTP 1' -

Metals [11 923.1 - 112 390.8] 'WWTP 3' > 'WWTP 2' > 'WWTP 4' > 'WWTP 1'

Pharmaceuticals - [3 349.3 - 70 430.8] 'WWTP 3' > 'WWTP 2' > 'WWTP 4' > 'WWTP 1' -

Musks - [2 608.7 - 10 441.2] 'WWTP 2' > 'WWTP 4' > 'WWTP 3' > 'WWTP 1' -

Sunscreens - [115.8 - 3 543.9] 'WWTP 3' > 'WWTP 4' > 'WWTP 2' > 'WWTP 1' -

PAHs - [55.4 - 1 135.9] 'WWTP 2' > 'WWTP 3' > 'WWTP 1' > 'WWTP 4' -

PCBs - [9.3 - 25.3] 'WWTP 3' > 'WWTP 1' > 'WWTP 2' > 'WWTP 4' -

OCPs - [<DL - 46.3] 'WWTP 4' > 'WWTP 2' > 'WWTP 1' > 'WWTP 3' -

Organomercury [0.7 - 40.7] 'WWTP 3' > 'WWTP 2' > 'WWTP 4' > 'WWTP 1' -

Pharmaceuticals 24.4 [35.7 - 582.5] 'WWTP 2' > 'WWTP 5' > 'WWTP 1' > 'Control 3' ✓

Musks 11.6 [20.6 - 220] 'WWTP 2' > 'WWTP 1' > 'WWTP 5' > 'Control 3' ✓

Sunscreens 121.1 [50.1 - 89.1] 'Control 3' > 'WWTP 5' > 'WWTP 1' > 'WWTP 2' X

PAHs 119.9 [129.2 - 257.9] 'WWTP 2' > 'WWTP 5' > 'WWTP 1' > 'Control 3' ✓

PCBs 48 [39.5 - 67.5] 'WWTP 5' > 'Control 3' > 'WWTP 2' > 'WWTP 1' X

OCPs 13.8 [<LD - 19.5] 'WWTP 5' > 'Control 3' > 'WWTP 1' > 'WWTP 2' X

Pharmaceuticals [1.4 - 93.4] [17.1 - 93.4] 'WWTP 3' - 'Control 1' > 'WWTP 4' > 'Control 3' ✓

Musks [<DL - 0.2] [0.4 - 8.4] 'WWTP 4' > 'WWTP 3' > 'Control 1' > 'Control 3' ✓

Sunscreens [<DL - 1.3] [24.2 - 3 809] 'WWTP 4' > 'WWTP 3' > 'Control 3' > 'Control 1' X  (✓)*

PAHs [21.6 - 22] [18.9 - 26.9] 'WWTP 3' > 'Control 1' > 'Control 3' > 'WWTP 4' ✓

PCBs <DL <DL - ✓

OCPs - - - -

Pharmaceuticals [<DL - 1.1] 10.8 'WWTP 3' > 'Control 2' > 'Control 1' -

Musks [11.1 - 41.2] 78.5 'WWTP 3' > 'Control 1' > 'Control 2' -

Sunscreens [4.2 - 52.6] 95.8 'WWTP 3' > 'Control 1' > 'Control 2' -

PAHs [24.6 - 523.7] 451.6 'Control 1' > 'WWTP 3' > 'Control 2' -

PCBs [0.5 - 741.3] <DL 'Control 1' > 'Control 2' > 'WWTP 3' -

OCPs <DL <DL - -

Pharmaceuticals 1.1 41.1 'WWTP 2' > 'Control 3' -

Pharmaceuticals [0.7 - 1.8] [0.3 - 93.8] 'WWTP 5' > 'WWTP 2' > 'WWTP 4' > 'Control 1' > 'Control 3' > 'WWTP 1' ✓

Pharmaceuticals 4.6 [4.7 - 9.6] 'WWTP 3' > 'WWTP 1' > 'Control 2' ✓

* the high sunscreen concentrations were probably due to the proximity of Hendaye beach, highly frequented during summer, compared to 'WWTP 3' location located far away and in the 

subtidal zone.

Patella  spp. (ng.g-1)

Holothuria  spp. (ng.g-1)

Wastewater (ng.L-1)

Wastewater daily flows (mg.day-1)

Ulva  spp. (ng.g-1)

Gelidium  spp. (ng.g-1)

Porifera (ng.g-1)

Mytilus  spp. (ng.g-1)
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Table 6: Priority and emerging substances detected in wastewaters as well as in biota samples. 

 

 

 

 

Wastewaters

Ulva  spp. Gelidium  spp. Porifera Holothuria  spp. Mytilus  spp. Patella  spp.

Piority substances

Chrysene ✓ ✓ ✓ ✓ - - -

Fluoranthene ✓ ✓ ✓ ✓ - - -

Pyrene ✓ ✓ ✓ ✓ - - -

Naphthalene ✓ ✓ - - -

Benzo[k]fluoranthene ✓ ✓ ✓ - - -

Phenanthrene ✓ ✓ ✓ - - -

Benzo[b]fluoranthene ✓ ✓ ✓ - - -

Acenaphthene ✓ ✓ - - -

Dibenzo[a,h]anthracene ✓ ✓ - - -

PCB 52 ✓ ✓ - - -

 PCB 118 ✓ ✓ - - -

PCB 149 ✓ ✓ - - -

PCB 153 ✓ ✓ - - -

O
C

P

4,4’-DDE ✓ ✓ - - -

Emerging substances

HHCB ✓ ✓ ✓ ✓ - - -

AHTN ✓ ✓ - - -

MA ✓ ✓ - - -

MX ✓ ✓ ✓ - - -

MM ✓ ✓ - - -

OC ✓ ✓ ✓ - - -

EHMC ✓ ✓ ✓ ✓ - - -

Benzophenone 3 ✓ ✓ - - -

Ofloxacin ✓ ✓ ✓ ✓ ✓ ✓ ✓

Azithromycin ✓ ✓ ✓ ✓ ✓ ✓

Caffeine ✓ ✓ ✓ ✓ ✓

Oxazepam ✓ ✓ ✓ ✓ ✓

Carbamazepine ✓ ✓ ✓ ✓

Hydrochlorothiazide ✓ ✓ ✓ ✓

Metoprolol ✓ ✓ ✓ ✓

Niflumic acid ✓ ✓ ✓ ✓

Norfloxacin ✓ ✓ ✓

Acetazolamide ✓ ✓ ✓

Clarithromycin ✓ ✓ ✓

Acetaminophen ✓ ✓

Atenolol ✓ ✓

Ciprofloxacin ✓ ✓

Ibuprofen ✓ ✓

Ketoprofen ✓ ✓

Lorazepam ✓ ✓

Metronidazole ✓ ✓

Phenazone ✓ ✓

Roxithromycin ✓ ✓

Rifampicin ✓ ✓

Flumequin ✓ ✓

Spiramycin ✓ ✓

M
u

sk
s

P
h

ar
m

ac
eu

ti
ca

ls

Biota samples

P
A
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5. Conclusion 

This paper provided important data on the occurrences and levels of priority and emerging 

micropollutants in effluents of 5 wastewater treatment plants and in 6 rocky benthic organisms (Ulva 

spp., Gelidium spp., Porifera, Holothuria spp., Mytilus spp. and Patella spp.) sampled at the WWTP 

outfalls in the southeastern Bay of Biscay. These latter concentrations were compared to those found 

in organisms from control locations (without WWTP discharges and away from impacted locations). 

Among the 127 analytes analyzed in wastewater effluents, a total of 11 metals, 2 organomercury 

compounds and 98 organics (16 PAHs, 11 PCBs, 5 alkylphenols, 18 OCPs, 10 musks, 4 sunscreens and 

34 pharmaceuticals) were detected and quantified.  Spatial and temporal variabilities were mainly 

associated to rainfall (and thus the flow rate), summer overcrowding, sewer system (separated or 

combined), plant capacity, treatment process and inefficiency of the current applied treatment. 

Activated sludge biological treatment and membrane filtration appeared as the most effective to 

remove suspended matter and adsorbed substances. But, despite the treatments applied, effluents 

from WWTPs still rejected a large number and amount of priority and emerging pollutants into the 

ocean. WWTPs are thus among the main pathway responsible for pollution of coastal surface waters. 

This was confirmed by the fact that among the 109 organic substances analyzed in biota samples, 

a total of 51 analytes (9 PAHs, 6 PCBs, 1 OCP, 5 musks, 3 sunscreens and 27 pharmaceuticals) were 

detected and quantified. Gelidium spp., Ulva spp. and to a lesser extent, Patella spp. and Holothuria 

spp. appeared as reflecting well the micropollutant concentrations discharged by WWTPs. Considering 

the biological and technical drawbacks of each species, the macroalgae Ulva spp. and Gelidium spp. 

were highlighted as the best bio-accumulators and -indicators for this area.  

Furthermore, it would be interesting to make further researches to identify the potential sources of 

highlighted substances with the aim to mitigate their continuous release. In addition, further 

experimental analyses should be made to deeply study the effect of each treatment process on 

removal efficiency of each analytical group and substance (De los Ríos et al., 2016). The same should 

also be made to confirm the bioaccumulation capacity of previous species (according to their life cycle 

or ecological groups) and study the potential adverse effects of the main released substances and 

chronic effects on both species of macroalgae. As the potential better bioaccumulators are primary 

producers, it seemed also interesting to make further researches on the study of the biomagnification 

process because contaminant concentrations would be expected to increase as it passes up the food 

chain. Finally, although there is a legislation regulating the presence of some metals, PAHs, APs, PCBs, 

pesticides in surface waters and biota, musks, pharmaceuticals, sunscreens, and all metabolite 

compounds are still not regulated. Therefore, it seems important to consider the latter substances and 

results found in the present work with the aim to include them in the survey list in the future.  
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Prospects & improvements: 

Sources, treatments and release into the environment 

- Identify potential sources to suggest source control options 

- Make further researches on medical facility treatment processes  

- Make experimental analyses and analyses on influents to study and confirm treatment process 

efficiencies  

- Analyze major metabolites whose parent compounds are supposed to be completely (or almost)  

metabolized during the transport or within the human body  

- Study the dilution effect once these substances are rejected into the Ocean  

Bioaccumulation and impact  

- Make experimental analyses to confirm the bioaccumulation capacity of selected species 

- Study the potential adverse effects (including mixture/chronic effects)  

- Study the biomagnification process 

- Identify some species at the species level (e.g. Porifera via the morpho-anatomical approach) 

Monitoring 

- Reflect upon how routinely implemented these analyses 

- Highlight substances that could be integrated in regulatory lists 

 

Highlights: 

 111 priority and emerging micropollutants were detected and quantified in WWTP effluents. 

 Spatial and temporal variabilities were associated to rainfall, summer overcrowding, sewer system, 

plant capacity, treatment process and inefficiency of the current applied treatment. 

 Activated sludge biological treatment and membrane filtration appeared as the most effective to 

remove suspended matter and thus adsorbed substances. 

 51 organic priority and emerging micropollutants were detected and quantified in biota samples. 

 Ulva spp. and Gelidium spp. were highlighted as the best bio-accumulators and –indicators organisms 

for this area. 
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Supplementary materials (SM) 

SM 1: Weather conditions, flow rates, physico-chemical parameters and major elements analyzed at each sampling campaign and WWTP (Unpublished 

data). 
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) 

'WWTP 1' 'WWTP 2' 'WWTP 3' 'WWTP 4' Mean 'WWTP 1' 'WWTP 2' 'WWTP 3' 'WWTP 4' 'WWTP 5' Mean 'WWTP 1' 'WWTP 2' 'WWTP 3' 'WWTP 4' 'WWTP 5' Mean 'WWTP 1' 'WWTP 2' 'WWTP 3' 'WWTP 4' 'WWTP 5' Mean

Weather

the 5 preceding days

Rainfall (mm)

the 5 preceding days + the day after the sampling
(total - mean - min - max)

36 49.8 11 2.4

99.2

24.8
(2.4 - 49.8)

29 42.8 37 35.8 -

144.6

36.15
(29 - 42.8)

1 59.5 32 32.4 -

124.9

31.2
(1 - 59.5)

3 15.6 10.8 14.6 -

44

11
(3 - 15.6)

Daily flow in entry (m3.day-1)

the 5 preceding days + the day after the sampling
(total - mean - min - max)

8 788 41 070 26 690 18 429
94 977

23 744
(8 788 - 41 070)

5 542 38 500 38 570 25 936 -
108 548

27 137
(5 541 - 38 570)

7 126 40 720 35 870 26 512 -
110 228

27 557
(7 126 - 40 720)

4 149 26 860 19 230 20 046 -
70 285

17 571
(4 149 - 26 860)

Daily flow at the outlet (m3.day-1)

the 5 preceding days + the day after the sampling
(total - mean - min - max)

6 881 38 880 30 090 20 041
95 892

23 973
(6 881 - 38 880)

4 176 36 930 37 810 26 350 -
105 266

26 317
(4 176 - 37 810)

7 447 36 980 36 480 26 167 -
107 074

26 769
(7 447 - 36 980)

2 994 25 710 23 000 20 882 -
72 586

18 147
(2 994 - 25 710)

pH
(mean - min - max)

- 6.8 6.3 7.2
6.8

(6.3 - 7.2)
- - - - 6.8 6.76 7.9 6.8 7.1 7.3

7.3
(6.8 - 7.9)

8.0 7.6 7.5 7.9 8.9
8.0

(7.5 - 8.9)

Oxygen saturation (%)
(mean - min - max)

- 47.5 120.1 12.0
59.9

(12.0 - 120.1)
98.8 84.1 106.4 27.8 69.0

77.2
(27.8 - 106.4)

- 62.6 114.5 32.4 -
69.8

(32.4 - 114.5)
86.4 53.2 90.2 19.2 57.4

61.3
(19.2 - 90.2)

Conductivity (mS.cm-1)
(mean - min - max)

- 0.54 1.16 2.19
1.30

(0.54 - 2.19)
0.53 0.74 1.04 1.64 12.21

3.23
(0.53 - 12.21)

0.64 0.74 0.52 0.77 -
0.67

(0.52 - 0.77)
0.81 1.67 2.39 1.55 15.13

4.31
(0.81 - 15.13)

Salinity (µg.L-1)
(mean - min - max)

- 0.26 0.57 1.12
0.65

(0.26 - 1.12)
0.26 0.36 0.52 0.83 7.04

1.80
(0.26 - 7.04)

0.36 0.36 0.25 0.38 -
0.34

(0.25 - 0.38)
0.40 0.79 1.24 0.79 8.87

2.42
(0.40 - 8.87)

Temperature (°C)
(mean - min - max)

- 23.83 23.08 23.67
23.53

(23.08 - 23.83)
20.25 18.30 18.28 18.46 19.00

18.82
(18.28 - 20.25)

22.50 23.36 22.83 23.74 -
23.11

(22.50 - 23.74)
16.85 17.42 17.12 16.36 16.59

16.87
(16.36 - 17.42)

SM (mg.L-1)
(mean - min - max)

0.97 6.58 46.38 29.22
20.79

(0.97 - 46.38)
1.20 13.71 17.95 12.20 12.00

11.41
(1.20 - 17.95)

3.00 6.79 26.70 4.44 4.94
9.17

(3.00 - 26.70)
0.49 9.00 25.44 8.27 17.20

12.08
(0.49 - 25.44)

TC (%)
(mean - min - max)

29.31 29.49 32.40 36.31
31.88

(29.31 - 36.31)
5.27 35.33 30.95 34.50 14.75

24.16
(5.27 - 35.33)

53.32 34.94 33.47 44.07 12.26
35.61

(12.26 - 53.32)
65.23 38.38 32.92 34.23 18.50

37.85
(18.50 - 65.23)

DOC (mg.L-1)
(mean - min - max)

2.37 6.22 6.74 5.54
5.22

(2.37 - 6.74)
4.36 5.90 8.11 5.65 5.90

5.98
(4.36 - 8.11)

5.73 7.84 9.88 5.01 7.74
7.24

(5.01 - 9.88)
4.89 7.36 10.08 5.84 7.02

7.04
(4.89 - 10.08)

POC (%)
(mean - min - max)

23.92 38.32 29.40 36.40
32.01

(23.92 - 38.32)
8.39 31.79 27.51 33.29 12.92

22.78
(8.39 - 33.29)

51.96 38.28 38.74 33.56 11.83
34.87

(11.83 - 51.96)
37.73 38.93 28.79 33.73 13.16

30.47
(13.16 - 38.93)

∑ PO4
3- (µmol.L-1)

(mean - min - max)
21.16 12.66 117.38 68.86

55.02
(12.66 - 117.38)

338.40 24.65 17.70 58.24 3.43
88.48

(3.43 - 338.40)
138.50 51.94 31.10 64.14 338.40

124.82
(31.10 - 338.40)

- 7.35 13.66 62.76 5.42
22.30

(5.42 - 62.76)

NO3
- (µmol.L-1)

(mean - min - max)
223.32 10.99 473.00 0.19

176.88
(0.19 - 473.00)

3.21 29.00 572.00 11.80 118.17
146.84

(3.21 - 572.00)
15.80 89.70 1363.00 90.20 103.68

332.48
(15.80 - 1 363.00)

- 8.60 750.00 0.89 416.80
294.07

(0.89 - 750.00)

NO2
- (µmol.L-1)

(mean - min - max)
24.75 3.03 43.20 0.30

17.82
(0.30 - 43.20)

0.30 7.86 40.75 4.79 0.15
10.77

(0.15 - 40.75)
0.62 9.55 79.60 10.34 0.27

20.08
(0.27 - 79.60)

- 5.65 40.00 2.12 1.24
12.25

(1.24 - 40.00)

Si(OH)4 (µmol.L-1)

(mean - min - max)
144.04 90.93 122.05 120.54

119.39
(90.93 - 144.04)

101.75 68.62 96.91 92.20 103.28
92.55

(68.62 - 103.28)
144.14 157.25 153.81 96.19 165.68

143.41
(96.19 - 165.68)

114.12 141.69 110.97 115.01 116.27
119.61

(110.97 - 141.69)

NH4
+ (µmol.L-1)

(mean - min - max)
42.90 86.74 399.62 264.57

198.46
(42.90 - 399.62)

28.85 50.32 70.32 33.87 1.69
37.01

(1.69 - 70.32)
80.74 168.15 222.65 140.91 1.88

122.87
(1.88 - 222.65)

39.94 192.66 190.45 192.41 2.13
123.52

(2.13 - 192.66)
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SM 2: Comparison of mean concentrations between unfiltered (a, c, e) and filtered samples (b, d, f) 

per WWTP (‘WWTP 1’, ‘WWTP 2’, ‘WWTP 3’, ‘WWTP 4’, ‘WWTP 5’) and analytical group: metals (a, b), 

organomercury compounds (c, d) and organics (PAHs, PCBs, musks, sunscreens, OCPs, alkylphenols) 

(e, f). 

(a) (b) 

(c) (d) 

(e) (f) 
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Locations 'WWTP 1' 'WWTP 2' 'WWTP 3' 'WWTP 4'

'WWTP 1' - - - -

'WWTP 2' 0.43 - - -

'WWTP 3' 0.01 0.18 - -

'WWTP 4' 0.39 1.00 0.20 -

'WWTP 5' 0.81 0.98 0.10 0.97

Locations 'WWTP 1' 'WWTP 2' 'WWTP 3'

'WWTP 1' - - -

'WWTP 2' 0.88 - -

'WWTP 3' 0.002 0.005 -

'WWTP 4' 0.15 0.41 0.05

Locations 'WWTP 1' 'WWTP 2' 'WWTP 3' 'WWTP 4'

'WWTP 1'

'WWTP 2'

'WWTP 3'

'WWTP 4'

'WWTP 5'

Not investigated

Locations 'WWTP 1' 'WWTP 2' 'WWTP 3' 'WWTP 4'

'WWTP 1'

'WWTP 2'

'WWTP 3'

'WWTP 4'

'WWTP 5'

Not investigated

SM 3: Summary of ANOVA (a, b, c, d) and pairwise post hoc results (e, f, g, h, i, j, k, l) testing for effects 

of seasonality and location (WWTPs) on metal (a, e, i), organomercury (b, f, j), organic (PAHs, PCBs, 

musks, sunscreens, OCPs, alkylphenols) (c, g, k) and pharmaceutical (d, h, l) concentrations detected 

in wastewater discharges (bulk samples). 

ANOVA results 

 

 

 

 

 

 

Pairwise post hoc results (seasonality) 

 

 

 

 

 

 

 

 

Pairwise post hoc results (location)  

 

 

 

 

 

 

 

Factors Df Sum Sq Mean Sq F value Pr(>F) Significance

Months 3 68.82 22.94 4.16 0.04 *

Locations 3 195.65 65.22 11.83 0.002 **

Residuals 9 49.61 5.51

Factors Df Sum Sq Mean Sq F value Pr(>F) Significance

Months 2 13.74 6.87 0.53 0.62

Locations 3 138.39 46.13 3.53 0.09 .

Residuals 6 78.51 13.09

Factors Df Sum Sq Mean Sq F value Pr(>F) Significance

Months 4 1.47E+07 3.66E+06 4.77 0.02 *

Locations 4 1.84E+06 4.59E+05 0.60 0.67

Residuals 12 9.22E+06 7.68E+05

Factors Df Sum Sq Mean Sq F value Pr(>F) Significance

Months 3 1.75E+08 5.83E+07 3.94 0.04 *

Locations 4 2.76E+08 6.91E+07 4.67 0.02 *

Residuals 11 1.63E+08 1.48E+07

Months August 2017 May 2018 July 2018

August 2017 - - -

May 2018 0.23 - -

July 2018 0.05 0.76 -

December 2018 0.06 0.78 1.00

Months March 2017 August 2017 May 2018 July 2018

March 2017

August 2017

May 2018

July 2018

December 2018

Not investigated

Months March 2017 August 2017 May 2018 July 2018

March 2017 - - - -

August 2017 0.88 - - -

May 2018 0.56 0.06 - -

July 2018 0.97 0.99 0.09 -

December 2018 0.49 0.04 1.00 0.07

Months August 2017 May 2018 July 2018

August 2017 - - -

May 2018 0.06 - -

July 2018 0.04 1.00 -

December 2018 0.18 0.86 0.77

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

(k) (l) 
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SM 4: Mean concentrations, median concentrations, minimum and maximum (Min, Max), and percent 

occurrence of detected priority and emerging substances (metals, organomercury compounds and 

organics expressed in ng.L-1) in bulk wastewater samples. Daily flux estimations (in mg.day-1) were also 

calculated. Analyte mean concentrations were ordered from the highest to the lowest mean 

concentrations. Significance codes: Underlined analytes are those followed and regulated within 

European Directives; DL: Detection limit; QL: Quantification limit; ‘-‘: corresponds to molecules whose 

pre-analytical or analytical methods were not adapted to their quantification in that sample. In flux 

estimation column, ‘-‘ means that the estimation was not possible for this molecule. 

‘WWTP 1’ 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Metal Vanadium (V) 4339.5 4388.8 4053.3 4527.3 100 3332.2 3022.7 1805.1 5478.0

Metal Chromium (Cr) 3881.8 3901.5 3749.0 3975.0 100 2952.4 2827.8 1617.8 4536.3

Metal Nickel (Ni) 2034.8 1946.5 1740.0 2506.0 100 1609.2 1558.3 769.1 2551.1

Metal Arsenic (As) 1888.5 1863.8 1763.8 2062.8 100 1478.8 1350.7 717.8 2495.9

Metal Copper (Cu) 1589.9 1586.7 1253.7 1932.7 100 1207.5 1099.8 662.9 1967.5

Metal Antimony (Sb) 1116.5 1022.8 948.3 1472.3 100 894.0 845.8 385.9 1498.8

Metal Lead (Pb) 281.3 244.0 238.5 398.5 100 225.3 197.4 100.7 405.7

Metal Tin (Sn) 160.5 156.5 134.0 195.0 100 127.4 128.3 54.5 198.5

Metal Molybdenum (Mo) 151.5 147.0 53.0 259.0 100 83.3 86.9 54.0 105.4

Metal Cadmium (Cd) 9.8 5.3 2.3 26.3 100 8.5 2.6 1.9 26.7

Metal Silver (Ag) 5.0 5.5 1.5 7.5 100 4.5 4.8 0.6 7.9

15458.9 13937.2 17362.2 11923.1 6170.4 19271.7

Organomercury compound IHg 0.7 0.3 0.2 1.6 100 0.7 0.3 0.1 1.6

Organomercury compound MMHg 0.1 0.1 0.0 0.1 100 0.04 0.05 0.03 0.1

0.7 0.3 1.6 0.7 0.1 1.6

Organic PAH Indeno[1,2,3-cd]pyrene 11.0 <DL <DL 44.1 25.0 13.4 - - 53.4

Organic PAH Dibenzo[a,h]anthracene 9.0 <DL <DL 36.0 25.0 10.9 - - 43.5

Organic PAH Benzo[a]anthracene 6.9 <DL <DL 27.5 25.0 8.3 - - 33.3

Organic PAH Benzo[g,h,i]perylene 5.7 <DL <DL 22.8 25.0 6.9 - - 27.6

Organic PAH Anthracene 4.6 <DL <DL 18.3 25.0 5.5 - - 22.1

Organic PAH Benzo[k]fluoranthene 2.9 <DL <DL 11.6 25.0 3.5 - - 14.1

Organic PAH Benzo[a]pyrene 2.6 <DL <DL 10.5 25.0 3.2 - - 12.7

Organic PAH Benzo[b]fluoranthene 2.5 <DL <DL 10.0 25.0 3.0 - - 12.1

Organic PAH Chrysene 2.4 <DL <DL 9.8 25.0 3.0 - - 11.8

Organic PAH Phenanthrene 1.2 <DL <DL 4.7 25.0 1.4 - - 5.7

Organic PAH Fluorene 0.9 <DL <DL 3.6 25.0 1.1 - - 4.4

Organic PAH Acenaphthene 0.5 <DL <DL 1.8 25.0 0.6 - - 2.2

Organic PAH Acenaphthylene 0.3 <DL <DL 1.2 25.0 0.5 - - 1.4

Organic PAH Naphthalene <DL <DL <DL <DL 0.0 3.3 3.3 - 6.5

Organic PAH Fluoranthene <DL <DL <DL <DL 0.0 - - - -

Organic PAH Pyrene <DL <DL <DL <DL 0.0 - - - -

50.5 <DL 202.0 64.5 - 251.0

Organic PCB PCB 194 5.7 <DL <DL 22.7 25.0 6.9 - - 27.5

Organic PCB PCB 138 5.6 1.9 <DL 18.8 50.0 6.6 1.9 - 22.8

Organic PCB PCB 149 2.0 1.5 <DL 4.9 50.0 2.1 1.8 - 5.0

Organic PCB PCB 28+31 1.3 <DL <DL 5.1 25.0 1.6 - - 6.2

Organic PCB PCB 101 1.1 <DL <DL 4.2 25.0 1.3 - - 5.1

Organic PCB PCB 180 0.9 <DL <DL 3.5 25.0 1.1 - - 4.3

Organic PCB PCB 18 0.7 <DL <DL 2.7 25.0 0.8 - - 3.2

Organic PCB PCB 52 0.7 <DL <DL 2.7 25.0 0.8 - - 3.2

Organic PCB PCB 44 0.6 <DL <DL 2.5 25.0 0.8 - - 3.1

Organic PCB PCB 153 0.3 <DL <DL 1.4 25.0 0.4 - - 1.7

Organic PCB PCB 118 0.2 <DL <DL 1.0 25.0 0.3 - - 1.2

19.1 <DL 69.6 22.7 - 83.3

Organic AP NP 215.1 83.9 19.0 673.9 100 254.9 150.3 32.9 686.0

Organic AP 4tOP <DL <DL <DL <DL 0.0 2.1 - - 8.4

Organic AP 4nOP <DL <DL <DL <DL 0.0 - - - -

Organic AP NPEO1 <DL <DL <DL <DL 0.0 - - - -

Organic AP NPEO2 <DL <DL <DL <DL 0.0 - - - -

215.1 19.0 673.9 257.0 32.9 694.4

Organic OCP 4,4'-DDE 3.1 1.3 <DL 9.8 50.0 3.3 1.6 - 10.0

Organic OCP Aldrin <DL <DL <DL <DL 0.0 - - - -

Organic OCP Alpha BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Beta BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Delta BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Dieldrine <DL <DL <DL <DL 0.0 - - - -

Organic OCP Alpha Endosulfan <DL <DL <DL <DL 0.0 - - - -

Organic OCP Bêta Endosulfan <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endosulfan Sulfate <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endrin <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endrin Aldehyde <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endrin Ketone <DL <DL <DL <DL 0.0 - - - -

Organic OCP Gamma BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Heptachlor <DL <DL <DL <DL 0.0 - - - -

Organic OCP Heptachlor Epoxide <DL <DL <DL <DL 0.0 - - - -

Organic OCP Methoxychlor <DL <DL <DL <DL 0.0 - - - -

Organic OCP 4,4'-DDD <DL <DL <DL <DL 0.0 - - - -

Organic OCP 4,4'-DDT <DL <DL <DL <DL 0.0 - - - -

3.1 <DL 9.8 3.3 - 10.0

Priority substances

TOTAL

TOTAL

TOTAL

TOTAL

TOTAL

Concentrations (ng.L-1) Daily flux estimations (mg.day-1)

TOTAL
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‘WWTP 1’ 

 

 

 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Organic Musk HHCB 2064.3 2093.6 1126.1 2943.7 100 1621.8 1462.8 - 3561.8

Organic Musk HHCB-lactone 774.9 818.9 501.8 960.2 100 562.5 531.9 24.5 1161.8

Organic Musk AHTN 257.9 253.5 196.5 328.1 100 361.9 294.0 80.0 779.6

Organic Musk MK 38.4 40.5 17.1 55.4 100 22.6 15.0 - 60.4

Organic Musk ADBI 8.7 7.2 <DL 20.4 50.0 4.3 - - 17.4

Organic Musk AHMI 0.6 0.4 <DL 1.5 50.0 2.5 0.5 - 9.0

Organic Musk MA <DL <DL <DL <DL 0.0 0.2 - - 0.6

Organic Musk ATII <DL <DL <DL <DL 0.0 - - - -

Organic Musk MX <DL <DL <DL <DL 0.0 32.8 - - 131.3

Organic Musk MM <DL <DL <DL <DL 0.0 - - - -

3144.7 1841.4 4309.2 2608.7 104.4 5722.0

Organic Sunscreen 4-MBC 13.3 <DL <DL 53.0 25.0 17.6 3.1 - 64.2

Organic Sunscreen OC 9.3 10.4 1.4 15.0 100 5.9 4.0 0.4 15.2

Organic Sunscreen Benzophenone 3 7.2 6.9 <DL 15.1 50.0 4.6 - - 18.3

Organic Sunscreen EHMC 0.3 0.1 <DL 1.0 75.0 0.05 - - 0.2

Organic Sunscreen 3-BC <DL <DL <DL <DL 0.0 87.7 - - 350.7

Organic Sunscreen OD-PABA <DL <DL <DL <DL 0.0 - - - -

30.1 1.4 84.1 115.8 0.4 448.5

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide 1076.0 1014.5 849.2 1425.8 100 834.6 730.5 426.1 1451.4

Organic Pharmaceutical (Anxiolytics) Oxazepam 1056.0 1087.4 622.3 1427.0 100 780.7 634.4 401.2 1452.7

Organic Pharmaceutical (Anti-inflammatory) Diclofenac 556.6 446.9 432.3 900.4 100 457.7 369.2 175.9 916.6

Organic Pharmaceutical (Anticonvulsant) Carbamazepine 535.1 449.9 263.8 976.8 100 469.0 387.2 107.4 994.4

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole 125.6 97.9 59.2 247.4 100 118.3 73.9 26.2 299.4

Organic Pharmaceutical (Pain killer) Ketoprofen 124.9 129.9 40.5 199.1 100 103.3 96.3 17.9 202.7

Organic Pharmaceutical (Pain killer) Niflumic acid 119.0 108.5 64.7 194.4 100 102.9 93.7 26.3 197.9

Organic Pharmaceutical (Psychotropic) Caffeine 104.9 90.1 76.3 163.3 100 72.6 79.9 38.3 92.4

Organic Pharmaceutical (Antibiotics) Ciprofloxacin 98.1 87.1 36.2 182.1 100 71.8 86.7 14.7 99.2

Organic Pharmaceutical (Antibiotics) Ofloxacin 96.8 91.6 53.7 150.2 100 74.2 60.0 23.8 152.9

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen 59.8 77.9 <QL 83.4 75.0 52.7 54.9 - 100.9

Organic Pharmaceutical (Antihypertensive) Atenolol 30.4 31.9 17.4 40.4 100 21.7 17.1 14.2 38.5

Organic Pharmaceutical (Antibiotics) Spiramycin 29.1 25.5 <QL 65.5 50.0 19.6 13.3 - 51.8

Organic Pharmaceutical (Antiarrhythmic) Metoprolol 26.0 24.3 8.3 46.9 100 23.3 21.1 3.4 47.8

Organic Pharmaceutical (Antihypertensive) Losartan 25.0 26.7 16.0 30.5 100 18.9 14.1 10.6 36.9

Organic Pharmaceutical (Antibiotics) Norfloxacin 24.6 <DL <QL 98.6 25.0 10.9 - - 43.6

Organic Pharmaceutical (Antibiotics) Roxithromycin 20.0 12.0 <QL 56.1 75.0 10.4 9.4 - 22.8

Organic Pharmaceutical (Antibiotics) Azithromycin 17.9 3.6 <QL 64.5 50.0 17.2 1.5 - 65.7

Organic Pharmaceutical (Glycemia) Gemfibrozil 17.8 12.0 <QL 47.4 75.0 17.6 6.6 - 57.3

Organic Pharmaceutical (Anxiolytics) Lorazepam 16.5 22.0 <QL 22.1 75.0 14.7 16.1 - 26.6

Organic Pharmaceutical (Antibiotics) Clarithromycin 13.1 13.5 3.6 21.7 100 11.9 9.9 1.5 26.2

Organic Pharmaceutical (Antibiotics) Metronidazole 11.7 11.0 <QL 24.8 75.0 7.7 6.8 - 17.0

Organic Pharmaceutical (Anxiolytics) Nordazepam 10.7 11.1 8.9 11.8 100 8.5 8.6 3.6 13.1

Organic Pharmaceutical (Antibiotics) Erythromycin A 10.3 8.3 <QL 24.5 75.0 9.2 3.6 - 29.7

Organic Pharmaceutical (Pain killer) Acetaminophen 8.1 7.7 <QL 17.0 50.0 6.4 3.4 - 18.7

Organic Pharmaceutical (Antibiotics) Josamycin 6.8 8.2 <QL 10.6 75.0 5.8 5.9 - 11.4

Organic Pharmaceutical (Antibiotics) Tetracycline 5.1 0.0 <QL 20.2 25.0 2.2 - - 8.9

Organic Pharmaceutical (Antibiotics) Trimethoprim 2.8 3.4 <QL 4.6 75.0 2.3 2.6 - 4.1

Organic Pharmaceutical (Antibiotics) Sulfadiazine 2.6 0.0 <QL 10.2 25.0 3.1 - - 12.4

Organic Pharmaceutical (Antibiotics) Ampicilline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Doxycycline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Flumequine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Oxolinic acid <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Piperacillin <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Rifampicin <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Sulfamethazine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Tylosine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) EE2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E1 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Pain killer) Phenazone <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Contraceptif) 19-Norethindrone <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Glaucoma) Acetazolamide <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Anticancer) Cyclophosphamide <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antiarrhythmic) Amiodarone - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Amoxicillin - - - - - - - - -

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid - - - - - - - - -

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide - - - - - - - - -

4231.5 2552.6 6567.1 3349.3 1291.0 6492.8

TOTAL

TOTAL

Emerging substances

Concentrations (ng.L-1) Daily flux estimations (mg.day-1)

TOTAL
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‘WWTP 2’ 

 

 

 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Metal Vanadium (V) 4385.3 4344.3 4181.3 4671.3 100 22524.5 22809.6 14676.2 29802.6

Metal Chromium (Cr) 4041.8 3996.0 3787.0 4388.0 100 20699.1 20401.5 13997.9 27995.4

Metal Nickel (Ni) 2006.0 1970.0 1855.0 2229.0 100 10158.4 10908.6 6981.4 11834.9

Metal Copper (Cu) 1872.2 1718.7 1582.7 2468.7 100 9685.9 9349.6 5948.3 14096.1

Metal Arsenic (As) 1680.0 1692.3 1452.8 1882.8 100 8647.3 9287.7 5099.2 10914.6

Metal Antimony (Sb) 1280.5 1206.3 816.3 1893.3 100 6959.7 6447.4 2865.0 12078.9

Metal Lead (Pb) 892.3 805.5 714.5 1243.5 100 4642.7 4481.2 2507.9 7100.4

Metal Molybdenum (Mo) 328.0 316.0 207.0 473.0 100 1716.6 1587.0 991.5 2700.8

Metal Tin (Sn) 176.5 164.5 143.0 234.0 100 889.4 935.8 565.1 1120.9

Metal Silver (Ag) 16.0 15.5 14.5 18.5 100 82.1 84.2 54.4 105.6

Metal Cadmium (Cd) 9.5 9.3 8.3 11.3 100 48.4 48.5 32.5 64.2

16687.9 14762.2 19513.2 86054.0 53719.3 117814.5

Organomercury compound IHg 1.4 1.4 0.7 2.2 100 8.2 8.6 3.5 12.4

Organomercury compound MMHg 0.1 0.1 0.0 0.1 100 0.3 0.3 0.2 0.4

1.5 0.8 2.3 8.5 3.7 12.9

Organic PAH Naphthalene 147.7 147.7 147.7 147.7 100 942.3 942.3 942.3 942.3

Organic PAH Pyrene 9.3 12.2 <DL 12.8 75.0 43.3 51.6 - 70.0

Organic PAH Indeno[1,2,3-cd]pyrene 8.0 <DL <DL 32.2 25.0 38.5 - - 154.0

Organic PAH Dibenzo[a,h]anthracene 5.7 <DL <DL 22.8 25.0 27.4 - - 109.4

Organic PAH Acenaphthene 5.7 0.8 <DL 21.2 50.0 35.7 3.7 - 135.3

Organic PAH Benzo[g,h,i]perylene 2.7 <DL <DL 11.0 25.0 13.1 - - 52.5

Organic PAH Fluorene 2.1 0.6 <DL 7.4 50.0 13.1 2.7 - 47.2

Organic PAH Benzo[a]pyrene 1.1 <DL <DL 4.5 25.0 5.3 - - 21.4

Organic PAH Phenanthrene 1.0 <DL <DL 3.8 25.0 4.6 - - 18.4

Organic PAH Benzo[k]fluoranthene 0.8 <DL <DL 3.3 25.0 3.9 - - 15.7

Organic PAH Benzo[b]fluoranthene 0.7 <DL <DL 2.8 25.0 3.4 - - 13.4

Organic PAH Anthracene 0.4 <DL <DL 1.7 25.0 2.1 - - 8.2

Organic PAH Benzo[a]anthracene 0.4 <DL <DL 1.5 25.0 1.8 - - 7.3

Organic PAH Fluoranthene 0.3 0.4 <DL 0.5 66.7 1.4 1.3 - 2.8

Organic PAH Acenaphthylene <DL <DL <DL <DL 0.0 - - - -

Organic PAH Chrysene <DL <DL <DL <DL 0.0 - - - -

186.0 147.7 273.1 1135.9 942.3 1598.0

Organic PCB PCB 149 1.7 0.8 <DL 5.2 50.0 10.1 3.6 - 33.2

Organic PCB PCB 28+31 1.3 0.0 <DL 5.0 50.0 8.1 0.2 - 31.9

Organic PCB PCB 52 0.1 <DL <DL 0.3 25.0 0.4 - - 1.6

Organic PCB PCB 18 <DL <DL <DL <DL 0.0 - - - -

Organic PCB PCB 44 <DL <DL <DL <DL 25.0 - - - -

Organic PCB PCB 101 <DL <DL <DL <DL 0.0 - - - -

Organic PCB PCB 118 <DL <DL <DL <DL 0.0 - - - -

Organic PCB PCB 153 <DL <DL <DL <DL 0.0 - - - -

Organic PCB PCB 138 <DL <DL <DL <DL 0.0 - - - -

Organic PCB PCB 180 <DL <DL <DL <DL 0.0 - - - -

Organic PCB PCB 194 <DL <DL <DL <DL 0.0 - - - -

3.0 <DL 10.5 18.6 - 66.7

Organic AP NP 821.8 821.8 194.2 1449.4 100 4964.5 4964.5 681.8 9247.2

Organic AP 4tOP <DL <DL <DL <DL 0.0 - - - -

Organic AP 4nOP <DL <DL <DL <DL 0.0 - - - -

Organic AP NPEO1 <DL <DL <DL <DL 0.0 - - - -

Organic AP NPEO2 <DL <DL <DL <DL 0.0 - - - -

821.8 194.2 1449.4 4964.5 681.8 9247.2

Organic OCP 4,4'-DDE 2.6 <DL <DL 10.2 25.0 16.3 - - 65.1

Organic OCP Aldrin <DL <DL <DL <DL 0.0 - - - -

Organic OCP Alpha BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Beta BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Delta BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Dieldrine <DL <DL <DL <DL 0.0 - - - -

Organic OCP Alpha Endosulfan <DL <DL <DL <DL 0.0 - - - -

Organic OCP Bêta Endosulfan <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endosulfan Sulfate <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endrin <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endrin Aldehyde <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endrin Ketone <DL <DL <DL <DL 0.0 - - - -

Organic OCP Gamma BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Heptachlor <DL <DL <DL <DL 0.0 - - - -

Organic OCP Heptachlor Epoxide <DL <DL <DL <DL 0.0 - - - -

Organic OCP Methoxychlor <DL <DL <DL <DL 0.0 - - - -

Organic OCP 4,4'-DDD <DL <DL <DL <DL 0.0 - - - -

Organic OCP 4,4'-DDT <DL <DL <DL <DL 0.0 - - - -

2.6 <DL 10.2 16.3 - - 65.1

Priority substances

TOTAL

TOTAL

TOTAL

TOTAL

TOTAL

Concentrations (ng.L-1) Daily flux estimations (mg.day-1)

TOTAL
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‘WWTP 2’ 

 

 

 

 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Organic Musk HHCB 1309.9 1222.1 984.4 1811.0 100 6706.0 7347.0 3455.1 8674.9

Organic Musk HHCB-lactone 485.2 468.3 435.4 568.9 100 2489.1 2589.9 1528.3 3248.3

Organic Musk AHTN 186.5 167.8 147.5 262.9 100 973.2 917.7 556.5 1500.9

Organic Musk MK 49.7 56.9 18.7 66.2 100 240.6 232.8 119.0 378.0

Organic Musk ADBI 6.0 4.5 <DL 15.0 50.0 32.2 21.8 - 85.4

Organic Musk AHMI <DL <DL <DL <DL 0.0 - - - -

Organic Musk MA <DL <DL <DL <DL 0.0 - - - -

Organic Musk ATII <DL <DL <DL <DL 0.0 - - - -

Organic Musk MX <DL <DL <DL <DL 0.0 - - - -

Organic Musk MM <DL <DL <DL <DL 0.0 - - - -

2037.3 1585.9 2723.9 10441.2 5659.0 13887.5

Organic Sunscreen Benzophenone 3 51.2 38.9 <DL 127.1 75.0 248.3 192.3 - 608.7

Organic Sunscreen OC 18.8 19.6 10.8 25.3 100 99.9 100.8 37.9 160.0

Organic Sunscreen EHMC 0.5 0.4 <DL 1.3 75.0 2.2 2.2 - 4.4

Organic Sunscreen 3-BC <DL <DL <DL <DL 0.0 - - - -

Organic Sunscreen 4-MBC <DL <DL <DL <DL 0.0 - - - -

Organic Sunscreen OD-PABA <DL <DL <DL <DL 0.0 - - - -

70.6 10.8 153.6 350.4 37.9 773.1

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide 2194.8 1929.9 1691.1 3228.4 100 10635.6 10493.9 9250.9 12303.7

Organic Pharmaceutical (Anxiolytics) Oxazepam 2160.9 2201.3 1791.5 2449.2 100 10887.2 10185.7 8596.7 14580.7

Organic Pharmaceutical (Anti-inflammatory) Diclofenac 1020.9 1062.5 788.1 1170.6 100 5202.8 4840.9 3661.3 7468.3

Organic Pharmaceutical (Antihypertensive) Atenolol 480.5 486.0 237.0 712.9 100 2476.5 2002.4 1353.2 4548.2

Organic Pharmaceutical (Pain killer) Niflumic acid 335.8 305.4 261.2 471.2 100 1641.4 1572.7 1437.8 1982.4

Organic Pharmaceutical (Anticonvulsant) Carbamazepine 331.2 334.8 197.1 458.1 100 1778.8 1750.2 691.7 2923.0

Organic Pharmaceutical (Pain killer) Ketoprofen 318.5 321.5 155.6 475.3 100 1640.8 1582.8 860.9 2536.9

Organic Pharmaceutical (Antibiotics) Azithromycin 225.4 217.2 75.6 391.6 100 1104.1 1078.4 362.2 1897.3

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole 222.6 216.8 191.7 265.4 100 1127.8 1247.0 731.1 1286.1

Organic Pharmaceutical (Antihypertensive) Losartan 204.4 196.6 130.8 293.8 100 1019.9 980.0 712.4 1407.2

Organic Pharmaceutical (Antibiotics) Ciprofloxacin 189.6 180.5 123.1 274.1 100 955.5 833.6 589.5 1565.2

Organic Pharmaceutical (Psychotropic) Caffeine 165.9 85.5 26.9 465.8 100 690.6 499.4 128.8 1634.8

Organic Pharmaceutical (Antibiotics) Ofloxacin 139.4 120.8 96.4 219.6 100 734.7 673.3 338.2 1253.9

Organic Pharmaceutical (Antibiotics) Clarithromycin 133.7 136.0 88.2 174.6 100 695.5 811.6 309.5 849.5

Organic Pharmaceutical (Antiarrhythmic) Metoprolol 126.9 108.7 86.3 203.6 100 676.2 525.7 354.1 1299.0

Organic Pharmaceutical (Glycemia) Gemfibrozil 126.1 121.2 63.6 198.3 100 612.5 568.3 363.4 950.1

Organic Pharmaceutical (Glaucoma) Acetazolamide 118.9 122.2 <QL 231.1 75.0 537.8 522.2 - 1107.1

Organic Pharmaceutical (Antibiotics) Roxithromycin 109.8 107.2 36.7 188.2 100 515.1 480.4 234.1 865.6

Organic Pharmaceutical (Antibiotics) Erythromycin A 88.6 46.3 34.3 227.5 100 513.1 240.3 120.4 1451.2

Organic Pharmaceutical (Antibiotics) Metronidazole 73.4 72.5 59.7 88.9 100 371.8 403.4 235.4 444.9

Organic Pharmaceutical (Antibiotics) Trimethoprim 73.2 67.2 45.3 112.9 100 344.3 345.8 289.1 396.3

Organic Pharmaceutical (Antibiotics) Spiramycin 62.0 40.6 <QL 166.9 50.0 276.1 259.3 - 585.6

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen 43.0 0.0 <QL 172.1 25.0 151.0 - - 604.2

Organic Pharmaceutical (Antibiotics) Norfloxacin 31.1 29.4 <QL 65.7 50.0 162.6 157.4 - 335.7

Organic Pharmaceutical (Anxiolytics) Lorazepam 27.7 29.9 13.6 37.5 100 147.1 179.5 47.6 181.6

Organic Pharmaceutical (Antibiotics) Josamycin 22.8 13.6 5.5 58.5 100 95.7 71.4 35.0 205.2

Organic Pharmaceutical (Anxiolytics) Nordazepam 13.3 13.2 10.1 16.7 100 66.6 69.5 47.1 80.1

Organic Pharmaceutical (Pain killer) Acetaminophen 11.6 10.3 5.0 20.9 100 64.2 53.2 17.4 133.1

Organic Pharmaceutical (Antibiotics) Sulfadiazine 3.0 <DL <QL 11.9 25.0 14.2 - - 56.9

Organic Pharmaceutical (Antibiotics) Piperacillin 0.8 <DL <QL 3.3 25.0 2.9 - - 11.7

Organic Pharmaceutical (Antibiotics) Ampicilline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Doxycycline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Flumequine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Oxolinic acid <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Rifampicin <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Sulfamethazine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Tetracycline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Tylosine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) EE2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E1 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Pain killer) Phenazone <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Contraceptif) 19-Norethindrone <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Anticancer) Cyclophosphamide <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antiarrhythmic) Amiodarone - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Amoxicillin - - - - - - - - -

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid - - - - - - - - -

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide - - - - - - - - -

9055.8 6214.2 12854.5 45142.5 30767.8 64945.4

TOTAL

TOTAL

Emerging substances

Concentrations (ng.L-1) Daily flux estimations (mg.day-1)

TOTAL
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‘WWTP 3’ 

 

 

 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Metal Vanadium (V) 5708.3 5449.3 4751.3 7183.3 100 25973.6 25897.1 16255.8 35844.4

Metal Chromium (Cr) 5678.3 5612.5 4443.0 7045.0 100 26050.3 26485.5 15787.4 35443.0

Metal Copper (Cu) 4641.2 4971.7 2885.7 5735.7 100 21753.8 22630.2 9118.7 32635.9

Metal Nickel (Ni) 3868.0 3861.0 3274.0 4476.0 100 17249.1 16832.0 12997.1 22335.2

Metal Arsenic (As) 1896.3 1785.8 1592.8 2420.8 100 8550.2 8544.1 5033.1 12079.5

Metal Antimony (Sb) 1090.3 1040.8 828.3 1451.3 100 5037.3 5044.1 2819.5 7241.7

Metal Molybdenum (Mo) 858.5 927.5 504.0 1075.0 100 3987.1 3905.4 2021.0 6116.8

Metal Lead (Pb) 532.8 558.5 337.5 676.5 100 2505.9 2553.9 1066.5 3849.3

Metal Tin (Sn) 239.5 237.5 207.0 276.0 100 1078.1 1140.5 654.1 1377.2

Metal Silver (Ag) 25.0 25.0 17.5 32.5 100 115.6 122.5 55.3 162.2

Metal Cadmium (Cd) 19.3 20.8 12.3 23.3 100 89.6 96.6 38.7 126.6

24557.2 18853.2 30395.2 112390.8 65847.2 157211.9

Organomercury compound IHg 8.4 6.4 2.9 15.8 100 37.4 32.0 16.8 63.5

Organomercury compound MMHg 0.7 0.3 0.1 1.7 100 3.3 1.1 0.5 8.3

9.1 3.0 17.5 40.7 17.2 71.8

Organic PAH Indeno[1,2,3-cd]pyrene 7.5 <DL <DL 29.8 50.0 29.9 - - 119.7

Organic PAH Pyrene 5.3 5.3 <DL 10.3 75.0 19.5 20.4 - 37.1

Organic PAH Benzo[b]fluoranthene 5.1 1.8 <DL 17.0 75.0 24.7 7.1 - 84.8

Organic PAH Dibenzo[a,h]anthracene 4.6 <DL <DL 18.5 50.0 18.6 - - 74.3

Organic PAH Phenanthrene 2.6 2.0 <DL 6.2 75.0 9.4 6.3 - 25.1

Organic PAH Fluorene 2.2 2.1 <DL 4.5 75.0 7.7 7.2 - 16.6

Organic PAH Acenaphthene 2.0 1.9 <DL 4.4 75.0 7.2 6.9 - 15.1

Organic PAH Benzo[g,h,i]perylene 1.9 <DL <DL 7.4 50.0 7.4 - - 29.8

Organic PAH Benzo[a]pyrene 1.1 <DL <DL 4.5 50.0 4.5 - - 17.9

Organic PAH Benzo[a]anthracene 1.1 0.9 <DL 2.6 75.0 4.1 2.9 - 10.5

Organic PAH Benzo[k]fluoranthene 1.0 <DL <DL 4.1 50.0 4.1 - - 16.4

Organic PAH Anthracene 0.1 <DL <DL 0.5 50.0 0.5 - - 2.2

Organic PAH Naphthalene <DL <DL <DL <DL 0.0 - - - -

Organic PAH Fluoranthene <DL <DL <DL <DL 0.0 - - - -

Organic PAH Acenaphthylene <DL <DL <DL <DL 0.0 - - - -

Organic PAH Chrysene <DL <DL <DL <DL 0.0 - - - -

34.5 <DL 110.0 137.7 - 449.3

Organic PCB PCB 138 4.4 <DL <DL 17.8 50.0 17.8 - - 71.3

Organic PCB PCB 101 0.7 <DL <DL 2.7 50.0 2.7 - - 10.7

Organic PCB PCB 149 0.5 <DL <DL 2.2 50.0 2.2 - - 8.7

Organic PCB PCB 28+31 0.2 <DL <DL 0.8 50.0 0.8 - - 3.0

Organic PCB PCB 180 0.2 <DL <DL 0.7 50.0 0.7 - - 2.9

Organic PCB PCB 52 0.2 <DL <DL 0.6 50.0 0.6 - - 2.5

Organic PCB PCB 44 0.1 <DL <DL 0.5 50.0 0.5 - - 2.0

Organic PCB PCB 18 <DL <DL <DL <DL 0.0 - - - -

Organic PCB PCB 118 <DL <DL <DL <DL 0.0 - - - -

Organic PCB PCB 153 <DL <DL <DL <DL 0.0 - - - -

Organic PCB PCB 194 <DL <DL <DL <DL 0.0 - - - -

6.3 <DL 25.3 25.3 - - 101.3

Organic AP NP 815.9 689.2 656.8 1101.8 100 3436.6 2633.9 2177.8 5498.0

Organic AP NPEO1 67.8 67.8 67.8 67.8 100 338.3 338.3 338.3 338.3

Organic AP NPEO2 15.4 <DL <DL 46.2 33.3 76.8 - - 230.5

Organic AP 4tOP <DL <DL <DL <DL 0.0 - - - -

Organic AP 4nOP <DL <DL <DL <DL 0.0 - - - -

899.1 724.6 1215.8 3851.7 2516.1 6066.8

Organic OCP Aldrin <DL <DL <DL <DL 0.0 - - - -

Organic OCP Alpha BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Beta BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Delta BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Dieldrine <DL <DL <DL <DL 0.0 - - - -

Organic OCP Alpha Endosulfan <DL <DL <DL <DL 0.0 - - - -

Organic OCP Bêta Endosulfan <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endosulfan Sulfate <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endrin <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endrin Aldehyde <DL <DL <DL <DL 0.0 - - - -

Organic OCP Endrin Ketone <DL <DL <DL <DL 0.0 - - - -

Organic OCP Gamma BHC <DL <DL <DL <DL 0.0 - - - -

Organic OCP Heptachlor <DL <DL <DL <DL 0.0 - - - -

Organic OCP Heptachlor Epoxide <DL <DL <DL <DL 0.0 - - - -

Organic OCP Methoxychlor <DL <DL <DL <DL 0.0 - - - -

Organic OCP 4,4'-DDD <DL <DL <DL <DL 0.0 - - - -

Organic OCP 4,4'-DDE <DL <DL <DL <DL 0.0 - - - -

Organic OCP 4,4'-DDT <DL <DL <DL <DL 0.0 - - - -

<DL <DL <DL - - - -

Priority substances

TOTAL

TOTAL

TOTAL

TOTAL

TOTAL

Concentrations (ng.L-1) Daily flux estimations (mg.day-1)

TOTAL
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‘WWTP 3’ 

 

 

 

 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Organic Musk HHCB 1017.3 845.2 600.0 1778.7 100 4354.6 3793.2 2699.6 7132.6

Organic Musk HHCB-lactone 331.3 418.9 28.8 458.8 100 1369.3 1530.1 164.1 2252.9

Organic Musk AHTN 113.2 140.4 24.5 147.5 100 471.4 508.6 139.5 728.9

Organic Musk MK 56.8 63.0 7.3 94.2 100 219.7 230.0 41.3 377.6

Organic Musk ADBI 4.3 4.1 <DL 9.1 50.0 20.8 18.2 - 46.8

Organic Musk AHMI <DL <DL <DL <DL 0.0 - - - -

Organic Musk MA <DL <DL <DL <DL 0.0 - - - -

Organic Musk ATII <DL <DL <DL <DL 0.0 - - - -

Organic Musk MX <DL <DL <DL <DL 0.0 - - - -

Organic Musk MM <DL <DL <DL <DL 0.0 - - - -

1523.0 660.6 2488.3 6435.9 3044.4 10538.8

Organic Sunscreen OC 701.4 235.7 <DL 2334.0 75.0 3367.0 910.7 - 11646.7

Organic Sunscreen Benzophenone 3 25.5 25.1 6.4 45.5 100 98.8 101.9 32.1 159.2

Organic Sunscreen 4-MBC 17.9 2.0 <DL 67.5 50.0 72.6 9.8 - 270.7

Organic Sunscreen EHMC 1.4 1.2 <DL 3.3 75.0 5.5 4.5 - 13.1

Organic Sunscreen 3-BC <DL <DL <DL <DL 0.0 - - - -

Organic Sunscreen OD-PABA <DL <DL <DL <DL 0.0 - - - -

746.2 6.4 2450.3 3543.9 32.1 12089.6

Organic Pharmaceutical (Psychotropic) Caffeine 4420.5 2431.4 458.6 12360.5 100 20701.9 9645.0 1838.8 61679.0

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide 1679.3 1425.1 798.3 3068.6 100 7486.4 5045.3 4542.6 15312.4

Organic Pharmaceutical (Anxiolytics) Oxazepam 1493.2 1581.0 1073.8 1737.0 100 6431.0 6435.9 5488.9 7363.4

Organic Pharmaceutical (Pain killer) Ketoprofen 1331.2 1118.7 615.0 2472.4 100 5946.5 3974.7 3499.5 12337.3

Organic Pharmaceutical (Anti-inflammatory) Diclofenac 1113.7 1064.5 510.6 1815.5 100 4927.3 3872.3 2905.1 9059.3

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen 929.1 828.0 399.8 1660.8 100 4053.3 2976.5 1972.6 8287.3

Organic Pharmaceutical (Antihypertensive) Losartan 657.9 583.6 359.0 1105.5 100 2944.4 2272.7 1715.8 5516.5

Organic Pharmaceutical (Antihypertensive) Atenolol 656.8 664.5 566.4 731.9 100 2917.1 3078.9 1936.3 3574.3

Organic Pharmaceutical (Pain killer) Acetaminophen 482.7 476.9 25.5 951.4 100 1986.5 1548.3 102.1 4747.5

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole 385.2 349.6 282.1 559.5 100 1650.1 1541.6 1273.7 2243.6

Organic Pharmaceutical (Anticonvulsant) Carbamazepine 293.2 256.7 164.7 494.9 100 1355.5 1216.0 520.5 2469.7

Organic Pharmaceutical (Antibiotics) Ciprofloxacin 272.2 260.3 103.9 464.4 100 1355.3 1225.1 328.5 2642.3

Organic Pharmaceutical (Pain killer) Niflumic acid 233.4 163.7 135.1 471.1 100 1074.4 722.8 501.1 2350.8

Organic Pharmaceutical (Antibiotics) Clarithromycin 181.2 205.8 69.7 243.7 100 747.5 808.1 396.4 977.3

Organic Pharmaceutical (Antiarrhythmic) Metoprolol 174.7 105.6 69.7 417.8 100 823.8 495.0 220.3 2084.8

Organic Pharmaceutical (Antibiotics) Ofloxacin 162.4 153.2 79.2 264.2 100 793.4 710.1 250.2 1503.3

Organic Pharmaceutical (Antibiotics) Roxithromycin 153.9 134.9 53.5 292.2 100 658.2 604.9 214.7 1208.5

Organic Pharmaceutical (Glaucoma) Acetazolamide 142.3 175.9 <QL 217.5 75.0 633.0 647.1 - 1237.8

Organic Pharmaceutical (Antibiotics) Erythromycin A 141.3 54.3 18.0 438.3 100 689.7 257.3 57.0 2187.2

Organic Pharmaceutical (Glycemia) Gemfibrozil 140.6 124.8 107.6 205.1 100 622.4 652.7 361.9 822.3

Organic Pharmaceutical (Antibiotics) Azithromycin 136.3 84.4 46.0 330.5 100 536.1 457.7 184.6 1044.4

Organic Pharmaceutical (Antibiotics) Spiramycin 108.1 33.4 21.4 344.4 100 380.5 163.6 106.6 1088.4

Organic Pharmaceutical (Antibiotics) Metronidazole 105.5 98.2 91.0 134.7 100 479.9 412.8 327.8 766.3

Organic Pharmaceutical (Antibiotics) Trimethoprim 99.2 88.9 65.6 153.4 100 440.5 469.9 207.2 615.0

Organic Pharmaceutical (Antibiotics) Norfloxacin 71.3 36.2 <QL 212.8 50.0 375.4 145.3 - 1211.0

Organic Pharmaceutical (Antibiotics) Josamycin 47.5 40.7 25.3 83.2 100 195.3 194.8 128.8 262.9

Organic Pharmaceutical (Anxiolytics) Lorazepam 24.3 23.3 20.7 29.9 100 108.2 111.4 68.9 140.8

Organic Pharmaceutical (Anxiolytics) Nordazepam 11.5 10.6 9.3 15.4 100 50.2 51.9 35.0 61.8

Organic Pharmaceutical (Anticancer) Cyclophosphamide 8.2 7.8 <QL 17.0 50.0 39.8 31.3 - 96.8

Organic Pharmaceutical (Antibiotics) Sulfadiazine 7.2 6.3 <QL 16.0 50.0 25.3 25.2 - 50.7

Organic Pharmaceutical (Antibiotics) Piperacillin 0.6 0.0 <QL 2.4 25.0 1.9 - - 7.5

Organic Pharmaceutical (Antibiotics) Ampicilline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Doxycycline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Flumequine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Oxolinic acid <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Rifampicin <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Sulfamethazine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Tetracycline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Tylosine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) EE2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E1 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Pain killer) Phenazone <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Contraceptif) 19-Norethindrone <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antiarrhythmic) Amiodarone - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Amoxicillin - - - - - - - - -

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid - - - - - - - - -

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide - - - - - - - - -

15664.5 6169.7 31312.0 70430.8 29184.8 152950.1

TOTAL

TOTAL

Emerging substances

Concentrations (ng.L-1) Daily flux estimations (mg.day-1)

TOTAL
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‘WWTP 4’ 

 

 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Metal Chromium (Cr) 5239.5 4815.5 4474.0 6853.0 100 17859.9 18428.5 12585.7 21997.1

Metal Vanadium (V) 5105.8 4626.8 4135.3 7034.3 100 17401.5 18422.6 11144.5 21616.3

Metal Copper (Cu) 2797.7 2759.7 1610.7 4060.7 100 8962.6 9151.2 5687.3 11860.8

Metal Nickel (Ni) 2211.5 2107.5 1534.0 3097.0 100 7511.5 7530.3 5416.6 9568.6

Metal Arsenic (As) 1528.8 1430.3 1353.8 1900.8 100 5223.4 5421.8 3648.4 6401.6

Metal Antimony (Sb) 1136.0 1174.8 830.3 1364.3 100 3982.5 4149.8 2237.5 5392.9

Metal Molybdenum (Mo) 515.3 441.5 154.0 1024.0 100 1780.6 1545.9 415.0 3615.7

Metal Lead (Pb) 507.5 532.5 239.5 725.5 100 1736.0 1871.8 645.5 2554.7

Metal Tin (Sn) 303.5 273.0 187.0 481.0 100 992.3 843.1 805.1 1478.1

Metal Silver (Ag) 23.8 21.0 10.5 42.5 100 87.9 67.4 28.3 188.4

Metal Cadmium (Cd) 14.3 11.8 7.3 26.3 100 47.0 41.2 24.9 80.7

19383.4 14536.2 26609.2 65585.2 42638.6 84754.7

Organomercury compound IHg 1.3 1.1 0.4 2.7 100 4.5 4.3 1.2 8.4

Organomercury compound MMHg 0.04 0.03 0.01 0.1 100 0.1 0.1 0.03 0.2

1.3 0.4 2.8 4.7 1.3 8.6

Organic PAH Naphthalene 10.8 10.8 <DL 21.6 50.0 33.7 33.7 - 67.4

Organic PAH Benzo[b]fluoranthene 1.7 <DL <DL 7.6 40.0 5.3 - - 23.4

Organic PAH Phenanthrene 1.2 <DL <DL 4.9 40.0 3.8 - - 15.3

Organic PAH Acenaphthene 0.7 0.4 <DL 1.9 60.0 1.9 1.6 - 5.1

Organic PAH Fluoranthene 0.5 <DL <DL 2.1 25.0 1.6 - - 6.5

Organic PAH Pyrene 0.5 <DL <DL 2.3 20.0 1.4 - - 7.1

Organic PAH Fluorene 0.4 <DL <DL 2.0 40.0 1.3 - - 6.3

Organic PAH Anthracene 0.4 <DL <DL 1.2 40.0 1.1 - - 3.9

Organic PAH Benzo[a]anthracene 0.2 <DL <DL 1.2 20.0 0.8 - - 3.9

Organic PAH Acenaphthylene 0.2 <DL <DL 1.1 25.0 0.7 - - 3.4

Organic PAH Benzo[a]pyrene 0.2 <DL <DL <1.0 40.0 0.7 - - 3.1

Organic PAH Chrysene 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PAH Benzo[k]fluoranthene 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PAH Indeno[1,2,3-cd]pyrene 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PAH Dibenzo[a,h]anthracene 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PAH Benzo[g,h,i]perylene 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

17.8 <DL 51.9 55.4 - 160.7

Organic PCB PCB 194 0.9 <DL <DL 4.7 20.0 2.9 - - 14.6

Organic PCB PCB 28+31 0.2 <DL <DL 1.2 20.0 0.7 - - 3.7

Organic PCB PCB 180 0.2 <DL <DL <1.0 40.0 0.7 - - 3.1

Organic PCB PCB 18 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PCB PCB 52 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PCB PCB 44 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PCB PCB 101 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PCB PCB 149 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PCB PCB 118 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PCB PCB 153 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic PCB PCB 138 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

3.0 <DL 14.8 9.3 - 46.1

Organic AP NP 506.4 254.0 118.8 1207.8 100 1575.3 990.8 419.5 3711.6

Organic AP 4tOP 32.7 23.9 <DL 104.8 60.0 110.4 74.6 - 322.1

Organic AP NPEO1 5.0 5.0 <DL <10.0 50.0 15.6 15.6 - 31.2

Organic AP 4nOP 2.0 <DL <DL <10.0 20.0 6.2 - - 31.2

Organic AP NPEO2 2.0 <DL <DL <10.0 20.0 6.2 - - 31.2

548.2 118.8 1342.3 1713.8 419.5 4127.2

Organic OCP Beta BHC 5.7 <DL <DL 22.8 25.0 17.8 - - 71.3

Organic OCP Alpha BHC 0.9 <DL <DL 3.5 25.0 2.7 - - 10.9

Organic OCP 4,4'-DDE 0.7 <DL <DL 3.5 20.0 2.2 - - 10.9

Organic OCP Bêta Endosulfan 0.7 <DL <DL 2.6 25.0 2.0 - - 8.1

Organic OCP Methoxychlor 0.7 <DL <DL 2.0 33.3 2.1 - - 6.3

Organic OCP Delta BHC 0.7 <DL <DL <2.0 33.3 2.1 - - 6.2

Organic OCP Endosulfan Sulfate 0.7 <DL <DL <2.0 33.3 2.1 - - 6.2

Organic OCP Gamma BHC 0.7 <DL <DL <2.0 33.3 2.1 - - 6.2

Organic OCP 4,4'-DDT 0.7 <DL <DL <2.0 33.3 2.1 - - 6.2

Organic OCP Alpha Endosulfan 0.6 <DL <DL 2.3 25.0 1.8 - - 7.1

Organic OCP Heptachlor 0.5 <DL <DL <2.0 25.0 1.6 - - 6.2

Organic OCP Aldrin 0.4 <DL <DL <2.0 20.0 1.2 - - 6.2

Organic OCP Dieldrine 0.4 <DL <DL <2.0 20.0 1.2 - - 6.2

Organic OCP Heptachlor Epoxide 0.4 <DL <DL <2.0 20.0 1.2 - - 6.2

Organic OCP 4,4'-DDD 0.4 <DL <DL <2.0 20.0 1.2 - - 6.2

Organic OCP Endrin Aldehyde 0.4 <DL <DL <2.0 20.0 1.2 - - 6.2

Organic OCP Endrin Ketone 0.4 <DL <DL 1.9 20.0 1.2 - - 6.0

Organic OCP Endrin 0.1 <DL <DL 0.7 20.0 0.5 - - 2.3

14.8 <DL 58.4 46.3 - 185.0

Priority substances

TOTAL

TOTAL

TOTAL

TOTAL

TOTAL

Concentrations (ng.L-1) Daily flux estimations (mg.day-1)

TOTAL
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‘WWTP 4’ 

 

 

 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%) Mean Median Min Max

Organic Musk HHCB 1735.9 1555.5 1241.7 2788.0 100 5972.1 4192.2 3815.7 9844.5

Organic Musk HHCB-lactone 575.5 573.6 387.5 746.9 100 1989.7 2025.4 1209.4 3311.8

Organic Musk AHTN 253.8 238.8 219.5 347.4 100 879.0 750.3 643.6 1540.2

Organic Musk MK 57.3 71.7 23.0 84.5 100 196.6 227.8 70.7 317.7

Organic Musk ADBI 6.3 1.0 <DL 18.5 60.0 25.5 3.1 - 82.1

Organic Musk ATII 0.7 <DL <DL 3.3 20.0 2.1 - - 10.4

Organic Musk AHMI 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic Musk MA 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic Musk MX 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

Organic Musk MM 0.2 <DL <DL <1.0 20.0 0.6 - - 3.1

2630.2 1871.7 3992.6 9067.4 5739.4 15119.1

Organic Sunscreen OC 78.1 44.2 15.2 209.0 100 202.8 93.9 - 642.3

Organic Sunscreen 4-MBC 57.2 25.2 <DL 178.5 75.0 157.3 53.1 - 630.2

Organic Sunscreen Benzophenone 3 21.4 16.6 <DL 52.2 75.0 66.2 1.0 - 184.3

Organic Sunscreen EHMC 0.1 <DL <DL 0.3 25.0 0.2 - - 1.1

Organic Sunscreen 3-BC <DL <DL <DL <DL 0.0 - - - -

Organic Sunscreen OD-PABA <DL <DL <DL <DL 0.0 - - - -

156.8 15.2 440.0 426.6 - 1457.9

Organic Pharmaceutical (Anxiolytics) Oxazepam 1913.2 1830.5 1080.4 2911.4 100 6285.8 6190.8 3814.8 8946.9

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide 1176.6 879.8 504.7 2442.0 100 3776.6 2909.9 1782.2 7504.4

Organic Pharmaceutical (Anti-inflammatory) Diclofenac 1035.3 643.3 418.6 2436.2 100 3406.6 2330.8 1478.2 7486.5

Organic Pharmaceutical (Psychotropic) Caffeine 769.5 814.7 461.0 987.7 100 2532.6 2434.7 2044.2 3216.9

Organic Pharmaceutical (Anticonvulsant) Carbamazepine 632.5 502.7 396.9 1127.8 100 2156.5 2038.4 1083.2 3465.8

Organic Pharmaceutical (Antibiotics) Ciprofloxacin 455.4 430.6 107.2 853.0 100 1674.9 1269.3 378.7 3782.3

Organic Pharmaceutical (Antihypertensive) Losartan 416.0 397.5 201.7 667.2 100 1378.9 1376.6 712.3 2050.3

Organic Pharmaceutical (Antihypertensive) Atenolol 331.2 328.8 251.9 415.3 100 1153.6 941.8 889.4 1841.4

Organic Pharmaceutical (Pain killer) Ketoprofen 293.7 284.2 128.4 478.1 100 1011.7 1041.3 453.4 1510.7

Organic Pharmaceutical (Antibiotics) Ofloxacin 264.7 254.7 114.2 435.2 100 948.8 731.2 403.2 1929.7

Organic Pharmaceutical (Pain killer) Niflumic acid 253.9 187.9 123.2 516.6 100 857.2 719.3 402.8 1587.4

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole 244.1 232.8 117.5 393.2 100 841.7 761.8 361.0 1482.2

Organic Pharmaceutical (Antibiotics) Azithromycin 232.0 189.9 32.7 515.6 100 726.6 700.7 115.3 1389.7

Organic Pharmaceutical (Glycemia) Gemfibrozil 167.2 152.8 108.1 255.3 100 564.9 534.8 372.8 817.2

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen 158.2 116.8 85.1 314.0 100 516.3 386.5 327.3 965.1

Organic Pharmaceutical (Antibiotics) Erythromycin A 107.0 46.4 18.9 316.4 100 351.7 191.9 50.9 972.2

Organic Pharmaceutical (Antibiotics) Trimethoprim 105.9 114.0 36.4 159.3 100 352.0 395.8 128.5 487.7

Organic Pharmaceutical (Antibiotics) Metronidazole 86.3 91.5 44.9 117.2 100 301.1 277.7 138.0 510.9

Organic Pharmaceutical (Glaucoma) Acetazolamide 84.4 81.3 <QL 175.1 75.0 326.6 265.1 - 776.2

Organic Pharmaceutical (Antibiotics) Roxithromycin 81.9 60.7 14.5 191.5 100 268.7 253.7 51.2 516.0

Organic Pharmaceutical (Antibiotics) Clarithromycin 80.2 63.5 46.1 147.9 100 258.1 235.6 162.7 398.5

Organic Pharmaceutical (Antiarrhythmic) Metoprolol 77.1 60.0 42.0 146.5 100 253.4 207.7 148.2 450.1

Organic Pharmaceutical (Antibiotics) Norfloxacin 59.4 23.5 <QL 190.6 50.0 252.8 83.0 - 845.0

Organic Pharmaceutical (Antibiotics) Spiramycin 57.9 39.8 <QL 151.9 75.0 165.1 125.5 - 409.4

Organic Pharmaceutical (Antibiotics) Piperacillin 42.3 0.0 <QL 169.2 25.0 149.3 - - 597.4

Organic Pharmaceutical (Anxiolytics) Lorazepam 37.9 34.5 27.0 55.7 100 130.4 138.8 72.8 171.2

Organic Pharmaceutical (Antibiotics) Josamycin 29.9 15.6 12.7 75.5 100 90.8 56.5 46.6 203.5

Organic Pharmaceutical (Antibiotics) Flumequine 19.5 10.0 <QL 57.8 50.0 81.7 35.4 - 256.1

Organic Pharmaceutical (Anxiolytics) Nordazepam 17.0 16.1 13.1 22.7 100 57.6 57.9 43.6 71.0

Organic Pharmaceutical (Antibiotics) Tetracycline 15.5 8.7 <QL 44.6 50.0 64.9 30.8 - 197.8

Organic Pharmaceutical (Pain killer) Acetaminophen 8.8 9.5 <QL 16.3 75.0 33.1 36.4 - 59.6

Organic Pharmaceutical (Anticancer) Cyclophosphamide 8.8 0.0 <QL 35.0 25.0 38.8 - - 155.3

Organic Pharmaceutical (Antibiotics) Sulfadiazine 6.9 5.9 <QL 15.7 50.0 27.7 20.8 - 69.4

Organic Pharmaceutical (Pain killer) Phenazone 5.9 0.0 <QL 23.8 25.0 18.3 - - 73.1

Organic Pharmaceutical (Antibiotics) Ampicilline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Doxycycline <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Oxolinic acid <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Rifampicin <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Sulfamethazine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antibiotics) Tylosine <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) EE2 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Hormones) E1 <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Contraceptif) 19-Norethindrone <QL <QL <QL <QL 0.0 - - - -

Organic Pharmaceutical (Antiarrhythmic) Amiodarone - - - - - - - - -

Organic Pharmaceutical (Antibiotics) Amoxicillin - - - - - - - - -

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid - - - - - - - - -

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide - - - - - - - - -

9276.0 4387.1 16861.3 31054.8 15461.4 55196.8

TOTAL

TOTAL

Emerging substances

Concentrations (ng.L-1) Daily flux estimations (mg.day-1)

TOTAL
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‘WWTP 5’ 

 

 

 

 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%)

Metal Vanadium (V) - - - - -

Metal Chromium (Cr) - - - - -

Metal Nickel (Ni) - - - - -

Metal Copper (Cu) - - - - -

Metal Arsenic (As) - - - - -

Metal Molybdenum (Mo) - - - - -

Metal Silver (Ag) - - - - -

Metal Cadmium (Cd) - - - - -

Metal Tin (Sn) - - - - -

Metal Antimony (Sb) - - - - -

Metal Lead (Pb) - - - - -

- - - - -

Organomercury compound IHg 2.2 0.8 0.5 5.2 100

Organomercury compound MMHg 0.1 0.1 0.0 0.2 66.7

2.3 0.5 5.4

Organic PAH Naphthalene 19.9 19.9 19.9 19.9 100

Organic PAH Fluorene 14.2 3.1 <DL 50.5 75.0

Organic PAH Phenanthrene 8.5 5.4 <DL 23.2 75.0

Organic PAH Acenaphthene 2.4 2.3 <DL 5.0 75.0

Organic PAH Benzo[g,h,i]perylene 0.9 0.5 <DL 2.5 50.0

Organic PAH Fluoranthene 0.5 0.0 <DL 1.4 33.3

Organic PAH Pyrene 0.4 0.0 <DL 1.6 25.0

Organic PAH Anthracene 0.3 0.0 <DL <1.0 50.0

Organic PAH Benzo[a]anthracene 0.3 0.1 <DL <1.0 50.0

Organic PAH Acenaphthylene 0.3 0.0 <DL 1.0 25.0

Organic PAH Chrysene 0.2 0.0 <DL <1.0 25.0

Organic PAH Benzo[b]fluoranthene 0.2 0.0 <DL <1.0 25.0

Organic PAH Benzo[k]fluoranthene 0.2 0.0 <DL <1.0 25.0

Organic PAH Benzo[a]pyrene 0.2 0.0 <DL <1.0 25.0

Organic PAH Indeno[1,2,3-cd]pyrene 0.2 0.0 <DL <1.0 25.0

Organic PAH Dibenzo[a,h]anthracene 0.2 0.0 <DL <1.0 25.0

49.1 19.9 112.4

Organic PCB PCB 101 0.7 0.5 <DL 1.7 50.0

Organic PCB PCB 28+31 0.6 0.0 <DL 2.3 25.0

Organic PCB PCB 52 0.3 0.1 <DL <1.0 50.0

Organic PCB PCB 18 0.2 0.0 <DL <1.0 25.0

Organic PCB PCB 44 0.2 0.0 <DL <1.0 25.0

Organic PCB PCB 149 0.2 0.0 <DL <1.0 25.0

Organic PCB PCB 118 0.2 0.0 <DL <1.0 25.0

Organic PCB PCB 153 0.2 0.0 <DL <1.0 25.0

Organic PCB PCB 138 0.2 0.0 <DL <1.0 25.0

Organic PCB PCB 180 0.2 0.0 <DL <1.0 25.0

Organic PCB PCB 194 0.2 0.0 <DL <1.0 25.0

3.5 <DL 12.1

Organic AP NP 755.7 789.7 39.4 1438.1 100

Organic AP NPEO1 390.5 390.5 390.5 390.5 100

Organic AP NPEO2 335.4 0.0 <DL 1006.3 33.3

Organic AP 4tOP 4.2 0.0 <DL 12.6 33.3

Organic AP 4nOP 3.3 0.0 <DL <10.0 33.3

1489.2 429.9 2857.4

Organic OCP Delta BHC 1.2 1.2 <DL 2.4 50.0

Organic OCP Alpha BHC 1.2 0.0 <DL 3.6 33.3

Organic OCP Endosulfan Sulfate 1.0 1.0 <DL <2.0 50.0

Organic OCP Gamma BHC 1.0 1.0 <DL <2.0 50.0

Organic OCP Methoxychlor 1.0 1.0 <DL <2.0 50.0

Organic OCP 4,4'-DDT 0.9 0.9 <DL 1.7 50.0

Organic OCP Alpha Endosulfan 0.7 0.0 <DL 2.2 33.3

Organic OCP Bêta Endosulfan 0.7 0.0 <DL <2.0 33.3

Organic OCP Beta BHC 0.7 0.0 <DL <2.0 33.3

Organic OCP Heptachlor 0.7 0.0 <DL <2.0 33.3

Organic OCP 4,4'-DDE 0.6 0.0 <DL 2.2 25.0

Organic OCP Aldrin 0.5 0.0 <DL <2.0 25.0

Organic OCP Dieldrine 0.5 0.0 <DL <2.0 25.0

Organic OCP Endrin 0.5 0.0 <DL <2.0 25.0

Organic OCP Heptachlor Epoxide 0.5 0.0 <DL <2.0 25.0

Organic OCP 4,4'-DDD 0.5 0.0 <DL <2.0 25.0

Organic OCP Endrin Aldehyde 0.5 0.0 <DL <2.0 25.0

Organic OCP Endrin Ketone 0.5 0.0 <DL <2.0 25.0

13.0 <DL 36.9

Concentrations (ng.L
-1

)

Priority substances

TOTAL

TOTAL

TOTAL

TOTAL

TOTAL

TOTAL
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‘WWTP 5’ 

 

Substance families Analytical Groups Analytes Mean Median Min Max Occurrence (%)

Organic Musk HHCB 991.6 1000.0 719.3 1246.9 100

Organic Musk HHCB-lactone 636.4 631.7 511.0 771.2 100

Organic Musk AHTN 159.2 148.4 114.8 225.2 100

Organic Musk MK 153.7 173.9 63.8 203.1 100

Organic Musk ADBI 4.7 4.3 <DL 10.4 75.0

Organic Musk MX 0.6 0.0 <DL 2.4 25.0

Organic Musk AHMI 0.3 0.0 <DL <1.0 25.0

Organic Musk MA 0.3 0.0 <DL <1.0 25.0

Organic Musk ATII 0.3 0.0 <DL <1.0 25.0

Organic Musk MM 0.3 0.0 <DL <1.0 25.0

1947.1 1408.9 2462.8

Organic Sunscreen 4-MBC 55.9 16.8 <DL 150.9 66.7

Organic Sunscreen Benzophenone 3 42.6 36.6 <DL 91.4 66.7

Organic Sunscreen OC 35.3 43.9 11.6 50.4 100

Organic Sunscreen EHMC 1.1 0.0 <DL 3.4 33.3

Organic Sunscreen 3-BC <DL <DL <DL <DL 0.0

Organic Sunscreen OD-PABA <DL <DL <DL <DL 0.0

135.0 11.6 296.0

Organic Pharmaceutical (Antihypertensive) Hydrochlorothiazide 1614.0 1543.6 1420.7 1877.6 100

Organic Pharmaceutical (Anti-inflammatory) Diclofenac 841.1 1044.1 431.8 1047.3 100

Organic Pharmaceutical (Antibiotics) Ciprofloxacin 480.4 392.3 230.9 818.0 100

Organic Pharmaceutical (Psychotropic) Caffeine 472.0 356.1 196.1 863.9 100

Organic Pharmaceutical (Antibiotics) Azithromycin 458.5 520.6 104.6 750.2 100

Organic Pharmaceutical (Antibiotics) Ofloxacin 404.1 176.2 120.6 915.5 100

Organic Pharmaceutical (Antibiotics) Clarithromycin 208.8 226.3 49.1 351.1 100

Organic Pharmaceutical (Anxiolytics) Oxazepam 172.5 165.2 139.6 212.8 100

Organic Pharmaceutical (Anxiolytics) Lorazepam 131.8 137.9 97.7 160.0 100

Organic Pharmaceutical (Pain killer) Ketoprofen 123.0 143.9 80.4 144.7 100

Organic Pharmaceutical (Antihypertensive) Atenolol 116.4 116.4 114.8 117.9 100

Organic Pharmaceutical (Antihypertensive) Losartan 114.4 128.7 50.8 163.7 100

Organic Pharmaceutical (Pain killer) Phenazone 77.0 51.2 42.3 137.6 100

Organic Pharmaceutical (Antibiotics) Sulfamethoxazole 69.8 73.8 55.0 80.4 100

Organic Pharmaceutical (Antibiotics) Norfloxacin 63.6 68.5 <QL 122.4 66.7

Organic Pharmaceutical (Antibiotics) Trimethoprim 52.7 54.9 44.2 58.9 100

Organic Pharmaceutical (Anticonvulsant) Carbamazepine 41.3 41.2 17.9 64.9 100

Organic Pharmaceutical (Antibiotics) Erythromycin A 30.6 24.3 13.3 54.3 100

Organic Pharmaceutical (Anxiolytics) Nordazepam 29.6 30.2 21.8 36.8 100

Organic Pharmaceutical (Glaucoma) Acetazolamide 21.5 0.0 <QL 64.6 33.3

Organic Pharmaceutical (Glycemia) Gemfibrozil 21.4 21.6 3.4 39.0 100

Organic Pharmaceutical (Antibiotics) Metronidazole 18.8 19.3 10.7 26.3 100

Organic Pharmaceutical (Anticancer) Cyclophosphamide 14.1 15.7 <QL 26.6 66.7

Organic Pharmaceutical (Antibiotics) Tetracycline 13.3 0.0 <QL 40.0 33.3

Organic Pharmaceutical (Antiarrhythmic) Metoprolol 11.5 11.7 10.9 12.0 100

Organic Pharmaceutical (Antibiotics) Spiramycin 10.5 0.0 <QL 31.4 33.3

Organic Pharmaceutical (Pain killer) Acetaminophen 8.1 10.2 3.6 10.5 100

Organic Pharmaceutical (Antibiotics) Sulfadiazine 8.1 11.2 <QL 13.1 66.7

Organic Pharmaceutical (Pain killer) Niflumic acid 1.7 1.5 <QL 3.7 66.7

Organic Pharmaceutical (Antibiotics) Ampicilline <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antibiotics) Doxycycline <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antibiotics) Flumequine <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antibiotics) Josamycin <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antibiotics) Oxolinic acid <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antibiotics) Piperacillin <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antibiotics) Rifampicin <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antibiotics) Roxithromycin <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antibiotics) Sulfamethazine <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antibiotics) Tylosine <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Hormones) E2 <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Hormones) EE2 <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Hormones) E1 <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Anti-inflammatory) Ibuprofen <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Contraceptif) 19-Norethindrone <QL <QL <QL <QL 0.0

Organic Pharmaceutical (Antineoplastic) Hydroxycarbamide - - - - -

Organic Pharmaceutical (Antiarrhythmic) Amiodarone - - - - -

Organic Pharmaceutical (Antibiotics) Amoxicillin - - - - -

Organic Pharmaceutical (Pain killer) Acetylsalicylic acid - - - - -

5630.7 3260.1 8245.3

TOTAL

TOTAL

TOTAL

Emerging substances

Concentrations (ng.L
-1

)
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SM 5: Principal component analysis (PCA) showing the metal distribution between the four 

sampled WWTPs (‘WWTP 1’, ‘WWTP 2’, ‘WWTP 3’ and ‘WWTP 4’). 
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NE Atlantic 

Ocean
France

Spain

Bay of 
Biscay

Quadrats
0.1m²

Quadrats
0.1m²

Main responsibles of the dissimilarities found

Macroalgae

= the best relevant biotic
component to assess effect of 

the WWTP discharge

Ceramium spp. Corallina spp. Halopteris scoparia

Ecological quality
according to the 

WFD

"Moderate"

Ecological quality
according to the 

WFD

"Good"

Intertidal zone

• Upper midlittoral
• Lower midlittoral

- Macrofauna does not constitute a sensitive 
bioindicator

- Taxonomic richness does not constitute an efficient 
tool to study such a pressure  

More abundant
in impacted

locations

More abundant
in impacted

locations

More abundant
in control
locations

Chapter IV:  

Benthic communities’ response to WWTP discharges in the 

intertidal zone 

Chapter structure: 

- Huguenin L., Lalanne Y, de Casamajor MN., Gorostiaga J-M., Quintano E., Salerno M., Monperrus M. (2019). “Impact of 

sewage discharges on macroalgae and macrofauna assemblages of the intertidal rocky shores in the southeastern Bay of 

Biscay”. Continental Shelf Research, 181, 34-49 (https://doi.org/10.1016/j.csr.2019.04.014). 

 

Fig. 1’: Graphical abstract of the Chapter IV 
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Benthic communities’ response to WWTP discharges in the intertidal zone  

 

Rocky shore habitats constitute one of the most common environments in coastal areas (Coutinho et 

al., 2016) but the intertidal zone is very vulnerable to anthropogenic pressures (Becherucci et al., 2016; 

Crain et al., 2008). Among those, sewage discharges constitute an important stressor for marine 

communities and may have diverse consequences (e.g. biotic homogenization, shift from algal-

dominated assemblages to invertebrate-dominated assemblages) (Arévalo et al., 2007; Becherucci et 

al., 2016; Borowitzka, 1972; Littler and Murray, 1975; Liu et al., 2007; O’Connor, 2013; Vinagre et al., 

2016a).  

The study of environmental pollution through biotic diversity analyses has become of major 

importance because it gives precise information of the deleterious effects of contaminants (Borja et 

al., 2011a). Indeed, benthic communities are often used to assess marine pollutions because they 

reflect both previous and present conditions to which communities have been exposed (Reish, 1987). 

Because of their sedentary nature of macroalgae and the sensitivity of their components, they are 

known to be an accurate bioindicator of environmental changes (e.g. water quality of coastal waters 

for the WFD (Ar Gall et al., 2016; Borja et al., 2013a; Gorostiaga and Diez, 1996). In addition, 

macrofauna (fixed macrofauna as a snapshot indicator and mobile one as a precise descriptor of 

population dynamics, community structure, individual performance in response to environmental 

changes) has also to be considered, as it is requested by the Marine Strategy Framework Directive 

(MSFD; 2008/56/CE; EC, 2008). However, up to now, most studies are focused either on the survey of 

macroalgae or macrofauna assemblages independently and rarely together.  

Problematic: 

 Are intertidal rocky benthic communities affected by WWTP discharges?  

 Are current WFD indices enough sensitive to study such a pressure?  

This chapter/article deals with the study of the potential impact of WWTP discharges on intertidal 

rocky benthic assemblages (macroalgae and macrofauna) in the southeastern Bay of Biscay by 

comparing control and impacted locations and sites within locations (i.e. different distances from the 

outfalls). The general hypothesis is that if WWTP treatments are efficient, structural parameters of 

communities and results based on the WFD monitoring between impacted and control locations 

should be similar. The interest in studying both benthic fauna and flora is also discussed in this context. 
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Prospects & improvements: 

- Reflect upon another sampling method for macrofauna  

- Explore the interest of studying macrofauna in boulder field habitat 

- Reflect upon how to integrate main contributors (mainly present in impacted or control locations) in WFD 

monitoring in addition to those defined as opportunistic and characteristic  

Highlights:   

 Detectable effects of discharges were highlighted on assemblage structure, 

 Macroalgae constituted a relevant biotic component to study impact of WWTP discharges compared to 

macrofauna, 

 The EQR ratio based on the current WFD metrics was sensitive to the WWTP pressure. 

Main contributors responsible for differences between impacted and control locations. Purple species 
are those identified as opportunistics and grey ones as characteristic of the studied area within the 

WFD (de Casamajor and Lissardy, 2018). Species in parenthesis are those identified with a low 
contribution (Ct < 10%) or not significant. 

 

Impacted locations/sites Control loc. or less impacted sites

Upper

midlittoral

zone

               - Ceramium  spp.

               - Caulacanthus  ustulatus

               - Corallina  spp.

               - Lithophyllum incrustans

               - Laurencia obtusa

               - (Osmundea pinnatifida)

               - (Halopteris scoparia)

Lower

midlittoral

zone

               - Ceramium  spp.

               - Corallina  spp.

               - Halopteris scoparia

               - (Cystoseira tamariscifolia)

               - Chondria coerulescens

               - Codium adhaerens

Fr.

Sp.

Sp.

Fr.

Fr.

Sp.

Fr.

Sp.
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Supplementary materials (SM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SM 1: Non-metric multi-dimensional scaling plots (nMDS) computed on benthic taxon assemblages 

(macroalgae and macrofauna) in the upper midlittoral zone (Corallina spp. belt) (a) and in the lower 

midlittoral zone (Halopteris scoparia belt) (b) of French and Spanish impacted (‘WWTP 1’, ‘WWTP 2’, 

‘WWTP 3’) and control locations (‘Control 1’, ‘Control 2’) and at varying distances to the outfall (site 1: 

circles; site 2: triangles; sites 3: squares). 

 

 

 

 

 

 

 

 

(a) (b) 
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(a) (b) 

(c) (d) 

(e) (f) 
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SM 2: Non-metric multi-dimensional scaling plots (nMDS) computed on benthic taxon assemblages 
(macroalgae and macrofauna) of impacted locations (‘WWTP 1’ (a, b), ‘WWTP 2’ (c, d), ‘WWTP 3’ (e, 
f)) and control locations (‘Control 1’ (g,h), ‘Control 2’ (i,j)) according to distances (site 1: red circles; site 
2: orange triangles; sites 3: black squares) and midlittoral zones (upper (a, c, e, g, i) and lower (b, d, f, 
h, j)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

(g) (h) 

(i) (j) 
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SM 3: List of significant species/taxa (contributors with p-value <0.05) identified by SIMPER analysis 
explaining the dissimilarity between impacted and control locations and between sites within each 
location in the upper (a) and lower midlittoral zones (b). Significance codes: “av”: (average) corresponds 
to the mean class of the taxa; Bold percentages on the top left correspond to the global dissimilarity 
between the 2 groups; “Ct(%)”: corresponds to the total contribution of each species/taxa to the 
dissimilarity; Species with a contribution higher than 10 % are above dotted lines. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

51.12 % av Control 1 av WWTP 1 Ct (%) 53.81 % av Control 1 av WWTP 2 Ct (%) 42.00 % av Control 2 av WWTP 3 Ct (%)

Ceramium spp. 0.38 2.07 12.46 Laurencia obtusa 1.54 0.69 9.09 Corallina spp. 3.06 4.56 15.01

Laurencia obtusa 1.54 1.07 9.66 Lithophyllum incrustans 0.19 1.31 7.70 Chondria coerulescens 0.94 0.00 8.05

Caulacanthus ustulatus 1.03 1.17 8.34 Caulacanthus ustulatus 1.03 0.50 6.48 Gelidium spp. 0.50 1.06 6.09

Colpomenia peregrina 0.71 0.27 4.23 Enteromorpha spp. 1.10 0.78 6.45 Halopteris scoparia 0.50 0.03 4.51

Osmundea pinnatifida 0.61 0.00 4.21 Asparagopsis spp. 0.13 0.72 4.75 Ectocarpales/Ectocarpus 0.28 0.36 3.81

Hypnea musciformis 0.04 0.60 4.08 Plocamium cartilagineum 0.01 0.70 4.58 Cutleria adspersa 0.00 0.28 2.24

Phymatolithon lenormandii 0.51 0.03 3.63 Colpomenia peregrina 0.71 0.26 4.22 Codium fragile 0.22 0.03 2.20

Mastocarpus 0.38 0.10 2.87 Osmundea pinnatifida 0.61 0.06 4.10 Jania rubens 0.11 0.14 1.79

Mesophyllum lichenoides 0.00 0.27 1.70 Phymatolithon lenormandii 0.51 0.31 3.61 Antithamnionella sp. 0.06 0.14 1.44

Gigartina spp. 0.00 0.03 0.19 Chondria coerulescens 0.00 0.56 3.57 Chaetomorpha spp. 0.00 0.17 1.33

Gastroclonium reflexum 0.00 0.41 2.69 Ralfsia verrucosa 0.06 0.11 1.27

Mastocarpus 0.38 0.02 2.58 Halurus equisetifolius 0.11 0.00 0.96

Hypoglossum woodwardii 0.00 0.09 0.68 Cladostephus spongiosus 0.11 0.00 0.83

Peyssonnelia atropurpurea 0.00 0.04 0.24 Scytosiphon lomentaria 0.00 0.11 0.82

Codium decorticatum 0.00 0.08 0.65

Pterothamnion 0.00 0.08 0.65

43.62 % av S1 av S2 Ct (%) 49.57 % av S1 av S2 Ct (%) 31.16 % av S1 av S2 Ct (%)

Laurencia obtusa 0.17 1.92 14.32 Corallina spp. 3.83 2.72 11.64

Caulacanthus ustulatus 2.00 0.75 13.49 Ceramium spp. 1.89 0.56 10.22

Codium adhaerens 1.17 0.00 9.49 Plocamium cartilagineum 0.28 1.28 9.49

Lithophyllum incrustans 0.58 1.50 7.29 Chondracanthus acicularis 1.06 1.94 8.43

Colpomenia peregrina 0.17 0.50 3.87 Caulacanthus ustulatus 0.28 1.17 8.02

Enteromorpha spp. 1.28 0.56 7.16

Ulva spp. 1.22 1.67 6.71

Lithophyllum incrustans 0.94 1.50 5.90

Gastroclonium reflexum 0.50 0.50 4.98

Hypoglossum woodwardii 0.22 0.06 1.95

Nitophyllum punctatum 0.00 0.17 1.18

Peyssonnelia atropurpurea 0.00 0.11 0.84

Ectocarpales/Ectocarpus 0.00 0.06 0.37

Cutleria multifida 0.00 0.06 0.33

39.45 % av S2 av S3 Ct (%) 49.17 % av S2 av S3 Ct (%) 33.08 % av S2 av S3 Ct (%)

Mesophyllum lichenoides 0.08 1.00 7.74 Laurencia obtusa 0.39 1.67 9.05 Codium adhaerens 0.33 0.83 8.35

Ulva spp. 1.67 1.00 5.57 Codium adhaerens 0.44 1.17 7.76 Asparagopsis spp. 0.08 0.25 2.84

Jania rubens 0.00 0.67 5.36 Chondria coerulescens 0.33 1.28 7.73

Caulacanthus ustulatus 1.17 0.06 7.50

52.74 % av S1 av S3 Ct (%) 52.93 % av S1 av S3 Ct (%) 36.56 % av S1 av S3 Ct (%)

Caulacanthus ustulatus 2.00 0.33 11.64 Corallina spp. 3.83 2.56 12.48 Lithophyllum incrustans 2.17 1.25 10.10

Chondracanthus acicularis 1.25 0.00 8.29 Laurencia obtusa 0.00 1.67 11.25 Colpomenia peregrina 0.83 0.25 6.54

Hypnea musciformis 0.00 1.17 7.38 Chondria coerulescens 0.06 1.28 8.51 Caulacanthus ustulatus 0.25 0.08 2.76

Lithophyllum incrustans 0.58 1.50 7.21 Codium adhaerens 0.00 1.17 7.90

Corallina spp. 3.17 2.17 7.00 Ceramium spp. 1.89 0.89 7.65

Mesophyllum lichenoides 0.08 1.00 6.12 Enteromorpha spp. 1.28 0.50 7.20

Ulva spp. 1.75 1.00 4.96 Lithophyllum incrustans 0.94 1.50 5.35

Jania rubens 0.00 0.67 4.25 Tenarea tortuosa 0.00 0.06 0.44

Chondria coerulescens 0.00 0.67 4.16 Taonia sp. 0.00 0.06 0.43

Gastroclonium reflexum 0.08 0.33 2.22 Mastocarpus 0.00 0.06 0.33

Phymatolithon lenormandii 0.00 0.17 1.24 Halopteris scoparia 0.00 0.06 0.32

Gigartina spp. 0.00 0.17 0.94

Hypoglossum woodwardii 0.00 0.17 0.94

42.41 % av S1 av S2 Ct (%) 42.41 % av S1 av S2 Ct (%) 32.65 % av S1 av S2 Ct (%)

Caulacanthus ustulatus 0.46 1.70 11.31 Caulacanthus ustulatus 0.46 1.70 11.31 Ectocarpales/Ectocarpus 0.67 0.17 6.88

Enteromorpha spp. 1.83 0.61 11.04 Enteromorpha spp. 1.83 0.61 11.04

Chondracanthus acicularis 1.71 1.00 8.75 Chondracanthus acicularis 1.71 1.00 8.75

37.47 % av S1 av S3 Ct (%) 37.47 % av S1 av S3 Ct (%) 40.26 % av S2 av S3 Ct (%)

Halopteris scoparia 0.00 1.33 13.84 Halopteris scoparia 0.00 1.33 13.84 Corallina spp. 3.67 2.33 14.52

Gelidium spp. 0.83 0.17 7.74 Gelidium spp. 0.83 0.17 7.74 Halopteris scoparia 0.17 1.33 11.44

Ectocarpales/Ectocarpus 0.67 0.00 7.02 Ectocarpales/Ectocarpus 0.67 0.00 7.02 Chondria coerulescens 1.33 0.67 10.84

Enteromorpha spp. 0.67 0.67 8.76

Jania rubens 0.33 0.00 3.34

Colpomenia peregrina 0.17 0.00 1.74

40.95 % av S2 av S3 Ct (%) 40.95 % av S2 av S3 Ct (%) 37.47 % av S1 av S3 Ct (%)

Codium adhaerens 0.52 1.36 11.54 Codium adhaerens 0.52 1.36 11.54 Halopteris scoparia 0.00 1.33 13.84

Gelidium spp. 0.83 0.17 7.74

Ectocarpales/Ectocarpus 0.67 0.00 7.02

Site 2 vs. Site 3

Site 1 vs. Site 3 Site 1 vs. Site 3 Site 1 vs. Site 3

WWTP 1' vs. 'Control 1' WWTP 2' vs. 'Control 1' WWTP 3' vs. 'Control 2'

Site 1 vs. Site 2 Site 1 vs. Site 2 Site 1 vs. Site 2

Site 2 vs. Site 3

Site 1 vs. Site 3 Site 1 vs. Site 3 Site 1 vs. Site 3
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Site 2 vs. Site 3 Site 2 vs. Site 3

Site 2 vs. Site 3 Site 2 vs. Site 3

51.12 % av Control 1 av WWTP 1 Ct (%) 53.81 % av Control 1 av WWTP 2 Ct (%) 42.00 % av Control 2 av WWTP 3 Ct (%)

Ceramium spp. 0.38 2.07 12.46 Laurencia obtusa 1.54 0.69 9.09 Corallina spp. 3.06 4.56 15.01

Laurencia obtusa 1.54 1.07 9.66 Lithophyllum incrustans 0.19 1.31 7.70 Chondria coerulescens 0.94 0.00 8.05

Caulacanthus ustulatus 1.03 1.17 8.34 Caulacanthus ustulatus 1.03 0.50 6.48 Gelidium spp. 0.50 1.06 6.09

Colpomenia peregrina 0.71 0.27 4.23 Enteromorpha spp. 1.10 0.78 6.45 Halopteris scoparia 0.50 0.03 4.51

Osmundea pinnatifida 0.61 0.00 4.21 Asparagopsis spp. 0.13 0.72 4.75 Ectocarpales/Ectocarpus 0.28 0.36 3.81

Hypnea musciformis 0.04 0.60 4.08 Plocamium cartilagineum 0.01 0.70 4.58 Cutleria adspersa 0.00 0.28 2.24

Phymatolithon lenormandii 0.51 0.03 3.63 Colpomenia peregrina 0.71 0.26 4.22 Codium fragile 0.22 0.03 2.20

Mastocarpus 0.38 0.10 2.87 Osmundea pinnatifida 0.61 0.06 4.10 Jania rubens 0.11 0.14 1.79

Mesophyllum lichenoides 0.00 0.27 1.70 Phymatolithon lenormandii 0.51 0.31 3.61 Antithamnionella sp. 0.06 0.14 1.44

Gigartina spp. 0.00 0.03 0.19 Chondria coerulescens 0.00 0.56 3.57 Chaetomorpha spp. 0.00 0.17 1.33

Gastroclonium reflexum 0.00 0.41 2.69 Ralfsia verrucosa 0.06 0.11 1.27

Mastocarpus 0.38 0.02 2.58 Halurus equisetifolius 0.11 0.00 0.96

Hypoglossum woodwardii 0.00 0.09 0.68 Cladostephus spongiosus 0.11 0.00 0.83

Peyssonnelia atropurpurea 0.00 0.04 0.24 Scytosiphon lomentaria 0.00 0.11 0.82

Codium decorticatum 0.00 0.08 0.65

Pterothamnion 0.00 0.08 0.65

43.62 % av S1 av S2 Ct (%) 49.57 % av S1 av S2 Ct (%) 31.16 % av S1 av S2 Ct (%)

Laurencia obtusa 0.17 1.92 14.32 Corallina spp. 3.83 2.72 11.64

Caulacanthus ustulatus 2.00 0.75 13.49 Ceramium spp. 1.89 0.56 10.22

Codium adhaerens 1.17 0.00 9.49 Plocamium cartilagineum 0.28 1.28 9.49

Lithophyllum incrustans 0.58 1.50 7.29 Chondracanthus acicularis 1.06 1.94 8.43

Colpomenia peregrina 0.17 0.50 3.87 Caulacanthus ustulatus 0.28 1.17 8.02

Enteromorpha spp. 1.28 0.56 7.16

Ulva spp. 1.22 1.67 6.71

Lithophyllum incrustans 0.94 1.50 5.90

Gastroclonium reflexum 0.50 0.50 4.98

Hypoglossum woodwardii 0.22 0.06 1.95

Nitophyllum punctatum 0.00 0.17 1.18

Peyssonnelia atropurpurea 0.00 0.11 0.84

Ectocarpales/Ectocarpus 0.00 0.06 0.37

Cutleria multifida 0.00 0.06 0.33

39.45 % av S2 av S3 Ct (%) 49.17 % av S2 av S3 Ct (%) 33.08 % av S2 av S3 Ct (%)

Mesophyllum lichenoides 0.08 1.00 7.74 Laurencia obtusa 0.39 1.67 9.05 Codium adhaerens 0.33 0.83 8.35

Ulva spp. 1.67 1.00 5.57 Codium adhaerens 0.44 1.17 7.76 Asparagopsis spp. 0.08 0.25 2.84

Jania rubens 0.00 0.67 5.36 Chondria coerulescens 0.33 1.28 7.73

Caulacanthus ustulatus 1.17 0.06 7.50

52.74 % av S1 av S3 Ct (%) 52.93 % av S1 av S3 Ct (%) 36.56 % av S1 av S3 Ct (%)

Caulacanthus ustulatus 2.00 0.33 11.64 Corallina spp. 3.83 2.56 12.48 Lithophyllum incrustans 2.17 1.25 10.10

Chondracanthus acicularis 1.25 0.00 8.29 Laurencia obtusa 0.00 1.67 11.25 Colpomenia peregrina 0.83 0.25 6.54

Hypnea musciformis 0.00 1.17 7.38 Chondria coerulescens 0.06 1.28 8.51 Caulacanthus ustulatus 0.25 0.08 2.76

Lithophyllum incrustans 0.58 1.50 7.21 Codium adhaerens 0.00 1.17 7.90

Corallina spp. 3.17 2.17 7.00 Ceramium spp. 1.89 0.89 7.65

Mesophyllum lichenoides 0.08 1.00 6.12 Enteromorpha spp. 1.28 0.50 7.20

Ulva spp. 1.75 1.00 4.96 Lithophyllum incrustans 0.94 1.50 5.35

Jania rubens 0.00 0.67 4.25 Tenarea tortuosa 0.00 0.06 0.44

Chondria coerulescens 0.00 0.67 4.16 Taonia sp. 0.00 0.06 0.43

Gastroclonium reflexum 0.08 0.33 2.22 Mastocarpus 0.00 0.06 0.33

Phymatolithon lenormandii 0.00 0.17 1.24 Halopteris scoparia 0.00 0.06 0.32

Gigartina spp. 0.00 0.17 0.94

Hypoglossum woodwardii 0.00 0.17 0.94

42.41 % av S1 av S2 Ct (%) 42.41 % av S1 av S2 Ct (%) 32.65 % av S1 av S2 Ct (%)

Caulacanthus ustulatus 0.46 1.70 11.31 Caulacanthus ustulatus 0.46 1.70 11.31 Ectocarpales/Ectocarpus 0.67 0.17 6.88

Enteromorpha spp. 1.83 0.61 11.04 Enteromorpha spp. 1.83 0.61 11.04

Chondracanthus acicularis 1.71 1.00 8.75 Chondracanthus acicularis 1.71 1.00 8.75

37.47 % av S1 av S3 Ct (%) 37.47 % av S1 av S3 Ct (%) 40.26 % av S2 av S3 Ct (%)

Halopteris scoparia 0.00 1.33 13.84 Halopteris scoparia 0.00 1.33 13.84 Corallina spp. 3.67 2.33 14.52

Gelidium spp. 0.83 0.17 7.74 Gelidium spp. 0.83 0.17 7.74 Halopteris scoparia 0.17 1.33 11.44

Ectocarpales/Ectocarpus 0.67 0.00 7.02 Ectocarpales/Ectocarpus 0.67 0.00 7.02 Chondria coerulescens 1.33 0.67 10.84

Enteromorpha spp. 0.67 0.67 8.76

Jania rubens 0.33 0.00 3.34

Colpomenia peregrina 0.17 0.00 1.74

40.95 % av S2 av S3 Ct (%) 40.95 % av S2 av S3 Ct (%) 37.47 % av S1 av S3 Ct (%)

Codium adhaerens 0.52 1.36 11.54 Codium adhaerens 0.52 1.36 11.54 Halopteris scoparia 0.00 1.33 13.84

Gelidium spp. 0.83 0.17 7.74

Ectocarpales/Ectocarpus 0.67 0.00 7.02

Site 2 vs. Site 3

Site 1 vs. Site 3 Site 1 vs. Site 3 Site 1 vs. Site 3

WWTP 1' vs. 'Control 1' WWTP 2' vs. 'Control 1' WWTP 3' vs. 'Control 2'

Site 1 vs. Site 2 Site 1 vs. Site 2 Site 1 vs. Site 2

Site 2 vs. Site 3

Site 1 vs. Site 3 Site 1 vs. Site 3 Site 1 vs. Site 3
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63.58 % av Control 1 av WWTP 1 Ct (%) 71.14 % av Control 1 av WWTP 2 Ct (%) 52.54 % av Control 2 av WWTP 3 Ct (%)

Ceramium spp. 0.22 2.40 12.78 Halopteris scoparia 2.62 0.15 11.11 Chondria coerulescens 1.44 0.03 9.63

Halopteris scoparia 2.62 1.07 11.70 Gelidium spp. 0.61 2.35 9.31 Cladostephus spongiosus 1.00 0.00 6.75

Hypnea musciformis 1.04 1.30 7.02 Asparagopsis spp. 0.58 1.70 6.45 Jania rubens 1.00 0.06 6.37

Ulva spp. 0.87 1.37 4.28 Chondria coerulescens 0.68 1.44 4.82 Codium adhaerens 0.56 0.64 6.10

Halurus equisetifolius 0.80 0.30 3.92 Mesophyllum lichenoides 0.13 1.07 4.78 Colpomenia peregrina 0.00 0.64 4.15

Cystoseira tamariscifolia 0.78 0.00 3.91 Chondracanthus acicularis 0.58 1.06 4.33 Pterothamnion 0.00 0.47 3.01

Pterosiphonia sp. 0.72 0.03 3.71 Cystoseira tamariscifolia 0.78 0.20 3.50 Gastroclonium reflexum 0.06 0.47 2.93

Gigartina spp. 0.04 0.10 0.66 Plocamium cartilagineum 0.30 0.70 3.37 Cutleria adspersa 0.11 0.31 2.51

Halurus equisetifolius 0.80 0.20 3.28 Champia parvula 0.22 0.03 1.63

Pterosiphonia sp. 0.72 0.24 3.26 Codium fragile 0.11 0.14 1.44

Laurencia obtusa 0.33 0.69 3.05 Ectocarpales/Ectocarpus 0.00 0.08 0.50

Nitophyllum punctatum 0.29 0.52 2.51 Codium decorticatum 0.00 0.08 0.47

Gymnogongrus spp. 0.19 0.44 2.33 Vertebrata fruticulosa 0.06 0.00 0.39

Taonia sp. 0.09 0.44 1.98

Dictyota dichotoma 0.04 0.46 1.93

Mastocarpus 0.06 0.37 1.70

Acrosorium spp. 0.20 0.13 1.19

Caulacanthus ustulatus 0.12 0.07 0.84

Cladophora spp. 0.03 0.07 0.52

Ahnfeltiopsis devoniensis 0.00 0.13 0.50

Bonnemaisonia hamifera 0.03 0.09 0.49

Rhodymenia pseudopalmata 0.07 0.06 0.48

Zanardinia typus 0.00 0.09 0.35

52.00 % av S1 av S2 Ct (%) 56.88 % av S1 av S2 Ct (%) 33.44 % av S1 av S2 Ct (%)

Asparagopsis spp. 0.25 1.75 13.27 Lithophyllum incrustans 1.06 1.17 5.37

Halopteris scoparia 0.00 1.75 13.21 Gymnogongrus spp. 0.78 0.44 3.57

Hypnea musciformis 0.42 1.67 10.97 Zanardinia typus 0.00 0.28 1.26

Ceramium spp. 3.08 1.83 10.19

Lithophyllum incrustans 0.58 1.33 8.12

Ulva spp. 1.58 1.17 6.04

Colpomenia peregrina 0.42 0.00 3.28

Gelidium spp. 0.08 0.25 2.17

Phymatolithon lenormandii 0.00 0.08 0.57

Mastocarpus 0.00 0.08 0.55

41.41 % av S2 av S3 Ct (%) 55.08 % av S2 av S3 Ct (%) 50.08 % av S2 av S3 Ct (%)

Jania rubens 0.33 1.17 7.22 Taonia sp. 0.28 0.61 3.57 Codium adhaerens 0.25 1.58 10.52

Enteromorpha spp. 0.25 1.00 7.04 Cystoseira tamariscifolia 0.00 0.56 2.91 Asparagopsis spp. 1.42 0.42 8.46

Plocamium cartilagineum 0.00 0.50 3.74 Cutleria adspersa 0.39 0.22 2.27 Phymatolithon lenormandii 0.00 0.67 6.56

Mesophyllum lichenoides 0.00 0.50 3.55 Zanardinia typus 0.28 0.00 1.29 Colpomenia peregrina 0.83 0.25 5.31

Taonia sp. 0.00 0.33 2.35 Taonia sp. 0.50 0.00 3.98

Mastocarpus 0.08 0.00 0.74

Chondria coerulescens 0.08 0.00 0.68

56.96 % av S1 av S3 Ct (%) 57.36 % av S1 av S3 Ct (%) 51.28 % av S1 av S3 Ct (%)

Hypnea musciformis 0.42 2.33 11.93 Mesophyllum lichenoides 1.61 0.44 6.94 Ceramium spp. 3.50 1.75 16.74

Halopteris scoparia 0.00 1.83 11.35 Gymnogongrus spp. 0.78 0.11 4.09 Corallina spp. 4.25 3.17 12.03

Jania rubens 0.00 1.17 7.18 Colpomenia peregrina 0.39 0.61 3.37 Codium adhaerens 0.08 1.58 10.49

Corallina spp. 2.33 1.33 6.23 Cystoseira tamariscifolia 0.06 0.56 2.94 Phymatolithon lenormandii 0.00 0.67 6.17

Enteromorpha spp. 0.00 1.00 6.06 Halopteris scoparia 0.17 0.28 2.10 Colpomenia peregrina 0.83 0.25 5.05

Halurus equisetifolius 0.00 0.83 5.21 Codium adhaerens 0.00 0.17 0.95 Peyssonnelia atropurpurea 0.17 0.00 1.12

Plocamium cartilagineum 0.00 0.50 3.17 Champia parvula 0.08 0.00 0.66

Mesophyllum lichenoides 0.00 0.50 2.97 Ralfsia verrucosa 0.08 0.00 0.52

Gigartina spp. 0.00 0.33 1.97

Taonia sp. 0.00 0.33 1.97

Acrosorium spp. 0.00 0.17 1.00

Dictyota dichotoma 0.00 0.17 1.00

Hypoglossum woodwardii 0.00 0.17 1.01

Nitophyllum punctatum 0.00 0.17 1.00

56.27 % av S1 av S2 Ct (%) 56.27 % av S1 av S2 Ct (%) 30.99 % av S1 av S2 Ct (%)

Ceramium spp. 0.25 0.38 3.05 Ceramium spp. 0.25 0.38 3.05 Halopteris scoparia 0.17 1.83 17.33

Enteromorpha spp. 0.38 0.08 2.09 Enteromorpha spp. 0.38 0.08 2.09

61.04 % av S2 av S3 Ct (%) 61.04 % av S2 av S3 Ct (%) 46.28 % av S2 av S3 Ct (%)

Gelidium spp. 0.58 0.90 5.22 Gelidium spp. 0.58 0.90 5.22 Corallina spp. 3.67 1.67 14.78

Jania rubens 0.38 0.67 4.13 Jania rubens 0.38 0.67 4.13 Codium adhaerens 0.00 1.67 11.92

Halopteris scoparia 1.83 0.67 8.91

Enteromorpha spp. 0.83 0.00 6.04

Lithophyllum incrustans 1.50 2.33 5.94

Asparagopsis spp. 1.00 0.33 4.80

Vertebrata fruticulosa 0.17 0.00 1.30

Gastroclonium reflexum 0.17 0.00 1.22

57.44 % av S1 av S3 Ct (%) 57.44 % av S1 av S3 Ct (%) 45.78 % av S1 av S3 Ct (%)

Enteromorpha spp. 0.38 0.05 2.07 Enteromorpha spp. 0.38 0.05 2.07 Corallina spp. 4.33 1.67 21.12

Chylocladia verticillata 0.17 0.05 1.05 Chylocladia verticillata 0.17 0.05 1.05 Codium adhaerens 0.00 1.67 12.86

Cladostephus spongiosus 0.33 1.83 12.35

Chondria coerulescens 1.33 1.67 6.04

Asparagopsis spp. 1.00 0.33 5.18

Champia parvula 0.67 0.00 5.15
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Site 1 vs. Site 2

Site 2 vs. Site 3 Site 2 vs. Site 3 Site 2 vs. Site 3

Site 1 vs. Site 3 Site 1 vs. Site 3

Site 1 vs. Site 2 Site 1 vs. Site 2

Site 1 vs. Site 2

Site 2 vs. Site 3 Site 2 vs. Site 3 Site 2 vs. Site 3

Site 1 vs. Site 3 Site 1 vs. Site 3 Site 1 vs. Site 3

Site 1 vs. Site 2 Site 1 vs. Site 2

WWTP 1' vs. 'Control 1' WWTP 2' vs. 'Control 1' WWTP 3' vs. 'Control 2'

63.58 % av Control 1 av WWTP 1 Ct (%) 71.14 % av Control 1 av WWTP 2 Ct (%) 52.54 % av Control 2 av WWTP 3 Ct (%)

Ceramium spp. 0.22 2.40 12.78 Halopteris scoparia 2.62 0.15 11.11 Chondria coerulescens 1.44 0.03 9.63

Halopteris scoparia 2.62 1.07 11.70 Gelidium spp. 0.61 2.35 9.31 Cladostephus spongiosus 1.00 0.00 6.75

Hypnea musciformis 1.04 1.30 7.02 Asparagopsis spp. 0.58 1.70 6.45 Jania rubens 1.00 0.06 6.37

Ulva spp. 0.87 1.37 4.28 Chondria coerulescens 0.68 1.44 4.82 Codium adhaerens 0.56 0.64 6.10

Halurus equisetifolius 0.80 0.30 3.92 Mesophyllum lichenoides 0.13 1.07 4.78 Colpomenia peregrina 0.00 0.64 4.15

Cystoseira tamariscifolia 0.78 0.00 3.91 Chondracanthus acicularis 0.58 1.06 4.33 Pterothamnion 0.00 0.47 3.01

Pterosiphonia sp. 0.72 0.03 3.71 Cystoseira tamariscifolia 0.78 0.20 3.50 Gastroclonium reflexum 0.06 0.47 2.93

Gigartina spp. 0.04 0.10 0.66 Plocamium cartilagineum 0.30 0.70 3.37 Cutleria adspersa 0.11 0.31 2.51

Halurus equisetifolius 0.80 0.20 3.28 Champia parvula 0.22 0.03 1.63

Pterosiphonia sp. 0.72 0.24 3.26 Codium fragile 0.11 0.14 1.44

Laurencia obtusa 0.33 0.69 3.05 Ectocarpales/Ectocarpus 0.00 0.08 0.50

Nitophyllum punctatum 0.29 0.52 2.51 Codium decorticatum 0.00 0.08 0.47

Gymnogongrus spp. 0.19 0.44 2.33 Vertebrata fruticulosa 0.06 0.00 0.39

Taonia sp. 0.09 0.44 1.98

Dictyota dichotoma 0.04 0.46 1.93

Mastocarpus 0.06 0.37 1.70

Acrosorium spp. 0.20 0.13 1.19

Caulacanthus ustulatus 0.12 0.07 0.84

Cladophora spp. 0.03 0.07 0.52

Ahnfeltiopsis devoniensis 0.00 0.13 0.50

Bonnemaisonia hamifera 0.03 0.09 0.49

Rhodymenia pseudopalmata 0.07 0.06 0.48

Zanardinia typus 0.00 0.09 0.35

52.00 % av S1 av S2 Ct (%) 56.88 % av S1 av S2 Ct (%) 33.44 % av S1 av S2 Ct (%)

Asparagopsis spp. 0.25 1.75 13.27 Lithophyllum incrustans 1.06 1.17 5.37

Halopteris scoparia 0.00 1.75 13.21 Gymnogongrus spp. 0.78 0.44 3.57

Hypnea musciformis 0.42 1.67 10.97 Zanardinia typus 0.00 0.28 1.26

Ceramium spp. 3.08 1.83 10.19

Lithophyllum incrustans 0.58 1.33 8.12

Ulva spp. 1.58 1.17 6.04

Colpomenia peregrina 0.42 0.00 3.28

Gelidium spp. 0.08 0.25 2.17

Phymatolithon lenormandii 0.00 0.08 0.57

Mastocarpus 0.00 0.08 0.55

41.41 % av S2 av S3 Ct (%) 55.08 % av S2 av S3 Ct (%) 50.08 % av S2 av S3 Ct (%)

Jania rubens 0.33 1.17 7.22 Taonia sp. 0.28 0.61 3.57 Codium adhaerens 0.25 1.58 10.52

Enteromorpha spp. 0.25 1.00 7.04 Cystoseira tamariscifolia 0.00 0.56 2.91 Asparagopsis spp. 1.42 0.42 8.46

Plocamium cartilagineum 0.00 0.50 3.74 Cutleria adspersa 0.39 0.22 2.27 Phymatolithon lenormandii 0.00 0.67 6.56

Mesophyllum lichenoides 0.00 0.50 3.55 Zanardinia typus 0.28 0.00 1.29 Colpomenia peregrina 0.83 0.25 5.31

Taonia sp. 0.00 0.33 2.35 Taonia sp. 0.50 0.00 3.98

Mastocarpus 0.08 0.00 0.74

Chondria coerulescens 0.08 0.00 0.68

56.96 % av S1 av S3 Ct (%) 57.36 % av S1 av S3 Ct (%) 51.28 % av S1 av S3 Ct (%)

Hypnea musciformis 0.42 2.33 11.93 Mesophyllum lichenoides 1.61 0.44 6.94 Ceramium spp. 3.50 1.75 16.74

Halopteris scoparia 0.00 1.83 11.35 Gymnogongrus spp. 0.78 0.11 4.09 Corallina spp. 4.25 3.17 12.03

Jania rubens 0.00 1.17 7.18 Colpomenia peregrina 0.39 0.61 3.37 Codium adhaerens 0.08 1.58 10.49

Corallina spp. 2.33 1.33 6.23 Cystoseira tamariscifolia 0.06 0.56 2.94 Phymatolithon lenormandii 0.00 0.67 6.17

Enteromorpha spp. 0.00 1.00 6.06 Halopteris scoparia 0.17 0.28 2.10 Colpomenia peregrina 0.83 0.25 5.05

Halurus equisetifolius 0.00 0.83 5.21 Codium adhaerens 0.00 0.17 0.95 Peyssonnelia atropurpurea 0.17 0.00 1.12

Plocamium cartilagineum 0.00 0.50 3.17 Champia parvula 0.08 0.00 0.66

Mesophyllum lichenoides 0.00 0.50 2.97 Ralfsia verrucosa 0.08 0.00 0.52

Gigartina spp. 0.00 0.33 1.97

Taonia sp. 0.00 0.33 1.97

Acrosorium spp. 0.00 0.17 1.00

Dictyota dichotoma 0.00 0.17 1.00

Hypoglossum woodwardii 0.00 0.17 1.01

Nitophyllum punctatum 0.00 0.17 1.00

56.27 % av S1 av S2 Ct (%) 56.27 % av S1 av S2 Ct (%) 30.99 % av S1 av S2 Ct (%)

Ceramium spp. 0.25 0.38 3.05 Ceramium spp. 0.25 0.38 3.05 Halopteris scoparia 0.17 1.83 17.33

Enteromorpha spp. 0.38 0.08 2.09 Enteromorpha spp. 0.38 0.08 2.09

61.04 % av S2 av S3 Ct (%) 61.04 % av S2 av S3 Ct (%) 46.28 % av S2 av S3 Ct (%)

Gelidium spp. 0.58 0.90 5.22 Gelidium spp. 0.58 0.90 5.22 Corallina spp. 3.67 1.67 14.78

Jania rubens 0.38 0.67 4.13 Jania rubens 0.38 0.67 4.13 Codium adhaerens 0.00 1.67 11.92

Halopteris scoparia 1.83 0.67 8.91

Enteromorpha spp. 0.83 0.00 6.04

Lithophyllum incrustans 1.50 2.33 5.94

Asparagopsis spp. 1.00 0.33 4.80

Vertebrata fruticulosa 0.17 0.00 1.30

Gastroclonium reflexum 0.17 0.00 1.22

57.44 % av S1 av S3 Ct (%) 57.44 % av S1 av S3 Ct (%) 45.78 % av S1 av S3 Ct (%)

Enteromorpha spp. 0.38 0.05 2.07 Enteromorpha spp. 0.38 0.05 2.07 Corallina spp. 4.33 1.67 21.12

Chylocladia verticillata 0.17 0.05 1.05 Chylocladia verticillata 0.17 0.05 1.05 Codium adhaerens 0.00 1.67 12.86

Cladostephus spongiosus 0.33 1.83 12.35

Chondria coerulescens 1.33 1.67 6.04

Asparagopsis spp. 1.00 0.33 5.18

Champia parvula 0.67 0.00 5.15

Site 1 vs. Site 3
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SM 4: Mean taxonomic richness per ecological group at varying distances from the outfall (sites 1 to 3) 

for each location and midlittoral zone. 

 

 

 

 

 

 

 

 

 

 

 

 

Control 1 WWTP 1' WWTP 2' Control 2 WWTP 3'

Macroalgae

Upper

Site 1 8.04 (SD=3.20) 7.42 (SD=1.38) 7.22 (SD=1.22) 7.83 (SD=1.47) 8.42 (SD=2.64)

Site 2 7.52 (SD=2.59) 8.67 (SD=0.89) 9.00 (SD=2.28) 7.67 (SD=0.82) 7.83 (SD=2.89)

Site 3 8.00 (SD=2.22) 10.33 (SD=3.50) 9.72 (SD=1.87) 7.00 (SD=0.89) 8.25 (SD=2.73)

Lower

Site 1 10.96 (SD=3.80) 6.00 (SD=1.60) 10.22 (SD=4.52) 8.00 (SD=1.90) 8.08 (SD=1.68)

Site 2 9.42 (SD=3.67) 8.58 (SD=1.38) 11.56 (SD=3.40)10.00 (SD=1.10) 8.00 (SD=1.76)

Site 3 8.57 (SD=3.78) 12.17 (SD=1.17)11.67 (SD=2.91) 7.33 (SD=1.51) 6.67 (SD=2.87)

Fixed Macroafauna

Upper

Site 1 - 0.5 (SD=0.52) 0.17 (SD=0.38) 2.67 (SD=0.82) 1.25 (SD=1.06)

Site 2 - 0.08 (SD=0.29) 0.28 (SD=0.46) 2.17 (SD=0.75) 1.25 (SD=0.87)

Site 3 0.08 (SD=0.28) - 0.06 (SD=0.24) 0.17 (SD=0.41) 0.92 (SD=0.90)

Lower

Site 1 - - 0.28 (SD=0.57) 1.33 (SD=1.03) 0.50 (SD=0.67)

Site 2 - - 0.17 (SD=0.38) - 0.33 (SD=0.49)

Site 3 - - - - 0.5 (SD=0.67)

Mobile Macroafauna

Upper

Site 1 0.83 (SD=1.17) 0.17 (SD=0.58) 0.22 (SD=0.43) 1.50 (SD=0.55) 1.58 (SD=1.08)

Site 2 0.91 (SD=1.04) 0.25 (SD=0.45) 0.61 (SD=0.92) 1.00 (SD=0.00) 1.58 (SD=0.67)

Site 3 0.52 (SD=0.87) 0.33 (SD=0.82) 0.22 (SD=0.43) 0.17  (SD=0.41) 1.17 (SD=0.58)

Lower

Site 1 0.38 (SD=0.77) 0.08 (SD=0.29) 0.28 (SD=0.46) 0.83 (SD=0.41) 0.75 (SD=0.75)

Site 2 0.17 (SD=0.38) 0.25 (SD=0.62) 0.06 (SD=0.24) 0.17 (SD=0.41) 0.92 (SD=0.79)

Site 3 0.29 (SD=0.64) -  0.11 (SD=0.47) 0.33 (SD=0.52) 0.92 (SD=0.67)

Total

Upper

Site 1 8.88 (SD=2.03) 8.08 (SD=2.07) 7.61 (SD=1.42) 12.00 (SD=2.00)11.25 (SD=3.65)

Site 2 8.43 (SD=2.84) 9.00 (SD=0.95) 9.89 (SD=2.61) 10.83 (SD=1.33)10.67 (SD=3.37)

Site 3 8.6 (SD=2.47) 10.67 (SD=3.44)10.00 (SD=2.00) 7.33 (SD=1.51) 10.33 (SD=2.87)

Lower

Site 1 11.33 (SD=3.67)6.08 (SD=11.62)10.78 (SD=4.63)10.17 (SD=2.32) 9.33 (SD=1.44)

Site 2 9.58 (SD=3.68) 8.83 (SD=1.40) 11.78 (SD=3.26)10.17 (SD=1.17) 9.25 (SD=1.82)

Site 3 8.86 (SD=3.92) 12.17 (SD=1.17)11.78 (SD=3.04) 7.67 (SD=1.37) 8.08 (SD=3.42)

Locations

France Spain
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 SM 5: Summary of PERMANOVA (a) and pairwise post hoc results (b) testing for effects of presence of 

sewage discharges on the mean taxonomic richness of macrofauna. 

  

                                                     

 

 

 

 

 

 

'WWTP 1'/'Control 1' Df Mean Sq F Value Pr(>F) Significance

Upper midlittoral zone

Locations 1 0.02778 0.0943 0.6104

Locations/Sites 4 0.47222 1.6038 0.1538

Residuals 30 0.29444

Lower midlittoral zone

Locations 1 0.25 1.8 0.2118

Locations/Sites 4 0.083333 0.6 0.3047

Residuals 30 0.138889

'WWTP 2'/'Control 1' Df Mean Sq F Value Pr(>F) Significance

Upper midlittoral zone

Locations 1 0.69444 5 0.005994 **

Locations/Sites 4 0.36111 2.6 0.092907 .

Residuals 30 0.13889

Lower midlittoral zone

Locations 1 1.77778 4.4444 0.03097 *

Locations/Sites 4 0.11111 0.2778 0.82817

Residuals 30 0.4

'WWTP 3'/'Control 2' Df Mean Sq F Value Pr(>F) Significance

Upper midlittoral zone

Locations 1 9 14.464 0.000999 ***

Locations/Sites 4 13.5556 21.786 0.000999 ***

Residuals 30 0.6222

Lower midlittoral zone

Locations 1 7.1111 9.0141 0.00999 **

Locations/Sites 4 3.8056 4.8239 0.005994 **

Residuals 30 0.7889

Upper midlittoral zone

Site 1 Site 2

Site 2 0.258 -

Site 3 0.084 0.258

Lower midlittoral zone

Site 1 Site 2

Site 2 1 -

Site 3 1 1

WWTP 3

WWTP 3

WWTP 3

WWTP 3

Upper midlittoral zone

Site 1 Site 2

Site 2 0.098 -

Site 3 0.009 0.009

Lower midlittoral zone

Site 1 Site 2

Site 2 0.048 -

Site 3 0.048 1

Control 2

Control 2

Control 2

Control 2

(a) 

(b) 
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SM 6: Summary of PERMANOVA (a) and pairwise post hoc results (b) testing for effects of presence of 

sewage discharges on the mean taxonomic richness of macroalgae. 

  

                      

                       

 

 

 

 

 

'WWTP 1'/'Control 1' Df Mean Sq F Value Pr(>F) Significance

Upper midlittoral zone

Locations 1 3.3611 1.0485 0.32567

Locations/Sites 4 9.5278 2.9723 0.05295  .

Residuals 30 3.2056

Lower midlittoral zone

Locations 1 0.111 0.0342 0.834166

Locations/Sites 4 42.889 13.219 0.000999 ***

Residuals 30 3.244

'WWTP 2'/'Control 1' Df Mean Sq F Value Pr(>F) Significance

Upper midlittoral zone

Locations 1 0.1111 0.0613 0.7542

Locations/Sites 4 3.3611 1.8558 0.1279

Residuals 30 1.8111

Lower midlittoral zone

Locations 1 23.3611 2.8127 0.10989

Locations/Sites 4 20.0556 2.4147 0.09391 .

Residuals 30 8.3056

'WWTP 3'/'Control 2' Df Mean Sq F Value Pr(>F) Significance

Upper midlittoral zone

Locations 1 28.4444 5.8581 0.02098 *

Locations/Sites 4 3.1111 0.6407 0.55345

Residuals 30 4.8556

Lower midlittoral zone

Locations 1 1.3611 0.5606 0.45055

Locations/Sites 4 6.6389 2.7346 0.04695 *

Residuals 30 2.4278

Lower midlittoral zone

Site 1 Site 2

Site 2 0.006 -

Site 3 0.012 0.022
WWTP 1

WWTP 1 Lower midlittoral zone

Site 1 Site 2

Site 2 0.509 -

Site 3 0.036 0.192
Control 1

Control 1

Lower midlittoral zone

Site 1 Site 2

Site 2 0.99 -

Site 3 0.7 0.7

WWTP 3

WWTP 3

Lower midlittoral zone

Site 1 Site 2

Site 2 0.102 -

Site 3 0.633 0.006

Control 2

Control 2

(a) 

(b) 
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SM 7: Summary of PERMANOVA (a) and pairwise post hoc results (b) testing for effects of presence of 

sewage discharges on the ratio between characteristic and opportunistic macroalgae mean taxonomic 

richness. 

 

 

  

 

  

 

  

 

'WWTP 1'/'Control 1' Df Mean Sq F Value Pr(>F) Significance

Upper midlittoral zone

Locations 1 20.5008 49.6617 0.000999 ***

Locations/Sites 4 2.6744 6.4785 0.00999 **

Residuals 30 0.4128

Lower midlittoral zone

Locations 1 19.2623 11.6524 0.001998 **

Locations/Sites 4 2.2832 1.3812 0.252747

Residuals 30 1.6531

'WWTP 2'/'Control 1' Df Mean Sq F Value Pr(>F) Significance

Upper midlittoral zone

Locations 1 9.679 24.3857 0.000999 ***

Locations/Sites 4 2.9614 7.4611 0.005994 **

Residuals 30 0.3969

Lower midlittoral zone

Locations 1 14.9082 5.4595 0.03397 *

Locations/Sites 4 7.909 2.8963 0.03996 *

Residuals 30 2.7307

'WWTP 3'/'Control 2' Df Mean Sq F Value Pr(>F) Significance

Upper midlittoral zone

Locations 1 0.07716 0.4318 0.592408

Locations/Sites 4 0.61883 3.4629 0.008991 **

Residuals 30 0.1787

Lower midlittoral zone

Locations 1 19.8767 40.5131 0.000999 ***

Locations/Sites 4 0.7274 1.4827 0.24975

Residuals 30 0.4906

Upper midlittoral zone

Site 1 Site 2

Site 2 0.066 -

Site 3 0.811 0.081

WWTP 1

WWTP 1

Upper midlittoral zone

Site 1 Site 2

Site 2 0.045 -

Site 3 0.045 0.691

Control 1

Control 1

Upper midlittoral zone

Site 1 Site 2

Site 2 0.021 -

Site 3 0.006 0.39

Lower midlittoral zone

Site 1 Site 2

Site 2 0.266 -

Site 3 0.036 0.177

WWTP 2

WWTP 2

WWTP 2

WWTP 2

Upper midlittoral zone

Site 1 Site 2

Site 2 0.045 -

Site 3 0.045 0.691

Lower midlittoral zone

Site 1 Site 2

Site 2 0.53 -

Site 3 0.57 0.53

Control 1

Control 1

Control 1

Control 1

Upper midlittoral zone

Site 1 Site 2

Site 2 0.69 -

Site 3 0.13 0.13

WWTP 3

WWTP 3

Upper midlittoral zone

Site 1 Site 2

Site 2 0.71 -

Site 3 0.41 0.59

Control 2

Control 2

(a) 

(b) 
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Chapter V:  

Benthic communities’ response to WWTP discharges in the 

subtidal zone 

 

Chapter structure: 

- Huguenin L., Lalanne Y, de Casamajor MN., Gorostiaga J-M., Quintano E., Monperrus M. (2019). “Does wastewater 

discharge drive rocky subtidal community shifts? A case study. Will be submitted to Marine Pollution Bulletin. 

 

Fig. 1: Graphical abstract of the Chapter V 
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Benthic communities’ response to WWTP discharges in the subtidal zone 

 

Coastal habitats and marine environments are under great anthropogenic pressures (e.g. waste 

waters, urban runoff, spilled chemicals, overexploitation, invasive species introduction, habitat 

fragmentation and destruction) partly due to the urban expansion (Becherucci et al., 2016; Crain et al., 

2008; de-la-Ossa-Carretero et al., 2016). In addition to environmental factors governing these areas, 

sewage discharges constitute a common source of disturbances (Fraschetti et al., 2006; Pearson and 

Rosenberg, 1978). Effluents may have direct or indirect effects (biological, chemical or physical) on the 

environment (Borja et al., 2011a; Del-Pilar-Ruso et al., 2010) and irreversible negative effects may 

occurred (e.g. alteration of benthic composition and abundance patterns) (Guidetti et al., 2003; 

Nicolodi et al., 2009; Terlizzi et al., 2005, 2002). 

The study of benthic assemblages (i.e., macroalgae and invertebrates) presents several advantages 

(e.g. organisms are mainly sedentary and long-lived, reflect both previous and present conditions to 

which communities have been exposed, are easy to sample even without using destructive sampling 

methods, etc.) and is considered as a powerful tool to assess environmental quality. It has thus become 

of major importance by providing accurate information on deleterious effects of contaminants 

especially in assessing local effects (Belan, 2003; Borja et al., 2011a).  

In this context and over the last decades, effects of sewage discharges have been studied on different 

environmental compartments (e.g. sediments, water body, trophic web, benthic and pelagic 

communities) and their impact on benthic communities have been widely documented in the intertidal 

zone. Some studies also described their impact on subtidal rocky and soft bottoms but they were often 

achieved either on macroalgae or macrofauna assemblages but rarely together especially in rocky 

habitats.  

Problematic:  

 Are subtidal rocky benthic communities affected by WWTP discharges?  

 Are current WFD indices enough sensitive to study such a pressure?  

This chapter/article deals with the study of the potential impact of WWTP discharges on subtidal rocky 

benthic assemblages in the southeastern Bay of Biscay in compliance with the European Directives. 

This was achieved by comparing control and impacted locations (in the immediate vicinity of the 

outfall) using the same sampling strategy at two different habitats defined in the Directive for the 

French Basque coast. Composition, abundance and functional traits of both macroalgae and 

macrofauna were then studied.  
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Does wastewater discharge drive rocky subtidal community shifts? A case study 

 

L. Huguenin (1,2,3), Y. Lalanne (2), MN. de Casamajor (4), J-M. Gorostiaga (3), E. Quintano (3), M. Monperrus (1,2) 
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Abstract 

This study aims to assess the potential impact of a wastewater treatment plant discharge on subtidal 

rocky benthic assemblages in the Southeastern Bay of Biscay in compliance with the European 

Directives. Results showed that only the EQS index based on macroalgae highlighted a clear effect of 

the discharge in the upper infralittoral zone. By contrast, no significant effect was detected using 

macrofauna indices and multivariate analyses based on assemblages, functional traits and ecological 

groups of both macroalgae and macrofauna in the two subtidal zones. Dissimilarities between 

impacted and control locations were also mainly due to the higher abundance of Gelidium corneum 

(upper infralittoral) and Metacallophyllis laciniata (circalittoral). Finally, this work provides a 

framework for future monitoring allowing an assessment of benthic communities’ changes related to 

WWTP mitigation measures and suggests to reflect on others way of integrating macrofauna for an 

efficient impact evaluation. 

Keywords: Macroalgae; Macrofauna; Sewage; Ecological Quality Status; WFD; MSFD. 
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1. Introduction 

Coastal habitats and marine environments are under great anthropogenic pressures (e.g. waste waters, 

urban runoff, spilled chemicals, overexploitation, invasive species introduction, habitat fragmentation 

and destruction) partly due to the urban expansion (Becherucci et al., 2016; Crain et al., 2008; de-la-

Ossa-Carretero et al., 2016). Nowadays, half of the world’s population lives in these areas especially 

benefiting from goods and services provided by coastal and marine ecosystems (Halpern et al., 2008). 

In addition to environmental factors governing these areas (e.g., hydrodynamics, tides, salinity and 

temperature gradients) (Ghilardi et al., 2008), sewage discharges constitute a common source of 

disturbances (Fraschetti et al., 2006; Pearson and Rosenberg, 1978). Indeed, wastewater treatment 

plant discharges are still considered as the most-effective way to get rid of sewages owing to the 

dilution rate of the ocean (Elías et al., 2005). Sewages may come from agricultural, industrial, domestic 

and municipal activities (Islam and Tanaka, 2004; Little and Kitching, 1996) and after physical, chemical 

and biological treatments the effluents are released via outfalls onto coastal areas (e.g. intertidal and 

shallow subtidal habitats) or offshore at deeper waters (Becherucci et al., 2018; Cabral-Oliveira and 

Pardal, 2016; Koop and Hutchings, 1996). Several pressures are associated to wastewater discharges 

such as organic and nutrient enrichment, water turbidity, increased sedimentation, decreased salinity 

and contamination (by heavy metals, priority and emerging organic pollutants, faecal sterols and 

bacteria) (Azzurro et al., 2010; Costanzo et al., 2001; Millennium Ecosystem Assessment-MEA, 2005; 

Moon et al., 2008; Terlizzi et al., 2005).  

Depending on their type, source and level, effluents may have direct or indirect effects (biological, 

chemical or physical) on the environment (Borja et al., 2011a; Del-Pilar-Ruso et al., 2010) which may 

vary from little or no impact to major changes (Pastorok and Bilyard, 1985). Under pollution stress, 

irreversible negative effects are produced such as the alteration of benthic composition and 

abundance patterns (Guidetti et al., 2003; Nicolodi et al., 2009; Terlizzi et al., 2005, 2002). The 

consequences may be diverse such as a biotic homogenization with a simplification of community 

structure (Amaral et al., 2018) through a decline in diversity (Borowitzka, 1972; Díez et al., 2010, 1999; 

Littler and Murray, 1975) and those pollution-sensitive species (e.g. perennial algae) (Scherner et al., 

2013). In counterpart, pollution/stress-tolerant opportunistic species (i.e., ephemeral algae) 

proliferate due to their higher growth and reproductive rates in nutrient-enriched water bodies as well 

as lower competition for space and nutrients (Amaral et al., 2018; Cabral-Oliveira and Pardal, 2016; 

Dauer and Conner, 1980; Elías et al., 2006; Gorostiaga and Diez, 1996). Finally, a shift from algal-

dominated assemblages to invertebrate-dominated assemblages may occur (e.g. crustacean and 

bivalve filter-feeders) (Díez et al., 2012a; López-Gappa et al., 1993; Pinedo et al., 2007). Therefore, 
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different responses may be observed depending on the type of analysis used and the response 

variables considered (Fraschetti et al., 2006).  

In this regard, the European Urban Waste Water Treatment Directive (91/271/EEC) was adopted to 

protect the water environment from harmful effects of wastewater discharges (urban and industrial). 

This Directive was the prelude to the further development of the Water Framework Directive (WFD; 

2000/60/EC; EC, 2000) which aims to attain "Good Ecological Status" of all water bodies by 2020 based 

on both physicochemical and biological elements (Borja et al., 2009). This obliges politicians and 

regional water authorities to make additional efforts to increase connections between a given 

population and wastewater systems and to improve the efficiency of sewage treatment plants. 

Monitoring networks have also to be established by scientists to understand benthic communities’ 

response distinguishing changes from natural variability (Veríssimo et al., 2013) and environmental 

managers may evaluate the effectiveness of the implemented measures. 

The study of benthic assemblages (i.e., macroalgae and invertebrates) is considered as a powerful tool 

to assess environmental quality and has become of major importance by providing accurate 

information on deleterious effects of contaminants especially in assessing local effects (Belan, 2003; 

Borja et al., 2011a). Their study has several advantages: benthic organisms are mainly sedentary and 

long-lived, sensitive to stress, play a critical role in cycling nutrients and materials, reflect both previous 

and present conditions to which communities have been exposed (Reish, 1987), are easy to sample 

even without using destructive sampling methods (Roberts et al., 1994) and have already been studied 

worldwide (Ar Gall and Le Duff, 2014; Becherucci et al., 2018; Borja and Dauer, 2008; Castric-Fey, 2001; 

de-la-Ossa-Carretero et al., 2016; Derrien-Courtel, 2008, 2010; Derrien-Courtel et al., 2013; Díez et al., 

2012a; Le Gal and Derrien-Courtel, 2015; Zubikarai et al., 2014).  

In this context and over the last decades, effects of sewage discharges have been studied on different 

environmental compartments (e.g. sediments, water body, trophic web, benthic and pelagic 

communities) (Bothner et al., 2002; Echavarri-Erasun et al., 2007; Mearns et al., 2015) and their impact 

on benthic communities have been widely documented in the intertidal zone (e.g. Becherucci et al., 

2016; Bishop et al., 2002; Cabral-Oliveira et al., 2014; Cabral-Oliveira and Pardal, 2016; Díez et al., 

2013; Guinda et al., 2014; Huguenin et al., 2019; Liu et al., 2007; O’Connor, 2013; Vinagre et al., 2016b). 

Some studies also described their impact on subtidal rocky and soft bottoms but they were often 

achieved either on macroalgae or macrofauna assemblages (de-la-Ossa-Carretero et al., 2016; Díez et 

al., 2014; Elías et al., 2005; Fraschetti et al., 2006; Souza et al., 2016, 2013; Stark et al., 2016) but rarely 

together especially in rocky habitats (Terlizzi et al., 2002; Underwood, 1996; Vinagre et al., 2016a; 

Zubikarai et al., 2014).  
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The French rocky Basque coast is part of the water body named “FRFC11 – Basque coast” in compliance 

with the WFD. Since 2008, this water body has been classified as being in a “Good Ecological Status”, 

considering especially macroalgae as biological quality element in the intertidal and subtidal zones 

(http://envlit.ifremer.fr). But, over the last decades, this area has been subjected to urban sprawl and 

massive summer overcrowding (Cearreta et al., 2004; Chust et al., 2009; Le Treut, 2013a) which 

explains the large number of Wastewater Treatment Plant (WWTP) outfalls along the coast. At the 

French Basque coast, no study has been performed to assess effects of shallow WWTP discharges on 

rocky benthic communities assemblages in contrast to the Spanish area where another study has 

already been achieved (Díez et al., 2014). Therefore, this study aims to offer a broader and integrated 

view on the potential impact of these discharges on subtidal rocky benthic assemblages (composition, 

abundance and functional traits of macroalgae and macrofauna) in the southeastern Bay of Biscay. 

This was achieved by comparing control and impacted locations (in the immediate vicinity of the 

outfall) using the same sampling strategy at two different habitats defined in the Directive for the 

French Basque coast. Furthermore, the general hypothesis is that if WWTP treatments are efficient, 

structural parameters of communities and ecological quality indices between impacted and control 

locations should be similar. 

2. Materials and Methods 

2.1 Study area  

The study was conducted in the southeastern Bay of Biscay. The rocky Basque coast, considered as 

marine protected area in compliance with the OSPAR convention (Natura 2000 site of Council Directive 

92/43/EEC on the Conservation of natural habitats and wild fauna and flora named “FR7200813 - Rocky 

Basque coast and offshore extension”), is part of the “Basque coast” water body (FRFC11) according 

to the WFD classification. Within the “Bay of Biscay” marine subregion, the southern part displays a 

set of environmental specificities: mesotidal conditions, with a magnitude between 1.85 and 3.85 m 

(Augris et al., 2009), energetic waves (Abadie et al., 2005b), freshwater inputs caused by rainfall and a 

dense river system (Winckel et al., 2004), N-NW dominant winds, a specific coast orientation and 

heterogeneous geomorphology (cliffs, rocky platforms, boulder fields and semi-enclosed bays with 

sandy beaches) (Borja and Collins, 2004). In the eastern Basque coast (French side), around 30% of the 

shore is constituted by rocky substrata (Chust et al., 2009). All those parameters make this region a 

heritage area (Augris et al., 2009; de Casamajor and Lalanne, 2016) which is justified by the presence 

of specific communities in these remarkable habitats (Borja et al., 2004).  
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2.2 Field data collection strategy  

The field sampling campaign was carried out in spring 2017 on subtidal rocky platforms in the French 

Basque coast. Four locations were selected along a coastal stretch of 11 km (Fig. 2) according a control-

impact design: one considered as impacted by a shallow Wastewater Treatment Plant effluent (I) and 

three coastal controls (C1-Abbadia, C2-Socoa, C3-Alçyons) representing reference natural conditions 

(under very low anthropogenic pressures, i.e. far from main source of disturbances) and having similar 

features selected by expert judgment (e.g. comparable wave exposure, depth and substratum). The 

three controls constitute those monitored regularly within the context of applying the WFD and are 

those supposed be representative of the whole “Basque coast” water body (Derrien-Courtel and Le 

Gal, 2014a, 2014b; data are available in the Quadrige2 database http://envlit.ifremer.fr). The impacted 

and control locations were sampled in two algal belts (the upper infralittoral: IUp, C1Up, C2Up, C3Up 

and the circalittoral: ICi, C1Ci, C2Ci, C3Ci) defined within the WFD (Table 1) (Le Gal and Derrien-Courtel, 

2015).  

The impacted location (I) was placed in the proximity of the outfall of WWTP, carrying out this plant 

physical-chemical and biological treatment for a population equivalent of 40.000 inhabitants (Table 2). 

According to the assessment system of Le Gal and Derrien-Courtel (2015), the level pressure of the 

WWTP effluent was estimated as high based on the type of pollution (i.e. urban), the distance from 

the source of pollution (i.e. <50m), the magnitude of pollution (i.e. from 10 000 to 150 000 inhabitant 

equivalent) and the water mixing (i.e. high water mixing).  

 

Table 1: Algal belts definition within the WFD for the study area (de Casamajor and Lissardy, 2018). 

 

    

Stage Algal belt Definition WFD code

Infralittoral Upper Infralittoral Cystoseira  spp. ≥ 3 ind.m² N2

Circalittoral Upper Circalittoral
Absence of structuring macroalgae (Cystoseira  spp.)

Presence of erected algae
N4

http://envlit.ifremer.fr/
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Fig. 2: Study area and locations: controls in the upper infralittoral C1Up, C2Up, C3Up (white points), 

controls in the circalittoral C1Ci, C2Ci, C3Ci (white dotted points), the impacted location in the 

upper infralittoral ‘IUp’ (grey point) and in the circalittoral ‘ICi’ (grey dotted point). C1, C2 and C3 

corresponded to WFD locations: Abbadia, Socoa and Alçyons, respectively. 

Table 2: General WWTP features (www.insee.fr; SUEZ, 2018) 

 

Each algal belt was independently sampled by divers at 3 m and 20/30 m depth, respectively. Within 

each of them, a set of 10 randomly selected replicates (0.25 m² quadrats as those used within the 

WFD) were positioned on comparable substrata (stable substrate and continuous bedrock) avoiding 

special microhabitats (crevices) and separated by at least 1 m. The percentage cover of macroalgae 

and sessile macrofauna was visually estimated and the abundance of mobile or slightly mobile 

macrofauna was counted.  

NE Atlantic 

Ocean

France

Bay  of  

Biscay

Mediterranean Sea

10 kmSpain

France

Abbadia
Socoa

Alçyons

NE Atlantic 

Ocean

France

Spain

Bay  of  

Biscay

'WWTP'

Racorded municipalities 2

Combined population ≈16 100

Inhabitant equivalent 40 000

Sewer system Separated

Emissary depth (m) 3

Nominal flow (m3/day) 7 000 (dry) / 21 600 (rainy weather)

Main treatment Biofiltration

Pre-treatment Fine screening, sand and grease removal

Primary treatment Physico-chemical lamella settlers 

Secondary treatment Biological treatment (biofiltration) 

http://www.insee.fr/
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Most organisms were identified in situ as close as possible to the species level to limit the sampling 

impact. When identification was impossible in the field (especially for small species), specimens were 

taken to the laboratory for further identification by taxonomic specialists. Due to the complex 

taxonomy of certain taxa, some organisms were identified at genus level.  

2.3 Data treatment and statistical analyses  

The analyses of taxa (macroalgae and macrofauna) composition and abundance were conducted on 

aggregated data containing mixed taxonomic levels (species, genus, family, class) in order to keep all 

taxonomic information. Data of macroalgae species were also aggregated into morphological 

functional groups (MFG) as defined in Díez et al., 2010 (i.e. articulated calcareous, crustose calcareous, 

crustose non-calcareous, foliose non-corticated, foliose slightly corticated, polysiphonated, foliose 

highly corticated, terete corticated, terete slightly corticated, filamentous and leathery). According to 

Orfanidis et al. (2011), each macroalgae taxa was also assigned to an Ecological Status Groups based 

on trait combinations in relative terms of species morphology, physiology, life strategy and 

distribution: ESG I: late-successional or perennial to annual taxa (IA: thick perennial; IB: thick plastic; 

IC: shade-adapted plastic); ESG II: opportunist or annual taxa (IIA: fleshy opportunistic; IIB: filamentous 

or sheet-like, opportunistic).  

Macrofauna species were aggregated into phylum and ecological groups according to two different 

classifications. One was based on five Ecological Groups (Borja et al., 2000): EG I: species very sensitive 

to organic enrichment and present under unpolluted conditions; EG II: species indifferent to 

enrichment, always present in low densities with non-significant variations with time; EG III: species 

tolerant to excess organic matter enrichment, occurring under normal conditions but stimulated by 

organic enrichment; EG IV: second-order opportunistic species; EG V: first-order opportunistic species. 

The second classification was based on the four Sensitivity Groups defined by Sartoretto et al. (2017) 

(SG I: taxa indifferent to organic matter and sediment input; SG II: opportunistic taxa; SG III: tolerant 

taxa; SG IV: sensitive taxa) completed by expert judgements. 

Each algal belt (the upper infralittoral and the circalittoral) and biological element (macroalgae and 

macrofauna) were studied separately. The variation on taxa composition and abundance (community 

structure) between impacted and control locations was studied by means of PERMANOVA analysis 

(Permutational multivariate analysis of variance; with 9999 permutations) (Anderson et al., 2008) with 

an a priori chosen significant level of α= 0.05. Two factors were considered: (i) Control vs. Impacted 

(CsI: 2 levels, fixed) and (ii) Location (L: 4 levels, random and nested in CsI) with n= 10. This analysis 

was based on the Bray-Curtis similarity matrix calculated from untransformed data. Dendrograms 

showing hierarchical clustering of locations were achieved on benthic assemblages, on morpho-
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functional and ecological groups and on phylum to visualize differences between impacted and control 

locations. The SIMilarity PERcentage (SIMPER) analysis was used to identify taxa that contribute most 

to differences between locations (Impacted vs. Controls) (Clarke, 1993; Oksanen et al., 2013). Taxa 

with a contribution higher than 1% were presented in results.  

The graphs and statistical analyses were undertaken using Excel v7®, the PRIMER V. 6. PERMANOVA 

package (Anderson et al., 2008; Clarke and Gorley, 2006) and R® software. 

2.4 Ecological quality 

2.4.1 Ecological quality based on macroalgae species 

In order to study the ecological quality of studied locations based on macroalgae species, the Ecological 

Quality Status (EQS) for the upper infralittoral was assigned to each control location (C1Up, C2Up, C3Up) 

and the impacted location (IUp) (Table 3). This was achieved according to Le Gal and Derrien-Courtel 

(2015) and de Casamajor and Lissardy (2018) who adapted the CFR index (Guinda et al., 2014) for the 

Basque coast. The EQS was assigned after the calculation of a Quality Index (QI) based on four metrics 

assigned to a score whose the sum was converted to 100 points (see details in de Casamajor and 

Lissardy, 2018 and Le Gal and Derrien-Courtel, 2015): Metric 1 (30 point grading scale) corresponding 

to the depth extension (in metres) of both algal belts (upper infra- and upper circalittoral) based on 

the presence/absence and abundance of structuring algae (Cystoseira spp.) (Table 1), Metric 2 (20 

point grading scale) corresponding to the density of structuring species (i.e. Cystoseira spp.), Metric 3 

divided in three sub-notes reduced to 20 point grading scale, Metric 3a (20 point grading scale) 

corresponding to the number of characteristic species, Metric 3b (20 point grading scale) 

corresponding to the density of opportunistic species, Metric 3c (1 bonus point) if sensitive perennial 

macroalgae (Gelidium corneum and Padina pavonica) are present in the entire surveyed site and 

Metric 4 (20 point grading scale) corresponding to the total number of taxa. Then, the QI of each 

location was divided by a reference QI (i.e. 74.8 defined using 3 reference sites according to Le Gal and 

Derrien-Courtel, 2015) which provided the Ecological Quality Ratio (EQR), finally associated to one of 

the EQS classes (Table 3).  
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Table 3: Ecological Quality Ratio (EQR) associated to Ecological Quality Status class (EQS) (de 

Casamajor and Lissardy, 2018; Le Gal and Derrien-Courtel, 2015). 

 

2.4.2 Ecological quality based on macrofauna species 

No index is validated by European Directives for the assignment of the rocky shore ecological quality 

based on macrofauna. Thus, two metrics from existing indices were calculated: (i) the Biotic Coefficient 

(BC) from the AMBI index designed to establish the ecological quality of soft-bottom benthos within 

European estuarine and coastal environments (Borja et al., 2000) and (ii) the Taxa Sensitivity (TS) from 

the INDEX-COR index designed to evaluate and monitor the conservation state of coralligenous 

assemblages along the French Mediterranean coast (Sartoretto et al., 2017). Their computations are 

both achieved using a formula based on macrofauna species grouped according their level of sensitivity 

to organic matter and sediment input (EG and SG respectively; Supplementary material 1).  

3. Results 

A total of 74 macroalgae (48 Rhodophyta, 19 Ochrophyta and 7 Chlorophyta) and 89 macrofauna taxa 

were identified (Table 4). The whole species list with their assignments (i.e. phylum, MFG, ESG, EG and 

SG) according to their subtidal location is available in Supplementary material 1.  

Benthic communities’ response differed according to biological elements (macroalgae or macrofauna) 

and algal belts (the upper infralittoral and the circalittoral). 

 

 

 

 

 

 

 

EQR EQS class

[0.85-1] High

[0.65-0.85] Goog

[0.45-0.65] Moderate

[0.25-0.45] Poor

<0.25 Bad
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Table 4: Total taxonomic richness and taxonomic richness per Ecological groups (ESG for macroalgae 

and EG for macrofauna), depth boundary of the upper infralittoral zone and results of ecological 

quality indices calculated for both macroalgae and macrofauna per locations (impacted ‘I’ and 

controls ‘C’) and algal belts (the upper infralittoral zone, U.I. and the circalittoral zone, Ci.). 

 

 

3.1 Effects of WWTP discharge on macroalgae taxa composition and abundance 

In the upper infralittoral and circalittoral zones, the analyses did not showed significant differences 

between the impacted location and controls according to macroalgae assemblages, MFG and ESG 

(PERMANOVA, p>0.05; Table 5; cluster analyses in Supplementary materials 2 and 3).  

In the upper infralittoral, among taxa identified as significant contributors to the dissimilarity, only 

Gelidium corneum had a contribution higher than 10% (20.84%). It was described as more abundant in 

the impacted location (Table 6). Mesophyllum lichenoides (Ct (%) < 10) was absent from controls (C1Up, 

C2Up, C3Up). Corallina spp., Plocamium cartilagineum and Nithophyllum punctatum present in both 

locations, were significantly more abundant in the impacted one.  Among other macroalgae taxa (p-

value > 0.05; Ct % >1), some were less abundant (Lithophyllum incrustans and Jania rubens) or absent 

(Cystoseira baccata, Halopithys incurva and Halopteris scoparia) from the impacted location compared 

to controls. By contrast, Gymnogongrus griffithsiae was identified as more abundant in the impacted 

location. In addition, two MFG and one ESG were identified as significant contributors to this 

dissimilarity with higher abundances in the impacted location: terete corticated (Ct % > 10), foliose 

heavily corticated (Ct % < 10) and ESG IIA (Ct % > 10), respectively (Supplementary materials 4). 

In the circalittoral, Metacallophyllis laciniata was the main significant contributor (30.73%) with a 

higher abundance in the impacted location (60.90 vs. 6.43) (Table 6). Remaining significant contributors 

(i.e. Drachiella spectabilis, Pterosiphonia complanata, Calliblepharis ciliata and Halymenia latifolia) 

IUp ICi C1Up C1Ci C2Up C2Ci C3Up C3Ci

Taxonomic richness 74 26 23 38 19 35 20 38 24

Number of species classified as ESG I 17 8 3 14 5 10 4 13 4

Number of species classified as ESG II 39 18 19 21 13 22 14 22 16

Number of characteristic species 16 - 21 - 20 - 19 -

Depth boundary (m) 5 - 22.2 - 19 - 15.5 -

Ecological Quality Ratio (EQR) 0.27 - 0.7 - 0.77 - 0.83 -

Ecological Quality Status class (EQS) Poor - Good - Good - Good -

Taxonomic richness 89 10 22 10 21 9 13 4 14

Number of species classified as EG I 18 4 8 3 6 4 4 2 7

Number of species classified as EG II 10 4 4 2 3 3 2 1 4

Number of species classified as EG III 2 0 1 0 2 0 0 1 1

Biotic coefficient (BC) 0.65 0.83 1.41 0.95 1 0.43 0.88 0.97

Pollution classification from BC Unpolluted Unpolluted Slightly polluted Unpolluted Unpolluted Unpolluted Unpolluted Unpolluted

Benthic community health from BC Impoverished Impoverished Unbalanced Impoverished Impoverished Impoverished Impoverished Impoverished

Taxa sensitivity (TS) 0.47 0.65 0.37 0.51 0.34 0.81 0.29 0.49

Macrofauna

Macroalgae

I C1 C2 C3
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were also all more abundant in the impacted location than in controls. Among other macroalgae taxa 

(p-value > 0.05; Ct % >1), Heterosiphonia plumosa, Rhodymenia pseudopalmata, Dictyopteris 

polypodioides, Halopteris filicina and Lithophyllum incrustans, were much more abundant in controls 

than in the impacted location. By contrast, the reverse occurred for Phyllophora crispa. Finally, two 

MFG (foliose heavily corticated, Ct % > 10 and foliose non corticated, Ct % < 10) were identified as 

significant contributors to the dissimilarity with higher abundances in the impacted location while no 

ESG was highlighted in this algal belt (Supplementary materials 4). 

 

 

Table 5: Summary of PERMANOVA results computed on macroalgae assemblages (a, d), morpho-

functional groups (MFG) (b, e) and Ecological Status Groups (ESG) (c, f) in the upper infralittoral (a, 

b, c) and circalittoral zones (d, e, f).  

 

 

 

 

 

 

 

 

 

(a) (b) (c)

Assemblages MFG ESG

U
p

p
er
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fr

al
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ra

l

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 13402 13402 1.40 0.25

Location(CsI) 2 19183 9591.5 4.49 0.0001

Residuals 36 76922 2136.7                

Total 39 1.10E+05                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 4917.8 4917.8 1.15 0.25

Location(CsI) 2 8531 4265.5 3.26 0.001

Residuals 36 47166 1310.2                

Total 39 60615                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 5068.5 5068.5 1.51 0.50

Location(CsI) 2 6700 3350 3.93 0.0001

Residuals 36 30722 853.4                

Total 39 42491                      

(d) (e) (f)

C
ir

ca
lit

to
ra

l

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 19960 19960 2.57 0.24

Location(CsI) 2 15543 7771.7 3.84 0.0001

Residuals 36 72848 2023.5                

Total 39 1.08E+05                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 12116 12116 3.03 0.25

Location(CsI) 2 7993.5 3996.7 2.66 0.005

Residuals 36 54081 1502.3                

Total 39 74191                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 2045.2 2045.2 0.44 1.00

Location(CsI) 2 9351.2 4675.6 4.55 0.0004

Residuals 36 37003 1027.9                

Total 39 48400                      
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Table 6: Taxa identified by SIMPER analyses as contributors (Ct > 1%) to the dissimilarity between 

impacted and control locations computed on macroalgae assemblages in the upper infralittoral (a) 

and circalittoral zones (b).  

  

 

 

 

 78.28% av 'IUp' av 'Controls' Ct (%) Cum. Ct (%) P-value Significance

Gelidium corneum 47.30 8.70 20.84 20.84 0.001 ***

Pterosiphonia complanata 14.40 12.33 8.53 29.37 0.260

Corallina spp. 19.40 7.13 8.36 37.73 0.027 *

Lithophyllum incrustans 11.40 19.17 8.24 45.97 0.972

Encrusting brown algae 0.00 14.33 6.07 52.04 0.990

Plocamium cartilagineum 12.70 3.80 5.13 57.17 0.003 **

Jania rubens 0.60 10.00 4.48 61.65 0.976

Ulva spp. 3.70 6.53 3.48 65.13 0.945

Acrosorium ciliolatum 2.50 5.40 2.91 68.04 0.934

Mesophyllum lichenoides 5.70 0.00 2.72 70.76 0.001 ***

Gymnogongrus griffithsiae 5.10 0.50 2.67 73.43 0.191

Drachiella spectabilis 4.70 2.83 2.62 76.05 0.243

Cystoseira baccata 0.00 4.87 2.47 78.52 0.965

Halopithys incurva 0.00 4.70 2.29 80.81 0.984

Rhodymenia pseudopalmata 3.50 1.53 2.21 83.02 0.083 .

Halurus equisetifolius 1.80 3.67 1.86 84.88 0.964

Xiphosiphonia pennata 1.60 1.33 1.26 86.14 0.481

Halopteris scoparia 0.00 2.30 1.21 87.35 0.988

Ceramium spp. 1.40 1.60 1.19 88.54 0.578

Codium spp. 1.20 1.03 1.08 89.62 0.429

Nithophyllum punctatum 2.30 0.07 1.04 90.66 0.001 ***

Dictyota dichotoma 1.50 1.03 1.04 91.70 0.468

IUp vs. Controls

U
p

p
er
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ra

l z
o

n
e

78.31% av 'ICi' av 'Controls' Ct (%) Cum. Ct (%) P-value Significance

Metacallophyllis laciniata 60.90 6.43 30.73 30.73 0.001 ***

Heterosiphonia plumosa 3.90 20.83 9.37 40.10 0.979

Drachiella spectabilis 15.40 4.93 7.61 47.71 0.015 *

Rhodymenia pseudopalmata 8.40 12.77 6.85 54.56 0.996

Pterosiphonia complanata 12.40 2.97 6.57 61.13 0.020 *

Dictyopteris polypodioides 1.60 9.83 4.94 66.07 1.000

Dictyota dichotoma 5.30 6.53 4.58 70.65 0.877

Peyssonnelia sp. 5.80 8.10 4.26 74.91 1.000

Halopteris filicina 0.50 8.13 3.93 78.84 1.000

Phyllophora crispa 7.10 2.47 3.82 82.66 0.095 .

Acrosorium ciliolatum 3.00 5.60 3.47 86.13 0.998

Lithophyllum incrustans 2.60 6.73 3.46 89.59 1.000

Calliblepharis ciliata 4.20 1.57 2.55 92.14 0.039 *

Halymenia latifolia 2.10 0.03 1.14 93.28 0.001 ***

Carpomitra costata 0.00 1.70 1.01 94.29 0.997

ICi vs. Controls

C
ir

ca
li

tt
o

ra
l z

o
n

e

(a) 

(b) 
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3.2 Effects of WWTP discharge on macrofauna taxa composition and abundance 

As for macroalgae taxa, no significant difference was observed using macrofauna assemblages, phylum 

and ecological distinction between impacted and control locations in both algal belts (PERMANOVA, 

p>0.05; Table 7). This was supported also by dendrograms showing the impacted location in a group 

including controls whatever the algal belt (Supplementary materials 5 and 6).  

Based on SIMPER analysis, global dissimilarities between impacted and control locations were again 

quite similar between both algal belts (96.32% vs. 94.42%) but they were higher than those for 

macroalgae (Table 8). All significant contributors highlighted in this analysis were also always more 

abundant in the impacted location. 

In the upper infralittoral, three taxa were highlighted as significant contributors: two with high 

contribution (i.e. Botryllus schlosseri and Tritia reticulata with 18.79% and 15.52%, respectively) and 

one with low contribution (i.e. Actiniaria with 5.88%) (Table 8). Botryllus schlosseri and Actiniaria were 

also absent from controls. All other macrofauna taxa (p-value > 0.05; Ct % >1), presented very low 

average abundances in both types of location. 

In the circalittoral, more significant contributors were highlighted for dissimilarities (i.e. Obelia sp., 

Crustose bryozoa, Caryophyllia smithii, Tritia incrassata and Echinaster sepositus) although with minor 

contributions (Ct % < 10) (Table 8). Only Obelia sp. was absent from controls. As in the upper 

infralittoral, all other macrofauna taxa (p-value > 0.05; Ct % >1), presented very low average 

abundances in both types of location. 
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Table 7: Summary of PERMANOVA results computed on macrofauna assemblages (a, e), phylum (b, 

f) and Ecological Groups (EG) according to Borja et al. (2000) (c, g) and Sensitivity Groups (SG) 

according to Sartoretto et al. (2017) (d, h) in the upper infralittoral (a, b, c, d) and circalittoral zones 

(e, f, g, h).        

  

               

 

           

 

 

 

 

 

 

 

 

 

(a) (b)

Assemblages Phylum
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Source Df SS MeanSqs Pseudo-F P-value

CsI 1 8691.8 8691.8 0.82 0.50

Location(CsI) 2 21297 10649 2.73 0.001

Residuals 36 1.40E+05 3898.4                

Total 39 1.70E+05                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 3717 3717 0.71 0.75

Location(CsI) 2 10424 5212.1 1.58 0.12

Residuals 36 1.18E+05 3290.6                

Total 39 1.33E+05                      

(a) (c)(b)

Assemblages Phylum EG
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(d)

SG

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 8691.8 8691.8 0.82 0.50

Location(CsI) 2 21297 10649 2.73 0.001

Residuals 36 1.40E+05 3898.4                

Total 39 1.70E+05                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 3717 3717 0.71 0.75

Location(CsI) 2 10424 5212.1 1.58 0.12

Residuals 36 1.18E+05 3290.6                

Total 39 1.33E+05                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 1139.9 1139.9 0.23 1.00

Location(CsI) 2 10009 5004.7 1.55 0.16

Residuals 36 1.16E+05 3222                

Total 39 1.27E+05                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 11249 11249 1.69 0.50

Location(CsI) 2 13280 6640 2.16 0.05

Residuals 36 1.11E+05 3071                

Total 39 1.35E+05                     

(e) (f)Source Df       SS MeanSqs Pseudo-F P-value

CsI 1 10524 10524 0.85254 0.6745

CsI(Location) 4 49378 12344 3.4216 0.0001

Residuals 54 1.95E+05 3607.8                

Total 59 2.55E+05                      

Source Df       SS MeanSqs Pseudo-F P-value

CsI 1 6844 6844 0.62387 0.8325

CsI(Location) 4 43881 10970 4.5989 0.0001

Residuals 54 1.29E+05 2385.4                

Total 59 1.80E+05                      

(e) (g)(f)

C
ir
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l

(h)Source Df SS MeanSqs Pseudo-F P-value

CsI 1 9303.5 9303.5 0.88 0.75

Location(CsI) 2 21124 10562 2.66 0.0001

Residuals 36 1.43E+05 3974.6                

Total 39 1.74E+05                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 6926.8 6926.8 0.66 0.74

Location(CsI) 2 21124 10562 4.11 0.0003

Residuals 36 92562 2571.2                

Total 39 1.21E+05                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 3686.4 3686.4 0.39 1.00

Location(CsI) 2 19143 9571.5 3.21 0.0002

Residuals 36 1.07E+05 2981.7                

Total 39 1.30E+05                      

Source Df SS MeanSqs Pseudo-F P-value

CsI 1 4204.3 4204.3 0.41 0.75

Location(CsI) 2 20514 10257 4.04 0.0002

Residuals 36 91405 2539                

Total 39 1.16E+05                      
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Table 8: Taxa identified by SIMPER analyses as contributors (Ct >1%) to the dissimilarity between 

impacted and control locations computed on macrofauna assemblages in the upper infralittoral (a) 

and circalittoral zones (d). 

 

 

 

 

 

 96.32% av 'IUp' av 'Controls' Ct (%) Cum. Ct (%) P-value Significance

Botryllus schlosseri 2.43 0.00 18.79 18.79 0.023 *

Tritia reticulata 1.29 0.29 15.52 34.31 0.049 *

Cerithium spp. 0.14 2.54 15.24 49.55 0.999

Tritia incrassata 0.00 0.54 7.83 57.38 0.934

Gibbula ardens 0.29 0.21 5.99 63.37 0.252

Actiniaria 0.29 0.00 5.88 69.25 0.004 **

Calliostoma zizyphinum 0.29 0.08 4.39 73.64 0.236

Spirobranchus spp. 0.71 0.00 4.11 77.75 0.090 .

Aglaophenia sp. 0.57 0.00 3.28 81.03 0.090 .

Sycon sp. 0.14 0.04 3.14 84.17 0.059 .

Paracentrotus lividus 0.00 0.38 2.75 86.92 0.952

Anemonia viridis 0.00 0.17 2.28 89.20 0.921

Demospongiae 0.00 0.21 2.28 91.48 0.972

Actinothoe sphyrodeta 0.29 0.00 1.65 93.13 0.090 .

Holothuria tubulosa 0.00 0.08 1.31 94.44 0.894

Rocellaria dubia 0.00 0.13 1.15 95.59 0.916

IUp vs. Controls
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94.42% av 'ICi' av 'Controls' Ct (%) Cum. Ct (%) P-value Significance

Sycon sp. 0.10 1.67 9.01 9.01 0.819

Obelia sp. 1.30 0.00 8.27 17.28 0.013 *

Sertularella spp. 0.00 3.70 7.82 25.09 0.678

Crustose bryozoa 0.60 0.30 6.44 31.53 0.035 *

Hydrozoa 0.00 1.19 5.55 37.08 0.897

Polychaeta 0.10 1.48 5.38 42.45 0.622

Rocellaria dubia 0.40 0.52 5.04 47.49 0.164

Serpulidae 0.60 0.19 4.49 51.98 0.253

Aglaophenia sp. 0.30 0.63 4.11 56.10 0.477

Corynactis viridis 0.00 1.00 3.94 60.04 0.847

Caryophyllia smithii 0.40 0.04 3.47 63.50 0.046 *

Sabella discifera 0.40 0.00 3.10 66.60 0.060 .

Tritia incrassata 0.30 0.04 2.79 69.39 0.039 *

Cliona celata 0.20 0.37 2.49 71.88 0.290

Gymnangium montagui 0.00 0.19 2.44 74.31 0.725

Crutose Ascidiacea 0.00 0.37 2.29 76.60 0.817

Cerithium spp. 0.00 0.26 2.10 78.70 0.596

Phoronis 0.00 1.11 1.99 80.70 0.331

Echinaster sepositus 0.20 0.04 1.65 82.34 0.041 *

Parazoanthus axinellae 0.20 0.00 1.49 83.83 0.199

Demospongiae 0.10 0.22 1.39 85.21 0.423

Halichondria sp. 0.20 0.04 1.37 86.59 0.053 .

Eunicella verrucosa 0.20 0.00 1.26 87.85 0.221

Aplysina spp. 0.10 0.04 1.21 89.06 0.362

Holothuria tubulosa 0.10 0.07 1.19 90.26 0.374

ICi vs. Controls
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3.3 Ecological quality  

In the upper infralittoral, response of indices differed from both biological elements (Table 4). Based 

on macroalgae species, all control locations were ranked as “Good” contrary to the impacted location 

which was ranked as “Poor”. Metrics mainly responsible for this rating were the depth boundary of the 

algal belt (Metric 1) (between 15.5 to 22.2 m depth for controls vs. 5 m depth for the impacted 

location), the number of characteristic species (Metric 3a) (between 19 to 21 in controls vs. 16 in the 

impacted location) and the total number of taxa (Metric 4) (between 35 to 38 in controls vs. 26 in the 

impacted location) (Table 4; Fig. 3). To a lesser extent, the density of structuring species (i.e. Cystoseira 

spp.) (Metric 2) and the density of opportunistic species (Metric 3b) influenced also this rating. 

 

Fig. 3: Metric’s scores used for the calculation of the Quality Index (QI) and the assignment of the 

Ecological Quality Status (EQS) for each studied locations (impacted and controls). Metric 1: depth 

boundary of the algal belt, Metric 2: density of structuring species, Metric 3a: number of 

characteristic species, Metric 3b: density of opportunistic species, Metric 3c: sensitive perennial 

macroalgae and Metric 4: total number of taxa. 

 

By contrast, the two metrics based on macrofauna species assigned better scores to the impacted 

location than to controls. According to the BC, the lowest value was found in the impacted location, 

which classes it as unpolluted location with impoverished community health.  All controls presented 

higher values but were also assigned to the same status except ‘Control 1’ considered as a slightly 

polluted location with an unbalanced community health. The TS value was higher in the impacted 

location which highlighted also a higher sensitivity.  
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In the circalittoral, only macrofauna indices could be calculated. According to the BC, all locations 

(impacted and controls) were assigned to unpolluted location with impoverished community health.  

The TS values did not discriminate the impacted location from controls which presented variable values 

in comparison with the impacted one.  

4. Discussion 

The present study aimed to assess potential effects of a WWTP outfall on rocky benthic subtidal 

assemblages by comparing communities near the outfall with those from locations considered as 

“Control” and as representative of the “Basque coast” water body. Both biological elements 

(macroalgae and macrofauna) were considered to fulfill European Directives requirements (WFD and 

MSFD) playing a key role in water quality for the conservation status and functional aspects of the 

environment (de Casamajor et al., 2016).  

Using multivariate analyses, no significant difference in the composition and abundances of 

macroalgae assemblages, morpho-functional groups (MFG) and ecological status groups (ESG) was 

highlighted between the impacted location and controls for both algal belts (the upper infralittoral and 

circalittoral zones). The same occurred with macrofauna assemblages, phylum and ecological groups 

(EG and SG). Therefore, using these parameters independently, no significant impact of WWTP on 

benthic organisms could be highlighted. Furthermore, significant differences among control locations 

highlighted strong natural variability along the studied area which could explain no significant 

differences detected between control and impacted locations. This goes against another work aiming 

to study the impact of a such pressure in the intertidal zone (Huguenin et al., 2019). This is probably 

due to a higher dilution factor in subtidal area. In the present study, macroalgae ESG were established 

according to  Orfanidis et al. (2011) and expert judgement. This classification was chosen because it is 

widely used in other works and is one of the most precise classifications. It is important to note that 

some authors identified different sensitivity (i.e. ESG ranks) for a same species (Ar Gall and Le Duff, 

2014; Gaspar et al., 2012; Neto et al., 2012; Vinagre et al., 2016a). 

When detecting pollution impacts in the marine environment, the study of benthic communities 

provides several advantages, among which the bioindicator nature of some species (opportunists vs. 

sensitives) should be highlighted (Díez et al., 2009). Based on macroalgae from the upper infralittoral 

zone, only Gelidium corneum (formerly G. sesquipedale), a terete corticated Rhodophyta, was 

identified as significant high contributors (Ct % > 10) to the dissimilarity between the impacted location 

and controls, with a higher abundance in the impacted one. This macrophyte, together with Cystoseira 

baccata, are the main canopy-forming algae at the Basque coast (de Casamajor and Lissardy, 2018; 

Gorostiaga et al., 2004b) which is subjected to strong hydrodynamics. Indeed, the Basque coast is 



191 

exposed to the most energetic waves (Abadie et al., 2005b) and the tolerance of G. corneum to wave 

action was demonstrated by Díez et al. (2003) who showed an increase of its abundance with wave 

action. This contrasts with colder northern French regions where kelp forests (essentially Laminaria 

digitata and L. hyperborea) are dominant in the subtidal zone (Ar Gall et al., 2016; Le Gal and Derrien-

Courtel, 2015; Ramos et al., 2014). Under the implementation of the WFD, Gelidium corneum is thus 

used to assess the ecological status of the whole water body, being considered it as an indicator of 

Good Ecological Status (de Casamajor and Lissardy, 2018). Indeed, Gelidium corneum was already well 

described as sensitive to environmental disturbances such as increased sedimentation (Díez et al., 

2003), irradiance (Quintano et al., 2019), sea surface temperature (Díez et al., 2012b; Muguerza et al., 

2017) and reduced nutrient availability (Díez et al., 2012b). Even if Gelidium corneum and Cystoseira 

baccata were already described as dominant species along the Cantabria coast (South of the Bay of 

Biscay, N Spain ; Guinda et al., 2012), they have been considered as representative of the last 

successional stages after pollution abatement and as the most complex ones (Gorostiaga et al., 2004a) 

although the brown Cystoseria spp. seem to be somewhat more sensitive than Gelidium corneum 

(Borja et al., 2013b; Díez et al., 2003). Gelidium corneum was classified as ESG I by many authors (i.e. 

as late-successional or perennial to annual taxa; Gaspar et al., 2017; Neto et al., 2012; Vinagre et al., 

2016a), but only Orfanidis et al. (2011) classified this phylum as ESG IIA (i.e. fleshy opportunistic). 

Recently, the authors of the present work have found in the same study area that Gelidium corneum 

could grow in the lower intertidal both in the impacted location by a wastewater treatment plant 

discharge as well in the control location. In the case of the impacted location, Gelidium corneum was 

dominant, with large and vigorous fronds (dark red pigmentation). In the control location, Gelidium 

corneum shared the space with Cystoseira tamariscifolia (Huguenin et al., 2019). This finding may 

indicate that low inputs of nutrients (especially nitrogen) can promote the growth of Gelidium 

corneum. Thus, this external nitrogen supply would favor the synthesis of phycobiliproteins in Gelidium 

corneum fronds, their growth rate as well as a higher photoprotection under strong irradiance and 

depletion of natural nutrients in the environment (Quintano et al., 2017). A similar situation could 

occur in the present study, where a greater abundance of Gelidium corneum was recorded in the 

infralittoral zone of the impacted location, probably favored by the fertilization of the water column 

coming from the outfall. It is assumed that this fertilization would be light since no significant 

differences (PERMANOVA analysis) were found in the infralittoral vegetation between the impacted 

station and the controls. In conditions of strong-moderate pollution, Gelidium corneum stands 

disappear as it has been reported for the coastal environment close to the Bilbao metropolitan area 

(Gorostiaga and Diez, 1996). The higher abundance of calcareous algae (Mesophyllum lichenoides and 

Corallina spp.) around the outfall in this algal belt could corroborate a nutrient enrichment. Co-

dominance of both species in the low intertidal zone has been reported in the vicinity of the discharge 
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of wastewater treatment plants (Díez et al., 2013). These calcareous algae show a wide range of 

tolerance to pollution and thus growing in moderately polluted environments as well as in less or not 

impacted locations (Díez et al., 2003; Huguenin et al., 2019). Plocamium cartilagineum and 

Nithophyllum punctatum were slightly more abundant in the impacted location N. punctatum, was 

associated to ESG II (i.e. opportunist or annual taxa) contrary to Corallina spp. and P. cartilagineum 

classed in ESG I (i.e. late-successional or perennial to annual taxa) (Gaspar et al., 2012; Neto et al., 

2012; Orfanidis et al., 2011). This contrast with another study which described P. cartilagineum as 

being more associated to good quality environments whereas it was absent from moderately or highly 

impacted locations (Díez et al., 2012a). This species was anyway described as the most common 

macrophytes in subtidal zone in the Basque coast (Gorostiaga et al., 2004b) and also as a typical 

epiphyte of Gelidium spp. which was identified as the highest contributor in this study with higher 

concentrations in the impacted location (Quintano et al., 2015). Conversely, N. punctatum and 

Corallina spp. were described as being rather tolerant to moderately polluted environments (Díez et 

al., 2003, 1999; Gorostiaga et al., 2004a). One species from the genus Corallina spp., was even 

described as becoming dominant as pollution increases certainly favored by moderate nutrient 

increments (Díez et al., 1999).  Among other macroalgae taxa identified in the upper infralittoral zone, 

Lithophyllum incrustans, Jania rubens, Cystoseira baccata, Halopithys incurva and Halopteris scoparia 

were less abundant or absent from the impacted location while they were supposed to be well 

represented in all locations of the studied area. Indeed, they were reported as biogeographical 

characteristic species of the Basque coast within the WFD (de Casamajor and Lissardy, 2018) but they 

were also described as exhibiting higher cover values at controls or in locations with a high quality level 

(Díez et al., 2013, 2012a). Moreover, the sensitiveness of the genus Cystoseira spp. to anthropogenic 

pollution (e.g. urban or wastewater discharges) and to natural stresses (e.g. wave action) is already 

well known (Díez et al., 2003; Duarte et al., 2018; García-Fernández and Bárbara, 2016; Gros, 1978; 

Hoffman et al., 1988; Pinedo et al., 2007; Valdazo et al., 2017). Species from this genus (C. baccata and 

C. tamariscifolia) are thus currently used as indicators of good water quality within the European 

Directive (de Casamajor et al., 2017). Among these species, only Halopteris scoparia was classified as 

opportunistic taxa in the Mediterranean Sea by Orfanidis et al. (2011) which contrast with the Basque 

coast, where this species is usually considered as characteristic (de Casamajor and Lissardy, 2018). 

Conversely, Gymnogongrus griffithsiae was identified as being more abundant in the impacted 

location. Indeed, this species was classified as opportunistic (ESG II; Orfanidis et al., 2011) and was 

identified with a higher average cover in locations from moderate to bad quality levels (Díez et al., 

2012a). In addition, the two MFG (i.e. terete corticated and foliose heavily corticated) identified as 

significant contributors were more abundant in the impacted location. This runs counter to other 

studies which rather identified these complex morphology algae in reference locations (Díez et al., 
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2014; Rubal et al., 2011; Wells et al., 2007). By contrast, the ESG IIA, also identified as high contributor 

in the upper infralittoral algal belt and more abundant in the impacted location, corresponds to 

opportunistic species which were already usually found in polluted areas. Thus, consistent with the 

finding that G. corneum has a subnitrophile character and that other tolerant/sensitive species are 

found with greater abundance in the impacted/controls (respectively), some impact of the effluent on 

the upper infralittoral vegetation could be highlighted. This could thus be in line with the pressure level 

estimation, considered as high (according to the assessment system of Le Gal and Derrien-Courtel 

(2015)) and the EQS ranking the impacted location as “Poor”. By contrast, all controls were ranked as 

“Good”.  This ranking was especially due to differences between impacted and control locations in the 

algal belt depth boundaries (whose definition was based on the density of structuring species, i.e. 

Cystoseira spp., described as sensitive), the number of characteristic species and the total number of 

taxa. By contrast, the last two ones were not described as sensitive metrics to a such pressure in 

intertidal zone of the same biogeographic area (Huguenin et al., 2019).  These results reflect the 

interest to use a multimetric approach, such as the WFD macroalgae indicator (Derrien-Courtel and Le 

Gal, 2014b), and also the importance to consider structural engineering species of the habitat (e.g. C. 

baccata) (de Casamajor et al., 2019). Indeed, long-lived species forming canopies are the first to react 

to early disturbances. In addition, it plays a fundamental ecological role in conservation of ecosystem 

(García-Fernández and Bárbara, 2016). 

Neither in the macrofauna of the upper infralittoral zone, significant differences between impacted 

and controls were found. It was notorious that the colonial ascidian Botryllus schlosseri was recorded 

only in the impacted location. This species has been associated to SG II (opportunistic taxa) (Sartoretto 

et al., 2017) and also to EG I (very sensitive species) groups (Borja et al., 2000). The gastropod mollusk 

Tritia reticulata showed a slightly higher abundance in the impacted location. This species was 

associated to EG II group (indifferent species to enrichment) (Borja et al., 2000) whereas it was not 

classified by Sartoretto et al. (2017). Consistent with the results obtained on the vegetation in the 

present study it seems that both species of fauna presented some tolerance to organic enrichment. 

On the other hand, ecological quality indices (Biotic Coefficient from the AMBI index and Taxa 

Sensitivity from the INDEX-COR index) seemed not to be sensitive to the outfall pressure. The impacted 

location had a better score than controls (INDEX-COR index) and most of locations were ranked as 

unpolluted with impoverished benthic community health (Biotic Coefficient). Results would be 

probably quite different if the outfall would be located in a boulder field habitat which provides 

different niches to house a varied fauna (Huguenin et al., 2018). These results run counter to the one 

obtained from macroalgae species evaluation which ranked the impacted location as “Poor” whereas 

the two macrofauna indices classified it as “unpolluted” and more sensitive than controls. Those 
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results confirmed that the use of macrofaunal indicators must be improved with further investigation 

to be considered in European Directives. 

Based on macroalgae from the circalittoral zone, Metacallophyllis laciniata (formerly Callophyllis 

laciniata), a foliose heavily corticated alga, was identified as the most significant contributor to the 

dissimilarity between the impacted location and controls with a higher abundance in the impacted 

one. As Gelidium corneum, it was reported as frequent in Spanish Basque coast (Gorostiaga et al., 

2004b), although in the last two deccades it has become less frequent. It was classified as ESG II (i.e. 

opportunistic or annual taxa; Gaspar et al., 2012; Neto et al., 2012) and was already identified as being 

more abundant at slightly polluted habitats (Díez et al., 2003). Among other significant contributors 

more abundant in the impacted location, only Calliblepharis ciliata was classed in ESG I (i.e. late-

successional or perennial to annual taxa) whereas the remain species (Drachiella spectabilis, 

Halymenia latifolia and Pterosiphonia complanata) were classed in ESG II (i.e. opportunist or annual 

taxa). Even if Drachiella spectabilis was not reported in previous studies as indicator of pollution, the 

related species, Drachiella minuta, was especially found in moderately polluted sites along the Basque 

coast (Díez et al., 2003). By contrast, Pterosiphonia complanata was mainly identified in good quality 

environments or slightly polluted habitats (Díez et al., 2012a, 2003) but was anyway described as 

rather adapted to pollution (Díez et al., 2003). Rhodymenia pseudopalmata, Heterosiphonia plumosa, 

Lithophyllum incrustans, Dictyopteris polypodioides and Halopteris filicina although were not 

significant contributors to location differences, were less abundant or absent at the impacted location. 

In addition to the fact that they were identified as characteristic species of the Basque coast (de 

Casamajor and Lissardy, 2018), Rhodymenia pseudopalmata and Lithophyllum incrustans were already 

associated to unpolluted habitats (Díez et al., 2012a, 2003). Conversely, Phyllophora crispa exhibited 

higher abundances in the impacted location. Indeed, it was classified as opportunistic species (ESG II; 

Orfanidis et al., 2011) but nevertheless it was identified as characterisitic species from the Basque coast 

(de Casamajor and Lissardy, 2018). Moreover, the two MFG identified as significant contributors (i.e. 

foliose heavily corticated and foliose non-corticated) were described as morphologically- complex and 

simple form algae, respectively (Díez et al., 2014). Complex species were rather identified in reference 

locations contrary to simple form ones mainly found in disturbed areas. Therefore, the identification 

of these contributors could suggest a persistent impact of the discharge in the circalittoral zone despite 

the distance to the emissary and the depth. Moreover, results suggest that it might be interesting to 

integrate the circalittoral zone in the WFD monitoring as, up to now, it is not considered to assess the 

ecological quality of the water body. This would allow to calculate the EQR (associated to the EQS) and 

thus to know if it supports or not previous conclusions. 
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Based on macrofauna from the circalittoral zone, no high contributor (Ct % > 10) of macrofauna 

assemblages was highlighted. Minor contributors such as Obelia sp., crustose bryozoa, Caryophyllia 

smithii, Tritia incrassata and Echinaster sepositus were more conspicuous around the effluent. 

Strengthening identification at the specific level would better assess the taxa sensitivity. However, 

considering most of them are suspended matter feeders, it is possible to assume that their sensitivity 

is low even interpretation of those results must be relativized considering variability of macrofauna in 

terms of presence/absence and abundance in this kind of habitat. Furthermore, as in the upper 

infralittoral, metrics from both macrofauna ecological quality indices did not appear as efficient to 

detect the effluent pressure although they used different sensitivity classification and formulas. But, it 

is important to note that these both indices (BC and TS) were establish for soft-bottom and 

coralligenous assemblages along the French Mediterranean coast, respectively. Moreover, only 45 

percent of sampled species could have been associated to an ecological group using the classification 

of Borja et al. (2000) and 69.7 percent using the one of Sartoretto et al. (2017). Results could be 

different if sensitivity of more species were assigned especially for the first classification (Borja et al., 

2000). In this study, macrofauna did not appear to be a sensitive indicator to such disturbance in these 

algal belts as in similar work achieved in the intertidal zone (Huguenin et al., 2019). This contrast with 

other studies achieved on other coastal ecosystems (Borja et al., 2000; Marques, 2009; O’Connor, 

2013; Sartoretto et al., 2017; Vinagre et al., 2016a). Studying macroalgae and macrofauna using the 

same sampling strategy may be not suitable to this subtidal rocky biogeographic area. Nevertheless, 

the integration of macrofauna in addition to macroalgae is anyway important because it would allow 

to better reflect the complexity of the ecosystem (Van Hoey et al., 2010). The further challenge could 

be addressed to complete the sensitivity categories of macrofauna species to such disturbances and 

to reflect on another way of sampling macrofauna in these rocky habitats to meet European 

requirements. Indeed, to date, no validated index exists within European Directive to assess the 

ecological quality status of rocky habitats integrating macrofauna species. But, it is important to note 

that works are in progress concerning the intertidal zone (to improve the CCO index) and the subtidal 

zone (to improve the QISubMac). 

5. Conclusion 

The present work established the assessment of the potential impact of a WWTP discharge on subtidal 

rocky benthic assemblages in the southeastern Bay of Biscay.  Both macroalgae and macrofauna were 

studied as required by European Directives to assess the response of biological indicators to various 

pressures. As few other studies, it was assessed the structural variation of the two biological elements 

coming from the same set of samples considering WFD protocol. Response to the WWTP 

disturbance differed between macroalgae and macrofauna. Descriptors and ecological indices based 



196 

on macrofauna did not captured changes in structure between control and impacted locations. 

Consequently, macrofauna seemed not to be a sensitive indicator to such disturbance in the rocky 

habitat studied. By contrast, these findings suggested that descriptors based on the Ecological Quality 

Status (EQS) currently used within the WFD (in the upper infralittoral) appeared to be the more 

relevant tools to assess this disturbance. Indeed, it ranked the impacted location as “Poor” whereas all 

controls were ranked as “Good” which confirms the robustness of the WFD macroalgae indicator 

through the multimetric approach. According to species sensitivity to pollution, the impact of the 

discharge was also highlighted in both algal belts. To meet European Directives requirements, it seems 

thus important to delve into other ways of integrating or evaluating macrofauna to assess more 

efficiently their response to such pressure. Finally, this work provides a framework for future 

monitoring allowing an assessment of benthic communities’ changes related to WWTP mitigation 

measures.  
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Prospects & improvements: 

- As for the intertidal zone, reflect upon how to include fauna in monitoring in such a habitat (already in progress 

since 2014 in order to improve the current WFD metrics according to the REBENT) 

- Reflect upon how to integrate the circalittoral zone (N4) in WFD monitoring and/or adapt current metrics to 

be able to assess the ecological status of the whole water body based on the N2, N3 and (already in progress 

since 2014 in order to improve the current WFD metrics according to the REBENT) 

- Explore the idea to fixe different depths a priori (already achieve within the WFD) 

- Make further sampling to study the dilution effect by doing quadrats at different distances from the outfall and 

at the same depth and compare results with chemical analyses achieved on seawater samples  

- Make further sampling in other biogeographical regions of the Atlantic/Channel coastal areas 

Highlights: 

 Detectable effects of discharges highlighted using EQS index based on macroalgae 

 No significant effect using functional diversity of both macroalgae and macrofauna 

Main contributors responsible for differences between impacted and control locations. Grey species as 
those identified as characteristic of the studied area within the WFD (de Casamajor and Lissardy, 2018). 

Species in parenthesis are those identified with a low contribution (Ct < 10%) or not significant. 
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Supplementary materials 

 

Supplementary material 1: List of macroalgae and macrofauna identified in each location (impacted 

and control) and algal belt (the upper infralittoral zone, U.I. and the circalittoral zone, Ci.) (‘+’ means 

that the species was found in the corresponding location). Taxa were classed into phylum. 

Macroalgae were assigned to one of the Morpho-Functional Groups (MFG) (Díez et al., 2010) and 

Ecological Status Groups: ESG I: late-successional or perennial to annual taxa (IA: thick perennial; IB: 

thick plastic; IC: shade-adapted plastic); ESG II: opportunist or annual taxa (IIA: fleshy opportunistic; 

IIB: filamentous or sheet-like, opportunistic) according to Orfanidis et al. (2011) and completed by 

Gaspar et al. (2012), Neto et al. (2012), Vinagre et al. (2016a). Macrofauna were aggregated into 

ecological groups according to Borja et al. (2000) (i.e. EG I: species very sensitive to organic 

enrichment and present under unpolluted conditions; EG II: species indifferent to enrichment, 

always present in low densities with non-significant variations with time; EG III: species tolerant to 

excess organic matter enrichment, occurring under normal conditions but stimulated by organic 

enrichment; EG IV: second-order opportunistic species; EG V: first-order opportunistic species) and 

Sartoretto et al. (2017) completed by expert judgements (SG I: taxa indifferent to organic matter and 

sediment input; SG II: opportunistic taxa; SG III: tolerant taxa; SG IV: sensitive taxa). 
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Species/Taxa Phylum MFG ESG IUp ICi C1Up C1Ci C2Up C2Ci C3Up C3Ci

Acrosorium ciliolatum Rhodophyta Foliose non corticated IIA + + + + + + + +

Bonnemaisonia asparagoides Rhodophyta Terete slightly corticated + + + + +

Calliblepharis ciliata Rhodophyta Foliose heavily corticated II + + + +

Ceramium spp. Rhodophyta Polysiphonated IIB + + + + + +

Chondracanthus acicularis Rhodophyta Terete corticated IIA + + +

Chondria coerulescens Rhodophyta Terete slightly corticated IIA + +

Chrysimenia ventricosa Rhodophyta Terete slightly corticated IIA + +

Corallina spp. Rhodophyta Articulated calcareous IC + + + +

Crustose red algae Rhodophyta Crustose non calcarous + + +

Dasysiphonia sp. Rhodophyta Polysiphonated II + + +

Drachiella spectabilis Rhodophyta Foliose non corticated IIA + + + + + + +

Gelidium corneum Rhodophyta Terete corticated I + + + + + +

Gracilaria gracilis Rhodophyta Terete corticated IIA +

Gracilaria sp. Rhodophyta Terete corticated IIA +

Gymnogongrus crenulatus Rhodophyta Foliose heavily corticated II +

Gymnogongrus griffithsia Rhodophyta Foliose heavily corticated II + + + +

Halopithys incurva Rhodophyta Terete corticated IB + + +

Halurus equisetifolius Rhodophyta Foliose slightly corticated IIB + + + +

Halymenia latifolia Rhodophyta Foliose slightly corticated IIA + +

Heterosiphonia plumosa Rhodophyta Polysiphonated II + + + +

Hypnea musciformis Rhodophyta Terete slightly corticated IIA +

Hypoglossum hypoglossoides Rhodophyta Foliose non corticated IIA + + + +

Jania rubens Rhodophyta Articulated calcareous IC + + + +

Lithophyllum incrustans Rhodophyta Crustose calcareous IC + + + + + + + +

Mastocarpus/Petroselis Rhodophyta Foliose heavily corticated I +

Mesophyllum lichenoides Rhodophyta Crustose calcareous IC + + +

Metacallophyllis laciniata Rhodophyta Foliose heavily corticated II + + + + + +

Nitophyllum punctatum Rhodophyta Foliose non corticated IIA + + + +

Peyssonnelia sp. Rhodophyta Crustose non calcarous IC + + + + + +

Phyllophora crispa Rhodophyta Foliose heavily corticated IIA + + + + + +

Phymatolithon lenormandii Rhodophyta Crustose calcareous I + + +

Plocamium cartilagineum Rhodophyta Terete slightly corticated IB + + + + + + + +

Polyneura bonnemaisonii Rhodophyta Foliose non corticated +

Polysiphonia spp. Rhodophyta Polysiphonated IIB + + + +

Rhodothamniella floridula Rhodophyta Filamentous IIB +

Rhodymenia pseudopalmata Rhodophyta Foliose heavily corticated IIA + + + + + + +

Scinaia furcellata Rhodophyta Terete slightly corticated I + +

Sphaerococcus coronopifolius Rhodophyta Terete slightly corticated I + + +

Sphondylothamnion multifidum Rhodophyta Filamentous IIB + + +

Carpomitra costata Ochrophyta Terete slightly corticated +

Cladostephus spongiosus Ochrophyta Terete corticated I +

Colpomenia peregrina Ochrophyta Foliose non corticated IIA +

Crustose brown algae Ochrophyta Crustose non calcarous + + + + + +

Cystoseira baccata Ochrophyta Leathery IB + + +

Cystoseira tamariscifolia Ochrophyta Leathery IA + + +

Desmarestia ligulata Ochrophyta Foliose slightly corticated II + + +

Dictyopteris polypodioides Ochrophyta Foliose slightly corticated IIA + + + + + + +

Dictyota dichotoma Ochrophyta Foliose slightly corticated IIA + + + + + + + +

Ectocarpales Ochrophyta Filamentous IIB + +

Halopteris filicina Ochrophyta Terete slightly corticated IIA + + + +

Halopteris scoparia Ochrophyta Terete corticated IIA + + +

Hincksia spp. Ochrophyta Filamentous IIB +

Padina pavonica Ochrophyta Foliose slightly corticated IB +

Spatoglossum solieri Ochrophyta Foliose slightly corticated +

Taonia atomaria Ochrophyta Foliose slightly corticated IB + +

Zanardinia typus Ochrophyta Crustose non calcarous II + + +

Bryopsis plumosa Chlorophyta Filamentous IIB +

Cladophora spp. Chlorophyta Filamentous IIB + + + + +

Codium spp. Chlorophyta Crustose non calcarous IIB + + + +

Pterosiphonia complanata Chlorophyta Terete slightly corticated IIB + + + + + + +

Ulva spp. Chlorophyta Foliose non corticated II + + + +

Xiphosiphonia pennata Chlorophyta Polysiphonated II + + + +

Macroalgae

I C1 C2 C3
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Species/Taxa Phylum MFG EG SG IUp ICi C1Up C1Ci C2Up C2Ci C3Up C3Ci

Polychaeta Annelida - + + +

Sabella discifera Annelida - I II +

Salmacina dysteri Annelida - II +

Serpulidae Annelida - I + + +

Spirobranchus spp. Annelida - II +

Porcellana platycheles Arthropoda - I +

Crustose bryozoa Bryozoa - II + + +

Botryllus schlosseri Chordata - I II +

Crutose Ascidiacea Chordata - III + +

Diplosoma spongiforme Chordata - III +

Parablennius pilicornis Chordata - +

Actiniaria Cnidaria - II +

Actinothoe sphyrodeta Cnidaria - I + +

Aglaophenia sp. Cnidaria - II + + +

Aiptasia mutabilis Cnidaria - II II + +

Alcyonium coralloides Cnidaria - I III

Anemonia viridis Cnidaria - I + +

Balanophyllia regia Cnidaria - III

Caryophyllia smithii Cnidaria - I II + +

Corynactis viridis Cnidaria - I II + + +

Eunicella verrucosa Cnidaria - I IV +

Gymnangium montagui Cnidaria - III +

Hydrozoa Cnidaria - I + +

Nemertesia antennina Cnidaria - III + +

Obelia sp. Cnidaria - II II +

Parazoanthus axinellae Cnidaria - III +

Sagartia troglodytes Cnidaria - I +

Sertularella spp. Cnidaria - II II + +

Echinaster sepositus Echinodermata - I III + +

Holothuria forskali Echinodermata - I II +

Holothuria tubulosa Echinodermata - I II + + + + +

Paracentrotus lividus Echinodermata - III +

Aplysia spp. Mollusca - I

Berthellina edwardsii Mollusca - III

Calliostoma zizyphinum Mollusca - I II + + +

Cerithium spp. Mollusca - II I + + + + +

Diaphorodoris alba Mollusca - III +

Discodoris rosi Mollusca - IV

Dondice banyulensis Mollusca -

Doriopsilla areolata Mollusca - III

Edmundsella pedata Mollusca - IV

Facelina auriculata Mollusca - IV

Felimare cantabrica Mollusca - III +

Felimare tricolor Mollusca - III +

Felimida krohni Mollusca - IV +

Felimida purpurea Mollusca - IV

Gibbula ardens Mollusca - I + +

Octopus vulgaris Mollusca - +

Peltodoris atromaculata Mollusca - III +

Polycera spp. Mollusca - III +

Rocellaria dubia Mollusca - I II + + + +

Tritia incrassata Mollusca - II I + + + +

Tritia reticulata Mollusca - II + + +

Phoronis Phoronida - II +

Aplysina spp. Porifera - IV + +

Axinella damicornis Porifera - III +

Axinella sp. Porifera - III +

Cliona celata Porifera - III I + + +

Crustose porifera Porifera -

Demospongiae Porifera - + + + +

Grantia compressa Porifera - +

Halichondria sp. Porifera - II + +

Leucosolenia sp Porifera -

Myxilla sp. Porifera - II +

Pachymatisma johnstoni Porifera - III

Sycon sp. Porifera - I II + + + + + +

I C1 C2 C3

Macrofauna
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Supplementary material 2: Cluster analysis dendrograms computed on macroalgae assemblages (a), 

morpho-functional groups (MFG) (b) and Ecological Status Groups (ESG) (c) in the upper infralittoral 

zone. 
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Supplementary material 3: Cluster analysis dendrograms computed on macroalgae assemblages (a), 

morpho-functional groups (MFG) (b) and Ecological Status Groups (ESG) (c) in the upper circalittoral 

zone. 
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Supplementary material 4: MFG (a, c) and ESG (b, d) identified by SIMPER analyses as significant 

contributors (p-value <0.05 %) to the dissimilarity between impacted and control locations computed 

on the upper infralittoral (a, b) and circalittoral zones (c, d).  
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Supplementary material 5: Cluster analysis dendrograms computed on macrofauna assemblages (a), 

phylum (b), Ecological Groups (EG) according to Borja et al. (2000) (c) and Sensitivity Groups (SG) 

according to Sartoretto et al. (2017) (d) in the upper infralittoral zone. 
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Supplementary material 6: Cluster analysis dendrograms computed on macrofauna assemblages (a), 

phylum (b), Ecological Groups (EG) according to Borja et al. (2000) (c) and Sensitivity Groups (SG) 

according to Sartoretto et al. (2017) (d) in the circalittoral zone. 
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General discussion - Conclusion  
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As results were already discussed within each chapter/article, this last chapter highlights remarks that 

have raised during this study and also lay out several prospects and/or recommendations. This study 

allowed to have a first insight of the potential impact of WWTPs on coastal environment, and more 

specifically on benthic communities of the southeastern Bay of Biscay along the Basque coast. 

Therefore, a number of points could be improved, confirmed or thorough therewith to reach firm 

conclusions. This chapter is structured according to the problematics posed at the beginning of the 

study. Remarks, prospects and/or recommendations listed in Tables 1 and 2 are thus detailed within 

each below parts. This final section deals with the general issue of the present work and the usefulness 

of this research to improve knowledge on the good ecological status of coastal waters and the 

conservation status of habitats for the maintenance of biodiversity.   

1. Which micropollutants (and in what amount) are rejected into the Ocean through WWTPs?  

This study highlighted the main substances released into the environment through WWTP discharges 

along the Basque coast. But, only WWTPs rejecting into the Ocean on rocky substratum were studied. 

Therefore, even though this allowed to have a first insight of the occurrence and concentrations of 

micropollutants in wastewater effluents, this cannot be generalized to the whole Basque coast. Indeed, 

two other WWTPs exist along the coast and are rejecting on sandy substrata (one in Biarritz with 

69 673 PE and one in Bidart with 19 238 PE). Four other exist along the Adour river (two in Bayonne 

with 112 715 and 53 118 PE and one Lahonce with 2 516 PE and Urt with 2 221 PE) which are connected 

to the Ocean by an estuary located in the extrem northern Basque coast (without counting other 

WWTPs rejecting in the upper reaches) (www.assainissement.developpement-durable.gouv.fr). It 

would be thus interesting to do other sampling for chemical analyses in these several WWTPs with the 

aim to have a more accurate idea of the ‘WWTP’ pressure impacting this coastal area. In addition to 

experimental analyses (to study treatment process efficiency on one substance or on a group  of 

substances considering reactivity and mixture effects) and to analyses that could be achieved on 

influents as well as on effluents (to calculate removal rates), this would also allow to confirm 

highlighted assumptions concerning treatment process efficiency (which constitutes another 

problematic). Apart from analytical constraints these analyses may involve (time of filtration, matrix 

effects, etc.), all these additional analyses (experimental and others) could anyway provide guidance 

for the future in the treatment process implementation. 
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Table 1: Summary of main findings and remarks highlighted at the outcome of the present study. In 

tables showing main contributors, purple algae are those identified as opportunistic species and grey 

ones as characteristic within the WFD (de Casamajor et al., 2016; de Casamajor and Lissardy, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biological and ecological metrics:
- Assemblages (macroalgae + macrofauna) using

multivariate analyses = efficient to discriminate the
potential WWTP impacts

- Macroalgae and macrofauna MTR (separately) = no
helpful to discriminate the potential WWTP impacts

- The "macroalgae" WFD quality index = sensitive to
such a pressure

- Impacted locations = "Moderate"
- Control locations= "Good"

- Some species were not identified at
the species level

- Reported concentrations were either
expressed on a dry wieght basis or
on a wet weight basis  difficulties
when comparing

- Unfortunately, metal and AP
concentrations from wastewaters
were not compared to those in biota
samples

- Difficulties were encountered for monitoring
macrofauna  seemed not to appear as a suitable
bioindicator in such a habitat

- Difficulties were sometimes encountered to implement
the sampling design in locations where habitat was
heterogeneous (i.e. pools, different distances from the
outfall)

- A pseudo WFD index (with only 12 quadrats) was
calculated to assess the ecological quality at the site
scale

- It is possible to note that species mainly present in
impacted locations were not all identified as
opportunistic

- It is important to note that: species defined as
characteristic were not necessarely sensitive

- Only WWTPs rejecting on rocky substratum (platforms)
were studied along the Basque coast

- Metabolites were not tanken into account

- Pharmaceuticals were only analyzed on the dissolved
phase

Biological and ecological metrics:
- Macroalgae and macrofauna assemblages, functional traits

and ecological groups using multivariate analyses (separately)
= present no significant effect of such a WWTP pressure

- The "macroalgae" WFD quality index = sensitive to such a
pressure

- Impacted locations = "Poor"
- Control locations = "Good"

- The two quality indices based on macrofauna = present no
significant effect of such a WWTP pressure

Substance families:
Metals > Pharmaceuticals > Musks > APs > Sunscreens >
PAHs > OCPs > PCBs > Organomercury compounds
 From 0.7 to 24 557.2 ng.L-1 (Total mean concentrations)

Main substances per analytical group:
Vanadium > Chromium > Hydrochlorothiazide > HHCB >
Oxazepam > Caffeine > Diclofenac > NP > HHCB-lactone >
OC > Naphthalene > IHg > PCB 138

Temporal variability (Metals & organic substances):
[C]August > July - December
↘ precipitations + ↗ pop.

Spatial variability (Metals & pharmaceuticals):
[C]Urrugne > Hendaye - Erromardie - Ondarroa > Guéthary
 Urrugne Э separated sewer system + ↗ PE + Biofiltration

Э activated sludge treatment
 Hendaye ≈ Erromardie ≈ Ondarroa
 Guéthary Э ↘ PE + activated sludge treatment +
membrane filtration + UV treatment
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Continental / Coastal Intertidal Subtidal

Wastewater from wastewater
treatment pant discharges

Benthic communities
(macroalgae and macrofauna)

Benthic communities
(macroalgae and macrofauna)

Communities’ response Communities’ response

Biological elements:
- Macroalgae = good bioaccumulators,

especially Gelidium spp.

- Macrofauna = present several
technical and biological drawbacks

Bioconcentration ability (especially for

pharmaceuticals):
 Ulva spp. > Gelidium spp. > Mytilus
spp. > Holothuria spp. - Patella spp. -
Porifera

Bioaccumulation of micropollutantsConcentrations of micropollutants
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Which micropollutants (and in what amount) are rejected
into the Ocean through WWTPs?

Are intertidal rocky benthic communities affected by 
WWTP discharges? Are current WFD indices enough

sensitive to study such a pressure? 

Could benthic communities constitute a 
good bioindicator/accumulator of such 

a pressure? 

Are subtidal rocky benthic communities affected by WWTP 
discharges? Are current WFD indices enough sensitive to study

such a pressure? 

Main contributors
Main contributors

Do WWTP discharges constitute a source of micropollutants into the Ocean along the Basque coast and do they impact rocky benthic communities?

- Gelidium spp. exhibited a higher abundance in the impacted
locations while it was considered as an indicator of the good
ecological status within the WFD and was found in unpolluted
habitats in Spain (Díez, 2003)

- Some remarks have been raised about the WFD protocol:
• The EQR was calculated only according to the upper

infralittoral (N2) while it is normally calculated by
averaging EQRs of the N2 and the lower infralittoral (N3)
because the N3 was not found this year

• It has not been possible to calculate the EQR for the upper
circalittoral (N4) because up to now no metric has been
set for this zone

- A problem might arise in the case of the impact comparison
between different WWTP discharges: at a same depth, the
distance from the outfall might not be similar (i.e. different
bathymetrie and topography). Similarly, controls should also
have the same topography

- Quantitative and precise results
- Undebatable results
- A data base rather easy to statistically analyze and/or

interpret
- Sampling and analyses require only 1 person (a

technicien or an engineer)

- We find what we are looking for (not more)
- Not representative of the general situation  provides

only a snapshot of the situation at the instant (+/- 24h)
of sampling

- Results may widely varied according to WWTP and
season

- Analytical analyses are expensive and time consuming
- Analytical analyses may be difficult according to the

matrix
- Requires technical abilities
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- Takes into account all species
- Species reflect both previous and present local

conditions to which they have been exposed
- Existence of a standardized protocol (the WFD index)

which provides quantitative and qualitative results
- Non-destructive

- Communities’ modifications may take time and
communities may thus not reflect the reality at a given
moment

- Field sampling dependant on field and weather
conditions (e.g. habitat heterogeneity, wave, wind and
tidal conditions)

- Sampling requires at least 2 persons
- The WFD index does not included yet macrofauna in

the EQR calculation
- Apart from the WFD index, various methods exist to

analyze the data which makes results debatable and
difficult to compare

- Requires biological abilities

- Quantitative and precise results
- Undebatable results
- Analyses require only 1 person (a

technicien or an engineer)
- Reflects conditions to which species

were previously exposed

- We find what we are looking for
(not more)

- Sampling requires from 2 persons
to 4 persons

- According to the matrix and the
analytical group, no validated
method exist

- Results debatable and difficult to
analyze (low number of samples,
missing values)

- Analytical analyses are expensive
and time consuming

- Destructive
- Requires biological and technical

abilities

- Takes into account all species
- Species reflect both previous and present local conditions to

which they have been exposed
- Existence of a standardized protocol (the WFD index) which

provides quantitative and qualitative results
- Non-destructive

- Communities’ modifications may take time and communities
may thus not reflect the reality at a given moment

- Field sampling dependant on field and weather conditions
(e.g. turbidity, habitat heterogeneity, wave, wind and tide
conditions)

- Sampling requires human (at least 4 persons), financial and
material ressources (a boat and dive devices)

- The WFD index does not included yet macrofauna and N4 in
the EQR calculation

- Apart from the WFD index, various methods exist to analyze
the data which makes results debatable and difficult to
compare

- Requires biological and technical abilities

Impacted locations/sites Control loc. or less impacted sites

Upper

midlittoral

zone

               - Ceramium  spp.

               - Caulacanthus  ustulatus

               - Corallina  spp.

               - Lithophyllumincrustans

               - Laurencia obtusa

               - (Osmundea pinnatifida)

               - (Halopteris scoparia)

Lower

midlittoral

zone

               - Ceramium  spp.

               - Corallina  spp.

               - Halopteris scoparia

               - (Cystoseira tamariscifolia)

               - Chondria coerulescens

               - Codium adhaerens

Fr.

Sp.

Sp.

Fr.

Fr.

Sp.

Fr.

Sp.

Impacted locations Control locations

Upper

infralittoral

zone

       - Gelidium corneum

       - (Mesophyllum lichenoides)

       - (Corallina spp.)

       - (Plocamium cartilagineum)

       - (Nithophyllum punctatum)

       - (Gymnogongrus griffithsiae) 

       - (Lithophyllum incrustans)

       - (Jania rubens)

       - (Cystoseira baccata)

       - (Halopithys incruva)

       - (Halopteris scoparia) 

Upper

circalittoral

zone

       - Metacallophyllis laciniata

       - (Drachiella spectabilis)

       - (Pterosiphonia complanata)

       - (Calliblepharis ciliata)

       - (Halymenia latifolia)

       - (Phyllophora crispa)  

       - (Heterosiphonia plumosa)

       - (Rhodymenia pseudopalmata)

       - (Dictyopteris polypodioides)

       - (Halopteris filicina)

       - (Lithophyllum incrustans)
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Table 2: Summary of prospects and improvements identified at the outcome of the present study. 

 

 

 

 

 

 

 

 

 

 

 

The analytes selected in the present work were the most common studied in the literature. But, 

nowadays, micropollutants are not routinely assessed in WWTP influents or effluents and analytical 

groups are often separately studied or with a small set of analytes especially due to the high costs and 

the time required for analyses (Busetti et al., 2005). This explains that analytical methods for some 

groups are still currently under development. Among the 127 analyzed analytes, 111 were detected 

and quantified in wastewater samples but it seems important to keep in mind that only investigated 

analytes were detected. Therefore, other substances could also be found and maybe even in higher 

concentrations. In addition, it has been noted that some pharmaceutical compounds detected in high 

concentrations were supposed to be completely or partially metabolized by human body in addition 

to transformation occurring during the transport to the treatment plant or during the treatment 

process (Deblonde et al., 2011; Lishman et al., 2006; Zuccato et al., 2005). This raises the question to 

the quantity of metabolites rejected into the environment in addition to the parent compounds. As 

metabolite concentrations could be found in much higher concentrations, it would be interesting to 

analyze them in wastewaters because they could have a lower, the same or a higher impact than 

parent compounds on the aquatic environment (without even considering mixture effects). The 

transformation level is also important to consider because parent compounds could be 

underestimated if transformation occurs before or during the treatment process (Lishman et al., 2006). 

Finally, some pharmaceutical compounds were identified as rather hydrophobic while the analyses 
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Wastewater from wastewater
treatment pant discharges

Benthic communities
(macroalgae and macrofauna)

Benthic communities
(macroalgae and macrofauna)

- Identify potential sources of highlighted substances to
suggest source control options

- Make further researches on medical facility treatment
processes (hospital, nursing homes, veterinary clinics, 
etc.) in the light of the results obtained

- Make experimental analyses to study the effect of
treatment processes on removal efficiency of
substances

- Make the analyses on wastewater from influents to
calculate the removal rate of each analytical group and
analyte and confirm treatment process efficiencies
highlighted in this study in this case, be careful to the
duration of the analyses (especially for filtration) and to
the matrix effect

- Analyze in influents and effluents major metabolites
(according to the bibliography) whose parent
compounds are supposed to be completely (or almost)
metabolized within the human body or during the
transport towards WWTPs

- Think on how routinely implemented these analyses?

- Highlight substances that could be integrated in
regulatory lists

- Study the dilution effect once these substances are
rejected into the Ocean through WWTP outfalls by
doing the sampling at different distances from the
outfall  in this case, be careful to the high sample
salinity which could pose some analytical problems

- For macrofauna, think about:
• Another habitat (e.g. boulder fieds; cf. Article in

Annex) if emissaries are located on platform
habitat

• Another sampling method (i.e. microfauna with
submarine vacuum cleaner)

• Another way to monitor or analyze them (make a
list of species with high ecological interest; cf.
Article in Annex)

- As a list of rather sensitive taxa may be achieved
according to the above table, think about how
integrate these taxa in WFD monitoring in addition to
those defined as characteristic

- Make experimental analyses to:
• Confirm the bioaccumulation 

capacity of selected species
• Study the potential adverse 

effects (including
mixture/chronic effects) of 
released substances on these
species

- Study the biomagnification process

- Highlight substances that could be
integrated in regulatory lists for
biota

- Think on how routinely
implemented these analyses?
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- As for the intertidal zone, think about how include fauna in
such a habitat

- About the WFD:
• Think about how integrate the circalittoral zone (N4) in

monitoring and/or adapt current metrics to be able to
assess the ecological status of the whole water body based
on the N2, N3 and N4

• It would be maybe preferable to fixe different depths
(which will be the same at each sampling campaign) and
after note the corresponding algal belt instead of to do the
reverse. This would allow to have a balanced sampling for
statistical analyses and thus to easily analyze the temporal
variability even an algal belt is missing one year

- Make further sampling to study the dilution effect by doing
quadrats at different distances from the outfall and at the same
depth and compare results with chemical analyses achieved on
seawater samples  this could allow to focus the sampling on
a smaller area
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were achieved only on the dissolved phase. Their concentrations may have thus been underestimated. 

Consequently, even though pharmaceutical concentrations were detected in higher concentrations 

than other analytical groups, if metabolites and compounds associated to the particulate phase were 

taken into account, their concentrations would maybe be even higher. In addition, even if additional 

researches could be achieved to know the dilution effect of the Ocean (by doing several samples at 

different distance from the outfalls), it would be interesting to do further ecotoxicological researches 

on these main micropollutant to know the fate and the reactivity of parents compounds and 

metabolites and their potential environmental effects once they are rejected in the environment. 

Indeed, several factors such as photodegradation, geochemical gradient, suspended matter 

interactions could affect their transformation and their effects on the environment.  

In parallel, further researches could be made on micropollutant sources. Indeed, treatment processes 

could be the best they can be, if sources are not controlled and regulated, the discharge problem will 

be persistent because there will always be a time lag between reality, legislation, monitoring and 

restrictions. Therefore, the better alternative to the constant improvement of treatment processes 

would be to identify the potential sources of the main released substances to suggest source control 

options and mitigating. For example, as pharmaceutical compounds appeared as one of the more 

concentrated analytical group, further researches could be achieved on medical facility treatment 

processes (hospital, nursing homes, veterinary clinics). The Decision n° 2008-DC-0095 which fixes the 

technical regulations about the removal of effluents and radionuclides contaminated wastes, have 

already set two types of liquid wastes management which mainly come from hospitalized patient 

toilets (Decision, 2008). The first one concerned effluents containing radionuclides with short reactive 

periods (less than 100 days) and the second one those containing radionuclides with long reactive 

periods (more than 100 days). In the first case, wastewaters are stocked into a tank with the aim to 

decrease their reactivity. Then, according to their physico-chemical nature, there are either transferred 

towards the sewer system or added to chemical solvent wastes. In the second case, they are 

conditioned, stocked and retrieved by the National Agency for Radioactive Waste Management 

(ANDRA) (Decision, 2008). Consequently, all other pharmaceutical compounds seemed not to be 

treated before their release into the sewer system. It would be thus interesting to do some analyses 

on their discharges to know if hospitals constitute a main source of pharmaceuticals into the water 

cycle. If so, it would maybe be interesting to reflect on potential pre-treatments that could be added 

before their release in the sewer system.  

Finally, the aim of the present research and of suggested additional researches would be to highlight 

compounds with the highest environmental risks (taking into account resilience capacity of the 

environment) and/or with low removal rates which would allow to complete regulatory list (EQS) and 
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set up monitoring. But, up to now, the most common method for measuring micropollutant 

concentrations is spot sampling followed by chemical analyses which are expensive and time 

consuming. Therefore, it seems important to reflect on alternative quantitative or qualitative analyses 

that could be routinely implemented (e.g. passive samplers) (Mills et al., 2011). They must be based 

on a compromise between the number and the accuracy of analyzed data and the feasibility in terms 

of costs and time while being as representative as possible of the reality. 

2. Are intertidal rocky benthic communities affected by WWTP discharges? Are current WFD 

indices enough sensitive to study such a pressure?  

Even if macroalgae were identified as a relevant biotic component to study impact of WWTP 

discharges, macrofauna appeared as not sensitive to this pressure mainly because it does not appear 

as suitable bioindicator in such a habitat (i.e. rocky platforms). Indeed, this habitat was not favorable 

to macrofauna settlement due to the lack of hiding places and of canopy-forming macroalgae. For 

example, macrofauna mean taxonomic richness was associated in this study to low values and high 

standard deviations. Therefore, it seems difficult to include macrofauna communities monitoring in 

this habitat even though its consideration constitutes one of the MSFD requirement. Indeed, the 

importance to consider this biological element, in addition to macroalgae, has already been highlighted 

(Vinagre et al., 2016a). Macrofauna is playing a key role in water quality for the conservation status 

and functional aspects on the environment (de Casamajor et al., 2016) and, its simultaneous 

monitoring with macroalgae allows to better reflecting the complexity of the ecosystem (Van Hoey et 

al., 2010). We should thus reflect on another methodology to monitor macrofauna. Different 

possibilities might be suggested:  

- Focus only on taxa identified as having a high ecological interest or identified as good 

bioindicators,  

- Monitor microfauna in addition or instead of macrofauna (using submarine vacuum cleaner), 

- Focus on fixed macrofauna, 

- Focus on soft sediment macrofaune (if emissary is located on those sediments).  

This latter suggestion could be maybe a good alternative to sampling the entire local macrofauna 

biodiversity. Indeed, contrary to mobile macrofauna which often constitutes a snapshot in space and 

time due to its mobile capability (Davidson et al., 2004; Takada, 1999), study fixed/sessile macrofauna 

could constitute a more precise descriptor of recruitment and mortality in response to environmental 

changes because it cannot redistribute themselves (Chapman et al., 2009). In the context of studying 

chronical impact of WWTP discharges or of assessing the ecological status of water bodies over longer 

period, this possibility could be thus suitable. Additional selection criteria could also be made among 



214 

the fixed taxa (e.g. sensitive species, species with high ecological interest, species at a specific level in 

the food chain). 

Even though WWTP outfalls of the present study were located on rocky platforms, another habitat 

appeared interesting to be considered in the context of European Directives. The habitat in question 

is boulder fields, considered as a community interest habitat according to Habitat Directive (EEC, 1992; 

92/43/CEE) (https://inpn.mnhn.fr). Indeed, this habitat, constituted by rock, gravel and soft sediment, 

may contain a high diversity (Le Hir and Hily, 2005). Even if boulders may regularly be overturned by 

waves affecting algae and invertebrates settlement (Bernard, 2012; Sousa, 1979), they provide anyway 

more hiding places for macrofauna contrary to rocky platforms. This was confirmed by brief analyses 

achieved on unpublished data collected in 2016 on three intertidal locations along the Basque coast 

(Guéthary, Saint-Jean-de-Luz and Socoa). This aim was to compare macrofauna diversity between both 

rocky habitats (i.e. platforms and boulder fields). The same sampling design as the one employed on 

boulder fields in Huguenin et al. (2018) was used. In addition, quadrats were also achieved on the 

upper side of platforms. 462 quadrats were performed and allowed to identify a total of 126 

species/taxa: 39 macroalgae, 18 fixed macrofauna and 69 mobile macrofauna. Diagrams in Annex 7 

allowed to visually compare the mean taxonomic richness between locations and between both rocky 

habitats. These analyses showed that the mean taxonomic richness of both fixed and mobile 

macrofauna (Tables 1 and 2) was always significantly higher in boulder fields than in platforms and 

that no significant difference was detected between locations presenting the same rocky habitat. Even 

though further analyses should be made to complete these first findings, this constitutes a first 

element confirming the interest to study macrofauna in boulder field habitat instead of on rocky 

platforms. Nevertheless, it is important to note that the current WFD monitoring (intertidal and 

subtidal macroalgae protocols) is applied solely on rocky platforms. Therefore, if the interest of 

monitoring macrofauna in such a habitat is confirmed, in-depth reflection should be made to try to 

include this approach within the current WFD monitoring and to link it to the ‘WWTP’ pressure if some 

emissaries are located in this habitat. 

Finally, the current WFD protocol which considers only macroalgae and which is applied on locations 

far away from any disturbances to assess the ecological status of the whole water body, appeared 

sensitive to detect the impact of the ‘WWTP’ pressure. Therefore, to have a global view of the 

ecological quality, it could be interesting to not only consider locations supposed as non-impacted but 

also to consider quality of coastal zones. They could be either impacted by anthropogenic pressures or 

supposed as rather non-impacted. Indeed, it is anyway important to note the difficulty to find pristine 

controls, especially along the Basque coast where a number rivers, WWTPs and bays exist. Variabilities 

within these locations could confirm this and be assigned to anthropogenic and/or natural impacts. 
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3. Are subtidal rocky benthic communities affected by WWTP discharges? Are current WFD 

indices enough sensitive to study such a pressure?  

In the present study, macrofauna did not seem to appear as a pertinent bioindicator in this rocky 

habitat. But, it is important to keep in mind that all organisms were not necessarily sampled (e.g. 

organisms < 5 mm) and all were not identified at the species level (e.g. Porifera, etc.).  

Concerning the current WFD protocol (applied only on macroalgae), several remarks have been raised. 

As the aim of this Directive is to assess the ecological status of the water body, consider the circalittoral 

(N4) in the EQR calculation would be interesting (even if this zone is already monitor since the sixties).  

Indeed, no metric has been yet established for this latter zone but it is currently under consideration 

with the aim to do a retro calculation up to 2014. This would allow to consider this additional zone it 

in future EQR calculations and thus to have a global view of the ecological quality of the water body. 

In addition, the same remark was made when a zone was exceptionally not found one year. This was, 

for example, the case in 2017 where the lower infralittoral zone (N3) was not found. In this case, the 

EQR calculation was only based on one zone which appears a little bit restrictive when the objective is 

to consider the whole water body. The problem of ‘missing zone’ mainly occurs because the sampling 

is essentially based on algal belt definition. Of course, this approach is really important to be able to 

do spatial and temporal comparisons. Indeed, this cannot be made if sampling was achieved in 

different algal belts (communities would inevitably be different). But, using this approach, the design 

may be unbalanced between years in case of missing data. Statistically, this poses some problems 

because some multivariate analyses and statistical tests, such as analysis of variances (ANOVA, 

parametric multivariate statistical test) or permutational multivariate analysis of variance 

(PERMANOVA, non-parametric multivariate statistical test) are not robust for unbalanced designs 

(Anderson, 2014). To deal with this, it would be better to fixed a priori different depths that will be 

sample each year by taking care (thanks to preceding campaigns) to have at least one depth in each 

algal belt even if the main risk by doing this could be to sample several times the same algal belt. 

Ideally, the best would be to sample, year by year, same depths in same algal belts, to be as accurate 

as possible. In this case, even if one algal belt is not found one year, the design would anyway be 

balanced because all depths would have been sampled and analyses may thus be done. In the case of 

the present study, which had the aim to compare the ecological status of locations currently followed 

within the WFD with the one of locations impacted by WWTP emissaries, it would have been better to 

have fixed depths (which was already proposed by Derrien-Courtel, 2008). This would have allowed to 

compare more depths in the present study. Indeed, some algal belts may not be found due to a too 

narrow algal belt to be defined maybe influenced by the presence of the wastewater discharge. For 

example, it may be difficult to find some algal belts close to the emissary especially because they are 
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based on presence/absence and abundance of Cystoseira spp. which is a sensitive alga. Moreover, this 

could also be due to the presence of sediment leading to a truncated lower limit of the N2 (upper 

infralittoral) and/or the absence of the N3 (lower infralittoral) (Derrien-Courtel and Le Gal, 2014a). 

Finally, it is important to note that, in the case where the study of WWTP discharges on benthic 

communities continues, and where other subtidal emissary are added to the study, another problem 

might arise and should be considered: at a same distance from the emissary, depths between the 

different locations might be different (according to the location topography).  

Following this study, it has been noted that the red alga, Gelidium spp. (mainly G. corneum) exhibited 

a higher abundance and larger and more vigorous fronds (dark red pigmentation) in the impacted 

locations. This was especially the case in the subtidal zone where this species was identified as the 

main contributor of dissimilarities between impacted and control locations with higher abundances in 

the impacted ones. The same was observed in the intertidal zone (especially in ‘WWTP 4’ location) 

even if this species was not identified as significantly more abundant in the impacted zones. This was 

a little surprising in view of the fact that this species, described as a dominant foundation species in 

the south-eastern Bay of Biscay (Quintano et al., 2019), was identified as indicator good ecological 

status within the WFD (de Casamajor and Lissardy, 2018) and as essentially found in unpolluted 

habitats in Spain (Díez et al., 2003). The sensitivity of this algae to irradiance was studied by Quintano 

et al. (2019). The authors highlighted that light conditions may play a role in the increase or decline of 

G. corneum because the stress response of this alga increased at higher irradiance levels. In the context 

of WWTP discharges, Gelidium spp. is probably more positively impacted by other factors related to 

sewage discharges: nutrient enrichment, turbidity, increased sedimentation, decreased salinity 

(Azzurro et al., 2010; Terlizzi et al., 2005). For example, G. corneum was already reported as increasing 

in sites with extra loads of nutrient and turbidity (Díez et al., 2012b). Another study which investigated 

the effects of several factor interaction (such as temperature, photosynthetic irradiance, UV radiation, 

nutrient availability) on the acclimation capacity of this alga, also highlighted a positive effect of 

nitrogen supply on its photosynthesis performance (Miguel-Vijandi et al., 2010). Consequently, even 

though this species was described as indicator of good ecological status, it would seemed that it would 

rather be a sign of disturbance in this area.  

Finally, as suggested for chemical analyses, further quadrats positioned at different distances from the 

outfall (at the same depth) could be achieved to study the dilution effect (mainly linked to high 

energetic hydrodynamic conditions in this area) on assemblage structure and thus to know if 

assemblages follow the dilution gradient. Thus, if the study of the impact of WWTP discharge on 

benthic communities routinely and over longer periods is implemented, this would allow to delineate 

a smaller sampling area around the outfall. 
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4. Could benthic communities constitute good bio-accumulator/indicator of such a pressure?  

Even though species selected for the bioaccumulation analysis were chosen due to their presence in 

most of locations, their relatively ease of sampling and their sufficient amount of matter, some 

difficulties were anyway encountered during the sampling. Indeed, it was rather difficult to find 

organisms providing sufficient amount of matter and being present in most of location even if some 

were widely reported as good bioaccumulator (e.g. mussels). For example, some organisms were 

either too small (e.g. mussels) or too sensitive to be collected at the outlet of emissaries while they 

presented sufficient amount of matter (e.g. Cystoseira tamariscifolia in the intertidal zone). We are 

aware that the number of samples was limited for this study but we have faced to field reality and 

constraints. That is why, this study allowed to identify species that could be interesting to be followed 

in such a context including technical constraints. The best bioindicators appeared to be Ulva spp. and 

Gelidium spp. which were also identified as a good indicator of WWTP disturbance according to the 

ecological approach. Further experimental analyses would be necessary to confirm its bioaccumulation 

capacity and explain its presence essentially proximate to WWTP discharges. The experiments should 

be made by taking into account mixture and chronic effects of different substances that were identified 

during the present study. Finally, as main bioacculumators were primary producers (Ulva spp. and 

Gelidium spp.), additional researches would be also interesting to do to explore potential 

biomagnification process up the food chain.   

As some substances (i.e. metals and APs) were not analyzed in biota samples (due to a lack of time and 

the absence of validated analytical method), it would be interesting to do further efforts to analyses 

the missing substances in this matrix or develop analytical methods particularly because these 

substances were identified in high concentrations in WWTP effluents (especially for metals). Therefore, 

they would have great chances to be also detected in the organisms collected close the outfalls. 

In general manner, and as for wastewater analyses, it appeared that analyses were expensive and time 

consuming. Consequently, it is important to consider these parameters in addition to the fact this 

approach is destructive, if this approach is kept in the future to monitor the WWTP discharge effects 

on coastal environment. Moreover, these first findings associated to those of additional suggested 

analyses, could allow to complete regulatory list establishing limits that have not to be exceeded in 

this matrix. It seems also important to perform the analyses on wet weight basis instead of on dry 

weigh basis to be able to do precise comparison with current regulatory limits but, in this case, 

analytical methods should certainly be reviewed, optimized and validated.  
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5. Do WWTP discharges constitute a source of micropollutants into the Ocean along the Basque 

coast and do they impact rocky benthic communities? 

This study provided, for the first time in this area, a first insight of the occurrences and concentrations 

of priority and emerging substances in WWTP discharges and their potential impact on rocky benthic 

communities in the southeastern Bay of Biscay. Results have highlighted: 

- Main released substances (or group of substances) into the Ocean by local WWTPs,  

- Species identified as good bioindicators and/or bioaccumulators of the ‘WWTP’ pressure in 

this coastal area and, 

- Assessment tools (validated and already commonly used) that appeared as enough sensitive 

and thus useful to assess the ecological impact of such a pressure on coastal biodiversity.  

The two approaches followed during this study (chemical and ecological ones) presented each, some 

strengths and weaknesses (Table 1) but they appeared to be anyway complementary even though the 

link between both may be sometimes difficult to be made (due to technical constraints and difficulties 

to distinguish natural variability to anthropogenic impacts). The ecological approach highlighted the 

potential impact of the ‘WWTP’ pressure on all benthic communities and identified some species 

considered as indicator of polluted or unpolluted environment. By contrast, the chemical approach 

provided quantitative data (concentrations) on a specific number of analytes from wastewater samples 

and from a restricted selection of species. In both cases, it has been seen that results of one of both 

approaches could allow to confirm findings of the other one or help its implementation. Therefore, 

this work provides a framework for future monitoring and highlights ways that should be deepen 

explored in order to confirm present results and suggestions. The objective in the future will be thus 

to reflect upon how to implement such analyses in monitoring (adapted and applicable to the whole 

Atlantic coast) while reflecting as much as possible the reality (communities and habitat health status), 

by being simple to apply and easily understood, relevant in the context (fulfilling the regulatory 

requirements) and acceptable in terms of costs and time.   
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Annex 1: Details of each key dates presented in the chronology of major Conventions, European Directives and French laws about water, aquatic 

environment and chemical substances impacting them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Beginning of chemical pollutants regulation in water

- Establishes a general regulation for the elimination of certain dangerous 
substances

- 2 lists containing 150 substances discharged into the aquatic 
environment:
* List I: Dangerous substances according to their toxicity, persistence 

and bio-accumulation
* List II: Less hazardous

(Briand et al., 2018; EEC, 1976)

(2)

- Establishes (with the second French water law) a framework for an 
integrated water management per water catchment

- Creates the 6 Water supply Agencies which have the principal mission of 
redistributing aid from the feed collected from all industries and 
individuals impacting water resources (Barataud, 2014)

- Aims to decrease pollution from all sources and protect water resources
and aquatic environment

(1)

- Establishes the first bases of sewage treatment by fixing types of 
treatment and deadlines to protect aquatic environment from 
wastewater discharges (Briand et al., 2018)

- Imposes on all Member states:
* to collect and treat urban wastewaters prior to reject them into the 

environment
* to ensure that total quantities of toxic, persistent or 

bioaccumulative substances of WWTP sludge have to be subject to 
authorization and progressively reduced (EEC, 1991)

(3)

- Promotes the maintenance of biodiversity the conservation of natural 
habitats and wild fauna and flora (EEC, 1992)

- Establishes the EU wide Natura 2000 ecological network of protected 
areas (EEC, 1992)

- Protects in various ways 200 habitat types and 1 000 animal and plant 
species (EEC, 1992)

- Supports the European Red Lists of Threatened Species elaborated by 
the IUCN (EEC, 1992)

(5)

- Concluded on behalf of the EU (formerly called European Community) 
(Convention, 1992)

- From the merged between the Oslo Convention (1972) and the Paris 
Convention (1974)

- Initiated to protect and monitor the marine environment from pollution 
and adverse effects of human activities in the North-East Atlantic 
(Convention, 1992)

- 5 thematic strategies (Biodiversity and Ecosystems, Eutrophication, 
Hazardous substances, Oil and Gas offshore industries and Radioactive 
substances)

- Highlights worrying substances for marine environment according to 
their persistence, bioaccumulative and toxic features (Convention, 
1992)

- Lists 28 substances or groups of substances (with a further 264 
compounds) as contaminants of possible concern (Miller, 2018).

(6)

- First time that attention to the environment itself and the notion of 
ecosystems appeared (Barataud, 2014)

- Introduces the notion of point-source of pollution (Barataud, 2014)

- Establishes new water management tools in order to define guidelines 
and objectives to attain the GEQ:

* the SDAGE, a management plan at the catchment areas scale
* the SAGE, the Water Development and Management Plan at 

the catchment area unit scale (EC, 2000)

(4) - Standardizes policies and implements a framework 
for the assessment, management, protection and 
improvement of the quality of water resources and 
aquatic environment at the European scale (EC, 2000; 
European Environment Agency, 2018a)

- Good Ecological Quality of European surface waters 
and groundwater achieved by 2020

- Established at the catchment areas scale 

- Assessment of status of surface and groundwater 
achieved through:

* Ecological status
* Chemical status

- Establishes provision for a list of Priority Substances
(Annex X of the Directive) 

(7)

- Amends the WFD (EC, 2001)

- Establishes the First list of priority substances (33
among those 11 priority substances) 
(http://ec.europa.eu)

- Aims to stop or remove their discharge, emission and 
loss within 20 years (EC, 2001)

(8)

- Concerns the Registration, Evaluation, Authorisation 
and Restriction of Chemicals

- Regulates the assessment of their impacts on human 
health and the environment

- Imposes to industries to identify risks that marked 
and manufactured substances may have

(EC, 2006; European Environment Agency, 2018b)

(10)

- Translates the WFD at the National scale
(9)

- First French water regulations (Barataud, 2014)

- Organize ownership and usage of the water resource (Barataud, 2014)

- Aim to meet public health objectives (Barataud, 2014)

(*)
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- Strengthens regulatory tools for a better implementation of the WFD and the achievement of its requirements (https://www.eaufrance.fr)

- First time that the notion of non-point of pollution appeared in a French law (Barataud, 2014)

- Creates the French National Agency for Water and Aquatic Environments (ONEMA)  which accompanies the implementation of public water policy in France (Barataud, 2014)

(11)

- Amends previous Directives including the WFD (EC, 2008b)

- Establishes the list of 33 priority substances in Annex II as Annex X of the WFD (EC, 2008b)

- Fixes Environmental Quality Standards (EQS) for these substances and 8 other pollutants

- The proposal of 2011, amends the WFD and the EQSD and adds 15 additional priority substances (including 6 priority hazardous substances) (http://ec.europa.eu)

(14)

- Constitutes an extension of the WFD to all marine ecosystems (O’Connor, 2013)

- Aims to achieve or maintain the Good Ecological Quality (GEQ) of the European marine waters by 2021 (EC, 2008a)

- Proposes 11 environmental qualitative descriptors (Danovaro, 2016; Patricio, 2016; Borja, 2011)

- Established at the marine sub-regions scale

(13)

- Modifies the WFD and the EQSD and adds 12 additional priority substances (for a total of 45)
(EU, 2013; www.oreau.eu)

(16)

- Creates the French Agency for Biodiversity (AFB) regrouping:
* the ONEMA, 
* the Technical Workshop for Natural Areas (ATEN)
* the National Parks of France (PNF) 
* the Agency for Protected Marine Areas (AAMP)

(www.gouvernement.fr)

(18)

Presents:
- General conditions of application of the criteria for GES
- Criteria for GES relevant to the descriptors of Annex I to Directive 2008/56/EC (EU, 2010)

(15)

- Transposes the European Directive of May 21th 1991 into the French law

- Includes all technical prescriptions for sanitation systems (design, dimension, exploitation, purification performance, self-monitoring, control)

- Concerns all collective sanitations  and wastewater treatment plants as well as all un-collective systems receiving a DBO5 concentration higher than 1.2 kg/day  

(12)

- Replaces the French Decision of June 22th 2007

- Main modifications: 
* Introduces prescriptions about micropollutants monitoring in wastewater treatment plant discharges
* Regular monitoring by communities of their sanitation systems to ensure management over longer periods

(17)
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Annex 2: Extract of the Directive 2013/39/EU of the European Parliament and of the Council of 

12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in 

the field of water policy Text with EEA relevance.  
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Annex 3: Annex extracts of July 21th 2015 Decision about collective and un-collective sanitation 

systems (except un-collective sanitation systems with a DBO5 concentration lower or equal to 1,2 

kg/day).  
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Annex 4: Physico-chemical measures and analyses achieved on marine water samples collected off shore in front of studied locations (Unpublished data; 

Deborde J. (2019) “MICROPOLIT Report – Dynamique des sels nutritifs et de la matière organique dans le système fluvio-estuarien de l’Adour/Golfe de 

Gascogne”).  

 

 Months

Locations Location 5 Location 4 Location 3 Location 2 Location 1 Location 5 Location 4 Location 3 Location 2 Location 1 Location 5 Location 4 Location 3 Location 2 Location 1 Location 5 Location 4 Location 3 Location 2 Location 1 Location 5 Location 4 Location 3 Location 2 Location 1

Sampling time (am) 10:40 10:20 09:57 09:40 09:25 10:20 10:07 09:57 09:45 09:28 10:28 10:11 09:56 09:44 09:28 10:05 09:50 09:35 09:26 09:11 11:07 10:52 10:39 10:23 10:07

Sampling depth (m) - - - - - 8.0 13.0 10.0 12.0 6.0 8.0 16.0 26.0 13.0 12.0 7.0 15.0 25.0 11.0 12.0 5 14 23 9 9.6

pH 8.18 8.16 8.17 8.17 8.17 8.25 8.25 8.26 8.27 8.25 8.35 8.38 8.38 8.36 8.36 8.35 8.36 8.34 8.36 8.36 8.14 8.16 8.16 8.17 8.15

Oxygen saturation (%) 100.9 101.3 99.2 99.3 100.3 99.5 98.7 100.5 102.9 100.1 104.3 102.1 104.3 104.3 106 98.9 97.1 99.2 99.7 101.5 104.1 107.0 104.5 106.1 108.7

Conductivity (mS.cm-1) 54.3 55.0 55.1 54.4 54.6 45.9 45.3 45.9 46.9 46.5 40.0 39.8 40.2 39.6 40.6 52.97 53.66 53.30 53.46 53.62 62.42 62.21 61.68 62.00 61.91

Salinity (µg.L-1) 35.9 36.4 36.5 35.9 36.1 29.8 29.9 29.8 30.6 30.3 25.59 25.41 25.71 25.21 26.02 34.99 35.49 35.32 35.35 35.48 42.12 41.96 41.73 41.83 41.75

Temperature (°C) 12.4 12.4 12.3 12.3 12.3 15.1 15.2 15.1 15.3 15.5 22.25 22.13 22.21 22.01 22.24 22.82 22.8 22.6 22.7 22.9 16.49 16.61 16.63 16.75 16.76

∑ PO4
3- (µmol.L-1) 0.5 0.2 0.2 0.2 0.3 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.3 0.4 0.3 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.4 0.2

NO3
-  (µmol.L-1) 4.1 4.1 4.1 3.4 2.7 2.3 3.4 3.5 3.1 0.9 4.4 5.8 6.9 6.2 9.4 0.9 0.8 1.7 0.5 0.1 2.0 2.6 3.4 2.9 3.7

NO2
-  (µmol.L-1) 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2

Si(OH)4  (µmol.L-1) 3.6 2.0 2.1 4.0 3.5 4.0 4.6 4.9 2.9 3.5 3.5 3.2 3.2 3.2 2.0 0.2 0.5 1.6 1.0 0.4 2.2 2.2 2.9 2.7 2.8

NH4
+  (µmol.L-1) 0.8 0.5 0.6 0.9 0.6 0.7 1.0 0.4 0.2 0.1 0.5 0.6 0.7 1.0 0.5 0.3 0.2 0.2 0.4 0.4 0.4 0.3 0.3 0.4 0.8

∑Ninorganic 5.1 4.8 4.9 4.5 3.5 3.2 4.6 4.0 3.4 1.1 5.0 6.6 7.7 7.4 10.1 1.2 1.1 1.9 0.9 0.6 2.6 3.0 3.9 3.5 4.6

N/P 9.5 21.9 24.9 20.2 13.3 13.0 24.8 30.3 25.7 7.3 22.2 41.7 27.8 20.3 33.5 16.4 5.7 25.5 14.1 4.3 13.1 21.2 27.1 8.0 25.9

Si/P 6.7 8.9 10.7 18.0 13.5 16.4 24.6 36.9 21.5 22.7 15.3 20.0 11.6 8.6 6.8 3.3 2.5 21.5 15.4 3.0 11.2 15.8 19.9 6.1 15.7

Si/N 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

DOC (mg.L-1) 0.8 0.7 1.0 0.8 0.9 1.1 1.1 1.2 1.0 1.1 1.4 1.5 1.6 1.6 1.7 1.3 1.3 1.3 1.2 1.3 0.9 1.0 1.1 1.1 1.2

TN (mg.L-1) 0.1 0.1 0.1 0.0 0.3 0.2 0.2 0.1 0.1 0.0 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.2 0.1 0.2

DOP* (-PO4) 0.2 0.1 0.4 0.5 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.3 0.1 0.2 0.2 0.2 0.2 0.2 - - - - -

DON (TN-nut) 7.0 6.4 6.4 7.0 7.6 3.8 7.6 5.1 8.9 8.9 13.4 10.8 15.3 8.3 8.3 5.1 4.5 5.1 4.5 4.5 - - - - -

DIP/DOP 2.8 1.6 0.6 0.4 1.4 3.0 1.0 0.7 1.2 1.9 1.1 3.0 1.8 1.2 2.8 0.5 1.2 0.5 0.4 0.8 - - - - -

DIN/DON 0.7 0.8 0.8 0.6 0.5 0.8 0.6 0.8 0.4 0.1 0.4 0.6 0.5 0.9 1.2 0.2 0.2 0.4 0.2 0.1 - - - - -

Chlorophyl α (µg.L-1 or µg.g-1) 1.2 1.2 1.1 1.1 1.4 0.6 0.6 0.8 1.0 0.8 3.0 4.4 4.7 4.2 4.7 1.8 0.8 1.2 1.1 0.4 0.4 0.6 1.0 0.7 0.4

Phéo (µg.L-1 or µg.g-1) 0.3 0.3 0.4 0.4 0.2 0.2 0.4 0.2 0.5 0.5 1.8 1.0 0.9 0.7 2.5 0.8 0.3 0.3 0.4 0.6 0.6 1.2 0.0 0.6 0.3

SM (mg.L-1) 9.5 9.3 8.3 8.2 12.9 6.6 6.7 6.9 6.9 9.6 12.5 12.6 12.7 12.2 12.6 10.8 9.7 9.4 10.5 10.7 11.3 10.8 11.4 9.8 10.8

POP* (µmol.g-1) 3.5 3.8 3.9 4.2 2.5 6.9 7.6 7.4 8.5 8.6 25.8 19.8 17.4 19.1 24.2 8.2 12.3 16.7 17.4 11.2 - - - - -

PON (µmol.g-1) 53.6 36.7 61.1 51.8 32.8 83.3 82.1 67.4 67.5 48.8 37.3 151.4 80.0 157.2 134.4 47.3 30.7 45.0 40.5 39.7 - - - - -

POC (%) 0.7 0.6 0.6 0.9 0.7 1.6 1.2 1.4 1.8 1.1 5.8 5.3 4.4 5.1 6.7 2.5 2.1 1.9 1.8 1.8 1.0 1.3 1.2 0.9 1.0

TC (%) 2.2 1.4 1.1 1.0 0.6 >3 2.7 1.9 3.4 3.3 6.0 5.4 4.5 5.3 7.1 3.2 2.4 2.2 2.0 2.0 1.3 1.6 1.5 1.3 1.4

C/N 5.5 5.1 4.9 5.6 4.7 5.5 5.2 5.3 5.2 4.9 5.5 5.6 3.5 5.5 5.4 7.0 7.0 6.6 6.6 6.8 - - - - -

δ13C -24.4 -24.7 -23.4 -24.8 -24.3 -22.8 -22.1 -22.5 -22.1 -22.4 -19.3 -19.3 -19.4 -19.2 -18.9 -21.3 -20.5 -21.0 -20.8 -20.8 - - - - -

δ15N 1.2 0.6 0.4 1.0 -1.8 4.2 3.8 2.8 5.8 6.3 6.0 3.2 4.4 5.8 3.7 6.2 6.1 6.2 6.3 6.6 - - - - -

March 2018 May 2018 July 2018 August 2018 November 2018
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Annex 5: Physico-chemical structures and features of all micropollutants analyzed during the present 

study. Significance codes: AA-EQS: Annual Average Ecological Quality Standards, MAC-EQS: 

Maximum Allowed Concentrations, EQS (Biota): Biota Ecological Quality Standards, PHS: Priority 

Hazardous Substances; PS: Priority Substances; OS: Other substances considered as hazardous but 

not priority (Directive 2013/39/EU) and TEQ: Toxic Equivalency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name Formula Structure Prescription

ATC Code

CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility (mg.L-1)  

(Temperature °C)

Amoxicillin C16H19N3O5S

used to treat many different types of 

infection caused by bacteria, such as 

tonsillitis, bronchitis, pneumonia, 

gonorrhea, and infections of the ear, nose, 

throat, skin, or urinary tract

J01CA04 

26787-78-0

6719 

365.40

Health Hazard  Irritant

3 430 (25)

Ampicillin C16H19N3O4S

used to prevent and treat a number of 

bacterial infections, such as respiratory tract 

infections, urinary tract infections, 

meningitis, salmonellosis, and endocarditis

J01CA01

69-53-4

6759

349.40

Health Hazard  Irritant

10 100 (21)

Azithromycin C38H72N2O12

used to treat certain bacterial infections, 

such as bronchitis; pneumonia; sexually 

transmitted diseases (STD); and infections of 

the ears, lungs, sinuses, skin, throat, and 

reproductive organs

J01FA10

83905-01-5

7817

749.00

 Irritant  Health Hazard  Environmental Hazard

2.37 (25)

Ciprofloxacin  C17H18FN3O3

used to treat a number of bacterial infections 

(bone and joint infections, intra abdominal 

infections, certain type of infectious 

diarrhea, respiratory tract infections, skin 

infections, typhoid fever, and urinary tract 

infections, among others)

J01MA02

85721-33-1

6540

331.34

 Irritant  Health Hazard  Environmental Hazard

30 000 (20)

Clarithromycin C38H69NO13

used to treat many types of infections 

affecting the skin, ears, sinuses, lungs, and 

other parts of the body, including 

Mycobacterium avium complex (MAC) 

infection, a type of lung infection that often 

affects people with human 

immunodeficiency virus (HIV)

J01FA09

81103-11-9

6537
748.00

Irritant

1.693 (25)

Doxycycline C22H24N2O8

used to treat infections caused by bacteria, 

including pneumonia and other respiratory 

tract infections; certain infections of the skin 

or eye; infections of the lymphatic, intestinal, 

genital, and urinary systems; and certain 

other infections that are spread by ticks, lice, 

mites, infected animals ...

J01AA02 

564-25-0

6791

444.40

Health Hazard  Irritant

 50 000

Erythromycin (A) C37H67NO13

used to treat certain infections caused by 

bacteria, such as infections of the respiratory 

tract, including bronchitis, pneumonia, 

Legionnaires' disease, and pertussis; 

diphtheria…

J01FA01

114-07-8

6522 

733.90

Health Hazard  Irritant

2 000

Flumequine C14H12FNO3

used in the treatment  of: Poultry: Coli 

bacillosis, enteritis, Salmonellosis. Calves: 

Diarrhoea, Salmonellosis, Colibacillosis& 

respiratory diseases caused by sensitive 

bacteria

J01MB07

42835-25-6

5635

261.25

Health Hazard  Irritant

2 170 (25)

Josamycin C42H69NO15
used for Bacterial infections, Microbial 

infections and other conditions

J01FA07

16846-24-5

-

828.00

Irritant

Metronidazol C6H9N3O3 used to treat a wide variety of infections

J01XD01

443-48-1

6731

171.15

Health Hazard  Irritant

11 000 (25)

Norfloxacine  C16H18FN3O3

used to treat different bacterial infections of 

the prostate or urinary tract (bladder and 

kidneys)

J01MA06

70458-96-7

 6761

319.33

Corrosive  Irritant

250 (25)

Antibiotics
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Ofloxacin C18H20FN3O4

used to treat bacterial infections of the skin, 

lungs, prostate, or urinary tract (bladder and 

kidneys)

J01MA01

82419-36-1

6533

361.40

Health Hazard  Irritant

10 800 (25)

Oxolinic acid C13H11NO5

used orally in the treatment  of urinary tract 

infections caused by susceptible gram-

negative organisms

J01MB05 

14698-29-4

-

261.23

Irritant

1 910

Piperacillin C23H27N5O7S
used to treat pneumonia and skin, 

gynecological, and abdominal (stomach area) 

infections caused by bacteria

J01CR05

66258-76-2

-

517.60

Health Hazard  Irritant

119

Roxithromycin C41H76N2O15

used to treat various infections caused by 

bacteria such as: acute pharyngitis; 

tonsillitis; sinusitis; acute bronchitis; 

pneumonia…

J01FA06

80214-83-1

-

837.00

Irritant

0.0189 (25)

Rifampicin C43H58N4O12
used to prevent and treat  tuberculosis and 

other infections

J04AB02

13292-46-1

-

822.90

Irritant

1 400 (25)

Spiramycin  C43H74N2O14

used to treat infections of the lung, skin, and 

mouth and toxoplasmosis during pregnancy 

and congenital toxoplasmosis

J01RA04

  24916-50-5

6526

843.10

 Irritant  Health Hazard  Environmental Hazard

196

Sulfadiazine C10H10N4O2S
used to treat infections such as urinary tract 

infections, toxoplasmosis, and others

  J01EC02

  68-35-9

6758

250.28

 Irritant  Health Hazard  Environmental Hazard

77 (25)

Sulfamethazine C12H14N4O2S

used to treat rheumatoid arthritis in children 

and adults who have used  other arthritis 

medicines without successful treatment  of 

symptoms

J01EB03

 57-68-1

6525

278.33

Health Hazard  Irritant

1 500 (29)

Sulfamethoxazole C10H11N3O3S

used to treat a wide variety of bacterial 

infections (such as middle ear, urine, 

respiratory, and intestinal infections). It is 

also used  to prevent and treat  a certain type 

of pneumonia (pneumocystis-type)

J01EC01

723-46-6

5356
253.28

Health Hazard  Irritant

610 (37)

Tetracyclin C22H24N2O8

used to treat many different bacterial 

infections of the skin, intestines, respiratory 

tract, urinary tract, genitals, lymph nodes, 

and other body systems

S01AA09

60-54-8

6750

444.40

Irritant

231 (25)

Trimethoprim  C14H18N4O3
used to treat bladder or kidney infections, or 

ear infections caused by certain bacteria

J01EA01

738-70-5

5357

290.32

 Irritant  Health Hazard  Environmental Hazard

400 (25)

Tylosine C46H77NO17

used in veterinary medicine to treat  felines, 

canines and livestock. However, the drug is 

only used  as an antibiotic in the treatment  of 

infections in livestock

 QJ01FA90

738-70-5

6523

916.10

Health Hazard  Irritant

211
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Name Formula Structure Prescription

ATC Code

CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility (mg.L-1)  

(Temperature °C)

Estrone (E1) (Natural)  C18H22O2
Regulation of metabolism; control of the 

sexual development; Keep homeostasis

G03CA07

 53-16-7

5396

270.40

Health Hazard  Irritant

760 (20)

17β-estradiol (βE2) 

(Natural)
C18H24O2 

Regulation of metabolism; control of the 

sexual development; Keep homeostasis

G03CA03

50-28-2

5397

272.40

Health & Environmental Hazards

3.6 (27)

17α-ethilnylestradiol 

(EE2) (Synthetic)
C20H24O2

Regulation of metabolism; control of the 

sexual development; Keep homeostasis

G03CA01

  57-63-6

2629

296.40

 Irritant  Health Hazard  Environmental Hazard

11.3 (27)

(19-) Norethindrone C20H26O2
Regulation of metabolism; control of the 

sexual development; Keep homeostasis

?

68-22-4

5400

298.40

Health Hazard  Irritant

7.04 (25)

Name Formula Structure Prescription

ATC Code

CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility (mg.L-1)  

(Temperature °C)

Acetazolamide C4H6N4O3S2

used to prevent and reduce the symptoms of 

altitude sickness. This medication can 

decrease headache, tiredness, nausea, 

dizziness, and shortness of breath

S01EC01

59-66-5

7136

222.30

Health Hazard  Irritant

980 (30)

Atenolol C14H22N2O3

Beta-blocker.

Inhibit the hormone adrenalin andthe 

neurotransmitter noradrenalin

C07AB03

29122-68-7

5361

266.34

Health Hazard  Irritant

13 300 (25)

Hydrochlorothiazide C7H8ClN3O4S2

used to treat high blood pressure 

(hypertension). Hydrochlorothiazide  is also 

used to treat  fluid retention (edema) in 

people with congestive heart failure

C03AA03 

58-93-5

6746

297.70

Health Hazard  Irritant

722 (25)

Losartan C22H23ClN6O
used to treat high blood pressure and reduce 

the risk of stroke in certain people with heart 

disease

C09CA01

114798-26-4

-

422.90

Health Hazard  Irritant

<1 000 

Metoprolol  C15H25NO3

Beta-blocker.

Inhibit the hormone adrenalin andthe 

neurotransmitter noradrenalin

C07AB02

37350-58-6

5362

267.36

Irritant

Name Formula Structure Prescription

ATC Code

CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility (mg.L-1)  

(Temperature °C)

Acetaminophen/ 

Paracetamol
C8H9NO2

used to treat many conditions such as 

headache, muscle aches, arthritis, backache, 

toothaches, colds and fevers.

N02BE01

103-90-2

5354

151.16

Irritant

14 000 (25)

Acetylsalycylic 

acid/Aspirin
C9H8O4 used to treat gout

B01AC06

50-78-2

6735

180.16

Irritant

10 000

Diclofenac C14H11Cl2NO2

used to treat mild to moderate pain, or signs 

and symptoms of osteoarthritis or 

rheumatoid arthritis

M01AB05

15307-86-5

5349

296.10

Acute toxic    Irritant

2.37 (25)

Ibuprofen  C13H18O2

used to relieve pain from various conditions 

such as headache, dental pain, menstrual 

cramps, muscle aches, or arthritis

M01AE01

15687-27-1

5350

206.28

Health Hazard  Irritant

21 (25)

Ketoprofen C16H14O3
used to treat pain or inflammation caused by 

arthritis

M02AA10 

22071-15-4

5353

254.28

Acute toxic    Irritant

51 (22)

Niflumic acid  C13H9F3N2O2 used in the treatment  of rheumatoid arthritis

M02AA17

4394-00-7

6870

 

282.22

Irritant

19 (25)

Steroïdes hormones

Antihypertensive drugs

Inflammatory drugs
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Name Formula Structure Prescription

ATC Code

CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility (mg.L-1)  

(Temperature °C)

Carbamazepine C15H12N2O used as antiepileptic 

N03AF01

298-46-4

5296

236.27

Health Hazard  Irritant

18 (25)

Cyclophosphamide C7H15Cl2N2O2P

used for the treatment of several types of 

cancers and often in combination with other 

drugs to treat breast cancer, leukemia and 

ovarian cancer

L01AA01

50-18-0

6733
261.08

Acute toxic  Irritant  Health Hazard  Corrosive

10-50 (25)

Gemfibrozil C15H22O3

Regulation of triglycerides andcholesterol in 

blood.

Used with diet changes (restriction of 

cholesterol and fat intake) to reduce the 

amount of cholesterol and triglycerides 

(other fatty substances) in the blood in 

certain people with very high triglycerides

C10AB04

25812-30-0

-

250.33

 Irritant  Health Hazard  Environmental Hazard

10 000 

Hydroxycarbamide = 

Hydroxyurea
CH4N2O2

used primarily for the treatment  of 

myeloproliferative diseases, which has an 

inherent risk of transforming to acute 

myeloid leukemia

L01XX05

127-07-1

6705

76.06

Irritant

1 000 000 (25)

Lorazepam C15H10Cl2N2O2 used to treat anxiety

N05BA06

846-49-1

5374

321.20

Health Hazard

80

Nordazepam  C15H11ClN2O
used primarily in the treatment  of anxiety 

disorders

N05BA16 

1088-11-5

-

270.71

Irritant

179.00

Oxazepam C15H11ClN2O2
used to treat anxiety and also acute alcohol 

withdrawal

N05BA04

604-75-1

5375

286.71

Health Hazard

20 (22)

Phenazone  C11H12N2O
used for Fever, Ear pain due to infection and 

other conditions

N02BB01

60-80-0 188.23

Irritant

51 900 (25)

Caffeine C8H10N4O2

used to treat breathing problems in 

premature infants and to improve mental 

alertness, but it has many other uses

N06BC01

58-08-2

6519

194.19

Irritant

21 600 (25)

Other
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Name Formula Structure Origin/Uses
CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility (mg.L-

1) (Temperature °C)

AA-EQS

Surface waters

(µg.L-1) 
(EC, 2013)

MAC-EQS

Surface waters

(µg.L-1)
(EC, 2013)

EQS-Biota

(µg.kg-1; wet 

weight)
(EC, 2013)

Identified as 

PHS/PS/OS
(EC, 2013)

Acenaphthene C12H10

Uses in the manufacture of pigments, 

dyes, plastics, pesticides and 

pharmaceuticals (Abdel-Shafy, 2016)

83-32-9

1453
154.21

               Irritant   Environmental Hazard

3.90 (25) - - - -

Acenaphthylene C12H8

307-07-3

1622
152.19

Acute toxic  Irritant

3.93 (25) - - - -

Anthracene C14H10

Uses as diluent for wood preservatives 

and for manufacture of dyes and 

pigments (Abdel-Shafy, 2016)

120-12-7

1458
178.23

Health Hazard  Irritant

0.6 (25-salt water) 0.10 0.10 - PHS

Benzo[a]anthracene C18H12 Organic product
56-55-3

1082
228.30

               Health Hazard   Environmental Hazard

0.0094 (25) - - - -

Benzo[a]pyrene C20H12
Used in biological research (buffer 

manufacturing, analyses, toxicology)

50-32-8

1115
252.30

 Irritant  Health Hazard  Environmental Hazard

0.0062 (25) 1.7 x 10-4 0.027 5.0 PHS

Benzo[b]fluoranthene C20H12

From incomplete hydrocarbon and coal 

combustion

In oil refining, coal coking, vehicle traffic 

 205-99-2

1116
252.30

               Health Hazard   Environmental Hazard

0.0015 1.7 x 10-4 0.017 5.0 PHS

Benzo[g,h,i]perylene C22H12

From fuel combustion (car exhausts, oil 

refining, coal distillation, wood, oil and 

coal combustion)

 191-24-2

1118
276.30

             Environmental Hazard

0.00026 (25) 1.7 x 10-4 8.2-10-4 5.0 PHS

Benzo[k]fluoranthene C20H12

Fossil fuel

Use in biological research

From incomplete hydrocarbon and coal 

combustion

207-08-9

1117
252.30

               Health Hazard   Environmental Hazard

0.00076 (25) 1.7 x 10-4 0.017 5.0 PHS

PAHs (Polycyclic aromatic hydrocarbons)
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Chrysene C18H12

Organic product manufacturing (coal, 

fate and oil distillation)

Waste incinerator, natural gas 

household appliances, home healting 

(wood combustion)

218-01-9

1476
228.30

               Health Hazard   Environmental Hazard

0.002 (25) - - - -

Dibenzo[a,h]anthracen C22H14

Present in fossil fuels, engine exhausts 

of diesel cars

Also present in cigarette smoke, engine 

exhausts of petrol cars, smoke from coal 

boiler and tar

 53-70-3

1621
278.30

               Health Hazard   Environmental Hazard

0.000627 (25) - - - -

Fluoranthene C16H10

Uses for manufacture of agrochemicals, 

dyes and pharmaceuticals (Abdel-Shafy, 

2016)

206-44-0

1191
202.25

               Irritant   Environmental Hazard

0.120 (24- seawater) 0.0063 0.12 30.00 PS

Fluorene C13H10

Uses for manufacture of 

pharmaceuticals, pigments, dyes, 

pesticides and thermoset plastic (Abdel-

Shafy, 2016)

86-73-7

1623
166.22

               Irritant   Environmental Hazard

1.69 (25) - - - -

Indeno[1,2,3-cd]pyrene C22H12

From incomplete wood, coal, fuel 

combustion, wood burning-oven, waste 

incinerators, industrial and cigarette 

smokes. 

Present in bituminous coal, naturally 

present in fossile fuel, raw oil, shale oil, 

some tree leafs and tabacco, breeding 

ground, horse manure.

From forest fires and volcanic eruption

193-39-5

1204
276.30

       Health Hazard

0.062 (20) 1.7 x 10-4 - 5.0 PHS

Naphtalene C10H8

Used in organic manufacturing: dye, tar 

plasticizer, solvant, insecticide, mite 

repellent

91-20-3

1517
128.17

 Irritant  Health Hazard  Environmental Hazard

31 (25) 2.00 130.00 - PS

Phenanthrene C14H10
Uses for manufacture of resins and 

pesticides (Abdel-Shafy, 2016)

 85-01-8

1524
178.23

               Irritant   Environmental Hazard

1.10 (25) - - - -

Pyrene C16H10
Uses for manufacture of pigments 

(Abdel-Shafy, 2016)

129-00-0

1537
202.25

               Irritant   Environmental Hazard

0.135 (25) - - - -
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Name Formula Structure Origin/Uses
CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility 

(mg.L-1) 

(Temperature °C)

AA-EQS

Surface waters

(µg.L-1) 
(EC, 2013)

MAC-EQS

Surface waters

(µg.L-1)
(EC, 2013)

EQS-Biota

(µg.kg-1; wet 

weight)
(EC, 2013)

Identified as 

PHS/PS/OS
(EC, 2013)

2,2',5-Trichlorobiphenyl

(PCB 18)
C12H7Cl3

Used as dielectrical insulator (from 

askarel class) in transformers and 

condensers, in microwaves, paintings 

and adhesives 

37680-65-2

3164
257.50

               Health Hazard   Environmental Hazard

- - - -

2,4',4-Trichlorobiphenyl +

2,4',5-Trichlorobiphenyl

(PCB 28+31)

C12H7Cl3 "

7012-37-5 +

16606-02-3

1239 + 1886

6965

257.5 +

257.5

               Health Hazard   Environmental Hazard

- - - -

2,2',5,5'-Tetrachlorobiphenyl 

(PCB 52)
C12H6Cl4 "

35693-99-3

1241
292.00

               Health Hazard   Environmental Hazard

- - - -

2,2',3,5'-Tetrachlorobiphenyl

(PCB 44)
C12H6Cl4 "

41464-39-5

1628
292.00

               Health Hazard   Environmental Hazard

- - - -

2,2',4,5,5'-Pentachlorobiphenyl

(PCB 101)
C12H5Cl5 "

37680-73-2

1242
326.40

               Health Hazard   Environmental Hazard

- - - -

2,2',3,4',5',6-Hexachlorobiphenyl

(PCB 149)
C12H4Cl6 " 360.90

               Health Hazard   Environmental Hazard

- - - -

2,3',4,4',5-Pentachlorobiphenyl

(PCB 118)
C12H5Cl5 "

31508-00-6

1243
326.40

               Health Hazard   Environmental Hazard

- -

0.0065
(Included in the sum 

with other 

PCDD+PCDF+PCB-DL) 

TEQ

PHS

2,2',4,4',5,5'-Hexachlorobiphenyl

(PCB 153)
C12H4Cl6 "

35065-27-1

1245
360.90

               Health Hazard   Environmental Hazard

- - - -

2,2',3,4,4',5'-Hexachlorobiphenyl

(PCB 138)
C12H4Cl6 

"
35065-28-2

1244
360.90

               Health Hazard   Environmental Hazard

- - - -

2,2',3,4,4',5,5'-Heptachlorobiphenyl

(PCB 180)
C12H3Cl7 "

35065-29-3

1246
395.30

               Health Hazard   Environmental Hazard

- - - -

2,2',3,3',4,4',5,5'-Octachlorobiphenyl

(PCB 194)
C12H2Cl8 

"
35694-08-7

1625
429.80

               Health Hazard   Environmental Hazard

- - - -

PCBs (Polychlorobiphenyles)
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Name Formula Structure Origin/Uses
CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility 

(mg.L-1) 

(Temperature °C)

AA-EQS

Surface waters

(µg.L-1) 
(EC, 2013)

MAC-EQS

Surface waters

(µg.L-1)
(EC, 2013)

EQS-Biota

(µg.kg-1; wet 

weight)
(EC, 2013)

Identified as 

PHS/PS/OS
(EC, 2013)

Nonylphenols (NP) C15H24O

Used as wetting agent, dispersant, 

emulsifier, defoaming agent,. Used in 

detergent, paintings, paper 

manufacturing, cosmetic, cleaning 

products, plastics, rubber

25154-52-3

1957
220.35

Environmental Hazard  Irritant  Health Hazard  Corrosive

7 (25) 0.30 2.00 - PHS

Para-tert-octylphenol (4tOP) C14H22O Polymers and detergents manufacturing
140-66-9

1959
206.32

Environmental Hazard  Irritant        Corrosive

5.113 (25) 0.01 - - PS

4-nitro-O-phenylenediamine (4nOP) C6H7N3O2 Dye
 99-56-9

-
153.14

 Irritant  

1300 (25) - - - -

Nonylphenol monoethoxilated (NPEO1) Dispersive agent

9016-45-9 
(for whole Ethoxylate 

nonylphenol family)

Nonylphenol diethoxilathed (NPEO2) C19H32O3 Dispersive agent

9016-45-9 
(for whole Ethoxylate 

nonylphenol family)

308.46

Alkylphenols
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Name Formula Structure Origin/Uses
CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility 

(mg.L-1) 

(Temperature °C)

AA-EQS

Surface waters

(µg.L-1) 
(EC, 2013)

MAC-EQS

Surface waters

(µg.L-1)
(EC, 2013)

EQS-Biota

(µg.kg-1; wet 

weight)
(EC, 2013)

Identified as 

PHS/PS/OS
(EC, 2013)

Aldrin C12H8Cl6 Insecticide
309-00-2

1103
364.90

Acute toxic  Health Hazard  Environmental Hazard

0.027 (27)
∑(Aldrin, Dieldrine, Endrin, 

Isodrine)= 0.005
- - OS

Alpha-Hexachlorocyclohexane (Alpha BHC) C6H6Cl6 Insecticide
319-84-6

1200
290.83

Environmental Hazard  Irritant  Health Hazard  Acute toxic

7.3 (25) 0.002 0.02 - PHS

Beta-Hexachlorocyclohexane (Beta BHC) C6H6Cl6 Insecticide
319-85-7

1201
290.83

Environmental Hazard  Irritant  Health Hazard  Acute toxic

7.3 (25) 0.002 0.02 - PHS

Delta-Hexachlorocyclohexane (Delta BHC) C6H6Cl6 Insecticide
319-86-8

1202
290.83

Environmental Hazard  Irritant  Health Hazard  Acute toxic

7.3 (25) 0.002 0.02 - PHS

Lindane/Gamma-Hexachlorocyclohexane 

(Gamma BHC)
C6H6Cl6 Insecticide

58-89-9

1203
290.80

Environmental Hazard  Irritant  Health Hazard  Acute toxic

7.3 (25) 0.002 0.02 - PHS

Dieldrine C12H8Cl6O Organochlorine Insecticide 60-57-1 380.93

Acute toxic  Health Hazard  Environmental Hazard

0.195 (25)
∑(Aldrin, Dieldrine, Endrin, 

Isodrine)= 0.005
- - OS

Alpha Endosulfan C6H6Cl6O3S Insecticide
959-98-8

1178
406.90

0.0005

(Endosulfan)

0.004

(Endosulfan)
-

PHS

(Endosulfan)

Bêta Endosulfan C9H6Cl6O3S Insecticide and acaricide
 33213-65-9 

1179
406.90

Environmental Hazard  Irritant          Acute toxic

0.0005

(Endosulfan)

0.004

(Endosulfan)
-

PHS

(Endosulfan)

Pesticides
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Endosulfan Sulfate C9H6Cl6O4S Pesticide
 1031-07-8 

1742
422.90

Acute toxic Environmental Hazard

0.48 (20) 0.0005 0.0040 - PHS

Endrin C12H8Cl6O Insecticide
72-20-8

1181
380.90

Acute toxic Environmental Hazard

0.195 (25)
∑(Aldrin, Dieldrine, Endrin, 

Isodrine)= 0.005
- - OS

Endrin Aldehyde C12H8Cl6O
7421-93-4

380.90

Irritant

- - - -

Endrin Ketone C12H8Cl6O Insecticide
53494-70-5

5485
380.90

Acute toxic

- - - -

Heptachlor C10H5Cl7 Insecticide
76-44-8

1197
373.30

Acute toxic  Health Hazard  Environmental Hazard

0.18 (25) 1.8 x 10-8 3 x 10-5 6.7 x 10-3 PHS

Heptachlor Epoxide C10H5Cl7O Insecticide
1024-57-3

1748
389.30

Acute toxic  Health Hazard  Environmental Hazard

1.8 x 10-8 3 x 10-5 6.7 x 10-3 PHS

Methoxychlor C16H15Cl3O2 Insecticide
72-43-5

1511
345.60

Environmental Hazard  Irritant  Health Hazard

0.1 (25) - - - -

4,4'-Dichlorodiphenyldichloroethane 

(4,4'-DDD)
C14H10Cl4 Pesticide

 72-54-8

1144
320.00

Environmental Hazard  Irritant  Health Hazard  Acute toxic

0.09 (25)

0.025
= Total DDT = ∑(4,4'-DDT + 

2,4'-DDT + 4,4'-DDE + 4,4'-

DDD)

- - OS

4,4'-Dichlorodiphenyldichloroethylene 

(4,4'-DDE)
C14H8Cl4 Insecticide, degradation product of DDT

72-55-9

1146
318.00

Acute toxic  Irritant  Environmental Hazard

0.04 (25)

0.025
= Total DDT = ∑(4,4'-DDT + 

2,4'-DDT + 4,4'-DDE + 4,4'-

DDD)

- - OS

Para-para-Dichlorodiphenyltrichloroethane 

(4,4'-DDT) 
C14H9Cl5

Insecticide, formely one of the most 

widely used

50-29-3

1148
354.50

Acute toxic  Health Hazard  Environmental Hazard

0.0055 (25) 0.01 - - OS
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Name Formula Structure Origin/Uses
CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility 

(mg.L-1) 

(Temperature °C)

AA-EQS

Surface waters

(µg.L-1) 
(EC, 2013)

MAC-EQS

Surface waters

(µg.L-1)
(EC, 2013)

EQS-Biota

(µg.kg-1; wet 

weight)
(EC, 2013)

Identified as 

PHS/PS/OS
(EC, 2013)

Celestolide (ADBI) C17H24O
Used for fragrance compositions and 

perfumes with long-lasting fragrance

13171-00-1

- 244.37 3.29 (24) - - - -

Phantolide (AHMI) C17H24O A component of Musk fragrances
15323-35-0

-
244.37

Environmental Hazard  Irritant

- - - -

Musk Ambrette (MA) C12H16N2O5

83-66-9

6688
268.27

Irritant

2.41 (25) - - - -

Traseolide (ATII) C18H26O A component of Musk fragrances
68140-48-7

6680
258.40

Irritant

0.539 (20) - - - -

Galaxolide (HHCB) C18H26O
Used as a fragrance ingredient in 

perfumes, soaps, cosmetics and 

detergents

1222-05-5

6618
258.40

          Irritant               Environmental Hazard

1.65-1.99 (25) - - - -

Tonalide (AHTN) C18H26O Aromatic musk compound
21145-77-7

7881
258.40

          Irritant               Environmental Hazard

1.25 - - - -

Musk Xylene (MX) C12H15N3O6
used in fragrances and soap to mimic 

natural musk

81-15-2

6342
297.26

Explosive  Health Hazard  Environmental Hazard

0.49 (25) - - - -

Musk Moskene (MM) C14H18N2O4 278.30 - - - -

Musk Ketone (MK) C14H18N2O5

 81-14-1

6687
294.30

 Health Hazard  Environmental Hazard

0.46 (25) - - - -

Galaxolidone (HHCB-lactone) C18H24O2 272.40 - - - -

Musks 
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Name Formula Structure Origin/Uses
CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility 

(mg.L-1) 

(Temperature °C)

AA-EQS

Surface waters

(µg.L-1) 
(EC, 2013)

MAC-EQS

Surface waters

(µg.L-1)
(EC, 2013)

EQS-Biota

(µg.kg-1; wet 

weight)
(EC, 2013)

Identified as 

PHS/PS/OS
(EC, 2013)

3-Benzylidene camphor (3-BC) C17H20O
Used in cosmetics as a component (UV 

filter) of sunscreens

15087-24-8

-
240.34

Health Hazard

- - - -

Oxybenzone (Benzophenone 3) C14H12O3 UV filter   131-57-7 
 228.24

Environmental Hazard  Irritant

3.7 (25) - - - -

 

4-Methylbenzylidene camphor (4-

MBC)/Enzacamene

C18H22O UV filter
 36861-47-9

254.40

Environmental Hazard  Health Hazar

- - - -

Octyl-dimethyl-PABA (OD-PABA) C17H27NO2 UV filter
21245-02-3

277.40

Irritant

0.54 (25) - - - -

Ethylhexyl methoxycinnamate (EHMC)/ 

Octinoxate
C18H26O3 UV filter

5466-77-3

7816
290.40 0.2 (20) - - - -

Octocrylene (OC) C24H27NO2
Solvent for solid sunscreens. UV 

absorber for plastics and paints

6197-30-4

6686
361.50 - - - -

Sunscreens
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Name
Electronic 

shell/Formula
Picture

(©www.lenntech.com)
Origin/Uses

CAS number

SANDRE Code

Molecular weight 

(g.mol-1)

Molecular safety
(www.pubchem.ncbi.nlm.nih.gov)

Water solubility 

(mg.L-1) 

(Temperature °C)

AA-EQS

Surface waters

(µg.L-1) 
(EC, 2013)

MAC-EQS

Surface waters

(µg.L-1)
(EC, 2013)

EQS-Biota

(µg.kg-1; wet 

weight)
(EC, 2013)

Identified as 

PHS/PS/OS
(EC, 2013)

Antimony (Sb) [Kr] 4d10 5s25p3

Sometimes naturally present in the 

environment. but also obtained from 

the ores stibnite (Sb2S3) and valentinite 

(Sb2O3)

7440-36-0

1376
121.76

Environmental Hazard      Irritant      Healt Hazard

Insoluble - - - -

Arsenic (As) [Ar] 3d10 4s2 4p3

One of the most toxic compound. 

Naturally present in small quantity in 

soil and minerals. Also producted by 

copper. lead and zinc industries.

7440-38-2

1369
74.92

Environmental Hazard   Acute toxic

Insoluble - - - -

Cadmium (Cd) [Kr] 4d105s2

Naturally present in the environment 

and released in rivers through stone 

abrasion and in the air through forest 

fires and volcanos. 

7440-43-9

1388
112.41

Environmental Hazard Flammable Health Hazard  Acute toxic

Insoluble 0.20

≤0.45 (classe 1) 

0.45 (classe 2) 

0.6 (classe 3)

0.9 (classe 4)

1.5 (classe 5)

- PHS

Chromium (Cr) [Ar] 3d5 4s1
Used in alloys such as stainless steel. in 

chrome plating and in metal ceramics.

Mined as chromite (FeCr2O4) ore.

7440-47-3

1389
52.00

Environmental Hazard      Irritant      Healt Hazard

Insoluble - - - -

Copper (Cu) [Ar] 3d104s1

Naturally present in the environment 

(wind-blown dust. decaying vegetation. 

forest fires and sea spray) and realsed 

by human activies. Mainly used in the 

industries and agriculture (used for 

electrical equipment. construction 

(roofing. plumbing). industrial 

machinery (heat exchangers and alloys)).

7440-50-8
63.55

Environmental Hazard      Irritant       Accute toxic

Insoluble - - - -

Lead (Pb) [Xe] 4f145d106s26p2

Rarelly naturally present in the 

environment. Used in car batteries 

(constituent of the lead-acid battery). 

uased as dye for ceramic glazes and in  

computer and TV glasses. 


7439-92-1

3358
207.00

Healt Hazard

Insoluble 1.30 14.00 - PS

Molybdenum (Mo) [Kr] 4d55s1

Valuable alloying agent. Used to the 

hardenability and toughness of 

quenched and tempered steels and 

used in alloys. eletrodes and catalysts.

7439-98-7

1395
96.00

Flammable Health Hazard

Insoluble - - - -

Nickel (Ni) [Ar] 3d84s2
Mainly used in the preparation of alloys 

or locked in the mlanet's iron-nickel 

molten core.

7440-02-0

1386
58.69

 Irritant      Healt Hazard

Insoluble 8.60 34.00 - PS

Silver (Ag) [Kr] 4d105s1

Used as a precious metal. used in 

photography and in the electrical 

industry (paintings. camputer 

keyboards). Present also naturally in the 

environment as crystals or compact 

masses.

7440-22-4

1368
107.87

Environmental Hazard   

Insoluble - - - -

Tin (Sn) [Kr] 4d105s25p2

Used for can coating. as solder for 

joining pipes or electric circuits. Low 

natural concentrations in the 

envrionment.

7440-31-5

1380
118.71

 Irritant 

Insoluble - - - -

Vanadium (V) [Ar] 3d34s2

Always found bound in nature. Used as 

ferrovanadium or as a steel additive. 

Mixed also with Aluminium for titanium 

alliages.

Found in the environment (in algae. 

invertebrates. fishes).

7440-62-2
50.94 Insoluble - - - -

Metals/Organometals
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Annex 6: Huguenin L., Lalanne Y., Bru N., Lissardy M., D’Amico F., Monperrus M., de Casamajor MN. 

(2018). “Identifying macrofaunal assemblages and indicator taxa of intertidal boulder fields in the 

south of the Bay of Biscay (northern Basque coast). A framework for future monitoring”. Regional 

Studies in Marine Science, 20, 13-22 (http://doi.org/10.1016/j.rsma.2018.03.012). 
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Annex 7: Mean taxonomic richness of fixed (a, c) and mobile macrofauna (b, d) identified in boulder 

fields (in Guéthary and Saint-Jean-de-Luz) and on platforms (Guéthary and Socoa) in each algal belt 

(upper and lower midlittoral zones). 
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Abstract: 

The occurrence of micropollutants in the aquatic environment has become an environmental issue of major concern 
throughout the world because they may be potentially toxic, persistent and bioaccumulative in the environment even at 
low concentration levels. As wastewater treatment plants (WWTPs) are not specifically designed to eliminate this type of 
pollutants, a large range of micropollutants are found in wastewater effluents and then in the environment. This study, a 
dual-track approach between chemistry and biology, aims to provide a first insight of the occurrences and concentrations 
of priority and emerging substances in WWTP discharges and their potential impact on rocky benthic communities in the 
southeastern Bay of Biscay. These complementary approaches allow to study the benthic communities’ response in both 
intertidal and subtidal zones and to quantify micropollutants in benthic organisms as well as in WWTP effluents. The results 
highlight that WWTP discharges constitute a source of micropollutants in coastal areas (especially metal, pharmaceutical 
and musk compounds) and that a number of substances are also found in benthic organisms but differences are identified 
between them. In general, Ulva spp. and Gelidium spp. are highlighted as the better bio-accumulator for this area. Results 
of the study of benthic communities’ response suggest that benthic macroalgae constitute the best relevant biotic 
component to assess the effect of such a pressure in this area. Changes in the relative abundance of Ceramium spp., 
Corallina spp. and Halopteris scoparia (in the intertidal zone) and of Gelidium corneum and Metacallophyllis laciniata (in 
the subtidal zone) appear mainly responsible of the dissimilarities found between impacted and control locations. By 
contrast, no significant effect is detected using macrofauna assemblages and quality indices based on this biological 
element. The current ‘macroalgae’ WDF index, contributing to assess the ecological quality status of the water body, 
appears to be sensitive to such a pressure because it highlights a clear effect of discharges in the intertidal and subtidal 
zones. Finally, those results provide a framework for future monitoring allowing an assessment of benthic communities’ 
changes related to WWTP discharges and highlight the importance to reflect upon another method to integrate 
macrofauna in future monitoring for an efficient impact evaluation. 

Keywords: Wastewater treatment plants; Impacts; Macrofauna; Macroalgae; Bioindicators; Ecological Quality Status; WFD; 
MSFD. 

Résumé : 

La présence des micropolluants dans les milieux aquatiques est devenue un problème environnemental majeur dans le 
monde entier car ils peuvent être potentiellement toxiques, persistants et bioaccumulables même à de très faibles 
concentrations. Comme les stations d’épuration (STEUs) ne sont pas spécifiquement conçues pour éliminer ce type de 
polluants, un grand nombre d’entre eux se retrouvent dans les effluents d’eau usée puis dans l’environnement. Cette 
étude, qui repose sur une double approche chimique et biologique, vise à donner un premier aperçu de l’occurrence et des 
concentrations des substances prioritaires et émergentes dans les rejets de STEU et de leur potentiel impact sur les 
communautés benthiques des substrats rocheux du sud-est du Golfe de Gascogne. Ces approches complémentaires 
permettent d’étudier la réponse des communautés benthiques dans les zones intertidales et subtidales et de quantifier les 
micropolluants dans différents organismes benthiques et effluents de STEU. Les résultats montrent que les rejets de STEU 
constituent une source de micropolluants dans les zones côtières (en particulier les métaux, les pharmaceutiques et les 
muscs) et qu’un certain nombre d’entre eux sont également retrouvés dans les organismes benthiques bien que des 
différences soient détectées entre les différents taxa. De manière générale, les Ulva spp. et le Gelidium spp. sont identifiés 
comme étant les meilleurs bio-accumulateurs pour cette zone biogéographique. Les résultats concernant l’étude de la 
réponse des communautés benthiques mettent en évidence que les macroalgues constituent l’élément biologique le plus 
sensible et pertinent pour évaluer l’effet d’une telle pression dans cette région. Les variations d’abondance de Ceramium 
spp., Corallina spp. et d’Halopteris scoparia (dans la zone intertidale) et de Gelidium corneum et Metacallophyllis laciniata 
(dans la zone subtidale) contribuent significativement aux dissimilarités entre zones impactées et contrôles. En revanche, 
aucun effet significatif n’a été identifié en utilisant les assemblages de macrofaune et les indices de qualité écologique se 
basant sur cet élément biologique. L’indice DCE ‘macroalgues’ actuel, qui contribue à évaluer l’état écologique de la masse 
d’eau, semble être sensible à cette pression car il met en évidence un impact clair des rejets de STEU autant en zone 
intertidale que subtidale. Enfin, ces résultats fournissent des perspectives pour les suivis futurs pour évaluer les 
changements des communautés benthiques liés aux rejets de STEU et soulignent l’importance de réfléchir à la manière 
dont intégrer la macrofauna dans les suivis futurs afin de réaliser une évaluation la plus efficiente possible.  

Mots-clefs: Stations d’épuration; Impacts, Macrofaune; Macroalgues; Bioindicateurs; Statut de qualité écologique ; DCE ; 
DCSMM.


