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ABSTRACT 

Despite theoretical debate on the extent to which statistical learning is incidental or modulated by explicit 

instructions and conscious awareness of the content of statistical learning, no study has ever looked into the 

metacognition of statistical learning. We used an artificial language learning paradigm and a segmentation task that 

required splitting a continuous stream of syllables into discrete recurrent constituents. During this task, statistical 

learning potentially produces knowledge of discrete constituents as well as about statistical regularities that are 

embodied in familiarization input. We measured metacognitive sensitivity and efficiency (using hierarchical Bayesian 

modelling to estimate metacognitive sensitivity and efficiency) to probe the role of conscious awareness in 

recognition of constituents extracted from the familiarization input and recognition of novel constituents embodying 

the same statistical regularities as these extracted constituents. Novel constituents are conceptualized to represent 

recognition of statistical structure rather than recognition of items retrieved from memory as whole constituents. 

We found that participants are equally sensitive to both types of learning products, yet subject them to varying 

degrees of conscious processing during the post-familiarization recognition test. The data point to the contribution 

of conscious awareness to at least some types of statistical learning content.  

 

  



INTRODUCTION 

Statistical learning is a process for extracting statistical regularities from the environment that enables efficient 

processing of continuous sensory inputs. One of the tasks that relies on statistical learning is segmenting continuous 

inputs into discrete constituents (Baldwin et al., 2008; Gómez, Bion, & Mehler, 2011; Hard et al., 2018; Siegelman, 

Bogaerts, et al., 2019; Siegelman, 2019. It is generally assumed that statistical learning is incidental and happens 

without awareness and across modalities (Arciuli, Torkildsen, Stevens & Simpson, 2014; Aslin & Newport, 2012; 

Dienes, Broadbent, & Berry, 1991). However, some empirical evidence suggests that performance can be modulated 

by attention (Fernandes, Kolinsky, & Ventura, 2010; Toro, Sinnett & Soto-Faraco, 2005), and that conscious focus on 

a task improves performance (Alamia & Zenon, 2016; Reber Kassin, Lewis, & Cantor, 1980). Surprisingly, despite 

theoretical tension in regard to how conscious statistical learning may be, studies on metacognition in statistical 

learning are exceptionally rare.  

Metacognition is cognition about cognition. It helps humans to evaluate past decisions, make better future 

decisions, and monitor their own cognitive processes and cognitive states (e.g., Flavell, 1979; Nelson, 1996). Flavel 

(1979) and Schraw (1998) suggested that metacognition includes two aspects: knowledge about cognition and 

regulation of cognition. These components are served by different cognitive processes, referred to as metacognitive 

monitoring and metacognitive control (Nelson & L. Narens, 1990; Dunlosky et al., 2007). Monitoring processes track 

decisions, cognitive states and behaviour in uncertain situations and estimate retrospective confidence associated 

with cognitive states and past decisions (Kepecs, Uchida, Zariwala, & Mainen, 2008). Control processes guide future 

behaviour, taking current cognitive states and available evidence about the current environment and past outcomes 

into account. In this study, we will focus on metacognitive monitoring in statistical learning tasks by exploring the 

retrospective confidence that humans assigned their decisions in an artificial language learning paradigm. 

Efficient metacognitive monitoring is associated with accurate estimation of the degree of uncertainty associated 

with past and future decisions (Kepecs et al., 2008). It manifests as an individual’s ability to estimate the likelihood of 

error for each conscious decision they make. This estimate is reflected by assigning higher confidence ratings to 

decisions when the estimated likelihood of making an error is lower, and lower confidence ratings when the 

estimated likelihood of making an error is higher. Individuals, whose confidence ratings accurately discriminate 

between correct and incorrect responses are considered to exhibit higher metacognitive sensitivity. The same logic 

applies to different types of decisions (e.g., in different domains, modalities, tasks) made by the same individual. If, 

for example, a person’s confidence ratings better discriminate between correct and incorrect decisions in the visual 

than the auditory modality, we can say that their metacognitive sensitivity is higher in the visual modality.  

In this research, we explore statistical learning mechanisms that operate on a subtype of statistical relations, that is, 

conditional statistics. Conditional statistics measure the predictive relationships between consecutive events (Harris, 

1955; Saffran et al., 1996). The strength of a predictive relationship is measured as the likelihood that an element or 

event B will occur given that element or event A has just happened (i.e., the transitional probability – TP – between 

A and B). Frequently, this kind of statistical learning mechanism is explored in the context of splitting a sequence of 

syllables into word-like units (Saffran, 2001): TPs between syllables within a discrete word are higher than between 

syllables straddling word boundaries. However, imagine a sequence of syllables, in which syllable triplets ROSENU 

and PASETI are embedded and recurrently experienced by an individual. Statistical regularities predict SE given 

either RO or PA with equal probability, and the transition from SE to either TI or NU also happens with equal 

probability. Thus, while triplets ROSETI and PASENU have not been embedded as whole units in the familiarization 

input, they could nevertheless be endorsed as eligible constituents because they are statistically congruent with the 

collective exemplars from the learning input (Endress & Langus, 2017; Endress & Mehler, 2009; Nosofsky & Zaki, 

2002; Ordin, Polyanskaya, & Soto, 2020a; Ordin, Polyanskaya, Soto, & Molinaro, 2020; Roediger & McDermott, 

1995). The ability to extrapolate the eligibility of these units from learned input would be useful; it would allow the 

system to learn regularities from a limited set of exemplars, then generalize these to previously unencountered 

items, or to novel situations that exhibit the previously encountered statistical features. Here, we try to understand 



the role of awareness and metacognitive processes in the recognition of old items (encountered and learnt during 

familiarization) as well as novel items that are statistically congruent with the old ones. 

METHODS 

Material, participants, and experimental procedure 

Here, we use the same dataset as Ordin, Polyanskaya, Soto, & Molinaro (2020) where the participant sample, 

experimental procedure and materials are detailed. Below, we provide only the information essential for this 

empirical report.  

Participants listened to a stream of 12 recurrent, randomly concatenated triplets (ROSENU, PASETI, etc.). TPs were 

set to 0.5 between syllables within triplets and to 0.16 between syllables at the boundaries of triplets. Participants 

were familiarized with this stream for 18 minutes and explicitly instructed to detect and memorize the “words” of 

this “alien language”. The syllables in the embedded triplets (words) were also used to construct 12 novel triplets 

(phantoms, e.g., ROSETI, PASENU) that embodied the same TPs as the words. After familiarization, participants 

performed a dual forced-choice test, in which they listened to a pair of possible word candidates and had to indicate 

whether the first or the second candidate was a word from the alien language they had been exposed to. 

Participants were not informed that the words were composed according to rules. After choosing one of the two 

candidates, participants were next asked to indicate – on a 4-point scale – how sure they were in their response. In 

the test pairs, we pitted words against phantoms, words against non-words (concatenations of syllables that had 

never co-occurred sequentially in the familiarization stream, thus violating the statistical regularities embedded in 

both words and phantoms), and phantoms against non-words (the order of token types was counter-balanced in the 

test pairs). In the original study, EEG recording was made throughout the experiment. However, here we analyze 

only behavioral data, and therefore also include responses from participants who were discarded from the original 

analysis due to technical issues related to the EEG signal. This brings the total number of participants to 38.  

Analytical approach 

To estimate metacognition, we used a signal detection (SDT) approach (Galvin, Podd, Drga, & Whitmore, 2003; 

Maniscalco and Lau, 2012). Correct responses which also receive high confidence ratings are considered to be 

metacognitive (type-2) hits; incorrect responses given with high confidence are conceptualized as meta-false alarms; 

incorrect responses with low confidence rating are analyzed as meta-correct rejections; and correct responses with 

low confidence are taken as meta-misses. This logic is applied to binary confidence choices. The ability to estimate 

the likelihood of making an error and thus to discriminate between correct and incorrect responses by assigning 

different confidence ratings on a wider scale can be quantified by Type-2 ROC analysis (Galvin et al., 2003). 

Maniscalco and Lau (2012) proposed a modeling approach to quantify Type-2 ROC area in units of Type-1 d’. The 

basic idea behind this approach is to estimate the pseudo d’ measure that would perfectly fit confidence ratings, not 

type-1 decisions. This estimated value – which accounts for confidence ratings instead of cognitive decisions – 

provides a measure of subject-specific metacognitive sensitivity, i.e., meta-d. Meta-d’ estimates the reliability of 

confidence ratings, and may theoretically reflect fluctuations in confidence between groups or conditions even when 

type-1 performances do not differ. Importantly, meta-d’ is independent on metacognitive bias, i.e., individual 

tendency to assign higher or lower rating overall. However, meta-d’ also reflects the quality of the type-1 

information which is subject to metacognitive processing, and in practice may scale with performance (Fleming and 

Lau, 2014). Thus it sometimes makes sense to estimate metacognitive efficiency relative to type-1 performance. This 

is represented by the meta-d’ to d’ ratio (M-ratio). Meta-d’ reflects the presence or absence of metacognition in a 

particular task. However, the M-ratio is more informative when the goal is to compare metacognition across groups 

or conditions, especially if type-1 performances differ; it is even more useful when type-1 differences across 

conditions and groups are caused by: unequal variance in the number of participants and trials per group/condition; 

by potentially different neural and cognitive mechanisms underlying metacognitive judgments across different tasks; 

or by differences (including purposefully modulated differences) in the perceptual salience of the signal, individually-

adjusted perceptual or performance thresholds, individual differences in encoding information at different 



presentation rates or different modalities, etc. Meta-d’ can easily be compared to d’ (because they are measured in 

the same units on the same scale) but comparing across conditions/domains/tasks/experiments may be challenging. 

Thus, M-ratio - the measure of metacognitive efficiency, or a subject-specific level of metacognitive sensitivity which 

takes individual level of type-1 performance into account – can be more informative.  

Fleming (2017) developed a method for hierarchical Bayesian estimation of metacognitive sensitivity and efficiency, 

which we have adopted for our analysis here. Bayesian estimation is superior to maximum likelihood estimation 

(MLE) and sum-of-squared error (SSE) methods (Maniscalco & Lau, 2012; Barret, Dienes, & Seth, 2013) for several 

reasons: it does not require data “padding” when participants give zero responses with a particular (usually the 

maximum and minimum) confidence level; it naturally accounts for situations when the number of trials for the 

levels of confidence differs; it reduces the influence of a single outlying participant on group results witout requiring 

that this outlier be corrected or removed. It thus allows for all data to be included in the analysis and decreases 

subjectivity in sampling. Finally – although this is not applicable to the current analysis – Bayesian estimation allows 

groups with different number of participants and different number of trials per participant/condition to be 

compared. This can be important in studies comparing metacognition in adults and children at different ages (it is 

not always possible to collect equal number of trials from young children and adult participants), or comparing 

patients and healthy individuals (patient samples often depend on “convenience” while healthy adult participants 

are easier to recruit). For hierarchical Bayesian modeling, we used the code developed by Fleming (2017) available at 

https://github.com/metacoglab/Hmeta-d  

A limitation of this method is that data need to be amended to accommodate a two-choice SDT framework, that is, a 

2(stimulus)*2(response)*N(confidence rating) matrix. We adopted the algorithm applied by Ordin, Polyanskaya, Soto 

(2020b) for this purpose (essential details are given below): 

Word vs. non-word pairs (i.e., test trials in which words were paired with non-words, words happened equal number 

of times in the first and in the second positions of the test pairs): When the word appeared in position 1 and the 

non-word in position 2, the response was considered a hit if the participant responded “1” (i.e., chose a word over a 

non-word) but a miss if the participant responded “2” (i.e., missing a word in position 1). If the word occurred in 

position 2, the response was defined as a correct rejection if the participant responded “2” (i.e., rejected the non-

word in position 1) and a false alarm if the participant responded “1” (falsely identified position 1 as containing the 

target).  

Phantoms vs. non-words: A phantom was operationalized as a signal to be detected, so choosing a phantom over a 

non-word was considered a correct response. When a phantom appeared in the position 1 and the non-word in 

position 2, the response was considered a hit if the participant responded “1” but a miss if the participant responded 

“2” (missing the phantom in position 1). When a phantom appeared in position 2, the response was defined as a 

correct rejection if the participant responded “2” (i.e., rejecting the option that the phantom was in position 1) and a 

false alarm if the participant responded “1” (falsely identified position 1 as containing the target).  

Words vs. phantoms: In a similar fashion, when a word appeared in position 1 and a phantom in position 2, the trial 

was considered a hit if the participant responded “1”, but a miss, if the participant responses “2” (i.e., missing a 

target in position 1) When a word appeared in position 2, the trial was considered a false alarm if the participant 

responded “1” (falsely identifying position 1 as containing the target), and a correct rejection, if the participant 

responses “2” (i.e., correctly rejecting the possibility of the target in position 1). 

We estimated type-1 sensitivity and bias, metacognitive sensitivity, efficiency and bias separately for these three 

pair types to explore metacognitive processes when people select old vs. statistically congruent novel items (words 

vs. phantoms), novel statistically congruent items vs. novel statistically incongruent items (phantoms vs. non-words), 

and old vs. novel statistically incongruent items (words vs. non-words). 

RESULTS 



We calculated bias (a tendency to select the first or the second item in the test pair), d’, meta-d’, M-ratio (Figure 1a) 

and metacognitive bias as mean confidence (Figure 1b) for the three pair-types. We applied a repeated measures 

ANOVA to each measure to find whether the scores differed significantly between pair-types. In all cases, we used 

Maulchy’s test to check the sphericity assumption. Where necessary we corrected DFs and p-values using the 

Greenhouse-Geiser epsilon, reporting uncorrected DFs and corrected p-values. Each significant test was then split 

into a series of pairwise comparisons using paired 2-tailed t-tests, applying Bonferroni correction and reporting 

corrected p-values. 

  

  
Figure 1a. Type-1 (cognitive) and type-2 (metacognitive) performance in the test trials pairing words against non-words (w_nw), phantoms 
against non-words (ph_nw) and words against phantoms (w_ph). Type-1 performance is represented on the upper figures (perceptual-
cognitive sensitivity on the left and bias on the right, negative sensitivity shows below chance individual performance, positive bias scores 
mean the overall individual tendency to prefer the first of the two options in the alternative forced-choice test, and negative values show 
individual tendency to choose the second token). Type-2 performance is represented on the lower figures (metacognitive sensitivity on the left 
and metacognitive efficiency on the right). On this and the following figure, the dots represent the scores of individual participants, the boxes 
contain 50% of all data (second and third quartiles), whiskers represent upper and lower (the first and the fourth) quartiles. The horizontal 
lines inside the boxes represent medians in each sample, and filled dots (red dots in online version) show the means.  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1b. Metacognitive bias expressed as mean confidence rating 
assigned to the trials pairing words versus non-words, words versus 
phantoms and phantoms versus non-words.  
 

D-prime 

The analysis showed a significant effect of pair-type, F(2, 74)=9.328, p<.0005, ηp
2=.201. Pairwise comparisons 

revealed that sensitivity was significantly higher for words over non-words than for words over phantoms, M=.479 

(.1), [.278:.681], t(37)=4.817, p<.0005. The difference in sensitivity between phantoms over non-words and words 

over phantoms was also significant, M=.329 (.126), [.073:.586], t(37)=2.607, p=.039. We did not observe that 

sensitivity to words over non-words was significantly different from sensitivity to phantoms over non-words, M=.15 

(SE of the difference .113), 95%CI of the difference [-.08:.38], t(37)=1.325, , p=.579. To estimate the evidence for 

absence of difference in the latter contrast, we calculated the Bayes factor using Bayesian t-tests (2-tailed, with the 

prior that both outcomes are equally likely) for the latter contrast. The result, BF10=.039, shows that, given the data, 

the null hypothesis (no difference) is 2.55 times more likely than the alternative hypothesis, which provides some – 

although weak – evidence for absence of significant difference.  

Bias (C’) 

The difference in bias between conditions was not significant, F(2, 74)=2.07, p=.133, ηp
2=.053, suggesting that people 

did not have different preferences across pair-types in endorsing the first or the second item. 

Meta-d-prime 

The analysis showed a significant effect of pair-type, F(2, 74)=27.52, p<.0005, ηp
2=.427. Pairwise comparisons 

revealed that sensitivity to words over non-words was significantly different from sensitivity to phantoms over non-

words, M=.208 (.07), [.067:.349], t(37)=2.99, p=.015. Meta-d’ was significantly higher on words over non-words than 

on words over phantoms, M=.482 (.07), [.342:.623], t(37)=6.95, p<.0005. Finally, the difference in meta-sensitivity to 

phantoms over non-words and words over phantoms was also significant, M=.275 (.06), [.161:.388], t(37)=4.92, 

p<.0005.  

Overall, this shows that even though people select both words and phantoms over non-words with equal sensitivity, 

their confidence ratings better discriminate between correct and incorrect responses in word vs. non-word test 

trials. This suggests higher metacognitive sensitivity to old items, which can potentially be retrieved from memory 

and thus benefit from memory representations during the recognition test.  

M-ratio 

The analysis showed a significant effect of pair-type, F(2, 74)=1079.415, p<.0005, ηp
2=.967. Pairwise comparisons 

revealed that sensitivity to words over non-words was significantly different from sensitivity to phantoms over non-

words, M=.156 (.11), [.133:.179], t(37)=13.85, p<.0005. M-ratio was significantly higher on words over non-words 

than on words over phantoms, M=.491 (.008), [.474:.508], t(37)=58.56, p<.0005. Finally, the difference in M-ratios 



on phantoms over non-words and words over phantoms was also significant, M=.334 (.12), [.31:.361], t(37)=27.09, 

p<.0005.  

Metacognitive bias 

Overall, mean confidence did not differ across pair-types, F(2, 74)=2.653, p=.085, ηp
2=.067. This suggests that 

participants used similar confidence references across all conditions and reveals no tendency to assign higher or 

lower confidence on any of the pair-types.  

Importantly, differences in discrimination performance across the three pair-types could have influenced mean 

confidence, indicating that this commonly used measure of metacognitive bias would not be bias-free in our 

experiment. To verify that people had no tendency to assign overall higher or lower confidence ratings across 

conditions, we explored the relations between type-1 sensitivity and mean confidence ratings using by-subject 

correlations. Lower correlations would signify overconfidence (low performance and high confidence). Comparison 

of correlations could then be used to compare the bias across conditions. We compared correlations between 

sensitivity and mean confidence in word versus non-word trials (r=.197) and word versus phantom trials (r=-.052), 

controlling for the correlations in phantom versus non-word trials (r=-.05). The correlations were not significantly 

different, z=1.026, p=.152. Difference in correlations between type-1 sensitivity and mean confidence in word versus 

phantom and phantom versus non-word pairs was not significant either, z=-.009, p=.496 (controlling for the 

correlations in the third pair-type). Finally, difference in correlations for word versus non-word and phantom versus 

non-word trials were not significant, z=1.017, p=.155. This analysis converges with the results of ANOVA on mean 

confidence ratings. No evidence was detected that participants tended to assign higher or lower confidence ratings 

to any pair-type.  

DISCUSSION 

Overall, the results show that people easily discriminate between tokens that violate statistical regularities and 

tokens that conform to statistical regularities, both when statistically eligible tokens are old (i.e., were embedded in 

the familiarization stream) or novel. Sensitivity to words over non-words and phantoms over non-words appears to 

be similar, although direct evidence for absence of difference is weak (given the data, the no difference scenario is 

only 2.6 times more likely than the alternative). Discrimination between old and novel statistically congruent items is 

more challenging and less accurate, yet still possible (people preferred words to phantoms, when these two types of 

tokens are presented as word candidates during the recognition test). This pattern of results suggests that when 

people make a choice between two word candidates, deviations from learnt structures are more salient than the 

potential to retrieve the token from memory as a whole constituent. However, relying on memory representations 

may still occur when people need to choose between two candidates that are both congruent with regularities. 

Memory representations of recurrent constituents extracted from continuous sensory input during familiarization do 

modulate confidence judgments: metacognitive sensitivity is higher in trials in which words are paired with non-

words than trials in which phantoms are paired with non-words. Despite the insignificant difference in d‘ scores 

between these conditions, M-ratio is higher when words are paired with non-words, pointing to a facilitatory effect 

of memory representations for old items.  

Although metacognitive processing is indeed possible without conscious awareness (Jachs, Blanco, Grantham-Hill, & 

Soto, 2015; Kentridge & Heywood, 2000), in this experiment participants were explicitly told to detect and memorize 

the words of “an alien language” during the familiarization stage. During the recognition test, participants also made 

conscious choices. Thus we assume that metacognitive processing in our experiment is strongly coupled with 

conscious awareness of knowledge or conscious assessment of the feeling of familiarity with respect to the content 

of statistical learning (Kunimoto, Miller, & Pashler, 2001; Persaud, Davidson, Maniscalco, Mobbs, Passingham, 

Coway, & Lau, 2011; Persaud, McLeod, & Cowey, 2007; Shimamura, 2008). If participants were not consciously 

aware of the content of their knowledge, their confidence ratings would not be informative with respect to the 

correctness of their responses, even if recognition performance were above chance. Following this logic (Ko & Lau, 

2012; Maniscalco & Lau, 2012; Persaud et al., 2007; Shimamura, 2008), we believe that – at least in the current 



experimental setup – post-decision confidence judgments objectively measure conscious awareness in the choice of 

words over non-words and phantoms, and phantoms over non-words. Thus, our results suggest that people are 

more aware of statistical regularities (and violations of such regularities) than memorized triplets, although they can 

still discriminate these old triplets from novel items that conform to acquired regularities. This means that the 

statistical learning process produces both discrete constituents and statistical rules (e.g., TPs), yet these are 

subjected to varying degrees of conscious processing. In this regard, it is important to emphasize that explicit 

instructions equipped participants with information that the familiarization stream contained discrete constituents 

(aka were words in an “alien language”), but the existence of statistical rules was not mentioned to the participants. 

We propose that, over the course of learning, attention was re-shifted from constituents to structures, subjecting 

them to more conscious awareness. This could support the extraction of rules from a small number of cases, and 

generalization of these extracted rules to previously unencountered situations. It would also be interesting to 

explore how conscious awareness is modulated by drawing attention – via explicit instructions – not only to the 

presence of discrete constituents in the sensory input, but also to the regularities embedded in that input. It would 

also be interesting to explore metacognitive processes elicited by an identification task (yes/no recognition task, 

where the response requires deciding whether a presented token is a word constituent from a sensory input one has 

been exposed to) as opposed to a discrimination task.  

Our data leaves many questions unanswered. We do not know whether the observed differences in metacognitive 

processing were based on different strategies for assigning confidence ratings for the pair-types, or on reduced error 

detection (people might not have perceived rejected phantoms as errors in word-phantom pairs, which would 

prevent error detection mechanisms from functioning). Furthermore, it is important to note that d’ provides a bias-

free measure of perceptual and cognitive sensitivity to the signal (in this case, presence of structure, presence of 

memory representations, or both), without making any conclusions in regard to the processing architecture, and 

meta-d’ provides an estimate of metacognitive sensitivity, also without pointing to a particular type of processing 

mechanism. Both measures can be driven by multiple, sometimes confounding factors. Studies regarding type-1 

sensitivity in statistical learning have already spawned a rich body of literature. Siegelman, Bogaerts, Christiansen, 

and Frost (2017) and Frost, Armstrong, Siegelman, and Christiansen (2015) have summarized that individual 

differences in statistical learning efficiency can be modulated by a) computational ability (i.e., how well an individual 

registers statistical regularities and employs them to detect boundaries between discrete constituents); b) individual 

differences related to experience with a particular domain, task, or type of material (more expertise makes an 

individual better at dealing with statistical regularities with higher degrees of complexity); and c) psychophysics 

differences related to individual ability to encode information in a particular modality at a particular rate with a 

particular just-noticeable detection or discrimination threshold. Each of these factors can also affect metacognitive 

sensitivity and feelings of confidence. Additionally, metacognitive sensitivity can be influenced by (a) information – 

usually a subjective feeling for which the participant has no logical explanation because the information is not 

subject to conscious processing - that is taken into account when making metacognitive judgments but not cognitive 

decisions (Jachs et al., 2015; Scott, Dienes, Barret, Bor, & Seth, 2014); (b) further processing of the stimulus 

information after the decision is already taken, leading to meta-d’ scores being higher than d’ scores (Rabbit & Vyas, 

1981); or (c) self-evaluation of one’s feeling of confidence (Fleming & Daw, 2017). Further research is needed to 

explore these multiple drivers of metacognitive sensitivity, efficiency, and bias in statistical learning tasks, which are 

reflecting in meta-d’ and M-ratio measures.  
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