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Abstract – The main objective of this article is to demonstrate that passive energy 
refurbishment interventions influence comfort conditions of households for both cold and hot 
annual periods, while they help to avoid or promote temperature-related health risk 
situations. However, improving the thermal efficiency of the building envelope is encouraged 
in order to reduce energy demand for heating and cooling instead of considering also their 
impact on users’ health. The calculation methodology to quantify improvements, on the other 
hand, is drawn from regulation-based standards, which describe the optimal achievable 
efficiency levels and energy cost savings. The present study, however, addresses how diverse 
thermal performance variables are (climate, thermal comfort range and occupancy rate), and 
shows that different thermal assessment standards influence the obtained results. An energy 
simulation approach was developed to evaluate different scenarios and compare the results. 
In conclusion, the results contribute to an understanding or to a discussion of the suitability 
of current energy renovation policies with regard to indoor thermal comfort and 
temperature-related health risk situations. 

Keywords – Energy demand; energy refurbishment; indoor thermal behaviour; indoor 
thermal comfort; indoor thermal health risk 

1. INTRODUCTION  

The objective of public European policies and recommendations towards building 
renovation has varied over decades; from being focused on the conservation and maintenance 
of buildings [1], [2] to 20th Century energy efficiency standards [3]–[5], due to building 
sector’s high percentage of final energy consumption (32 % in 2017) [6]. 

Energy efficiency measures, therefore, were and are mainly promoted because of their 
capacity to reduce buildings’ carbon and greenhouse gas emissions while saving energy costs 
and improving thermal performance [7]–[13]. 

Alongside such purposes, it is worth mentioning their capacity and positive influence in the 
indoor thermal behaviour and comfort quality level [14]–[16]. With respect to indoor thermal 
well-being, however, there are divergent international recommendations, standards and 
regulations, including those defined by the World Health Organisation [17], [18], the 
ASHRAE [19], the ISO 7730 [20]. In addition, diverse scientific research support there are 
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different comfortable temperature conditions for determining indoor comfort [21]–[25], 
protecting human health [26]–[36] and decreasing mortality and morbidity rates [37]–[41]. 

On the other hand, if construction characteristics of buildings are considered, it has been 
demonstrated that the residential building sector is characterized by poor thermal efficiency 
in countries with milder climates, which promotes low and unhealthy indoor winter 
temperatures [42]–[44]. 

Improvements in the energy efficiency and the thermal behaviour of the residential building 
stock, therefore, need to be considered in order to achieve thermally healthier and more stable 
indoor hygrothermal conditions for winter or cold periods [45], [46]. 

Energy efficiency calculations and policies, however, are commonly based on 
regulation-based standards, which establish both the achievable comfort ranges and the 
occupancy rates [47]. These standards are useful for the simplification of the calculation 
methodology, but they are aimed at achieving higher efficiency levels and energy cost 
savings. Theoretical comfort ranges and occupancy rates, though, could be regarded as 
variable factors due to their high impact on the energy demand calculation and indoor thermal 
behaviour. 

2. OBJECTIVE  

The objective of this paper, therefore, was focused on demonstrating that passive energy 
refurbishment interventions, in addition to reducing energy demand, do influence households’ 
comfort conditions for both cold and hot annual periods, while they help to avoid or promote 
temperature-related health risk situations. The evaluation of the influence regarded diverse 
regulation-based and thermally healthy comfort ranges, and different occupancy rates.  

3. CALCULATION METHODOLOGY  

To this end, a calculation methodology was defined in order to determine the relationship 
between heating and cooling energy demand, indoor thermal comfort conditions and 
temperature-related health risk situations in a multifamily residential building (Fig. 1). 
Based on machine learning models [48], different energy simulation scenarios were 
developed and evaluated according to three different analysis variables (climate data, indoor 
thermal range and schedule, and occupancy rate) and two construction state conditions 
(existing unrefurbished and energy-refurbished). Among the energy-refurbishment criteria, 
only passive strategies were assessed. Active, renewable and/or control systems were not 
considered. 

 
Building type:  Multifamily Residential Building 

     
Construction state:  existing unrefurbished vs energy-refurbished 

       
Analysis variables:  climate data + indoor thermal condition + occupancy 

       
Results:  energy demand + indoor thermal comfort +  indoor thermal health risk 

       
Fig. 1. Calculation methodology scheme. 

The results obtained from the diverse scenarios were distinguished according to annual 
energy demand (heating and cooling), indoor thermal comfort level and temperature-related 
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health risk situations. Dealing with energy demand (kWh/m2 per year), heating/cooling 
systems were activated to reach the established temperature ranges, but for the quantification 
of the indoor thermal well-being level and thermal risk results (hours per year), no active 
systems were used, that is, the results displayed the passive performance of the building. 

4. CASE STUDY  

The above-detailed calculation methodology was applied to a multifamily residential 
building in the Autonomous Community of the Basque Country, region situated in northern 
Spain. 

According to the most recent Basque statistical database [49], the average age of the 
residential building stock is established in 42.8 years, suggesting almost the half (46 %) was 
built before the approval of the first Spanish building regulations and thermal envelope 
requirements [50]. Within this context, the research project called First step study for the 
elaboration of a long-term Action Plan dealing with the residential building stock of Euskadi† 
was developed, which aimed to classify and categorize the current Basque residential building 
stock. It concluded that 91.9 % of the total were multifamily residential dwellings, of which 
46 % described the H2 type, the one built between 1961 and 1980 (Fig. 2). 

H2 type was constructed during the economic development period, period in which the 
urgent demand of the society promoted buildings with poor construction quality and deficient 
thermal properties, with no concern on the resulting health risk. Consequently, it is worth 
mentioning their great improvement potential for both energy demand characteristics and 
indoor environmental properties. 

 

 
Fig. 2. Classification of multifamily residential buildings in the Autonomous Community of the Basque Country built 
between 1961 and 1980. 

4.1. Construction State: Description of Building Model 

4.1.1. Existing Unrefurbished 

A multifamily residential building constructed between 1961 and 1980 was, therefore, 
selected for this study. 

With a total building area of 3290.70 m2 and a net conditioned surface of 2487.73 m2, the 
building consists of a non-occupied ground floor and 7 residential floors (with 4 apartments 

                                                             
† Original designation: «Estudio previo para la elaboración de un Plan de Acción a largo plazo en el parque de edificios 
de Euskadi». The research has been developed by the research group CAVIAR (UPV/EHU) in collaboration with 
researchers from the UPC and the Department of Environment, Territorial Planning and Housing of the Basque 
Government. 
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of 12 m depth on each floor). All apartments are naturally ventilated and lack mechanical 
ventilation. No renewable energy systems were installed. 

The building envelope’s construction and thermal characteristics were defined during the 
initial stage of the abovementioned research project. The U values (W/m2K) of the existing 
building envelope, include a cavity wall façade, 1.25 (W/m2K); a reinforced concrete deck 
with ceramic finish, 3.46 (W/m2K); a reinforced concrete first floor slab, 2.51 (W/m2K); 
monolithic glazing, 5.77 (W/m2K); and aluminium frame, 4.2 (W/m2K) (see Table 1). 
As mentioned, this building typology was built before the first Spanish building regulations, 
hence, the U values do not meet the minimum requirements established by the current Spanish 
Technical Building Code [51]. 

TABLE 1. BUILDING ENVELOPE LAYERS AND U VALUES FOR THE BASELINE  
AND REFURBISHED MODELS 

Envelope Thickness, 
mm 

Density, 
kg/m3 

Conductivity, 
W/(m·k) 

U-value, 
W/(m2·k) 

External façade 

Baseline existing composition 

 Double hollow brick partition 80 930 0.375  

 Air gap 80 – –  

 Double hollow brick partition 80 930 0.375  

Refurbishment layers 

 Insulation – XPS 100 37.5 0.032  
 Air gap 50 – –  
 Ceramic panel 15 2000 1  
Current façade 1.25 

Refurbished façade 0.248 

Roof 

 Ceramic tile 25 2300 1.3  

 Concrete floor 200 1740 1.923  

Current roof 3.46 

Concrete floor in contact with heated spaces 

 Concrete floor 180 2100 1.4  

Current concrete floor in contact with unheated space 2.51 

Concrete floor in contact with unheated spaces (first and last floors) 

Baseline existing composition  

 Concrete floor 180 2100 1.4  

Refurbishment layers  

 Insulation – XPS 60 37.5 0.032  

Current concrete floor in contact with unheated space 2.51 

Refurbished concrete floor in contact with unheated space 0.47 

Windows (78 % glazing and 22 % frame) 
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Baseline existing composition  

 Single glazing  6   * 5.7 

 Aluminium frame with no 
thermal bridge break –   * 4.2 

Refurbished composition 

 Double glazing 6 + 12 + 6   * 2.0 

 PVC frame –   * 2.1 

Existing window 5.37 

Refurbished window 2.1 

4.1.2. Energy Refurbished State 

The principal energy renovation strategy was focused on the improvement of users’ quality 
of life, that is to say, increasing the indoor thermal comfort, while reducing the energy 
demand. For this purpose, the considered strategies were based on passive measures, such as 
increasing the thermal resistance of the envelope, replacing the windows and reducing the air 
leakage. 

There were three possible intervention strategies related to the improvement of the thermal 
resistance of the façade: external insulation, internal insulation, and air gap insulation. 
Considering the best technical and energy efficient practice, however, the selected strategy 
was the external insulation. The addition of that new skin, though, could also be evaluated 
according to two different techniques, that is, external thermal insulation technique or 
ventilated façade technique. Based on a previous study developed by Oregi et al. [52], which 
evaluated the energy, environmental and economic performance of several refurbishment 
strategies, a ventilated façade technique was selected‡, which included a 10 cm XPS 
insulation, an air gap and a ceramic outlayer panel (see Table 1). 

Alongside with the solid façade intervention, the replacement of the existing windows, both 
the frame and the glazing, was also considered. The measure included a new PVC frame 
(2.0 W/(m2k)) and double glazing (2.1 W/(m2k)). 

In addition to the improvement of the vertical envelope, the strategy also considered the 
horizontal one, that is to say, the concrete floors in contact with unheated spaces (first floor 
and upper floor). For that purpose, a 6 cm thermal insulation layer with its flooring finish 
layer was added to the existing concrete slab. 

As a result, the set of passive intervention measures suggested improved the thermal 
properties to the total area of the thermal envelope. 

4.2. Analysis Variables 

4.2.1. Climate Data 

Regarding the varying outdoor environmental conditions and the sheer quantity of such 
building typology across the whole territory of the Basque Country, this study used climate 
data for two cities, Bilbao and Vitoria-Gasteiz, which represent the two divergent climates in 
the region. 

                                                             
‡ Note that the climatic zone, type of building and the construction characteristics of that reference case study were 
similar to the one evaluated by this study. 
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According to the Köppen-Geiger worldwide climate classification [53], [54] and its 
identification within the Iberian Peninsula [55], the Basque Country should be considered as 
«warm temperate-Cfc» (C: warm temperate, f: fully humid, c: cool summer), or «Cfb» 
(temperate with a dry season and temperate summer), respectively. However, if the current 
Spanish Technical Building Code is regarded, it provides different reference climate data for 
the provincial capitals of the whole of Spain [56]. In the case of Bilbao, the reference climate 
zone is C1, where the minimum and average outdoor dry bulb temperatures are –0.2 °C and 
14.7 °C, respectively. Vitoria-Gasteiz, instead, falls with a different category, D1, with a 
minimum and an average of –4.0 °C and 12.1 °C, respectively [57]. 

Based on these classifications, EnergyPlus 8.6 [58] simulation tool was selected for the 
operational energy use calculations, where the International Weather for Energy 
Calculation [59] climatic files were used for both cities. Alongside, the building models were 
developed through the DesignBuilder v.5.5.2.003 interface [60]. It should be mentioned, that 
the defined construction models reproduced the selected building typology according to pre-
stablished modelling criteria simplifications, which may influence in the results, including 
some little errors or variations in comparison to the real construction ones. 

4.2.2. Indoor Thermal Condition 

4.2.2.1. Thermal Comfort Range and Schedule 

Two different definitions of thermal comfort were stablished and evaluated (see Table 2) 
to determine the energy demand.  

− Condition CTE (“C”): Spanish Technical Building Code regulation-based indoor 
thermal range and schedule [51]. 

− Condition WHO (“H”): healthy thermal range [17], [18] over 24 h. 

TABLE 2. INDOOR THERMAL RANGE AND SCHEDULE PARAMETERS CONSIDERED  
FOR THE SIMULATION PROCESS 

Indoor thermal comfort condition Temperature range Schedule 

CTE 20–25 °C 

Heating: 30th Sep. – 31st May 
From 07:00 h to 23:00 h 
Cooling: 31st May – 30th Sep. 
From 15:00 h to 23:00 h 

WHO 18–24 °C 

Heating: 30th Sep. – 31st May 
24 h 
Cooling: 31st May – 30th Sep. 
24 h 

4.2.2.2. Thermal Limits for Health Risk 

The following thermal limits describe indoor temperatures associated with negative impacts 
on health, so the exposure to such inadequate temperatures may result in an increase in 
seasonal mortality and morbidity rates. 

− Cold-related temperatures may cause higher risk of cardiovascular events [26], [31], 
[33], [35], [36], respiratory diseases, or minor problems such as cold and flu [39]. 
Temperatures below 18 °C, therefore, show an increasing risk: 
− Risk 1: Tª < 16 °C, respiratory infections; 
− Risk 2: Tª < 12 °C, blood pressure and viscosity increase, which may cause heart 

attacks and strokes; 
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− Risk 3: Tª <9 °C, deep body temperature fall. 
− Heat-related temperatures are less harmful but involve cardiovascular diseases [26], 

[35], [61], clinical syndromes of heat stroke, heat exhaustion, heat syncope and heat 
cramps [62], [63], permanent damage to organ systems and risk of early mortality. 
Several studies demonstrate that the recommended upper temperature should not 
exceed from 22 °C to prevent from Sick Building Syndrome [27], while the WHO sets 
it in 24 °C [17], [18]. Other studies [38], [64], however, argue that upper temperature 
limits should be relative the outdoor climate. Within such context, recent studies 
developed in Spain [41], divide the whole Spanish territory in local climate areas and 
establish particular upper limits for each area in order to reduce mortality. Considering 
the two reference climates evaluated, therefore, these were the fixed limits: 
− Risk 4: Tª < 30 °C for Bilbo_C1 climate, and Tª < 34 °C for Gasteiz_D1 climate. 

4.2.3. Occupancy 

Together with the thermal comfort range and schedule, the occupancy rate may generally 
be derived from building regulations. In this study, however, even if the regulation-based 
“Pr2 profile” was the base scenario to set the internal energy performance (see Table 3), two 
more occupancy scenarios were evaluated in order to consider also other users’ 
behaviour [65]: 

− Profile 1 (“Pr1”): medium occupancy rate, heating and cooling are just switched on in 
the most used rooms. Only the 65 % of the total living area of the household was 
considered to be thermally conditioned, and the remaining 35 %, instead, 
unconditioned. The internal energy performance parameters for the conditioned area, 
though, were the regulation based ones (Table 3); 

− Profile 2 (“Pr2”): medium occupancy rate. Current Spanish regulation-based 
occupancy rate, schedule and internal energy performance parameters; 

− Profile 3 (“Pr3”): highest occupancy rate. The regulation-based occupancy was 
considered to be the double, that is, 0.06 people/m2. However, the rest of the internal 
energy performance parameters were the ones defined in Table 3. 

TABLE 3. PR2 PROFILE OCCUPANCY AND ENERGY PERFORMANCE PARAMETERS CONSIDERED  
FOR THE SIMULATION PROCESS 

Parameter Unit Value 

Occupancy (household) 
People/m²  0.03 

Schedule Until 07:00 (100 %), until 15:00 (25 %), until 23:00 
(50 %), until 24:00 (100 %) 

Occupancy (ground floor, 
stairs, under roof) 

People/m²  0 

Schedule Until 24:00 (100 %) 

Ventilation (natural) Renovations per hour (r/h) 0.75 

Ventilation (infiltrations) Renovations per hour (r/h) 0.135 

Lighting (household) 

Lighting level (lux) 200 

Power (W/m²) 5 

Schedule Until 07:00 (10 %), until 18:00 (30 %), until 19:00 
(50 %), until 23:00 (100 %), until 24:00 (50 %) 

Lighting (common areas) Lighting level (lux) 100 
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Power (W/m²) 3 

Schedule Until 24:00 (On) 

Lighting (ground floor) Schedule Off 

Equipment (household) 
Power (W/m²) 4.4 

Schedule Until 07:00 (10 %), until 18:00 (30 %), until 19:00 
(50 %), until 23:00 (100 %), until 24:00 (50 %) 

4.3. Machine Learning Models: Energy Simulation Scenarios Outline 

Finally, from the above-described variables a total of 24 different analysis scenarios (see 
Table 4) were obtained. 

TABLE 4. ENERGY SIMULATION SCENARIOS BY CASE STUDY PARAMETERS 

Construction state Climate data Indoor thermal condition Occupancy ID 

Baseline (B) 

Bilbao_C1 (B) 

CTE (C) 

Profile 1 (Pr1) B_B_C_Pr1 

Profile 2 (Pr2) B_B_C_Pr2 

Profile 3 (Pr3) B_B_C_Pr3 

WHO (H) 

Profile 1 (Pr1) B_B_H_Pr1 

Profile 2 (Pr2) B_B_H_Pr2 

Profile 3 (Pr3) B_B_H_Pr3 

Gasteiz_D1 (G) 

CTE (C) 

Profile 1 (Pr1) B_G_C_Pr1 

Profile 2 (Pr2) B_G_C_Pr2 

Profile 3 (Pr3) B_G_C_Pr3 

WHO (H) 

Profile 1 (Pr1) B_G_H_Pr1 

Profile 2 (Pr2) B_G_H_Pr2 

Profile 3 (Pr3) B_G_H_Pr3 

Refurbished (R) 

Bilbao_C1 (B) 

CTE (C) 

Profile 1 (Pr1) R_B_C_Pr1 

Profile 2 (Pr2) R_B_C_Pr2 

Profile 3 (Pr3) R_B_C_Pr3 

WHO (H) 

Profile 1 (Pr1) R_B_H_Pr1 

Profile 2 (Pr2) R_B_H_Pr2 

Profile 3 (Pr3) R_B_H_Pr3 

Gasteiz_D1 (G) 

CTE (C) 

Profile 1 (Pr1) R_G_C_Pr1 

Profile 2 (Pr2) R_G_C_Pr2 

Profile 3 (Pr3) R_G_C_Pr3 

WHO (H) 

Profile 1 (Pr1) R_G_H_Pr1 

Profile 2 (Pr2) R_G_H_Pr2 

Profile 3 (Pr3) R_G_H_Pr3 
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5. RESULTS 

5.1. Energy Demand Variation 

Due to the prevailing climatic conditions and residential use of building, almost all the 
annual energy demand (Fig. 3) corresponded to heating for all 12 baseline or unrefurbished 
scenarios (see Table 4). As a result, the total energy demand, including the heating demand, 
was considerably reduced for all refurbished scenarios, even if cooling demand increased (see 
Table 5). Even more, there were some simulation scenarios, such as R_B_C_Pr2, 
R_B_C_Pr3, R_B_H_Pr1, R_B_H_Pr2, R_B_H_Pr3 for Bilbao_C1 climate, and R_G_H_Pr3 
for Gasteiz_D1 climate, in which the cooling energy demand became higher than the heating 
energy demand. 

 

 
Fig. 3. Annual energy demand (kWh/m2) for all the energy simulation scenarios. 

TABLE 5. ANNUAL ENERGY DEMAND VARIATION (%) FOR REFURBISHED SCENARIOS. 
VARIATION: NEGATIVE VALUES MEAN A REDUCTION, POSITIVE VALUES AN INCREASE 

ID 

Annual energy demand variation 

CTE comfort condition WHO comfort condition 

Total Heating Cooling Total Heating Cooling 

R_B_Pr1 –59.18 –75.41 238.73 –45.26 –77.48 177.78 

R_B_Pr2 –63.60 –79.77 232.48 –50.15 –81.81 171.36 

R_B_Pr3 –63.13 –84.10 214.13 –45.79 –87.90 163.58 

R_G_Pr1 –59.43 –70.33 297.52 –49.98 –69.63 227.12 

R_G_Pr2 –64.26 –75.05 300.55 –55.16 –74.54 224.42 

R_G_Pr3 –64.93 –78.35 269.45 –53.99 –78.72 211.55 

 
With regard to the three analysis variables, the major differences corresponded to the 

climate; the total energy demand for the extremer Gasteiz_D1 climate was always higher if 
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models under equal analysis variables were compared. However, those differences were 
higher if only baseline scenario results were considered. 

Likewise, the diagram shows there were variations among the results obtained if the 
occupancy rate and the indoor thermal comfort condition variables were taken into 
consideration. 

According to the occupancy, the “Pr2 profile” displayed both the highest annual energy 
demand and the heating demand. The highest cooling demand, instead, was defined by “Pr3” 
as a consequence of its higher internal gains. The variation between “Pr1” and “Pr2”, on the 
other hand, did not describe a considerable difference due to the reduced (35 %) thermally 
conditioned area. Nevertheless, the results obtained were not as impressive as the ones 
obtained with regard to the climate variable. 

If both indoor thermal comfort conditions are considered, it should be noticed that the 
requisites set by the Spanish building code, involved the highest total energy demand for 
unrefurbished scenarios, in which CTE thermal range described higher heating demand, but 
lower cooling demand in comparison with the results for WHO thermal range. However, the 
total annual energy demand once the energy-refurbishment strategies were applied was almost 
equal for both indoor thermal conditions, which described an important total decrease, but an 
increased cooling demand. 

Accordingly, provided that both reference climate data, regulation-based Pr2 profile, CTE 
indoor thermal comfort range, and both construction state scenarios are compared, that is to 
say, B_B_C_Pr2 vs R_B_C_Pr2, and B_G_C_Pr2 vs R_G_C_Pr2, the results described a 
significant total energy demand reduction for both refurbished scenarios, a 63.6 % and a 
64.3 %, respectively, which depended not only on the decrease of the heating demand, but 
also on the increase of the cooling demand. 

5.2. Passive Indoor Temperature Variation 

With regard to the annual passive thermal behaviour of the building, it is worth mentioning 
that indoor comfortable hours were reduced in all energy refurbished scenarios for both 
climates and for the three occupancy rates analysed (See Table 6).  

TABLE 6. ANNUAL COMFORT/RISK HOURS’ VARIATION (%) FOR REFURBISHED SCENARIOS. 
VARIATION: POSITIVE VALUES MEAN A REDUCTION, NEGATIVE VALUES AN INCREASE 

ID 

Annual comfort/risk hours’ variation 

Comfort condition Risk limits 

CTE WHO 
Lower limits Upper limit 

Risk 1 Risk 2 Risk 3 Risk 4 

R_B_Pr1 37.62 21.64 58.52 100.00 100.00 –11 560.00 

R_B_Pr2 35.24 17.67 64.56 100.00 100.00 –24 233.33 

R_B_Pr3 26.66 0.57 87.04 100.00 0 –10 533.33 

R_G_Pr1 20.64 16.12 33.38 60.70 100.00 –3900.00 

R_G_Pr2 18.28 15.52 35.07 70.60 100.00 –5200.00 

R_G_Pr3 12.94 17.75 40.72 95.18 100.00 –7600.00 

 
The variation shows an important reduction for the CTE thermal condition variable, 

especially for Bilbao_C1 climate, where the reductions reached up to 37 %, 35 % and 26 % 
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for Pr1, Pr2 and Pr3, respectively. The reason for such results was related to indoor summer 
temperatures. They were higher than the ones obtained in the existing unrefurbished building 
scenarios, which meant that during the hottest months they easily exceeded the established 
comfortable upper temperature limits (Fig. 4, Fig. 5). 

 

Fig. 4. Annual thermal passive behaviour for baseline (purple shades) and refurbished (green shades) scenarios according 
to the occupancy variable and Bilbo_C1 climate. 

 

 
Fig. 5. Annual thermal passive behaviour for baseline (purple shades) and refurbished (green shades) scenarios according 
to the occupancy variable and Gasteiz_D1 climate. 

With regard to cold-related temperature risk limits, none of the refurbished building 
scenarios (considering the three occupancy rates) showed indoor temperatures below 12 °C 
for Bilbao_C1 climate, and even in the worst scenario, the unhealthy hours below 16 °C were 
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reduced in 58 %. For Gasteiz_D1 climate, instead, where winter outdoor temperatures are 
more severe, it could be observed that indoor temperatures were never lower than 9 °C, and 
in the worst scenario, the unhealthy hours below 12 °C and 16 °C were reduced in 60 % and 
33 %, respectively. 

Heat-related temperature risky hours’ results, on the contrary, offer a totally different 
reading. If existing buildings were healthy for both climates and the three occupancy rates, 
after refurbished the situation worsened considerably, leading to completely unhealthy 
indoors during hot seasons for scenarios under Bilbao_C1 climate. 

On the other hand, the data referring to temperature-related health risk situations, showed 
that the evaluated intervention strategies were quite efficient if both cold-related and 
heat-related temperature risk limits were all together considered (Fig. 6). However, the results 
described completely different situations if upper and lower limits were analysed on their 
own. 

 

 
Fig. 6. Annual health risk hours for baseline and refurbished buildings according to both reference climates. 

6. CONCLUSIONS AND DISCUSSION 

The energy refurbishment strategies suggested in this study meet the energy demand 
regulations’ requirements, hence, they promote energy efficient solutions and fulfil thermal 
envelope improvements. The efficiency and the potential of energy refurbishment measures 
is commonly calculated according to regulation-based standards. This research, however, was 
aimed at demonstrating that considering diverse thermal variables (climate, indoor thermal 
conditions and occupancy rates) final optimal results might be influenced. Moreover, the 
work carried out has enabled an integrated evaluation of the impact of energy refurbishment 
interventions on energy demand, indoor thermal comfort and temperature-related health risk. 
An integrated vision has not been present in existing literature 

Thermal well-being conditions describe comfortable and healthy indoors, but in order to 
reach such conditions, be efficient, and reduce the energy demand, there is a need to 
understand their interaction with the thermal performance of the envelope. As demonstrated, 
the Spanish regulation-based comfortable temperature range (20–25 °C) is preservatory 
towards unhealthy indoors, yet is almost unattainable for unreburbished H2 type residential 
buildings with regard to their energy demand control. 



Environmental and Climate Technologies 

 ____________________________________________________________________________ 2020 / 24 

 
360 

 

Energy refurbishment interventions, on the other hand, do have a positive impact on the 
energy demand reduction, but lead to a variation of the indoor thermal environment. 
As supposed, the evaluated energy refurbishment strategies on the thermal envelope result in 
higher indoor temperatures during cold seasons, upgraded comfort levels, less thermally 
unhealthy hours, and reduced needs for active systems, which describes a beneficial situation 
for fuel poverty and low-income households, for instance. Nevertheless, the suggested 
interventions illustrate also an increase in indoor temperatures during hot seasons. Therefore, 
it could be said that they describe a conflicting scene, in which the cooling demand is raised, 
comfortable conditions are worsen, and health risk situations are increased. However, a more 
nuanced analysis of the results shows that in the climates studied, comfort conditions during 
winter and transitional seasons improve noticeably, and the worsening of indoor thermal 
conditions occurs only in summer months. The evaluated climates, however, are mild and 
temperate even during summer periods. As a result, the increased indoor temperatures could 
be mitigated thanks to the natural ventilation, which may promote also a reduction in the 
cooling demand. 

Therefore, the important reduction in health risk associated with low temperatures in 
dwellings identified in this study tips the balance definitively towards the positive impact of 
refurbishment and, therefore, justifies the intervention in the climatic zones analysed. 

Nevertheless, refurbishments in climates with harsher summers or in scenarios considering 
global warming demand more rigorous prior study that goes beyond energy demand to 
determine if the global impact would be positive or negative. 

In conclusion, it could be said, there is still an open research line dealing with energy 
refurbishment intervention strategies, indoor thermal comfort and their impact on human 
health. 
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