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ABSTRACT 
 

The research of new biomarkers for Parkinson’s disease is essential for accurate and precocious diagnosis, as 
well as for the discovery of new potential disease mechanisms and drug targets. The main objective of this work 
was to identify metabolic changes that might serve as biomarkers for the diagnosis of this neurodegenerative 
disorder. For this, we profiled the plasma metabolome from mice with neurotoxin-induced Parkinson’s disease 
as well as from patients with familial or sporadic Parkinson’s disease. By using mass spectrometry technology, 
we analyzed the complete metabolome from healthy volunteers compared to patients with idiopathic or familial  

mailto:jfuentes@unex.es
mailto:josemabr@ucm.es


 

www.aging-us.com 16691 AGING 

(carrying the G2019S or R1441G mutations in the LRRK2 gene) Parkinson’s disease, as well as, from mice 
treated with 6-hydroxydopamine to induce Parkinson disease. Both human and murine Parkinson was 
accompanied by an increase in plasma levels of unconjugated bile acids (cholic acid, deoxycholic acid and 
lithocholic acid) and purine base intermediary metabolites, in particular hypoxanthine. The comprehensive 
metabolomic analysis of plasma from Parkinsonian patients underscores the importance of bile acids and 
purine metabolism in the pathophysiology of this disease. Therefore, plasma measurements of certain 
metabolites related to these pathways might contribute to the diagnosis of Parkinson’s Disease. 

INTRODUCTION 
 

Parkinson’s disease (PD) is the second most common 

neurodegenerative disease after Alzheimer’s disease, 

affecting 7-10 million people worldwide. PD results 

from a complex interaction between genetic and 

environmental factors, appearing mostly as idiopathic 

cases, with no identifiable cause. Nevertheless, the 

discovery of several gene mutations associated with 

PD onset point to a genetic origin of the disease [1]. 

Mutations in the PARK8/LRRK2 gene are a common 

monogenic cause of PD. They are frequently found in 

early and late onset disease, in addition to this, familial 

or sporadic cases have been detected [2]. The 

substitution of glycine for serine in exon 41 of the 

protein kinase domain in LRRK2 (G2019S mutation), 

is the most common mutation, as was estimated by the 

international LRRK2 consortium, representing 1% of 

sporadic and 4% of familial PD cases worldwide [3]. 

Also, different substitutions in the conserved GTPase 

domain, in exon 31 of LRRK2 (R1441C, R1441G, and 

R1441H) have been identified as important genetic 

causes of familial PD [4]. 

 

Several therapies have been developed to relieve PD-

related symptoms, improving the patient's quality of life 

[5]. However, there are no efficient therapies available to 

stop this neurodegenerative process, and it is necessary to 

discover the mechanisms that trigger the onset of 

neurodegeneration in order to develop etiological 

therapies [6]. 

 

Metabolomic analysis offers an interesting tool to 

identify biochemical networks linked with the 

pathogenesis of this poorly understood disease [7]. Most 

of metabolomic studies are based on the analysis of 

metabolites in cerebrospinal fluid (CSF) [8] and blood 

samples [9], although there are also some studies that 

have examined other biological samples such as urine 

[10, 11] or feces [12]. By using metabolomics, potential 

biomarkers have been discovered, including the 

biopyrrin, described as a new marker of idiopathic PD, 

after being found increased in the urine of these patients 

[11]. Moreover, dysregulated levels of polyamines, 

glutathione, kynurenine, pyruvate or cholesterol were all 

found in the plasma of PD patients compared to healthy 

individuals [13–18].  

Cholesterol is a critical component of membrane 

bilayers and precursor of all steroid hormones and bile 

acids [19]. It plays key structural and functional roles in 

the general metabolism. Deregulations in cholesterol [9, 

17, 18, 20–22] or in some of its products such as bile 

acids [23–25] have been linked to PD. However, studies 

on the association between serum cholesterol level and 

the risks of neurodegenerative diseases are currently 

under debate. High blood cholesterol, is a well-

established risk factor for coronary disease and stroke 

[26, 27], but its role in PD remains controversial. Blood 

concentrations of cholesterol have been associated with 

a higher prevalence of PD [28, 29], and the use of 

cholesterol-lowering drugs, such as statins, have been 

associated with a decrease of PD [18]. However, 

another study failed to detect a significant association 

between serum cholesterol level and PD risk [30]. 

 

In addition, a correlation between changes in plasma levels 

of uric acid (UA) and the progression of neurodegenerative 

disorders has been described [14, 31]. Most notably, 

decreased UA levels in blood (hypouricemia) were found 

in PD patients [32]. In contrast, high levels of UA in 

blood (hyperuricemia) were shown to lower risks for the 

disease [33–35], and to protect against clinical 

progression in PD [36]. However, the mechanisms of this 

neuroprotective role of UA needs to be investigated 

further, as there are some contradictory studies that have 

shown an association between gout (medical condition 

associated with high levels of blood uric acid) and a 

higher [37] or lower [38] risk of PD. 

 

Here, we report an extensive mass spectrometry 

metabolomic analysis of plasma samples from patients 

with genetic and idiopathic PD and from a mouse model 

in which PD was induced by 6-hydroxydopamine (6-

OHDA). 

 

RESULTS 
 

Convergent metabolic changes observed in plasma 

from PD patients and a mouse model of PD 
 

We performed mass spectrometric metabolomics of 

plasma from: i, patients with idiopathic PD; ii, PD 

patients with the p.G2019S or p.R1441G mutations of 

the LRRK2 gene (Figure 1A and Supplementary Table 
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1); and iii, from a PD mouse model (Supplementary 

Table 2). These mice were treated with the neurotoxin 

6-OHDA, that triggers a rapid degeneration of midbrain 

dopaminergic neurons in the substantia nigra.  

 

Our data revealed that both PD cases exhibit important 

metabolic changes compared to matched controls, both in 

humans (Figure 1A) and in the mouse model 

(Supplementary Table 2). A deep analysis of the 

metabolites levels showed that PD patients groups 

(idiopathic and familial p.G2019S or p.R1441G) clustered 

together, underscoring that the differences observed in all 

metabolome (Figure 1B) or in specific biological 

pathways are very similar between these groups 

(Supplementary Figure 1A). When splitting the 

correlation analysis into subtypes of metabolites, we 

found that bile acids and purine pathways were 

significantly modulated in all PD patients (R value > 0.86 

in all comparisons) (Figure 1C and Supplementary Figure 

1), drawing our attention to these two pathways. 

Increased level of unconjugated bile acids in PD 

patients’ plasma 

 

Bile acid synthesis takes place in liver and consists in 

the oxidation of cholesterol (Supplementary Figure 2A). 

By analyzing the metabolite level, a decrease in the 

levels of cholesterol in plasma of PD patients (Figure 

2A) (p = 0.006) and an important increase of the 

unconjugated bile acids, cholic acid (CA, p = 0.04) 

(Figure 2B), deoxycholic acid (DCA, p < 0.001) (Figure 

2C) and lithocholic acid (LCA, p = 0.06) (Figure 2D) 

were observed. However, except for the glycine-

conjugated DCA (G-DCA) metabolite, no general 

changes were found for other bile acids conjugated with 

glycine (G) (Figure 2E) or taurine (T) (Figure 2F).  

 

No significant differences in cholesterol plasma levels 

(Figure 3A) were noticed in mice treated with 6-OHDA. 

Conversely, a general increase in unconjugated bile acid 

levels was observed in the plasma of these mice (CA, 

 

 
 

Figure 1. Heatmap clustered by Euclidean distance of changes in plasma metabolite concentrations depicted as Log2 in the control group 
(healthy), idiopathic and familial (carrying the p.G2019S or p.R1441G mutations in LRRK2 gene) Parkinson’s disease (PD) patients (A) or Log2-
fold change between each PD group respect to control group (B). Correlation matrix of all plasma metabolites changed in PD patients is 
shown by color codes (p values and Pearson’s coefficients of correlation (R)) (C). 
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p = 0.02; DCA, p = 0.14; LCA, p = 0.02) (Figure 3B–

3D), with no significant differences in conjugated bile 

acids (Figure 3E, 3F), consistent with the results 

obtained in human PD. 

 

Additionally, bile acids have been described to boost 

the synthesis and storage of glycogen in the liver, which 

leads to an FXR-dependent decrease in blood glucose 

levels [39]. In our models, both in PD patients (all 

patients, Glucose, p value = 0.035) (Supplementary 

Table 1) and in the murine model (All patients, Glucose, 

p value = 0.048) (Supplementary Table 2), we can 

remark a slight but significant hypoglycemia that could 

be an indirect consequence of the increase of bile acids. 

 

The levels of uric acid and purine metabolic pathways 

are altered in plasma of all patients with PD 
 

UA has been reported as a risk factor in PD [35]. 

Accordingly, we observed lower UA levels in the 

 

 
 

Figure 2. Box and whisker plots and graphs with average  ± SEM of fold change (Log2) concentrations of cholesterol (A), CA (B), DCA (C), LCA 
(D), G-conjugated bile acids (E) and T-conjugated bile acids (F) in the control group (healthy), idiopathic and familial (harboring the p.G2019S 
or p.R1441G mutations in LRRK2 gene) Parkinson’s disease (PD) patients. Abbreviations: CA, cholic acid; DCA, deoxycholic acid; G, glycine; 
LCA, lithocholic acid; PD, Parkinson’s disease; T, taurine.  

 

 
 

Figure 3. Box and whisker plots and graphs with average ± SEM of fold change (Log2) concentrations of cholesterol (A), CA (B), DCA (C), LCA 
(D), G-CA (E) and T-CA (F) in PD-mouse model. Abbreviations: 6-OHDA, 6-hydroxydopamine; CA, cholic acid; DCA, deoxycholic acid; G, glycine; 
LCA, lithocholic acid; PD, Parkinson’s disease; T, taurine; Unt, untreated.  
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plasma of PD patients (Figure 4A) (p = 0.13), however, 

this decrease was not spectacular. As UA is the end 

product of the metabolism of exogenous- and 

endogenous-derived purines (Supplementary Figure 

3A), we decided to analyze in depth the rest of the 

metabolites of the purine pathway. Interestingly, the 

hypoxanthine levels in patients with PD are much 

higher than in healthy individuals (Figure 4B) (p < 

0.01), but no major changes in xanthine levels (Figure 

4C) were observed in these patients. In addition, 

analyzing the levels of a precursor of hypoxanthine, we 

can see a decrease in the levels of inosine (Figure 4D)  

(p < 0.001). On the same line, we noticed a very 

significant increase in PD patients in the ratios between 

hypoxanthine and its precursor (hypoxanthine/inosine 

ratio) (Figure 4E) (p < 0.001) or its product 

(hypoxanthine/UA ratio) (Figure 4F) (p < 0.001), 

confirming the accumulation of hypoxanthine. In 

summary, we observed an increase in hypoxanthine 

levels and a decrease in both its product and its precursor, 

suggesting a blockade of this metabolic cascade. 

 

As in the previous section, in order to verify these results, 

we also analyzed the modulation of the purine pathways 

in the murine PD model. Remarkably, an increase in the 

level of hypoxanthine was also observed in the serum of 

mice treated with 6-OHDA (Figure 5A) (p < 0.01) 

similarly to the result obtained in patients. In this model, 

the change in hypoxanthine level was accompanied by an 

increase in xanthine levels as well (Figure 5B) (p < 0.05). 

All these results together point to the robustness of the 

PD-associated increase in hypoxanthine. 

 

 
 

Figure 4. Box and whisker plots and graphs with average ± SEM of fold change (Log2) concentrations of uric acid (A), hypoxanthine (B), 
xanthine (C), inosine (D), hypoxanthine/inosine ratio (E) and hypoxanthine/uric acid ratio (F) in the control group (health), idiopathic and 
familial (carrying the p.G2019S or p.R1441G mutations in LRRK2) Parkinson’s disease (PD) patients.  

 

 
 

Figure 5. Box and whisker plots and graphs with average ± SEM of fold change (Log2) concentrations of hypoxanthine (A), xanthine (B), in 
PD-mouse model. Abbreviations: 6-OHDA, 6-hydroxydopamine; Unt, untreated.  
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DISCUSSION 
 

PD is a progressive disorder caused by degeneration of 

neurons in the substantia nigra, the area of the brain 

that controls movement. The first clinical symptoms of 

the disease appear when 80% of these nerve cells have 

disappeared, reducing the effectiveness of dopaminergic 

neurotransmission in this area [40]. Different theories 

related to environmental toxins, genetic factors, and 

accelerated aging have been discussed as possible 

causes of this disease, but most patients diagnosed with 

PD (around 80-85 percent) have what is called primary 

parkinsonism or idiopathic PD, meaning that the cause 

of the disease is unknown. Only a small percentage of 

patients present a genetic cause of PD origin. Five 

Mendelian genes causing familial PD have been 

identified: PARK1/SNCA, PARK2/PARKN, PARK6/ 
PINK1, PARK7/DJ1, as well as the most prevalent one, 

PARK8/LRRK2 [1, 41]. 

 

Our previous work has shown a basal autophagy 

impairment associated with an changes in intracellular 

protein acetylation levels in both genetic and idiopathic 

PD patients, leading to inefficient cellular responses to 

stress and increased susceptibility of cells to neurotoxins 

[41–43]. Indeed, several among the gene defects that 

cause human PD compromise the capacity of cells to 

destroy damaged mitochondria by autophagy 

(mitophagy), increasing cellular vulnerability to external 

and internal stress. 

 

Extensive studies have been performed applying different 

“omic” technologies and particularly the study of the 

metabolome, the collection of small molecules 

(metabolites) contained in biological samples [7]. When 

performed in a high throughput manner [44], 

metabolomics can be considered as an emerging 

technology to explore PD-related biomarkers. Changes in 

metabolite concentrations have been detected in CSF 

samples from PD patients, as reported for oxidized 

glutathione, 3-hydroxykynurenine or homovanillate [8, 

45–47]. However, the extraction of CSF carries some 

associated risks and is highly invasive [48]. Metabolomic 

studies performed on plasma samples, mainly focusing 

on idiopathic PD patients, identified new potential 

biomarkers in PD such as: polyamines [13], long-chain 

acylcarnitines [13], caffeine [49], tryptophan or bilirubin 

[50], glutathione or purine metabolism [14], cholesterol 

[9], kynurenine [15] or pyruvate [16]. However, in the 

past, only one study has been simultaneously performed 

on plasma from idiopathic and genetic (G2019S LRRK2 

mutation) PD patients. That study described that an 

aberration of the purine pathway in PD would account for 

UA changes [51]. Furthermore, one metabolomic study 

has been carried out in parallel on both humans 

idiopathic PD and mice treated with the Parkinsonian 

toxin MPTP. That study reported convergent changes in 

L-DOPA and DOPAC levels in plasma, as well as an 

increase in DRD3 expression on lymphocytes in human 

and murine PD [52]. In the present study, we explored for 

the first time the general metabolome of plasma from 

idiopathic or familial (G2019S or p.R1441G mutations in 

LRRK2 gene) PD patients and also from a 6-OHDA-

treated mice, providing evidence that bile acids and 

purine metabolic pathways play a role in the pathogenesis 

of PD. 

 

We performed an in-depth analysis of the metabolic 

changes observed in plasma from all PD patients 

(idiopathic, p.G2019S or p.R1441G), observing that the 

subgroup of bile acids-pathways metabolites were 

convergently and significantly modulated in all PD 

patients and in 6-OHDA-treated mice. As previously 

shown [53], a significant decrease in the levels of 

cholesterol in the plasma from PD patients was 

observed. However, these alterations in cholesterol 

concentrations were relatively minor compared to the 

large increase in unconjugated bile acids in plasma from 

PD patients (Supplementary Figure 2B) or mice with 

PD (Supplementary Figure 2C). Considering that; i, 
there is still some uncertainty about the role of 

cholesterol in PD; ii, variations on bile acids occur in a 

murine model of prodromal PD in which mice received 

injections of α-SNCA fibrils [24], as well as in human 

idiopathic PD patients [54]; and iii, alterations of 

unconjugated bile acids in plasma occur in other 

neurodegenerative diseases, such as Alzheimer’s 

disease [55]; these results highlight the importance of 

bile acids as a potential early biomarker of PD.  

 

Bile containing bile acids, cholesterol and other 

organic molecules is secreted by hepatocytes into 

canaliculi, flowing into bile ducts. In the liver, the 

synthesis of bile acids represents the majority of 

cholesterol breakdown of the body and plays a critical 

role in the digestion and absorption of lipids in the 

small intestine. Multiple waste products are removed 

from the organism by their secretion into bile and 

finally discarded in feces [56]. However, bile acids can 

be deconjugated and/or dehydroxylated by the 

intestinal microbiota, return to the liver via the portal 

circulation, where they undergo a new round of 

metabolic modification (such as reconjugation) and 

become detectable in systemic venous plasma [57]. 

The increase of unconjugated bile acids in plasma 

levels that we observed in PD may be explained by an 

increased bacterial degradation of conjugated bile 

acids and/or a less efficient removal of unconjugated 

bile acids from the peripheral circulation. 

Interestingly, recent results suggested a bidirectional 

communication between the gut and the brain [58, 59], 

and PD patients indeed exhibit a high prevalence of 
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small intestinal bacterial overgrowth (SIBO) [60]. 

Therefore, a possible method to understand the 

influence of intestinal dysbiosis on these results would 

be through differential bacteria proportions, by 

performing a thorough analysis of fecal microbiota and 

measuring metabolite levels after the removal of the 

bacterial influence. 

 

Another pathway that is significantly modified in both 

human and murine PD concerns purine metabolism. UA 

is one of the products of purine metabolism and many 

studies have shown a correlation between high levels of 

plasma UA and reduced prevalence of idiopathic PD 

[35], suggesting a protective role for this antioxidant. 

We observed a trend towards lower UA levels in plasma 

from PD patients, and also an important increase in 

hypoxanthine levels, an UA precursor (Supplementary 

Figure 3B). Similarly, significant changes were 

observed in this pathway in the PD mouse model, where 

hypoxanthine and xanthine plasma levels increased 

(Supplementary Figure 3C). The mechanisms leading to 

changes in UA associated to PD are not known, and the 

hypothesis that aberrations in the purine pathway occur 

in PD has to be examined in more detail. In 2009, 

Johansen et al. observed that differences in the UA 

precursors could be responsible, at least in part, for the 

final decrease in UA levels observed in PD patients 

[51]. It is interesting to note that in asymptomatic 

LRRK2 p.G2019S carriers, hypoxanthine levels were 

significantly lower, but changes in UA levels were not 

significant. However, in advanced PD, the 

hypoxanthine levels were not significantly modified, 

and the levels of UA were notably reduced [51]. Thus, 

as the disease progresses, there appears to be a tendency 

to increase the levels of UA precursors when UA level 

decrease. 

 

The strength of this study is the reproducibility of 

similar results in several different PD models: plasma 

from idiopathic, familial (p.G2019S and p.R1441G 

LRRK2) PD patients, and from a 6-OHDA-induced 

mouse model of PD, being the first complete 

metabolomic study carried out with these 

characteristics. The main limitation of our study lies in 

the number of individuals being tested. Increasing the 

number of patients studied would most likely strengthen 

the results. Moreover, it might be interesting to analyze 

asymptomatic LRRK2 mutation carriers to understand 

whether the metabolomic shifts observed here occur 

before the disease becomes clinically apparent. 

 

In summary, the present study identified robust changes 

in bile acids and purine pathways that may constitute 

biomarkers for both idiopathic and familial PD and 

potentially reflect pathogenesis-relevant metabolic 

alterations. 

MATERIALS AND METHODS 
 

PD patients:  

 

Clinically established PD patients according to UK 

Bank criteria and healthy controls were divided into 

four groups (N=8/group): 1) healthy control individuals, 

2) idiopathic PD patients, patients with 3) LRRK2 

p.G2019S mutation, and 4) LRRK2 p.R1441G mutation. 

All the patient information (including age, gender and 

treatment received) is shown in Table 1. No interactions 

between gender or age and metabolic changes were 

observed (Table 2). All PD patients were treated  

with different antiparkinsonian medications (mainly 

levodopa/carbidopa or statins+levodopa/|carbidopa), but 

no significant differences in the metabolic changes 

between the two sub-groups within the PD patients were 

reported (Table 2). After informed consent approved by 

the Ethical Board of Hospital Donostia (ALM-LRRK2-

2016-01) a blood sample was taken from antecubital 

vein after overnight fast and immediately processed to 

separate plasma and cells and stored at -80ºC until 

further experiments.  

 

Mouse strains and housing  
 

All animal experiments were approved by the “Ethics 

Committee for Animal Experimentation” of the 

Biomedical Research Institute “Alberto Sols” (CSIC-

UAM) in Madrid (Spain) and carried out in accordance 

with the European Communities Council Directive 

(2010/63/EEC) and National regulations (normative 

RD1386/2018). Adult, male wild type C57/BL6 mice 

were obtained from Jackson Laboratories. The animals 

were housed in a cage (2–3 animals per cage) with free 

access to food and water under a 12 h light/dark cycle. 

Special care was taken to minimize pain or discomfort 

of animals. 

 

Animal model of PD 

 

Parkinsonism was induced as previously described [61]. 

Briefly, anaesthetized mice were placed in a stereotaxic 

apparatus (Kopf Instruments, CA) and 6-OHDA (5µg in 

2µL saline with 0.02% ascorbic acid) was unilaterally 

injected into the substantia nigra pars compacta at the 

following coordinates from bregma: posterior, -3.2 mm; 

lateral, +2.0 mm; and ventral, +4.7 mm, with the skull 

flat between lambda and bregma, according to the atlas 

of Paxinos and Franklin [62]. Mice were then housed to 

recover. 

 

Plasma sample preparation 
 

A volume of 25 µL of plasma were mixed with 250 µL 

a cold solvent mixture with ISTD (MeOH/
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Table 1. Patient information. 

Sample ID code Age (years, at plasma collection) Gender Health Condition Treatment  

FH17-07 64 Female Healthy individual Untreated 

FH17-08 77 Male Healthy individual Untreated 

FH17-09 68 Female Healthy individual Untreated 

FH17-10 65 Female Healthy individual Untreated 

FH17-11 72 Female Healthy individual Untreated 

FH17-12 72 Female Healthy individual Untreated 

FH17-16 76 Female Healthy individual Untreated 

FH17-18 68 Female Healthy individual Untreated 

FH16-24 77 Male Idiopathic PD patient Statins 

FH16-25 65 Male Idiopathic PD patient Statins + Levodopa 

FH16-26 63 Male Idiopathic PD patient Levodopa 

FH16-31 81 Female Idiopathic PD patient Levodopa 

FH16-32 85 Male Idiopathic PD patient Levodopa 

FH16-34 71 Male Idiopathic PD patient Levodopa 

FH16-35 71 Male Idiopathic PD patient Statins 

FH16-38 48 Male Idiopathic PD patient Levodopa 

FH13-11 84 Female p.G2019S PD patient Levodopa 

FH13-13 73 Female p.G2019S PD patient Levodopa 

FH16-39 81 Male p.G2019S PD patient Levodopa 

FH16-43 77 Female p.G2019S PD patient Statins + Levodopa 

FH16-44 79 Female p.G2019S PD patient Statins + Levodopa 

FH17-03 78 Female p.G2019S PD patient Levodopa 

FH17-01 67 Female p.G2019S PD patient Statins + Levodopa 

FH16-45 73 Female p.G2019S PD patient  Levodopa 

FH16-27 72 Male p.R1441G PD patient  Levodopa 

FH16-28 68 Male p.R1441G PD patient  Levodopa 

FH17-15 67 Male p.R1441G PD patient  Statins + Levodopa 

FH13-11 88 Female p.R1441G PD patient  Statins + Levodopa 

FH13-13 77 Female p.R1441G PD patient  Untreated 

FH09-78 67 Male p.R1441G PD patient  Statins + Levodopa 

FH10-11 54 Male p.R1441G PD patient  Levodopa 

FH10-12  59 Female p.R1441G PD patient  Levodopa 

Abbreviations: PD, Parkinson’s disease. 
 

Water/Chloroform, 9/1/1, -20°C), into 1.5 mL 

microtube, vortexed and centrifuged (10 min at 15000 

g, 4°C) to obtain protein precipitation. Then upper 

phase of supernatant was split in parts: 50 µL were used 

for GC-MS experiment in injection vial, and 50 µL 

were used for other UHPLC-MS experimentations. GC-

MS aliquot was evaporated and 50 µL of methoxyamine 

(20 mg/mL in pyridine) were added on dried extracts, 

then stored at room temperature in dark, during 16 

hours. After that, 80 µL of N-Methyl-N-(trimethylsilyl) 

trifluoroacetamide (MSTFA) was added and final 

derivatization occurred at 40°C during 30 minutes. 

Samples were directly injected into GC-MS. The whole 

was heated at 40°C during 1h. 60 µL of H20 was added 

and the whole was injected into UHPLC-MS. 

Concerning the LC-MS aliquots, the 50 µL collected 

supernatant was evaporated at 40°C in a pneumatically-

assisted concentrator (Techne DB3, Staffordshire, UK). 

The LC-MS dried extracts were solubilized with 150 µL 

of MilliQ water. Samples were aliquoted for LC 

methods and backup. Biological samples and QC 

aliquots are kept at -80°C until injection or transferred 

in vials for direct analysis by UHPLC/MS. All the 

reagents used in this study are, if not specified, from 

Sigma-Aldrich. 

 

Widely-targeted analysis of metabolites gas 

chromatography (GC) coupled to a triple 

quadrupole (QQQ) mass spectrometer 

 

GC-MS/MS method was performed on a 7890B gas 

chromatography coupled to a triple quadrupole 7000C 

(Agilent Technologies, Waldbronn, Germany) equipped 

with a High sensitivity electronic impact source (EI) 
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Table 2. Effects of gender, age and treatment received on the results obtained. 

Analysis by gender 

Metabolite 
Mean of 

healthy female 

Mean of PD 

female 
p value 

Mean of PD 

male 

Mean of PD 

female 
p value 

Uric acid -0,0788 -0,8681 * -0,0805 -0,8681 * 

Hypoxanthine 0,2608 1,7860 * 1,6430 1,7860 n.s. 

Inosine 0,1051 -0,5730 ** -0,5820 -0,5730 n.s. 

Xanthine -0,0384 0,4768 n.s. 0,0812 0,4768 n.s. 

Cholesterol 0,0027 -0,2105 * -0,2738 -0,2105 n.s. 

CA -0,2193 2,0500 * 1,7480 2,0500 n.s. 

LCA -0,4863 1,0380 n.s. 1,2440 1,0380 n.s. 

DCA -0,1294 2,4460 ** 2,5520 2,4460 n.s. 

G-CA -0,0499 0,2865 n.s. 0,1431 0,2865 n.s. 

G-DCA -0,1316 2,0740 * 2,1380 2,0740 n.s. 

T-CA -0,0576 -0,4365 n.s. -0,4339 -0,4365 n.s. 

T-DCA -0,1311 0,4159 n.s. 0,9882 0,4159 n.s. 

 

Analysis by age (Correlations between age and metabolic changes) 

All individuals PD patients Idiopathic patients p.G2019S patients p.R1441G patients 

R squared 
p value 

(two-tailed) 
R squared 

p value 

(two-tailed) 
R squared 

p value 

(two-tailed) 
R squared 

p value 

(two-tailed) 
R squared 

p value  

(two-tailed) 

Uric acid 0,0004 n.s. 0,0019 n.s. 0,3176 n.s. 0,0461 n.s. 0,6650 * 

Hypoxanthine 0,0516 n.s. 0,0963 n.s. 0,3447 n.s. 0,1044 n.s. 0,1376 n.s. 

Inosine 0,0000 n.s. 0,0020 n.s. 0,0171 n.s. 0,0003 n.s. 0,0070 n.s. 

Xanthine 0,0148 n.s. 0,0226 n.s. 0,1705 n.s. 0,0184 n.s. 0,0348 n.s. 

Cholesterol 0,0045 n.s. 0,0086 n.s. 0,1640 n.s. 0,0053 n.s. 0,0457 n.s. 

CA 0,0428 n.s. 0,0321 n.s. 0,0459 n.s. 0,2118 n.s. 0,0876 n.s. 

LCA 0,0137 n.s. 0,0218 n.s. 0,1566 n.s. 0,0259 n.s. 0,0010 n.s. 

DCA 0,0305 n.s. 0,0163 n.s. 0,0007 n.s. 0,0036 n.s. 0,1576 n.s. 

G-CA 0,0289 n.s. 0,0220 n.s. 0,0231 n.s. 0,0291 n.s. 0,0920 n.s. 

G-DCA 0,0527 n.s. 0,0516 n.s. 0,1204 n.s. 0,1568 n.s. 0,0250 n.s. 

T-CA 0,0004 n.s. 0,0047 n.s. 0,0002 n.s. 0,0252 n.s. 0,3312 n.s. 

T-DCA 0,0080 n.s. 0,0368 n.s. 0,0852 n.s. 0,0125 n.s. 0,5425 * 

 

Analysis by treatments  

Metabolite 

Mean of 

healthy 

(Untreated) 

Mean of PD 

patients 

(Levodopa) p value 

Mean of 

healthy 

(Untreated) 

Mean of PD 

patients 

(Levodopa+ 

Statins) p value 

Mean of PD 

patients 

(Levodopa) 

Mean of PD 

patients 

(Levodopa+ 

Statins) p value 

Uric acid 0,0962 -0,3709 n.s. 0,0962 -0,1443 n.s. -0,3709 -0,1443 n.s. 

Hypoxanthine 0,2592 1,7140 ** 0,2592 2,3000 ** 1,7140 2,3000 n.s. 

Inosine 0,0368 -0,6213 ** 0,0368 -0,4592 n.s. -0,6213 -0,4592 n.s. 

Xanthine 0,0317 0,2150 n.s. 0,0317 0,7492 * 0,2150 0,7492 n.s. 

Cholesterol -0,0165 -0,2613 ** -0,0165 -0,1298 n.s. -0,2613 -0,1298 n.s. 

CA 0,0898 1,6490 n.s. 0,0898 2,0230 * 1,6490 2,0230 n.s. 

LCA -0,1801 1,2230 n.s. -0,1801 0,5337 n.s. 1,2230 0,5337 n.s. 

DCA 0,0340 2,5920 *** 0,0340 1,7480 * 2,5920 1,7480 n.s. 

G-CA -0,0016 0,2709 n.s. -0,0016 0,0892 n.s. 0,2709 0,0892 n.s. 

G-DCA 0,0326 2,0660 ** 0,0326 1,7110 n.s. 2,0660 1,7110 n.s. 

T-CA 0,0415 -0,3467 n.s. 0,0415 -0,5246 n.s. -0,3467 -0,5246 n.s. 

T-DCA 0,0710 1,1230 n.s. 0,0710 -0,1293 n.s. 1,1230 -0,1293 n.s. 

Abbreviations: CA, cholic acid; DCA, deoxycholic acid; G, glycine; LCA, lithocholic acid; PD, Parkinson’s disease; T, taurine. 
Differences were considered statistically significant when p-value: *(p<0.05), **(p<0.01), ***(p<0.001), and n.s. = not 
significant (p>0.05). 
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operating in positive mode. Front inlet temperature was 

250°C, injection was performed in splitless mode. 

Transfer line and ion-source temperature were 250°C 

and 230°C, respectively. Septum purge flow was fixed 

at 3 mL/min, purge flow to split vent operated at 80 

mL/min during 1 min and gas saver mode was set to 15 

mL/min after 5 min. Helium gas flowed through column 

(J&WScientificHP-5MS, 30m x 0.25 mm, i.d. 0.25 mm, 

d.f., Agilent Technologies Inc.) at 1 mL/min. Column 

temperature was held at 60°C for 1 min, then raised to 

210°C (10°C/min), followed by a step to 230°C 

(5°C/min) and reached 325°C (15°C/min), and be hold 

at this temperature for 5 min. 

 

Collision gas was nitrogen. Scan mode used was MRM 

for biological samples. Peak detection and integration of 

analytes were performed using Agilent Mass Hunter 

quantitative software (B.07.01). 

 

Untargeted analysis of metabolites by ultra-high 

performance liquid chromatography (UHPLC) 

coupled to a Q-Exactive mass spectrometer. 

Reversed phase acetonitrile method 
 

The profiling experiment was performed with a Dionex 

Ultimate 3000 UHPLC system (Thermo Scientific) 

coupled to a Q-Exactive (Thermo Scientific) equipped 

with an electrospray source operating in both positive 

and negative mode and full scan mode from 100 to 1200 

m/z. The Q-Exactive parameters were: sheath gas flow 

rate 55 au, auxiliary gas flow rate 15 au, spray voltage 

3.3 kV, capillary temperature 300°C, S-Lens RF level 55 

V. The mass spectrometer was calibrated with sodium 

acetate solution dedicated to low mass calibration. 

 

10 μL of sample were injected on a SB-Aq column (100 

mm × 2.1 mm particle size 1.8 μm) from Agilent 

Technologies, protected by a guard column XDB-C18 

(5 mm × 2.1 mm particle size 1.8 μm) and heated at 

40°C by a Pelletier oven. The gradient mobile phase 

consists of water with 0.2% of acetic acid (A) and 

acetonitrile (B). The flow rate was set to 0.3 mL/min. 

Initial condition is 98% phase A and 2% phase B. 

Molecules were then eluted using a gradient from 2% to 

95% phase B in 22 min. The column was washed using 

95% mobile phase B for 2 minutes and equilibrated 

using 2% mobile phase B for 4 min. 

 

The autosampler was kept at 4°C. Peak detection and 

integration were performed using the Thermo Xcalibur 

quantitative software (3.1.). 

 

Quantification and statistical analysis 

 

Data are reported as Box and whisker plots (mean, first 

and third quartiles, and maximum and minimum 

values) or mean ± standard error of the mean  

(SEM). The number of independent data points (n) is 

indicated in the corresponding figure or in the 

Supplementary Tables 1 and 2. It’s important to note 

that not all metabolites are detected properly in all 

plasma samples. For this reason, the number of 

patients shown for each metabolite may suffer slight 

and punctual variations. For statistical analyses, p 

values were calculated by one-way ANOVA test 

(analyzing the metabolites individually) (Figures 2–

5), multiple tests with false discovery rate (FDR) 

(analyzing the metabolites as a whole, being part of a 

specific metabolic pathway) (Supplementary Figures 

2 and 3) and Pearson’s correlation coefficients with 

their 95% confidence interval was also used 

(Pearson’s correlation coefficient (R) (Figure 1 and 

Supplementary Figure 1) and their p-value are 

shown). Clusterings and heatmaps have been 

performed using ‘‘dist’’ and ‘‘hclust’’ functions, 

using Euclidean distance method. (Prism version 7, 

GraphPad Software). Differences were considered 

statistically significant when p-values: * (p<0.05), ** 

(p<0.01), *** (p<0.001), and n.s. = not significant 

(p>0.05). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Pearson’s correlations in plasma samples between changes metabolite correlations (Log2FC) in idiopathic and 
p.G2019S PD patients (A) or idiopathic and p.R1441G PD patients (B). The correlation analysis divided by subtypes of metabolites (lipids, 
purines, bile acids, carbohydrates, organic acids, fatty acyls, amino acids and nucleosides) is shown by color codes (p values and Pearson’s 
coefficients of correlation (R)) (C).  
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Supplementary Figure 2. Scheme of the pathways of bile synthesis from cholesterol (A). Box and whisker plots of fold change (Log2) 
concentrations of bile acid pathway metabolites (cholesterol, CA, DCA, LCA, G-conjugated bile acids and T-conjugated bile acids) in human 
plasma in the control group (healthy) and PD individuals (B) and PD-mouse model (C). Abbreviations: 6-OHDA, 6-hydroxydopamine; CA, cholic 
acid; DCA, deoxycholic acid; G, glycine; LCA, lithocholic acid; PD, Parkinson’s disease; T, taurine; Unt, untreated. Differences were considered 
statistically significant when p-values: * (p<0.05), ** (p<0.01), *** (p<0.001). 
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Supplementary Figure 3. Scheme of the purine metabolism pathways (A). Box and whisker plots of fold change (Log2) concentrations of 
purine acids pathway metabolites (uric acid, hypoxanthine, xanthine, inosine, adenosine, guanine, guanosine and hypoxanthine/uric acid 
ratio) in human plasma from the control group (healthy) and PD individuals (B) and our PD-mouse model (C). Abbreviations: 6-OHDA, 6-
hydroxydopamine; PD, Parkinson’s disease; Unt, untreated. Differences were considered statistically significant when p-values: *** 
(p<0.001).  
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. Metabolite changes in plasma from controls and PD patients.  

Supplementary Table 2. Metabolite changes in plasma from 6-OHDA mouse model. 

 

 

 

 

 

 


