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Abstract

Amyloid fibrils are stable forms of misfolded proteins associated with numerous neurode-

generative diseases. Among these, Alzheimer’s disease may be the most prevalent, with

over 50 million dementia cases reported by the World Health Organization in 2019. The

molecular origin of Alzheimer’s is linked to amyloid fibril formation by misfolded AV-

peptide (AV). These fibrils can form aggregates that are stabilized by the presence of Zn2+

cations. Although many possible structures have been reported in the last few years for

the Zn2+-AV complexes, details about the molecular interactions involved are still lacking.

In this work, I present a detailed computational study of the different possible structures

that the system could show with their respective weights. I have employed equilibrium

classical molecular dynamics simulations and the Hamiltonian replica exchange method

in order to characterize these bound states of Zn2+.

Laburpena

Amiloide zuntzak hainbat gaixotasun neurodegeneratiboren eragile diren proteina desegi-

turatuen egoera egonkorrak dira. Gaixotasun hauen artean, Alzheimerra da nabarmenena.

2019an Osasunaren Munduarteko Erakundeak 50 milioi kasu baina gehiago erregistratu

zituen. Alzheimerraren eragilea maila molekularrean AV-peptido (AV) amiloidearen

desegituraren ondorioz sortutako zuntzak dira. Peptido pilaketa hauek Zn2+ katioiaren

presentzian egonkortu egiten dira. Nahiz eta Zn2+-AV sistemaren egitura ugari ezagunak

diren, haien arteko interakzio molekularrei buruzko informazio eza oraindik ere handia

da. Ikerketa proiektu honetan, egitura ezberdin posibleei buruzko azterketa konputazional

detailatua eta bakoitzaren garrantzia aurkezten dut. Oreka klasikoko dinamika moleku-

larrak eta Hamiltonian replica exchangemetodoetaz baliatu naiz Zn2+ak erakusten dituen

koordinazio egoera ezberdinak karakterizatzeko.





Chapter 1

Introduction

Proteins are the workhorses of living organisms, undertaking most of the biological

functions. About a third of the proteins encoded in eukaryotic genomes are intrinsically

disordered, meaning that they do not acquire a well defined three dimensional structure in

their active form. Some of these intrinsically disordered proteins (IDPs) are tightly related

to diseases [1], including Alzheimer’s, Parkinson’s and Type II diabetes (connected,

respectively, to amyloid V-peptide, U-synuclein and the islet amyloid polypeptide). In

particular, Alzheimer’s disease is known as the leading cause of senile dementia, of

which the World Health Organization (WHO) reported over 50 million cases worldwide

on 2019 [2]. These numbers are likely to increase rapidly unless effective therapeutics

are developed. Even though the cause of Alzheimer’s disease is not completely known, a

relation with aggregation and deposition of AV in neural tissue is widely accepted as part

of the cause of the disease.

Transition metal ions and oxidative metabolism have been proposed to play fundamental

roles in the processes of aggregation and deposition of AV in Alzheimer’s disease [3].

Binding of divalent metal ions, such as copper (Cu2+), iron (Fe2+) and Zinc (Zn2+), with

disordered fibrillogenic proteins, such as AV, influences the aggregation process of the

protein, contributing directly to the severity of the neurodegenerative disease [4]. It has

been reported that both monomeric and oligomeric forms of AV are toxic to neurons

[5] and that said cations influence toxicity [6]. Interestingly, the ion concentration of

1
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Zn2+ in the brain, which varies from 150 to 200 `M in the neocortex, is one order of

magnitude higher than the ion concentration in blood. Furthermore, even though the

Zn2+ concentration stays relatively constant throughout adult life, a significantly elevated

concentrations have been found on the brains affected by Alzheimer’s disease [7]. Hence,

the role that Zn2+ ions play in Alzheimer’s disease has become of great interest.

In order to understand the role plaid by metal-protein interactions in the disease, and to

be able to design effective drugs targeting AV-Zn2+ complexes, characterizing the specific

modes of interaction between Zn2+ and AV proteins is essential. Multiple experimental

structures have been reported, such as the one for AV(1-16) by Zirah et al. [8], which was

meant to be used as a therapeutic target. In Figure 1 we show a cartoon representation

of a molecular model built combining the Zirah structure and a full sequence structure

of AV [9], which provides a model for the protein-metal interactions [10]. Alternative

bound states of the cation have also been proposed, which may have a role in amyloid

formation. Theoretical and computational chemistry methods provide an ideal shortcut

for identifying the different bound states of the metal to the protein and understanding the

origin of the molecular interactions involved.

Here we use molecular dynamics (MD) to study the AV-Zn2+ system. Benefiting from the

variety of possibilities that the technique offers, we propose a research study on different

conformational states of AV-Zn2+ in an effort to find previously unknown states that could

be used as therapeutic targets. As a starting point, we selected the structure that Zirah

et al. proposed (PDB id 1ZE9) [8], as comparison between theoretical and experimental

Figure 1: Molecular model for the full-length AV-Zn2+ complex.
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results is imperative. The 16 residue system we focus on, is a minimal model for the full-

length AV40 protein, but comprises all the amino acid residues that have been proposed to

interact with the Zn2+ ion [8]. In the experiments, the Zn2+ was found on a tetrahedral state,

coordinated to four amino acids: His6, Glu11, His13 and His14. Histidines coordinated to

the Zn2+ ion fromN-X1, N-Y and N-X1 respectively, whereas Glu11 was found coordinated

through its carboxylate.

Although this structure has been found experimentally, it does not necessarily mean it is

the only structure the system might be stable in and possibilities for different coordination

states have been researched [10]. In this project, we are aspiring to find different confor-

mations for the system, on an effort to shade some light on the matter. We find different

coordination states, other than the one proposed on the reference structure, where Zn2+ is

found coordinated to a variety of new residues previously unreported.



Chapter 2

Methods

In this work we use classical molecular dynamics (MD) with explicit solvent to study

different conformational states of the system of interest. Using this methodology we can

understand the interactions of the AV peptide with Zn2+. In this section we present details

of the molecular models used for the description of the protein and its interaction with the

metal cation and solvent. We also describe the specific types of simulation methods that

we used (i.e. equilibrium and Hamiltonian replica exchange) and the techniques for the

analysis of the resulting trajectories.

2.1 Molecular dynamics simulations

Classical MD simulations consist in propagating Newton’s equations of motion of atoms

and molecules in a system of interest in order to reproduce their physical movement.

Atoms and molecules are allowed to interact for a defined period of time (typically in the

ns to `s range) showing the dynamic evolution of the system. This evolution is dictated by

inter-atomic forces determined by energy functions or “force fields”. Using these forces,

one can propagate the Cartesian coordinates of the system after small time-steps (usually,

1 to 2 fs in length). After an often very large number of time-steps, one can sample

the conformational space and estimate equilibrium and dynamic properties of complex

systems, serving as interface between theory and experiment. MD simulations explain

their dynamic motions which are used to deduce structural and dynamic properties. In

4
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this way, large volumes of information are obtained from these simulations [11].

2.2 Force field and water models

As mentioned above, in order to propagate Newton’s equations of motion, we need to

calculate the pairwise forces acting on each particle, f8, which we obtain as the derivative

of the potential + with respect to the particle positions r8

f8 = −
m+

mr8
(2.1)

The potential energy (+) is determined by the force field, which is defined as a sum of

energy terms

+ = +bonded ++nonbonded (2.2)

In this expression, the bonded contribution is also given as a summation

+bonded = +bond ++angle ++torsions (2.3)

where each of the terms above have a particular functional form, which are shown below

+bonds = :A (A − A0)2 (2.4)

+angles = :\ (\ − \0)2 (2.5)

+torsions =
∑
=

:= (cos =i) (2.6)

Equations 2.4 and 2.5 above correspond to terms for bonds and angles and are defined

as harmonic potentials, where :A and :\ are the force constants, r is the bond length for

an atom pair, A0 is corresponding equilibrium bond length, \ is the value of the angle

and \0 is the value of the equilibrium angle. The torsional term, defined in Equation

2.6, corresponding to torsional rotations of 4 atoms about a central bond, also known as

dihedrals, is defined as a sum of n terms. Nonbonded interactions are described as a sum
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of a Van der Waals and an electrostatic term,

+nonbonded = +electrostatic ++van der Waals (2.7)

Van der Waals interactions are described as

+van der Waals = Y8 9

[(
f8 9

A8 9

)12
−

(
f8 9

A8 9

)6
]

(2.8)

where Y is the term that describes the Lennard-Jones well-depth, f defines Lennard-

Jones radius and A8 9 is the distance between non-bonded atoms. Lastly, the electrostatic

contribution is simply computed using a Coulomb expression

+Electrostatics =
@8@ 9

4c�A8 9
(2.9)

q refers to each atom charge and D stands for the dielectric constant. Note that hydrogen

bonds are treated as simple electrostatics.

Considering the large number of atom types in amino acid residues, force fields include a

vast number of parameters. These constants and variables are defined either by a geometry

file or by the parameter file of the selected force field. Geometry files, such as PDB files,

define distances (r and A8 9 ) and angles (\ and i), whereas force fields parameter files define

constants (:A , :\ and :=), equilibrium terms (A0 and \0) and LJ terms (Y and f).

As seen in Figure 2, during a MD simulation, trajectory files are being overwritten

continuously from the equations of motion and used to calculate future trajectories, but,

force field parameters are defined by selecting a force field and do not change throughout

the whole simulation. Parameter files of force fields are obtained from parametrization

processes and are defined as constant values, this is why they are defined once. Many

parametrization processes are being used to define these parameters, among some of the

usual practices quantum mechanical approximations highlight, often in the gas phase,

with the expectation of some correlation with condensed phase properties and empirical

modifications of potentials to match experimental observables [12, 13]. The accuracy and

precision of these parametrization processes determines the accuracy of each force field
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Figure 2: Flowchart of MD simulation workflow.

and this is why a big weight is given to a correct selection of the force field.

Intrinsically disordered proteins (IDPs) are challenging to study both experimentally and

computationally. These proteins have native structures where tertiary structure is not

well-defined and they must be instead described as an ensemble of interconverting confor-

mations. It is necessary to determine the heterogeneous ensembles of conformations that

they adopt to structurally characterize them. As mentioned, MD simulations are strongly

dependent on the accuracy of the selected force field to replicate the system of interest

and IDPs are challenging structures to characterize. For this reason, force fields have been

specifically re-parameterized to recapitulate the properties of IDPs [14, 15].

Huang et al. reported very satisfactory results in 2016 with the CHARMM36m (C36m)

force field after they improved accuracy in generating polypeptide backbone conforma-
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tional ensembles for intrinsically disordered peptides and proteins [16]. C36m being an

all-atom additive force field, it defines all variables for each atom specifically. Although

force fields will define the gradient of the function of the system, the way the solvent,

water in this case, is defined directly affects on the atomistic simulations, or MD simula-

tions [17]. Relying on the results Huang et al. obtained [16], we decided to opt for the

CHARMM36m force field and TIP3P water, which is a three-site model [18].

2.3 The molecular dynamic simulation workflow

In this work, MD simulations were carried out using the GROMACS software package,

created by the Biophysical Chemistry Department of University of Groningen and that is

designed for simulations of proteins, lipids, and nucleic acids [19]. As shown in Figure

3, preparing and running a MD simulation is a quite elaborate process. Briefly, we can

split the process in three different parts: set-up, production run and analysis. In the set-up,

we first convert a PDB file into GROMACS’ own structure format, gro file. When we

converted the files we had to specify the protonation state of each histidine as GROMACS

sets them as HSD histidines (histidines protonated in their X N). In our case, at least one

histidine (His13) had to be defined as HSE (histidine protonated in its Y N) as it was

coordinated to the Zn2+ from its X N. Next, we must define the size of the simulation box.

Defining a simulation box is a process that needs to be approached carefully. All of the

simulations will be carried out inside the simulation box, hence, defining the dimensions of

the box is very important. Taking into account that we are applying boundary conditions,

if the box is too small, the periodic images of the system will interact with each other. On

the contrary, if the box is too big, the calculations become bigger and slower [20]. In this

case, we opted for a cubic 4 nm×4 nm×4 nm box. Lastly, we add water and ions to the

system. We solvated the system with the water model selected beforehand and added Cl−

and Na+ ions at 0.1 M concentration.

Once the initial set-up is done, one must minimize the initial configuration to avoid clashes

between atoms. Next, the box is equilibrated in the NVT ensemble for a short time, with

position restraints on the protein heavy atoms, which allows the water molecules to

equilibrate, and large forces in the initial state to decrease. Next, another short simulation
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Figure 3: Flowchart of the steps involved in running an MD simulation using GROMACS.

is run in the NPT ensemble, now without restraints, in order to equilibrate the density at

a pressure of 1 bar. From the final state of this simulation, the production simulations are

run for a longer time-scale. This results in often very large datasets that must be analyzed.

2.3.1 Hamiltonian replica exchange

Due to the short integration timestep, the time-scales of MD simulations are a severe

limitation of this technique. Because we are often interested in rare events like slow

conformational transitions, equilibrium MD simulations are often insufficient to sample

the processes of interest. As a response to this issue, many enhanced sampling techniques

that allow to accelerate MD simulations have been developed [21]. There is a wide variety

of techniques that come in handy, such as umbrella sampling, simulated tempering or
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Figure 4: Diagram showing HREMD simulation functioning.

Hamiltonian replica exchange. Each technique has its own downsides and upsides, and

therefore, depending on the approach that we are willing to give to our simulations, a

different technique should be used. In our case, knowing that we are interested on record-

ing conformational transitions, we decided to work with Hamiltonian replica exchange

(HREMD) simulations.

On HREMD simulations, different replicas run in parallel exchanging coordinates every

given time. Each replica is defined by a Hamiltonian with a biased variable and the biased

variable is chosen beforehand to force the system to experience the events of interest.

Exchanges are given with a probability and if the probability is not high enough, an

exchange attempt can be rejected (as the exchange attempt between the red and black lines

shown in Figure 4). This probability is directly dependent on the biased variable’s values,

so a correct selection of values will directly affect on the HREMD simulation’s accuracy

and efficiency. Probability of exchange needs to be higher than 5% to be considered a

good value for sampling. The exchange probability is defined as:

%(1↔ 2) = min
(
1, exp

[(
1
:�)
− 1
:�)

)
((*1(G2) −*1(G1) + (*2(G1) −*2(G2)))

] )
(2.10)

where *8 (G8) is the Hamiltonian of a replica with its biased variable value (or biased

Hamiltonian) and :� stands for the Boltzmann constant. As Figure 4 shows, exchanges

occur between neighbour replicas, i.e., between 8 and 8 ± 1 replicas respectively. The
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reason to this is that as the difference between biased variables values grows, the probability

of exchange decreases rapidly [21].

In practice, in order to change variables and give them values of interest in GROMACS,

mdp files have to be created and edited. The separate Hamiltonians are defined by the free

energy functionality of GROMACS, with swaps made between the different values of _,

which is defined, as said, in the mdp file. _ indicates the extent to which the Hamiltonian

has been perturbed and the system has been transformed. A good selection of _ values

determines a reliable probability of exchange which is crucial for a successful HREMD

simulation [20].

2.4 Analysis methods

MD simulations generate a big volume of data and they require an extensive analysis to

be carried out. The GROMACS software package comes with many programs other than

those required to carry out MD simulations. Occasionally, the MDTraj package was used

as it is particularly user-friendly for the possibility of scripting analysis using the Python

programming language [22].

2.4.1 Distance metrics

For many different purposes, such as the calculation of minimal distances with periodic

images or estimating the convergence calculation we had to calculate Cartesian distances

between atoms from the simulation trajectories. We used of MDTraj to calculate distances

between residues and Zn2+, to calculate pairs of distance between different residues and

Zn2+ or to carry some exploratory data analysis. In addition to raw distances, we also use

the root mean square deviation ('"(�). This metric is defined as the difference of any

data-set compared to a reference value,

'"(� =

√√
1
=

=∑
8=1
(38 − 38 (0))2 (2.11)

where n is the number of pairwise distances, 38 is the distance for the 8-th pair at an

instantaneous configuration and 38 (0) is the distance for the same pair in the reference
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values.

2.4.2 Free energy landscapes

To analyze the data obtained from a MD simulation, a large variety of analysis methods

can be used, but statistical mechanics come in specially handy. Statistical mechanics

offer tools to describe the behaviour of a system in a statistical and simple way. When

studying any system, we usually are interested on equilibrium state behaviour. Boltzmann

law describes the average distribution of non-interacting material particles over various

energy states in thermal equilibrium, which is specially useful in our case.

?8 =
e−V�8∫
9
e−V� 9

(2.12)

where e−V�8 tells the relative probability of a particular arrangement on a given temperature.

When we collect data on a given order parameter, a distribution function can be obtained

from histograms. Afterwords, by deriving the distribution function validating of equation

2.12, we can obtain the free energy of the system, which will be specially useful to

characterize stable conformations.

2.4.3 Principal component analysis

Lastly, we used dimensionality reduction techniques, in particular the principal component

analysis (PCA). In a few words, PCA is a dimension reduction method. Its goal is to

extract the important information from a data-set, to represent it as a set of new orthogonal

variables called principal components (PCs). Given a collection of data as point in various

dimensions, a correlation line can be defined as the one that minimizes the average squared

distance from a point to the line [23]. This way, we get a description of the system where

a big percentage of the variance is explained by a lower number of dimensions. Even if

a data loss needs to be assumed to gain the principal components, the method guarantees

that the first few coordinates will contain most of the information from the full dataset.
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Results and Discussion

The system remains stable in short equilibrium runs

The models we are using to sample the AV peptide bound to Zn2+ are based on approxima-

tions and their aim is to replicate natural states and interactions. For this reason, we started

validating the models to ensure their integrity. In particular, we were concerned about the

stability of protein-metal ion interactions, which are described by a non-bonded interaction

term (see Methods). After the equilibration process, we compared the obtained results to

the initial structure. We calculate the root mean square deviation, '"(� for the pairwise

distances for the four amino acid residues coordinated to the Zn2+ with respect to the

reference (i.e. 1ZE9) state, which we show in Figure 5A. In this case, we were interested

in knowing whether the force field parameters would maintain the coordination of the

Zn2+ cation. A low '"(� value indicates that the reference distances and the distances

throughout the simulations have similar values, whereas high '"(� values indicate large

displacements. This way, we were able to determine whether the coordination site was

correctly simulated or not. In Figure 5C we show the '"(�, which clearly indicates that

the distances remain close to the experimental range, as we obtained extraordinarily low

'"(� values.

Despite the overall consistency of the simulation result with the reference, we can inspect

more closely the pairwise distances for all the residues coordinated to the metal (see

13
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Figure 5: Cartoon representations of the initial (A) and post-equilibration (B) states of the AV
peptide coordinated to the Zn2+ cation. (C) '"(� values obtained throughout the equilibration
simulation. (D) Time series data for the distances between residues of interest (His6, Glu11, His13
and His14 respectively) and Zn2+. The reference distances are represented as dashed horizontal
lines.
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Figure 5D). The distances are maintained close to the reference state, with the exception

of Glu11. This is due to a change in the coordination sphere of the cation, which after

the equilibration involves water molecules coordinating the Zn2+ (see Figure 5B). Hence,

the metal goes from a tetrahedral to an octahedral coordination. This suggests that the

Zn2+ model that C36m uses is not optimal. The model with which C36m describes the

Zn2+ is a nonbonded Lennard-Jones potential. Even though it is widely used, it fails at

describing some properties of metals such as solvent-ion radial distributions [24]. This

is not surprising considering Zn2+ electron configuration is [Ar]3d10 and d orbitals do

not have a spherical shape. Despite the failure of the model in capturing the details of

the coordination of Zn2+, we find that the approximation is acceptable considering the

agreement in the '"(� and the simplicity in the approximations involved.

Perturbed Hamiltonians allow sampling bound states of Zn2+

As mentioned in the Methods section, HREMD simulations are used to enhance the

sampling. This requires the definition of biased Hamiltonians. In this case, we are aiming

to sample different bound states of the metal, so our system should be able to visit the free

state and let the Zn2+ diffuse around the protein to find new coordination sites. Taking

into account that Zn2+-protein coordinations are described as nonbonded interactions, we

considered which interactions had to be switched off in the perturbed Hamiltonian. We

tested three different possibilities, including both electrostatic and Van der Waals terms

in the original force field, only the Van der Waals term, and none of the interactions (i.e.

switching off both the electrostatics and the Van der Waals term).

With these three different models we ran short simulations, to see whether each of these

options would allow reaching an unbound state of the system. After editing the parameters

that define nonbonded interactions, which can be easily done on the simulation set-up in

GROMACS, we ran short simulations following the procedures described in the Methods

section. After a 10 ns NVT run, we obtained the results shown in Figure 6. With the

original force field parameters, the Zn2+ remains in the original state, resulting in very low

Zn2+-backbone distances. We find that switching off only the electrostatics seems to be

sufficient to reach unbound states. Hence, we decided to carry out HREMD simulations
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Figure 6: Time series data for distances obtained between Zn2+ and protein backbone in the short
simulations carried out with different hamiltonians for the Zn2+ cation. Top: original force field;
center: van der Waals term only; bottom: no interactions.

with a perturbed Hamiltonian including Van der Waals terms. The reason for choosing

this model, instead of going all the way to switching off all the interactions, is that the

smaller the perturbation the lower the number of replicas needed for a successful HREMD

simulation.

Efficient HREMD simulations require many independent replicas

Once the model for the HREMD was selected, we needed to define the number of replicas

in order to guarantee good sampling, which is determined by the probability of exchange

(see Methods). GROMACS allowed us to create _ values from 0 to 1 (corresponding,

respectively to the simulation run with the original force field and the perturbed Hamil-

tonian). In order to obtain a reasonably high probability of exchange with the minimum

computational cost, we first run a test simulation using 11 replicas. In Figure 7A we show

the histograms of the potential energy and their overlapping for each of the replicas. When

running simulations with these conditions, the exchange probability for all replicas was

below 5%, which would result in insufficient sampling. For this reason, we decided to run

HREMD simulations using 16 replicas, resulting in a higher probability of exchange, as
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Figure 7: Histograms of the potential energies for different numbers of replicas in HREMD runs:
(A) 11 replicas and (B) 16 replicas.

manifested in the greater overlap between energy histograms (see Figure 7B).

The binding energy landscape of Zn2+-AV1−16

Using the GPU implementation of GROMACS [25], we obtained a performance of over

45 ns/day, which is about three times higher than the obtained with CPUs, 16 ns/day. In

this way, we could run 500 ns HREMD simulations for each of the 16 replicas. The first

thing we noticed in the resulting simulation trajectories was that the selected box was

ocassionally not big enough. Throughout the simulation the protein was seen interacting

with its periodic image. This is a problem that often emerges in MD simulations of IDPs,

as they sample extended conformations instead of adopting well defined, compact forms.

To determine how much of the simulation data was affected by this unphysical artifact,

we calculated the minimum distances between periodic images and the “original” protein

chain (see Figure 8). We find that the distribution has a maximum at ∼1.5 nm, but there is

a small peak below 0.5 nm, corresponding to frames where periodic images are interacting
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Figure 8: Time series data (left) and histogram (right) for the minimum distances between AV and
its periodic image throughout the HREMD simulation.

with each other. Even though it is clear that we wanted to avoid periodic images from

interacting with each other, the amount of data affected by that problem is low enough

for them to be removed and still have a more than acceptable data set, avoiding a new

HREMD simulation run. We deleted all frames that recorded a distance between periodic

images lower than 1 nm losing a 20% of data in the process.

After post-processing the trajectory to eliminate these unphysical conformations, the

amount of simulation data left is sufficient to identify different coordination states of the

Zn2+ cation. This is enabled by the much more efficient sampling of stable states of the

system. In Figure 9we show the calculated '"(� (seeMethods) for the distances between

residues of the amino acids coordinated initially to the Zn2+ and the Zn2+ itself. These

results must be interpreted with caution, because HREMD simulation trajectories do not

contain dynamical information with physical meaning, as the coordinates from different

replicas are swapped periodically, they do not describe a realistic system behaviour. When

looking at the '"(� values sampled in the simulation, we find that a broad range of

values have been explored. This suggests that we indeed were able to create unbound
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Figure 9: RMSD of the Zn2+ and residues of His6, Glu11, His13 and His14 in the HREMD
simulation.

states of the Zn2+ throughout the HREMD simulation.

To recover a more detailed picture of the amino acids involved in interactions with the

metal ion, a logical parameter to look at is the distances between Zn2+ and the residues

that are coordinated to it, just as we did for the model validation (Figure 5D). This time

though, we calculated distances of each residue, as each residue should be treated as a

potential binding site for the Zn2+. In Figure 10 we show the distributions of distances

between each residue and the Zn2+. Interestingly, Glu3, Asp7, Ser8 and Glu11 stand out

significantly, with sharp narrow peaks at low distances, whereas His6, His13 and His14

do not show any low-range significant states. These results suggest that either one of the

residues of reference (His6, Glu11, His13 and His14) but Glu11 show a tendency to be

on a Zn2+ binding range. After carefully analyzing the trajectory, looking for bound states

that corresponded to each residue, we found out that Ser8 never reached a bound state

with Zn2+ and therefore Ser8 was discarded as a potential binding site for Zn2+ and was

determined that its high-tendency to appear on a low-range of the Zn2+ is a consequence

of the Asp7 being coordinated to the Zn2+.

All of this information was represented on one dimension, so we decided to go one step
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Figure 10: Histograms of distances between each residue and Zn2+.

ahead and process the data to obtain two dimensional information, or contour plots. In

these contour plots, we plotted a pair of distances between Zn2+ and residues of interest

as two dimensional histograms. From these plots, we expected to be able to shed some

light on the correlation of distances between residues and different coordination states.

From the trajectory file and the results obtained in Figure 10, we selected as residues of

interest the reference residues (i.e. residues seen coordinated on experimental data) and

any residue that was seen coordinated to the Zn2+ throughout the simulation. The residues

selected turned out to be: Asp1, Glu3, His6, Asp7, Glu11, His13, His14 and Lys16. We

calculated contour plots for every pair of distance.

From Figure 11 we can highlight four distance pairs that show a high-tendency to show



21

Figure 11: Contour plots of all pair of distances of the residues of interest represented on a
logarithmic scale.
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bound states at the same time through the high density of probability their contour plots

show at low-range values. Those plots are the ones that show the correlation between Asp1

and Glu11; Glu3 and Asp7; Glu3 and Glu11; and Asp7 and Glu11. Among these, we

could clearly identify that residue 7 and residue 11 are recurrent, but we were still unable

to describe a correlation between them and the rest of residues of interest, and under no

circumstances between the whole protein.

Dimensionality reduction captures correlations between residue pairs

From Figure 11 we can conclude that the information for the distance between individual

residues and the Zn2+ cation is correlated. For this reason, the free energy for each

individual residue is not particularly informative (see Figure 12A). Alternatively one can

try to extract information using dimensionality reduction techniques, that will aggregate

into a few variables the combined information of all the pairwise distances between amino

acids and the cation. Specifically, we use the PCA method (see Methods). We find that

just one principal component, PC1, can describe over the 70% of the system variance

(see Figure 12B). We decided to keep this last free energy expression, as we found that

the minimum values states were well represented (said minimum values are shown with

vertical lines in Figure 12B). Knowing that minimal free energy values, as mentioned,

represent the most stable states on a system, we found four different stable conformations.

These four conformations correspond to different coordinations: Asp7 and Glu11 (both

with monodentate coordination) coordinated to Zn2+ octahedrally (Figure 12 C); Asp7 and

Glu11 (both with monodentate coordination) coordinated to Zn2+ octahedrally (Figure 12

D); Glu11 and Lys16 (both with bidentate coordination) coordinated to Zn2+ octahedrally

(Figure 12 E); and Asp1, Glu3 and Glu11 (all with monodentate coordination) coordinated

to Zn2+ octahedrally (Figure 12 F). We also report that, as shown in Figures 12 C, D, E and

F, all conformations contain water in the coordination sphere. Surprisingly, the reference

state is never reached throughout the simulation.

After obtaining these coordinates, we could deduce just one thing: the force field we

had chosen to carry the simulations might not be well parametrized as all of the stable

states had come from acetate-Zn2+ coordination. We had a look at the sixteen amino
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acid sequence: (1) Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Glu-Lys

(16). Looking at the sequence carefully, on the one hand, we see that the only amino

acids to show an acetate in their R group are aspartic acid (Asp), which correspond to

Asp1 and Asp7, and glutamic acid (Glu), which correspond to Glu3 and Glu11. On the

other hand, even if lysines do not have an acetate in their R groups, Lys16 was acetylated.

This means that after the unbound state was reached, the Zn2+ exclusively coordinated

to acetate groups. We presume that, as previously mentioned, there is a miscalculation

on the parametrization of histidine’s #s charges that if re-parametrized could success at

describing the system more precisely. In order to confirm further this conclusion, QM

calculations starting from structures shown in Figure 12 C, D, E and F conformations are

going to be performed.
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Figure 12: Free energies for residues depending to their distance to Zn2+ (A) and the free energy
obtained from PC1 (B). Different stable conformations obtained through the interpretation of
PC1’s free energy (C, D, E, F respectively).
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Conclusions

• Classical molecular dynamics simulations with the Hamiltonian replica exchange

technique can be used successfully to probe different conformational states of metal-

protein complexes.

• Limitations in the interaction models for the Zn2+ cation can hamper our ability to

reproduce the correct coordination. There is hence room for improving the results

if we are able to better describe Zn2+ model in the future, for example with models

such as the dummy models by Strodel et al. [26].

• The size of the simulation boxmust be carefully selected in order to avoid unphysical

effects. In our case a bigger box would have prevented the sampling of states where

the protein molecule was interacting with its periodic box.

• CHARMM36m force field’s parametrization fails at representing histidine’s N

charges as we were unable to record a conformation where the Zn2+ ion was bonded

to a imidazole N rather than an O from an acetyl group. We propose a further

examination of the charges given to the problematic #s and $s comparing with

Quantum Mechanics calculations.

25
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Ondorioak

• Dinamika molekular klasikoak eta Hamiltonian replica exchange teknika, metal-

proteina konformazio ezberdinak aurkitzeko era arrakastatsuan erabili daitezke.

• Zn2+ katioi modeloen mugek koordinazio egoera zuzenak aurkitzeko gaitasuna oz-

topatzen dute. Hori dela eta, emaitzak hobetzeko aukera dago Zn2+ katioia hobeto

deskribatzen duen modelo bat erabiliz gero, Strodel et. al-ek proposatzen dituzten

dummy model-ak besteak beste [26].

• Simulazio kaxaren dimentsioak kontu handiz aukeratu behar dira esanahi fisikorik

ez duten elkarrekintzak ekiditeko. Gure kasuan, tamaina handiagoko kaxa baten

erabilerak proteina eta bere irudi periodikoaren arteko elkarrekintzak eragotziko

lituzke.

• CHARMM36m force field-aren parametrizazioak akatsak ditu histidinetako N-en

kargak egokitzerakoan. Izan ere, ezin izan dugu Zn2+ katioia imidazoletako N-

etara koordinatuta ikusi, beti azetato taldeetako O-etara koordinatuta zegoelako.

Mekanika kuantikoaz baliatuz, N eta O problematikoen kargen azterketa sakona

proposatzen dugu.
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