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Abstract 

Language acquisition is mediated by maturational and experiential mechanisms. It is 
a remarkably complex process, yet infants show incredible language learning capacities. In a 
bilingual context this process is even more challenging, since bilingual infants benefit from less 
day-to-day experience with each language. In addition, they need to perform specific 
computations such as separating their languages or storing the information of two linguistic 
inputs. Learning two languages, however, does not negatively affect language acquisition: 
bilingual infants follow a similar pace to their monolingual peers when main developmental 
milestones are considered. It has been suggested that bilingualism might elicit cognitive 
adaptations that allow infants to cope with the increased complexity of their linguistic 
environment. Distinctive attention allocation skills or an increased perceptual sensitivity are 
examples of the proposed adaptations. Whether bilingual infants’ success is also supported by 
modulations in the underlying functional systems in charge of these linguistic processes is the 
question this thesis aims to unravel. This question is addressed using a functional brain imaging 
technique especially suitable for infant populations: functional near-infrared spectroscopy 
(fNIRS). This neuroimaging technique offers the potential to study neural activity non-
invasively based on cerebral hemodynamics. Because fNIRS is a relatively novel technique to 
measure infants functional brain activity, the thesis also contains a major methodological 
component. Particular focus is dedicated to data quality assessment and signal processing. 

A series of fNIRS experiments are presented to investigate whether bilingualism might 
be one factor eliciting experience-induced neural adaptations in 4-month-old infants. First, the 
brain’s functional organization is examined through resting-state functional connectivity. This 
approach represents a viable strategy to link brain function and cognition, and it offers the 
potential to simultaneously examine various functional systems. Likewise, functional network 
activity can be modulated by different prenatal and postnatal conditions. Studying functional 
connectivity with fNIRS arises some methodological challenges that are inherent to this 
imaging technique. In particular, whether the fNIRS data preprocessing pipeline should 
include a step to deal with signal autocorrelation. The second study of this thesis addresses the 
influence of this step for functional connectivity analyses from a theoretical and empirical point 
of view. A third study investigates functional differences that might emerge during spoken 
language processing. Monolingual and bilingual infants’ brain responses to speech stimuli are 
measured to examine the brain areas in support of this cognitive process. The results of these 
experiments are presented. 

Investigating the impact of bilingual exposure on how the brain works, prior to infants 
even beginning to babble, has remarkable theoretical implications for the field of language 
acquisition, which had long suspected that brain reorganization for linguistic exposure may 
begin in-utero, but certainly in the first months of life. This thesis also provides several 
methodological advancements confirming the suitability of fNIRS imaging for accurately and 
reliably assessing brain function in developmental populations. The importance of the 
theoretical and methodological implications of the findings of this thesis are discussed, as is 
the relevance of transparent and replicable research methodologies for future works in 
developmental cognitive neuroscience.  
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Preface 

This thesis is divided into five chapters. The first chapter describes the initial steps 
of language acquisition during the first year of life in monolingual and bilingual contexts. It 
establishes the theoretical framework of this thesis, where the presence of bilingualism 
induced functional brain adaptations are investigated in prelinguistic 4-month-old infants. 
This chapter reviews existing studies investigating potential behavioural and neural markers 
of functional adaptations due to an early bilingual experience, and discusses current 
hypotheses for the potential adaptations that might aid bilingual infants reaching the 
linguistic milestones at the same pace as their monolingual peers.  

The second chapter contains a description of the fundamental principles of the 
neuroimaging technique employed in the experiments of this thesis, functional near-
infrared spectroscopy (fNIRS). The biological basis and the physical principles of this 
technique are explained, and information about the main steps of the fNIRS signal 
preprocessing pipeline is provided. A brief literature review on the application of this 
technique to measure functional brain activity in developmental populations is presented, 
and the main advantages, limitations and challenges of this technique for its application to 
infant research are described. 

The third chapter examines the effect of an early bilingual exposure on the 
functional organization of the infant’s brain. Behavioural and neuroimaging research attests 
that monolingual vs. bilingual experience affects cognitive and functional processes already 
during the first months of life. However, to what extent the intrinsic organization of the 
infant human brain adapts to monolingual vs. bilingual environments is unclear. In the 
study presented in this chapter spontaneous hemodynamic brain activity is measured using 
fNIRS in 4-month-old monolingual and bilingual infants. The final sample includes 99 
infants with high-quality data. By implementing state-of-the-art methods for studying 
functional brain connectivity, the functional organization of the infant brain in large scale 
cortical networks is described based on fNIRS data, and compared across monolingual and 
bilingual infants for the first time. Results at the group level revealed functional connectivity 
networks and components that are consistent with previous literature on functional brain 
networks in adult and infant populations obtained with other functional neuroimaging 
modalities, such as functional magnetic resonance imaging. Statistical comparisons between 
experimental groups reveal no significant differences as a function of language background. 
Since functional connectivity differences as a function of language background have only 
been observed in adult populations, this work paves the way for future investigation on the 
impact of bilingualism on functional brain organization at different stages in development.  

Chapter four is a methodological chapter which examines specific statistical 
challenges of resting-state fNIRS data analysis. In particular, the implications of fNIRS 
signal autocorrelation for resting-state functional connectivity studies is discussed. This 
feature of the fNIRS signal is mainly originated by the high sampling frequency of the 
instruments measuring the signal, and the presence of physiological components related to 
respiration or cardiac pulse which coexist with the hemodynamic signal of interest. Since 
the high autocorrelation of the fNIRS signal substantially increases false positive rates, 
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various methods have been proposed to remove it during data preprocessing. Nevertheless, 
a detailed evaluation of the implications of applying these methods in fNIRS functional 
connectivity studies is not available yet. The results of this study show that fNIRS signal 
autocorrelation can be effectively removed employing prewhitening methods proposed in 
the literature. Yet, compared with standard preprocessing pipelines, the application of 
prewhitening methods substantially alters several fundamental neurophysiological 
properties of the fNIRS signal. These results confirm that more research is needed before 
mainstream addition of this step into the resting-state fNIRS data preprocessing pipeline. 

Chapter five shifts from resting-state to a task-based study in order to investigate the 
hemodynamic correlates of speech processing in 4-month-old bilingual and monolingual 
infants using fNIRS. The main goal of this study is to examine how early linguistic 
experience modulates infants’ brain responses to speech stimuli. By testing bilingual and 
monolingual infants in their shared native language (Spanish), it is assessed whether 
bilinguals’ language experience might elicit neural adaptations that are manifested as 
dissimilar patterns of early language processing in the brain. An optimized stimulus 
presentation procedure is implemented in order to efficiently detect brain areas activated 
by the presentation of speech stimuli, and to accurately estimate the shape of the 
corresponding hemodynamic response, as well as being able to capture a large number of 
trials per participant. This optimized experimental design is combined with a large sample 
of 58 participants. The analyses including the whole group of participants show brain 
activation patterns over bilateral perisylvian areas classically associated to auditory and 
language processes. Significant differences between monolingual and bilingual infants are 
observed, primarily over bilateral auditory regions. These results suggest that early 
bilingualism might elicit functional adaptations for speech processing, thus confirming the 
hypotheses anticipated by previous behavioural studies. Nonetheless, these results should 
be cautiously interpreted, as the observed effects are relatively weak in terms of the statistical 
procedures applied for multiple comparisons correction.  

The last chapter draws the main conclusions of the thesis, framing and linking the 
different studies, and discusses prospective research directions from the current work. 

Finally, in this thesis particular emphasis is drawn to various practical aspects to 
consider when performing fNIRS studies in infant populations, such as sample size, data 
quality assessment or recording duration (or number of analysed trials). From a signal 
processing point of view, several novel and advanced methods for fNIRS data 
preprocessing and analysis are implemented, such as global signal regression or threshold-
free cluster enhancement. Practical materials consisting on Matlab scripts and figures are 
included throughout the thesis and in Appendix which aim to provide a simple description 
of the implementation of these methods in order to facilitate their adoption by fNIRS 
researchers. 
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1.1. Language Acquisition in Monolingual and Bilingual Contexts 

 To understand the different linguistic milestones across monolingual and bilingual 
infants, it is important to mention the specific characteristics and challenges faced by infants 
raised in a bilingual context (Werker, 2012; Byers-Heinlein and Fennell, 2014; Costa and 
Sebastián-Gallés, 2014; Höhle et al., 2020). The monolingual vs. bilingual experience 
differs at least in two ways: (i) amount of exposure to one language is expected to be less in 
bilinguals than in monolinguals; (ii) exposure the linguistic variability is expected to be 
higher in bilinguals than in monolinguals (e.g., Costa and Sebastián-Gallés, 2014).  In terms 
of the amount of exposure, while the total exposure to language is expected to be similar 
in monolingual and bilingual contexts, it is likely that the experience with each of the 
languages is reduced in a simultaneous bilingual environment. This is because bilingual 
infants need to split their exposure time between two linguistic inputs (e.g., if one parent 
speaks in one language to the infant and the other parent in another language), with the 
amount and percentage of exposure to each language consequently eliciting some inherent 
variability within bilingual experiences (e.g., balanced vs. unbalanced bilinguals). Assuming 
that learning the particular characteristics of a language (e.g., phonemes, words, grammar) 
requires a certain amount of exposure to that particular language, it might be reasonable to 
expect that monolingual infants will follow a faster learning trajectory, as they are exposed 
to just one linguistic code instead of two.  

In terms of linguistic variability, the bilingual input contains a higher variability of 
linguistic regularities. First of all, bilingual infants will probably encounter language switches 
more regularly in their environment, and also across the same speakers (Byers-Heinlein, 
2013). The proficiency on each of the languages of the adults surrounding the infant might 
further increase the perceptual variability in bilingual infants’ environment, as it has been 
demonstrated that the production of speech sounds by bilingual adult speakers might differ 
from the formal realization of these sounds by adult monolingual speakers (Sundara et al., 
2006; MacLeod et al., 2009). Second, bilingual infants are exposed to more linguistic 
variability, because their input consists of phonemic categories, lexical items, and syntactic 
regularities of two languages (Costa and Sebastián-Gallés, 2014).  

Despite the above-described differences across the monolingual and bilingual 
inputs, language acquisition trajectories are not fundamentally different between 
monolingual and bilingual infants (e.g., Burns et al., 2007; Sundara et al., 2008; for a review 
see Werker, 2012), which suggests that specific cognitive and/or functional adaptations 
might take place during the bilingual learning process that help infants compensate the 
apparent increased learning complexity of the bilingual input. In the upcoming sections of 
this Chapter, three early language acquisition abilities that have been widely researched 
across monolingual and bilingual infants during the first year of life are described: (i) 
language discrimination, (ii) audio-visual speech processing and (iii) phonetic category 
learning. Reviewing these abilities will highlight the similarities and differences between a 
monolingual and a bilingual language acquisition. Whether specific computations during 
bilingual language learning might impact cognitive functions outside the language domain 
will also be discussed in the next sections of this Chapter. 
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Language Discrimination 

 In order to build an accurate representation of the two languages of their 
environment, bilingual infants first need to notice the presence of two linguistic codes and 
be able to separate the information they received from each of them (Byers-Heinlein and 
Fennell, 2014); a specific computation that is not required for infants in a monolingual 
context. As part of this process, bilingual infants need to learn the properties (e.g., 
phonological, rhythmical) and rules (e.g., phonotactical, grammatical) of two native 
languages instead of one, and store the information (e.g., lexicon) of each linguistic code 
without confusing them (Costa and Sebastián-Gallés, 2014). The peripheral auditory system 
becomes functional at around 24-28 weeks of gestation, implying that the acquisition of 
several properties of the native language start while still in the utero (Graven et al., 2008; 
Jardri et al., 2008). After several weeks of experience, infants are born with established 
perceptual biases towards, for example, their native language (Moon et al., 1993) or their 
mother’s voice (deRegnier et al., 2000). How this prenatal and postnatal listening 
experience shapes the cognitive and functional basis of language acquisition in monolingual 
and bilingual infants is the focus of the current thesis. 

Literature on early language discrimination is reviewed in Chapter 5, thus only a 
brief summary is provided in this Chapter. Language discrimination is a fundamental aspect 
of language acquisition, especially for bilingual infants who in order to successfully acquire 
their two native languages must learn to separate them from the start. One of the aspects in 
which young infants rely the most to perform this distinction is on linguistic rhythm (e.g., 
Gervain et al., 2010). Traditionally, languages have been categorized into three rhythmic 
classes based on the duration of specific linguistic units in a particular language (i.e., 
isochrony principle). For example, stress-timed languages such as English or Dutch show a 
constant duration between consecutive stressed syllables. On the other hand, languages 
such as Spanish or Italian are considered syllable-timed languages, as syllable duration is 
roughly similar in these languages. Lastly, the linguistic unit of equal duration in mora-timed 
languages such as Japanese is the mora, which is a measure of syllable weight (light-short, 
heavy-long).  

At birth, monolingual infants are able to discriminate between two rhythmically 
different languages (e.g., Spanish and English), showing a behavioural preference for the 
one that is familiar to them (Mehler et al., 1988; Moon et al., 1993; Ramus et al., 2000). 
To perform this distinction, newborns seem to predominantly rely on the rhythmic 
properties of the language, as it has been demonstrated that they succeed even when 
presented with low-pass-filtered speech samples, an acoustic modification that only 
maintains the rhythmical properties of the language (Nazzi et al., 1998). Newborns growing 
up in a bilingual environment are also capable to perform this distinction, without no 
preference for any of the two native languages to which they were prenatally exposed (Byers-
Heinlein et al., 2010). In another study specifically assessing prosodic grouping preference 
at birth (Abboub et al., 2016), French monolingual infants showed higher activation 
responses towards an inconsistent, as compared to a consistent, prosodic cue relevant in 
French (i.e., durational contrasts), but not to other prosodic cues less salient in this language 
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(i.e., intensity and pitch). On the other hand, bilingual infants (French and another 
language) displayed higher activation responses for inconsistent pitch contrasts. This study 
demonstrated the importance of linguistic rhythm during early language acquisition, and 
how early prosodic grouping biases can be modulated by prenatal language exposure 
(Abboub et al., 2016). The ability to discriminate rhythmically similar languages (e.g., 
Spanish and Italian) is developed at a later age (around 4 months of age) in both 
monolingual and bilingual infants, although each of these groups seems to rely on different 
mechanisms to perform this distinction (Bosch and Sebastián-Gallés, 1997; Bosch et al., 
2001; Molnar et al., 2014; Nácar-García et al., 2018; see also Chapter 5).  

Further evidence of early language discrimination capacities stems from studies of 
visual language discrimination. In these studies, infants’ language discrimination capacities 
are assessed while watching silent videos of speech stimuli, that is, without auditory 
information, relying on visual cues from speakers’ faces only. Monolingual infants at 4 and 
6, but not at 8 months of age were able to visually discriminate two languages from stimuli 
consisting of silent speech videos (English-French, Weikum et al., 2007; Spanish – Catalan, 
Sebastián-Gallés et al., 2012). In turn, only bilingual infants preserved the capacity to 
visually discriminate languages at 6 and 8 months of age (Weikum et al., 2007), even when 
the languages being tested were not part of the bilingual infants’ linguistic environment 
(Sebastián-Gallés et al., 2012). Overall, these studies demonstrated that monolingual and 
bilingual infants display similar language discrimination capacities, but particular 
mechanisms supporting this ability might be modulated by the bilingual input.  

Audiovisual Speech Processing 

How infants take advantage of relevant audio-visual cues during language acquisition 
is a research topic that has also attracted great interest. Using eye-tracking techniques several 
studies have assessed infants’ scanning and looking patterns while listening and watching 
videos of talking faces. Studies on this topic revealed that 4-month-old infants focus their 
attention primarily on the eye area (Lewkowicz and Hansen-Tift, 2012). At 8 months of 
age the looking pattern changes, with infants showing increased interest towards the 
speaker’s mouth, which has been interpreted as probably assisting the onset of canonical 
babbling taking place around this age. At 12 months of age, the primary area of interest 
appears to change again to the eyes (Lewkowicz and Hansen-Tift, 2012). This change in 
the looking pattern has been suggested to reflect the increased interest on social 
communicative information in older infants’, which is principally expressed around the eye 
region. Conversely, other works reported a sustained attention to the speaker’s mouth in 1-
year-old infants (Frank et al., 2011; Tenenbaum et al., 2013; Tsang et al., 2018), and a 
positive relationship between this looking pattern and concurrent expressive language 
development (Tsang et al., 2018). 

Some works investigated the potential relationship between infants’ scanning 
patterns for dynamic talking faces and their language background. At 4 months of age, and 
as opposed to monolinguals (Spanish or Catalan) in which a preference towards the eyes 
was replicated, studies with bilingual infants (Spanish and Catalan) have not demonstrated 
a preference for the eyes or the mouth. At 8 and 12 months of age bilingual infants 
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displayed a marked preference for the mouth, and they did so equally for a native and a 
non-native language (Pons et al., 2015). Instead, monolingual 12-month-old infants’ 
preference towards the mouth was higher only for the non-native language. Similarly, 
Spanish-Catalan bilingual infants also showed longer looking patterns to the mouth area in 
a study using a paradigm involving videos of emotional faces without speech (Ayneto and 
Sebastián-Gallés, 2017). Altogether, these results might indicate the need of bilingual 
infants to rely on additional audio-visual cues to successfully separate and learn the specific 
characteristics of their native languages. However, an effect of language background was not 
observed in a recent study involving similar tasks (i.e., emotional faces and dynamic talking 
faces), and which assessed the scanning patterns of 6- and 12-month-old monolingual 
(English) and bilingual (English and another language) infants (Tsang et al., 2018).  

Acquisition of Native Phoneme Categories 

Besides being able to distinguish languages based on rhythmic information, infants 
are also born with the ability to discriminate between a wide variety of speech sound 
contrasts, independently of whether these distinctions are linguistically relevant in their 
native or in a non-native language. During the second half of the first year of life, after some 
months of listening experience, infants become progressively attuned to the speech sounds 
and phonetic properties of their native language/s. Conversely, their sensitivity to non-native 
contrasts decreases, an input-driven learning process also known as perceptual narrowing 
(e.g., Werker, 2018). This trajectory seems to be also influenced by the perceptual salience 
of the assessed contrast, with the distinction of subtle speech contrasts requiring an 
increased exposure to the native language (Larraza et al., 2020). Studies assessing 
perceptual attunement in monolingual infants demonstrated an improved sensitivity 
towards the sounds of their native language starting at around 6-10 months of age, 
depending on the frequency distributions and complexity of the employed contrasts (e.g., 
Kuhl et al., 2006; for a review see Werker, 2018). Monolingual infants’ perceptual 
attunement to vowels typically occurs around 6 months of age (e.g., Polka and Werker, 
1994), and to consonants it typically occurs around 11 months of age (e.g., Werker and 
Tees, 1984).  

A few studies have investigated whether an early and simultaneous exposure to two 
phonological systems influences perceptual attunement in bilingual infants. Early studies 
on this topic suggested a U-shaped developmental trajectory during perceptual attunement 
in bilingual infants (Bosch and Sebastián-Gallés, 2003, Sebastián-Gallés and Bosch, 2009). 
Converging evidence from studies testing Spanish and Catalan monolingual and Spanish-
Catalan bilingual infants on different phonetic distinctions (i.e., vowel contrasts) showed 
that 4-month old infants were able to detect these distinctions, irrespective of their language 
background. At 8 months of age, only monolingual infants maintained the sensitivity to 
distinguish the presented vowel contrasts. Whereas bilingual infants at 12 months of age 
recovered the capacity to perceive these contrasts. These results suggested that the 
development of phonetic discrimination capacities might be affected by language exposure 
(Bosch and Sebastián-Gallés, 2003, Sebastián-Gallés and Bosch, 2009). Contrary to these 
findings, several works have shown that the developmental trajectory of phonetic 
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discrimination is essentially the same in monolingual and bilingual infants, both groups 
demonstrating the ability to perceptually discriminate speech sound contrasts of their native 
language/s at a similar pace, but bilingual infants developing this ability for two parallel 
phonological systems (Burns et al., 2007; Sundara et al., 2008; Albareda-Castellot et al., 
2011). Studies that have examined the functional mechanisms underlying perceptual 
sensitivity to speech sound contrasts across monolingual and bilingual infants are reviewed 
in the next section of this Chapter. 

1.2. Neurophysiological Correlates of Bilingual Adaptation 

A few neuroimaging studies have investigated the potential functional adaptations 
that might emerge in the developing brain as a consequence of growing up in a bilingual 
environment. Studies specifically related to speech processing (Nácar-García et al., 2018; 
Mercure et al., 2020) are described in detail in Chapter 5 of this thesis. In these studies, 
bilingual infants demonstrated different neural specialization responses during a language 
discrimination task (i.e., native vs. non-native) (Nácar-García et al., 2018), as well as 
dissimilar patterns of activated brain regions towards speech stimuli (Mercure et al., 2020). 

Measuring event related potentials (ERPs) with electroencephalography (EEG) in 
English-Spanish bilingual 19- to 22-month-old infants, Conboy and Mills (2006) examined 
the brain’s response to known and unknown words in each of their native languages, and 
investigated whether these responses were linked with the level of experience in each 
language (i.e., here determined by vocabulary size). Although this study lacked a 
monolingual group for comparisons, results were compared with previous studies using the 
same experimental paradigm with age-matched English monolingual infants (Mills et al., 
1993; Mills et al., 1997). In bilingual infants, earlier ERP differences to known vs. unknown 
words were observed for the dominant language, and were also associated with a higher 
vocabulary size. The spatial distribution for the ERP effects was broadly distributed across 
hemispheres, contrasting with previous studies showing a focalized pattern over temporal 
and parietal regions of the left hemisphere in monolingual infants at this age. Results from 
this study confirmed that experience and language proficiency modulate the organization 
of neural systems involved in word recognition. This work also provided the first evidence 
of a differential resource allocation system related to a simultaneous bilingual experience 
from birth, which was revealed by the distributed patterns of brain activation and the higher 
involvement of right hemispheric regions in these infants. 

Based also on EEG recordings, a series of studies have measured mismatch 
responses (MMRs) to vowel contrasts (English) in English monolingual and English-
Spanish bilingual infants, and assessed the role of language experience in the exhibited 
brain response patterns (Shafer et al., 2011; Shafer et al., 2012). The development of 
discrimination responses followed a similar trajectory across monolingual and bilingual 
infants, except at 6 months of age, where a higher sensitivity to the language contrasts was 
observed in bilingual females (Shafer et al., 2011). To elucidate whether a higher attention 
to the speech sounds might have mediated these outcomes, the same contrasts were tested 
in a new group of 6-month-old monolingual and bilingual infants, but varying the position 
of the contrasts within the stimuli sequence (Shafer et al., 2012). When attention to stimuli 
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was specifically controlled no differences emerged due to language experience, which 
indicates that monolingual and bilingual infants at this age rely on comparable cognitive 
systems when processing speech sounds.  

Considering a sample of English-Spanish bilingual infants, García-Sierra et al., 
(2011) tried to replicate the results of a speech sound discrimination study with monolingual 
infants (English) at 7 and 11 months of age (Rivera-Gaxiola et al., 2005). In this earlier 
study, monolingual 7-month-old infants showed discriminative ERP responses for 
consonant contrasts in both familiar and unfamiliar languages, whereas 11-month-old 
infants only showed discriminative responses for the familiar language, with a more similar 
pattern to adults. In contrast, García-Sierra et al., (2011) showed that bilingual infants in the 
younger group (6-9 months of age) did not displayed discriminatory responses for any of 
the native contrasts, whereas neural discrimination for both contrasts was observed in the 
older group (10-12 months of age). As demonstrated by behavioural studies (Bosch and 
Sebastián-Gallés, 2003, Sebastián-Gallés and Bosch, 2009), these outcomes can be 
explained by the effect of a reduced language experience, which might increase the time 
required by bilingual infants to attune to the specific phonetic contrasts of each of their 
native languages (Kuhl et al.,2008; Byers-Heinlein et al., 2014).  

Indeed, the relationship between the amount of language input in the tested 
language and the amplitude and direction of the MMR (indicators of the degree of 
perceived difference) was further investigated in García-Sierra et al. (2016) in 11- to 14-
month-old monolingual (English) and bilingual (English-Spanish) infants. Results for the 
native contrasts replicated the previous study (García-Sierra et al., 2011), with monolingual 
infants showing the expected responses denoting neural commitment towards the sounds 
of their native language (i.e., negative MMR). Bilingual infants, even those with higher levels 
of exposure to one of the languages, showed ERP responses (i.e., positive MMR) indicative 
of a less mature form of linguistic processing. Positive MMRs have been interpreted as 
being more closely related with lower level attention and acoustic discrimination processes 
preceding the automatic speech perception response elicited by phonemic representations 
of the native phonology (i.e., negative MMR). In both groups, the level of neural 
commitment to the language, as measured by the amplitude and direction of the MMR, 
was related with the amount of language input or exposure time, which was quantified by 
means of the Language Environment Analysis System (LENA foundation, Boulder 
Colorado). This analysis also revealed that the neural responses in the bilingual group were 
comparable to the neural responses of those monolingual infants regularly receiving a lower 
language input (García-Sierra et al., 2016). 

Similar brain responses towards a native contrast (i.e., negative MMR in English 
monolingual infants, positive MMR in English-Spanish bilingual infants) have been 
demonstrated using magnetoencephalography (MEG), a neuroimaging technique that 
allows a more precise localization of the cortical origin of the observed effects (Ferjan-
Ramirez et al., 2017). Interestingly, the origin of the neural responses in monolingual 
infants was localized over bilateral frontal areas, whereas in bilingual infants the observed 
neural responses were limited to left auditory regions. The spatial localization of the 
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responses in each group provided support for the hypothesis arguing that negative MMRs 
in monolingual infants represent a more complex form of cognitive processing related to 
language specific memory representations, while positive MMRs in bilingual infants imply 
a process predominantly based on the acoustic properties of the presented stimuli. 

Phonetic processing has been further assessed in monolingual and bilingual infants 
using functional near-infrared spectroscopy (fNIRS), the neuroimaging technique that has 
been employed in the studies of this thesis and which will be described in the next Chapter. 
Concretely, monolingual (English) and bilingual (English-another language) infants were 
exposed to native (English) and non-native (Hindi) phonetic units and nonlinguistic pure 
tones (Petitto et al., 2012). Two age groups (younger 4- and older 12-month-old infants) 
were considered to assess the developmental time-course of early phonetic processing and 
discrimination. Speech stimuli activated areas in the left superior temporal gyrus, which 
remained similar across age and language groups, and the inferior frontal cortex, which 
showed sensitivity to the experimental manipulation. Specifically, the left inferior frontal 
region showed higher activation in older as compared to younger infants, and the right 
inferior frontal region showed the opposite pattern. Furthermore, activity in the left inferior 
frontal cortex in older monolingual infants was restricted to native phonetic contrasts. 
However, older bilingual infants showed similar activation in this region to both native and 
non-native contrasts. These results suggest that an early bilingual experience might be 
related with a sustained sensitivity, or a protracted perceptual attenuation process, towards 
relevant linguistic stimuli in the environment (e.g., phonetic contrasts), which is not limited 
to bilingual infants’ native languages (Petitto et al., 2012).  

In summary, neuroimaging evidence reveals earlier specialized brain responses 
towards the native language in monolingual infants. The maturational trajectory of these 
neural responses appears to be influenced by language experience, with bilingual infants 
showing less mature responses and/or a prolonged sensitivity towards non-native contrasts 
in some of these studies. Furthermore, each language group seems to recruit different brain 
regions during this specialization process. 

1.3. Cognitive and Functional Adaptations Beyond Language  

One of the most discussed topics in the field of bilingual language acquisition is 
whether the effects of early bilingualism might extend to other cognitive domains beyond 
language processing and, accordingly, modulate the underlying neural structures in charge 
of these processes. Relying on the assumption that bilingual infants continuously monitor 
and track inputs from the two languages of their environment, a series of studies have 
reported evidence for a more efficient participation of various mechanisms of executive 
function, such as attentional control, conflict monitoring or inhibitory control, in bilingual 
infants (Kovacs and Mehler, 2009a; Kovacs and Mehler, 2009b; Comishen et al., 2019), as 
compared with their monolingually raised peers. 

Two studies used eye-tracking to assess cognitive control abilities in monolingual 
and bilingual infants at 7 and 12 months of age (Kovacs and Mehler, 2009a; Kovacs and 
Mehler, 2009b). 7-month-old monolingual and bilingual infants were equally able to learn 
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the association between the presentation of a speech or visual cue, and the subsequent 
position of a visual reward in a screen. When the rule changed, altering the position of the 
visual reward with respect to the learning phase, bilingual infants outperformed their 
monolingual peers on learning the new association and being able to supress the previously 
acquired predictive response, a behaviour that monolingual infants were not able to 
accomplish (Kovacs and Mehler, 2009a). Older bilingual infants at 12 months of age 
showed a similar pattern of enhanced learning flexibility (Kovacs and Mehler, 2009b). In 
the task employed in this study, infants were instructed to learn two speech structure - visual 
cue associations (e.g., ME-ME-BA speech structure was followed by the presentation of a 
visual cue on the left side of the screen, and LE-NA-LE speech structure was followed by 
a visual cue presented on the right side). During test trials after the learning phase bilingual 
infants provided more accurate responses, determined by their first gaze and looking time, 
indicating that they were able to learn both associations. Monolingual infants, on the other 
hand, were only able to learn the association for the simplest speech structure (i.e., AAB). 
These results were also interpreted as evidence of the enhanced cognitive control abilities 
on the part of bilinguals (Kovacs and Mehler, 2009b). However, a recent study failed to 
replicate these findings on a group of 9.5-month-old monolingual and bilingual infants 
(Tsui et al., 2019). 

Using a similar experimental paradigm as in Kovacs and Mehler (2009a, 2009b), 6-
month-old monolingual and bilingual infants’ attention allocation and control abilities were 
compared during the performance of two tasks involving non-verbal stimuli (Comishen et 
al., 2019). In the first task infants were exposed to random cue-target location associations 
during the first half of the trials, a pattern that changed to predictable associations of the 
target stimulus for the second half of the experiment. Monolingual and bilingual infants 
showed a similar capability to generate expectations once predictable relationships between 
cue and target locations could be established. In the second task, a cue-target location 
association was learned during the first half of the experiment. The association switched 
during the second half and was contradictory to the one previously learned. In the second 
part of this task, where updating previously learned expectations of cue-target relationship 
was required, only bilingual infants succeeded in anticipating the location of the target 
stimulus, which authors suggested to reflect their increased abilities for attentional control 
(Comishen et al., 2019). A recent study attempted to replicate these findings in 7-month-
infants monolingual and Spanish-Basque bilingual infants, by assessing their attentional 
control capacities using a similar eye-tracking paradigm (Kalashnikova et al., 2020). This 
study observed no advantage in bilinguals’ performance for attentional control, thus failing 
to replicate previous outcomes.  

Lastly, differences in infants’ learning and information processing mechanisms as a 
result of the bilingual input have also been examined. Singh et al. (2015) employed a visual 
habituation paradigm to test simple learning capacities in 6-month-old monolingual and 
bilingual infants. During the habituation phase participants were repeatedly presented with 
an image stimulus (e.g., a picture of a wolf or a bear). During the test phase, infants’ 
recognition ability was assessed by their looking behaviour, which is associated with a 
preference towards novel stimuli. Bilingual infants fixated longer on the novel stimulus, 
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which suggests an advantage on basic information processing for bilingual as compared to 
monolingual infants, and particularly a more efficient capacity for stimulus habituation and 
a better visual recognition memory (Singh et al., 2015). 

1.4. The Bilingual Adaptation Hypotheses 

Overall, the above-reviewed evidence converges towards the idea that linguistic 
development of typically developing monolingual and bilingual infants is comparable. 
Nonetheless, various cognitive and functional adaptations that might serve bilingual infants 
to successfully cope with a challenging context during language acquisition have also been 
consistently reported. Different, not mutually exclusive hypotheses have been proposed to 
conceptualize the adaptations induced by an early bilingual environment. 

One hypothesis proposes a different developmental transition in the perceptual 
“sensitive periods” during the attunement process to the characteristics of the native 
language that supports the early stages of language acquisition (Figure 1.1) (Kuhl, 2010a; 
Kuhl, 2010b; Werker and Hensch, 2015). During the perceptual attunement process, 
which might start several weeks before birth (Mampe et al., 2009), infants become 
specialized in the properties of their native language such as rhythm (Mehler et al., 1988; 
Moon et al., 1993; Byers-Heinlein, 2010) or phoneme categories (Dehaene-Lambertz and 
Gliga 2004; Mahmoudzadeh et al., 2011). The timing (i.e., onset, offset and duration) of 
sensitive periods is largely constrained by the maturation of the underlying neural structures 
and functional circuits, but linguistic experience seems to play a significant role in this 
process as well (Peña et al., 2010; Peña et al. 2012; Werker and Hensch, 2015). According 
to this view, as bilingual infants receive a reduced linguistic input in each of the languages 
of their environment as compared to monolingual infants, they might experience a more 
flexible timeline where perceptual sensitive periods extend until sufficient experience with 
the statistical regularities of each language is gained (Kuhl et al., 2008; Kuhl, 2010a). This 
hypothesis mainly gained support from phonetic and language discrimination studies in 
which bilingual infants maintained longer their ability to discriminate speech contrasts 
(Weikum et al., 2007; Burns et al., 2007; Sundara et al., 2008; Petitto et al., 2012; Sebastián-
Gallés et al., 2012), or in which the neural responses to native speech contrasts appeared 
less mature (García-Sierra et al., 2011; García-Sierra et al., 2016; Nácar-García et al., 2018). 
Further evidence stems from studies assessing word learning capacities in monolingual and 
bilingual infants, and which showed that bilingual infants demonstrate a delayed capacity 
for learning specific word-object associations (Fennell et al., 2007) and a lower vocabulary 
size in each of their native languages (Poulin-Dubois et al., 2013). 

Another hypothesis argues that bilingualism enhances, or at least differentially 
recruits, cognitive mechanisms outside the language domain such as memory, executive 
functions or perceptual discrimination abilities, even from the earliest stages of language 
acquisition (Costa and Sebastián-Gallés, 2014; Kovacs et al., 2015; Byalistok, 2015; 
Bialystok et al., 2017). These differential or improved capacities might allow bilingual 
infants to efficiently deal with the conflicting linguistic statistical regularities of their 
environment, and might also reflect differences in the underlying functional networks  
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Figure 1.1 Illustration of perceptual sensitive periods during language acquisition (solid curves), and 
how the timeline of these periods can be modulated by early linguistic experience (e.g., bilingualism) 
(adapted from Werker and Hensch, 2015). 

in charge of these processes. Examples of the reviewed literature that have shown bilingual 
adaptations in support for this view include the enhanced visual language discrimination 
abilities (Weikum et al., 2007; Sebastián-Gallés et al., 2012), a differential attention to 
audio-visual cues during language processing (Pons et al., 2015; Ayneto and Sebastián-
Gallés, 2017) or a different allocation of attention during language discrimination tasks 
(Bosch and Sebastián-Gallés, 1997). Outside the language domain bilingualism has been 
suggested to improve executive control abilities (e.g., Kovacs and Mehler 2009a;), or to 
imply a more flexible attention system with a marked preference towards novelty (Singh et 
al., 2015; Comishen et al., 2019).
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2.1. Functional Near-Infrared Spectroscopy 

Near-infrared spectroscopy (NIRS) is a non-invasive optical imaging technique that 
uses near-infrared light (650 - 1000 nm) to calculate changes in the optical properties of 
human tissues, such as the brain or muscles, as result of variations in the concentration and 
oxygenation state of certain optical absorbers (i.e., chromophores). 

The use of NIRS for monitoring brain oxygenation in-vivo was first described by 
Jöbsis in 1977. Since the scalp and the skull show a high degree of transparency in the NIR 
spectrum, and the two main chromophores in this range (i.e., oxyhemoglobin - HbO and 
its reduced equivalent deoxyhemoglobin – HbR) show different absorption spectra, these 
properties can be conveniently employed to non-invasively track information of blood 
oxygenation in brain tissues (Jöbsis, 1977). This theory was first probed on animal models, 
and next on a human subject in which cerebral blood volume changes were measured 
during voluntary hyperventilation. Results from this work demonstrated the ability of NIRS 
to detect cerebral vasoconstriction and the progressive reduction of cerebral blood volume 
during this state (Figure 2.1). 

 Since this pioneering work the technology and methodology necessary to 
incorporate NIRS as an advanced imaging modality in neuroscience and clinical research 
have been under constant development (Villringer and Chance, 1997; Strangman et al., 
2002a; Obrig and Villringer, 2003; Elwell and Cooper, 2011; Ferrari and Quaresima, 2012; 
Obrig et al., 2014; Scholkmann et al., 2014; Pinti et al., 2019). The applicability of NIRS 
to the study of functional brain activity (functional NIRS - fNIRS) in humans was 
consolidated in 1993. That year, four independent research groups presented their 
investigations using fNIRS for the study of different brain functions in international 
scientific journals (Chance et al., 1993; Hoshi and Tamura, 1993; Kato et al., 1993; 
Villringer et al., 1993). In these studies, an increase in regional blood supply or local 
changes in the concentration of HbO and HbR were associated with brain activity during 
the performance of cognitive tasks (Chance et al., 1993; Hoshi and Tamura, 1993; 
Villringer et al., 1993), or during visual (Hoshi and Tamura, 1993; Kato et al., 1993; 
Villringer et al., 1993) and auditory stimulation (Hoshi and Tamura, 1993).  

In these first fNIRS studies based on single-channel measurements, mapping of 
brain activity was limited to the particular cortical region under examination. Nowadays, 
technological progresses have enabled to simultaneously interrogate multiple cortical 
regions using multi-channel instruments. Furthermore, the advent of the first wearable high-
density diffuse optical tomography systems (HD-DOT) that offer comparable spatial 
resolution to conventional functional Magnetic Resonance Imaging (fMRI) (Eggebrecht et 
al., 2012), have broaden the fields of application of fNIRS, consolidating this technique as 
one of the main non-invasive brain imaging modalities. Nonetheless, all these technologies 
essentially rely on the same principles: the biological principles governing the physiological 
phenomena under examination (i.e., neurovascular coupling) and the physical principles 
describing the interaction of light with biological tissue, both of which are explained in detail 
below, with emphasis on the specific factors to consider when imaging the infant brain. 
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Figure 2.1 A) NIRS experimental setup for the assessment of cerebral hypocapnia. B) Blood 
volume decrease is notable during longer periods of hyperventilation. Note that an increase in the 
number of photons detected is related with a decrease in absorbance, and therefore a decrease in 
cerebral blood volume (Adapted from Jöbsis, 1977). 

Biological Basis of the fNIRS Signal 

 Light in the near-infrared (NIR) region of the electromagnetic spectrum (650 – 1000 
nm) can be used to monitor changes in hemoglobin concentration and oxygenation in 
biological tissues. These changes are calculated from variations in the optical properties of 
the sampled tissue, which in this thesis refer to the head (e.g., scalp, skull and cerebrospinal 
fluid) and brain tissues, and which are assumed to predominantly result from fluctuations 
in cerebral and extracerebral hemodynamics. Human tissues such as the scalp or the skull 
are mostly transparent to NIR light (i.e. they practically do not absorb light in this spectral 
window), allowing it to penetrate the most superficial layers of the cortex. Other absorbing 
substances in biological tissues either show a relatively low absorption within the NIR 
spectral range and a strong absorption of light at other wavelengths (e.g., water and lipids 
>900 nm, hemoglobin <600 nm), or they are present in comparatively low concentrations 
(i.e., melanin and cytochrome oxidase). Therefore, any changes in absorption due to these 
substances are commonly considered negligible (Scholkman et al., 2014). 

Conveniently, the main absorbers in the NIR spectral range are HbO and HbR. 
The absorption spectra of these chromophores in this optical window is significantly 
different, with an isosbestic point around 800 nm where both show an equivalent 
absorption coefficient (Figure 2.2). This difference also explains why arterial blood, with 
higher HbO concentration, presents a bright red color, whereas venous blood, with larger 
HbR content, appears darker. The simplest NIRS system is formed by a light source, which 
continuously emits light onto the scalp, and a detector located a few centimeters away, 
where light attenuation after traversing head tissues (e.g., scalp, skull and cerebral cortex) is 
measured. The underlying region between a source-detector (SD) pair forms a channel, 
where changes in the optical properties of tissue (i.e., HbO and HbR chromophore 
concentration) are examined. Emitting light at two appropriate wavelengths in the 
“biological window”, and based on the attenuation of NIR light intensity at each wavelength, 
it is possible to determine the relative concentration changes of HbO and HbR within the 
sampling volume. Such changes, which reflect the vascular response related to functional 
brain activation, represent the signal of interest of fNIRS. 
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Figure 2.2 The absorption spectra of HbO, HbR, water and fat. Wavelengths !! and !" represent 
the wavelengths employed by the NIRx NIRScout system used in all the studies of this thesis. 

As opposed to other neuroimaging techniques such as electro- and 
magnetoencephalography (i.e., EEG and MEG), which directly measure the electrical or 
magnetic fields generated by the synchronized activity of large populations of neurons, 
fNIRS belongs to the set of neuroimaging techniques assessing the metabolic aspects 
associated to brain activity, such as positron emission tomography (PET) or fMRI. The 
slow functional hemodynamic response measured by these techniques lags several seconds 
behind neuronal activity, and thus, only represents a proxy measurement of brain function. 

In brain tissue, regional changes in cerebral blood flow and oxygenation can be 
employed as surrogate markers of neural activation. The most simplified interpretation of 
this process considers that changes in cerebral hemodynamics are linked to increases in 
local neural activity in a process known as neurovascular coupling (Logothetis et al., 2001; 
Wolf et al., 2002; Steinbrink et al., 2006). This process is however rather complex, and the 
precise physiological mechanisms that define the link between the hemodynamic response 
and neural activity are still not completely understood.  

The repeated firing of neurons during neural activity, either spontaneously, or 
internally/externally evoked, elicits an increase in cellular oxygen and glucose consumption. 
Driven by neurovascular coupling dynamics, this metabolic demand is supplied by a local 
increase of cerebral blood flow in the activated region, which in turn produces an increase 
in cerebral blood volume due to the vasodilatation of the local vasculature system 
(Logothetis et al., 2001; Wolf et al., 2002; Steinbrink et al., 2006). This mechanism known 
as functional hyperaemia (Nippert et al., 2018), and which requires the participation of 
several vasoactive agents at different stages along the bloodstream, is one of the main roles 
of the neurovascular coupling. Autoregulation is another central role filled by neurovascular 
coupling, keeping blood pressure levels constant during these periods of altered cerebral 
blood flow (Ward et al., 2012). 



Functional Near-Infrared Spectroscopy - fNIRS 

 19 

Oxygen is transported to cells through the oxygen saturated version of hemoglobin 
HbO, which after releasing the oxygen molecules leads to the formation of HbR. The 
amount of HbO delivered to the activated region generally exceeds the metabolic demand, 
leading to focal hyperoxygenation (i.e., an increase in the local concentration of HbO and 
a decrease of HbR concentration). This response represents the operational definition of 
cortical activation on fNIRS measurements, and due to the paramagnetic (i.e., weak 
attraction by magnetic fields) properties of HbR, it also provides the endogenous contrast 
responsible for the blood oxygen level dependent (BOLD) effect measured in fMRI (Obrig 
and Villringer, 2003). The canonical hemodynamic response function (HRF) measured 
with fNIRS consists of a localized decrease in HbR concentration and a concomitant 
increase in HbO concentration, which is usually 2 to 3-fold times larger in magnitude than 
the former in a micro-molar scale (Obrig and Villringer, 2003). This results in an increase 
in total-hemoglobin (HbT), calculated from the addition of HbO and HbR signals, and 
which is related with cerebral blood volume (Figure 2.3). An “initial dip” at the early onset 
of the vascular response characterized by an increase in HbR concentration has been 
reported in several studies (Frostig et al., 1990; Grinvald et al., 1991; Menon et al., 1995; 
Malonek and Grinvald, 1996; Hu et al., 1997; Jasdzewski et al., 2003; Kamran et al., 2018). 
The initial dip could be associated to a local increase in the concentration of HbR as 
activated populations of neurons extract oxygen from the blood. However, contradictory 
evidence on the existence of this response feature (Lindauer et al., 2001; Fransson et al. 
1998; Buxton et al., 2001; Vanzetta et al., 2001) demands further research that may lead to 
elucidate all the specific dynamics involved in this complex physiological process. 

There has been also some controversy over which hemoglobin parameter, either 
HbO, HbR, HbT or a combination of these parameters, to report when interpreting 
stimulus induced functional brain activation from fNIRS measurements. Arguments 
supporting each of them have considered their agreement with the BOLD signal, their 

 
Figure 2.3 A canonical functional hemodynamic response measured with NIRS. Typically, this 
response is characterized by a decrease in HbR and a concomitant increase in HbO. Total 
hemoglobin (HbT) is the sum of HbO and HbR and it represents regional cerebral blood volume 
(adapted from Scholkmann et al., 2014). 
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signal-to-noise ratio or, alternatively, which of these parameters is more affected by 
physiological noise. This discussion has yet another consequence, which has to do with the 
current methodological flexibility when analyzing, reporting and interpreting results derived 
from fNIRS data. These issues are discussed further in section 2.4. 

The signal recorded by fNIRS includes several evoked and spontaneous 
components with and without neurobiological origin (Scholkmann et al., 2014). 
Components with neuronal origin (i.e., those originated from neurovascular coupling) 
represent the main interest for neuroscientific applications. Measuring the evoked response 
to particular experimental stimuli is the most typical approach to study functional brain 
activity in fNIRS studies. This is achieved by averaging together the individual HRFs to a 
common experimental condition (see Chapter 5). Trial averaging also reduces noise, which 
is assumed to be independent of the experimental effect of interest, providing a clearer 
temporal and spatial characterization of the HRF evoked by stimuli presentation. 
Spontaneous cerebral activity measured with fNIRS refers to the hemodynamic activity that 
is recorded in the absence of any evoked task or stimuli. Spontaneous fluctuations are 
generally used in functional connectivity analysis to investigate the intrinsic functional 
organization of the brain (see Chapters 3 and 4). The relevance and impact of components 
stemming from other sources (i.e., cerebral vs. extracerebral) and origin (neuronal vs. 
systemic) are discussed in the next sections. 

Physical Principles of NIRS Technology 

Most commercial NIRS instruments used to investigate the brain’s hemodynamic 
response, as the one employed in the current thesis, rely on continuous-wave (CW) 
technology (Ferrari et al., 2012; Scholkmann et al., 2014). In these systems, source optodes 
emit light at two different wavelengths (e.g., 760 and 850 nm) with a constant intensity, and 
attenuation in light intensity after crossing head tissues is measured at the detector optodes 
(Figure 2.4). CW systems offer several practical advantages such as low-cost and portability 
but they only enable the calculation of HbO and HbR concentration changes relative to a 
baseline, and not an absolute quantification. In contrast, NIRS systems based on spatially 
resolved spectroscopy combine light intensity measurements from multiple detectors 
located at various distances, thus providing information on changes in light attenuation with 
distance (Suzuki et al., 1999; Kovacsova et al., 2018). With this information, tissue optical 
properties can be computed based on light propagation models, assuming an inverse linear 
relationship between detected intensity and SD distance (Suzuki et al., 1999; Kovacsova et 
al., 2018). In frequency domain NIRS systems, light intensity is modulated, and variations 
in both the amplitude and phase of the re-emerging light are measured (Franceschini et al. 
2000; Wolf et al., 2002). Time domain NIRS systems enable measuring the time of flight 
of individual photons as they traverse through tissues by emitting single and short-duration 
NIR light pulses (Hebden and Delpy, 1994; Torricelli et al., 2014). The latter three 
technologies potentially allow the quantification of absolute HbO and HbR concentrations 
and are essential for the future development of the technique, but fall outside the scope of 
this thesis. Therefore, the basic physical principles of the NIRS technique are described 
below with reference to CW systems only. 
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Figure 2.4 Spatial sensitivity profile for a single SD pair, also referred to as photon measurement 
density function (PMDF). In conventional fNIRS systems the light travels from sources to detectors 
following a “banana” shaped trajectory, with part of this reflected light having traversed through the 
cortex. Penetration depth into the cortex is limited by several factors, such as light intensity, SD 
separation, and the characteristics of the illuminated tissues (e.g., skull thickness is different in adults 
and infants). Figure courtesy of Dr. Robert J. Cooper. 

Light-matter interaction is dominated by two fundamental mechanisms: absorption 
and scattering. During absorption, light is absorbed by the medium in which it is travelling, 
and the energy carried by photons is dissipated as heat. In highly-scattering media such as 
biological tissues, scattering is by far more probable than absorption, and it represents the 
dominant form of light-matter interaction. This process produces a modification in the 
direction of photons travelling through the medium, but does not imply a change in the 
energy of the incoming light. For a particular wavelength !, the absorption 
coefficient	#!(!), and the reduced scattering coefficient #"′(!) of a medium (e.g., 
biological tissue) define the probability that the incoming photons will undergo each of 
these processes per unit length.  

In NIRS imaging applications, the most commonly used method to describe the 
interaction between light and biological tissues is the Beer-Lambert law. According to this 
law, in a non-scattering media and for a particular wavelength (!), optical attenuation (or 
optical density '() can be expressed as: 

'( = #!"#(%,')
#$%(%,')

=	*)*	,&(%,'), 

where +-. represents the intensity of the light entering the medium, and +/0% the intensity 
of the detected light after passing through tissues (Figure 2.5A). The distance travelled by 
the light , (i.e., source-detector distance) is known as the optical pathlength. Then, it is 
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possible to determine the absorption coefficient of a material/medium, for a given time 
point - as follows: 

#!(-, !) = 	
1
, 	ln

+-.(-, !)
+/0%(-, !)

 

The absorption coefficient of a medium (e.g., head-brain tissue), for a particular 
wavelength !, it is given by the specific extinction coefficients 2(!) of all the different 
absorbing substances present in the medium (e.g., water, fat, HbO and HbR) and their 
concentration 3, such that: 

"#($, !) = 	 )$#%&'(!)	*$#%&'($) +	)(#%(!)	*(#%($) +	))*+(!)	*)*+($) + ))*,(!)	*)*,($),  

or alternatively: 

#!(!, -) = 	∑ 2.(!)	3.($). , 

where 3.(-) represents the time-varying concentration of each of the 5%1 absorbing 
substances present in the medium. Calculating HbO and HbR chromophore concentration 
changes from variations in the absorption coefficient of the medium is indeed the effect of 
interest that fNIRS applications aim to capture. Tabulated values for the specific extinction 
coefficient 2.(!) of each these substances/chromophores at different wavelengths can be 
found in the literature (Matcher et al., 1995).  

 Biological tissues are non-homogeneous (i.e., composed of several distinct 
absorbing and scattering substances) and highly-scattering media. This fact has two direct 
consequences that must be contemplated when attempting to model light attenuation based 
on NIRS measurements (Figure 2.5B). First, light intensity losses due to scattering are larger 
than those related to absorption and must be considered in the general equation. Second, 
light follows a random walk (i.e., not a linear trajectory), which means that the effective 
distance 6 travelled by light from the moment it leaves the source until it reaches the 
detector is unknown, and it is certainly longer than the SD separation ,. The Modified 
Beer-Lambert law, in which most CW-NIRS imaging approaches are based, introduces two 
parameters to account for these modifications:  

'( = #!"#(%,')
#$%(%,')

=	*)2(')*	,&(%,')34('), 

where the parameter 7(!) describes light intensity losses due to scattering, and the 
differential path length factor (DPF) ((!) denotes the increased distance that light has to 
travel due to its random walk (i.e., 6 = (,). DPF values are dependent on several factors 
such as the age of the participant, wavelength and type of tissue under assessment. 
Tabulated DPF values exist for a range of wavelengths, ages and tissue types (Essenpreis et 
al., 1993; Duncan et al., 1995; Duncan et al., 1996). DPF values can also be approximated 
based on the general equation that was derived after modelling the age and wavelength 
dependency of this factor (Scholkmann et al., 2013), but they can only be accurately 
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Figure 2.5 Illustration of CW technology, which measures changes in intensity between the emitted 
light at the source and the detected light after crossing the medium. A) Absorbing, non-scattering 
medium where changes in intensity are caused by absorption and the distance travelled by the light 
equals the source-detector (SD) distance (,). B) Absorbing, highly-scattering medium where 
intensity changes are caused by absorption and scattering processes. This figure also illustrates the 
effect of scattering on light trajectory, which travels through the medium following a random walk 
(X), and thus longer than the SD distance (- ≫ ,).  

estimated using time or frequency resolved NIRS systems. The parameters 7 and DPF 
cannot be determined with CW systems that rely on light intensity measurements only, and 
therefore measuring the absolute concentrations of HbO and HbR is not feasible.  

However, by introducing some assumptions, and allowing certain losses in 
quantification accuracy, changes in the concentration of HbO and HbR between two time 
points can be calculated based on attenuation measurements (Obrig and Villringer, 2003; 
Scholkmann et al., 2013). First, scattering is much more prevalent than absorption, but can 
be assumed constant within the sampling volume over the duration of the measurement. 
The implications of this assumption for measuring HbO and HbR concentration changes 
is that 7 cancels out, and that DPF can also be considered constant. Second, absorption 
effects caused by other chromophores (e.g., water, fat) present in the interrogated tissue can 
be considered time-invariant over the course of a given experiment. Variations in optical 
attenuation are therefore assumed to stem from variations in the concentration of HbO 
and HbR only. Measuring changes in optical absorption between two states -5 and -6 (i.e., 
baseline) results in: 

∆'((!) = 	 ln #!"#(%',')#$%(%(,')
−	ln #!"#(%),')#$%(%(,')

	= −ln #!"#(%),')#!"#(%',')
														= (,(2789(!)	∆3789 + 278:(!)	∆378:).

  

This still leads to a single equation with two unknown values ∆3789 and ∆378:. 
Using NIRS measurements at two different wavelengths it is then possible to define a system 
of equations that can be solved in order to measure the relative changes in concentration 
of HbO and HbR, resulting in the fundamental equations of NIRS. 

∆'((!5) = 	−ln
+/0%(-5, !5)
+/0%(-6, !5)

	= 	(,(2789(!5)	∆3789 + 278:(!5)	∆378:) 

∆'((!6) = 	−ln
+/0%(-5, !6)
+/0%(-6, !6)

	= 	(,(2789(!6)	∆3789 + 278:(!6)	∆378:). 
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Optimal wavelength pair selection has been discussed elsewhere (Boas et al., 2004; 
Scholkmann et al., 2014), but it usually consists of a wavelength either side of the isosbestic 
point (800 nm), which based on the absorption spectra of these chromophores, helps to 
maximize sensitivity to HbO and HbR concentration changes and to avoid crosstalk. Multi-
spectral or broadband NIRS systems including multiple wavelengths potentially enable 
calculating the concentration of other functionally relevant parameters such as cytochrome 
c oxidase (Brigadoi et al., 2017) or tissue oxygen saturation (Phan et al., 2016). 

2.2. fNIRS Signal Processing 

 This section explains the main steps of the fNIRS data preprocessing pipeline 
employed in this thesis. Due to the lack of standardized procedures for data preprocessing 
and analysis in the fNIRS community this pipeline might vary between research groups. 
Importantly, recent reviews highlighted the importance of pre- and post- signal processing 
methods for meaningful, reliable, and reproducible fNIRS research (Orihuela-Espina et 
al., 2010; Huppert, 2016; Santosa et al., 2017; Hocke et al., 2018; Pfeifer et al., 2018; Pinti 
et al., 2019). These works demonstrated that specific choices at different phases of the 
signal processing pipeline can significantly impact the results and interpretation of fNIRS 
studies. They also provided recommendations, not only for the best practices regarding 
fNIRS signal preprocessing and analysis methods, but also on how to report this relevant 
information in such a way as to ensure that it is useful for other researchers in the field. 

Here, only a brief description of the purpose of each preprocessing step is provided. 
The concrete details of the preprocessing pipeline and the rationale of the parameters 
applied in the studies of this thesis are provided in each of the experimental chapters 
(Chapters 3-5, Appendix A and B), together with several MATLAB scripts for its 
implementation. Data analysis methods employed to investigate spontaneous or evoked 
functional brain activity from fNIRS measurements are also considered study-specific, and 
therefore have not been included in this section. Prior to, or parallel to data preprocessing, 
it is also convenient to perform a data quality assessment, as fNIRS measurements can also 
be prone to motion artifacts, particularly in infant studies. Several indicators of high fNIRS 
data quality that can be examined during data preprocessing are described in Appendix A. 
The specific implementation of the data quality assessment routine employed in the studies 
of this thesis, including MATLAB scripts and individual examples, is also provided in 
Appendix A. 

• Conversion from raw intensity data to changes in optical density.  

The first step of the fNIRS preprocessing pipeline requires converting the raw 
intensity/voltage data, which usually presents different formats between NIRS devices, to 
changes in attenuation (or optical density) with respect to a baseline level. As derived from 
the modified Beer-Lambert law, this step is accomplished by computing the negative 
logarithm of the ratio between the detected light intensity at each time point and the baseline 
value (e.g., the mean signal).  
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• Motion artifact correction.  

Motion artifacts represent an important source of variability in the fNIRS signal not related 
to the hemodynamic signal of interest. Abrupt changes in the fNIRS signal can originate 
from transient losses in coupling between the optodes and the scalp usually caused by head 
movements. Motion artifacts are frequently observed in data collected from awake infants, 
and they may appear in various forms (e.g., spikes, low frequency drifts or baseline shifts). 
The frequency, amplitude and duration of these artifacts is related to different factors, such 
as the cap fitting into the participant’s head, the experimental paradigm under assessment, 
or the age of the participant. In all cases it is important to identify these artifacts to either 
correct them, or exclude their contribution for subsequent data analysis, as an insufficient 
data quality will negatively impact any results derived from fNIRS measurements. Motion 
detection can be performed by means of automated algorithms, for example by measuring 
changes in signal amplitude exceeding a prespecified threshold (Huppert et al., 2009), or 
by visually inspecting channel time series and manually selecting motion affected periods.  

Numerous motion correction algorithms based on different principles have been proposed 
such as wavelet filtering (Molavi and Dumont, 2012), kurtosis-based wavelet filtering 
(Chiarelli et al., 2015), spline interpolation methods (Scholkmann et al., 2010; Jahani et al., 
2018), principal and independent component analysis (Yücel et al., 2014), blind source 
separation with temporally embedded canonical correlation analysis (von Lühmann et al., 
2019; von Lühmann et al., 2020), correlation-based signal improvement (Cui et al., 2010), 
autoregressive modelling (Barker et al., 2016), down-weighting timepoints based on the 
distribution of the temporal derivative signal (Fishburn et al., 2019), and sparsity-based 
regularization algorithms (Selesnick et al., 2014), to mention just a few. The individual and 
combined efficacy of some of these methods has been evaluated using simulated (Cooper 
et al., 2012), and real adult (Robertson et al., 2010; Brigadoi et al., 2014), children (Hu et 
al., 2015) and infant data (Behrendt et al., 2018; Di Lorenzo et al., 2019). However, due to 
the variable nature of motion artifacts in shape, magnitude and duration, it is problematic 
to find an algorithm with an adequate performance in all circumstances. Moreover, none 
of these methods is able to handle highly-contaminated datasets. In some cases, the 
magnitude and duration of motion-induced noise is so large relative to the underlying 
hemodynamic fluctuations of interest that this information simply cannot be recovered 
(Cooper et al., 2012), and these datasets should be discarded. 

In this thesis, the wavelet-based despike approach described in Patel et al., (2014) has been 
employed for motion artifact correction, which is similar to the one proposed by Molavi 
and Dumont (2012). Originally developed for denoising fMRI time series, this approach 
has been optimized to detect, model and remove slow and high frequency noise effects as 
the ones commonly present in fNIRS data. Briefly, the time series of individual channels 
are decomposed in the wavelet domain, and coefficients associated with local maxima and 
minima identified. From this set of coefficients, those that are present simultaneously across 
multiple frequencies are characterized as non-stationary changes in the signal caused by low 
and high frequency artifacts. After these coefficients are set to zero, the wavelet-despiked 
signal is recomposed. 
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Figure 2.7 Time-series of a representative participant before and after wavelet despike (Patel et al., 
2014), and removed noise at this preprocessing step. This wavelet-based method is designed to 
detect and remove transient events caused by outliers in the signal and low-frequency trends. 

Using the inverse approach (i.e., keeping the artifact-related coefficients and making zero 
the rest) the noise signal can also be reconstructed. This method requires the input of 
various user-selected parameters, which in this thesis were manually adjusted after 
evaluating a range of combinations. The outputs of this method are the denoised time 
series, and the time series of removed noise. 

As shown in Figure 2.7, this method effectively reduces motion-related artifacts while 
keeping clean periods unaffected. Residual noise can still be noticed in the corrected signal 
although with much smaller amplitude. Throughout all of the experiments described in this 
thesis, the wavelet-based algorithm outperformed other evaluated methods for motion 
correction in relatively motion-free data. It should be noted that participants of this thesis 
have been tested during natural sleep only, and only datasets with an overall good data 
quality, as determined by visual inspection, have been included for data preprocessing. 
Moreover, as a first preprocessing step heavily corrupted segments/trials were discarded for 
the analysis. Data quality was the priority in these studies, and discarding participants/trials 
was not an issue as the recruitment process was effective and long datasets were recorded. 
These factors lead to relatively low attrition rates considering the population under study. 
Nevertheless, these advantageous testing procedures are not always feasible, and a one-size-
fits-all solution for dealing with motion artifacts is hardly achievable. In general, a detailed 
description of the experimental procedures, and transparency when reporting data quality 
and preprocessing methods, would help advancing the fNIRS community towards unified 
criteria that facilitate results interpretation and replication. 

• Conversion from optical density data to HbO and HbR concentration changes.  

In this step HbO and HbR concentration changes are derived by means of the system of 
equations of the modified Beer-Lambert law described in Section 2.1. At this point, it is 
also possible to compute HbT by the addition of HbO and HbR time series.  
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• Physiological noise correction.  

Physiological noise represents another major confounding source in fNIRS recordings 
(Figure 2.8). These components arise from extracerebral and cerebral compartments and 
can occur naturally (Kirilina et al., 2012; Scholkmann et al., 2013; Scholkmann et al., 2014; 
Tachtsidis and Scholkmann, 2016) or be evoked by task-related activity (e.g., stressful or 
physically demanding tasks) (Yücel et al., 2016). In infants, the main physiological noise 
components are related to spatially global systemic fluctuations, each of them with specific 
frequency patterns which are usually faster than those observed in adults. For example, 
cardiac pulse in infants is present at around 2 Hz, and respiratory noise can be found 
around 0.6 Hz. Slow frequency components associated to blood pressure fluctuations such 
as Mayer waves (<0.1 Hz) also exist, but are more difficult to identify as they overlap with 
the frequency content of neurovascular coupling induced hemodynamic activity. These low 
frequency components exert a negative impact on statistical analysis, as their frequency 
tends to overlap with task-related hemodynamic responses, thus reducing signal-to-noise 
ratio (Yücel et al., 2016).  

Bandpass filtering is the most commonly implemented method to reduce the impact of 
physiological components during fNIRS data preprocessing (see Pinti et al., 2019 for a 
review). In this approach, low and high frequency thresholds are selected (i.e., cut-off 
frequencies). By bandpass filtering the signal, the frequency content between these 
thresholds is preserved, and the contribution of frequencies outside this range removed. 
Due to the high sampling frequency of fNIRS recordings (typically 10 Hz or above), 
bandpass filtering is well-suited to remove high-frequency physiological components (e.g., 
cardiac pulse – 2 Hz, and respiration – 0.6 Hz) outside the frequency range of 
hemodynamic fluctuations of interest (<0.2-0.3 Hz), as well as to reduce very slow 
frequencies (<0.01 Hz) related to vasomotion regulation and/or instrumental noise. Other 
global systemic components whose frequencies fall within the frequency range of neuronal 
related hemodynamic fluctuations, such as Mayer waves, cannot be removed using 
bandpass filtering approaches without risking removing part of the signal of interest too.  

Different approaches have been proposed to reduce fNIRS signal contamination due to 
systemic components of global origin. First, if short-separation channels, which are 
expected to largely interrogate extracerebral tissue layers, are incorporated to the fNIRS 
optode setup, one could potentially regress out the contribution of these channels from 
standard separation channels that are assumed to sample deeper cerebral tissue layers to a 
larger extent (Saager and Berger, 2008). In adults, the optimal SD distance that will 
maximize sensitivity to extracerebral hemodynamics and minimize sensitivity to the brain 
has been found to be around 10 mm (Gagnon et al., 2011; Brigadoi and Cooper, 2015). In 
infants, due to their thinner head tissues (i.e., skull, scalp), the optimum SD distance for 
short-separation channels has been estimated to be much shorter, around 2.15 mm 
(Brigadoi and Cooper, 2015). In practice though, most NIRS systems do not permit this 
type of measurements, as they are limited by the physical size of the optodes and/or use a 
fixed distance optode holder.  
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Figure 2.8 Illustration of the different components present in the fNIRS signal. Awareness of the 
presence of these components is fundamental for signal processing and results interpretation in 
fNIRS studies (adapted from Tachtsidis and Scholkmann, 2016). 

Other signal processing methods exist and should be considered when no short-separation 
channels are available. Amongst them, global signal regression is perhaps the easiest to 
implement and the one showing a more straightforward interpretation (Pfeifer et al., 2018). 
Despite global signal regression has generated substantial controversy in the fMRI 
community (Murphy and Fox, 2017), its use has been more positively advocated in fNIRS 
studies (Pfeifer et al., 2018). The average, or global, fNIRS signal is assumed to largely 
reflect systemic, globally occurring hemodynamic fluctuations, as this signal is usually 
present across multiple channel time series. In this approach, the global signal (i.e., average 
signal across channels) is removed from the time series of each channel by means of linear 
regression, potentially reducing shared variance due to global confounds. Yet, another 
approach proposed removing the average signal of only those channels located on the 
contralateral hemisphere to each specific channel (Pfeifer et al., 2018), which might reduce 
the risk of unintendedly removing functional signal of interest. External recordings of 
physiology (Scholkmann et al., 2013) have also been proposed in the literature for 
correcting contamination due to systemic physiology. 

2.3. fNIRS in Infant Research 

Developmental cognitive neuroscience is one of the research areas in which fNIRS 
technique has more relevance, and which is the focus of the current thesis. Several 
comprehensive reviews have summarized the main fNIRS-based findings to the study of 
early cognitive development, highlighting its potential to advance the current understanding 
about the functional organization of the infant brain (Minagawa Kawai et al., 2008; Lloyd-
fox et al., 2010; Gervain et al., 2011; Aslin, 2012; Vanderwert et al., 2014; Aslin et al., 2015; 
Issard and Gervain, 2018). The study of language processing has been one of the research 
areas in which the application of fNIRS has been more beneficial (Gervain et al., 2011). 
Studies specific to this research area are reviewed in Chapter 5 of this thesis, as it provides 
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a more appropriate context. Similarly, resting-state fNIRS studies investigating spontaneous 
brain activity and functional connectivity in infant populations are reviewed in Chapter 3. 

Beyond these research domains, fNIRS has become a significant neuroimaging tool 
that has helped answering numerous long-standing questions about infant cognition, and 
has yielded converging evidence for previous behavioural findings. The early fNIRS studies 
in healthy infants tried to demonstrate the ability of this technique to detect functional brain 
activation to simple visual (e.g., reverse checkerboards) (Meek et al., 1998; Hoshi et al., 
2000) and auditory stimuli (e.g., music, tones) (Sakatani et al., 1999; Zaramella et al., 2001). 
In the object processing domain, a series of studies demonstrated that the features used to 
identify objects are age dependent, with infants below 9 months of age using shape 
information only, and older infants relying on color and shape information for object 
individuation (Wilcox et al., 2010; Wilcox et al., 2012; Wilcox et al., 2014). These studies 
also confirmed the main role of anterior temporal cortex in object identification, as this 
area responded selectively during events in which infants were able to notice a change in 
the featural properties of the object stimuli (e.g., shape, color), but did not activate for 
control conditions where the object remained unchanged. Alternatively, another fNIRS 
study showed that the ability for categorical color perception in the visual cortex might 
already be in place in younger infants at 5-7 months of age (Yang et al., 2016). Similarly, 
Hyde et al., (2010) employed fNIRS to investigate numerosity detection in infants at 6 
months of age, before mental number representation capacity is fully established. At this 
age, the right inferior parietal sulcus demonstrated functional specialization for numerical 
cognition, which is consistent with the engagement of bilateral parietal regions observed in 
studies assessing number processing in adults and older children (Dehaene et al., 2003; 
Cantlon et al., 2006). 

fNIRS has also revealed some of the neural strategies underlying the early stages of 
learning in the developing brain. A study on learning audio-visual associations provided 
evidence of expectation-based cross-modal responses in the occipital cortex of 6-month-old 
infants (Emberson et al., 2015). First, infants were familiarized with combinations of 
auditory and visual stimuli presented in a predictable temporal order. Then, authors used 
a stimulus omission paradigm to examine the occipital responses in trials where the 
presentation of the visual stimulus in the audio-visual pair was unexpectedly omitted. This 
unexpected visual omission caused a robust response over the occipital cortex of the 
participants, suggesting the existence of an expectation-based feedback mechanism across 
auditory and visual perceptual modalities. Studies assessing the trajectory of audio-visual 
associative learning over the course of a task suggest a non-linear learning trajectory in 
infants, which is characterized by an initial phase where stimuli repetition elicits an increase 
in neural activity (i.e., repetition enhancement), followed by a decrease in activation (i.e., 
repetition suppression) at later stages (Gervain et al., 2008; Kersey and Emberson, 2017). 
Other fNIRS works have revealed that the learning response trajectory might be modulated 
by different factors, such as the brain region under assessment (Emberson et al., 2017), the 
type and complexity of the stimuli (Nakano et al., 2009), or the infants’ attending preference 
(Watanabe et al., 2008).  



Chapter 2 

 30 
 

In the domain of social cognition (see McDonald et al., 2018 for a recent review), 
cortical specialization for face processing has been one of the most widely explored topics 
using fNIRS. Differential hemodynamic responses to faces vs. control visual stimuli (e.g., 
visual noise, houses) have been documented over occipital areas at 4 (Csibra et al., 2004; 
Blasi et al., 2007) and 5 months of age (Di Lorenzo et al., 2019). Moreover, different 
patterns of brain activation to happy vs. angry facial expressions have been reported in 7- 
(Nakato et al., 2011a) but not in 5-month-old infants (Di Lorenzo et al., 2019). Infants 
studied around 8 months of age show stronger hemodynamic responses to their mother’s 
face as compared to unfamiliar faces (Nakato et al., 2011b). At this age, infants respond 
differently to upright and inverted faces (Otsuka et al., 2007), and they also start displaying 
similar hemodynamic responses to faces presented from different views (e.g., frontal, 
profile) (Nakato et al., 2009), which might indicate a developmental change in infants’ face 
perception/recognition ability in contexts of increased complexity.  

Other important aspects of infant social cognition have been further investigated 
using fNIRS. Starting at around 4 months of age, infants showed preferential responses to 
dynamic social stimuli (activation), as opposed to dynamic non- social stimuli (non-
activation) (Lloyd-Fox et al., 2009; Lloyd-Fox et al., 2011), and to human vs. mechanical 
action execution at 7-9 months of age (Biondi et al., 2016). Significant patterns of brain 
activation over bilateral temporal and frontal/prefrontal regions have been obtained to 
dynamic faces displaying communicative intent (e.g., mutual eye gaze or emotion 
expression) compared to control faces not signaling communicative intent (Grossman et 
al., 2010; Grossman et al., 2013; Urakawa et al., 2014). Finally, 12 months-old infants 
demonstrated increased activation in anterior orbitofrontal areas for emotional processing 
to familiar (i.e., mother) but not to unfamiliar faces, which authors suggested as indicative 
of a developing social attachment system (Minagawa-Kawai et al., 2009).  

Recent technological advances in fNIRS instrumentation and methodology have 
offered the opportunity to spread the use of this technique to novel and exciting 
applications in developmental cognitive neuroscience research that were difficult to study 
up to this point. fNIRS has been confirmed as a promising tool to study the hemodynamic 
correlates of diverse cognitive functions in infants at risk for atypical neurodevelopment 
(Vanderwert et al., 2014). In particular, numerous works explored the presence of 
functional markers of atypical development associated with premature birth or perinatal 
brain injury (Emberson et al., 2017; Watanabe et al., 2017; Linke et al., 2018), as well as in 
infants at risk for developing neurodevelopmental disorders such as autism (Keehn et al., 
2013; Braukmann et al., 2018) or Down’s syndrome (Imai et al., 2014). Similarly, much 
effort has been directed to consolidate the implementation of this neuroimaging technique 
in low-resource settings, with the aim of investigating the consequences that malnutrition 
and social and environmental difficulties may have on the earliest stages of brain maturation 
(Lloyd-Fox et al., 2017; Lloyd-Fox et al., 2019; Perdue et al., 2019). Finally, recent works 
have demonstrated the feasibility to record fNIRS measurements from two or more 
participants simultaneously, also known as hyperscanning, an approach that might 
potentially provide an ideal framework for the investigation of infant-to-caregiver 
interactions in naturalistic environments (Azhari et al., 2019; Piazza et al., 2019). 
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2.4. Advantages, Limitations and Challenges of fNIRS 

Compared to the other two neuroimaging techniques more commonly used in 
infant research (i.e., EEG and fMRI), fNIRS offers various practical advantages (Figure 
2.9). Temporal resolution in most CW-NIRS systems is around 10 Hz (or higher), which 
is adequate to accurately track the hemodynamic response to stimuli typically assessed. 
Importantly, high frequency signal confounds due to cardiac and respiratory components 
can be reduced by means of signal filtering methods because, as opposed to fMRI, the 
superior temporal resolution of fNIRS prevents aliasing of these systemic physiological 
signals with the hemodynamic signal of interest. The spatial resolution of standard CW-
NIRS systems is largely dependent on the number of sources and detectors incorporated 

into the optode setup. Increasing the number of sources and detectors will increase scalp 
surface coverage (i.e., lateral resolution), but the effective spatial resolution will still be 
limited to a loosely defined tissue volume below the surface located between each SD pair  
(around 2-3 cm), with no depth information (Fukui et al., 2003; Strangman et al., 2013). 

High-density diffuse optical tomography systems (HD-DOT), which are based on 
the same principles as NIRS, use dense arrays of sources and detectors at multiple 
separations and with overlapping measurements that allow reconstructing three-
dimensional images with depth information (Arridge, 1999; Boas et al., 2001; Gibson et 
al., 2005). Although still not reaching subcortical structures, this technology offers 
comparable spatial resolution to conventional fMRI measurements (White and Culver, 
2010; Eggebrecht et al., 2012). More capabilities for its application to naturalistic and 
clinical setups and in special populations will become available with the wearable systems 
currently under development (Chitnis et al., 2016; Zhao and Cooper, 2017). 

Specific properties of the infant head (e.g., thinner scalp and skull, less hair) make 
NIRS technique particularly suitable to the study of cortical activity in this population. The 
shortest scalp-brain distance in infants (Beauchamp et al., 2011) improves signal to noise 
ratio and increases recording depth to around 3 cm, which results in a light penetration into 
the cortex of approximately (1-1.5 cm), compared with recordings in adults where light 
penetration is considerably reduced (0.3-0.5 cm), and limited to the surface of the cortex 
(Fukui et al., 2003; Gervain et al., 2011; Strangman et al., 2013). NIRS instrumentation 
also shares some of the advantages of EEG for infant experimental testing. Both imaging 
techniques are noiseless, making them particularly suitable for studies involving auditory 
stimuli. fNIRS and EEG studies can be conducted in awake infants, as these techniques are 
flexible enough to accommodate to different head positions, as opposed to fMRI, where a 
more rigid head stabilization is required. This characteristic also allows infants to be 
accompanied by the parents during the whole testing, usually in their lap, which, in turn, 
improves infants’ and parents’ compliance with the study. Finally, fNIRS has demonstrated 
test-retest reliability for detecting brain activation in infants (Blasi et al., 2014), and its 
potential to be combined with other behavioural (e.g., eye-tracking, Urakawa et al., 2015) 
and neuroimaging modalities, such as fMRI (Strangman et al., 2002b; Steinbrink et al., 
2006; Sasai et al., 2012; Sato et al., 2013) and EEG (Cooper et al., 2009; Telkemeyer et al., 
2009; Telkemeyer et al., 2011; Wallois et al., 2012; Lee et al., 2020). 
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Figure 2.9 Comparison of different non-invasive neuroimaging techniques based on their spatial 
and temporal resolution, and the degree of infant tolerance needed for data acquisition (adapted 
from Lloyd-Fox et al., 2010). 

A key limitation of fNIRS for testing infant subjects, which is inherent to other 
neuroimaging techniques as well, is that it requires the participant to remain still during data 
acquisition. Although it is assumed that fNIRS is relatively resilient to motion induced 
artifacts, and many reviews describe this attribute as one of its main advantages over other 
techniques (Minagawa Kawai et al., 2008; Lloyd-fox et al., 2010; Gervain et al., 2011), this 
assertion is only true, and to a certain degree, if the optical probe is securely tight to the 
head, which is not always feasible when testing infant subjects. To prevent negative 
consequences on study outcomes and interpretation, it is therefore recommended to 
perform a thorough data quality assessment of individual datasets, and routinely implement 
(and understand) established signal processing procedures to deal with motion artifacts and 
physiological noise (Huppert et al., 2016; Pfeifer et al., 2018). Last but not least, it is 
essential that all this information is complete and properly described in publications (Cristia 
et al., 2013; Hocke et al., 2018; Pinti et al., 2019). In addition, it might be beneficial to 
build study-specific caps that fit properly to the infants’ head, thus minimizing potential 
optode displacements due to head jerks (e.g., Emberson et al. 2015). It is also useful to 
reduce the weight of the apparatus to minimize the torque applied on the infants’ head. 
These features will become more accessible with wireless and portable systems.  

A related issue regarding signal interpretation has to do with the characteristics of 
the hemodynamic response measured in developmental populations. From the first fNIRS 
infant studies (e.g., Meek et al., 1998; Sakatani et al., 1999), there have been reports of 
hemodynamic response patterns that deviate from the canonical response direction 
typically associated with cortical activation (i.e., decrease in HbR and increase in HbO). 
Most early infant studies defined cortical activation solely based on HbO signal (for a 
discussion see Obrig and Villringer, 2003; Lloyd-Fox et al., 2010; Issard and Gervain, 2018) 
and disregarded HbR signal either before or after data analysis (e.g., Cristia et al., 2014; 
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Emberson et al., 2017). However, the fNIRS community has raised awareness on the 
importance of assessing HbO and HbR (and possibly HbT) to draw reliable scientific 
conclusions (de Roever et al., 2018), and most publications now report results from both 
parameters (e.g., Lloyd-Fox et al., 2014; Issard and Gervain, 2017).  

 The observed response variability might be explained by different factors such as 
technical differences (e.g., wavelength pair choice) between NIRS instruments (Boas et al., 
2004), study-specific experimental aspects (Issard and Gervain, 2018), or physiological 
mechanisms related to perinatal neurovascular coupling development (Harris et al., 2011; 
Kozberg and Hillman, 2016). The canonical hemodynamic response to neural activity 
described in adults (i.e., localized functional hyperemia) has been shown to develop 
gradually during early infancy, in terms of its amplitude, and its spatiotemporal and spectral 
patterns (Arichi et al., 2012; Alcauter et al., 2015; Cusack et l., 2015; Nourhashemi et al., 
2020). Concretely, infant hemodynamic responses display a smaller amplitude, a longer 
time to peak, and a higher variability in stimulus-evoked response direction (i.e., positive 
vs. negative). A better understanding of age and region-specific maturational changes in 
neurovascular response patterns could improve the precision of functional neuroimaging 
data analysis and interpretation, and also serve as a potential biomarker of typical and 
atypical brain development, making it an important area for future research.  

fNIRS measurements are made from optodes (i.e., sources and detectors) placed 
on the surface of the scalp, providing no information about the underlying anatomy or the 
precise spatial origin of the recorded hemodynamic activity (Figure 2.10). The lack of 
structural information affects fNIRS data interpretation, restricting the localization of 
hemodynamic activity to macro-anatomical brain regions with position information (i.e., 
anterior-posterior, inferior-superior) in the best scenario. If no coregistration or positioning 
method is implemented, anatomical precision will be limited to larger cortical regions (i.e., 
frontal, temporal, parietal and occipital lobes). Moreover, when dealing with infant subjects 
it is generally difficult to ensure a consistent optode positioning across participants, which 
in turn reduces statistical power in group-level analysis (inter-subject variability). Inter-
subject variability is further increased by individual differences in head size and shape, and 
in the location of internal brain structures with respect to the head surface (i.e., cranio-
cerebral relationship).  

The localization of the optode setup across participants could be monitored using 
a 3D digitizer (e.g., Polhemus™). However, in order to reliably track sensor positions this 
method requires participants to remain still during the localization process, which is 
challenging in awake infants. Brain activity localization accuracy can be improved by the 
coregistration of the fNIRS optode configuration with individual structural MRI data, but 
this multimodal approach would defeat the main purpose (i.e., portability and experimental 
flexibility) upon which the fNIRS technique is based. Alternatively, spatial registration of 
the fNIRS probe setup with underlying cortical regions can also be approximated using age-
matched structural priors (e.g., 6-months - Akiyama et al., 2013; newborns - Brigadoi et al., 
2014) without the need of individual structural MRI information. A full description of this 
approach as implemented in this thesis is included in Chapters 3 and 5. 
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Figure 2.10 Example of the NIRS cap arrangement employed in a study of this thesis (Chapter 5) 
showing the positioning of NIRS optodes (sources in red, detectors in green) on a baby doll. 
Optodes are positioned on an elastic cap (EasyCap, GmbH) in accordance with a subset of standard 
10-20 positions. In order to maintain a good coupling between the optodes and the scalp, the cap 
is secured on the infant’s head using a soft elastic chinstrap and a chest belt. 

The common practice in most fNIRS studies is to configure the optode headgear 
relying on standardized positioning systems (e.g., international 10-20 system) that assume a 
consistent relationship between external anatomical landmarks and the underlying cortical 
structures. The international 10-20 system is a long-established approach that was originally 
developed for electrode placement in EEG studies (Jasper et al., 1958). In this system, four 
fiducial points (i.e., nasion, inion, left and right preauricular points) are used as reference 
to define the 10-20 standard positions of scalp sensors. These reference points define a 
perimeter in the transverse and median planes that is divided at intervals representing the 
10% and 20% of the total distance. Three additional positions are positioned at each side 
of the head (F3, C3, P3 and F4, C4, P4), equidistant from the previously defined points. 
Recent works tried to determine the accuracy of this positioning system for the registration 
of fNIRS optodes relative to the underlying cortical regions in infants at different ages (1-4 
months old - Kabdebon et al., 2014; 4-7 months old - Lloyd-Fox et al., 2014). These works 

demonstrated a marked stability in the registration of channel positions to underlying brain 
regions as determined by average or individual structural MRI data. They also provided a 
set of cortical projections of the standard 10-20 positions to different anatomical 
parcellations in these age ranges, which could serve as reference for cortical mapping of 
fNIRS channels for future infant studies if structural MRI data is not available. 

Finally, after signal preprocessing, the majority of fNIRS studies apply statistical 
analysis methods to detect brain activation (e.g., stimulation vs. baseline) for an effect of 
interest, or to test activation differences between experimental groups or conditions (Ye et 
al., 2009; Hassanpour et al., 2014; Tak and Ye, 2014; Santosa et al., 2019). This step is 
crucial for drawing neuroscientific inferences, and for this reason recent publications have 
outlined various statistical challenges of task-based and resting-state fNIRS data analysis 
(Barker et al., 2013; Huppert, 2016; Santosa et al., 2017; Blanco et al., 2018). These 
challenges mainly pertain to how the characteristics of the fNIRS signal conflict with the 
mathematical assumptions of the statistical linear models usually employed in fNIRS 
studies.  
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Figure 2.11 Sensor (i.e., optode or electrode) positioning defined by the international 10-20 system 
(Jasper, 1958) based on external anatomical landmarks (Figure adapted from www.BCI2000.org).  

For example, the temporally autocorrelated structure of fNIRS signal disrupts the 
independency assumption between sample points, reducing the effective degrees of 
freedom of the statistical model, thus leading to uncontrolled false-discovery rates. 
Importantly, the issue of dealing with serial correlations in fNIRS data for the specific case 
of resting-state functional connectivity analyses is covered thoroughly in Chapter 4 (Blanco 
et al., 2018). Another potential violation of the statistical model arises from the different 
noise distributions present in the fNIRS signal due to motion artifacts. Concretely, noise is 
assumed to be normally distributed, but this is not the case in the presence of motion 
artifacts that frequently exist in the fNIRS signal, which will make these data points become 
outliers from the normal noise distribution (Huppert et al., 2016). These works 
demonstrated the importance of using correct statistical models that account for the 
limitations of standard statistical approaches and present methods for its implementation.
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3.1. Theoretical Motivation 

One way to understand the intrinsic functional organization of the human brain is 
through the measurement of resting-state functional connectivity (RSFC). RSFC reflects 
spontaneous but synchronized fluctuations in cerebral hemodynamic activity between brain 
regions that share a common role in supporting various, functionally relevant, sensory and 
cognitive processes (Biswal et al., 1995; Fox and Raichle, 2007; Damoiseaux et al., 2006). 
RSFC has been mostly investigated with functional magnetic resonance imaging (fMRI) 
techniques, mainly based on the blood oxygenation level dependent (BOLD) contrast, but 
also based on measurements of cerebral blood flow with arterial spin labelling (Zou et al., 
2009), or cerebral blood volume with vascular space occupancy imaging (Miao et al., 2014; 
Huber et al., 2017). The existence of functional brain networks that coexist during resting-
state has also been revealed in direct measurements of neuronal activity with electro- and 
magnetoelectroencephalography (EEG and MEG; Mantini et al., 2007; Brookes et al., 
2011), suggesting that these signals cannot be attributed to physiological processes or 
artefactual components observed in vascular-related functional imaging techniques.  

In adult subjects, temporally coherent resting-state hemodynamic fluctuations 
representing functional patterns of brain activity (i.e., brain networks) are observed among 
primary sensory cortices, such as the sensorimotor, visual and auditory regions, but also in 
regions supporting higher cognitive processes such as attention, executive control, memory 
and language (Damoiseaux et al., 2006; De Luca et al., 2006). It has been proposed that 
spontaneous neural activity encompassing functional brain networks might meet various 
functional roles, such as examining external and internal inputs on a recurrent basis 
(Fransson et al., 2005), providing balance between excitatory and inhibitory processes 
(Menon et al., 2011), or planning task performance (Tavor et al., 2016; Jiang et al., 2018; 
Fong et al., 2019). The relationship between spontaneous brain activity and task-related 
function has been confirmed by studies showing that brain areas activated during the 
performance of a particular cognitive task also display a correlated activity at rest (Smith et 
al., 2009), and that the response in individual functional areas is correspondingly modulated 
by the activity of functional resting-state networks (Fox et al., 2007). Furthermore, 
functional brain network configuration is highly consistent with the underlying structural 
connectivity (Honey et al., 2009; Uddin et al., 2011; Betzel et al., 2014). 

RSFC can be measured using the same methodology in infants, children, and adults, 
thus providing a window into one aspect of neural development across the life span (e.g., 
Gao et al., 2017; Keunen et al., 2017; Zhang et al., 2019). Despite the challenges associated 
with neuroimaging research in developmental populations, a number of studies have 
characterized RSFC in infants and young children, mainly using fMRI (Fransson et al., 
2007; Lin et al., 2008; Gao et al., 2009; Fransson et al., 2009; Perani et al., 2011; Damaraju 
et al., 2014; Gao et al., 2015; Gao et al., 2017; Keunen et al., 2017; Zhang et al., 2019). 
Some of these pioneering works focused on identifying the well-described adult resting-
state networks in the developing infant brain, observing functional networks formed by 
anatomically and functionally coherent brain regions in infants’ primary sensory regions 
such as the visual, auditory and sensorimotor cortices (Fransson et al., 2007; Lin et al., 
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2008; Fransson et al., 2009; Damaraju et al., 2014; Gao et al., 2015). Resting-state networks 
representing higher-order cognitive functions such as the language network (Perani et al., 
2011; Damaraju et al., 2014; Emerson et al., 2017), the dorsal attention network (Damaraju 
et al., 2014; Gao et al., 2015), or the default-mode network (Gao et al., 2009; Damaraju et 
al., 2014; Gao et al., 2015) have been observed during infancy as well, but showing a more 
protracted developmental trajectory. Concretely, the auditory/language network in infants 
involved the superior temporal gyrus and inferior frontal regions bilaterally, demonstrating 
a high resemblance with the adult spatial configuration (Perani et al., 2011; Damaraju et al., 
2014). Intermispheric connectivity between homologous regions in this network appeared 
well established early in development. Conversely, long-range intrahemispheric functional 
connectivity between inferior frontal and temporal regions characteristic of this network 
appeared weaker, possibly constrained by the extended maturational course of the 
underlying structural connectivity (Fransson et al., 2010; Perani et al., 2011). 

RSFC has also proven to be a useful approach to investigate the influence of several 
prenatal and postnatal factors in functional brain development. As measured by fMRI 
studies, different trajectories of functional network development have been observed 
between premature and full-term infants (Damaraju et al., 2010; Doria et al., 2010; Smyser 
et al., 2010; Smyser et al., 2016). Furthermore, there is evidence showing that the 
configuration and maturational course of functional connectivity differs across neurotypical 
infants and toddlers in comparison to those at high-risk of neurodevelopmental disorders, 
such as autism spectrum disorder (Dinstein et al., 2011; Keehn et al., 2013; Emerson et al., 
2017), Down’s syndrome (Imai et al., 2014), or in newborns diagnosed with perinatal brain 
injury (Linke et al., 2018). Relevant to the current study, the development of functional 
network organization in the infant brain can also be modulated depending on various 
external or internal conditions that can be reliably investigated using RSFC (Zhang, H. et 
al., 2010), such as the caregivers’ education level or socioeconomic status (Gao et al., 2015). 
As described in Chapter 1, a specific external factor (i.e., learning process) is growing up in 
a bilingual environment.  

Previous evidence suggests that long-term exposure to two languages might alter the 
brain’s functional (Parker Jones et al., 2011; Krizman et al., 2012; Berken et al., 2016) and 
structural organization (Mechelli et al., 2004; Luk et al., 2011; Mohades et al., 2012; García-
Pentón et al., 2014; Mohades et al., 2015) as demonstrated by MRI studies in adults. 
Concretely, stronger functional connectivity in bilingual adults as compared to 
monolinguals has been observed in long-range bilateral and anterior-posterior connections 
on both hemispheres (Luk et al., 2011), and in brain networks associated with language and 
executive control processes (Grady et al., 2015; Berken et al., 2016; Sulpizio et al., 2020). 
More recently, Kousaie et al., (2017) found stronger internetwork connectivity between the 
default-mode network and the task-positive attention-network in simultaneous bilinguals 
(i.e., those exposed to two languages from birth) as compared to sequential bilinguals (i.e., 
those that learnt a second language at a later age). Similarly, Gullifer et al., (2018) showed 
that an earlier age of second language acquisition was related with a stronger functional 
connectivity between the left and right inferior frontal gyrus. Assessing whether such 
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differences between the monolingual and the bilingual brain can already be observed in 
infancy is of paramount relevance for research on brain development.  

A number of studies showed that bilingualism induced brain adaptations might start 
already in early infancy (see Chapter 1), supporting the idea that the neural bases of 
bilingual language acquisition are established very early in life. Behavioural and brain 
differences across monolingual and bilingual infants have been conceptualized as different 
types of adaptation patterns to monolingual vs. bilingual environments. From the 
perspective of bilingual infants, this adaptation might facilitate the acquisition of two 
languages as opposed to one. Whether a bilingual environment has consequences when 
RSFC is considered is a relevant question, given that differences between monolingual and 
bilingual infants have been only observed in the presence of explicit cognitive and/or 
linguistic tasks (Conboy and Mills, 2006; García-Sierra et al., 2011; Petitto et al., 2012; 
Ferjan Ramírez et al., 2017; Nácar-García et al., 2018). 

Measuring RSFC in monolingual and bilingual infants can reflect whether bilingual 
experience during the first months of life leads to specific adaptations in the intrinsic 
properties of functional brain organization that are observable in the absence of any task or 
stimuli (i.e., at rest). As RSFC provides a window to simultaneously study various functional 
systems, testing whether a functional adaptation to a bilingual context is evident at the 
earliest stages of human development is crucial for our understanding of how bilingualism 
interacts with general brain maturation patterns beyond task-specific language and cognitive 
processing.  

The main aim of the work described in this chapter is to investigate whether early 
bilingual experience during the first months of life can lead to specific adaptations in the 
intrinsic properties of brain’s function that are observable in the absence of any task or 
stimuli (i.e., at rest) using functional near-infrared spectroscopy (fNIRS). Due to its practical 
advantages fNIRS has emerged as an alternative to fMRI to characterize RSFC, especially 
in developmental populations. The feasibility of fNIRS to measure spontaneous cerebral 
hemodynamic activity was first demonstrated by Obrig et al., (2000). Since then, relevant 
work describing RSFC with fNIRS at different age ranges has been published, usually 
adapting functional connectivity analysis methods employed in fMRI research (Niu et al., 
2013).  

Using multichannel fNIRS systems, the visual (White et al., 2009; Mesquita et al., 
2010), sensorimotor (Lu et a., 2010; Mesquita et al., 2010; Zhang H. et al., 2010) and 
auditory/language networks (Lu et a., 2010; Zhang Y.J. et al., 2010) have been identified. 
fNIRS has been also employed to investigate hemispheric asymmetry in functional 
networks, which showed a marked dominance of the right hemisphere in functional 
connectivity lateralization (Medvedev et al., 2014). Due to its higher sampling frequency, 
fNIRS allowed the investigation of temporal synchronization of spontaneous hemodynamic 
fluctuations over a range of frequency bands, revealing frequency–specific interactions 
between cortical regions (Sasai et al., 2011). More recently, the topological properties of 
functional network organization have been investigated applying graph metrics to fNIRS 
data (Niu et al., 2012; Novi et al., 2016; Geng et al., 2017; Wang et al., 2017; Cai et al., 
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2018; de Souza et al., 2019), demonstrating high reproducibility and within-subject stability 
across network parameters. High-density diffuse optical tomography (HD-DOT) systems, 
which employ the same principles as fNIRS but with a much larger number of light sources 
and detectors, allow producing 3-dimensional images of functional brain activity at high 
spatial resolution. Using this technique functional connectivity has been mapped in adults 
and neonates, showing a strong within-subject agreement between the observed RSFC 
patterns and those obtained using fMRI (Eggebrecht et al., 2014; Ferradal et al., 2015). 

Although fNIRS is particularly suitable to investigate functional brain development, 
studies that have employed this imaging technique to assess RSFC in infant populations are 
still scarce. Using a multichannel fNIRS setup covering the main cortical regions (i.e., 
frontal, temporal, parietal and occipital) Homae et al., (2010) described changes in cortical 
network organization from birth to 6 months of age. They observed that functional 
connectivity in frontal, temporal, parietal and occipital regions was constrained to spatially 
adjacent areas in neonates, with this pattern progressively evolving towards increased 
interhemispheric connectivity between homologous brain regions during the first months 
of life. These authors also demonstrated a modulation in RSFC patterns induced by task 
execution (Homae et al., 2011). They measured RSFC before and after presenting 3-month 
old infants with speech sounds, and showed an increase in fronto-temporal connectivity 
after stimuli presentation. Watanabe et al. (2017) and Taga et al. (2000; 2017) investigated 
the associative properties of resting-state oxyhemoglobin (HbO) and deoxyhemoglobin 
(HbR) time series as potential biomarkers for vascular and metabolic function in the infant 
brain. These studies shown that the phase relationship between HbO and HbR time series 
shifts from an in-phase state to an antiphase state during the first months of life (Taga et al., 
2017), and that the developmental trajectory of this shift might be delayed in infants born 
preterm (Watanabe et al., 2017). Other works have further demonstrated the potential of 
fNIRS-RSFC to investigate typical and atypical functional brain development. Besides 
assessing the effect of premature birth in functional connectivity development (White et al., 
2012; Fuchino et al., 2013; Watanabe et al., 2017), functional connectivity studies using 
fNIRS have also revealed alterations in the strength and synchronization of spontaneous 
HbO and HbR fluctuations in infants with Down’s syndrome (Imai et al., 2014). Moreover, 
a recent work observed RSFC differences associated with the ability of self-recognition at 
18 months of age (Bulgarelli et al., 2019). A few studies using HD-DOT in neonatal 
populations have also been able to characterize functional networks in the occipital (White 
et al., 2012; Ferradal et al., 2015), auditory, and middle temporal regions (Ferradal et al., 
2015) with enhanced spatial accuracy. Other works assessed functional connectivity in 
infants using fNIRS, but their measurements were acquired during stimuli presentation and 
for this reason they are not discussed in detail in this chapter (Keehn et al., 2013; Molavi 
et al., 2014; Taga et al., 2018). 

Most previous functional connectivity studies with fNIRS identified resting state 
networks at the single-subject level by means of a seed-based correlation analysis, which 
measures the temporal synchronization between time-series across multiple channels 
(White et al., 2009; Lu et a., 2010; Mesquita et al., 2010; Zhang Y.J. et al., 2010; White et 
al., 2012; Fuchino et al., 2013; Novi et al., 2016). Alternatively, independent component 
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analysis (ICA) has also been used to define maximally spatially or temporally independent 
components from individual datasets (Zhang H. et al., 2010; Zhang H. et al., 2011; White 
et al., 2012; Ferradal et al., 2015), which represent subject-specific independent patterns of 
functional connectivity.  

These methods present some limitations when attempting to describe RSFC at the 
group-level, and to quantitatively compare RSFC patterns across experimental conditions 
or groups. For example, fNIRS spatial resolution is low and a method for channel 
localization is usually not available. Thus, the brain regions under investigation, as 
determined by seed channel selection, may vary across individuals, reducing statistical 
power. On the other hand, group-level functional connectivity studies based on ICA have 
often been computed by averaging those subject-specific components that match an a priori 
defined spatial configuration (e.g., bilateral and covering sensorimotor regions). However, 
individual data are usually affected by noise components of different levels and 
characteristics, which might result in an ICA separation that differs across subjects. 
Similarly, the accuracy and robustness of ICA method is determined by the number of 
sample points available for the estimation, which are considerably larger in group-level 
analysis as compared to an analysis at the single-subject level. The ultimate consequence of 
these limitations is that most previous fNIRS RSFC studies have evaluated group 
differences at the single channel level (e.g., Fuchino et al., 2013; Bulgarelli et al., 2019), 
using qualitative comparisons (e.g., Homae et al., 2010; White et al., 2012), or performing 
statistical analysis on specific connectivity indexes only (e.g., Homae et al., 2010; Imai et 
al., 2014; Watanabe et al., 2017). 

To overcome the limitations of current group-level RSFC analysis methods with 
fNIRS (i.e., accurately describing RSFC at the group level and quantitatively comparing 
RSFC between experimental conditions and/or groups), three data-driven methodologies 
which are well established in resting-state fMRI research were implemented. These 
methods were employed to extract group-level large-scale functional connectivity patterns 
from the population of infants under investigation. Importantly, they enabled to 
quantitatively compare the prominence of functional networks across experimental groups. 
First, temporal group ICA (tGICA) with dual regression was implemented to extract group-
level temporally independent patterns of spontaneous hemodynamic activity. By 
concatenating the fNIRS channel time courses of multiple subjects, tGICA generates a set 
of group-level maximally independent temporal time courses and its common aggregated 
spatial maps (i.e., functional networks, FN), which quantify the presence of each particular 
independent component on each specific channel. Group-level spatial maps, which 
spatially represent the FN of interest, can be regressed out to the subject level using spatio-
temporal or dual regression (Beckmann et al., 2009; Smith et al., 2012), obtaining the 
subject-specific spatial maps. Between group differences are then assessed by performing 
statistical analyses across subject-specific maps on a channel by channel basis. The second 
method applied in this work was connICA (Amico et al., 2017), a connectome-based ICA 
approach in which a set of individual functional connectivity matrices or connectomes are 
used to obtain latent group-level independent functional connectome components (FCC) 
and its associated weights, quantifying the relative prominence of each FCC on each subject. 
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As a third method, between-group statistical comparisons of functional connectivity 
matrices were performed using an additional connectome-based approach, Network Based 
Statistics (NBS), which has been widely employed in MRI studies to perform group-level 
comparisons in structural and functional brain network organization (Zalesky et al., 2010; 
Zalesky et al., 2012). In this approach a statistical test of group differences (i.e. a t-test) 
is computed on the subjects’ functional connectivity matrices for each channel pair, and 
clusters of interconnected edges above a preselected statistical threshold are identified. 
These values represent the thresholds for which the null hypothesis will be rejected at each 
channel pair, a similar approach as a massive univariate analysis. Then, the significance of 
the identified networks is tested using nonparametric permutation testing, controlling the 
familywise error rate at the network level based on the network size.  

In this work, spontaneous hemodynamic brain activity was measured using fNIRS 
in a large cohort of 4-months old infants, to study the effect of bilingual language acquisition 
simultaneously on different functional brain systems, while avoiding potential confounds 
due to task interference. Assessing RSFC with fNIRS in developmental populations 
involves several challenges such as high attrition rate (i.e., low sample size), the difficulty to 
perform long recordings and data quality. In order to reduce the impact of these issues, 
spontaneous hemodynamic brain activity was measured during natural sleep, and quality 
assurance methods were implemented during data preprocessing. With this procedure a 
sample of almost one-hundred infants (n = 99) with good data quality and 9 minutes of 
continuous recordings was collected. The configuration of group-level RSFC patterns was 
examined using two ICA based methods: a temporal group ICA (tGICA) and a 
connectome-based ICA (connICA). A Network Based Statistics (NBS) approach was also 
implemented to compare large-scale network properties across experimental groups. The 
presence of the identified functional networks and functional connectome components was 
quantified in each participant, and results were compared across two monolingual (Spanish 
and Basque) and one bilingual group of 4-month-old infants (Spanish-Basque), in order to 
determine if simultaneously acquiring two languages from birth modulates functional 
network development at this early age.  

3.2. Methods 

Ethics Statement 

This study was carried out at the Basque Center on Cognition, Brain and Language 
and received approval from its local ethical committee. The study involved the participation 
of infant subjects. Prior to participation, parents were informed about the aims of the study, 
the experimental procedures, and their legal rights, including the right to withdraw from the 
study at any moment without providing a reason and with no negative consequences. 
Written informed consent was obtained from the parents prior to data acquisition. 

Study Population 

123 healthy full-term infants participated in this study. In sixteen of these 
participants testing was not conducted because infants were not able to fall sleep. One 
participant was discarded for receiving a regular exposure to English. Two infants were 
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excluded before data preprocessing because their datasets were shorter than 600 seconds. 
Five infants (n = 2 Basque-Spanish bilingual infants, n = 1 Spanish monolingual infant and 
n = 2 Basque monolingual infants) were excluded during data preprocessing due to 
insufficient data quality. In the final sample, for which data was analysed and results are 
presented, 99 participants were included: 36 Basque-Spanish bilingual (BIL) infants (21 
girls; mean age = 125 ± 4 days), 30 Spanish (SP) monolingual infants (13 girls; mean age = 
123 ± 3 days) and 33 Basque (BQ) monolingual infants (17 girls; mean age = 122 ± 4 days). 
Participants’ language background was assessed with a questionnaire filled by the parents, 
in which infants’ percentage of exposure to each language (SP and BQ) during the first 
months of life was measured. Participants exposed to a single language (SP or BQ), or less 
than 10% of the time to a second language (SP or BQ), were included in each of the 
monolingual groups. Infants raised in a Spanish-Basque bilingual environment, those that 
were exposed to their two native languages from birth, formed the bilingual group. 
Participants’ were recruited from the same region of the Basque Country (Gipuzkoa); a 
socioeconomic status questionnaire was completed to ensure that families showed similar 
levels of education, parental occupation and household income across groups.  

Data Acquisition 

Functional near-infrared spectroscopy (fNIRS) measurements were performed with 
a NIRScout system (NIRx Medical Technologies, CA, USA) at wavelengths 760 and 850 
nm with a sampling rate of 8.93 Hz. Sixteen light emitters and 24 detectors were positioned 
on a stretchy fabric cap (Easycap GmbH, Germany) over frontal, temporal, parietal and 
occipital regions of both hemispheres according to the international 10-20 system. Each 
pair of an adjacent light emitter and a detector formed a single measurement channel, which 
generated 52 channels for each hemoglobin oxygenation state (i.e., oxyhemoglobin, HbO 

and deoxyhemoglobin, HbR). This configuration yielded source-detector separation 
distances ranging from approximately 20 mm to approximately 45 mm (Table 3.1). Nasion, 
inion and preauricular points were used as external head landmarks, and caps of two 
different sizes (i.e., 40 and 42) were employed to adapt to individual head perimeter/size. 
This approach ensured a consistent cap and optode positioning across infants (i.e., without 
additional MR images or external coordinate tracking system), so that channels 
corresponded to the same anatomical locations. Occipital channels were discarded in all 
participants for being particularly prone to contain signal artifacts, since during data 
acquisition the back part of the infants’ head was leaning against the parent’s body, and any 
minor movement resulted in the misplacement of these particular optodes. Thus, only data 
from the remaining 14 sources and 19 detectors (i.e., 46 channels) was analysed.  

Infants’ spontaneous hemodynamic activity was measured during natural sleep 
while leaning on their parents’ lap in a sound attenuated room. The only source of 
illumination in the room was the screen of the recording computer, which was attenuated 
to low brightness levels. Recordings started when infants were relaxed, accustomed to the 
fNIRS cap and clear signs of sleep were noticeable. Over the duration of the recordings, 
parents were asked to remain silent and to minimize movements in order to avoid 
involuntary cap or optode displacement. Recordings lasted between 10 and 25 minutes 
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unless the infant woke up during the experiment. Recordings were interrupted if infants 
showed continued and excessive movement or signs of discomfort at any point. 

The sensitivity profile of the fNIRS probe setup was computed to provide 
information of the brain areas under investigation, and for results visualization purposes. 
The probe setup (i.e., sources and detectors) was registered to an average 6-month-old 
infant template (Richards et al., 2016) to compute the sensitivity matrix of the source-
detector configuration using Toast++ (Schweiger and Arridge, 2014). The aggregated 
sensitivity profile of the fNIRS probe was obtained by adding the normalized cortical 
sensitivity profiles of each individual channel (Figure 3.1). Channel positions were defined 
as the grey matter node which coordinates were closest to the central point of the maximum 
sensitivity path along each source-detector pair. A 6-month-old average atlas (Akiyama et 
al., 2013) was used to compute a probabilistic spatial registration of the cortical structures 
underlying each channel. Channel coordinates were first transformed to the Akiyama et al., 
(2013) average T1 template space using Advanced Normalization Tools (ANTs) (Avants 
et al., 2009), and then registered into the Akiyama et al., (2013) anatomic atlas, defined by 
116 cortical regions based on Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer 
et al., 2002). For each channel, anatomical labels within a distance of 20 mm were defined 
by calculating the percentage of overlap with each AAL region (Figure 3.2 and Table 3.1). 

 
Figure 3.1 fNIRS optode (sources in red, detectors in green) and channel (black) localization in the 
current experimental setup. The normalized sensitivity profile of the current optode configuration 
is displayed in a 6-month-old infant head model. 

 
Figure 3.2 fNIRS channel localization registered to a 6-month-old infant AAL template. 
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Table 3.1 Table depicting the brain labels of the fNIRS channels in the current setup based on the 
probabilistic spatial registration of the fNIRS channels to a 6-month-old infant AAL template. 
Ch = Channel; S-D = Source-Detector pair. 

Data Preprocessing 

All data preprocessing and analyses were implemented in MATLAB (R2012b, 
R2014b, Mathworks, Massachusetts) using in-house scripts as well as third-party toolboxes 
and functions. Quality assurance figures were generated for all participants after each 
preprocessing step. An example of these figures is presented in Appendix A.  

MATLAB Toolboxes employed in the current study: 

- Homer2 software package (Huppert et al., 2009; https://homer-fnirs.org). 

- BrainWavelet Toolbox (Patel et al., 2014; http://www.brainwavelet.org/about).  

- ICASSO Toolbox (Himberg et al., 2004; https://research.ics.aalto.fi/ica/icasso/). 
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- Automatic Choice of Dimensionality for PCA (Minka, 2000; 
https://tminka.github.io/papers/pca/). 

- Network Based Statistics (Zalesky et al., 2010; https://www.nitrc.org/projects/nbs/). 

The preprocessing pipeline for each individual is presented below: 

1. Light intensity data (i.e., raw data measured at the instrument) were converted into 
optical density changes. ð hmrIntensity2OD function in Homer2. 

2. Noisy segments typically occurring at the beginning and/or at the end of each 
dataset, corresponding to awake activity of the infants (i.e., before the infant fell 
asleep and/or after the infant woke up), were visually identified based on MATLAB 
plots and manually rejected. ð Plot function in MATLAB. 

3. Motion induced spikes and signal drifts were corrected using the wavelet-based 
despiking method (Patel et al., 2014), which has been described in chapter 2. ð 
WaveletDespike function in Brain Wavelet Toolbox. Input parameters: wavelet = 
d4; threshold = 0.02; boundary = reflection; chsearch = moderate; nscale = extreme.  

4. Optical density data were converted into HbO and HbR concentration changes. 
Differential path length factors of 5.3 (760 nm) and 4.2 (850 nm) were considered 
based on the general equation presented in Scholkmann et al., (2013). ð 
hmrOD2Conc in Homer2.  

5. Datasets were limited to 5000 samples (∼560 seconds) to ensure a homogenous 
contribution across participants, in terms of number of observations, for the first 
and second-level statistical analyses. This step was performed by visually inspecting 
the data in order to select the segment displaying the best data quality. ð Plot 
function in MATLAB. 

6. Temporal filtering and global signal regression were performed simultaneously in a 
unique nuisance regression step (Lindquist et al., 2019). Contribution of high-
frequency physiological noise sources (e.g., respiration and cardiac pulsation) was 
accounted for by including sine and cosines functions for frequencies above 0.09 
Hz in the model for nuisance regression. Very slow frequency fluctuations and 
signal drifts were modelled by adding the first 4 order Legendre polynomials to the 
design matrix. The average fNIRS signal was included in the regression model to 
remove globally occurring hemodynamic processes in cerebral and extracerebral 
tissues assumed to largely reflect systemic hemodynamic changes. As HbO and 
HbR are differently affected by global systemic processes, data of each hemoglobin 
chromophore were filtered independently by including in the model either the 
global HbO or HbR signal. ð see MATLAB Box 3.1. 
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MATLAB Box 3.1 
Implementation of filtering and global signal regression in a single linear regression model 

 

Data Analysis 

Functional Connectivity Analyses 

Temporal Group ICA 

Group-level functional networks (FN) were computed by means of a tGICA 
(Beckmann et al., 2009; see Figure 3.3 below), by temporally concatenating all participants’ 
datasets after time-series normalization to zero mean and unit variance, producing a single 
group dataset with dimensions [channels (46) x Hb chromophores (2)] x [time points (5000) 
x participants (99)]. The FastICA algorithm (Hyvärinen, 1999) was applied to the group 
dataset to extract 15 independent components (ICs), which corresponds to the number of 
principal components explaining 60% of group data variance. The choice of this parameter 
is explained in Appendix B. The subject-specific spatial maps associated with each 
independent FN were obtained using a dual-regression approach. This two-step method 
involves an initial spatial regression of the tGICA spatial maps of interest to the subject-
specific fNIRS dataset, to obtain the subject-specific time courses associated with each 
group-level ICs. Then, a linear model fit is computed between the estimated subject-specific 
time courses and the subject-specific fNIRS datasets, to estimate the subject-specific spatial  

% The following variables should be defined in advance 
% data = data (HbO or HbR) in the format time x channels 
% sf = sampling frequency of the fNIRS system 
% global_signal = mean signal calculated on filtered data 
% Note that global signal will be different on each participant and for HbO and HbR 
% lpf = Low-pass filter 
 

% 1 – Create Legendre Polynomials (high-pass filter) 
% Compute length of the dataset (samples) 
n_data = size(data,1); 
% Compute length of the dataset (seconds) 
s_data = n_data/sf; 
% Calculate order of Legendre polynomials 
k  = 1 + floor(s_data/150); 
% Create a basis set of Legendre polynomials (L) 
n = linspace(-1,1,n_data)'; 
L = zeros(n_data,k+1); 
for i = 1:k+1 
    tmp = legendre(i-1,n); 
    tmp = tmp(1,:); 
    L(:,i) = tmp/max(abs(tmp)); 
end 
 

% 2 – Create matrix of sines and cosines for all frequencies in the sf range 
dft_matrix = dftmtx(n_data); 
% Find index of the low-pass filter = frequency of interest 
idx = floor((lpf/sf)*n_data);           
% Select regressors of interest 
dft_matrix_lpf = dft_matrix(idx:n_data-idx+1,:); 
% Select sines and cosines 
sin_lpf_mtx = imag(dft_matrix_lpf); 
cos_lpf_mtx = real(dft_matrix_lpf); 
% Matrix (time x frequency) of sines and cosines of frequencies above lpf 
lpf_mtx = [cos_lpf_mtx' sin_lpf_mtx']; 
 

% 3 - Compute nuissance regression (filter and global signal) 
% Remember that the global signal for each participant should be calculated on  
% filtered data to avoid reintroducing frequencies of non-interest  
% Create matrix with regressors for filtering 
reg_mat = [L lpf_mtx global_signal]; 
beta_data = pinv(reg_mat)*data; 
data_filtered = data – reg_mat*beta_data 
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Figure 3.3 Processing pipeline for the temporal group ICA (tGICA) method. 

maps. Statistically significant differences between groups were tested channelwise for each 
FN by performing a one-way random effects ANOVA with language background as a factor 
(i.e., BIL, SP and BQ), resulting in 15 spatial maps describing between group differences 
(i.e., channelwise F-test). Statistical tests were corrected for multiple comparisons at the 
channel level using the false discovery rate (FDR; q<0.05) method (Benjamini and 
Hochberg, 1995). 

Connectome Based Analyses 

Two connectome-based analyses (Amico et al., 2017) were performed based on the 
individual functional connectivity matrices (i.e., connectomes) computed in all infants: 1) a 
connectome-based ICA (connICA, Amico et al., 2017), and 2) Network Based Statistics 
approach (NBS, Zalesky et al., 2010). The input of these methods are the functional 
connectivity matrices obtained for each participant, which were computed based on a 
robust Pearson’s correlation approach as recommended in Santosa et al., (2017).  

For each individual, the temporal synchronization between channels was evaluated 
by computing a pairwise robust Pearson’s correlation between the time courses of the HbO 
and HbR signals separately at every channel for each infant. This robust correlation 
approach reduces the contribution of possible outlier time points (e.g. due to residual 
motion artefacts after preprocessing and wavelet denoising) in the correlation estimation 
(Santosa et al., 2017). Briefly, for each =, > element representing the preprocessed time 
series of channels = and >, a joint weighting matrix is calculated as 

!{#} = 	'({+}- + *{+}- 

A weighting function (?)	defined as  

+ ,!-. = /
1 −	, !

- − 2.
-
, 4	!-4 < 2

0																									, 4	!-4 ≥ 2
 

is applied to each =, > element such that =; = ?=	and >; = ?>. The correlation for each 
entry of the functional connectivity matrix is computed between the preprocessed weighted 
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signals =; , >;. In this study, @ = 4.685 was defined as this is the value usually employed 
in the literature, and E was calculated from the median absolute deviation (MAD) of the 
signal F as E = 1.4826	HI((F) (Santosa et al., 2017). Individual robust functional 
connectivity matrices representing the temporal association between all channel pairs were 
defined for HbO and HbR, where the =; , >; element reflects the robust Pearson’s 
correlation between channels =; and >;. For the sake of simplicity, hereinafter the robust 
functional connectivity matrices will be referred to as functional connectivity matrices. 
Individual functional connectivity matrices were then converted from r values to z-scores 
by Fisher’s r-to-z transform (atanh function in MATLAB), and averaged across subjects 
within each experimental group. For illustration, the functional connectivity matrix of a 
representative infant and the average functional connectivity matrix for each group of 
infants (Spanish monolingual, Basque monolingual and Spanish-Basque bilingual) are 
presented in Figure 3.6. 

connICA 

Individual functional connectivity matrices of HbO and HbR were input to a hybrid 
connectome-based ICA (connICA) (Amico et al., 2017; Amico and Goñi, 2018). First, the 
upper triangular part of the symmetric functional connectivity matrices of HbO and HbR 
were vectorized and concatenated for each individual (see Figure 3.4). These vectors were 
concatenated in rows to form a group-level functional connectivity matrix of dimensions 
[99 participants] x [1035 connectivity pairs x 2 Hb chromophores]. The integration of the 
information on functional connectivity provided by HbO and HbR was done under the 
premise that similar RSFC patterns should be observed across Hb chromophores 
(Mesquita et al., 2010; Homae et al., 2011; Ferradal et al., 2015). Next, the FastICA 
algorithm (Hyvärinen, 1999) was applied to this group-level matrix to obtain a set of latent 
group-level independent functional connectome components (FCCs), and their 
corresponding weights in each participant. From this analysis 11 ICs were extracted, a 
number that is equal to the number of principal components necessary to explain 60% of 
the group data variance. The criteria for ICA model order selection are explained in detail 
in Appendix B. Finally, the individual IC weights were evaluated as random effects, and 
ANOVA was performed with language background as a factor (i.e., BIL, SP and BQ) to 
examine differences across experimental groups in the prominence of the extracted 
independent FCCs. Statistical tests were corrected for multiple comparisons at the 
component level using the false discovery rate (FDR; q<0.05) method (Benjamini and 
Hochberg, 1995). 

 
Figure 3.4 Processing pipeline for the connICA method. 
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Network Based Statistics 

Between-group statistical comparisons of the functional connectivity matrices were 
also performed using a Network Based Statistic (NBS) approach (Zalesky et al., 2010). The 
first step of this method is to compute a statistical test (e.g., F-test) on the subjects’ FC 
matrices at each channel pair, obtaining a matrix of the same size (i.e., 46 channels x 46 
channels) with each entry filled with the values of the statistical test of interest. This step is 
equivalent to conducting a mass univariate testing approach at each entry of the FC 
matrices. In this study, a range of predefined statistical thresholds were applied to this 
matrix, and channel pairs exceeding the threshold were selected as possible connections 
for which the null hypothesis can be rejected at the network level. Then, clusters of 
connections (i.e., networks) are identified among the connections exceeding the threshold, 
being a network defined as a group of interconnected edges. The significance of the 
identified networks is tested using nonparametric permutation testing. Participants are 
randomly exchanged between experimental groups and the previous processing steps are 
repeated for each permutation (N = 10.000 permutations). A measure of the size (i.e., total 
number of connections) of each network is computed in each permutation and a null 
distribution is created with the maximal component sizes. Finally, the statistical significance 
of the network (i.e., the p-value) is calculated as the number of networks generated by 
permutations that had the same size or greater than the relevant network, divided by the 
total number of permutations. With this method the familywise error rate is controlled at 
the cluster level based on the network size. The NBS analysis approach was applied in 
HbO and HbR derived FC matrices separately, and results for both Hb chromophores are 
reported.  

3.3. Results 

Among the 123 infants who were recruited to participate in this study, 99 fNIRS 
recordings with good data quality in both oxyhemoglobin (HbO) and deoxyhemoglobin 
(HbR) chromophores were included after data preprocessing and detailed data quality 
assessment. The final sample included 36 Basque-Spanish bilingual (BIL) infants, 30 
Spanish (SP) monolingual infants and 33 Basque (BQ) monolingual infants. For each 
infant, the data comprised 46 channels covering frontal, temporal and parietal regions of 
both hemispheres as displayed in Figure 3.1, which depicts the optode and channel 
location, and the sensitivity profile of the current setup. All infants showed clear peaks in 
the power spectrum related to the main frequency and harmonics of the respiratory and 
cardiac fluctuations. An antiphase relationship between HbO and HbR was also considered 
as data quality indicator (Watanabe et al., 2017) (see Appendix A and B). All of these 
subjects had recordings with a duration of 9 minutes, which were input for data analysis 
with temporal group ICA (tGICA), connICA and NBS.  

Temporal Group ICA 

The functional networks (FNs) obtained in the tGICA analysis (i.e., the ICA spatial 
maps) are displayed in Figure 3.5. For visualization purposes, relevant FN were selected 
based on their spatial configuration. FNs with a bilateral and symmetric configuration are 
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presented and discussed here. The full set of FNs is presented in Appendix B. FNs are 
depicted as statistical t-stat maps, which were computed from one-sample t-tests on the 
subject-specific reconstructed spatial maps at the channel level. The observed components 
were robust across multiple realizations of the ICA algorithm based on the ICASSO 
method (Himberg et al., 2004) showing consistency values (Iq) ranging from 0.49 to 0.91. 
All of these networks also exhibited high consistency across HbO and HbR, displaying 
correlation r values between -0.97 and -0.99 (Appendix B, Table 3.1), as expected due to 
hemodynamic physiology.  

The first three FNs labelled as sensorimotor networks, revealed a symmetric pattern 
over bilateral areas in the precentral and postcentral gyrus. FN 4 and FN 5 covered mainly 
areas located in the inferior frontal gyrus and the superior temporal gyrus that could be 
associated with the auditory and the language networks, respectively. Two FNs were 
observed over frontal regions: FN 6 was confined to regions in the middle and superior 
frontal gyrus, and FN 7 comprised middle frontal areas and areas in the inferior parietal 
gyrus which could be related to the outer brain regions of the default-mode network that 
have been typically observed in RSFC studies with fMRI. Similar to previous evidence with 
fMRI data, the observed FNs also exhibited significant patterns of anticorrelated 
spontaneous activity. In FN 1-5 the spatial distribution of the anticorrelated patterns 
involved superior and middle frontal areas, in conjunction with posterior areas in the 
inferior and middle temporal gyrus and with inferior parietal regions. FN 6 showed 
anticorrelated activity with posterior temporal and inferior parietal regions. In FN 7 the 
negative spatial pattern was less prominent than the positive part, and included inferior 
frontal and superior temporal regions. The obtained group-level FNs for HbO and HbR 
were reconstructed to the subject space using a dual-regression approach (Beckmann et al., 
2009) to yield the subject-specific FNs. Between group statistical analyses were conducted 
to assess the effect of early bilingual exposure on each channel and FN (one-way ANOVA 
at the channel level, FDR corrected among 46 channels, q<0.05). Significant differences 
between experimental groups were not observed in any of the FNs under assessment in 
HbO and HbR. 

Funtional Network (FN) Iq r ssd (%) 
total = 100 

ssd (%) 
total = 60 

FN 1 Sensorimotor 0.84 -0.99 8.8 4.1 

FN 2 Sensorimotor 0.76 -0.98 4.3 3.9 

FN 3 Sensorimotor 0.72 -0.99 5.5 3.9 

FN 4 Auditory 0.49 -0.98 5.6 3.9 

FN 5 Language 0.89 -0.99 7.4 4.0 

FN 6 Frontal 0.91 -0.99 10.5 4.2 

FN 7 Default-Mode 0.80 -0.97 6.2 4.0 

Table 3.1 tGICA model order evaluation metrics for the PCA threshold selected in this study (i.e., 
60%). ICASSO cluster robustness index (Iq) and HbO-HbR correlation (r) values are displayed.  
Sum of squared differences (ssd) are computed with respect to the data after PCA (total = 100%) 
and with respect to the original data without PCA (total = 60%).  
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Figure 3.5 Functional networks (FNs) representing the spatial maps derived from the tGICA 
method. Colorbar shows the t-value of the channel level one-sample t-test computed for each spatial 
map. Individual spatial maps (i.e., dual-regression maps) of these FNs are displayed in matrix form 
with rows showing the weights of the FNs on each channel and columns representing participants. 

connICA 

The input of the connICA method are the functional connectivity matrices obtained 
for each participant, which were computed based on a robust Pearson’s correlation 
approach as recommended in Santosa et al., (2017). A high degree of similarity can be 
observed at the individual and at the group level in the configuration of the functional 
connectivity matrices (Figure 3.6). A marked negative correlation between HbO and HbR 
and a stronger correlation between homotopic regions is also evident on these matrices. 
These features were considered indicative of the quality and reliability of the current 
datasets.  

The group-level functional connectome components (FCCs) extracted from the 
connICA analysis are depicted in Figure 3.7. In this approach, relevant FCCs were also 
selected based on their spatial configuration. The full set of FCCs is presented in Appendix 
B. For the sake of representation, each plot only displayed the 10% largest positive 
connections between nodes (i.e., fNIRS channels), and the size of the node represented 
the number of connections linked to it. Similar to the tGICA results, FCCs showed a high 
level of robustness based on the ICASSO algorithm, with consistency values (Iq) between 
0.5 and 0.96, and a large degree of similarity between the HbO and HbR derived 
components, with correlation r values between 0.7 and 0.95 (Table 3.2). The first FCC is 
characterized by local, short-range, connections between adjacent nodes. It involved 
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Figure 3.6 Robust functional connectivity matrices of representative individual subjects (first row) 
and at the group level (second row) for each of the three experimental groups. In each plot, the 
robust functional connectivity matrix for HbO and HbR is shown in the top-left part and bottom-
right part, respectively. The robust functional connectivity matrix representing the correlation 
between HbO and HbR is shown in the top-right part. Note that plots are symmetric with respect 
to the main diagonal. In these plots, channels are ordered from anterior to posterior and from left 
to right. This allows visualizing an increased correlation between homotopic channels in HbO and 
HbR (see arrow 1), an increased negative correlation between homotopic channels between HbO 
and HbR (see arrow 2) and a clear delimitation of left and right hemispheres (see arrow 3). 

within hemisphere connections between nodes over the whole fNIRS setup, with 
interhemispheric connections constrained to the most anterior nodes. FCC 2 reflected 
functional connectivity between homotopic channels across hemispheres. FCC 3 and FCC 
4 showed a high degree of symmetry, displaying mainly short and long-range within 
hemisphere connections. FCC 5 and FCC 6 also showed a highly symmetric pattern, 
revealing that nodes located over superior temporal gyrus were functional hubs with a large 
number of intrahemispheric connections between temporal and frontal regions, and 
interhemispheric connections with frontal and posterior temporo-parietal regions. Finally, 
FCC 7 and FCC 8 were also highly symmetric, with their main functional hubs in precentral 
and inferior frontal regions showing intrahemispheric connections across frontal and 
precentral regions and interhemispheric connections between frontal, superior temporal 
and precentral regions. Appendix B includes the figures with the complete positive and 
negative parts of the component for all the functional components calculated with connICA 
approach and for HbO and HbR. Statistical analyses assessing significant differences across 
experimental groups were computed on the individual weights that quantify the 
prominence of each independent FCC in each individual. A one-way ANOVA at the FCC 
level (FDR corrected among 11 FCC, q<0.05) indicated no significant differences between 
monolingual and bilingual infants in any of the FCCs. 
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Figure 3.7 Functional connectome components (FCC) extracted using the connICA method. 
Components have been threshold to show only the top 10% of connections (absolute value). Node 
size was adjusted based on the number of connections reaching each node. Due to the high 
similarity between HbO and HbR components, FCCs are shown for HbR only. 

 
 
 
 
 
 
 



Chapter 3 

 56 

Funtional Connectome 
Component (FCC) Iq r 

(HbO-HbR) 
ssd 

(100 %) 
ssd 

(60 %) 

FCC 1 0.96 0.95 24 5.5 

FCC 2 0.91 0.88 7.2 5.5 

FCC 3 0.50 0.70 7.4 5.4 

FCC 4 0.94 0.72 7.8 5.4 

FCC 5 0.91 0.80 7.3 5.5 

FCC 6 0.91 0.83 7.3 5.4 

FCC 7 0.90 0.90 8.8 5.6 

FCC 8 0.84 0.84 7.3 5.4 

Table 3.2 Model order evaluation metrics for the PCA threshold selected (i.e., 60%) in the 
connICA approach. ICASSO cluster robustness index (Iq) and HbO-HbR correlation (r) values 
are displayed. Sum of squared differences (ssd) are computed with respect to the data after PCA 
(total = 100%) and with respect to the original data without PCA (total = 60%).  

NBS 

Statistical differences between experimental groups were computed on the 
individual functional connectivity matrices using a Network Based Statistics (NBS) 
approach (Figure 3.8). Several NBS thresholds (F-values) were assessed to detect potential 
effects with different characteristics (e.g., weak effects involving a large number of 
connections or strong effects involving a small number of connections). Statistically 
significant differences between groups were not observed at any of the statistical thresholds 
considered either in HbO or HbR. Results showed that the size of the observed networks 
decreased for larger statistical thresholds (F-values). The curves of p-values were closer to 
significance for HbR group comparisons than for HbO at the lower statistical thresholds, 
where network size was also larger in HbR than in HbO. For higher thresholds (i.e., F > 3) 
HbO and HbR showed similar network size and p-values.  

 
Figure 3.8 Statistical significance of the functional network differences assessed using NBS for a 
range of statistical thresholds. Between-group differences were not observed in any of the statistical 
thresholds under consideration.  
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3.4. Discussion 

This work described resting-state functional connectivity (RSFC) based on long, 
high quality fNIRS data acquired on a large cohort of 4-month-old monolingual and 
bilingual infants to evaluate the effect of bilingualism in functional brain connectivity at this 
early stage of language acquisition. This sample of 99 valid participants is the largest sample 
of infants ever acquired with long fNIRS recordings (9 min per infant). While no significant 
group differences emerged to the main neuroscientific question of the study (i.e. differences 
between monolingual and bilingual infants), large-scale group-level RSFC patterns in the 
infant brain are reported, resembling those previously observed in the fMRI literature and 
in fNIRS studies with adults.  

RSFC patterns were extracted using two data analyses approaches based on 
independent component analysis (ICA). The implemented ICA based group-level 
methods search for independence either between the time-courses of spontaneous 
hemodynamic activity measured with fNIRS (i.e., temporal group ICA - tGICA) 
(Beckmann et al., 2009; Smith et al., 2012) or between connectivity patterns across multiple 
functional connectivity matrices (connICA) (Amico et al., 2017). A Network Based 
Statistics (NBS) approach was also implemented to study between group-differences in 
functional network organization.  

The main goal of this study was to assess whether an early and continued exposure 
to a bilingual environment during the first months of life might impact the configuration of 
the emerging functional connectivity. The human brain’s ability to adapt to long-term 
environmental factors manifests prominently during the first stages of development and it 
is particularly relevant during early language experience. For this reason, how long-term 
exposure to two languages affects cognitive and functional brain development has drawn 
great attention in recent years (Petitto et al., 2012; Costa and Sebastián-Gallés, 2014; 
Byalistok, 2015; Kovacs et al., 2015). In the current work an effect of bilingualism in RSFC 
was not observed in any of the three independent functional connectivity analysis methods 
implemented. This is despite the fact that evidence of differences between monolingual 
and bilingual infants in previous studies manifested during language task performance 
(Conboy and Mills, 2006; García-Sierra et al., 2011; Petitto et al., 2012; Ferjan Ramírez et 
al., 2017; Nácar-García et al., 2018). 

While no differences in RSFC emerged between monolingual and bilingual infants, 
large-scale RSFC patterns reported in the current study resemble those previously observed 
in prior studies. The functional networks (FNs) extracted with tGICA in the group of infants 
under assessment yielded evidence for the presence of a marked bilateral functional 
correlation between homotopic brain regions, which was observed in both HbO and HbR 
fluctuations. The spatial configuration of the observed FNs indicates that, at this age, RSFC 
predominantly consists on correlated activity between anatomically and functionally similar 
regions across hemispheres, as already described in previous works (Fransson et al., 2007; 
Homae et al., 2010; Perani et al., 2011; Damaraju et al., 2014). FNs located in primary 
sensorimotor (FN 1-3) and auditory regions (FN) were observed. These networks have 
been repeatedly reported in infant studies with fMRI (Fransson et al., 2007; Damaraju et 
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al., 2014; Gao et al., 2015), but evidence from infant studies using optical methods is still 
limited (Ferradal et al., 2015). A FN overlapping language related regions spreading over 
the inferior frontal gyrus and superior temporal gyrus (FN 5) was observed. Qualitative 
assessment of FNs implied a stronger involvement of the right hemisphere in the auditory 
(FN 5) and language (FN 4) networks (Figure 3.5). This shared feature between language-
relevant FN could be linked with previous observations showing increased activity in the 
right hemisphere for speech input, which has been explained by the fact that infants in the 
first months of life mainly rely on prosodic information during language processing (Homae 
et al., 2006; Telkemeyer et al., 2009; Perani et al., 2011).  

Homotopic areas over frontal regions also demonstrated a high degree of functional 
synchronization. One functional network (FN 6) was formed by multiple channels within 
frontal regions and across the midline. The spatial organization of this network supports 
existing evidence showing that frontal regions become functionally connected during the 
first year of life (Homae et al., 2010; Homae et al., 2011; Damaraju et al., 2014; Gao et al., 
2015). The second functional network (FN 7) showed a symmetric functional connectivity 
pattern involving channels in middle frontal and inferior parietal regions, which is consistent 
with the spatial topology of the default-mode network. Evidence of a developing default-
mode network has been observed in infants (Gao et al., 2009; Damaraju et al., 2014; Gao 
et al., 2015), even though these results should be interpreted with caution due to the limited 
spatial resolution of the current experimental setup and the inability of fNIRS to measure 
deep medial and subcortical regions, such as posterior cingulate cortex and precuneus that 
are usually reported in fMRI studies. 

The connICA approach was applied to identify macroscale properties of functional 
network organization at the group level based on the individual functional connectivity 
matrices (Amico et al., 2017). The functional relations between fNIRS channels formed 
coherent interregional ensembles with distinct topological properties of large-scale 
functional connectivity. The first functional connectome component (FCC 1) showed short-
range functional connectivity between adjacent channels, spanning the whole fNIRS optode 
setup. This functional connectivity pattern has been shown to progressively decrease over 
the course of development, whereas long distance connections tend to increase towards a 
more distributed functional brain organization (Homae et al., 2010; Ouyang et al., 2017). 
The second component (FCC 2) displayed interhemispheric correlations between 
homotopic regions. This type of functional connectivity is prevalent in most of the studies 
that have assessed RSFC in infant subjects and has been linked with the interaction between 
functional and structural brain maturation (Fransson et al., 2007; Homae et al., 2010; 
Perani et al., 2011; Gao et al., 2015). Due to the marked spatial symmetry observed in 
components FCC 3 to FCC 8, they are presented in pairs in Figure 3.7. FCC 3 and FCC 4 
displayed mostly within hemispheric connectivity between anterior and posterior brain 
regions in the left and right hemispheres respectively. Functional networks extracted with 
the tGICA approach also showed patterns of long-range within hemisphere connectivity, 
but evidence from previous studies suggests that, at this age, this type of connectivity is still 
immature (Homae et al., 2010; Perani et al., 2011; Gao et al., 2015). FCC 5 and FCC 6 
showed a functional hub in the left and right auditory cortices, which are densely 
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interconnected with frontal and posterior temporal regions within and across hemispheres. 
In FCC 7 and FCC 8 connections converged over channels located in precentral and 
inferior frontal gyrus, which showed intra and interhemispheric connections with channels 
localized in frontal regions. Due to their spatial characteristics, these components might 
well represent the activity of sensorimotor, auditory or language regions, in which functional 
brain networks have been consistently identified in infant populations (Fransson et al., 
2007; Perani et al., 2011; Damaraju et al., 2014; Ferradal et al., 2015). Results for the NBS 
analysis revealed no significant differences between experimental groups. In contrast to 
connICA, this approach investigates global network differences based on the whole 
functional connectivity matrix, and not on specific components. Considering that 
differences were not observed in any subcomponent extracted using the connICA method, 
it might be reasonable that differences did not emerge either at the global level.  

Results for both ICA methods showed reliable patterns of correlated and 
anticorrelated activity within the observed FNs and FCCs. A question that might arise from 
these findings is whether the observed patterns of negative functional connectivity are the 
result of the preprocessing pipeline including global signal regression, or if they reflect 
intrinsic, functionally meaningful properties of network organization (Murphy and Fox, 
2017). To address this dichotomy, data analyses were repeated on the same datasets without 
applying global signal regression. Results demonstrated that anticorrelated patterns of 
functional connectivity were still present but FNs and FCCs were less spatially interpretable. 
Considering these outcomes, and in order to account for the effects of systemic 
physiological confounds that are commonly described in fNIRS recordings (Tachtsidis and 
Scholkmann, 2016), results with a preprocessing pipeline including global signal regression 
were described here.  

Most previous optical imaging studies assessing RSFC reported only positive 
correlations, or presented both positive and negative correlations in the results but only 
discussed the former (Zhang H. et al., 2010; White et al., 2012). This has been in part due 
to the limited field of view of the fNIRS setups employed in these studies, but also due to 
the lack of a straightforward interpretation of the observed anticorrelated activity in the 
literature (Murphy and Fox, 2017). An interesting finding is that the regions involved in the 
anticorrelated networks observed in most of the primary FNs considerably overlap with the 
spatial configuration of the FN labelled as the default-mode network (FN 7). It is therefore 
a possibility that this activity might reflect higher-level functional interaction between task-
positive and task-negative brain regions (Fox et al., 2005; Hampson et al., 2010; Murphy 
and Fox, 2017).  

As the effect bilingualism on functional brain development may not be manifested 
as a differential configuration of intrinsic functional connectivity, the study presented in 
Chapter 5 aims to examine potential differences on language processing as a consequence 
of bilingualism in infants at the same age as in the current study. Furthermore, an effect of 
bilingualism on RSFC has only been demonstrated on adult participants (Luk et al., 2011; 
Grady et al., 2015; Berken et al., 2016; Kousaie et al., 2017; Gullifer et al., 2018; Sulpizio 
et al., 2020). Therefore, further research with monolingual and bilingual infants at different 
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ages should help clarify whether differences in intrinsic functional connectivity due to the 
complexity of growing exposed to two linguistic systems might emerge a later point in 
development. 

It is also possible that testing asleep infants prevented from detecting subtle 
differences in RSFC properties across experimental groups (Watanabe et al., 2014; Lee et 
al., 2020). However, all previous studies assessing RSFC in infants of a similar age as here 
have been conducted during sleep, irrespective of the imaging modality (i.e., fMRI or 
fNIRS). Several studies have identified RSFC differences induced by the effect of different 
factors such as premature birth (Smyser et al., 2010) or socioeconomic status (Gao et al., 
2015). These imaging techniques are extremely sensitive to motion induced artifacts that 
are commonly observed in acquisitions on awake participants. This considerably degrades 
the reliability of the inferred temporal correlations between voxel or channel time courses 
(Santosa et al., 2017). Since the priority for this study was to collect RSFC data of good 
quality, participants were tested during natural sleep only, which consequently also allowed 
performing longer recordings. In addition, by testing all infants under similar conditions 
(i.e., immediately after they fall sleep), a homogenous sleep state is ensured across 
participants (Gao et al., 2017), restricting any possible bias owing to differences in cognitive 
state across infants.  

3.5. Summary 

RSFC can be reliably measured in young infants using fNIRS. In this work, relying 
on datasets with high data quality and applying appropriate analyses techniques for group-
level statistical comparisons, no differences emerged between monolingual and bilingual 
infants. In light of previous research that demonstrated neural adaptation in bilingual infants 
in linguistic tasks at 4 months of age, these results suggest that intrinsic functional networks 
of the brain are not affected by bilingual experience at 4 months of age. Further, considering 
previously reported differences in adult monolingual vs. bilingual RSFC patterns, the 
current results suggest that RSFC do not necessarily reflect differences as a function of 
bilingual vs. monolingual learning environment by 4 months of age. At what stage of 
development RSFC begin to show changes depending on language environment is open 
for future research



 

 

 
 
 
Chapter 4 
 
Statistical Challenges in Resting-State 
Functional Near-Infrared Spectroscopy Data 
Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



Chapter 4 

 62 

4.1. Theoretical Motivation 

As described in Chapter 2, the hemodynamic changes elicited by neuronal activity 
recorded in the functional near-infrared spectroscopy (fNIRS) signal contain multiple non-
neuronal fluctuations, such as instrumental noise and trends, subject-specific components 
(e.g., motion-related effects), and hemodynamic fluctuations originated in the cerebral and 
extracerebral compartments (Tachtsidis and Scholkmann, 2016; Pfeifer et al., 2018). These 
systemic physiological fluctuations are mainly related to changes in blood pressure (0.1 Hz), 
respiration (0.3 to 0.6 Hz), and cardiac pulsation (1 to 2 Hz) and are consistently present 
at specific frequencies and across measurement channels. Consequently, the RS-fNIRS 
signal shows a colored frequency spectrum (i.e., it is not a white process with equal energy 
across all its frequencies), and it exhibits non-zero temporal autocorrelation.  

This fact is relevant when resting-state (RS) functional connectivity is examined 
based on pairwise correlation measures. Physiological components in RS-fNIRS data 
introduce spurious common variance across time-series, artificially increasing correlation 
between the signals of different channels. RS-fNIRS time-series are also affected by the 
filtering effect of the actual hemodynamic response function (HRF) that acts as a low-pass 
filter with cut-off frequency approximately around 0.1 to 0.2 Hz. As first noted by Granger 
and Newbold (1974) the correlation between two random signals will artificially increase if 
these signals exhibit nonzero temporal autocorrelation. Thus, the intrinsic autocorrelation 
present in the RS-fNIRS time-series may artificially inflate correlation values, increase the 
false-positive rate under the null hypothesis of no correlation between channels, and 
potentially compromise the validity of data analyses outcomes (Huppert et al., 2016; 
Santosa et al., 2017). 

The impact of temporal autocorrelation in the validity of statistical estimation has 
been widely discussed in the analysis of task-related activity in functional magnetic 
resonance imaging (fMRI) data (Bullmore et al., 1996; Friston et al., 2000; Woolrich et al., 
2001), but only recently in the fNIRS literature (Barker et al., 2013; Hassanpour et al., 
2014; Barker et al., 2016; Huppert, 2016). The most common way to account for signal 
autocorrelation is to prewhiten the signal, so that the residuals of a linear regression model, 
describing the hypothesized task-related activity, become uncorrelated (i.e., white). The use 
of prewhitening in the analysis of RS data is less common, and only few studies have 
suggested prewhitening of the signal itself, either in fMRI (Christova et al., 2011; 
Arbabshirani et al., 2014) or fNIRS data (Santosa et al., 2017). By prewhitening RS data, it 
is expected that the signals become white, removing temporal autocorrelation, thus 
reducing false-positive rates.  

Yet, this approach also presents some caveats. It can be assumed that the colored 
frequency spectrum of the RS-fNIRS signal is partially originated by physiological noise or 
induced by the blurring effect of the HRF. However, spontaneous neural oscillations as 
measured with electrophysiological techniques also exhibit a colored frequency profile, 
typically characterized as a 1 J⁄  spectrum (Pritchard et al., 1992; Lombardi et al., 2017). In 
this scenario, convolving a neural signal with 1 J⁄  frequency profile with the HRF and 
adding physiological noise, as is the case in RS-fNIRS signals, would still leave a signal that 
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has a 1 J⁄  profile in the limited band of the HRF. Therefore, it might not be a reasonable 
null hypothesis to expect RS-fNIRS signals to be white, as this would imply that the 
information related to the HRF might have been partially or completely removed, which 
would complicate the neurophysiological interpretation of the signal that is left after 
applying prewhitening. A careful examination of the effect of prewhitening on the 
physiological and functional properties of the RS-fNIRS signal for functional connectivity 
analyses is necessary before routinely implementing this step in the RS-fNIRS 
preprocessing pipeline.  

The current chapter evaluated the effect of prewhitening during the analysis of 
experimental RS-fNIRS data. For this purpose, two previous fNIRS studies that assessed 
RS activity in infants (Homae et al., 2010; Watanabe et al., 2017) were replicated on a 
dataset collected in 4-month-old sleeping infants, by following similar data acquisition, 
preprocessing, and analysis procedures as in the original studies. Results obtained following 
a standard preprocessing pipeline (i.e., as done in the previous studies) were compared 
with the results after incorporating two common prewhitening approaches in the 
preprocessing pipeline. The two prewhitening approaches included a non-parametric 
approach (i.e., assuming no model for the autocorrelation) widely used for fMRI data 
analyses (Woolrich et al., 2001), and a parametric approach assuming a stochastic 
autoregressive (AR) process as described in Barker et al., (2013). The comparison of the 
two algorithms allowed evaluating the consistency of the results across different 
prewhitening methods.  

4.2. Methods 

Ethics Statement 

This study was carried out at the Basque Center on Cognition, Brain and Language 
and received approval from its local ethical committee. This study involved the 
participation of infant subjects. Prior to participation, parents were informed about the aim 
of the study, the experimental procedures, and their legal rights, including the right to 
withdraw from the study at any moment without providing a reason and with no negative 
consequences. Written informed consent was obtained from the parents prior to data 
acquisition. 

Study Population and Data Acquisition 

 Data from 24 healthy infants were included in this study (age: 124 ± 3 days, 12 
female). These data came from a subsample of the set of participants described in Chapter 
3, concretely from the bilingual group. Data acquisition procedures were the same as those 
described in Chapter 3. 

Data Preprocessing 

All data preprocessing and analysis were implemented in MATLAB (R2012b, 
R2014b, Mathworks, Massachusetts) using in-house scripts as well as third-party toolboxes 
and functions.  
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The following MATLAB Toolboxes were employed in the current study: 

- Homer2 Software Package (Huppert et al., 2009; https://homer-fnirs.org). 

- BrainWavelet Toolbox (Patel et al., 2014; http://www.brainwavelet.org/about). 

- Circular Statistics Toolbox (Berens, 2009; www.jstatsoft.org/article/view/v031i10). 

The preprocessing pipeline for each individual included the following steps: 

1. Light intensity data (i.e., raw data measured at the instrument) were converted into 
optical density changes. ð hmrIntensity2OD function in Homer2. 

2. Noisy segments typically occurring at the beginning and/or at the end of each 
dataset, corresponding to awake activity of the infants (i.e., before the infant fell 
asleep and/or after the infant woke up), were visually identified based on MATLAB 
plots and manually rejected. ð Plot function in MATLAB. 

3. Motion induced spikes and signal drifts were corrected using the wavelet-based 
despiking method (Patel et al., 2014; see Chapter 2) ð WaveletDespike function 
in Brain Wavelet Toolbox. Input parameters: wavelet = d4; threshold = 0.02; 
boundary = reflection; chsearch = moderate; nscale = extreme.  

4. Optical density data were converted into HbO and HbR concentration changes. 
Differential path length factors of 5.3 (760 nm) and 4.2 (850 nm) were considered 
based on the general equation presented in Scholkmann et al., (2013). ð 
hmrOD2Conc in Homer2.  

5. HbO and HbR signals were bandpass filtered between 0.005 and 1 Hz. This filter 
was selected in order to match one of the previous studies aimed to be replicated 
(Homae et al., 2010). ð hmrBandpassFilt in Homer2. 

6. Datasets were limited to 5100 samples (�571 seconds) to ensure a homogenous 
contribution across participants, in terms of number of observations, for the first 
and second-level statistical analyses. This step was performed by visually inspecting 
the data in order to select the segment displaying the best data quality. ð Plot 
function in MATLAB. 

7. Two prewhitening methods were implemented, creating three datasets for 
comparison in data analysis: 1) bandpass filter (standard data preprocessing), 2) 
non-parametric prewhitening, and 3) AR prewhitening.  

8. The two prewhitening approaches created beginning and end effects in the signal 
that must be removed prior to data analyses. Hence, the first 150 samples and the 
last 5 samples of the selected segments were removed. The same approach was 
followed for the standard preprocessing dataset without prewhitening to match its 
duration with the recording duration of the two prewhitening approaches. After this 
step, the total duration of the individual time-series employed in data analyses was 

4945 samples (�554 seconds). 
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Accounting for Temporal Autocorrelation with Prewhitening 

Let us consider that the time-series of a specific channel L follows a normal 
distribution with zero mean and covariance E6M (i.e., L ∼ N(0; E6M)), where M is the 
autocorrelation matrix of L describing the temporal correlation between each time point in 
the time-series and the rest of the time points. In order to remove temporal autocorrelation 
between sequential sample points, the aim of prewhitening is to find a matrix S that filters 
L such that QL ∼ N(0; E6QMQ<) and enforces that RSR= = T (Figure 4.1 and footnote1).  

On each participant, each prewhitening method was applied independently on a 
channel-by-channel basis, for HbO and HbR (46 channels × 2 hemoglobin parameters). In 
this work two common prewhitening procedures were implemented: 

1) A non-parametric approach based on the estimates of the autocorrelation 
coefficients of the data (MATLAB Box 4.1). 

2) A parametric approach based on an autoregressive (AR) model of the data.  

Non-parametric Prewhitening Approach 

In the non-parametric prewhitening approach, the matrix Q was defined based on 
the raw autocorrelation coefficients of the signal L. First, the raw autocorrelation coefficients 
of L were estimated (xcorr function in MATLAB) and used to define the sample 
autocorrelation matrix M, which is a symmetric Toeplitz matrix (toeplitz function in 
MATLAB). Then, the Cholesky decomposition [Golub and Van Loan, (2012); chol 
function in MATLAB] of M was computed to find U such that M = UU<. By defining Q =
U)>, it can be shown that the prewhitened signal L?@ = QL followed L?@ ∼
N(0;	E6QMQ<) = N[0;	E6U)>UU<(U)>)<] 	= 	N(0;	E6T). 

 
Figure 4.1 Autocorrelation matrix V obtained from real fNIRS data (1000 time points, left), is 
presented with an identity matrix (right) of the same size for comparison purposes. In V high 
correlation values at several time lags are observed, indicating high levels of correlation between 
sample points (i.e., temporal autocorrelation). By prewhitening, V is enforced to become an identity 
matrix (i.e., zero autocorrelation). 

1!"#	%[''!] = *"	+	.		If	/	 = 	0', then		%[//!] = %[(0')(0')!] = 	%[0''!0!] = 	0%[''!]0! =	*"0+0! 
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MATLAB Box 4.1 
Implementation of the non-parametric prewhitening approach on a single channel 

 

Parametric AR Model Fitting Prewhitening Approach 

The second prewhitening approach employed in this study attempted to model the 
signal autocorrelation in terms of an autoregressive (AR) process (Stoica and Moses, 2005; 
Madsen, 2007). In an AR model, the data at a specific time point yA is modelled based on 
the data from previous time points and a random white component εA ∼ N(0;	E6T), which 
is usually referred to as the innovation term of the signal. Mathematically, an AR model of 
order P of the signal L can be defined as Z% 	− 	[5Z%)5 	− 	[6Z%)6 	−	·	·	· 	−	[BZ%)B = 2%, 
where [%, (- = 1, . . . , ]) are the AR coefficients of the model. In this work, the AR 
coefficients were estimated following the forward–backward least-squares approach 
described in Barker et al., (2013) which is available in Homer2 (Homer2 – Utilities – 
iWLS). In this procedure, AR coefficients were calculated for increasing model orders to 
find the order that minimized a given model order selection criterion.  In this study, the 
AR coefficients up to an order of ]	= 150 coefficients were computed, and the model order 
that minimized the Bayesian Information Criterion (BIC) in this range was selected.  

The BIC is an index based on the likelihood function to aid model selection among 
a set of two or more alternative models. It is defined as: 

^+3 = 	−2 log(a) + @ log(5), 

where	@ represents the model order ], 5 the number of observations (i.e., the length of the 
autoregressive model for each ]) and a denotes the likelihood function of the model tested. 
It was observed that the optimal model order varied across channels and datasets with a 
range between ]	= 60 and ] = 110. Subsequently, the channel time-series L was filtered 
(filter function in MATLAB) with the linear filter defined by the AR coefficients of the 
selected model order, which resulted in the corresponding estimate of the innovation signal 
b that was used for subsequent analyses. 

 

 

% The following variables must be defined in advance: 
% data =  single channel signal 
 

% Calculate autocorrelation of data 
data_autocorr = xcorr(data, 'coeff'); 
             

% Keep only one side of the autocorrelation (they are symmetric) 
data_autocorr = autocorr(length(data_autocorr):end); 
             

% Create toeplitz matrix (V) of the autocorrelation sequence 
% Keep upper triangular only (it is symmetric) 
V = triu(toeplitz(data_autocorr)); 
             

% Apply cholesky decomposition à find K such that V = K*K' 
K = chol(V).'; % (.') to make it lower triangular 
S = inv(K); 
             

% Apply prewhitening 
data_pw = S*data;  
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Data Analysis 

Study 1: Experimental Resting-State fNIRS Data 

Functional Connectivity Analysis 

Functional connectivity (FC) analysis methods described in the following section 
were applied independently to data that were preprocessed with a standard approach 
without prewhitening, as well as to data prewhitened with the non-parametric and AR 
procedures, and for both HbO and HbR. First, as a measure of the FC between channels, 
pairwise Pearson’s correlation coefficients were computed between the time courses of the 
HbO, as well as HbR signals, between each channel pair for each subject (corr function in 
MATLAB, see also MATLAB Box A.3 in Appendix A). The correlation coefficients 
across all the channels can be represented as a FC matrix, where the =, > element of the 
matrix reflects the Pearson’s correlation coefficient between channels	= and >. Individual 
FC matrices were converted from r values to z values by Fisher’s r-to-z transformation 
(atanh function in MATLAB) and averaged across subjects (n = 24) to obtain group HbO-
FC and HbR-FC matrices. Average FC matrices were converted back to r values (tanh 
function in MATLAB) for the sake of presentation. 

Hierarchical Clustering Analysis 

A hierarchical clustering was performed at the group level (Homae et al., 2010, see 
MATLAB Box 4.2). First, HbO and HbR time-series of each participant were standardized 
to have zero mean and unit variance, and concatenated in time resulting in two datasets 
(HbO and HbR) with 46 channels × (4945 samples × 24 participants). Next, agglomerative 
hierarchical clustering was carried out on each of these datasets (linkage function in 
MATLAB) using correlation as distance metric (1 – r ) and the Ward method to group 
channels and clusters based on their degree of similarity. The dendrogram plot of the 
hierarchical cluster tree (dendogram function in MATLAB) was generated for two 
thresholds representing different levels of similarity. In order to display the same number 
of clusters (i.e., three or six clusters), different thresholds were considered across 
preprocessing methods (i.e., standard preprocessing or after prewhitening) and conditions 
(i.e., HbO, HbR). 

MATLAB Box 4.2 
Implementation of the group-level hierarchical clustering analysis 

 

% The following variables must be defined in advance: 
% data_HC = Group level matrix in the form time x channels obtained after  
% standardizing (zero mean and unit variance) and concatenating in time the  
% individual HbO or HbR time-series of all participants. 
% cluster_threshold = Threshold to define clusters and determine unique colors for  
% each cluster in the dendrogram plot. 
 

% Calculate distance between channels (e.g., correlation or Euclidean) 
data_dist = pdist(data_HC’, ‘correlation’); 
 

% Create the agglomerative hierarchical cluster tree (method: Ward) 
data_link = linkage(data_dist, ‘Ward’); 
 

% Dendrogram plot 
dendrogram(data_link, 0, ‘ColorThreshold’, cluster_threshold); 
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Phase Difference Analysis 

For each subject dataset the average phase difference between HbO and HbR 
signals was calculated on each individual channel to obtain the hemoglobin phase of 
oxygenation and deoxygenation (hPod) as explained in Watanabe et al., (2017). Briefly, for 
each channel Hilbert transformation was applied to HbO and HbR signals to calculate their 
corresponding instantaneous phase signals. These signals were then subtracted to obtain a 
phase difference signal between HbO and HbR. Next, the temporal average of the phase 
difference signal was computed for each HbO and HbR channel pair, resulting in a phase 
difference value (i.e., hPod) per channel. Standard and polar histograms were computed 
for each subject as well as for the entire group, where each subject contributed 46 values 
(i.e., number of channels). Statistical differences in average hPod values between the 
methods were investigated by using a Watson–Williams test (Berens, 2009), a circular 
analogue to a one-factor ANOVA. The same test was also employed in post-hoc pairwise 
comparisons. The MATLAB script to compute the phase difference analysis as 
implemented here is detailed in Appendix A – fNIRS Data Quality Assessment (MATLAB 
Box A.3). 

Study 2: Simulations 

Assessing False Positive Rate in Randomly Generated Time-series 

To investigate the effect of prewhitening on the Pearson’s correlation coefficient, 
two sets of randomly generated time-series of length 5000 sample points were simulated, 
and the distribution of the obtained Pearson’s correlation coefficients between time-series 
pairs was evaluated over 3000 repetitions (e.g., Bright et al., 2016; Santosa et al., 2017). 
One set of simulated time-series was generated by filtering two random normally distributed 
signals with a 1 J⁄ shape filter, in order to make these signals match the frequency spectrum 
of spontaneous neural oscillations observed in electrophysiological recordings (Pritchard et 
al., 1992; Lombardi et al., 2017). The second set of simulated time-series pairs was 
generated with a white frequency spectrum. In addition, two different conditions of 
correlation were assessed for each set: 1) no correlation induced (i.e., the distribution of 
the correlation coefficients is expected to be centred in zero), and 2) an induced correlation 
of r = 0.5, which was generated by multiplying the time-series by an upper triangular matrix 
obtained by the Cholesky decomposition of the desired correlation matrix (i.e., [1 0.5; 0.5 
1]). 

Subsequently, the following processing steps were independently applied in each of 
the four simulated datasets (see Figure 4.2): 

1. Signals were convolved with a hemodynamic response function (HRF) generated 
using a gamma function c	(-; 	5, !) with parameters n = 4 and λ = 2.  

2. Signals were added components simulating physiological noise that were generated 
as narrow-band filtered noise (0.25 - 0.35 Hz for respiration, 1.95 - 2.05 Hz and 
3.95 - 4.05 Hz for cardiac pulse), as well as a white-noise component that simulated 
hardware-related random noise. This step yielded signals with similar power 
spectral density as our real fNIRS experimental data. 
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Figure 4.2 Example of a simulated signal and its power spectral density at each processing step. The 
power spectrum of an example of real experimental HbO data is presented for comparison.  

3. Signals were bandpass filtered between 0.005 and 1 Hz, following the same 
preprocessing pipeline as the one employed for experimental data.  

4. Prewhitening was applied independently to each signal using two different 
procedures (i.e., non-parametric approach and parametric AR fitting approach). 

5. In each repetition (n = 3000) and after every preprocessing step, Pearson’s 
correlation coefficient was computed between pairs of randomly generated signals 
to evaluate the effect of each step in the distribution of correlation coefficients. 

Effect of Prewhitening on Simulated Resting-State Functional Connectivity Patterns 

To further investigate the effect of prewhitening on the analysis of resting-state 
functional connectivity (RSFC), 20 datasets with similar RSFC patterns as those observed 
in real experimental data were simulated. Each dataset included 40 time-series of 5000 
sample points, thus each of the datasets simulated RS data of a participant. The original 
time-series were random uncorrelated signals with a 1 J⁄  frequency spectrum. Different 
levels of correlation between the simulated signals were induced, producing adjacency 
matrices showing specific and known correlation patterns. The same correlation structure 
was imposed in the 20 simulated participants. The correlation structure was induced to 
approximately match the shape of the adjacency matrices observed in our experimental RS-
fNIRS data. A correlation of r = 0.8 was induced between neighbouring channels, whereas 
a correlation of r = 0.6 was induced between homotopic channels. Correlations of r = 0.1 
or r = 0.2 were simulated between the remaining pairs of channels. Similar to previous 
simulations, these signals were convolved with the HRF and corrupted with physiological 
noise to create simulated fNIRS datasets, and then bandpass filtered. The two prewhitening 
procedures were then applied to these datasets. Changes in the spatial patterns of 
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correlation were investigated by assessing the group level adjacency matrices of the 
simulated fNIRS data after bandpass filtering (standard preprocessing) and after the two 
types of prewhitening. The same hierarchical clustering approach as described above was 
also performed to investigate whether the induced spatial clustering structure was preserved 
after each processing step. 

4.3. Results 

Study 1: Experimental Resting-State fNIRS Data 

Functional Connectivity Analysis 

The effect of the different preprocessing steps and prewhitening methods on the 
HbO and HbR signals is illustrated in Figure 4.3, for an exemplar subject. Without 
bandpass filtering, the HbR signal showed a high autocorrelation value even after 300 

temporal lags (�30 s), whereas the autocorrelation coefficients of the HbO signal became 

approximately zero after �200 temporal lags (�20 s). After bandpass filtering (0.005 to 1 
Hz), the HbO and HbR signals showed similar autocorrelation values that decreased to 
zero after ∼200 temporal lags. As shown in the bottom plots of Figure 4.3, the non-
parametric and AR prewhitening procedures reduced the autocorrelation of the data, as 
expected for its purpose. Autocorrelation coefficients shrink to values closer to zero at 
shorter lags using the AR approach than the non-parametric approach. The range of the 
optimal AR model in this study varied from P = 60 up to P = 110 at a sampling rate of 8.93 
Hz (i.e., a range from 6.7 to 12.3 s), which was similar to those observed in Santosa et al., 

(2017) which reported model orders up to P = 40 at a sampling rate of 4 Hz (i.e., also �10 
s). Apart from the sampling rate, the optimal AR model order is also related to signal quality 
and might vary across measurement channels. 

 
Figure 4.3 Left column represents the times-series of a single channel for HbO (red) and HbR 
(blue) at different steps of the preprocessing. The right column represents the first 300 
autocorrelation coefficients obtained at each preprocessing step. 
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The FC matrices for the three preprocessing approaches, for an individual subject 
(first row) and at the group level (second row), are displayed in Figure 4.4. It is generally 
assumed that HbO and HbR signals in fNIRS data should be negatively correlated (see 
Appendix A). This assumption was fulfilled both at the individual and at the group level 
when data was only preprocessed using bandpass filtering. Moreover, homologous regions 
of both hemispheres showed high correlation values in HbO and HbR, forming clusters 
and a clear spatial distribution around the main diagonals. In contrast, by incorporating any 
of the two prewhitening procedures as part of the preprocessing pipeline the negative 
correlation between HbO and HbR disappeared, and the correlation between homologous 
regions was only evident in HbO, with a different spatial distribution in each method. 

The effect of prewhitening was also investigated by looking at the distribution of 
correlation values across HbO, HbR, and between HbO and HbR (Figure 4.5). For that, 
correlation coefficients were transformed to z-scores by Fisher’s z-transformation. For each 
condition (i.e., HbO, HbR, and HbO-HbR), individual z-scores were evaluated as random 
effects and ANOVA was performed with preprocessing method as a factor (3 groups of 24 
infants in total). Pairwise multiple comparison tests were performed following the Tukey’s 
honestly significant difference criterion, a multiple comparisons test on the group means 
based on a studentized range distribution. For HbO, a significant difference between the 
three methods (F[2,69] = 8.62, p = 0.0004) was observed. Post-hoc tests showed that z-
scores in HbO for the AR method were larger than those of the non-parametric approach 
(p = 0.0002). For HbR, a significant difference between the methods (F[2,69] = 146.13, p 
< 0.00001) was also found. Post-hoc tests revealed that z-scores in the bandpass filter 
method were larger than those of the non-parametric (p < 0.00001) and the AR approaches 
(p < 0.00001). For the HbO-HbR condition, a significant difference between the methods  

 
Figure 4.4 Adjacency matrices for an individual subject (first row) and at the group level (second 
row) for the three types of preprocessing. In each plot, the matrix for HbO and HbR is shown in 
the top-left part and bottom-right part, respectively (RH: channels in right hemisphere, LH: 
channels in left hemisphere). The matrix representing the correlation between HbO and HbR is 
shown in the top-right side. Note that the plots are symmetric with respect to the main diagonal. 
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Figure 4.5 Histograms of the group level correlation r values for the different preprocessing 
methods. Each column shows the comparison between preprocessing methods for the different 
conditions (i.e., HbO, HbR, and HbO − HbR). Each infant contributed with 46 × 45⁄/2 = 1035 
correlation r values (upper triangular connectivity matrix) to each histogram. 

was also observed (F[2,69] = 91.9, p < 0.0001). Pairwise post-hoc tests demonstrated that z-
scores in the bandpass filter condition were smaller (i.e., larger negative correlation values) 
than in the non-parametric (p < 0.00001) and AR approaches (p < 0.00001). 

Hierarchical Clustering Analysis 

As illustrated in Figure 4.6, the results of the hierarchical clustering analysis 
obtained with the standard preprocessing were consistent with the results previously 
reported in Homae et al., (2010). A large degree of reproducibility was observed between 
studies despite differences in data acquisition (46 channels as opposed to 94 channels) and 
dataset recording duration for each infant (9 minutes in our study instead of 3 minutes in 
Homae et al., 2010). Also, 4-month-old infants were assessed in the current study, which 
corresponds to an intermediate age between the infants at 3 and 6 months of age which 
were tested in the previous study. For HbO, clusters were formed between homologous 
regions of both hemispheres if only bandpass filtering was applied. These cluster split into 
individual frontal, temporal, and parietal regions on each hemisphere at a lower threshold 
(i.e., larger degree of similarity). In the non-parametric and AR prewhitening approaches 
clustering between homologous regions was preserved, but with different spatial patterns in 
each method. In the non-parametric approach, the most posterior parietal channels in both 
hemispheres clustered along with the most frontal channels. The AR prewhitening 
approach showed a similar distribution as the non-parametric approach, except the 
anterior–posterior cluster was formed between channels located in the frontotemporal 
region and the posterior parietal region. For the lower threshold, AR prewhitening resulted 
into a larger number of interhemispheric clusters than the non-parametric approach, being 
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Figure 4.6 Hierarchical clustering analysis of HbO and HbR data. Top two rows show results for 
the higher threshold corresponding to three clusters. The two rows at the bottom of the figure show 
results for the lower threshold corresponding to six clusters.  

the clustering in the later condition more similar to that obtained with the standard 
preprocessing. As for HbR data, the spatial distribution of clusters with only bandpass 
filtering was comparable to that obtained in HbO and to previously reported results 
(Homae et al. 2011). Results with the two prewhitening procedures exhibited a less bilateral 
spatial distribution, which was restricted to a few channels. A frontal cluster involving both 
hemispheres was formed in the two prewhitening approaches, regardless of the threshold, 
but channels over the main temporal and parietal clusters appeared scattered across and 
within hemispheres, with no clear spatial configuration. 
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Hemoglobin Phase Difference Analysis 

The distribution of phase difference (hPod) values across channels in a 
representative subject as well as at the group level for the three preprocessing methods is 
shown in Figure 4.7. The distribution of hPod values after bandpass filtering followed a 
similar pattern as in previous observations (Watanabe et al., 2017). In the standard and 
polar histograms with only bandpass filtering most hPod values were close to π radians (i.e., 
180 degrees), which corresponds to an antiphase pattern between HbO and HbR signals. 
Prewhitening disrupted this pattern, making the overall distribution of hPod values more 
widespread. The distribution of hPod values for the AR approach showed a mode closer 
to π (i.e., antiphase) than the non-parametric approach. A Watson–Williams test in average 
hPod values revealed a statistically significant difference between the methods (F[2, 69] = 
63.4342, p < 0.0001). Post-hoc pairwise comparison tests revealed that mean hPod values 
in the bandpass filter method were larger than those of the non-parametric (F[1, 46] = 
144.8, p < 0.0001) and AR approaches (F[1, 46] = 64.7, p < 0.0001). Significant differences 
were also observed between the two prewhitening methods, the AR approach showing 
larger hPod values than the non-parametric approach (F[1, 46] = 14.1, p = 0.0004).  

 

 
Figure 4.7 Polar histograms showing phase difference (hPod) values for an individual subject (top 
row) and at the group level (middle row) for the three preprocessing methods. Histograms in 
bottom row show the distribution of absolute hPod values at the group level.  
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Study 2: Simulations 

The histograms of the Pearson’s correlation coefficients after each preprocessing 
step, and for each simulated dataset are displayed in Figure 4.8. Signals showing a 1 J⁄  
spectrum and a white spectrum are shown on the top and bottom part of the figure, 
respectively. For the two sets of simulated data without correlation (r = 0), the distribution 
of correlation coefficients became wider after convolution with the HRF and bandpass 
filtering, suggesting that both steps artificially increased correlation values and consequently 
increased false-positive rates. After prewhitening, correlation coefficients became centred 
in zero again. The distribution of the coefficients with the non-parametric prewhitening 
approach was similar as in the distribution obtained with the original signal, whereas it 
became narrower after AR-based prewhitening. For an induced correlation of r = 0.5 the 
distribution of correlation coefficients was wider for the signals with a 1 J⁄  power spectrum 
than for the signals with a white spectrum, due to their intrinsic autocorrelation. Similar to 
the scenarios observed with a correlation of r = 0, convolving the signals with the HRF 
widened the distribution of correlations, and bandpass filtering reduced the confounding 
effects due to physiological noise. Decisively, both prewhitening approaches substantially 
reduced the correlation between the time-series towards zero. Notably, the non-parametric 
prewhitening resulted in distributions centred in zero for datasets with 1 J⁄  spectrum in the 
two correlation conditions. Similar results were obtained for the dataset with a white 
spectrum and r = 0. The dataset with a white spectrum and r = 0.5 showed a distribution 
slightly shifted toward positive correlation values. The AR approach showed a similar 
distribution across datasets and conditions, characterized by a narrow shape and centred 
above zero. 

 
Figure 4.8 Distribution of Pearson’s correlation coefficients (3000 repetitions) for two sets of 
simulated time-series under different levels of correlation. The distribution of correlation 
coefficients is plotted after each preprocessing step. Each plot represents (a) uncorrelated signals 
with 1 1⁄  power spectrum. (b) signals with 1 1⁄  power spectrum and an induced correlation of r = 
0.5. (c) Uncorrelated signals with a white power spectrum. (d) signals with a white power spectrum 
and an induced correlation of r = 0.5. NP = non-parametric. 
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Group level adjacency matrices for the four conditions assessed in the second set 
of simulations are presented in Figure 4.9. Adjacency matrices for the simulated (raw) 
neural data and for the fNIRS data showed the expected induced correlation patterns. By 
contrast, the two prewhitening procedures reduced the correlation between channels 
toward values close to zero, in agreement with the patterns of the distributions shown in 
Figure 4.8. Prewhitening also altered the spatial configuration of the adjacency matrices, 
although part of the induced correlation structure is preserved (note differences in the scale 
of the plots in the second and third rows).  

Finally, the hierarchical clustering analysis for the simulated raw and fNIRS data 
(Figure 4.10) showed the expected spatial clustering configuration, with “anterior” and 
“posterior” channels clustering together and splitting by “hemisphere” when the threshold 
was set to display larger degrees of similarity (i.e., dark and light for blue and red colours). 
After prewhitening, the “anterior” and “posterior” clusters were preserved at the higher 
threshold, but the clustering configuration was disrupted when clusters between more 
similar channels were displayed. With the non-parametric prewhitening the spatial 
configuration changed and clusters that do not belong to the original structure were formed. 
The AR prewhitening approach also resulted in different clusters from those of the original 
configuration. 

 

Figure 4.9 Group-level adjacency matrices from simulated data generated to show RSFC patterns 
resembling real data. First row displays the results for the simulated raw (neural) and fNIRS data. 
The second row shows the adjacency matrices after applying the two prewhitening procedures. The 
third row shows the same matrices after adjusting the scale. 
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Figure 4.10 Results of the hierarchical clustering analysis corresponding to simulated “participants”. 
First row shows the results for the simulated raw (neural) and fNIRS data. Second row displays the 
results after applying each prewhitening procedure. Each color represents channels that are grouped 
together forming clusters based on similarity. For the blue and red clusters, dark and light colors 
indicate that these channels belong to the same cluster if a higher threshold is considered, but split 
into two clusters at lower thresholds (i.e., larger degree of similarity). In the non-parametric method, 
green and yellow colors indicate that a new cluster is formed between those channels. 

4.4. Discussion 

The validity of the standard RS-fNIRS data analysis approach is compromised by 
the presence of physiological and artefactual fluctuations that increase the level of 
autocorrelation in the data, as well as introduce shared variance across different channels, 
leading to uncontrolled false-positive rates (Santosa et al., 2017). One of the main causes 
of this issue is the presence of temporal autocorrelation in the RS-fNIRS data due to the 
slow nature of hemodynamic fluctuations in the extracerebral and cerebral compartments. 
To overcome this problem, it has been suggested that temporal autocorrelation should be 
removed in RS-fNIRS data via prewhitening procedures before performing RSFC analyses. 
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The rationale presented in Santosa et al., (2017) to recommend the use of 
prewhitening in RS-fNIRS data, which has also been proposed for RS-fMRI studies (e.g., 
Christova et al., 2011), is based on the fact that temporal autocorrelation inflates relatedness 
measures, such as Pearson’s correlation coefficient. In Santosa et al. (2017), two random 
uncorrelated signals were convolved with a canonical hemodynamic response function 
(HRF) and added physiological noise (i.e., cardiac pulse and respiration) to show the 
properties of real RS-fNIRS signals. They demonstrated that this step made signals self-
correlated, consequently increasing correlation between them and producing false-positive 
rates around 80%. In their work, prewhitening indeed removed temporal autocorrelations, 
and false-positive rates returned to the expected true value of 5%. Nevertheless, it is also 
true that the neuronal signals underlying the hemodynamic fluctuations observed in fNIRS, 
and also fMRI, are not expected to show a white frequency spectrum. Prewhitening the 
fNIRS signal, and consequently altering the expected power law behaviour of RS-fNIRS 
data in the frequency band of the HRF, may compromise the interpretation of RSFC results 
(and its link with previous literature assessing RSFC), as the prewhitened signals will no 
longer hold the specific properties of spontaneous hemodynamic fluctuations as measured 
with fMRI and fNIRS (i.e., BOLD or HbO and HbR). 

Here, using experimental RS-fNIRS data obtained from 4-month-old infants, the 
effect of two prewhitening methods (prewhitening based on a non-parametric approach, 
and prewhitening based on an AR fitting approach) on different functional connectivity 
measures was assessed, and compared with a standard preprocessing pipeline not including 
prewhitening. Furthermore, results were also compared with previous studies measuring 
RS activity in infants using fNIRS. This study yielded three relevant findings. First, the 
results of two previous infant RS-fNIRS studies (Homae et al., 2010; Watanabe et al., 2017) 
were replicated using the standard preprocessing pipeline including bandpass filtering but 
not prewhitening. Second, results after data prewhitening were different from those 
presented in the original studies. Third, each prewhitening method produced different 
results.  

One of the most relevant observations of this work is that the negative correlation 
and antiphase state between HbO and HbR signals was no longer visible after prewhitening 
(Figures 4.4, 4.5, and 4.7), although there was a slight tendency towards an antiphase 
relationship with the AR approach. This result contradicts previous observations of the 
intrinsic physiological relationship between HbO and HbR signals (Wolf et al., 2002-; 
Obrig and Villringer, 2003; Watanabe et al., 2017), raising an important discussion point. 
The autocorrelation of the signal originates from all its sources, including not only 
artifactual and non-neurobiological physiological confounds, but also brain-related 
hemodynamic activity, as the HRF acts as a low-pass filter. Removing temporal 
autocorrelation from RS-fNIRS signals might imply that the hemodynamic signal of interest 
is also partially or completely removed, causing that the expected negative correlation 
between HbO and HbR signals disappears. This fact raises concerns about the effects of 
using prewhitening in RS-fNIRS studies. Furthermore, it questions the neurobiological 
significance of the remaining signal after applying prewhitening.  
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It could be assumed that the signals after prewhitening (i.e., innovations) do not 
represent HbO and HbR fluctuations, but they reflect the activity-inducing signals 
underlying them. From that perspective, prewhitening could be understood as a 
hemodynamic deconvolution procedure, as it has been proposed for fMRI data analysis 
(Gitelman et al., 2003; Caballero et al., 2013; Karahanoğlu et al., 2013). However, this is 
not the primary goal of prewhitening as it is understood in this work (i.e., removing the 
signal autocorrelation). Results of the current work indicate that further investigation on the 
neurobiological relevance of the prewhitened signal in RS-fNIRS data is still required 
before directly adopting this procedure. 

Results with simulated data for both prewhitening approaches indicated a significant 
reduction in the correlation values obtained in HbR adjacency matrices, but not in HbO 
(Figures 4.4 and 4.5). It is important to note that motion induced artifacts, although sparse, 
might still be present in experimental RS-fNIRS data, and potentially modulating 
correlation between channels. Here a standard Pearson’s correlation approach was 
followed in order to match previous literature, but FC matrices can also be calculated based 
on robust correlation methods which downweight the effect of motion artifacts (e.g., 
Santosa et al., 2017; see also Chapter 3). Prewhitened data was visually inspected and time-
points presumably showing motion related artifacts co-occurred across HbO and HbR. 
Therefore, differences across HbO and HbR on the distribution of correlation values after 
prewhitening cannot be attributed to different motion-related effects across components.  

Alternatively, these results could be explained by the fact that HbO is more sensitive 
to physiological fluctuations than HbR. Thus, HbO might be more prone to non-stationary 
low-frequency physiological fluctuations related to modulations in cardiac rate (Kirilina et 
al., 2013), breathing (Holper et al., 2015), and systemic blood pressure (Boas et al., 2004; 
Kirilina et al., 2012). It is difficult to explain these physiological processes by means of 
stationary models of correlations such as those explored here. Nonetheless, these processes 
could potentially modulate non-stationary dynamics of hemodynamic fluctuations during 
resting-state, and account for a substantial part of the correlation between channels in 
experimental HbO data after prewhitening. 

Finally, simulations demonstrated that convolving two uncorrelated time-series with 
the HRF artificially increased the correlation between them, resulting in larger false-positive 
rates. These results were already noted by Santosa et al., (2017) in similar simulations, and 
they are also in line with the simulations of fMRI-like data reported in Bright et al., (2016). 
Figure 2 in Bright et al., (2016) demonstrated that false-positive rate increased due to the 
effect of bandpass filtering. Specifically, narrower bandpass filters and faster sampling rates 
showed the highest false-positive rates (the effect of bandpass filtering the data can be 
considered equivalent to convolution with the HRF). In all the simulated conditions (i.e., r 
= 0 and r = 0.5), AR prewhitening removed correlation between the signals and centred the 
distribution of the measured correlation r values in zero. Non-parametric prewhitening also 
removed the correlation and centred the correlation r values in zero, except for the signals 
with a white spectrum and r = 0.5, where the distribution of correlation coefficients was 
slightly shifted toward positive values.  
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In the second set of simulations, modulations in RSFC spatial correlation patterns 
due to the effect of prewhitening were investigated. Similar correlation patterns were 
observed between the “original data” (i.e., simulated neural activity where the correlation 
structure was induced) and the simulated “fNIRS data”. For both prewhitening approach 
investigated here, correlation between channels was reduced to close to zero levels, and the 
shape of the adjacency matrices disrupted. It is important to note that all the “participants” 
were simulated with the same original correlation structure. This is a very unlikely scenario 
in the case of real RS-fNIRS data where results are likely to differ considerably after 
applying prewhitening. 

4.5. Summary 

The RS-fNIRS signal requires specific considerations during data preprocessing 
and analysis. In particular, the RS-fNIRS signal shows a colored frequency spectrum, which 
can be observed as temporal autocorrelation, thereby introducing spurious correlations. 
Prewhitening of the RS-fNIRS signal has been proposed as a necessary step to remove the 
signal temporal autocorrelation and therefore reduce false-discovery rates. However, the 
impact of this step on the analysis of experimental RS-fNIRS data has not been thoroughly 
assessed prior to the present study. This chapter investigated the implications of including 
prewhitening as part of the RS-fNIRS data preprocessing pipeline. More specifically, the 
effect of prewhitening was assessed by replicating the results of two previous infant RS-
fNIRS studies, and comparing the outcome of a standard preprocessing pipeline with the 
outcome after incorporating prewhitening. Results from previous studies were replicated 
with the standard preprocessing pipeline but not with the ones including prewhitening. 
Importantly, the expected anticorrelation and antiphase state between HbO and HbR 
disappeared after data prewhitening. Also, different prewhitening procedures yielded 
different results, both compared to the standard RS-fNIRS preprocessing method and 
across prewhitening procedures. Undoubtedly, the statistical challenges that have been 
recently described by Huppert et al., (2016) and Santosa et al., (2017) for both functional 
task-based and resting-state fNIRS data should be taken into consideration. However, based 
on these results, a better understanding of the effect of prewhitening in RS-fNIRS data, and 
of the neurophysiological significance of the prewhitened signal, is still required to 
determine if prewhitening should be applied and, if so, which prewhitening procedure is 
more appropriate.  
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5.1. Theoretical Motivation 

 The main goals of this Chapter are to investigate the functional neural correlates of 
speech processing in 4-month-old infants, and evaluate potential differences between 
monolingual and bilingual infants. While Chapter 3 illustrated a comparable functional 
brain network organization across bilingual and monolingual 4-month-olds during a resting-
state condition, it is still unclear whether neural adaptations across these two populations 
are observable during speech processing.  

 Previous studies showed great variability on the reported brain activation patterns 
supporting speech processing in 4-month-old infants. This variability might be partly 
explained by various methodological limitations present in these works such as a small 
sample size or a reduced data quality. To overcome these limitations, another goal of this 
Chapter is to implement a methodology that can be used to reliably identify the brain areas 
responsible for speech processing in infants using functional near-infrared spectroscopy 
(fNIRS) (see Chapter 2 for a review). First, a large number of participants with high data 
quality are considered. The effect of global systemic physiology in the estimated brain 
responses is investigated, as previous works suggested that functional neuroimaging studies 
using fNIRS should correct for the possible task-evoked physiological noise (Pfeifer et al., 
2018). Following the recommendations outlined in the fNIRS literature HbO and HbR 
data are analysed and reported in the results (Obrig and Villringer, 2003). Finally, efficient 
procedures for stimuli presentation that simultaneously allow the detection of brain 
activation and the accurate estimation of the shape of the hemodynamic response are 
implemented (Kao et al., 2009). The group-level data analyses approach and the methods 
for performing statistical comparisons between experimental groups include procedures 
for multiple comparison correction. 

 In the first part of this Chapter the brain areas that have been identified as part of 
the language processing network in infants are described. Then, literature is linked with the 
main theoretical question of interest for this work, which aims to examine differences in 
brain activation patterns during speech processing across monolingual and bilingual infants 
(see also Chapter 1, where the main developmental milestones of bilingual language 
acquisition and cognition are described). 

Neural Correlates of Speech Processing in Infants  

 The brain regions involved in speech processing are similar across infants and adults 
(e.g., Friederici, 2002; Meyer et al., 2002; Perani et al., 2011). In infants, the temporal and 
frontal perisylvian brain regions seem to play a central role in processing speech sounds. 
Specifically, the primary and secondary auditory cortices in the superior temporal gyrus 
and the inferior frontal gyrus have been consistently reported as showing activation in 
studies assessing brain responses to speech in newborns (Peña et al., 2003; Kotilahti et al., 
2010; Perani et al., 2011; Sato et al., 2012; Vannasing et al., 2016; May et al., 2017) and 
older preverbal infants (Dehaene-Lambertz et al., 2002; Dehaene-Lambertz et al., 2006; 
Homae et al., 2006; Bortfeld et al., 2009; Dehaene-Lambertz et al., 2010; Fava et al., 2014; 
Shultz et al., 2014; Homae et al., 2011; Minagawa-Kawai et al., 2011; Altvater-Mackensen 
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and Grossman, 2016). Some of these studies also addressed the longstanding question of 
whether infants are born with innate mechanisms that are preferentially attuned to process 
speech in the left hemisphere (LH), or whether the observed LH dominance is common 
to all acoustic signals, and this hemisphere only becomes functionally specialized for speech 
after certain amount of experience with linguistic inputs. In order to answer this question, 
the studies compared prelinguistic infants’ brain responses to speech stimuli and a diverse 
range of non-speech stimuli with similar structured acoustic properties.  

Backward speech has been one of the most commonly employed non-linguistic 
acoustic control condition for forward speech. Backward speech preserves fast transitions 
present in forward speech, and it also shows similar pitch and intensity characteristics. 
However, several segmental and suprasegmental information is altered in backward 
sentences, and this condition is distinctly non-linguistic, since most of its sounds cannot be 
produced by the human vocal tract. Studies in newborns demonstrated enhanced activation 
to forward vs. backward speech stimuli mainly over temporal brain regions in the LH (Peña 
et al., 2003; Sato et al., 2012; Vannasing et al., 2016), and in the left angular gyrus and 
precuneus in 2-3-month-old infants (Dehaene-Lambertz et al., 2002). 

It has been proposed that speech processing requires integrating linguistic 
information over multiple time-scales (Hickock and Poeppel 2007). One scale refers to 
fast, segmental, information conveyed by separable sound units in speech, such as 
phonemes. Another scale denotes slow, suprasegmental, information carried by larger 
speech chunks (i.e., syllables, words or phrases), and which incorporates various aspects of 
spoken language such as intonation patterns or rhythm; also known as prosody. According 
to this hypothesis, the sensitivity to specific spectrotemporal properties of speech differs 
between hemispheres, with fast/segmental phonetic level information recruiting the 
auditory cortex bilaterally, and slow/prosodic information being predominantly processed 
over the right auditory cortex (Hickock and Poeppel 2007). Based on this premise, and 
given the importance of linguistic rhythm for language discrimination during the first stages 
of language acquisition (Gervain et al., 2010, see also Chapter 1), various works have 
investigated the early sensitivity to segmental and suprasegmental aspects of speech in 
infants’ left and right auditory cortices.  

Using non-speech acoustic stimuli with varying temporal structures (fast vs. slow) 
resembling the temporal structure of different speech formants (e.g., phonemes, syllables), 
Telkemeyer et al. (2009) demonstrated that newborns preferentially process fast acoustic 
modulations, such as those present in phonemes, over bilateral temporo-parietal regions; 
whereas a right hemispheric (RH) dominance was observed for slow acoustic modulations 
with prosodic like temporal properties. This hypothesis was further supported by Homae 
et al. (2006) which showed similar bilateral activation patterns to both normal and artificially 
flattened speech stimuli in 3-month-old infants. Flattened speech conveys the same 
segmental information as normal speech, but in this condition the prosodic information of 
the original sentence has been removed. Indeed, direct comparisons between normal and 
flattened conditions in this study revealed enhanced activation over RH temporo-parietal 
regions for normal speech (Homae et al., 2006). Perani et al., (2011) observed similar brain 
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activation patterns in newborns presented with normal and hummed speech stimuli, 
primarily involving the superior temporal gyrus, the inferior frontal gyrus and the inferior 
parietal lobule bilaterally. Instead, flattened speech elicited deactivation responses over 
inferior frontal cortex, hippocampus and posterior cingulate cortex in both hemispheres, 
and in the left inferior parietal lobule. A comparison between stimulus conditions revealed 
a stronger activation for normal speech as compared to flattened speech over the right 
auditory cortex. As opposed to flattened speech, hummed speech is an acoustic control 
condition where fast transitions mainly reflecting phonemic information have been 
removed, but prosodic information remains unchanged. The lack of hemispheric 
specialization between normal and hummed speech observed in this study might reflect the 
essential role of sentential prosody during the early stages of language acquisition. 

Most of the above reviewed neuroimaging studies assessing speech processing in 
infancy reported functional activation in classic LH language areas in response to forward 
speech sounds only; or alternatively, a superiority in these areas to process speech stimuli 
as compared to non-speech stimuli (Peña et al., 2003; Kotilahti et al., 2010; Sato et al., 
2012; Vannasing et al., 2016; May et al., 2017). Studies assessing infants between 2-4 
months of age also reported evidence supporting a LH advantage for speech processing 
(Dehaene-Lambertz et al., 2002; Dehaene-Lambertz et al., 2010; Minagawa-Kawai et al., 
2011). However, several works have also provided evidence against the postulated LH 
superiority for speech processing. For example, Dehaene-Lambertz, et al., (2002) observed 
significant differences in lateralization between forward and backward speech stimuli over 
parietal (e.g., angular gyrus and precuneus), but not temporal regions. May et al., (2017) 
reported greater activation to forward vs. backward speech over bilateral anterior temporal 
regions for participants’ native language, but not when these conditions were contrasted 
using non-native speech sounds. Perani et al., (2011) showed comparable levels of 
activation over left and right auditory cortices in response to normal speech, and Fava et 
al., (2014) reported no differences between speech and music processing in preverbal 
infants.  

Language Discrimination in Infants 

Language acquisition begins as soon as infants are able to hear spoken language, 
about 3 months prior to birth (e.g., Werker, 2018). Exposure to their native language while 
still in the womb modulates infants’ language preference at birth, which is reflected by the 
infants’ behavioural preference for a familiar language by the time they are born (Mehler 
et al., 1988; Moon et al., 1993). Research examining the neural foundations of infants’ early 
native language preference usually reported increased sensitivity to native speech stimuli. 
Nonetheless, the interpretation of the outcomes derived from these studies is not always 
straightforward, since direct statistical comparisons between conditions are usually not 
performed.  

In newborns, May et al., (2011) reported an overall increase in activation in various 
fNIRS channels distributed across both hemispheres when listening to a familiar language 
(English), and a deactivation response when listening to an unfamiliar language (Tagalog). 
However, direct comparisons between the two conditions yielded no significant differences. 
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Sato et al., (2012) observed a selective activity to the maternal language (Japanese vs. 
English) in one fNIRS channel located in left temporo-parietal areas. In this age group, 
Vannasing et al., (2016) also provided evidence for a hemispheric functional asymmetry in 
language processing, characterized by an early LH dominance for native speech stimuli 
(French), and a RH dominance for non-native speech stimuli (Arabic); but direct statistical 
comparisons between native and non-native speech stimuli were either not significant or 
not presented in the results. On the other hand, May et al., 2017 showed no differences in 
brain activation patterns between native (English) and rhythmically distinct non-native 
language (Spanish) conditions. However, their results indicated a difference over bilateral 
anterior temporal regions between FW and BW speech for native language only, which 
was interpreted as an effect of language familiarity. 

Specialized brain responses for native language processing have been also observed 
later in development. In 4-months-old infants, familiar (Japanese) and unfamiliar (English) 
conditions comparably activated left temporal regions, but the magnitude of the response 
in a fNIRS channel located in the left superior temporal area was significantly	higher during 
maternal language processing (Minagawa-Kawai et al., 2011). In full-term (3 and 6-month-
old) and preterm (6 and 9-month-old) infants, patterns of brain oscillatory activity measured 
using electroencephalography (EEG) showed enhanced gamma-band responses to native 
(Italian) and non-native, but rhythmically similar (Spanish), languages as compared to a 
non-native and rhythmically different condition (Japanese) (Peña et al., 2010). However, 
the distinction of languages belonging to the same rhythmic class (i.e., Italian and Spanish) 
was only observed in the older age groups (i.e., 6-month-old full term and 9-month-old 
preterm), but not in younger full-term and preterm infants that were tested at 3 and 6 
months after birth, respectively. Besides the impact of experience, this study also pointed 
out the role of neural maturation for the early development of language discrimination 
abilities, particularly those needed to distinguish rhythmically similar languages. 

Bilingual Language Discrimination 

As discussed in Chapter 1, the effect of language familiarity on early speech 
processing can also be examined from a different perspective. In a bilingual learning 
environment, infants are exposed to the linguistic regularities of not one, but two inputs 
simultaneously. While bilingual infants’ overall language exposure should be comparable 
to that of monolinguals, bilingual infants likely receive less exposure to each of their 
languages, compared to their monolingual peers, because their exposure time is split 
between two inputs. A bilingual environment has been shown to have consequences on 
infants’ behavioural and brain responses when spoken language processing is considered. 

Behavioural Evidence  

At the behavioural level, bilingualism has an impact on attention allocation to 
languages. Byers-Heinlein et al., (2010) demonstrated that, at birth, English monolingual 
infants showed a strong preference for their native language over a rhythmically distant 
language (Tagalog), thus replicating earlier studies (Mehler et al., 1988; Moon et al., 1993). 
On the other hand, English-Tagalog bilingual infants, showed similar preferential responses 
to their both native languages, indicative of both speech inputs being recognized as familiar. 
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At 4 months of age, Spanish or Catalan monolingual and Spanish – Catalan bilingual infants 
showed comparable auditory language discrimination capacities (Bosch and Sebastián-
Gallés, 2001). However, as in newborns, an early bilingual environment has been shown to 
induce specific learning adaptations related to attention allocation towards familiar and 
unfamiliar languages. Molnar et al., (2014) showed that Spanish – Basque bilingual infants 
exhibited longer sustained attention periods than monolinguals when processing their 
native spoken languages, and they were able to perceptually discriminate them, even when 
they belonged to the same rhythmic class. Similarly, monolingual infants displayed faster 
orientation patterns towards their native language (Spanish or Catalan - Bosch and 
Sebastián-Gallés 1997; French or American - Dehaene-Lambertz et al., 1998), whereas 
Spanish – Catalan bilingual infants showed the opposite pattern, orienting faster to the 
presentation of an unknown language (Bosch and Sebastián-Gallés 1997).  

Neuroimaging Evidence 

Neuroimaging evidence assessing the impact of early language experience in spoken 
language processing is scarce in the age group of interest for the current study (i.e., 4-month-
old infants). Using EEG during a language discrimination/recognition task, Nácar-García et 
al., (2018) examined Spanish or Catalan monolingual and Spanish-Catalan bilingual 4.5-
month-old infants brain responses to speech utterances in their native and non-native 
languages. In monolingual infants, authors found shorter latencies in the P200 component 
(indicative of early discrimination) for the native language (Spanish or Catalan), as 
compared to a non-native and rhythmically different language (i.e., German), but not when 
this condition was contrasted with a non-native and rhythmically similar language (i.e., 
Italian). Bilinguals showed similar latencies in the P200 for the three language conditions, 
thus indicating a similar processing for familiar and unfamiliar languages. Conversely, 
bilinguals showed enhanced theta band (4-7 Hz) oscillatory activity towards their native 
language. This frequency band is assumed to largely track suprasegmental properties of 
speech, and thus, the increased activity displayed by bilingual infants on this frequency band 
might reflect an additional reliance on this type of linguistic information during native 
language processing (Nácar-García et al., 2018). 

In a recent study, Mercure et al., (2020) evaluated brain responses to spoken and 
signed-language in English monolingual, unimodal bilingual (English + another spoken 
language) and bimodal bilingual (English + British Signed Language) infants between 4 and 
8 months of age using fNIRS. At the group level, considering all the participants in the three 
experimental groups, results showed a bilateral activation over inferior frontal and posterior 
temporal regions for spoken language. On the other hand, signed language primarily 
activated right temporoparietal regions. When assessing the effect of language modality 
(spoken vs. signed language), the comparison between experimental groups revealed an 
unexpected effect. While activation responses to spoken and signed language showed no 
lateralization effects in monolingual and bimodal bilingual infants, unimodal bilingual 
infants’ brain responses were right lateralized over posterior temporal regions for spoken 
and signed language conditions. These findings suggest that the experience with two spoken 
languages might require a more effortful cognitive processing, as compared to being 
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exposed to one spoken and one signed language, as is the case of bimodal bilingual infants 
in which the perceptual discrimination between the two language modalities might be more 
easily accomplished. Results of this work can also be linked with previous evidence that 
demonstrated enhanced visual speech processing abilities in unimodal bilingual infants 
(Weikum et al., 2007; Sebastián-Gallés et al., 2012). This fact could also explain the 
increased RH activation during speech processing observed in this study.  

In summary, bilingual and monolingual infants showed similar language 
discrimination capacities at 4 months of age, but the cognitive and functional mechanisms 
employed to perform this distinction might differ across language groups. While 
monolingual infants displayed a behavioural and functional preference for their native 
language, bilingual infants seem to allocate more attention to unfamiliar linguistic stimuli 
and to recruit different neural mechanisms in order to track specific properties of speech. 
This differential processing might be also reflected in their functional responses towards 
speech stimuli which involved the recruitment of additional brain regions in the RH.  

Study Aims  

In this work, brain responses to Spanish forward and backward speech stimuli were 
recorded in 4-month-old Spanish-Basque bilingual and Spanish monolingual infants using 
fNIRS. The main goal of this study was to assess the effect of early linguistic experience on 
functional brain activation patterns during native language processing. As a second goal, this 
study o aimed to provide an accurate description of the brain areas showing functional 
activation to forward and backward speech stimuli in a relatively large sample of participants 
(n = 58), with a high number of trials, and optimal data quality.  

Previous fNIRS studies presented a reduced statistical power in terms of the 
number of subjects and valid trials analyzed (Peña et al., 2003; Kotilahti et al., 2010; May 
et al., 2011; Minagawa-Kawai et al., 2011; Sato et al., 2012; May et al., 2017), reported 
results of one fNIRS hemoglobin parameter only (i.e., oxyhemoglobin HbO, 
deoxyhemoglobin HbR or total hemoglobin HbT) (Peña et al., 2003; May et al., 2011; 
Minagawa-Kawai et al., 2011; Sato et al., 2012; Vannasing et al., 2016; May et al., 2017; 
Mercure et al., 2020), based their conclusions on uncorrected multiple hypothesis testing 
results (Peña et al., 2003; Altvater-Mackensen and Grossman, 2016; May et al., 2017), or 
did not perform direct statistical comparisons between experimental conditions (Peña et 
al., 2003; Kotilahti et al., 2010; Sato et al., 2012; Vannasing et al., 2016; May et al., 2017). 
In order to reduce the attrition rate and maximize data quality, acquisition of fNIRS 
measurements were performed during natural sleep, the same as in the study presented in 
Chapter 3 and similar to other fNIRS studies performed in young infants (Dehaene-
Lambertz et al., 2002; Peña et al., 2003; Homae et al., 2011). A methodology for stimuli 
randomization that simultaneously optimized the experimental design for the detection of 
brain activation and for the estimation of the shape of the hemodynamic response was 
implemented (Kao et al., 2009). This methodology also facilitated the acquisition of a large 
number of trials by reducing testing time. Two data analyses methods based on a general 
linear model framework were performed to target each of these goals.  
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5.2. Methods 

Ethics Statement 

This study was carried out at the Basque Center on Cognition, Brain and Language 
and received approval from its local ethical committee. The study involved the participation 
of infant subjects. Prior to participation, parents were informed about the aim of the study, 
the experimental procedures, and their right to withdraw from the study at any moment 
without providing a reason and with no negative consequences. Written informed consent 
was obtained from the parents prior to data acquisition. 

Study Population 

Eighty-one healthy 4-month-old infants participated in this study. Participants were 
recruited from the same region of the Basque Country (Gipuzkoa), a predominantly 
bilingual region in which Spanish and Basque are learnt at home or/and at school from a 
very young age. A socioeconomic status questionnaire was completed to ensure that 
families showed similar levels of education, parental occupation and household income. 
Participants’ language background was assessed with a questionnaire filled by the parents, 
in which infants’ percentage of exposure to each language, Spanish (SP) and Basque (BQ), 
during the first months of life was assessed. In this study two language groups were 
considered: Spanish–Basque bilingual (BIL) infants and Spanish monolingual (SP) infants. 
Infants raised in a Spanish-Basque bilingual environment, those that were exposed to their 
two native languages from birth, formed the bilingual group. Only infants with a percentage 
of exposure to SP between 20% and 80% were included in this group. Participants exposed 
to SP only (i.e., >90% of the time) were included in the monolingual group. Participants 
with a percentage of exposure between 80% and 90%, were classified as undetermined 
language background (Table 5.1). These participants were included in the whole-group 
analyses, but were excluded for the between-group statistical comparisons. 

In nine of the 81 infants no recording took place as they were unable to fall sleep. 
In addition, 14 infants (n = 7 BIL, n = 6 SP and n = 1 undetermined language background) 
were excluded during data preprocessing due to insufficient data quality or recording 
duration. Concretely, infants that were not able to complete the entire experiment or those 
that presented low quality data, as determined by the data quality assessment routine during 
preprocessing (see Appendix A), were not included for data analysis. In the final sample, 
for which data was analysed and results are presented 58 participants were included (Table 
5.1): 26 BIL infants (15 girls; mean age = 125 ± 4 days; mean exposure to SP = 52 % ± 16 
%, range = [20.4 % - 78.6 %]), 21 SP monolingual infants (10 girls; mean age = 123 ± 5 days; 

Language Background n Age 
(days) 

Exposure 
to Spanish (%) 

Range [max - min] 
(%) 

Spanish-Basque Bilingual 26 125 ± 4 52 ± 16 [20.4 - 78.6] 

Spanish Monolingual 21 123 ± 5 98 ± 2 [93.8 - 100] 

Undetermined 11 124 ± 3 85 ± 3 [80.5 – 89.2] 

Table 5.1 Summary information of the participants included in the study of this chapter.  
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mean exposure to SP = 98 % ± 2 %, range = [93.8 % - 100 %]) and 11 infants with an 
undetermined language background  (6 girls; mean age = 124 ± 3 days; mean exposure to 
SP = 85 % ± 3 %, range = [80.5 % - 89.2 %]). 

Stimuli 

 Three Spanish native female speakers were recorded reading aloud sentences from 
The Little Prince book (Saint-Exupéry et al., 1943). Each speaker recorded the same 120 
utterances which ranged in number of syllables between 15 and 18 (30 utterances of each 
length). From this set, 24 utterances were selected for each speaker, with no repetition 
between them (i.e., in total 72 different sentences were selected). Sentences were manually 
segmented to the precise onset and offset time, and next normalized in intensity (70dB) 
and peak amplitude across speakers using Praat (Boersma and Weenik, 1990). The final 
set comprised 72 utterances with a mean duration of 3.2 ± 0.2 seconds, range [3 – 3.7]. 
Backward (BW) sentences were generated from the set of forward (FW) sentences using 
Praat. It is important to note here that the experimental paradigm employed in this study 
was originally designed for a simultaneous fNIRS-EEG study, but due to the complexity of 
the setup and (thesis) time constraints it was finally limited to fNIRS only. The paradigm 
was designed as follows (Figure 5.1A): for each condition (i.e., FW and BW speech stimuli) 
24 blocks were created. Each block was formed by three sentences of the same speaker, 
with an inter-sentence interval of 0.5 seconds. Mean block duration = 10.6 ± 0.2 seconds, 
range [10.1 – 11.4]. The initial goal of this design was to provide 24 blocks for fNIRS data 
analysis and 72 trials for EEG data analysis for each condition.  

In order to counterbalance stimuli presentation order between conditions, four 
stimuli randomizations were created using the procedure described in Kao et al., (2009). 
Briefly, the main statistical goals in studies measuring the hemodynamic response to stimuli 
are: 1) detect brain regions that show activation to the presented stimuli, and/or 2) provide 
an accurate estimation of the shape of the hemodynamic response. As reference, the first 
of these goals will be better achieved with a block design, whereas an event-related design 
will be more optimal for the second goal. However, pursuing both goals (i.e., detection 
power and estimation efficiency) simultaneously in one study is also possible if an optimal 
multi-objective randomized experimental design is implemented (Kao et al., 2009). 
Although this approach was originally designed for fMRI studies, it can be extended to 
fNIRS studies since both imaging techniques measure the same underlying 
neurophysiological hemodynamic mechanism.  

First, this method requires the user to specify a weight for four design objectives: i) 
detection power, ii) estimation efficiency, iii) desired fraction of trials per condition (i.e., 
stimulus frequency), and iv) predictability (i.e., controlling psychological confounds 
induced by subject’s prediction of the successive events). With this information the 
algorithm searches an optimal design sequence via a multi-objective optimization problem 
that is solved using a genetic algorithm. The initial search pool is formed by a set of fMRI 
designs that are known to be optimal for each of the goals independently and a set of 
random experimental designs. Then, the algorithm proceeds iteratively and generates new 
design sequences using three different methods [crossover – interchange portions of 
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different sequences; mutation – randomly replace specific events (i.e., stimulus, rest); 
immigration – add new designs sequences], and the fitness of each design for each 
experimental goal is assessed. In each repetition the best designs are stored, as they will 
form the initial pool of the next repetition until a stopping rule is met (e.g., optimal multi-
objective design efficiency or number of repetitions) (Kao et al., 2009). 

In this study, the two design sequences were generated with this approach (Figure 
5.1B), and two additional design sequences were generated by swapping the order of 
experimental conditions (i.e., FW and BW speech stimuli). Participants were randomly 
assigned to one of these four randomizations for stimuli presentation, all of them with the 
same number of blocks per condition (i.e., 24 blocks) and a similar duration of 
approximately 17 minutes. As it can be observed in Figure 5.1B, these optimal designs 
rarely include rest blocks (i.e. where no stimulus is presented) between two experimental 
blocks. This is a common feature in multi-objective designs in the search for an optimal 
trade-off between detection and efficiency.  

Data Acquisition Procedure 

FNIRS measurements were performed with a NIRScout system (NIRx Medical 
Technologies, CA, USA) at wavelengths 760 and 850 nm with a sampling frequency of 
15.625 Hz. Eight light emitters and 12 detectors were positioned on a stretchy fabric cap 
(Easycap GmbH, Germany) over frontal, temporal and parietal regions of both 
hemispheres according to the international 10-20 system. Nasion, inion and preauricular 
points were used as external head landmarks in order to ensure that optode and cap 
positioning with respect to these anatomical landmarks was equivalent across infants. Each 
pair of an adjacent light emitter and a detector formed a single measurement channel, which 
generated 24 channels for each hemoglobin oxygenation state (i.e., oxyhemoglobin, HbO 

and deoxyhemoglobin, HbR) consisting of source-detector separation distances ranging 
from 20 to 32 mm (Table 5.2). 

The sensitivity profile of the fNIRS probe setup was computed to provide 
information of the brain areas under investigation, and for results visualization. The probe 
setup (i.e., sources and detectors) was registered to an average 6-month-old infant template 
(Richards et al., 2016) to compute the sensitivity matrix of the source-detector configuration 
using Toast++ (Schweiger and Arridge, 2014). The aggregated sensitivity profile of the 
fNIRS probe was obtained by adding the normalized cortical sensitivity profiles of each 
individual channel (Figure 5.2). Channel positions were defined as the grey matter node 
which coordinates were closest to the central point of the maximum sensitivity path along 
each source-detector pair. A 6-month-old average atlas (Akiyama et al., 2013) was used to 
compute a probabilistic spatial registration of the cortical structures underlying each 
channel (Figure 5.3). Channel coordinates were first transformed to the Akiyama et al., 
(2013) average T1 template space using Advanced Normalization Tools (ANTs) (Avants 
et al., 2009), and then registered into the Akiyama et al., (2013) anatomic atlas, defined by 
116 cortical regions based on Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer 
et al., 2002). For each channel, the AAL anatomical labels within a distance of 20 mm were 
defined, and the percentage of overlap with each AAL region was calculated (Table 5.2). 
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Figure 5.1 A) Blocks for FW and BW conditions were formed by three individual sentences and 
an inter-sentence interval of 0.5 seconds. A silence period was also added at the end of each block 
to match them all in duration (15 seconds). B) Four stimuli randomization paradigms optimized 
for detection power and estimation efficiency (Kao et al., 2009) were employed in the current study. 

 
Figure 5.2 fNIRS optode (sources in red, detectors in green) and channel (black) localization in the 
current experimental setup. The normalized sensitivity profile of the current optode configuration 
is displayed in a 6-month-old infant head model. 
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Figure 5.3 fNIRS channel localization registered to a 6-month-old infant AAL template (Akiyama 
et al., 2013). 

 

Table 5.2 Brain labels of the fNIRS channels in the current setup based on the probabilistic spatial 
registration of the fNIRS channels to a 6-month-old infant AAL template. Ch = Channel; S-D = 
Source-Detector pair. 

During the study infants rested on their parents’ lap facing the speakers presenting 
the stimuli. First, the fNIRS cap was placed on the infants’ head. Then a feed and wrap 
approach was used to promote sleep and the experiment began when clear signs of sleep 
were noticeable on the infant. During the first participants it was observed that the sudden 
change from a room in complete silence to high-volume stimuli presentation was making 
the infants a wake. Therefore, for the next sessions it was decided to progressively increase 
volume during the first 30 seconds manually by one of the experimenters in order to avoid 
this effect. This portion of the data was excluded for the analyses during data preprocessing. 

Data Preprocessing 

All data preprocessing and analyses were implemented in MATLAB (R2012b, 
R2014b, Mathworks, Massachusetts) using in-house scripts as well as third-party toolboxes 
and functions.  
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The MATLAB toolboxes employed in the current study are: 

- Multi-Objective Optimal Experimental Designs for ER-fMRI Using MATLAB (Kao 
et al., 2009; https://www.jstatsoft.org/article/view/v030i11). 

- Homer2 software package (Huppert et al., 2009; https://homer-fnirs.org). 

- BrainWavelet Toolbox (Patel et al., 2014; http://www.brainwavelet.org/about).  

The preprocessing pipeline for each individual is presented below: 

1. Light intensity data (i.e., raw data measured at the instrument) were converted into 
optical density changes. ð hmrIntensity2OD function in Homer2. 

2. The first 30 seconds of experimental data were masked due to volume issues. 
Motion artifacts were identified and masked for subsequent analyses. ð 
hmrMotionArtifact function in Homer2. Input parameters: tMask = 5; tMotion = 
0.1; STDEVthresh = 20; AMPthresh = 0.2. These parameters were manually tuned 
to identified the largest and longest artifact corrupted periods. Note that a tMask of 
5 seconds implies that five seconds of data before the start and end of each segment 
marked as motion artifact were excluded. 

3. Motion induced spikes and signal drifts were corrected using the wavelet-based 
despiking method (Patel et al., 2014) described in chapter 2. ð WaveletDespike 
function in Brain Wavelet Toolbox. Input parameters: same parameters as in 
Chapter 3. The algorithm was applied to the complete dataset in order to improve 
its performance and correct those artifacts not detected in step 2.  

4. Optical density data were converted into HbO and HbR concentration changes. 
Differential path length factors of 5.3 (760 nm) and 4.2 (850 nm) were considered 
(see Chapter 3) ð hmrOD2Conc in Homer2. 

5. Very slow frequency fluctuations and signal drifts were modelled by up to 8 order 
Legendre polynomials, which were regressed out in a nuisance regression step. 
Contribution of high-frequency physiological noise sources (e.g., respiration and 
cardiac pulsation) were low-pass filtered using a zero-phase digital filter with cut-off 
frequency 0.3 Hz. ð hmrBandpassFilt function in Homer2. This cut-off frequency 
was selected based on the power spectral density of the global signal (Figure 5.4). 

6. Globally occurring hemodynamic processes in cerebral and extracerebral tissues 
assumed to largely reflect systemic hemodynamic changes were removed using 
linear regression. Prior to this step the average signal was filtered with the same 
parameters as the data to avoid reintroducing frequencies of non-interest. As HbO 
and HbR are differently affected by global systemic processes, data of each 
hemoglobin chromophore were filtered independently by including in the model 
either the global HbO or HbR signal. 

As in the study presented in Chapter 3, quality assessment figures were generated 
for all participants after each preprocessing step (see Appendix A). 
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Figure 5.4 Global average signal for HbO and HbR computed across all participants in the study. 
Three examples of these signals are presented. The mean power spectral density (PSD) of the 
signals was calculated and it is presented for two different frequency ranges. In HbO, clear peaks 
can be observed at 2 and 4 Hz representing the cardiac pulse and its harmonics. A smaller peak is 
observed at 0.3 Hz potentially indicating a respiration component. Sampling freq. (sf) 15.625 Hz. 

Data Analysis 

 For each participant, and for each experimental condition, the percentage of block-
related data included for data analysis after censoring motion affected time points was 
calculated (Figure 5.5). In this step, it was also assessed that every time point inside each 
block (5 seconds baseline plus stimulus block duration, around 16 seconds in total) retained 
a similar number of data points after data censoring due to motion. The aim was to ensure 
that for both experimental conditions, time points during the entire block duration were 
similarly represented, in order to provide an accurate estimation of the whole shape of the 
hemodynamic response in subsequent analyses. 

Two general linear model (GLM) analyses were performed to study the brain’s 
response to FW and BW speech (Figure 5.6). The GLM assumes that the hemodynamic 
changes induced by individual components present in the signal add linearly to give the 
observed hemodynamic time course. The contribution of each of these components to the 
measured signal can be described as	L = de + f, where the term L represents the 
measured HbO and/or HbR time series of a channel. This time series is modelled as a 
function of a set of explanatory variables (i.e., regressors) that comprise the design matrix 
g. The term e represents the individual contribution of each regressor to the observed 
data, and the term h denotes the error between the observed data and the specified model. 
Depending on the aim of the model, the design matrix can include regressors of interest 
(e.g., task-related regressors), regressors of non-interest (e.g., noise terms), or both.  
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Figure 5.5 Motion affected time points were excluded for data analysis. The impact of motion 
censoring was evaluated on each participant by calculating the percentage of block-related time 
censored on each experimental condition. It was also ensured that specific time-points inside each 
block contributed with a similar amount of data to statistical analyses (bottom row). 

 

Figure 5.6 A) GLM modelling of the HbO and HbR signals for each condition using regressors 
time-locked to stimuli which were obtained by convolving a gamma function with peak at 6 seconds 
(dashed blue) and a square-wave of 10 seconds (grey). B) Deconvolution model using a set of 
gaussian basis functions as FIR components. 
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Assuming that the error follows a Normal distribution, the best linear unbiased 

estimate of e is obtained by the minimum least-squares solution:	ei = (dCd))5dCL, where 
dC and d)5 are the transponse and inverse matrix of d. The regressors of the design matrix 
d are adapted according to the specific goals of the analysis, either estimating the amplitude 
of the functional response to stimulation (i.e. detection) or estimating the temporal shape 
of the hemodynamic response (i.e. efficiency). The optimized stimuli presentation 
approach employed in this study provided an experimental paradigm that allowed 
efficiently targeting both experimental goals simultaneously. 

Detection-based analysis 

The first experimental goal of this study aimed to detect areas/channels showing 
functional activation to the presentation of FW and BW speech stimuli (Figure 5.6A). Here 
the operational definition of functional activation for fNIRS based studies (i.e., increase in 
HbO, decrease in HbR) was considered (Obrig and Villringer, 2003). Based on this 
premise, regressors were generated for each experimental condition by convolving boxcar 
functions of 10 seconds duration with a model of the expected hemodynamic response 
function, a gamma function with peak at 6 seconds (Dehaene-Lambertz et al. 2002; Homae 
et al., 2006; Arichi et al., 2012). Boxcar regressors were also included in the model for each 
separate data segment formed after removing censored time periods (5 segments in Figure 
5.6A) in order to model potential baseline differences between each of these periods. This 
analysis yields the j-values representing the mean effect of individual functional responses 
to each experimental condition FW and BW for HbO and HbR per participant.  

Two group-level statistical analyses were performed based on these estimates. First, 
for a whole-sample analysis of activations, a one-sample t-test was performed on the 
individual j-values in order to detect the brain regions that were sensitive to the speech 
stimuli of each experimental condition. Second, for the statistical comparisons between 
groups, differences in mean j-values between bilingual and monolingual infants were 
modelled in a two-way mixed effects ANOVA for each channel, and for HbO and HbR 
separately. The mixed design was determined by the two independent variables that were 
manipulated in this experiment, one repeated-measures independent variable with two 
levels (i.e., FW and BW conditions), and one between-group independent variable with 
two levels (i.e., language background BIL vs. MON). Statistical tests were corrected for 
multiple comparisons at the channel level using the false discovery rate (FDR) method (q 
< 0.05, Benjamini and Hochberg, 1995).  

FIR-based analysis 

The second experimental goal of this study aimed at estimating the shape of the 
HRF evoked by each stimulus condition, which can be accomplished by using a finite 
impulse response (FIR) or deconvolution model. For each infant, HbO and HbR channel 
time courses were modelled using a Gaussian basis set consisting of 24 overlapping one-
second gaussian functions (Figure 5.6B), spanning -5 seconds to 20 seconds around each 
stimulus onset. The hemodynamic response for each experimental condition, and each 
channel, is generated from the deconvolution of the 24 j-values extracted and the Gaussian 
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basis set. As in the previous approach, potential baseline differences between each of the 
individual periods generated by motion censoring were modelled using boxcar regressors 
(5 segments in Figure 5.6B). At the group level, the average HRFs evoked by each condition 
at each individual channel are presented in the Results section. Between-group statistical 
analysis comparing the HRFs across experimental groups were conducted using a threshold 
free cluster enhancement method (Smith and Nichols, 2009). 

Threshold-Free Cluster Enhancement 

Potential differences on the HRF time-courses were investigated using a threshold-
free cluster enhancement (TFCE) method (Smith and Nichols, 2009). This cluster-based 
correction for multiple comparison method follows a similar rationale as standard cluster-
based inference methods employed in previous EEG (Maris and Oostenveld, 2007; 
Mensen and Khatami, 2013) and fNIRS studies (e.g., Mahmoudzadeh et al., 2013; Abboub 
et al., 2016; Ferry et al., 2016). Briefly, statistical comparisons between HRF time courses 
involve performing multiple statistical tests (i.e., one for each HRF time point), usually 
across multiple channels. Performing such a large number of tests increases the likelihood 
of observing significant effects (type 1 error rate), making it necessary to incorporate 
methods to control the enhanced false-positive rate. Cluster-based methods provide a way 
to control the family-wise error rate (FWER) for the statistical analysis of data in which 
spatial and/or temporal dependencies are expected between tests, as in the case of EEG 
event-related potentials (ERP), or fMRI and fNIRS HRF time courses.  

The first step (1) in standard cluster-based methods is to perform a statistical test 
(e.g., two sample t-test) at each element of the time-series (i.e., HRF) under assessment, 
obtaining a series of values (e.g., t-values) which represent the difference between the 
amplitude responses of groups A and B at each time-point. In the next step (2), a predefined 
statistical threshold is used to create clusters of connected variables based on their temporal 
proximity (i.e., neighbouring/adjacent time points) amongst those time-points exceeding the 
threshold. Identified clusters can then be characterized on the basis of their size/extent (i.e., 
number of time-points), height (i.e., maximal statistical value) or by a combined metric 
considering both parameters (Pernet et al., 2015). The statistical significance of the 
extracted clusters is computed by means of non-parametric permutation testing (3). In this 
particular example, the individual HRFs of each participant are randomly permuted across 
experimental groups A and B, and for a number of permutations (e.g., 1000) steps (1) and 
(2) are repeated. Amongst the observed clusters in each permutation the maximum value 
of the selected cluster attribute (e.g., extent or height) is stored. These values create the null 
distribution from which the statistical significance of the selected attribute of the original 
cluster is estimated. This is accomplished by dividing the number of values in the empirical 
distribution of maxima that are higher than the original value, by the total number of 
permutations performed. 

The main issue of this approach is the need of a priori defining an arbitrary statistical 
threshold that determines how clusters are formed. As effects in the signal might manifest 
in different shapes (e.g., broad effects with lower statistic values, sharp/short effects with 
high statistic value), the choice of the cluster-forming threshold is not trivial, and it may have 
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a large impact on the results (Smith and Nichols, 2009). TFCE provides a solution for this 
issue by including a range of all possible cluster-forming thresholds, and integrating the 
information obtained for each of them according to the following formula: 

kl3m(-) = 	∫ *,-*5-(ℎ)D 	ℎ*=pℎ-(ℎ)7qℎ1(%)
1E1(   

 At each time point t  the extent (i.e., number of time points) and height (i.e., t-value) 
of the formed clusters are calculated and scaled by two weighting parameters r and s	that 
determine whether to give more weight to spatially large clusters, or to those clusters 
showing large t-values, respectively. The range of all possible cluster forming statistical 
thresholds is determined by the initial value tF, the maximum value t, and the differential 
value between consecutive thresholds ut. Thus, the TFCE integral represents the area of 
the cluster delimited by these parameters. This area is calculated for each statistical 
threshold in the range, and its value assigned to all the time points in the particular threshold 
under assessment that meet ℎ*=pℎ-(-) > ℎ(-). Given ut, the integral above can be 
approximated as a discrete sum of all the areas/values under each time point, generating a 
TFCE value for each sample (Figure 5.7). Similarly, a p-value for each of these values can 
be calculated using permutation. In the current study, the default parameters E = 0.5 and 
H = 2, which have been validated for fMRI (Smith and Nichols, 2009) and EEG data 
(Mensen and Khatami, 2013; Pernet et al., 2015), were employed. The resolution ut for 
TFCE calculation was set at 0.01, the initial TFCE value tF was set at 0.1 and t was set as 
the maximum F-value in each test. For this analysis data (individual HRF time courses) 
were downsampled to approximately 4 Hz to reduce computational time. The TFCE 
approach implemented in the current study was performed at the channel level, thus 
ignoring potential spatial dependencies between channels. 

Following the previous analysis, a two-way mixed effects ANOVA was performed 
at each time point in a subset of channels were a possible effect may be present, which was 
decided based on visual inspection of original F-values time courses (Appendix C). This 
selection was performed to reduce the computational time of the TFCE procedure. In 
HbO, channels 9, 16, 19 and 21 were selected for showing a possible main effect of 
language, and channels 13, 14 and 15 were selected to assess the presence of a potential 
interaction effect. The same channels were selected in HbR, although observed effects were 
smaller in this hemodynamic parameter. Channel 7 was also selected because of a possible 
interaction effect in HbR. Non-parametric permutation testing with 1000 iterations and 
unrestricted randomization of observations (i.e., language BIL and MON, condition FW 
and BW) was performed to assess the significance of the observed TFCE values forming 
clusters. The maximum TFCE value obtained at each iteration and for each curve (i.e., 
main effect of language and interaction) was stored to create the two null distributions 
against which the statistical significance of the original TFCE values was computed. In post-
hoc pairwise comparisons the same approach was followed but using instead the t-value 
curves obtained from two-sample t-tests (Appendix C).  
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Figure 5.7 Example describing the processing pipeline of the TFCE method. 1) A statistical test is 
conducted at each time point, and all values in the curve higher than an initial threshold tF are 
selected as potential cluster-forming candidates. 2) For each statistical threshold the area delimited 
by extent and height values is computed and assigned to those time-points exceeding the threshold. 
3) By adding the obtained values at each time point a TFCE value is generated for each sample. 
The arrow points to the same peak in the three steps and illustrates TFCE enhancement. 

5.3. Results 

Most of the infants that were able to fall sleep completed the entire experiment with 
no interruptions. At the group level, considering the 58 infants that were included for data 
analysis, the percentage of block-related data completed by these infants was computed (see 
Figure 5.5 for an individual example). Silence periods and segments at the beginning/end 
of the experiment were not included. Considering the whole sample, the mean percentage 
of block-related time completed for forward (FW) condition was 93 % ± 6 %, range = [72 
% - 100 %]), and for backward (BW) condition this percentage was 93 % ± 4 %, range = [80 
% - 100 %]).  In bilinguals, the mean percentage of block-related time completed for FW 
condition was 94 % ± 4 %, range = [82 % - 100 %]), and for BW condition this percentage 
was 94 % ± 3 %, range = [88 % - 99 %]). In the monolingual group, for FW condition the 
percentage of block-related data included was 91 % ± 6 %, range = [75 % - 99 %]), and for 
BW condition this percentage was 92 % ± 5 %, range = [80 % - 99 %]). According to the 
minimum of these values (72 %), at least 17 out of 24 blocks were completed by each infant 
and for each condition, although in general the number of completed blocks was higher. 
Furthermore, this analysis also confirmed that all time points inside each block, and for 
FW and BW conditions, were similarly represented and no data segment was particularly 
affected by the censoring procedure.  

For the sake of clarity, the results for the group-level analysis (n=58) are presented 
first, and then results of the comparisons between groups (n = 26 bilingual infants, n=21 
monolingual infants). Participants with an undetermined language background (n=11) were 
excluded for the between-group comparisons.  
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Whole Group Results 

Detection-based analysis 

The results of the one sample t-test analysis are shown in Figure 5.8A. To highlight, 
a large agreement between HbO and HbR results was observed in most of the channels, 
matching the operational definition of cortical activation for fNIRS data, i.e., an increase in 
HbO and a decrease in HbR, or the opposite (Obrig and Villringer, 2003). These results 
were considered more reliable than those in which only one of the chromophores showed 
a significant effect. Channel 7 (right middle temporal area) and channels 17, 18, 19 and 21 
(left temporal areas) showed a significant activation response (i.e. increase in HbO and 
decrease in HbR) in response to FW and BW speech stimuli. On the other hand, channels 
1, 2, 13 and 14 (bilateral inferior frontal areas) and channels 16 and 4 (around 
precentral/postcentral regions) showed a deactivation response (i.e., decrease in HbO and 
increase in HbR) to FW and BW speech stimuli. In channel 8 (right supramarginal gyrus) 
a deactivation response was observed for BW speech only. In FW condition deactivation 
was only significant for HbO. Finally, channel 15 showed a significant increase in HbR for 
BW speech, but this effect was not observed in HbO. Paired t-tests at the channel level 
assessing differences between experimental conditions revealed no significant differences 
in activation to FW and BW speech stimuli neither in HbO nor in HbR. In order to 
examine the effect of global signal regression the same results were produced without 
applying this preprocessing step (Appendix C, Figure C.1A). 

FIR-based analysis 

In addition, group-averaged HRFs for HbR and HbO and each experimental 
condition are presented in Figure 5.8B. Similar to the previous results, channels 17, 18, 19 
and 7 (bilateral temporal regions) demonstrated a clear hemodynamic response 
characterized by an increase in HbO and a decrease in HbR. A trend towards a positive 
response can be also observed in channels 21 and 9, but with reduced amplitude. 
Conversely, channels 1, 2, 3, 4, 13 and 14 showed a negative hemodynamic response 
pattern (i.e., decrease in HbO and increase in HbR). A similar trend but with smaller 
amplitude is observed in channels 8 and 16. The equivalent results computed using a 
preprocessing pipeline not including global signal regression are presented in Appendix C 
(Figure C.1B). In order to compare the HRF time courses of FW and BW conditions, 
Figure C.2 in Appendix C separately shows the hemodynamic responses for HbO and 
HbR data, along with the corresponding standard deviation of the averaged hemodynamic 
response time courses. As it can be observed in this figure, there is a large resemblance 
between the responses to FW and BW speech stimuli. 

 The mean hemodynamic response time courses of channels demonstrating brain 
activation were averaged together across conditions, including positive and negative 
responses, to provide information of the HRF dynamics in this sample of 4-month-old 
infants, and for comparison with the HRF model employed in the activation-based analysis 
(Figure 5.9). In HbO, the hemodynamic response peaked around 8-9 seconds after 
stimulus onset, reached a plateau that lasted around 4-5 seconds, and then progressively  
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Figure 5.8 A) Channels showing a significant activation/deactivation as determined by one-sample 
t-tests for each of the experimental conditions (FW, BW). *p<0.05, **p<0.05 (FDR corrected). B) 
Group-averaged HRFs at each channel location and for each experimental condition estimated by 
the FIR-based analysis. Time zero indicates stimulus onset. 
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Figure 5.9 Average HRF response at the group level (HbO-red, HbR-blue), computed from 
channels showing activation or deactivation responses in Figure 5.8B (i.e., channels 1, 2, 3, 4, 7, 9, 
13, 14, 16, 17, 18, 19, 21). In grey, the model employed for the estimation of the 3-values is 
displayed. 

decreased. A post-stimulus undershot starting approximately 17-18 seconds after stimulus 
onset and peaking at 20 seconds can also be distinguished. Then, the signal progressively 
returned to baseline values. The temporal properties of the HbR response pattern parallel 
those observed in HbO. However, the magnitude of the response in HbO was on average 
around 2.5 times larger than in HbR. The HRF model employed in the activation-based 
analysis and the HRF estimated in the second analysis showed a high resemblance. 
Nonetheless, this comparison enables to conjecture that differences between both types of 
analysis (i.e. activation-based vs. FIR-based) could be associated with the fact that the HRF 
model hypothesized in the activation-based analysis does not include an undershoot period 
and the slight temporal delay observed between the two-time courses. 

Between-Group Comparisons 

Detection-based analysis 

A two-way mixed effects ANOVA with Condition (repeated measures, FW-BW) 
and Language (between-group factor, BIL-MON) as factors was performed on the 
estimated j-values at each channel, and for HbO and HbR. Results of the observed 
significant effects are summarized in Table 5.3.  

In HbO, significant main effects were observed for Language in channel 9 (right 
superior/middle temporal, 4!,./ = 4.29, 9 = 0.044, ;0" = 0.087,	BIL > MON), and for 
Condition in channels 13 (left inferior frontal, 4!,./ = 4.52, 9 = 0.039, ;0" = 0.091,	BW > 
FW, larger negative response) and 16 (left rolandic operculum, 4!,./ = 4.29, 9 = 0.044, 
;0" = 0.087,	BW > FW, larger negative response). Further, a significant interaction of 
Language* Condition was observed in channel 14 (left inferior frontal, 4!,./ = 5.23, 9 =
0.027,  ;0" = 0.104) and 18 (left superior temporal, 4!,./ = 5.79, 9 = 0.020,  ;0" = 0.113). 
In channel 14, bilinguals showed a larger negative response to FW speech stimuli, whereas 
monolinguals showed a larger negative response to BW speech. Significant differences 
were not observed in pairwise post-hoc contrasts. The interaction effect in channel 18 is  
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Table 5.3 Summary of significant results obtained in the two-way mixed ANOVA analysis. None 
of these results was significant after multiple comparisons correction (FDR method). 

displayed in Figure 5.10. As can be seen in the figure, this effect is driven by bilinguals 
showing a larger response (i.e., increase in HbO) to BW speech, and monolinguals showing 
a larger response to FW speech. Significant differences were not observed in pairwise post-
hoc contrasts. 

In HbR, a significant main effect for Language was observed in channel 23 (left 
middle/inferior temporal, 4!,./ = 6.6, 9 = 0.013, ;0" = 0.128,	MON > BIL), and a 
significant Language * Condition interaction was observed in channel 18 (left superior 
temporal, 4!,./ = 9.76, 9 = 0.003,  ;0" = 0.178). This latter interaction is displayed in 
Figure 5.10. Analogous to the observations in the same channel for HbO, bilinguals showed 
a larger response (i.e., decrease in HbR) to BW speech, whereas monolinguals showed a 
larger response to FW speech. Significant differences were not observed in pairwise post-
hoc contrasts. None of the observed effects in HbO and HbR was significant when 
corrected for multiple comparisons across channels using the False Discovery Rate 
approach (FDR, q<0.05, Benjamini and Hochberg, 1995). 

FIR-based analysis 

Second, differences between bilinguals and monolinguals in the HRF time courses 
obtained to each experimental condition (FW, BW speech) were investigated. In channels 
7, 9, 13, 14, 15, 16, 19 and 21, a two-way mixed effects ANOVA was performed at each 
time point for the HbO and HbR time courses. The resulting time courses of F-statistics 
(Appendix C, Figure C.3) were corrected using the threshold-free cluster enhancement 
(TFCE) method (Smith and Nichols, 2009). In channel 14 (left inferior frontal) a significant 
interaction effect was observed (TFCE correction for multiple comparisons) for HbO data 
only. This difference was driven by an effect from 10.8 seconds to 13.9 seconds. In this 
cluster, bilinguals showed a more negative response to FW speech than monolinguals. 

 Independent variable (IV) CH Hb F-value p-value 1!" 
Levels of the IV 

[marginal means] 

M
ai

n 
ef

fe
ct

s  
Language 9 HbO 4.28 0.044 0.087 

BIL, MON 
[0.136, -0.044] 

Condition 13 HbO 4.52 0.039 0.091 
FW, BW 

[-0.062, -0.122] 

Condition 16 HbO 4.29 0.044 0.087 
FW, BW 

[-0.043, -0.128] 

Language 23 HbR 6.60 0.013 0.128 
BIL, MON 

[0.005, 0.053] 

In
te

ra
ct

io
ns

 

Language * Condition 14 HbO 5.23 0.027 0.104 

BIL [FW, BW] 
[-0.163, -0.105] 
MON [FW, BW] 
[-0.084, -0.191] 

Language * Condition 18 HbO 5.79 0.020 0.113 

BIL [FW, BW] 
[0.105, 0.238] 

MON [FW, BW] 
[0.225, 0.153] 

Language * Condition 18 HbR 9.76 0.003 0.178 

BIL [FW, BW] 
[-0.031, -0.092] 
MON [FW, BW] 
[-0.130, -0.055] 
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Figure 5.10 An interaction effect which was consistent across HbO and HbR was observed in 
channel 18 (left superior temporal). In both Hb parameters bilinguals showed higher activation to 
BW speech and monolinguals showed higher activation to FW speech stimuli. Post-hoc pairwise 
comparisons revealed no differences in any of the pairwise contrasts. 

In contrast, monolinguals showed a more negative response than bilinguals for BW 
speech. Pairwise post-hoc contrasts in the t-values time courses (Appendix C Figures C.4 
and C.5) revealed that these effects were not significant. In channel 15 a significant 
interaction effect was observed (TFCE correction for multiple comparisons) for HbO data 
only. This difference was driven by an effect from 10.1 seconds to 11.1 seconds. Pairwise 
post-hoc contrasts in the t-values time courses (Appendix C Figures C.4 and C.5) revealed 
a significant difference between groups for FW speech (TFCE correction for multiple 
comparisons), driven by bilinguals showing a negative response to FW speech and 
monolinguals showing a positive response to FW speech. A significant cluster was 
observed, most compatible with an effect from 9.2 seconds to 12.4 seconds with a mean 
effect of 0.158µM [0.155, 0.162µM]. Significant main or interaction effects were not 
observed in any of the other channels under assessment. 

Analysis of the HRF time courses based on F-values, and using a TFCE method for 
multiple comparisons correction, was found relatively strict. In order to assess the presence 
of other potential weak effects, additional exploratory pairwise contrasts on t-values time 
courses of all channels were performed, for FW and BW conditions, and in HbO and 
HbR data (Appendix C Figures C.4 and C.5). This analysis was also corrected for multiple 
comparisons using the TFCE method. In the description of these results a distinction has 
been made to differentiate activation (HbO increase, HbR decrease) and deactivation 
(HbO decrease, HbR increase) effects. Table 5.4 summarizes all of these results.  

Channel 1 (right inferior frontal) showed a significant difference for FW condition 
in HbO (BIL > MON, deactivation) compatible with an effect from 15.0 seconds to 17.0 
seconds with a mean effect of 0.087µM [0.085, 0.089µM] was observed. Channel 9 (right 
superior/middle temporal) exhibited a significant difference for FW condition in HbO 
(BIL > MON, activation) compatible with an effect from 8.1 seconds to 13.3 seconds with 
a mean effect of 0.164µM [0.160, 0.167 µM] was observed. In this channel, a similar effect  
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Table 5.4 Summary of significant results obtained from pairwise comparisons (t-tests) between 
groups on the HRFs across experimental conditions (TFCE correction for multiple comparisons). 

was observed for FW condition in HbR (BIL > MON, activation) from 9.6 seconds to 12.6 
seconds with a mean effect of 0.072µM [0.071, 0.073µM]. Channel 13 (left inferior frontal) 
showed a significant difference for FW condition in HbO (BIL > MON, deactivation) 
driven by an effect from 15.5 seconds to 18.6 seconds with a mean effect of 0.090µM 
[0.088, 0.091µM]. Channel 16 (left Rolandic operculum) displayed a significant difference 
for FW condition in HbO (BIL > MON, deactivation) driven by a cluster starting at 8.9 
seconds to 13.3 seconds with a mean effect of 0.140µM [0.136, 0.143µM]. Channel 7 (right 
middle temporal) showed a significant difference for FW condition in HbR (BIL > MON, 
activation) driven by an effect from 7.1 seconds to 12.7 seconds with a mean effect of 
0.070µM [0.069, 0.072µM]. Channel 21 (left middle temporal) showed a significant 
difference for FW condition in HbR (BIL > MON, activation) compatible with an effect 
from 17.2 seconds to 18.7 seconds with a mean effect of 0.054µM [0.054, 0.055µM]. 
Channel 24 (left middle temporal) showed a significant difference for BW condition in 
HbR (MON > BIL, activation) driven by a cluster starting at 18.7 seconds to 20 seconds 
with a mean effect of 0.067µM [0.065, 0.068µM] was observed. No significant effects were 
found in the rest of the channels under assessment for either HbO or HbR. 

5.4. Discussion 

This work examined how early linguistic experience in a bilingual environment 
modulates 4-month-old infants’ brain responses to speech (forward, FW) and non-speech 
(backward, BW) sounds using fNIRS, based on a large sample of participants and a large 
number of trials. Stimuli presentation was optimized for two general linear model (GLM) 
based analyses (Kao et al., 2009). The first analysis method (i.e., detection-based analysis) 
was employed to efficiently detect the brain regions activated by the presentation of FW 
and BW speech stimuli. With the second analysis method (i.e., FIR-based analysis), the 
shape of the hemodynamic response function (HRF) in infants at 4 months of age in 
response to FW and BW speech stimuli was estimated. At the whole group level a high 
resemblance between the results of the two data analysis methods was observed. The 

CH Hb Condition Effect 
(activation/deactivation) Timepoints (s) Mean effect (µM)   95% CI 

1 HbO FW BIL > MON, deactivation 15.0 – 17.0 0.087 [0.085, 0.089] 

9 HbO FW BIL > MON, activation 8.1 – 13.3 0.164 [0.160, 0.167] 

13 HbO FW BIL > MON, deactivation 15.5 – 18.6 0.090 [0.088, 0.091] 

15 HbO FW 
MON activation 
BIL deactivation 

9.2 – 12.4 0.158 [0.155, 0.162] 

16 HbO FW BIL > MON, deactivation 8.9 – 13.3 0.140 [0.136, 0.143] 

7 HbR FW BIL > MON, activation 7.1 – 12.7 0.070 [0.069, 0.072] 

9 HbR FW BIL > MON, activation 9.6 – 12.6 0.072 [0.071, 0.073] 

21 HbR FW BIL > MON, activation 17.2 – 18.7 0.054 [0.054, 0.055] 

24 HbR BW MON > BIL, activation 18.7 – 20 0.067 [0.065, 0.068] 
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agreement in the results could be further improved by using a better model of the HRF in 
infants at this age, which is still not available. Minagawa-Kawai et al., (2011) followed a 
different approach. First, they estimated the shape of the HRF in a group of infants in a 
similar way as it was done in the current work. Then, they used this information to design 
the HRF model for the estimation of the j coefficients in a subsequent analysis. Although 
this approach might seem more precise, it also presents a circularity risk, and for this reason 
it was not implemented here.  

Whole Group Level 

The detection-based analysis revealed significant brain activation responses (i.e., 
increase in HbO, decrease in HbR) in four channels located in left superior and middle 
temporal regions, and in one channel located in right middle temporal region. Allowing 
some uncertainty in channel localization, these results are in close agreement with the 
organization of the infant language system around perisylvian areas reported in previous 
infant literature (Dehaene-Lambertz et al., 2002; Dehaene-Lambertz et al., 2006; Perani et 
al., 2011). The patterns of HRF obtained with the FIR-based analysis revealed activation 
responses in channels located over the same bilateral temporal areas. The FIR analysis 
showed a high resemblance between the shape of the estimated HRF and the adult 
canonical HRF, in terms of latency and amplitude difference between peak and undershoot 
periods (Arichi et al., 2012). Although some infant studies have showed a slightly slower 
time-to-peak latency (Minagawa-Kawai et al., 2011), overall the shape of the estimated 
response (i.e., HbO and HbR) also matches previous infant literature (Bortfeld et al., 2007; 
Mahmoudzadeh et al., 2011; Arichi et al., 2012; Sato et al., 2012; Issard and Gervain, 
2018). Both analysis methods also showed significant deactivation responses (i.e., decrease 
in HbO, increase in HbR) to FW and BW speech stimuli in bilateral inferior frontal 
regions, extending to more posterior regions around the central sulcus.  

 At the group level, no differences were observed on the brain responses to FW and 
BW speech conditions, in any of the analysis methods, unlike previously reported 
(Dehaene-Lambertz et al., 2002; Peña et al., 2003; Sato et al., 2012; May et al., 2017). A 
potential explanation for the lack of differences observed between the conditions might be 
because infants were tested during sleep in the current study. Nevertheless, the infant brain 
is able process information during sleep (Tarullo, 2011). For instance, infants showed the 
ability to distinguish their mother vs. a stranger’s voice (deRegnier et al., 2000), or to detect 
a deviant tone amongst a set of previously habituated standard tones (Cheour et al., 2002). 
Most previous works that observed differences between speech and non-speech conditions, 
using various imaging modalities, were conducted in infants during natural sleep (Peña et 
al., 2003; Kotilahti et al., 2010; Perani et al., 2011; Sato et al., 2012; Abboub and Gervain, 
2016; Vannasing et al., 2016; May et al., 2017); although some activation differences in 
dorsolateral prefrontal cortex between FW and BW conditions were only detected in 
awake infants (Dehaene-Lambertz et al., 2002). Furthermore, neonates showed 
comparable brain responses during active and quiet sleep states when processing acoustic 
stimuli consisting of speech and music samples (Kotilahti et al., 2010).  
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It still might be the case that testing asleep infants might have potentially masked 
differences in brain activation between conditions. Although all of the infants were scanned 
shortly after falling sleep, and thus it is assumed that all of them were in the same sleep 
stage during the recordings, it is well known that changes in autonomic physiology and 
arousal occur during sleep (Gaultier et al., 1995; Duyn et al., 2020). A recent study with 
awake infants, observed focal brain activation patterns in occipital and temporal regions in 
response to visual and auditory stimuli, respectively (Taga et al., 2018). However, auditory 
responses became more global when infants were tested during natural sleep, thus 
disrupting the expected spatial response pattern over temporal regions. These global 
activation patterns were tentatively explained as infants’ perception being more synesthetic 
during sleep. It is also nevertheless possible that the global effects were a consequence of 
their fNIRS data preprocessing pipeline, which not included any specific step for the 
removal of global systemic physiological effects. 

Several authors have claimed that the removal of global systemic physiology is an 
essential (Tachtsidis and Scholkmann, 2016; Pfeiffer et al., 2018; Pinti et al., 2019; see also 
Chapter 2 of this thesis), yet not widely adopted, preprocessing step in fNIRS research. To 
understand the effect of removing global systemic effects in the current study, activation 
responses and HRFs were estimated using a data preprocessing pipeline applying standard 
bandpass filtering only (Appendix C Figure C.1). Significant activation responses were 
observed across most fNIRS channels in the setup. Moreover, the HRFs without global 
signal regression revealed a global component (i.e. present across all channels). These 
HRFs were shorter in duration, with HbO responses showing a clear bump at around 5 
seconds. The presence of this global component of undetermined nature across all 
channels in the setup raised doubts in the interpretation of these results. Thus, in the 
present work it was decided to reduce the impact of global components by using a global 
signal regression approach (Pfeiffer et al., 2018), as short-separation channels were not 
available in the fNIRS setup. Similar global trends were also apparent in other previous 
fNIRS works assessing brain responses to auditory stimuli in infants, and that not included 
any specific preprocessing step to remove global fluctuations (e.g., Watanabe et al., 2010; 
Homae et al., 2011; May et al., 2011). The origin and underlying physiological mechanisms 
contributing to this component constitute a relevant topic for future work.  

Another potential explanation for the dissimilar outcomes across studies is the 
number of participants and valid trials included in data analysis. In this work, high quality 
data from 58 participants is presented. Each participant has on average 21 trials per 
condition. This number exceeds those presented in previous works [e.g., Peña et al., (2003) 
12 infants, a maximum of 10 trials; Kotilahti et al., (2010) 13 infants, unknown number of 
trials; May et al., (2011) 20 infants, 4 valid trials on average; Minagawa-Kawai et al., (2011) 
12 infants, 8-12 trials; Sato et al., (2012) 12 participants, 5 valid trials on average; Vannasing 
et al., (2016) 27 participants, 14 valid segments on average; May et al., (2017) 24 infants, a 
maximum of 8 trials; Mercure et al., (2020) 60 participants, 5 valid trials per condition on 
average]. Despite the large number of participants and valid trials per condition available 
in the current study, which might have been adequate for group-level analyses, these 
numbers might still be insufficient for between-group statistical comparisons. 
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Importantly, for both analysis approaches, the two experimental conditions (i.e., 
FW and BW speech), and for activation and deactivation effects, the extracted brain 
activation patterns and hemodynamic responses matched the expected relationship 
between HbO and HbR responses as measured with fNIRS (i.e., HbO increase and HbR 
decrease, or the opposite for deactivation responses; Obrig and Villringer, 2003; see also 
Chapter 2). The temporally anticorrelated dynamics of HbO and HbR responses were 
observed even in those channels not showing statistically significant activation, or clear HRF 
responses. Most of the previous infant studies using fNIRS have focused their results in 
HbO parameter only, based on the premise that it is a better marker of brain activity and 
has a higher signal-to-noise than HbR (e.g., Sato et al., 2012). In these studies, statistically 
significant results in HbR are often not observed, or the outcomes of this parameter are 
directly not discussed (May et al., 2011; Minagawa-Kawai et al., 2011; Sato et al., 2012; 
Vannasing et al., 2016; May et al., 2017; Mercure et al., 2020). Our results demonstrated 
that reliable, robust and consistent responses are feasible in both Hb parameters providing 
a large number of participants and trials is collected. 

A relevant finding of the current study are the deactivation responses observed 
bilaterally over inferior frontal regions. As is can be inferred from Figure C.1B (Appendix 
C), this effect was not due to the global signal regression step applied during preprocessing, 
as similar deactivation responses were also present when hemodynamic responses were 
estimated without including this step. Furthermore, deactivation responses cannot be 
attributed to a generalized altered hemodynamic response pattern during sleep, as typical 
HRF patterns were observed in bilateral temporal regions during the presentation of speech 
and non-speech stimuli (Figure 5.8). 

A series of studies assessing the brain responses to auditory stimulation suggested 
that during sleep, information processing in a particular brain region might be achieved by 
suppressing the activity of alternative brain regions (Czisch et al., 2002; Czisch et al., 2004). 
Similar to the current study, Wilf et al. (2016) presented awake and asleep participants 
(adult subjects) with acoustic stimuli including different levels of linguistic information (i.e., 
scrambled speech, pseudowords and sentences). Here, activation responses over the 
auditory cortex were present during sleep, but responses in the inferior frontal regions 
responsible for language processing were completely suppressed. These results indicate 
that sensory processing is relatively preserved during sleep, but activity in higher order 
cognitive processes might be significantly reduced.  

Another plausible explanation is that this response inhibition mechanism might 
modulate cortical reactivity to certain external stimuli during sleep, thus operating as a sleep 
protecting mechanism (Zou et al., 2020). As in previous works (Portas et al., 2000; Czisch 
et al., 2004; Wilf et al., 2016), negative responses in the current study were mainly observed 
in channels located over left and right prefrontal regions. This region represents one of the 
functional hubs of the default-mode network, a functional brain network assumed to reflect 
the baseline or default-mode state of the brain, and which also demonstrates a functional 
deactivation during goal-oriented behaviours (Raichle et al., 2001). Interestingly, a similar 
deactivation pattern was observed in 3-month-old infants during the presentation of speech 
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stimuli (Dehaene-Lambertz et al., 2006). Considering the spatial resolution of fNIRS and 
channel localization precision, the possibility that the observed negative responses in the 
current work reflect the activity of this network cannot be completely ruled out.  

Yet, another potential explanation for the functional deactivation responses 
observed in the current study, and one that has been recurrently proposed in previous 
infant fNIRS studies (Wilcox et al., 2009; Kotilahti et al., 2010; Quaresima et al., 2012; de 
Roever et al., 2018) is the blood stealing effect from spatially adjacent brain regions. 
According to this view, the increased blood flow over activated brain regions is 
compensated by a deactivation, or blood flow reduction, in adjacent brain regions (Shmuel 
et al., 2001). This effect might be more strongly observed in areas that are served by the 
same vascular system, as is the case in the current work in which regions showing activation 
and deactivation responses are supplied by the middle cerebral artery. However, this 
hypothesis still remains to be tested as other works have reported deactivation responses in 
the absence of concurrent positive responses, thus discarding the possibility of a blood 
stealing effect (Czisch et al., 2004; Shekhar et al., 2019). 

Between-Group Comparisons 

 Activation differences between monolingual and bilingual infants’ responses were 
observed in various fNIRS channels. These effects were statistically weak, and only the 
strongest effects derived from these two analysis methods are discussed hereinafter. 
Concretely, differences that were either 1) present across HbO and HbR, 2) significant after 
multiple comparisons correction or/and 3) consistent across data analysis methods, are 
discussed. 

The strongest effect was observed in channel 18 located in the superior temporal 
gyrus. Here, a significant interaction effect in HbO and HbR indicated that bilingual infants 
showed higher activation to BW speech, whereas monolinguals’ brain activation was higher 
for FW speech. Few studies have compared speech processing in bilingual and 
monolingual infants at this early age. Nonetheless, this result could be linked with previous 
evidence that showed a behavioural preference in 4-month-old monolingual infants for 
their native language, and a stronger preference for the unfamiliar input displayed by their 
bilingual peers (Bosch and Sebastián-Gallés, 1997; Molnar et al., 2014).  In addition, 
neuroimaging research assessing the role of familiarity on infants’ brain responses to spoken 
language has consistently observed increased left lateralized activation in temporal regions 
to familiar vs. unfamiliar languages (Minagawa-Kawai et al., 2011; Sato et al., 2012; 
Vannasing et al., 2016), a result that somehow parallels the pattern observed in the current 
work. Monolingual infants, who are assumed to have more experience with their native 
language than bilinguals, showed the expected left hemispheric dominance towards their 
familiar language condition (i.e., Spanish-FW). On the other hand, bilingual infants 
displayed a relatively lower activation to FW condition as compared to monolinguals, which 
might reflect the reduced experience with this input. Alternatively, the higher activation in 
bilingual infants towards BW condition might also indicate their increased interest in 
unfamiliar, novel auditory stimuli. This mechanism (i.e., flexibility of attention) has been 
proposed as a specific cognitive adaptation that might allow bilingual infants to cope with 
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the increased complexity of a dual language environment (Costa and Sebastián-Gallés, 
2014; Bialystok, 2015).  

Similarly, in channel 15, located in the anterior part of the superior temporal gyrus, 
bilingual and monolingual infants showed HRFs of opposite sign only in HbO. In this 
channel, monolinguals displayed a positive activation response to FW stimuli, whereas 
bilinguals demonstrated a low amplitude deactivation response. This effect denoting a 
stronger left lateralized activation for speech in monolingual infants is similar to the one 
discussed above for channel 18, which is also located in the superior temporal gyrus but 
more posteriorly. 

An interaction effect (HbO only) in channel 14, localized in the left inferior frontal 
region, revealed that this channel was differentially sensitive to the stimulus condition across 
groups. In monolinguals, this channel showed enhanced deactivation responses to BW 
speech. Conversely, bilingual infants showed similar deactivation responses to FW and BW 
speech stimuli in this channel. Previous evidence has confirmed the role of left inferior 
frontal region for the detection of mismatching audio-visual information in 6-month-old 
infants, with matching trials showing higher positive (activation) responses and mismatching 
trials showing higher negative (deactivation) responses (Altvater-Mackensen and Grossman, 
2016). Although the link is rather speculative, deactivation responses in this region 
observed in the current work might be indicative of a similar processing, with monolinguals 
showing higher deactivation responses to the unfamiliar/mismatch condition, while this 
distinction being less salient in the case of bilingual infants. Importantly, the same 
interaction effect (HbO only) was confirmed as significant in the FIR-based analysis.  

Lastly, bilingual infants showed an increased activation in right superior/middle 
temporal gyrus (i.e., channel 9), as demonstrated by the two data analyses. The activation-
based analysis showed that, considering both experimental conditions (i.e., FW and BW 
speech), bilinguals’ activity in this region was higher than in monolinguals, although only 
observed for HbO. The FIR-based analysis of the HRFs revealed a similar outcome, but 
only for the FW speech condition in both HbO and HbR. By looking at the HRF curves 
(Figures C4 and C.5 in Appendix C), it can be noticed that the magnitude of the response 
in the right temporal region (channels 7 and 9) is higher in bilingual infants. A more bilateral 
language representation in bilinguals has been proposed (Hull and Vaid, 2007; Archila-
Suerte et al., 2013), which might be explained by the recruitment of additional brain regions 
due to the increased cognitive demands of the bilingual input (Costa and Sebastián-Gallés, 
2014), but further evidence for this lateralization difference in infancy is still required.  

As discussed in Chapter 1, another potential explanation for the observed 
differences might be related with a less left-hemispheric dominance in bilinguals due to a 
reduced, or delayed, functional specialization to their native language. Several works have 
demonstrated that monolingual infants became specialized earlier in the properties of their 
native language (Bosch and Sebastián-Gallés, 1997; Weikum et al., 2007; Sebastián-Gallés 
et al., 2012; Nácar-García et al., 2018). Although native language performance is 
fundamentally equivalent between monolingual and bilingual infants, bilingual infants 
showed sustained sensitivity to the properties of unfamiliar languages when monolingual 
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infants are no longer able to do so (Weikum et al., 2007; Petitto et al., 2012; Sebastián-
Gallés et al., 2012). These findings might suggest a different developmental transition in the 
perceptual sensitive periods during speech processing between bilingual and monolingual 
infants (Kuhl, 2010; Petitto et al., 2012; Kovacs et al., 2015; Werker and Hensch, 2015), 
which can complement the attentional adaptation hypothesis (Costa and Sebastián-Gallés, 
2014; Byalistok, 2015; Comishen et al., 2019). The delayed functional specialization 
observed in bilingual infants at the behavioural level might be present at the neural level as 
well. Considering speech processing, as in the current work, these adaptations might 
manifest as an additional involvement of right hemispheric regions, or analogously, as a 
decreased left-hemispheric specialization. 

In the rest of the channels showing differences between groups, higher 
activation/deactivation responses were observed in bilingual as compared to monolingual 
infants for FW speech; except for an effect in the posterior part of the left middle-inferior 
temporal gyrus suggesting a higher activation in this region in monolingual infants. Overall, 
the effects observed in between-group comparisons were small, which might indicate a lack 
of statistical power. Therefore, any activation differences between bilingual and 
monolingual infants observed in the current work should be cautiously interpreted. 

5.5. Summary 

 The study presented in this chapter described the brain activation responses to 
speech and non-speech stimuli in 4-month-old bilingual and monolingual infants using 
fNIRS. At the group level, functional brain activation to the auditory stimuli was observed 
bilaterally in classical language and auditory regions in the superior and middle temporal 
gyrus, with activation patterns showing a higher lateralization towards the left hemisphere. 
No differences were observed between forward and backward speech conditions after 
multiple comparison corrections suggesting that, under the current experimental 
conditions, the infant brain did not signal a distinction between the two acoustic inputs. 
Deactivation responses were observed bilaterally in the inferior frontal gyrus, but the 
functional mechanisms underlying this process require more evaluations. 

 Potential tendencies emerged when comparing bilingual and monolingual infants. 
Monolinguals showed a more left-lateralized pattern of brain activation for speech stimuli 
of their native language, whereas bilinguals showed more bilateral activity over temporal 
regions and less marked preference towards speech vs. non-speech condition. These results 
fit previous observations showing dissimilar developmental pathways between bilingual and 
monolingual infants during the earliest stages of language acquisition (e.g., Bosch and 
Sebastián-Gallés, 1997; Nácar-García et al., 2018). However, the ability of the current work 
to robustly detect these differences might have been hindered by a limited statistical power. 

This work also produced several methodological advancements of relevance for 
future fNIRS research. An optimized stimulus presentation procedure was implemented, 
which can be adapted for different statistical goals such as detecting brain activation, 
estimating the shape of the hemodynamic response function, or both, depending on the 
research question under investigation. An efficient experimental design for stimuli 
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presentation can be particularly meaningful for infant fNIRS studies in which data quality 
is more heavily dependent on time constrains. This approach allowed us to collect an 
unprecedented number of trials for each experimental condition. Second, a method to 
perform statistical comparison on the hemodynamic response time courses without the 
need of selecting a particular response feature (e.g., mean or peak amplitude) was 
implemented. Following the outcomes of Chapter 3, this work further highlighted the 
importance of data quality for obtaining robust and reliable fNIRS measurements. In 
addition, this work explored how different methodological approaches for fNIRS signal 
processing, for example not accounting for global systemic physiology, might impact study 
outcomes and lead to inaccurate interpretations.
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Conclusions and Future Work 

This thesis investigated potential differences in functional brain activity between 4-
month-old monolingual and bilingual infants (Chapter 1) using functional near-infrared 
spectroscopy (fNIRS, Chapter 2). Examining resting-state functional connectivity (Chapter 
3) allowed to simultaneously describe and compare the intrinsic configuration of numerous 
functional systems supporting different cognitive processes. Chapter 4 described specific 
methodological issues to consider when analysing resting-state fNIRS measurements. 
Chapter 5 examined whether the reported behavioural differences between 4-month-old 
monolingual and bilingual infants during speech processing could also be manifested as 
dissimilar patterns of brain activation towards speech stimuli. Due to the limited amount of 
studies that have compared early language acquisition in monolingual and bilingual setups 
using neurophysiological measures, findings derived from this thesis could help to better 
understand established behavioural evidence, and provide insights for future lines of 
research in the (bilingual) language acquisition field.  

Functional Imaging in 4-Month-Old Infants 

 One of the main goals of this thesis was to provide robust and replicable outcomes 
based on fNIRS resting-state and task-based measurements in 4-month-old infants that 
could serve as reference for future research works in this population. In the last years, a 
growing number of brain imaging studies have conducted fNIRS in developmental 
populations. Some of these works yielded unexpected outcomes, which are challenging to 
explain and link to established literature, and which often contradict the inherent properties 
of the neurophysiological signal that is measured with fNIRS.  

In this work, at the whole-group level, the observed resting-state functional 
connectivity patterns and the brain activation responses towards speech stimuli involved 
regions that were spatially consistent with prior literature. As an example, classic functional 
networks overlapping primary auditory and sensorimotor regions were identified. Speech 
stimuli elicited brain responses in bilateral middle and superior temporal regions and in 
the inferior frontal gyrus, which correspond to brain areas that are known to support 
auditory and language processes. Besides the spatial characteristics of the reported 
functional networks and responses, the presence of relevant features of the fNIRS signal 
corroborated the reliability of the measurements obtained in the current work. Concretely, 
the outcomes presented in the studies of this thesis showed: i) the assumed statistical 
relationship between oxy- and deoxyhemoglobin (HbO and HbR) signals (i.e., negative 
correlation or antiphase state), ii) the direction of activation responses always showing 
opposite sign across HbO and HbR, indicative of activation or deactivation hemodynamic 
responses, and iii) the shape of the estimated hemodynamic response resembling the 
canonical model.  

Nonetheless, it is acknowledged that not all research can be conducted under the 
conditions that were available in the current work (e.g., testing a large number of 
participants, and during natural sleep). Taking into account the importance of conducting 
research in this population, a major advancement for the field would be a commitment to 
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data sharing in a way that is easily accessible by other researchers. This would be a simple, 
yet relevant step that could help explaining potential inconsistencies of the results and 
avoiding over interpretation of research findings. It is planned that the data of the studies 
presented in this thesis will be made available in an open access repository at the time of 
publication. 

Functional Adaptations due to an Early Bilingual Environment 

So far only a few studies have investigated the consequences of an early bilingual 
environment on functional brain development. These studies have been mainly supported 
by behavioural evidence showing that both linguistic capacities and learning trajectories are 
essentially comparable across monolingual and bilingual infants, but the latter present 
various behavioural and functional adaptations when processing linguistic inputs, 
presumably induced by the added complexity of growing up in bilingual learning 
environment.  

Despite acquiring resting-state fNIRS measurements showing a large agreement 
with the fundamental properties of the fNIRS signal, and observing functional networks 
spatially consistent with established literature, the study described in Chapter 3 comparing 
resting-state functional connectivity patterns across monolingual and bilingual infants 
revealed no differences between experimental groups. Functional connectivity differences 
as a result of a dissimilar language background have only been observed in adult subjects 
(Luk et al., 2011; Grady et al., 2015; Berken et al., 2016; Kousaie et al., 2017; Gullifer et 
al., 2018; Sulpizio et al., 2020). Hence, future work should aim to disentangle whether 
potential differences might manifest later in development; for example by conducting a 
longitudinal study considering a big sample of infants with different levels of linguistic 
experience. Such a study would also benefit of a denser fNIRS array (e.g., high-density 
diffuse optical tomography) with enhanced spatial sensitivity, and a more precise optode 
localization method. 

Similarly, reliable fNIRS measurements and spatially meaningful brain activation 
patterns towards auditory speech stimuli were obtained in the study presented in Chapter 
5. A limitation of this study, including speech stimuli of a shared native language (i.e., 
Spanish), is that the experimental design did not allow to discern the role of experience 
from the role of bilingualism in the comparison of functional activation patterns extracted 
during language processing. Concretely, the observed (weak) effects could not be 
incontestably attributed to a reduced exposure to a particular language only, as they could 
also be associated to the very fact of being bilingual. In a future study, the effect of 
bilingualism could be ruled out, for example by including two groups of bilingual infants 
tested on one common familiar and on one unfamiliar language for each of them, 
respectively. A more comprehensive, but challenging, setup could also include 
electroencephalography (EEG) measurements to simultaneously examine how each of 
these groups tracks relevant temporal and spectral properties of speech such as rhythm.  

The studies presented in Chapters 3 and 5 yield either non-significant, or only weak 
evidence for the effect of early bilingualism in functional brain activation or connectivity 
patterns. Discerning whether these results are merely not informative or they indicate 
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support for the null hypothesis (i.e., absence of evidence vs. evidence of absence) would 
provide a more accurate and complete interpretation of the observed effects. An ongoing 
work is to complement the traditional frequentist null-hypothesis testing approach 
employed in these studies with a Bayesian hypothesis testing method, which would permit 
establishing quantitative predictions on the absence or the presence of the investigated 
effect (Keysers et al., 2020). 

Methodological Outputs 

 This thesis also describes various methodological outputs from a signal processing 
and data analysis point of view, which might be particularly relevant for studies using fNIRS 
in developmental populations. First, a data quality assessment routine was implemented in 
all the studies of this thesis. The quality indicators that were used (e.g., power spectral 
density assessment,  phase difference between HbO and HbR and signals) were established 
according to recommendations by fNIRS experts gathered from reviews (Tatchsidis and 
Scholkmann, 2016; Pinti et al., 2019), seminal papers (Obrig et al., 2003), training 
workshops and recommendations at the fNIRS Society meetings. Although carrying out a 
quality assessment routine for every single participant and sharing this information with the 
community might seem a trivial step for more experienced fNIRS researchers, this simple 
approach for understanding fNIRS data is essential for those researchers new to the field; 
particularly given that neuroscientific studies are performed by researchers from a broad 
range of backgrounds such as psychology, linguistics, statistics or engineering.  

A fundamental difference between the fNIRS data preprocessing pipeline 
employed in the studies of this thesis with respect to previous fNIRS infant works is the 
addition of a step for removing global systemic physiology. Accounting for global, systemic 
hemodynamic changes, for example by regressing out the signal from short-distance 
channels is an established preprocessing step in fNIRS studies with adults where such 
channels are available (Saager and Berger, 2008; Gagnon et al., 2014). The feasibility of 
this approach is very limited in developmental populations due to the small head size of 
infants such that global signal regression becomes the most practical and feasible alternative 
(Tatchsidis and Scholkmann, 2016). Even though some works suggested that global 
hemodynamic effects might not severely impact fNIRS measurements with infants 
(Emberson et al., 2016), and avoid performing this global regression step, the patterns of 
brain activation tend to spread across all channels in the setup and not localized in the a 
priori expected region. Here, the presence of global effects in resting-state and task-based 
fNIRS paradigms with infants was also demonstrated when global signal regression was not 
performed. Trying to understand the benefits and downsides of this step, and its interaction 
with other steps of the standard infant fNIRS preprocessing pipeline deserves further 
investigation. This work can also include data analysis pipelines that incorporate advanced 
statistical methods such as prewhitening and robust regression (Huppert et al., 2016), which 
adapt the statistical model to account for the specific sources of noise present in the fNIRS 
signal. Similarly, the findings reported in Chapter 4 opened a discussion about the 
implications of incorporating prewhitening to the resting-state fNIRS data preprocessing 
pipeline and about the prewhitening method that would be more appropriate for those 
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fNIRS users interested in including this step. Future work should also explore alternative 
statistical methods to approach the issue of temporal autocorrelation on functional 
neuroimaging signals, such as those used to estimate the effective degrees of freedom or to 
correct the variance of Pearson’s correlation coefficient (Patel and Bullmore, 2016; Afyouni 
et al., 2018; James et al., 2019). 

 This thesis also introduced several data analysis methods to investigate resting-state 
and task-based experimental paradigms that are novel for fNIRS data. In Chapter 3, two 
methods to extract group-level functional connectivity networks and components were 
adapted from the functional magnetic resonance imaging (fMRI) literature (Smith et al., 
2012; Amico et al., 2017; Amico and Goñi, 2018). These approaches were implemented 
by incorporating specific characteristics of the fNIRS signal, such as the expected 
resemblance between the HbO and HbR functional connectivity patterns. Furthermore, 
these properties were exploited to develop a new approach for order selection that ensured 
the robustness of the obtained patterns. Future lines of research could also explore 
implementing novel advanced functional connectivity analyses such as complex network 
analyses, dynamic causal modelling and psycho-physiological interactions to the acquired 
datasets. By applying these methods, it would be possible to characterize individual 
functional connectivity profiles (de Souza et al., 2019) and investigate potential associations 
between specific network features and different cognitive or clinical outcomes of interest 
(Hassanpour et al., 2017). 

In Chapter 5, a threshold-free cluster enhancement (TFCE) method was 
implemented to perform statistics in the entire time courses of the extracted hemodynamic 
responses. This is the first time TFCE is implemented for the analysis of fNIRS data, and 
the parameters were selected based on previous EEG and fMRI works (Smith and Nichols, 
2009; Mensen and Khatami, 2013; Pernet et al., 2015). The parameters used in the current 
work downweight the effect of cluster extent, partially reducing the importance of broad 
but weak effects. On the other hand, the effect is enhanced in time points showing high 
statistical values, therefore assigning more relevance to strong and peaky clusters. Future 
research should investigate the best way to tune these parameters to efficiently detect both 
types of effects considering the type of responses commonly observed in fNIRS data. 
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Resumen 

La adquisición del lenguaje es un proceso que ese encuentra determinado tanto por 
mecanismos de desarrollo cognitivo, como por la experiencia lingüística durante los 
primeros años de vida. Aunque se trata de un proceso relativamente complejo, los bebés 
muestran una gran habilidad para el aprendizaje del lenguaje. Un entorno de aprendizaje 
lingüístico bilingüe podría considerarse aun más complejo, ya que los bebés están 
expuestos a las características lingüísticas de dos lenguas simultáneamente. En primer lugar, 
los bebés que crecen en un entorno bilingüe tienen que ser capaces de darse cuenta de que 
están expuestos a dos lenguas diferentes, y posteriormente deben separar y aprender las 
características especificas de cada una de ellas; por ejemplo, los distintos fonemas, palabras 
o estructuras gramaticales. Aunque la exposición lingüística total de los bebés bilingües 
debería ser comparable a la de los bebés monolingües, es probable que la exposición a 
cada una de las lenguas de su entorno sea menor, ya que tienen que dividir su tiempo de 
exposición entre ambas. Si bien los bebés bilingües parecen no tener problemas para 
enfrentarse a un contexto de aprendizaje potencialmente más complejo, ya que alcanzan 
las distintas etapas de adquisición del lenguaje a un ritmo similar a los bebés monolingües, 
sí se han observado adaptaciones a nivel conductual y a nivel de funcionamiento cerebral 
que podrían producirse como consecuencia de este contexto.   

En el primer capítulo de la tesis se realiza una revisión detallada de la literatura 
sobre la adquisición del lenguaje en entornos bilingües durante los primeros meses de vida, 
con especial énfasis en las posibles adaptaciones que tienen lugar en los bebés bilingües 
durante este proceso. Estudios previos han demostrado que la forma en la que los bebés 
monolingües y bilingües dirigen su atención a estímulos lingüísticos difiere entre ambos 
grupos. Los bebés bilingües parecen mostrar mayor interés hacía estímulos lingüísticos 
novedosos, mientras que los bebés monolingües se ven más atraídos por la información 
lingüística relacionada con su lengua materna. Por otra parte, algunas habilidades 
perceptivas, como la capacidad para diferenciar dos lenguas en base a información 
lingüística visual, pero no auditiva, parecen seguir una trayectoria diferente entre estos dos 
grupos. Si bien los bebés monolingües se especializan antes en las características de su 
lengua materna, reduciendo progresivamente su habilidad para discriminar otras lenguas 
no presentes en su entorno, los bebés bilingües parecen mantener sus capacidades de 
discriminación lingüística durante más tiempo, además de utilizar diferentes estrategias 
para conseguirlo, lo cual podría suponer un mecanismo de adaptación a su entorno 
lingüístico más complejo. Además, también se ha observado que crecer en un entorno 
lingüístico bilingüe podría influir en el desarrollo de otras funciones cognitivas más allá del 
ámbito del lenguaje, y más concretamente en las funciones ejecutivas. Algunas de estas 
diferencias también han sido confirmadas mediante estudios de neuroimagen, por 
ejemplo, al comparar las respuestas cerebrales de bebés monolingües y bilingües ante 
sonidos del habla de la lengua materna y una lengua desconocida. Sin embargo, debido a 
la dificultad que supone realizar este tipo de estudios en población infantil, algunos de estos 
estudios cuentan con importantes limitaciones metodológicas, las cuales también se 
describen a lo largo de la tesis, y que los estudios realizados pretenden superar. 
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El objetivo general de esta tesis doctoral ha sido estudiar la influencia del 
bilingüismo en el desarrollo funcional del cerebro durante los primeros meses de vida. 
Concretamente, el grupo experimental de interés para los estudios de esta tesis han sido 
los bebés de 4 meses de edad, por tratarse del primer momento del desarrollo donde se 
han observado diferencias tanto conductuales, como a nivel de funcionamiento cerebral 
entre bebés monolingües y bilingües. Los estudios principales de esta tesis se han centrado 
en investigar si una exposición temprana y continuada a un entorno bilingüe podrían 
producir cambios en la organización y el funcionamiento cerebral, especialmente en áreas 
asociadas al lenguaje, siendo estas diferencias observables mediante el empleo de técnicas 
de neuroimagen funcional adaptadas para su uso con población infantil. Concretamente, 
para la realización de los estudios presentados se ha utilizado la técnica de neuroimagen 
funcional espectroscopia del infrarrojo cercano (functional near-infrared spectroscopy - 
fNIRS), cuyos fundamentos se describen en detalle en el capítulo 2. Esta técnica utiliza las 
propiedades de la luz infrarroja para penetrar los tejidos del cuerpo humano, ya que la piel, 
el cráneo y los tejidos cerebrales no absorben este tipo de luz. Esta propiedad permite 
relacionar las variaciones de intensidad que se producen en la luz al atravesar los tejidos 
cerebrales con los cambios que se producen en la concentración de oxigeno en áreas 
específicas del cerebro, los cuales representan una medida indirecta de actividad cerebral. 

Experimento 1. Conectividad Funcional en Estado de Reposo 

El primer estudio experimental de la tesis (capítulo 3) estudia la actividad funcional 
del cerebro en estado de reposo en bebés de 4 meses utilizando fNIRS. Estudiar la 
actividad del cerebro en estado de reposo es una forma de entender la organización 
funcional del cerebro, evitando la interferencia debida a diferencias individuales que puede 
darse en estudios que requieren la ejecución de una tarea específica. Este tipo de paradigma 
experimental permite estudiar la conectividad funcional (functional connectivity - FC), es 
decir la activación sincronizada entre áreas del cerebro que comparten un rol común 
durante la ejecución de diferentes procesos cognitivos, por ejemplo la red visual, la red 
auditiva, la red motora o la red del lenguaje.  

Este estudio incluyó datos de fNIRS de gran calidad recogidos en 99 niños de 4 
meses de edad, con una duración de 9 minutos en cada uno de ellos, formando una 
muestra sin precedentes si se compara con estudios anteriores que han estudiado FC con 
fNIRS en población infantil. Los 99 participantes pertenecían a tres entornos lingüísticos 
diferentes: bilingües español-euskera, monolingües de español y monolingües de euskera. 
Además, se implementaron métodos para el estudio de la FC a nivel de grupo, sin 
necesidad de dividir a los participantes en base a condiciones experimentales. Esto 
permitió que los resultados de este estudio fueran calculados sobre una muestra de 99 
participantes, y no a nivel de sub-grupo o individuo como se ha realizado en estudios 
anteriores de FC con fNIRS. Los resultados de este estudio revelaron mapas de FC a nivel 
de grupo que coinciden con estudios previos de neuroimagen realizados con resonancia 
magnética funcional, en los cuales la literatura es más extensa, tanto en adultos como en 
población infantil. Sin embargo, la comparación estadística entre los grupos experimentales 
(bilingües vs monolingües) no encontró diferencias en los patrones de estas redes entre los 
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grupos. Puesto que hasta ahora únicamente se han observado diferencias en FC debido a 
un entorno bilingüe en poblaciones adultas, futuras investigaciones con participantes en 
distintas etapas del desarrollo podrían ayudar a clarificar cuándo y bajo qué condiciones 
comienzan a manifestarse estas diferencias en la organización funcional del cerebro durante 
la infancia. 

Experimento 2. Retos Estadísticos durante el Procesamiento de la Señal de fNIRS 

En el capítulo 4 de la tesis se presenta un estudio metodológico, en el cual se discute 
el problema de la autocorrelación temporal en la señal fNIRS, una propiedad de la señal 
que puede inducir falsos resultados en estudios de conectividad funcional (FC). Esta 
característica en la señal de fNIRS se debe principalmente a la alta frecuencia de muestreo 
de la señal de este sistema de neuroimagen, y a la presencia de componentes fisiológicos 
(e.g., respiración o pulso cardiaco) que coexisten con la señal hemodinámica de interés, es 
decir con aquella que refleja de manera indirecta la actividad neuronal. 

En este estudio se evalúan empíricamente los dos métodos principales que se 
habían propuesto para eliminar el efecto de la autocorrelación temporal presente en la 
señal de fNIRS. Los análisis realizados demuestran que estos métodos son eficaces en esta 
tarea, pero que también modifican ciertas propiedades intrínsecas de la señal 
neurofisiológica medida con fNIRS, y en las cuales están basados todos los estudios previos 
de la literatura sobre FC. Los análisis realizados demuestran que utilizando un análisis 
clásico de la señal fNIRS es posible replicar los resultados de dos estudios recientes de FC 
realizados en población infantil. Por el contrario, al eliminar la autocorrelación mediante 
los métodos propuestos en la literatura no es posible replicar los resultados de ninguno de 
los estudios. Por lo tanto, en base a los resultados, se concluye que para considerar la 
aplicación rutinaria de este paso durante el preprocesado de la señal fNIRS es necesario 
que su efecto se investigue más detalladamente, con el objetivo de entender la relevancia 
neurofisiológica de la señal fNIRS tras eliminar su autocorrelación intrínsica. Futuros 
estudios podrían determinar el procedimiento más apropiado para corregir el elevado 
numero de falsos positivos en estudios de FC utilizando fNIRS, y proponer nuevos 
métodos que podrían aplicarse sin la necesidad de alterar las propiedades intrínsecas de la 
señal. 

Experimento 3. Respuestas Cerebrales a Estímulos Lingüísticos 

En el capítulo 5 se investigan las respuestas cerebrales de bebés monolingües y 
bilingües ante estímulos lingüísticos. Puesto que las diferencias entre estos grupos no se 
manifiestan en su actividad cerebral en estado de reposo, la hipótesis para este estudio 
plantea que los patrones de actividad cerebral podrían diferir en cuanto a las áreas 
encargadas del procesamiento del lenguaje, ya sea por el hecho de crecer en un entorno 
bilingüe, o por la reducida exposición que los bebés bilingües presentan hacia cada una de 
sus lenguas. 

Al igual que en el estudio de FC, para este estudio se obtuvieron datos de gran 
calidad en 58 niños de 4 meses de edad, en este caso monolingües de español y bilingües 
de español y euskera. Los participantes fueron expuestos a frases en español mientras se 
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midió su actividad cerebral utilizando la técnica de fNIRS. Para el diseño experimental del 
estudio, se utilizó un procedimiento optimizado basado en algoritmos genéticos por 
primera vez en fNIRS que permite investigar tanto las áreas cerebrales activadas, como la 
forma de la respuesta hemodinámica de forma más eficiente (i.e. mayor número de eventos 
por unidad de tiempo) que con paradigmas más convencionales y ampliamente utilizados 
en estudios de fNIRS.   

 Los análisis a nivel de grupo, es decir considerando las respuestas de todos los 
participantes de manera conjunta, mostraron actividad funcional en áreas clásicamente 
asociadas a la audición y el lenguaje como el giro temporal superior y medio de ambos 
hemisferios, aunque con cierta tendencia hacia una mayor lateralización hacia el hemisferio 
izquierdo. Se observaron diferencias significativas entre los grupos experimentales, 
especialmente en áreas cerebrales relacionadas con el procesamiento de la información 
auditiva. Estos resultados podrían ser muy relevantes ya que demostrarían que un entorno 
bilingüe podría producir una adaptación funcional en el cerebro durante los primeros 
meses de vida, confirmando así las hipótesis desarrolladas en previos estudios 
conductuales. Sin embargo, estos resultados deben ser interpretados con cautela, ya que 
los efectos detectados fueron relativamente débiles, tal y como demostraron los 
procedimientos estadísticos aplicados para la corrección por comparaciones múltiples. 

Discusión General 

En resumen, esta tesis analiza el impacto que supone la exposición temprana a un 
entorno bilingüe para el desarrollo funcional del cerebro. Los estudios presentados en esta 
tesis podrían tener importantes implicaciones teóricas para futuras investigaciones 
centradas en entender las primeras etapas de la adquisición del lenguaje. Concretamente, 
los resultados sugieren que el contexto lingüístico durante los primeros meses de vida 
podría causar cambios en la organización funcional del cerebro los cuales son observables 
durante el procesamiento de estímulos lingüísticos, y que sin embargo no se manifiestan al 
examinar la organización funcional del cerebro en estado de reposo. En esta tesis también 
se proponen varios avances metodológicos de relevancia en cuanto al procesamiento y al 
análisis de la señal de fNIRS. Asimismo, se demuestra la utilidad de la técnica fNIRS para 
medir de forma fiable el funcionamiento cerebral en población infantil utilizando 
diferentes paradigmas experimentales. A lo largo de este trabajo también se incide en la 
importancia de aplicar una metodología transparente y replicable en futuras investigaciones 
en el campo de la neurociencia cognitiva del desarrollo.  
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Appendix A 
 
fNIRS Data Quality Assessment 
 

 

In this Appendix, various fNIRS data quality indicators are described. These indicators can 
be computed at different steps of data preprocessing in order to assess the quality of 
individual datasets. The MATLAB scripts to compute some of these parameters and to 
produce the data quality assessment figures for visual inspection are also provided. Three 
examples of real resting-state data with diverse quality levels (High = A, Mid = B, Low = C) 
are presented. 

- As a first step in data quality assessment routine, channel time series (e.g., intensity, 
optical density, concentration) can be inspected to detect motion-induced artifacts 
and signal drifts.  

- As a second indicator, the presence of physiological components, such as 
respiration (0.6 Hz) and cardiac pulsation (2 Hz), in the power spectral density of 
HbO and HbR prior to temporal filtering can be assessed.  

- A negative correlation between HbO and HbR signals (i.e., an antiphase state) (Cui 
et al., 2010; Watanabe et al., 2017) is also considered as a valid indicator of good 
data quality. Finally. the statistical association between time series fluctuations of Hb 
chromophores (HbO and HbR) is expected to be characterized by a strong negative 
correlation (Malonek and Grinvald, 1996; Villringer and Chance, 1997; Obrig and 
Villringer, 2003; Montero-Hernandez et al., 2018) and an antiphase state (Taga et 
al., 2000; Taga et al., 2017; Watanabe et al., 2017). These properties, which 
describe the intrinsic relationship between HbO and HbR hemodynamic 
fluctuations, have been confirmed in previous task-based (Wolf et al., 2002; Boas 
et al., 2003) and resting-state fNIRS studies in infants and adults (Taga et al., 2000; 
Zimeo-Morais et al., 2017; Watanabe et al., 2017), and even algorithms that 
maximize the negative correlation between Hb chromophores have been proposed 
as signal improvement, noise reduction, methods (Cui et al., 2010).  
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A.1. Time-Series Visualization 

In MATLAB Box A.1 the script to generate the figures of the raw intensity time 
series and the time series after conversion to optical density is described. These figures 
provide a general overview of dataset quality, primarily regarding the presence of motion 
artifacts, baseline shifts and corrupted/saturated channels (Figure A.1). Note that these 
scripts generate figures for a single participant. Also note that scale in these plots might vary 
for different populations or fNIRS systems and should be adjusted accordingly by the user. 

MATLAB Box A.1  

Script to visualize time series (e.g., intensity and OD) of an individual participant. Two methods for 
data visualization are described 1) 2D line plots and 2) greyplots.  

 
 
 
 
 
 

 
 

% The following variables should be defined in advance: 
% Intensity and OD data for each wavelength in the format (time  x channels) 
% data_raw_wl1 and data_raw_wl2; data_OD_wl1 and data_OD_wl2 
% N = number of samples/length of the dataset (5500 in this example) 
% sf = sampling frequency (8.93Hz in this example) 
 

% Create time vector (to display seconds instead of samples) 
t = (0:N-1)/sf;  
 

% -------------------- Visualization method 1 – 2D line plots 
% Plot raw intensity time series 
subplot(3,2,1) 
plot(t, data_raw_wl1) 
% Add titles, axes limits and axes labels 
set(gca, 'YScale', 'log') 
xlim([0 t(end)]); xlabel('Time (seconds)') 
ylim([0 2.5]); ylabel('Intensity (log)'); 
title ('wl1 - 760 nm');  
  
% Same steps for wavelength 2 
subplot(3,2,2) 
plot(t, data_raw_wl2) 
set(gca, 'YScale', 'log') 
xlim([0 t(end)]); xlabel('Time (seconds)') 
ylim([0 2.5]); ylabel('Intensity (log)'); 
title ('wl2 - 850 nm');  
  
% Plot OD time series 
subplot(3,2,3) 
plot(t, data_OD_wl1) 
xlim([0 t(end)]); xlabel('Time (seconds)') 
ylim([-1.5 2]); ylabel('OD (A.U.)'); 
  
% Same steps for wavelength 2 
subplot(3,2,4) 
plot(t, data_OD_wl2) 
xlim([0 t(end)]); xlabel('Time (seconds)') 
ylim([-1.5 2]); ylabel('OD (A.U.)'); 
  
% -------------------- Visualization method 2 - Greyplots 
subplot(3,2,5) 
imagesc(data_OD_wl1', [-1 1]) 
xlabel('Time (samples)'); ylabel('Channel') 
  
subplot(3,2,6) 
imagesc(data_OD_wl2', [-1 1]) 
xlabel('Time (samples)'); ylabel('Channel') 
colormap gray 
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Example A 

 
 
 
 

Example B 
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Example C 

 
Figure A.1 The first row in this figure shows the signal intensity time courses for the 
recorded channels in each wavelength (i.e., 760nm and 850nm) in a logarithmic scale. The 
second row displays the OD time courses for all channels in each wavelength. The third 
row in this figure shows an image plot of the time courses of OD data (also referred to as 
greyplots). Each row in this image (y axis) displays a single channel, columns (x axis) 
correspond to time points and signal intensity values are represented as different color 
intensity levels in a gray scale. In these plots it can be observed that signals in Example A 
are smooth, with no abrupt intensity changes. In contrast, in Examples B and C intensity 
changes associated with motion artifacts are noticeable in several time points. In Example 
B brief motion related signal intensity changes are observed at time points around 200 and 
400 seconds (i.e., 2000 and 3500 samples). In Example C several periods affected by 
motion artifacts as well as baseline shifts are apparent. 
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A.2. Power Spectral Density Assessment 

The presence of physiological components (e.g., respiration, cardiac pulse) in the 
power spectral density (PSD) of HbO and HbR time series is considered one of the main 
indicators of good optode-scalp coupling. In MATLAB Box A.2 the script to compute and 
plot the information provided by this metric is described. In infants the main physiological 
components are usually observed at ~0.6 Hz (respiration) and ~2 Hz (cardiac pulse) and 
its corresponding harmonics (see Figure A.2).  

MATLAB Box A.2  
Script to plot power spectral density of HbO and HbR. Three visualization methods are presented 

 

% The following variables should be defined in advance: 
% data_HbO and data_HbR (calculated from OD data using hmrOD2Conc) 
% N = number of samples/length of the dataset 
% sf = sampling frequency (8.93Hz in this example) 
% Calculate frequency range 
freq = linspace(0, sf/2, N/2+1);  
 

% Compute Fourier Transform of HbO and HbR 
fft_HbO = fft(data_HbO); % Fourier Transform HbO data 
fft_HbO = 2*abs(fft_HbO(1:N/2+1, :)); % Keep only first half 
fft_HbR = fft(data_HbR); % Fourier Transform HbR data 
fft_HbR = 2*abs(fft_HbR(1:N/2+1, :)); % Keep only first half 
  
% 1 - Plot mean HbO PSD across channels 
subplot(2,3,1) 
plot(freq, mean(fft_HbO,2), 'r', 'linewidth', 1); box off 
xlim([0 sf/2]); xlabel('Frequency (Hertz)'); 
ylim([0 800]); title ('Mean PSD HbO') 
  
% 2 - Plot mean HbO PSD across channels (log scale) 
subplot(2,3,2) 
plot(freq, mean(fft_HbO,2), 'r', 'linewidth', 1); box off 
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log') 
xlim([0 sf/2]); xlabel('Frequency (Hertz)') 
title ('Mean PSD HbO (log scale)') 
  
% Create XTickLabels for channel by channel plots  
freq_list = [0 ,1 ,2, 3, 4]; 
idx = zeros(1, length(freq_list)); 
for i = 1:length(freq_list) 
    dist    = abs(freq - freq_list(i)); 
    minDist = min(dist); 
    idx (i) = find(dist == minDist); 
end 
freq_labels = {'0', '1', '2', '3', '4'}; 
 

% 3 - Plot HbO PSD channel by channel 
subplot(2,3,3) 
imagesc(fft_HbO', [0 100]) 
set(gca, 'XTick', idx, 'XTickLabel', freq_labels) 
xlabel('Frequency (Hertz)'); ylabel('Channels') 
title ('PSD HbO (channel by channel)') 
colormap jet; colorbar 
 

% 1 - Plot mean HbR PSD across channels 
subplot(2,3,4) 
plot(freq, mean(fft_HbR,2), 'b', 'linewidth', 1); box off  
xlim([0 sf/2]); xlabel('Frequency (Hertz)'); 
ylim([0 100]); title ('Mean PSD HbR') 
  
% 2 - Plot mean HbR PSD across channels (log scale) 
subplot(2,3,5) 
plot(freq, mean(fft_HbR,2), 'b', 'linewidth', 1); box off 
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log') 
xlim([0 sf/2]); xlabel('Frequency (Hertz)') 
title ('Mean PSD HbR (log scale)') 
  
% 3 - Plot HbR PSD channel by channel 
subplot(2,3,6) 
imagesc(fft_HbR', [0 20]) 
xlabel('Frequency (Hertz)'); ylabel('Channels') 
set(gca, 'XTick', idx, 'XTickLabel', freq_labels) 
title ('PSD HbR (channel by channel)') 
colormap jet; colorbar 
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Example A 

 
 
 

Example B 
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Example C 

 
Figure A.2 Three different methods to visualize PSD of HbO (top row) and HbR signals 
(bottom row) are presented. First column depicts the average PSD across channels for each 
chromophore, showing clear peaks at ~0.6 Hz and ~2 Hz and its harmonics. Second 
column shows the average PSD across channels on a logarithmic scale, demonstrating a 
similar outcome. The third column in this figure shows an image of the PSD at the channel 
level for HbO and HbR signals. In the three examples presented, physiological 
components display larger power in the HbO signal (note differences in scale), but they are 
also present visible in the HbR signal. As expected for resting-state data power is maximal 
at low frequencies where spontaneous hemodynamic fluctuations reside. By looking at the 
channel by channel plots it is also evident that PSD in Examples A and B looks cleaner 
than in Example C, which exhibits the lowest data quality. 
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A.3. HbO – HbR Statistical Relationship 

A negative correlation is expected between HbO and HbR time series, which can 
be evaluated by calculating the adjacency matrix based on the pairwise Pearson’s correlation 
coefficients between HbO and HbR signals. Similarly, a phase difference close to an 
antiphase state (180°) should be evident between HbO and HbR chromophores 
(Watanabe et al., 2017). MATLAB Box A.3 provides the script to compute and visualize 
these indicators in an individual dataset (Figure A.3). The same plots for bandpass filtered 
HbO and HbR data are presented for the sake of comparison and to facilitate interpretation 
of phase difference plots, which are otherwise heavily influenced by high frequency 
physiological components. 

MATLAB Box A.3 

Script to plot HbO and HbR adjacency matrices (HbO, HbR, HbO-HbR) and 2) channelwise 
phase difference between HbO and HbR 

 
 
 
 
 
 
 
 
 

% The following variables should be defined in advance: 
% data_HbO and data_HbR (raw HbO and HbR concentration data) 
% ch = number of channels of the dataset (52 in this example) 
 

% Compute and plot adjacency matrices 
subplot(1,4,1) 
imagesc(corr(data_HbO), [-1 1]); colorbar 
xlabel('Channels'); ylabel({'Raw data'; 'Channels'}) 
title('HbO'); axis square 
  
subplot(1,4,2) 
imagesc(corr(data_HbR), [-1 1]); colorbar 
xlabel('Channels');  
title('HbR'); axis square 
  
subplot(1,4,3) 
imagesc(corr(data_HbO, data_HbR), [-1 1]); colorbar 
xlabel('Channels');  
title('HbO-HbR'); axis square 
 

% Compute hPod value (HbO-HbR phase difference as described in Watanabe et al., 2017) 
hPod = zeros(1, ch); 
for nch = 1:ch 
                

    % Calculate the Hilbert transformation of the signals  
    HbO_hilbert = hilbert(data_HbO(:, nch)); 
    HbR_hilbert = hilbert(data_HbR(:, nch)); 
 

    % Calculate instantaneous phase 
    HbO_inst = unwrap(angle(HbO_hilbert)); 
    HbR_inst = unwrap(angle(HbR_hilbert)); 
         

    % Calculate phase difference  
    ph_dif = HbO_inst - HbR_inst; 
     

    % Compute and store hPod  
    hPod (nch) = angle(mean(exp(sqrt(-1)*ph_dif))); 
                 

end 
 

subplot(1,4,4) 
h = rose (hPod, 10); 
set(h, 'linewidth', 4, 'color', 'b') 
title('Phase difference HbO-HbR (degrees)') 
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Participant A 

 
 
 

Participant B
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Participant C 

 
Figure A.3 Each row in this figure displays the adjacency matrices and the phase difference 
for raw and bandpass filtered concentration data respectively. The first column shows the 
HbO adjacency matrices of this dataset, which are mostly positive. The second column 
shows the HbR adjacency matrices, which exhibit a similar pattern. In these matrices the 
highest correlation values are observed between adjacent channels (i.e., main diagonal) and 
between homotopic channels. As channels are ordered from left to right (i.e., channels 1-
26 are localized in the left hemisphere and channels 27-52 belong to the right hemisphere) 
homotopic connectivity can be inferred in a second diagonal in the middle of the upper (or 
lower) triangular part of these matrices. Note that adjacency matrices are symmetric with 
respect to the main diagonal. The third column in this figure represents the HbO-HbR 
adjacency matrices, which is the main parameter of interest for data quality assessment due 
to the expected statistical association (i.e., strong negative correlation) between HbO and 
HbR time series. The expected negative correlation is apparent in these matrices, and also 
a high similarity with the patterns observed in HbO and HbR adjacency matrices. The 
fourth column shows the angle histogram plots of the phase difference between HbO and 
HbR time series. In raw data most channels show a close to antiphase state, a pattern that 
is more prominent after bandpass filtering, probably due to the exclusion of high frequency 
components. The overall stronger correlation between HbO channels, which is probably 
induced by the larger presence of physiological components in the HbO signal, is another 
interesting feature that can be observed in these plots.  
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Supplementary Materials Chapter 3 
 

 

This Appendix contains the Supplementary Materials of the study presented in Chapter 3. 
In particular, the procedure for model order selection in the independent component 
analysis (ICA) based resting-state functional connectivity (RSFC) approaches employed in 
this study is described. This data-driven procedure could serve as reference for future ICA 
based studies using fNIRS, or at least be informative for data quality evaluation. The second 
section of this Appendix includes the supplementary results of the study. Figures of group-
level data quality evaluation are presented, in which two previous fNIRS studies assessing 
RSFC in infants are replicated in each of the investigated experimental groups. Finally, the 
complete set of components extracted from the ICA based approaches to investigate RSFC 
are displayed, including some components that have not been presented in the main text. 
Inclusion/exclusion criteria of the components was based on their spatial configuration and 
interpretability, as is standard in this type of studies. 
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B.1. ICA Model Order Selection 

Independent component analysis (ICA) is a data analysis method routinely applied 
in resting-state functional connectivity (RSFC) studies to decompose the data into 
statistically independent components (ICs) associated with the measured spontaneous brain 
activity. The conceptual idea behind ICA is that the recorded signal (e.g., BOLD in 
functional magnetic resonance imaging – fMRI, or HbO and HbR in functional near-
infrared spectroscopy - fNIRS) consists of a linear mixture of functionally relevant signals 
and noise, which could be explained by several statistically ICs stemming from various 
sources. In RSFC analyses, this approach should ideally allow separating ICs associated 
with spontaneous resting-state activity (i.e., functional networks) from those related to noise. 

Based on the characteristics of the data and the experimental question of interest, 
ICA can decompose the data into a number of maximally ICs in different dimensions, such 
as space or time. However, as mentioned before, not all the estimated ICs are reliable, 
robust or neurophysiologically meaningful. A number of the extracted ICs might be 
associated with noise, or they might explain a very small portion of data variance. Currently 
there is no method to objectively and a priori determine the number of meaningful 
components (i.e., those describing functional networks) that should be expected in the 
observed signal (e.g., BOLD in fMRI or HbO and HbR in fNIRS). Thus, a recurrent issue 
in studies using ICA to investigate RSFC is how to determine the number of ICs to be 
estimated, or alternatively, the number of true underlying sources in the data.  

The question of how to calculate the optimal number of ICs to be estimated has 
been mainly explored in the context of resting-state fMRI studies. One of the most widely 
adopted approaches to decide the number of ICs to be estimated is to perform a principal 
component analysis (PCA) prior to ICA (Majeed and Avison, 2014). This step will reduce 
the dimensionality of the data by removing noise-related components, which are usually 
identified as those accounting for the smallest percentage of data variance. Next, the 
number of components to be estimated by the ICA algorithm is matched with the number 
of components that are retained after applying PCA. This approach has the disadvantage 
that an arbitrary threshold selection is still needed (i.e., number of PCA components or 
percentage of explained variance to retain), an issue that is intended to be overcome with 
the method proposed below. Some works adopted a more subjective approach, 
considering a number of ICs based on their spatial interpretability given the inferred 
dimensionality of the data (e.g., Van de Ven et al., 2004; Smith et al., 2012). Other studies 
tried to determine the true dimensionality of the data by means of model order selection 
procedures (e.g., Calhoun et al., 2001; Damoiseaux et al., 2006; Filippini et al., 2009), such 
as the Laplace approximation based on Bayesian model selection proposed by Minka et 
al., (2000). However, none of these solutions for optimal model order estimation have been 
established as standard for ICA based studies. Yet, an accurate model order selection is 
relevant, as it can significantly impact the characteristics of the inferred ICs (Abou Elsoud 
et al., 2010), as demonstrated by studies investigating the effect of model order selection 
(e.g., low model order vs. high model order) on the characteristics of the extracted 
functional connectivity patterns (e.g., Abou Elseoud et al., 2010; Abou Elseoud et al., 2011; 
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Damaraju et al., 2014). These studies demonstrated that large-scale functional connectivity 
patterns are more precisely described using low model orders, and fine-grained 
components are usually distinguishable at higher model orders only. If dimensionality (i.e., 
model order) gets too small there is risk of merging several ICs and lose spatial specificity, 
whereas very large model orders result in spatially sparse components, and might require 
sub-dividing/splitting functionally related ICs.  

Few studies have used ICA to assess functional connectivity in resting-state fNIRS 
data. These studies proposed explaining a percentage of data variance (e.g., 99%; Zhang H. 
et al., 2010; Zhang H. et al., 2011) or extracting a range of ICs for each participant (e.g., 10-
20 ICs; White et al., 2012; Ferradal et al., 2015), but the rationale underlying these choices 
was not discussed. As stated above, one can arbitrarily (or based on previous works) select 
a number of PCA components (or percentage of explained variance) to be retained, and 
then use the same number of components for model order selection in the ICA. The 
option proposed in this Appendix, and which has been in implemented in the study 
presented in Chapter 3, is to evaluate certain properties of the ICA decomposition across 
several PCA thresholds, and then select the optimal model order based on the outcome of 
the studied properties. A data-driven approach is proposed to determine the optimal 
number of ICs to be estimated by the ICA algorithm in RSFC studies using fNIRS data. 
This approach for ICA model order selection is based in two metrics that exploit specific 
defining properties of ICA estimation and fNIRS data:  

1) The robustness of the estimated ICs across multiple realizations of the ICA algorithm. 

2) The assumed statistical relationship between the HbO and HbR derived ICs. 

Methods 

All data preprocessing and analyses were implemented in MATLAB (R2012b, 
R2014b, MathWorks, Massachusetts) using in-house scripts as well as third-party toolboxes 
and functions (see MATLAB Box B.1).  

MATLAB Toolboxes employed in this analysis: 

- ICASSO Toolbox (Himberg et al., 2004; https://research.ics.aalto.fi/ica/icasso/). 
- Automatic Choice of Dimensionality for PCA (Minka, 2000; 

https://tminka.github.io/papers/pca/). 

The datasets employed in this Appendix are the ones presented in Chapter 3 – 
Resting-state Functional Connectivity in Infants using fNIRS. As a reminder, in this study 
two ICA based methods were implemented, which have been described in detail in Chapter 
3. In the first method, the time-series of the participants are used to obtain temporally 
independent group-level components (temporal group ICA – tGICA, Beckman et al., 
2009). In the second method, individual functional connectomes are employed to obtain 
group-level independent functional connectivity patterns (connICA – Amico et al., 2017).  

These two methods rely on the FastICA algorithm for independent component 
extraction. In this algorithm, the first set of weights used to estimate the independent 
components (ICs) is randomly generated, and then updated by a learning rule (e.g., non-



Appendix B 

 136 

gaussianity) across multiple iterations until convergence. This causes that, for a given 
particular input, the FastICA decomposition into components might vary depending on the 
initialization, making the algorithm intrinsically non-deterministic. A reliable interpretation 
of the results requires selecting only those ICs that are considered robust; being robustness 
defined by the identifiability/repeatability of each specific component across multiple 
realizations of the FastICA algorithm with different random initializations. Here, the 
robustness of the estimated ICs is evaluated across multiple PCA thresholds by using the 
ICASSO stabilization method (Himberg et al., 2004).  

One of the goals of the data-driven exploratory method presented in this Appendix 
is to investigate the stability of the estimated components by running the ICASSO algorithm 
across a range of PCA thresholds. Then, ICASSO reliability estimates are employed to 
select the PCA threshold in which the number of robust components is larger, or 
alternatively, to analyze only those components that are deemed robust. For the two ICA 
functional connectivity methods employed in the current work (i.e., tGICA and connICA), 
ICASSO cluster quality/robustness index (Iq) values were obtained for each component, 
and at each PCA threshold. By clustering together the set of all estimated ICs based on a 
similarity metric (e.g., absolute value of mutual correlation coefficients), this index 
quantifies the robustness of the estimated components across several realizations of the 
ICA algorithm. Specifically, the calculation of this index takes into consideration the 
compactness of the cluster (i.e., similarity between ICs belonging to the cluster) and the 
isolation of the cluster (i.e., similarity between components that belong to the cluster and 
those belonging to other clusters). The ideal outcome is one in which clusters are compact 
(i.e., high intracluster similarity) and isolated (i.e., low intercluster similarity). Values for the 
Iq index range between 0 (low robustness) and 1 (high robustness). In this work, 100 
realizations of the ICA algorithm (FastICA, Hyvärinen, 1999) were computed for each 
PCA threshold under assessment (i.e., 60, 65, 70, 75, 80, 85, 90, 95 and 99), representing 
the percentage of explained data variance to be retained.  

The expected statistical association between HbO and HbR chromophores can be 
used as a second metric to evaluate the reliability of the ICs extracted from the ICA 
algorithm. As explained in Chapter 2 (see also Appendix A), the relationship between time 
series fluctuations of Hb chromophores is expected to be characterized by a strong negative 
correlation. A high correlation/similarity between the extracted HbO and HbR 
components will imply that these components are consistent across Hb chromophores, and 
therefore that they follow the expected physiological properties of fNIRS data, making 
them more reliable. In each of the ICA methods employed in the current study (i.e., tGICA 
and connICA) the expected statistical relationship between HbO and HbR derived ICs 
differs slightly, and therefore should be clarified first to aid the reader’s understanding. In 
the tGICA approach, the ICs are estimated from the HbO and HbR time series (Amico 
and Goñi, 2018), which are expected to show a negative correlation between them (see 
individual examples in Appendix A). In this approach, the first output from the ICA 
algorithm are the group-level temporally-independent time series, which are common to 
HbO and HbR data. The second output of the ICA algorithm, the weights, specify the 
contribution of each IC time series on each channel. fNIRS data comprises HbO and HbR 
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channels, each of them with a different weight. Since a strong negative correlation between 
HbO and HbR time series is assumed, these weights, which spatially represent the 
functional networks of interest, should show a highly similar spatial configuration in both 
chromophores (i.e., HbO and HbR), but with opposite sign (e.g., positive in HbO and 
negative in HbR). The predicted statistical relationship between HbO and HbR spatial 
patterns can be investigated by computing the Pearson’s correlation coefficient between the 
HbO and HbR spatial maps (i.e., channel weights), which is expected to be high and 
negative. In the connICA approach, in contrast, a strong positive correlation between the 
estimated HbO and HbR independent functional components is expected, as the input to 
the ICA algorithm in this approach are the HbO and HbR functional connectivity matrices, 
which should show alike topology across chromophores (see Appendix A). Thus, for each 
ICA approach, and as a second reliability metric, Pearson’s correlation coefficient was 
computed between the HbO and HbR components extracted at each PCA threshold. 

Results and Discussion 

The results of the robustness analysis for the two ICA methods are presented in 
descending order (i.e., components with larger Iq first) in Figure B.1. Rows in this figure 
represent the percentage of explained PCA variance, and columns index each of the 
estimated independent components (ICs). Color scale in this figure represents the Iq value 
returned by the ICASSO algorithm. In the tGICA approach, higher Iq values (i.e., more 
robustness) were obtained at the lower PCA thresholds (60% and 65% explained variance). 
For higher thresholds, the first 15-20 ICs also showed high Iq  values. These values start 
decaying as the number of ICs increased, and were particularly low at the higher thresholds 
(above 80% explained variance). A similar trend can be observed in the connICA approach. 
The highest Iq values were obtained at the lower PCA thresholds (60% - 70% explained 
variance), whereas the Iq values for higher PCA thresholds were only high up to the first 
15 ICs and then progressively decreased.  

Figure B.2 shows the results of the analysis of the second reliability metric, which 
evaluates the statistical relationship between HbO and HbR components. In the tGICA 
approach HbO and HbR spatial maps (i.e., channel weights) displayed a strong negative 
correlation at the lower PCA thresholds, up to 75% of explained variance. At higher 
thresholds, correlation between HbO and HbR components remained negative, but it 
decreased considerably, and the number of components not showing this pattern increased. 
The analysis for the connICA method yielded similar results as the tGICA approach. Note 
that in this case the statistical relationship between HbO and HbR components is expected 
to be positive. At lower PCA thresholds (60%, 65% explained variance) the correlation 
between HbO and HbR components was notably high (r  ≥ 0.7). At higher PCA thresholds, 
correlation between components remained positive, but with low correlation values, 
indicating that the similarity between HbO and HbR components was lower at these 
thresholds. 

Based on these two metrics (i.e., robustness of the estimated ICs, and correlation 
between HbO and HbR components) an appropriate choice for PCA model order, and in 
turn for the subsequent ICA method, corresponds to a PCA threshold of 60% or 65% 
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explained variance in both ICA approaches (i.e., tGICA and connICA). These values 
provide the ICs with higher robustness values, and those that meet the criteria assuring a 
reliable HbO-HbR statistical relationship. Independent components estimated at higher 
PCA thresholds (i.e., higher ICA model orders) are either not robust, or the relationship 
between HbO and HbR is altered leading to unexpected patterns.  

One might argue that this choice (e.g., 60% explained variance) represents a very 
low percentage of explained data and that a more conservative approach, explaining more 
variance (e.g., 90% or 99%), would be more advisable in order to avoid the risk of throwing 
away meaningful signal. However, it is also true that due to the reduced spatial resolution 
of fNIRS and the number of channels available, which consequently also limit the cortical 
regions under assessment (i.e., field of view). Thus, the expected number of signals of 
interest, those referring to potentially meaningful functional networks, cannot possibly be 
very high.  

In order to reinforce the outcome of this method for model order selection, and as 
a third metric, the variance explained by each IC was computed by calculating the sum of 
squared differences between the data at each PCA threshold, and the data after 
reconstructing it by removing one particular component at a time. In this way, the 
percentage of explained variance by each component can be calculated, either with respect 
to the original data (without PCA) or for the data employed in the ICA analysis (after 
applying PCA). This analysis showed that, for the two analyses approaches (i.e., tGICA and 
connICA), the ICs at the selected 60% PCA threshold explained the largest amount of data 
variance, while also obtaining the highest values in the robustness and consistency metrics 
(Figure B.3). At higher PCA thresholds, explaining the same amount of variance (i.e., 60%) 
would require including components that are not robust, or which do not show the 
expected statistical association between HbO and HbR.  

Based on this information, for the tGICA approach 15 principal components were 
selected corresponding to 60% explained variance (see Table B.1 for a summary of the 
three metrics at this threshold). For the connICA method 11 principal components were 
considered which corresponds to 60% explained variance (see Table B.2 for a summary of 
the three metrics at this threshold). As a reference, the Laplace approximation based on 
Bayesian model order selection (Minka, 2000) yielded an optimal model order of 27 
components (i.e., 73.5% explained variance) for the tGICA approach, and an optimal 
model order of 17 components for the connICA method (i.e., 66.34% explained variance).  
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Figure B.1 Plot ranking the independent components obtained in the tGICA and connICA 
approaches based on the ICASSO cluster quality index (Iq) for a range of PCA thresholds. 

 

 

Figure B.2 Plot showing the correlation coefficient between HbO and HbR components. In the 
tGICA approach correlation is computed between the weights of HbO and HbR channels for each 
IC. In the connICA approach, correlation is computed between the first and the second half of the 
functional connectome component, which represent HbO and HbR respectively. ICs are ordered 
by Iq to maintain consistency across figures. 
 

 

Figure B.3 Plot displaying the accumulative explained variance by the ICs obtained at each PCA 
threshold. It can be observed that as PCA threshold increases, a larger number of ICs are required 
to explain the same amount of variance (e.g., 11 ICs explain 60% of the variance for a PCA 
threshold of 60%, whereas around 65 components are necessary to explain 60% of the variance at 
a PCA threshold of 99%). ICs are ordered by Iq. 
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MATLAB Box B.1  
Script for model order selection in group ICA based approaches considering various component 
quality metrics for a range of PCA thresholds (e.g., Iq, correlation HbO-HbR, explained variance)

 

% The following variable should be defined in advance: 
% group_data = tGICA or connICA group data 
% Compute accumulative explained variance across PCA components 
[~, ~, latent, ~, ~] = pca(group_data); 
exp_var = cumsum(latent)./sum(latent); 
 

% Define PCA thresholds (percentage of explained variance) 
PCA_th = [0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99]; 
 

% Compute number of components corresponding to different PCA thresholds 
nComp = zeros(1, length(PCA_th)); 
for i = 1:length(PCA_th) 
    nComp(i) = length(find(exp_var<PCA_th(i)))+1;  
end 
 

% Define number of ICASSO realizations (M) and initialize variables to store info 
M = 100; 
ICAinfo.Iq = zeros (length(nComp), max(nComp)); 
ICAinfo.ssd_PCA = zeros (length(nComp), max(nComp)); 
ICAinfo.ssd_orig = zeros (length(nComp), max(nComp)); 
ICAinfo.HbOHbR = zeros (length(nComp), max(nComp)); 
 

% For each PCA threshold 
for i = 1: length(nComp) 
    

    % Run PCA 
    [coeffs, score, latent] = pca(group_data, 'NumComponents', nComp(i)); 
    PCA_matrix = score * coeffs';  
    PCA_matrix = bsxfun(@plus, PCA_matrix, mean(group_data,2)); 
    group_ICA = PCA_matrix; 
     

    % Run ICASSO (optional parameters are user selectable) 
    sR = icassoEst('randinit', group_ICA', M,'numOfIC', nComp(i)); 
    sR = icassoExp(sR); 
    icassoShow(sR, 'L', nComp(i), 'estimate', 'demixing'); 
    [iq, icaSM, w, icaTC] = icassoShow(sR,'L', nComp(i),'colorlimit', [.6 .7 .8 .9]);     
         

    % Order components (icaSM and icaTC) by iq and store info 
    [iq_order, idx_order] = sort(iq, 'descend'); 
    icaSM = icaSM(:, idx_order); 
    icaTC = icaTC(idx_order, :); 
    ICAinfo.Iq(i, 1:nComp(i)) = iq_order; 
     

    % Compute and store explained variance by each IC (sum of squared differences) 
    for j = 1: nComp(i) 
         
        ica_temp = icaTC;  
        ica_temp(j,:) = 0; 
        data_rec = icaSM*ica_temp; 
         
        diff_pca = group_ICA' - data_rec; 
        diff_orig = group_data' - data_rec; 
         
        PCA_temp(i,j) = sum(diff_pca(:).^2); 
        orig_temp(i,j) = sum(diff_orig(:).^2); 
         

    end 
     
    ICAinfo.ssd_PCA(i, :) = PCA_temp(i,:)./sum(PCA_temp(i,:))*100; 
    ICAinfo.ssd_orig(i,:) = orig_temp(i,:)./sum(orig_temp(i,:))*100*PCA_th(i) 
 

    % Get ICA_HbO and ICA_HbR data to assess correlation between components  
    % Separate HbO and HbR components (differs between tGICA and connICA) 
    % In tGICA separate HbO and HbR spatial maps (number of channels/2) 
    % In connICA separate the functional connectome components (number of edges/2) 
    temp_cor = corr([ICA_HbO, ICA_HbR]); 
    temp_mat = zeros(1, nComp(i)); 
     

    % Calculate correlation between HbO and HbR components and store 
    for d = 1:nComp(i) % number of components extracted at each PCA threshold 
        temp_mat(1,d) = temp_cor(d, nComp(i)+d);        
    end 
 

    ICAinfo.HbOHbR(i, 1:nComp(i)) = temp_mat; 
             
end 
 

% Produce images with the information for different PCA thresholds stored in ICAinfo 
% For example: imagesc (ICAinfo.Iq, [0 1]) 
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B.2. Supplementary Results 

 

 
Figure B.4 Group-level data quality assurance figures replicating two previous infant studies 
assessing resting-state functional connectivity using fNIRS. First row shows the channelwise average 
phase difference (hPod value, Watanabe et al., 2017) between HbO and HbR in each experimental 
group. The three groups show a similar pattern characterized by an antiphase state between HbO 
and HbR, which replicates the outcome from the previous study. Second and third rows in this 
figure show the results of a hierarchical clustering approach (Homae et al., 2010) in which channels’ 
time series are clustered based on similarity. A similar cluster configuration can be observed across 
groups in HbO and HbR. Cluster 1 is formed by channels located in the most anterior part of both 
hemispheres. Cluster 2 comprises channels located in middle brain regions, predominantly 
covering somatosensory regions. Channels located in the most posterior part of the setup are 
grouped together in cluster 3. 
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Figure continues in next page 
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Figure B.5 Functional networks (n = 15) maps extracted with the tGICA approach. Each functional 
network map was reconstructed to the subject space using dual-regression. These subject-level maps 
for HbO and HbR are presented in the middle and rightmost columns. Due to the high similarity 
between HbO and HbR components, functional network maps are displayed for HbR only. 
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Functional Network (FN) Iq r 
(HbO-HbR) 

ssd 
(100 %) 

ssd 
(60 %) 

FN 1 Sensorimotor 0.84 -0.99 8.8 4.1 

FN 2 Sensorimotor 0.76 -0.98 4.3 3.9 

FN 3 Sensorimotor 0.72 -0.99 5.5 3.9 

FN 4 Auditory 0.49 -0.98 5.6 3.9 

FN 5 Language 0.89 -0.99 7.4 4.0 

FN 6 Frontal 0.91 -0.99 10.5 4.2 

FN 7 Default-Mode 0.80 -0.97 6.2 4.0 

FN 8 0.86 -0.99 8.9 4.1 

FN 9 0.82 -0.99 7.2 4.0 

FN 10 0.77 -0.98 7.3 4.0 

FN 11 0.73 -0.98 4.5 3.9 

FN 12 0.68 -0.98 5.7 3.9 

FN 13 0.63 -0.98 5.1 3.9 

FN 14 0.63 -0.99 9.0 4.1 

FN 15 0.91 0.02 3.8 3.8 

Table B.1 tGICA model order evaluation metrics for the PCA threshold selected (i.e., 60% - 15 
ICs) in the study described in Chapter 3. ICASSO cluster robustness index (Iq) and HbO-HbR 
correlation (r) values are displayed. Sum of squared differences (ssd) are computed with respect to 
the data after PCA (total = 100%) and with respect to the original data without PCA (total = 60%). 
Components (FN) are ordered based on their spatial configuration and interpretability in the same 
order as they are presented in the figures of Chapter 3. 

 



Supplementary Materials Chapter 3 

 145 

 
 

Figure continues in next page 
 



Appendix B 

 146 

 
 

Figure continues in next page 
 

 
 
 



Supplementary Materials Chapter 3 

 147 

 

 
Figure B.6 Functional connectome components (FCC) obtained with the connICA method. 
Leftmost column shows the positive and negative parts of the components, represented as nodes 
and edges (top 10% connections) in a brain template. The middle column shows the components 
as reconstructed in their original form (i.e., adjacency matrices), with HbO and HbR displayed in 
the upper and lower triangular sections of the matrix respectively. Statistical comparisons on the 
weights for each component (right column) revealed no differences between groups. Due to the 
high similarity between HbO and HbR components FCCs are shown for HbR only. 
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Functional Connectome 
Component (FCC) Iq r 

(HbO-HbR) 
ssd 

(100 %) 
ssd 

(60 %) 

FCC 1 0.96 0.95 24 5.5 

FCC 2 0.91 0.88 7.2 5.5 

FCC 3 0.50 0.70 7.4 5.4 

FCC 4 0.94 0.72 7.8 5.4 

FCC 5 0.91 0.80 7.3 5.5 

FCC 6 0.91 0.83 7.3 5.4 

FCC 7 0.90 0.90 8.8 5.6 

FCC 8 0.84 0.84 7.3 5.4 

FCC 9 0.88 0.72 7.6 5.5 

FCC 10 0.90 0.74 8.0 5.4 

FCC 11 0.71 0.67 7.6 5.4 

Table B.2 Model order evaluation metrics for the PCA threshold selected (i.e., 60% - 11 ICs) in 
the connICA approach for the study described in Chapter 3. ICASSO cluster robustness index (Iq) 
and HbO-HbR correlation (r) values are displayed. Sum of squared differences (ssd) are computed 
with respect to the data after PCA (total = 100%) and with respect to the original data without PCA 
(total = 60%). Components (FCC) are ordered based on their spatial configuration and 
interpretability in the same order as they are presented in the figures of Chapter 3. 
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Supplementary Figures Chapter 5 
 

 

This Appendix contains the Supplementary Figures for the study presented in Chapter 5 
“Hemodynamic Correlates of Speech Processing in Bilingual and Monolingual Infants”. 
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Figure C.1 Results presented in this figure are equivalent to those displayed in Figure 5.8, except 
here results were computed following a standard preprocessing pipeline, and not one including 
global signal regression. A) Channels showing a significant activation/deactivation as determined by 
one-sample t-tests in the 3-values for each experimental condition (FW, BW). *p<0.05, **p<0.05 
(FDR corrected). B) Group-averaged HRFs at each channel location and for each experimental 
condition estimated by the FIR analysis. Zero-point in the time line marks stimulus onset.  
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Figure C.2 Comparison of group-level hemodynamic response time courses (mean and standard 
deviation) between FW and BW speech conditions for HbO and HbR data. 
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Figure C.3 Channelwise time courses of F-values computed at each time point to assess clusters 
showing significant main (blue) and interaction (red) effects using the TFCE method. 
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Figure C.4 Channelwise time courses of t-values computed at each time point for each experimental 
condition to evaluate clusters showing significant effects using the TFCE method. 



Appendix C 

 154 

 
Figure C.5 Hemodynamic responses extracted in each experimental group (i.e., bilingual and 
monolingual infants), for FW and BW conditions and for HbO and HbR data. Shaded areas 
represent time windows where significant effects were observed after multiple comparisons 
correction using the TFCE method. F-tests (grey); post-hoc t-tests (color matching condition). 
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